KR20190069152A - 발광소자 패키지 및 광원 장치 - Google Patents

발광소자 패키지 및 광원 장치 Download PDF

Info

Publication number
KR20190069152A
KR20190069152A KR1020170169573A KR20170169573A KR20190069152A KR 20190069152 A KR20190069152 A KR 20190069152A KR 1020170169573 A KR1020170169573 A KR 1020170169573A KR 20170169573 A KR20170169573 A KR 20170169573A KR 20190069152 A KR20190069152 A KR 20190069152A
Authority
KR
South Korea
Prior art keywords
light emitting
emitting device
disposed
protrusion
frame
Prior art date
Application number
KR1020170169573A
Other languages
English (en)
Other versions
KR102455087B1 (ko
Inventor
박천홍
송준오
윤석범
임창만
김원중
김형진
Original Assignee
엘지이노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지이노텍 주식회사 filed Critical 엘지이노텍 주식회사
Priority to KR1020170169573A priority Critical patent/KR102455087B1/ko
Publication of KR20190069152A publication Critical patent/KR20190069152A/ko
Application granted granted Critical
Publication of KR102455087B1 publication Critical patent/KR102455087B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Engineering & Computer Science (AREA)
  • Led Device Packages (AREA)

Abstract

발명의 실시 예에 개시된 발광소자 패키지는, 서로 이격되어 배치되는 제1 프레임 및 제2 프레임; 상기 제1 프레임 및 제2 프레임 사이에 배치된 몸체; 상기 제1 프레임 및 제2 프레임 상에 배치되는 발광소자; 및 상기 발광소자의 측면과 상기 측면들 사이의 코너 중 적어도 하나에 대향되게 배치되는 복수의 돌기를 포함할 수 있다.

Description

발광소자 패키지 및 광원 장치{LIGHT EMITTING DEVICE PACKAGE AND LIGHT UNIT}
실시 예는 발광소자 패키지, 반도체 소자 패키지 및 반도체 소자 패키지 제조방법, 광원 장치에 관한 것이다.
GaN, AlGaN 등의 화합물을 포함하는 반도체 소자는 넓고 조정이 용이한 밴드 갭 에너지를 가지는 등의 많은 장점을 가져서 발광소자, 수광 소자 및 각종 다이오드 등으로 다양하게 사용될 수 있다.
특히, 3족-5족 또는 2족-6족 화합물 반도체 물질을 이용한 발광 다이오드(Light Emitting Diode)나 레이저 다이오드(Laser Diode)와 같은 발광소자는 박막 성장 기술 및 소자 재료의 개발로 적색, 녹색, 청색 및 자외선 등 다양한 파장 대역의 빛을 구현할 수 있는 장점이 있다. 또한, 3족-5족 또는 2족-6족 화합물 반도체 물질을 이용한 발광 다이오드나 레이저 다이오드와 같은 발광소자는, 형광 물질을 이용하거나 색을 조합함으로써 효율이 좋은 백색 광원도 구현이 가능하다. 이러한 발광소자는, 형광등, 백열등 등 기존의 광원에 비해 저 소비전력, 반영구적인 수명, 빠른 응답속도, 안전성, 환경 친화성의 장점을 가진다.
뿐만 아니라, 광검출기나 태양 전지와 같은 수광 소자도 3족-5족 또는 2족-6족 화합물 반도체 물질을 이용하여 제작하는 경우 소자 재료의 개발로 다양한 파장 영역의 빛을 흡수하여 광 전류를 생성함으로써 감마선부터 라디오 파장 영역까지 다양한 파장 영역의 빛을 이용할 수 있다. 또한, 이와 같은 수광 소자는 빠른 응답속도, 안전성, 환경 친화성 및 소자 재료의 용이한 조절의 장점을 가져 전력 제어 또는 초고주파 회로나 통신용 모듈에도 용이하게 이용될 수 있다.
따라서, 반도체 소자는 광 통신 수단의 송신 모듈, LCD(Liquid Crystal Display) 표시 장치의 백라이트를 구성하는 냉음극관(CCFL: Cold Cathode Fluorescence Lamp)을 대체하는 발광 다이오드 백라이트, 형광등이나 백열 전구를 대체할 수 있는 백색 발광 다이오드 조명 장치, 자동차 헤드 라이트 및 신호등 및 가스(Gas)나 화재를 감지하는 센서 등에까지 응용이 확대되고 있다. 또한, 반도체 소자는 고주파 응용 회로나 기타 전력 제어 장치, 통신용 모듈에까지 응용이 확대될 수 있다.
발광소자(Light Emitting Device)는 예로서 주기율표상에서 3족-5족 원소 또는 2족-6족 원소를 이용하여 전기에너지가 빛 에너지로 변환되는 특성의 p-n 접합 다이오드로 제공될 수 있고, 화합물 반도체의 조성비를 조절함으로써 다양한 파장 구현이 가능하다.
예를 들어, 질화물 반도체는 높은 열적 안정성과 폭 넓은 밴드갭 에너지에 의해 광소자 및 고출력 전자소자 개발 분야에서 큰 관심을 받고 있다. 특히, 질화물 반도체를 이용한 청색(Blue) 발광소자, 녹색(Green) 발광소자, 자외선(UV) 발광소자, 적색(RED) 발광소자 등은 상용화되어 널리 사용되고 있다.
예를 들어, 자외선 발광소자의 경우, 200nm~400nm의 파장대에 분포되어 있는 빛을 발생하는 발광 다이오드로서, 상기 파장대역에서, 단파장의 경우, 살균, 정화 등에 사용되며, 장파장의 경우 노광기 또는 경화기 등에 사용될 수 있다.
자외선은 파장이 긴 순서대로 UV-A(315nm~400nm), UV-B(280nm~315nm), UV-C (200nm~280nm) 세 가지로 나뉠 수 있다. UV-A(315nm~400nm) 영역은 산업용 UV 경화, 인쇄 잉크 경화, 노광기, 위폐 감별, 광촉매 살균, 특수조명(수족관/농업용 등) 등의 다양한 분야에 응용되고 있고, UV-B(280nm~315nm) 영역은 의료용으로 사용되며, UV-C(200nm~280nm) 영역은 공기 정화, 정수, 살균 제품 등에 적용되고 있다.
한편, 고 출력을 제공할 수 있는 반도체 소자가 요청됨에 따라 고 전원을 인가하여 출력을 높일 수 있는 반도체 소자에 대한 연구가 진행되고 있다.
또한, 반도체 소자 패키지에 있어, 반도체 소자의 광 추출 효율을 향상시키고, 패키지 단에서의 광도를 향상시킬 수 있는 방안에 대한 연구가 진행되고 있다. 또한, 반도체 소자 패키지에 있어, 패키지 전극과 반도체 소자 간의 본딩 결합력을 향상시킬 수 있는 방안에 대한 연구가 진행되고 있다.
또한, 반도체 소자 패키지에 있어, 공정 효율 향상 및 구조 변경을 통하여 제조 단가를 줄이고 제조 수율을 향상시킬 수 있는 방안에 대한 연구가 진행되고 있다.
발명의 실시 예는 반도체 소자 또는 발광소자의 주변에 발광소자의 틸트를 방지하기 위한 구조를 갖는 발광소자 패키지, 발광소자 패키지, 반도체 소자 패키지 및 그 제조방법을 제공한다.
발명의 실시 예는 반도체 소자 또는 발광소자의 주변에 상기 몸체로부터 돌출된 돌기를 배치하여, 소자의 틸트를 방지할 수 있는 발광소자 패키지, 발광소자 패키지, 반도체 소자 패키지 및 그 제조방법을 제공한다.
발명의 실시 예는 프레임들 사이의 몸체 상부에 리세스를 갖는 발광소자 패키지, 발광소자 패키지, 반도체 소자 패키지 및 그 제조방법을 제공한다.
발명의 실시 예는 프레임들 사이의 몸체에 제1수지를 배치하여, 소자를 접착시켜 줄 수 있는 발광소자 패키지, 발광소자 패키지, 반도체 소자 패키지 및 그 제조방법을 제공한다.
발명의 실시 예는 프레임들 사이의 몸체 상부 및 하부에 리세스를 갖는 발광소자 패키지, 발광소자 패키지, 반도체 소자 패키지 및 그 제조방법을 제공한다.
실시 예는 몸체로부터 돌출된 돌기가 소자의 한 측면 또는 인접한 두 측면에 각각 배치되어, 소자의 틸트를 방지할 수 있는 반도체 소자 패키지, 발광소자 패키지, 및 반도체 소자 패키지 제조방법, 광원 장치를 제공할 수 있다.
실시 예는 패키지의 공정 효율을 향상시키고 새로운 패키지 구조를 제시하여 제조 단가를 줄이고 제조 수율을 향상시킬 수 있는 반도체 소자 패키지, 발광소자 패키지, 및 반도체 소자 패키지 제조방법, 광원 장치를 제공할 수 있다.
실시 예는 반도체 소자 패키지가 기판 등에 재 본딩되는 과정에서 반도체 소자 패키지의 본딩 영역에서 리멜팅(re-melting) 현상이 발생되는 것을 방지할 수 있는 반도체 소자 패키지, 발광소자 패키지, 및 반도체 소자 패키지 제조방법을 제공할 수 있다.
발명의 실시 예에 따른 발광소자 패키지는, 서로 이격되어 배치되는 제1 프레임 및 제2 프레임; 상기 제1 프레임 및 제2 프레임 사이에 배치된 몸체; 상기 제1 프레임 및 제2 프레임 상에 배치되는 발광소자; 및 상기 발광소자 주위에 배치된 돌기를 포함하고, 상기 발광소자는 서로 다른 방향으로 연장되는 복수의 측면, 및 상기 복수의 측면이 서로 만나는 영역인 복수의 코너부를 포함하며, 상기 돌기는 상기 복수의 측면 및 상기 복수의 코너부 중 적어도 하나에 대향될 수 있다.
발명의 실시 예에 의하면, 상기 복수의 돌기는 상기 몸체 또는 상기 제1 및 제2프레임로부터 돌출될 수 있다.
발명의 실시 예에 의하면, 상기 복수의 돌기 간의 최소 간격은 상기 발광소자의 제1 방향 또는 제2방향의 길이보다 작을 수 있다.
발명의 실시 예에 의하면, 상기 복수의 돌기 각각은 상기 발광소자의 두 측면에 대향되게 배치될 수 있다.
발명의 실시 예에 의하면, 상기 제1 및 제2프레임 사이에 제1리세스를 포함하며, 상기 제1리세스는 상기 발광소자와 수직 방향으로 중첩되며, 상기 제1 및 제2본딩부 사이의 영역 아래에 배치되며, 상기 제1리세스에 배치된 제1수지를 포함할 수 있다.
발명의 실시 예에 의하면, 상기 제1프레임은 상기 발광소자의 제1본딩부 아래에 배치된 제1돌출부와, 상기 제1돌출부의 양측에 배치된 제2 및 제3돌출부를 포함하며, 상기 제2프레임은 상기 발광소자의 제2본딩부 아래에 배치된 제4돌출부와, 상기 제4돌출부의 양측에 배치된 제5 및 제6돌출부를 포함하며, 상기 몸체는 상기 제1돌출부와 상기 제2돌출부의 사이, 상기 제1돌출부와 상기 제3돌출부의 사이, 상기 제4돌출부와 상기 제5돌출부의 사이, 상기 제4돌출부와 상기 제6돌출부 사이로 연장되는 반사부를 포함하며, 상기 복수의 돌기는 상기 반사부로부터 돌출될 수 있다.
발명의 실시 예에 의하면, 상기 발광소자의 하부 둘레에 배치되며 상기 제1 및 제2본딩부의 둘레에 배치된 제2수지를 포함할 수 있다.
발명의 실시 예에 의하면, 상기 제1 및 제2프레임 사이에 상기 발광소자의 폭보다 넓은 간격을 갖고, 상기 몸체로부터 돌출된 제1 및 제2지지부를 포함할 수 있다.
발명의 실시 예에 따른 광원 장치는, 회로 기판; 및 상기 회로 기판 상에 상기에 개시된 하나 또는 복수의 발광소자 패키지를 포함할 수 있다.
발명의 실시 예에 의하면, 발광소자의 측면 또는 코너에 돌기를 배치하여, 발광소자의 틸트(tilt)나 쉬프트(shift)를 방지할 수 있다.
발명의 실시 예에 의하면, 발광소자와 프레임 사이의 오픈 불량을 줄일 수 있다.
발명의 실시 예에 의하면, 패키지의 센터측 몸체에 열 변형에 따른 완충 구조를 제공할 수 있다.
발명의 실시 예에 의하면, 몸체의 팽창/수축에 따른 몸체 주변의 솔더 재질의 크랙 불량을 방지할 수 있다.
발명의 실시 예에 의하면, 프레임들 사이의 몸체의 상부 및 하부 중 적어도 하나에 리세스를 주어, 열 변형에 따른 완충 구조를 제공할 수 있다.
발명의 실시 예에 의하면, 광 추출 효율 및 전기적 특성과 신뢰성을 향상시킬 수 있는 장점이 있다.
발명의 실시 예에 의하면, 발광소자를 수지로 접착시켜 주어, 외부 열에 의해 발광소자가 리멜팅(re-melting)되는 문제를 방지할 수 있다.
발명의 실시 예에 의하면, 공정 효율을 향상시키고 새로운 패키지 구조를 제시하여 제조 단가를 줄이고 제조 수율을 향상시킬 수 있는 장점이 있다.
발명의 실시 예에 의하면, 반사율이 높은 몸체를 제공함으로써, 반사체가 변색되지 않도록 방지할 수 있어 반도체 소자 패키지의 신뢰성을 개선할 수 있는 장점이 있다.
발명의 실시 예에 의하면, 소자 패키지가 기판 등에 재 본딩되는 과정에서 반도체 소자 패키지의 본딩 영역에서 리멜팅(re-melting) 현상이 발생되는 것을 방지할 수 있는 장점이 있다.
도 1은 발명의 실시 예에 따른 발광소자 패키지의 사시도이다.
도 2는 도 1에 발광소자 패키지의 평면도이다.
도 3은 도 2의 발광소자 패키지의 저면도이다.
도 4는 도 1의 발광소자 패키지의 A-A 측에서 바라본 단면도이다.
도 5는 도 1의 발광소자 패키지의 C-C 측에서 바라본 단면도이다.
도 6은 도 4의 발광소자 패키지의 제1변형 예이다.
도 7은 도 4의 발광소자 패키지의 제2변형 예이다.
도 8은 도 6 및 도 7의 발광소자 패키지의 캐비티 내부를 나타낸 평면도의 예이다.
도 9는 도 8의 발광소자 패키지의 제1변형 예이다.
도 10은 도 8의 발광소자 패키지의 제2변형 예이다.
도 11은 도 8의 발광소자 패키지의 제3변형 예이다.
도 12는 도 1의 발광소자 패키지의 다른 예이다.
도 13은 도 10의 발광소자 패키지에서 제1수지의 배치 예를 나타낸 도면이다.
도 14는 발명의 실시 예에 개시된 돌기의 변형 예이다.
도 15는 발명의 실시 예에 따른 발광소자 패키지를 갖는 조명장치의 예이다.
도 16은 발명의 실시 예에 따른 발광소자 패키지에 적용된 발광소자의 예를 나타낸 평면도이다.
도 17은 도 16에 도시된 발광소자의 F-F 선에 다른 단면도이다.
발명의 실시 예는 첨부된 도면을 참조하여 설명한다. 발명의 실시 예의 설명에 있어서, 각 층(막), 영역, 패턴 또는 구조물들이 기판, 각 층(막), 영역, 패드 또는 패턴들의 "상/위(on/over)"에 또는 "아래(under)"에 형성되는 것으로 기재되는 경우에 있어, "상/위(on/over)"와 "아래(under)"는 "직접(directly)" 또는 "다른 층을 개재하여 (indirectly)" 형성되는 것을 모두 포함한다. 또한 각 층의 상/위 또는 아래에 대한 기준은 도면을 기준으로 설명하나 실시 예가 이에 한정되는 것은 아니다.
발명의 실시 예에 따른 반도체 소자 패키지는 첨부된 도면을 참조하여 상세히 설명하도록 한다. 발명에서 소자 패키지는 반도체 소자나 자외선, 적외선 또는 가시광선의 광을 발광하는 발광소자를 포함할 수 있다. 이하에서는 반도체 소자의 예로서 발광소자가 적용된 경우를 기반으로 설명하며, 상기 발광소자가 적용된 패키지 또는 광원 장치에 비 발광소자 예컨대, 제너 다이오드와 같은 소자나 파장이나 열을 감시하는 센싱 소자를 포함할 수 있다. 이하에서는 반도체 소자의 예로서 발광소자가 적용된 경우를 기반으로 설명하며, 발광소자 패키지에 대해 상세히 설명하도록 한다.
도 1 내지 도 10을 참조하여 발명의 실시 예에 따른 발광소자 패키지를 설명하기로 한다. 도 1은 발명의 실시 예에 따른 발광소자 패키지의 사시도이며, 도 2는 도 1에 발광소자 패키지의 평면도이고, 도 3은 도 2의 발광소자 패키지의 저면도이며, 도 4는 도 1의 발광소자 패키지의 A-A 측에서 바라본 단면도이고, 도 5는 도 1의 발광소자 패키지의 C-C 측에서 바라본 단면도이다.
도 1 내지 도 5를 참조하면, 발광소자 패키지(100)는, 패키지 몸체(110), 및 발광소자(120)를 포함할 수 있다.
도 1 및 도 2와 같이, 발광소자 패키지(100)는 제1방향(X)의 길이(X1)가 제2방향(Y)의 길이(Y1)보다 클 수 있다. 상기 제1방향의 길이(X1)는 패키지 몸체(110)의 제1방향의 길이(X2)보다 클 수 있다. 상기 패키지 몸체(110)의 제1방향(X)의 길이(X2)는 제2방향(Y)의 길이(Y1)보다 길거나 같을 수 있다. 여기서, 제1방향은 상기 발광소자(120)의 변들 중 길이가 더 긴 변의 방향일 수 있다. 예컨대, 제1방향은 발광소자(120)의 장변 방향이며, 제2방향은 단변 방향일 수 있다. 상기 제1방향에는 발광소자(120)의 양 단변이 서로 반대측에 배치되며, 제2방향에는 발광소자(120)의 양 장변이 서로 반대측에 배치될 수 있다. 상기 제1방향은 상기 패키지 몸체(110)의 변들 중 길이가 변의 방향일 수 있으며, 상기 제2방향은 상기 패키지 몸체(110)의 변들 중 길이가 짧은 변의 방향일 수 있다. 상기 패키지 몸체(110)의 제3 및 제4측면(S3,S4)은 제1방향을 따라 배치되며, 제1 및 제2측면(S1,S2)는 제2방향을 따라 배치될 수 있다. 상기 제1 및 제2측면(S1,S2)는 제1방향에 대해 서로 반대측에 배치되며, 상기 제3 및 제4측면(S3,S4)는 제2방향에 대해 서로 반대측에 배치될 수 있다. 상기 제1 및 제2방향은 서로 직교하는 방향이며, 상기 패키지 몸체(110)의 높이 또는 두께 방향은 Z 방향 또는 제3방향일 수 있다.
상기 패키지 몸체(110)는 복수의 프레임을 포함할 수 있다. 상기 복수의 프레임은 적어도 2개의 프레임 또는 3개 이상의 프레임을 포함할 수 있다. 상기 복수의 프레임은 예컨대, 제1 프레임(111)과 제2 프레임(113)을 포함할 수 있다. 이하 설명의 편의를 위해, 2개의 프레임으로 설명하기로 한다. 상기 제1 프레임(111)과 상기 제2 프레임(113)은 제1방향(X)으로 서로 이격되어 배치될 수 있다.
상기 패키지 몸체(110)는 몸체(115)를 포함할 수 있다. 상기 몸체(115)는 복수의 프레임(111,113)들 사이에 배치될 수 있다. 상기 몸체(115)는 복수의 프레임(111,113)과 결합될 수 있다. 상기 몸체(115)는 상기 제1 프레임(111)과 상기 제2 프레임(113) 사이에 배치될 수 있다. 상기 몸체(115)는 제1 및 제2 프레임(111,113) 사이에서 전극 분리선의 기능을 수행할 수 있다. 상기 몸체(115)는 절연부재로 지칭될 수도 있다.
상기 몸체(115)는 상기 제1 프레임(111) 위에 배치될 수 있다. 상기 몸체(115)는 상기 제2 프레임(113) 위에 배치될 수 있다. 상기 몸체(115)는 상기 제1 프레임(111)과 상기 제2 프레임(113) 위에 배치된 경사면을 제공할 수 있다. 상기 몸체(115)의 경사면에 의하여 상기 제1 프레임(111)과 상기 제2 프레임(113) 위에 캐비티(102)가 제공될 수 있다. 발명의 실시 예에 의하면, 상기 패키지 몸체(110)는 캐비티(102)가 있는 구조로 제공될 수도 있으며, 캐비티(102) 없이 상면이 평탄한 구조로 제공될 수도 있다. 상기 몸체(115)는 캐비티(102)를 갖는 상부 몸체(110A)를 포함할 수 있다. 상기 몸체(115)와 상기 상부 몸체(110A)는 동일한 재질로 형성되거나, 서로 다른 재질일 수 있다. 상기 상부 몸체(110A)는 상기 몸체(115)에 일체로 형성되거나, 별도로 형성될 수 있다.
예로서, 상기 몸체(115)는 수지 재질 또는 절연성 수지 재질일 수 있다. 상기 몸체(115)는 폴리프탈아미드(PPA: Polyphthalamide), PCT(Polychloro Tri phenyl), LCP(Liquid Crystal Polymer), PA9T(Polyamide9T), 실리콘, 에폭시, 에폭시 몰딩 컴파운드(EMC: Epoxy molding compound), 실리콘 몰딩 컴파운드(SMC), 세라믹, PSG(photo sensitive glass), 사파이어(Al2O3) 등을 포함하는 그룹 중에서 선택된 적어도 하나로 형성될 수 있다. 상기 몸체(115)는 수지 재질로 형성될 수 있으며, 그 내부에 TiO2와 SiO2와 같은 고굴절 재질의 필러를 포함할 수 있다. 상기 몸체(115)는 열 가소성 수지로 형성될 수 있으며, 상기 열 가소성 수지는 가열하면 물러지고 냉각하면 다시 굳어지는 물질이므로, 상기 프레임(111,113) 및 이에 접촉되는 물질들이 열에 의해 팽창 또는 수축할 때 상기 몸체(115)가 완충 작용을 할 수 있다. 이때 상기 몸체(115)가 상기 완충 작용을 할 경우, 솔더계 페이스트, Ag계 페이스트, SAC(Sn-Ag-Cu)계 페이스트와 같은 도전층이 파손되는 것을 방지할 수 있다. 상기 패키지에서 열 팽창 및 수축에 따른 열팽창 계수(CTE: coefficient of Thermal expansion)은 제1방향이 제2방향보다 클 수 있다. 상기 몸체(115)는 PCT 또는 PPA 재질를 포함 수 있으며, 상기 PCT 또는 PPA 재질은 융점이 높고 열 가소성 수지이다.
상기 상부 몸체(110A)는 상기 캐비티(102)의 둘레에 경사진 측면(132)을 제공할 수 있다. 상기 경사진 측면(132)는 제1방향과 제2방향이 서로 다른 각도로 경사질 수 있다. 상기 캐비티(102)의 측면 하부(134)는 상기 상부 몸체(110A)를 사출 성형할 때, 버(Burr)와 같은 부분이 발생되지 않도록 45도 이상 예컨대, 45도 내지 70도의 범위로 형성될 수 있다. 상기 캐비티(102)의 상기 측면 하부(134)의 높이(Z2, 도 7 참조)는 100 마이크로 미터 이상 예컨대, 100 내지 200 마이크로 미터의 범위로 배치되어, 상기 발광소자(120)의 측면과 대면할 수 있다.
상기 몸체(115)는 상기 프레임들(111,113) 사이의 상부 및 하부 중 적어도 한 영역에 오목한 리세스(Recess)를 배치할 수 있다. 상기 리세스는 상기 몸체(115)가 상기 프레임(111,113) 및 그 주변 물질들이 어느 한 방향으로 열 팽창 또는 수축될 때 완충시켜 줄 수 있다. 상기 리세스는 상기 열 팽창 또는 수축이 큰 방향과 직교하는 방향으로 배치될 수 있다. 상기 몸체(115)는 도 4와 같이, 상부의 제1리세스(R1) 및 하부의 제2리세스(R2)를 포함할 수 있다. 상기 몸체(115)는 7과 같이, 하부 리세스 없이 상부의 제1리세스(R1)를 포함할 수 있다. 상기 몸체(115)의 리세스(R1,R2)는 제2방향으로 긴 길이로 배치됨으로써, 제1방향에 따른 열 팽창 또는 수축을 완화시켜 줄 수 있다. 상기 몸체(115)의 리세스(R1,R2)가 제1방향의 열 팽창 또는 수축을 완화시켜 줌으로써, 상기 프레임(111,113) 및 그 상부에 부착된 도전층(333, 도 4 및 도 5 참조)의 크랙 발생을 억제하거나 방지할 수 있다.
도 2 및 도 4 및 도 5와 같이, 상기 제1 프레임(111)과 상기 제2 프레임(113)은 도전성 프레임으로 제공될 수도 있다. 상기 도전성 프레임은 금속 예컨대, 구리(Cu), 티타늄(Ti), 니켈(Ni), 금(Au), 크롬(Cr), 탄탈늄(Ta), 백금(Pt), 주석(Sn), 은(Ag) 중에서 선택될 수 있으며, 단층 또는 다층으로 형성될 수 있다. 상기 제1 및 제2프레임(111,113)의 두께(T2)는 방열 특성 및 전기 전도 특성을 고려하여 형성될 수 있으며, 100 마이크로 미터 이상 예컨대, 100 내지 300 마이크로 미터의 범위 또는 200 내지 300 마이크로 미터의 범위로 형성될 수 있다.
상기 제1 프레임(111)과 상기 제2 프레임(113)은 금속 프레임으로 제공될 수 있다. 상기 제1 프레임(111)과 상기 제2 프레임(113)은 상기 패키지 몸체(110)의 구조적인 강도를 안정적으로 제공할 수 있으며, 상기 발광소자(120)에 전기적으로 연결될 수 있다. 상기 제1 프레임(111)의 제1연장부(17,18)는 패키지 몸체(110)의 제1측면(S1) 방향으로 연장되며 하나 또는 복수로 돌출될 수 있다. 상기 제2 프레임(113)의 제2연장부(37,38)는 패키지 몸체(110)의 제2측면(S2) 방향으로 연장되고 하나 또는 복수로 돌출될 수 있다. 상기 제1 및 제2연장부(17,18,37,38)는 하나 또는 복수로 배치될 수 있으며, 복수의 연장부인 경우 각 프레임(111,113)으로부터 분기된 형태로 돌출될 수 있다. 상기 제1 및 제2연장부(17,18,37,38)는 돌출되지 않을 수 있다. 상기 패키지 몸체(110)의 제1,2측면(S1,S2)은 제1방향으로 이격되며 서로 반대측 면일 수 있다. 상기 패키지 몸체(110)의 제3,4측면(S3,S4)은 상기 제1방향과 직교하는 제2방향으로 이격되며 서로 반대측 면일 수 있다. 상기 제1내지 제4측면(S1,S2,S3,S4)는 수직하거나 경사지게 배치될 수 있다.
도 3과 같이, 상기 제1 프레임(111)의 제1연장부(17,18) 사이의 오픈 영역(C5)에는 몸체(115)의 일부가 배치될 수 있다. 상기 제2 프레임(113)의 제1연장부(37,38) 사이의 오픈 영역(C6)에는 몸체(115)의 일부가 배치될 수 있다. 상기 오픈 영역(C5,C6)에는 도 2와 같이 단차 구조가 형성될 수 있다. 상기 제1,2 프레임(111,113)에는 다수의 홀(H1,H2)이 배치될 수 있으며, 상기 홀(H1,H2)을 통해 몸체(115)가 결합될 수 있다. 상기 제1,2 프레임(111,113)에는 몸체(115)와의 결합을 강화하기 위해, 스텝 구조(ST1,ST2)와 오목부(Ra,Rb,Rc,Rd)가 배치될 수 있다. 상기 오목부(Ra,Rb,Rc,Rd)와 상기 홀(H1,H2)은 상기 제1,2연장부(17,18,37,38) 중에서 상기 몸체(115)와 중첩되는 영역에 배치될 수 있어, 몸체와의 결합력을 강화시키고 습기 침투를 억제할 수 있다. 상기 몸체(115)의 바닥 일부에는 사출용 게이트에 의한 오목한 구조(G0)가 형성될 수 있다.
도 2 및 도 3과 같이, 제1프레임(111)의 제1단부는 상기 제2프레임(113)에 인접하며, 제2 프레임(111) 방향 또는 제2측면(S2) 방향으로 돌출된 복수의 돌출부를 포함할 수 있다. 상기 제1프레임(111)은 3개 이상의 돌출부를 포함할 수 있으며, 센터 측 제1돌출부(11), 상기 몸체(115)의 제3측면(S3)에 인접한 제2돌출부(12) 및 제4측면(S4)에 인접한 제3돌출부(13)를 포함할 수 있다. 상기 제1돌출부(11)는 상기 발광소자(120)와 수직 방향 또는 제3방향(Z)으로 중첩될 수 있다. 상기 제1돌출부(11)는 상기 제2돌출부(12)와 제3돌출부(13) 사이에 배치될 수 있다. 상기 제2돌출부(12)는 상기 제1돌출부(11)와 제3측면(S3) 사이에 배치될 수 있다. 상기 제3돌출부(13)는 상기 제1돌출부(11)와 제4측면(S4) 사이에 배치될 수 있다. 상기 제2돌출부(12)는 제3측면(S3)로부터 이격되게 배치될 수 있고, 상기 제3돌출부(13)는 제4측면(S4)로부터 이격되게 배치될 수 있다. 상기 제1 내지 제3돌출부(11,12,13)는 몸체(15)의 바닥에 노출될 수 있다. 상기 제1 내지 제3돌출부(11,12,13)는 제2방향으로 중첩될 수 있다. 상기 제2돌출부(12)와 제3돌출부(13)의 외측부는 상기 상부 몸체(110A)와 수직 방향으로 중첩될 수 있어, 상부 몸체(110A)와 결합될 수 있다.
상기 제2프레임(113)의 제2단부는 상기 제1단부와 마주보며, 상기 제1프레임(111)에 인접할 수 있다. 상기 제2프레임(113)의 제2단부는 상기 제1프레임 방향 또는 제1측면(S1) 방향으로 돌출된 복수의 돌출부를 포함할 수 있다. 상기 제2프레임(113)은 3개 이상의 돌출부를 포함할 수 있으며, 센터 측 제4돌출부(31), 상기 몸체(115)의 제3측면(S3)에 인접한 제5돌출부(32) 및 제4측면(S4)에 인접한 제6돌출부(33)를 포함할 수 있다. 상기 제4돌출부(31)는 상기 발광소자(120)와 수직 방향 또는 제3방향(Z)으로 중첩될 수 있다. 여기서, 제3방향은 제1 및 제2방향과 직교하는 방향이거나, 상기 패키지 몸체의 두께 방향일 수 있다. 상기 제4돌출부(31)는 상기 제5돌출부(32)와 제6돌출부(33) 사이에 배치될 수 있다. 상기 제5돌출부(32)는 상기 제4돌출부(31)와 제3측면(S3) 사이에 배치될 수 있다. 상기 제6돌출부(33)는 상기 제4돌출부(31)와 제4측면(S4) 사이에 배치될 수 있다. 상기 제5돌출부(32)는 제3측면(S3)로부터 이격되게 배치될 수 있고, 상기 제6돌출부(33)는 제4측면(S4)로부터 이격되게 배치될 수 있다. 상기 제4 내지 제6돌출부(31,32,33)는 몸체(15)의 바닥에 노출될 수 있다. 상기 제4 내지 제6돌출부(31,32,33)는 제2방향으로 중첩될 수 있다. 상기 제5돌출부(32)와 제6돌출부(33)의 외측부는 상기 상부 몸체(110A)와 수직 방향으로 중첩될 수 있어, 상부 몸체(110A)와 결합될 수 있다.
상기 제1돌출부(11)는 발광소자(120)의 개수와 동일할 수 있으며, 예컨대 발광소자의 개수가 1개인 경우, 상기 제1돌출부의 개수는 1개이며, 2개의 발광소자인 경우 상기 제1돌출부의 개수는 2개일 수 있다. 상기 제4돌출부(31)는 발광소자(120)의 개수와 동일할 수 있으며, 예컨대 발광소자의 개수가 1개인 경우, 상기 제4돌출부의 개수는 1개이며, 2개의 발광소자인 경우 상기 제4돌출부의 개수는 2개일 수 있다.
상기 제1프레임(111)의 각 돌출부(11,12,13)는 제2프레임(113)의 각 돌출부(31,32,33)와 대향될 수 있다. 상기 제1돌출부(11)는 제4돌출부(31)와 대향되며, 제2돌출부(12)는 제5돌출부(32)와 대향되며, 제3돌출부(13)는 제6돌출부(33)와 대향될 수 있다. 상기 제1리세스(R1)는 상기 제1돌출부(11)와 제4돌출부(14)와 제1방향으로 중첩될 수 있다. 상기 제1리세스(R1)는 제2 및 제3돌출부(12,13)과 제5 및 제6돌출부(32,33)와 제1방향으로 중첩되지 않을 수 있다.
상기 발광소자(120)는 하부에 제1 및 제2본딩부(121,122)를 포함할 수 있다. 상기 제1 및 제2본딩부(121,122)는 제1 및 제2프레임(111,113)과 같은 방향 즉, 제1방향으로 이격될 수 있다. 상기 제1 및 제2본딩부(121,122)는 제1 및 제4돌출부(11,31)과 같은 방향으로 이격될 수 있다.
상기 제1돌출부(11)는 발광소자(120)의 제1본딩부(121)와 대면하거나 대향될 수 있으며, 상기 제4돌출부(31) 상에는 발광소자(120)의 제2본딩부(122)와 대면하거나 대향될 수 있다. 상기 제1돌출부(11)와 상기 제1본딩부(121)는 접합 부재로 본딩되는 데, 도 4 및 도 5와 같이, 접합 부재인 도전층(333)에 의해 본딩될 수 있다. 상기 도전층(333)은 상기 제1프레임(111)과 제1본딩부(121) 사이와, 상기 제2프레임(113)과 제2본딩부(122) 사이에 접착될 수 있다. 상기 도전층(333)은 상기 제1돌출부(11)와 제1본딩부(121) 사이와, 상기 제4돌출부(31)와 제2본딩부(122) 사이에 접착될 수 있다. 상기 도전층(333)은 상기 제1프레임(111)과 제1본딩부(121)를 전기적으로 연결해 주며, 상기 제2프레임(113)과 제2본딩부(122) 사이를 전기적으로 연결시켜 줄 수 있다. 이러한 도전층(333)은 본딩 공정 시, 발광소자(120)로부터 가해지는 압력에 의해 퍼지거나 리플로우 공정시 확산될 수 있다. 이러한 도전층(333)의 퍼짐 현상으로 인해 상기 제1,2본딩부(121,122) 아래에 위치하는 도전층(333)의 두께가 얇아지거나 불균일할 수 있다. 실시 예는 상기 도전층(333)이 제2방향으로 퍼지는 문제를 줄여주기 위해, 상기 몸체(115)와 함께 상기 도전층(333)이 형성될 주변에 수지 재질을 더 배치하여, 도전층(333)의 퍼짐성을 억제할 수 있다. 따라서, 상기 도전층(333)은 상기 제1프레임(111)과 제1본딩부(121) 사이와, 상기 제2프레임(113)과 제2본딩부(122) 사이의 영역에서 두꺼운 두께와 균일한 분포를 갖고 접착될 수 있다.
도 2 및 도 3과 같이, 캐비티(102)의 바닥의 센터에는 상기 제1 및 제4돌출부(11,31)가 배치되며, 상기 제2돌출부(12)의 내측 영역과 상기 제3돌출부(13)의 내측 영역은 캐비티(102)의 바닥 양측에 노출될 수 있다. 상기 캐비티(102)의 바닥 양측에는 상기 제5돌출부(32)의 내측 영역과 상기 제6돌출부(33)의 내측 영역은 노출될 수 있다. 상기 캐비티(102)의 바닥에 노출된 면적을 보면, 제1 또는 제4돌출부(11,31)의 면적이 제2,3돌출부(12,13)의 면적 또는 제5,6돌출부(32,33)의 면적보다 더 넓을 수 있어, 방열 효율를 개선시켜 줄 수 있다. 다른 예로서, 상기 캐비티(102)의 바닥 양측에는 상기 제5돌출부(32)의 내측 영역과 상기 제6돌출부(33)의 내측 영역은 노출되지 않을 수 있다.
여기서, 상기 제1리세스(R1)의 제2방향의 길이(a1)는 상기 제1 및 제4돌출부(11,31)의 제2방향의 길이(b1)보다 길게 배치될 수 있다. 이에 따라 상기 제1,4돌출부(11,31)에 의한 열 팽창 또는 수축시 상기 몸체(115)의 제1리세스(R1) 또는/및 하부의 제2리세스(R2)이 더 넓은 영역에서 완충시켜 주어, 도전층(333)에 전달되는 충격을 완화시켜 줄 수 있다.
상기 발광소자(120)의 제1,2본딩부(121,122)의 제2방향의 길이가 상기 제1,4돌출부(11,31)의 제2방향의 길이(b1)와 같거나 작을 수 있다. 이에 따라 상기 제1리세스(R1)의 제2방향의 길이(a1)는 상기 발광소자(120)의 제1,2본딩부(121,122)의 제2방향의 길이보다 길게 배치될 수 있어, 상기 제1,2본딩부(121,122)로부터 전달되는 열 충격을 완충시켜 줄 수 있다. 상기 제1리세스(R1)의 제2방향의 길이(a1)는 상기 발광소자(120)의 제2방향의 길이와 같거나 작을 수 있다. 상기 제1리세스(R1)의 제2방향의 길이(a1)는 650 마이크로 미터 이상 예컨대, 650 내지 900 마이크로 미터의 범위일 수 있으며, 상기 범위보다 작은 경우 상기 제1,4돌출부(11,31)의 제2방향의 길이보다 작아지게 되어 열 변형에 대한 완충 작용이 미미할 수 있으며, 상기 범위보다 큰 경우 몸체(115)의 센터 측 강성이 저하될 수 있고 광 손실이 증가될 수 있다.
상기 제1리세스(R1)의 제2방향의 길이(a1)는 상기 제1,4돌출부(11,31)의 제2방향의 길이(b1)보다는 크고, 또는 제1,2본딩부(121,122)의 제2방향의 길이보다는 크며, 상기 캐비티(102)의 바닥의 제2방향의 길이보다는 작을 수 있다. 상기 제1리세스(R1)의 제2방향의 길이(a1)는 상기 발광소자(120)의 제2방향의 길이 또는 단변 길이와 같거나 상기 발광소자(120)의 제2방향의 길이의 50% 이상이고 100% 미만일 수 있다. 다른 예로서, 예컨대 상기 제1리세스(R1)의 제2방향의 길이(a1)는 상기 발광소자(120)의 제2방향의 길이를 기준으로 ±50 마이크로 미터의 범위로 배치될 수 있다. 상기 제1리세스(R1)의 제2방향의 길이(a1)가 상기 제1 및 제4돌출부(11,31)의 제2방향의 길이(b1)보다 크게 배치되므로, 상기 몸체(115)에 전달되는 열 변형을 완화시켜 줄 수 있어, 솔더 크랙 및 몸체 크랙을 억제할 수 있다.
상기 제1리세스(R1)는 상부 폭 예컨대, 제1방향의 상부 폭이 하부 폭보다 넓을 수 있다. 상기 제1리세스(R1)는 상부에서 하부로 갈수록 점차 좁은 폭을 가질 수 있다. 상기 제1리세스(R1)는 측 단면이 삼각형, 사각형과 같은 다각형 형상이거나, 반구형과 같은 형상으로 형성될 수 있다. 상기 제1리세스(R1)의 상부 폭은 상기 제1리세스(R1)의 하부 폭보다 넓을 수 있으며, 100 마이크로 미터 이상 예컨대, 100 내지 150 마이크로 미터의 범위일 수 있다. 상기 제1리세스(R1)의 상부 폭은 제1방향으로 상기 제1 및 제2프레임(111,113) 사이의 간격보다 작을 수 있다. 상기 제1리세스(R1)의 상부 폭은 상기 제1 및 제2돌출부(11,31)의 상면 간격보다 작을 수 있다.
도 4와 같이, 상기 제1리세스(R1)의 깊이(Za)는 상기 제1 및 제2프레임(111,113)의 두께(T2)보다 작을 수 있다. 상기 제1리세스(R1)의 깊이(Za)는 상기 제1 및 제2프레임(111,113) 사이에 배치된 상기 몸체(115)의 두께(예, T2)보다 작을 수 있다. 여기서, 상기 제1리세스(R1)가 도 7과 같이, 상부 리세스만 배치된 경우, 상기 제1리세스(R1)의 깊이(Zc)는 제1 및 제2프레임(111,113)의 두께(T2)의 50% 이상 예컨대, 50% 내지 80%의 범위일 수 있다. 도 7과 같은 제1리세스(R1)의 깊이(Zc)는 125 마이크로 미터 이상 예컨대, 125 내지 200 마이크로 미터의 범위일 수 있다. 상기 제1리세스(R1)의 깊이(Zc)에 의해 상기 몸체(115)의 열 변형에 따른 솔더 크랙을 억제할 수 있고 상기 두 프레임(111,113) 사이의 몸체(115)의 하부 크랙을 방지할 수 있다. 이러한 도 7과 같은 제1리세스(R1)는 상기 깊이(Zc)의 범위보다 작은 경우 완충 역할이 미미할 수 있으며 상기 범위보다 큰 경우 센터 측 파단 강도가 저하될 수 있다.
도 4와 같이, 상기 제2리세스(R2)의 하부 폭는 상기 제1리세스(R1)의 상부 폭와 같은 폭이거나 더 좁을 수 있다. 여기서, 상기 제1 및 제2프레임(111,113) 사이에 배치된 몸체(115)의 하부 폭이 상부 폭보다 더 넓을 수 있다.
도 2 및 도 3과 같이, 상기 제2리세스(R2)의 제2방향의 길이(a2)는 상기 제1리세스(R1)의 제2방향의 길이(a1)와 같거나 작을 수 있다. 이에 따라 제1,2반사부(51,52)가 몸체(115)로부터 연장된 부분과, 상기 제3,4반사부(53,54)가 몸체(115)로부터 연장된 부분은 하부 리세스가 연장되지 않을 수 있다.
다른 예로서, 도 4와 같이, 상기 몸체(115)에 상부에 제1리세스(R1)가 배치되고 하부에 제2리세스(R2)가 배치된 경우, 상기 제1리세스(R1)의 깊이(Za)는 제1 및 제2프레임(111,113)의 두께(T2)의 25% 이상 예컨대, 25% 내지 50%의 범위일 수 있다. 상기 하부의 제2리세스(R2)의 깊이(Zb)는 상기 제1 및 제2프레임(111,113)의 두께(T2)의 25% 이상 예컨대, 25% 내지 50%의 범위일 수 있다. 상기 제1리세스(R1)의 깊이(Za)는 60 마이크로 미터 이상 예컨대, 60 내지 125 마이크로 미터의 범위일 수 있다. 상기 제1 및 제2리세스(R1,R2)의 깊이(Za,Zb)는 서로 동일하거나 다를 수 있다. 상기 제1리세스(R1)의 깊이(Za)가 상기 제2리세스(R2)의 깊이(Zb)보다 더 깊게 배치될 수 있고, 상기 제2리세스(R2)의 깊이(Zb)가 상기 제1리세스(R1)의 깊이(Za)보다 더 깊게 배치될 수 있다. 상기 몸체(115)에는 상기 리세스가 상부에만 배치된 경우, 또는 하부에만 배치될 수 있고, 또는 상부/하부 모두에 배치될 수 있다. 이러한 상기 몸체(115)의 상부 또는 하부에 하나의 리세스가 배치된 경우, 상기 리세스의 깊이는 상부 및 하부에 리세스가 모두 배치된 것보다 깊게 배치될 수 있다. 이러한 리세스를 갖는 몸체(115)는 도 7과 같이, 두 프레임(111,113) 사이에 배치된 연결부(Rr)의 최소 두께를 갖고 서로 연결되어, 두 프레임(111,113)을 지지할 수 있고 몸체의 센터측 강성 저하를 방지할 수 있다. 즉, 상기 몸체(115)의 연결부는 상기 제1리세스(R1) 및 제2리세스(R2) 중 적어도 하나와 수직 방향으로 중첩될 수 있다.
여기서, 상기 제1리세스(R1)을 하나를 형성한 구조(도 7)와, 상기 제1 및 제2리세스(R1,R2)를 양측에 배치한 구조(도 3)에서 상기 몸체(115)의 연결부(Rr,도 7 참조)의 최소 두께(a4)는 45 마이크로 미터 이상 예컨대, 45 내지 55 마이크로 미터의 범위일 수 있다. 상기 몸체(115)의 연결부(Rr)의 최소 두께는 상기 제1 및 제2프레임(111,113)의 두께(T2)를 기준으로 0.25 이하 예컨대, 0.15 내지 0.25 범위일 수 있다. 상기 연결부(Rr)의 최소 두께(a4)는 55 마이크로 미터 이하 예컨대, 45 내지 55 마이크로 미터의 범위일 수 있다. 상기 몸체(115)의 연결부(Rr)가 최소 두께(a4)로 제공함으로써, 상기 제1 및 제2프레임(111,113)에 의한 열 변형이 발생할 경우, 상기 최소 두께(a4)로 상기 몸체(115)를 지지하고 완충시켜 줄 수 있다. 이 경우 상기 몸체(115)가 열 가소성 수지인 온도 변화에 따라 상기 몸체(114)가 부드러워지거나 굳어지게 되어 완충시켜 줄 수 있어, 상기 연결부(Rr)가 파손되는 문제를 방지할 수 있다.
상기 몸체(115)에 리세스가 없는 경우, 프레임의 열 변형에 의해 솔더에 전달되는 충격으로 솔더 크랙이 발생될 수 있고, 이러한 열 변형이 반복될 경우 두 프레임 사이의 몸체가 파손되는 문제가 발생될 수 있다. 발명의 실시 예는 도전층(333)의 두께 확보와, 상기 몸체의 열 변형의 완화 구조를 이용하여 상기한 문제를 해결할 수 있다. 발명의 실시 예는 상기 제1 프레임(111)과 상기 제2프레임(113) 사이에 배치되며 상기 발광소자(120)과 수직 방향으로 중첩된 영역에 위치한 상기 몸체(115)의 부피를 줄여주어, 상기 제1 및 제2프레임(111,113)에 의한 열 변형이 발생될 때 상기 몸체(115)가 완충시켜 줄 수 있다.
상기 제3돌출부(13)의 일부는 상기 제1 및 제2돌출부(11,12)보다 제2프레임 방향으로 더 돌출될 수 있다. 상기 제5돌출부(34)의 일부는 상기 제4 및 제6돌출부(31,33)보다 제1프레임 방향으로 더 돌출될 수 있다. 상기 제3돌출부(13)의 일부와 제5돌출부(32)의 일부는 제2방향으로 중첩되게 배치될 수 있다. 상기 제3돌출부(13)와 상기 제5돌출부(32)는 상기 제1 및 제4돌출부(11,31)를 기준으로 서로 반대측 영역에서 제2방향으로 중첩되게 배치됨으로써, 상기 몸체(115)의 센터 측 강성을 강화시켜 줄 수 있다.
상기 몸체(115)는 상기 제1프레임(111)의 돌출부(11,12,13)와 제2프레임(113)의 돌출부(31,32,33) 사이에 배치된 반사부가 배치될 수 있다. 도 2와 같이, 상기 몸체(115)는 제1돌출부(11)와 제2돌출부(12) 사이의 영역으로 연장된 제1반사부(51), 상기 제1 및 제3돌출부(11,13) 사이의 영역으로 연장된 제2반사부(52)를 포함한다. 상기 몸체(115)는 상기 제4 및 제5돌출부(31,32) 사이의 영역으로 연장된 제3반사부(53), 및 상기 제4 및 제6돌출부(31,33) 사이의 영역으로 연장된 제4반사부(54)를 포함한다. 상기 제1 내지 제4반사부(51,52,53,54)는 상기 제1 내지 제6돌출부(11,12,13,31,32,33)의 외곽에 배치된 스텝 구조와 결합될 수 있다. 상기 제1 내지 제4반사부(51,52,53,54)가 결합되는 상기 프레임(111,113)의 오목한 부분은 곡면이거나 라운드 형상을 갖고 있어, 반사부(51,52,53,54)와의 결합시 접촉 면적이 증가되어, 습기 침투를 억제할 수 있다.
상기 제1 및 제3반사부(51,53)는 제1방향으로 배치되고 상기 제1리세스(R1)을 기준으로 서로 반대측 방향으로 연장되며, 제2 및 제4반사부(52,54)는 제1방향으로 배치되고 상기 제1리세스(R1)을 기준으로 서로 반대측 방향으로 연장될 수 있다. 상기 제1 및 제2반사부(51,52) 사이에는 상기 제1돌출부(11)가 배치될 수 있으며, 상기 제3 및 제4반사부(53,54) 사이에는 상기 제4돌출부(31)가 배치될 수 있다. 상기 제1 내지 제4반사부(51,52,53,54)는 캐비티(102)의 측면 하부(132)와 이격될 수 있다. 상기 제1 내지 제4반사부(51,52,53,54)가 캐비티(102)의 바닥에 더 배치됨으로서, 광 반사율이 개선될 수 있다. 상기 제1 내지 제4반사부(51,52,53,54)는 상부에 배치되는 반사성 제2수지의 반사 효율을 개선시켜 줄 수 있다.
도 2와 같이, 상기 제1 내지 제4반사부(51,52,53,54)가 캐비티(102)의 바닥에서 상기 발광소자(120)과 수직 방향 또는 제3방향으로 중첩될 수 있다. 상기 제1 내지 제4반사부(51,52,53,54)는 상기 발광소자(120)로부터 측 방향으로 또는 하 방향으로 진행하는 광을 반사시켜 줄 수 있다. 상기 제1 내지 제4반사부(51,52,53,54)는 상기 몸체(115)와 동일한 수지 재질로 형성되고 분산된 영역에 배치됨으로써, 상기 접합 부재인 도전층이 상기 반사부(51,52,53,54)로 이동되는 것을 방지할 수 있다. 상기 도전층은 도전성 페이스트 예컨대, 솔더계 페이스트, Ag계 페이스트 또는 SAC(Sn-Ag-Cu) 계열을 포함할 수 있다. 상기 반사부(51,52,53,54)가 도전성 페이스트와 같은 재질이 넘어오는 것을 방지함으로써, 상기 발광소자와 프레임 간의 도전층(333)에 의한 접착력을 개선시켜 줄 수 있다. 상기 제1 내지 제4반사부(51,52,53,54)는 본딩 공정시 도전층(333)이 유동하거나 퍼짐는 것을 억제하여 발광소자(120)의 하부에서 본딩부(121,122)와 접착되도록 댐(dam) 역할을 할 수 있다.
상기 발광소자(120)는 상기 프레임(111,113)에 도전층(333)으로 본딩되고, 리플로우 공정을 통해 상기 발광소자 패키지(100)의 프레임(111,113)이 상기 회로기판 상에서 본딩될 때, 상기 도전층(333)이 리멜팅되는 문제가 발생될 수 있으며, 이러한 도전층(333)의 리멜팅 시 상기 발광소자(120)가 틸트될 수 있고, 상기 발광소자(120)와 상기 도전층(333) 간의 오픈 불량이 발생되거나, 상기 도전층(333)이 확산되어 장시간 사용하면서 크랙이 발생될 수 있다. 발명의 실시 예는 상기 발광소자(120)의 틸트를 방지할 수 있는 틸트 방지 구조를 제공할 수 있다. 상기 틸트 방지 구조는 후술되는 돌기로 설명하기로 한다.
상기 발광소자 패키지(100)는 돌기(P1,P2,P3,P4)를 포함할 수 있다. 상기 돌기(P1,P2,P3,P4)는 상기 발광소자(120)의 측면에 인접하게 배치될 수 있다. 상기 돌기(P1,P2,P3,P4)는 상기 발광소자(120)의 측면 외부에 배치될 수 있다. 상기 돌기(P1,P2,P3,P4) 중 적어도 하나는 상기 발광소자(120)의 측면에 접촉될 수 있다. 상기 돌기(P1,P2,P3,P4)는 상기 발광소자(120)의 측면들 중 적어도 한 측면에 배치될 수 있다. 상기 돌기(P1,P2,P3,P4)는 상기 발광소자(120)의 측면 개수와 동일한 개수일 수 있다. 상기 돌기(P1,P2,P3,P4)는 3개 이상 예컨대, 3개 내지 5개의 개수로 배치되어, 상기 발광소자(120)의 적어도 한 측면과 대응될 수 있다. 상기 돌기(P1,P2,P3,P4) 각각은 상기 발광소자(120)의 각 코너에 배치될 수 있다. 상기 돌기(P1,P2,P3,P4) 각각은 상기 발광소자(120)의 각 코너 및 이에 인접한 변들과 대향될 수 있다. 상기 돌기(P1,P2,P3,P4)는 상기 발광소자(120)의 영역과 제1방향으로 2개 이상이 중첩될 수 있고, 제2방향으로 2개 이상이 중첩될 수 있다. 이러한 상기 돌기(P1,P2,P3,P4)는 리플로우 공정에서 상기 발광소자(120)가 틸트되는 것을 방지할 수 있다.
상기 발광소자(120)는 서로 다른 방향으로 연장되는 복수의 측면, 및 상기 복수의 측면이 서로 만나는 영역인 복수의 코너부를 포함하며, 상기 돌기(P1,P2,P3,P4)는 상기 복수의 측면 및/또는 상기 복수의 코너부 중 적어도 하나 또는 둘 이상에 대향되게 배치될 수 있다.
상기 돌기(P1,P2,P3,P4)는 상기 발광소자(120)의 코너에 배치될 수 있다. 다른 예로서, 도 9와 같이 돌기(P5,P6,P7,P8)는 상기 발광소자(120)의 각 측면의 센터 영역에 대향되게 배치될 수 있다.
상기 돌기(P1,P2,P3,P4) 중 적어도 하나는 상기 발광소자(120)의 측면과의 간격이 200 마이크로 미터 이하 예컨대, 0 내지 200 마이크로 미터의 범위 또는 5 내지 200 마이크로 미터의 범위에 배치될 수 있다. 상기 돌기(P1,P2,P3,P4)는 상기 발광소자(120)와의 간격이 상기 범위보다 작은 경우 상기 발광소자(120)의 탑재 공정이 복잡할 수 있고 상기 범위보다 큰 경우 발광소자(120)의 유동이 커질 수 있다.
상기 발광소자(120)를 기준으로 상기 돌기(P1,P2,P3,P4) 간의 간격을 보면, 상기 돌기(P1,P2,P3,P4) 중에서 제1방향으로 이격된 돌기 간의 간격은 상기 발광소자(120)의 제1방향의 길이보다 클 수 있으며 상기 발광소자(120)의 제1방향의 길이보다 5 내지 400 마이크로 미터의 범위로 클 수 있다. 상기 돌기(P1,P2,P3,P4) 중에서 제2방향으로 이격된 돌기 간의 간격은 상기 발광소자(120)의 제2방향의 길이보다 클 수 있으며 상기 발광소자(120)의 제2방향의 길이보다 5 내지 400 마이크로 미터의 범위로 클 수 있다.
상기 돌기(P1,P2,P3,P4)는 상기 몸체(115)를 구성하는 물질이거나, 상기 몸체(115)와 동일한 재질일 수 있다. 상기 돌기(P1,P2,P3,P4)는 다른 예로서, 상기 프레임(111,113)을 구성하는 물질이거나 상기 프레임(111,113)과 동일한 재질로 형성될 수 있다.
상기 돌기(P1,P2,P3,P4)의 높이 또는 두께는 상기 발광소자(120)의 하면과 상기 프레임(111,113) 사이의 간격보다 크게 배치될 수 있다. 상기 돌기(P1,P2,P3,P4)의 상면 위치는 상기 발광소자(120)의 하면보다 높게 배치될 수 있다. 상기 돌기(P1,P2,P3,P4)의 두께는 상기 몸체(115)의 상면으로부터 상기 발광소자(120)의 두께의 1/8 이상 예컨대, 1/8 내지 1/4의 범위로 돌출돌 수 있다. 상기 돌기(P1,P2,P3,P4)의 높이 또는 두께가 상기 범위보다 작은 경우 상기 발광소자(120)의 지지력이 저하될 수 있고 상기 범위보다 큰 경우 광 손실이나 돌기의 강성이 저하될 수 있다.
상기 돌기(P1,P2,P3,P4)는 리플로우 공정 상에서 상기 발광소자(120)의 본딩부(121,122)와 상기 프레임(111,113) 상면 사이에 형성될 수 있는 액상의 도전층에 의해 상기 발광소자(120)가 틸트되는 문제를 방지할 수 있다. 상기 돌기(P1,P2,P3,P4)는 상기 제1,4돌출부(11,31)의 외측에 배치되어, 발광소자(120)로부터 가압되는 압력에 의해 상기 도전층(333)이 퍼지는 것을 줄여줄 수 있다. 상기 도전층(333)은 주변의 댐 역할을 하는 몸체(115)와, 반사부(51,52,53,54)들에 의해 확산 경로가 제한될 수 있어, 도전층(333)의 퍼짐으로 인한 문제를 줄여줄 수 있다.
상기 돌기(P1,P2,P3,P4)는 상기 발광소자(120)의 각 코너에 배치된 제1 내지 제4돌기(P1,P2,P3,P4)를 포함할 수 있다. 상기 제1 및 제2돌기(P1,P2)는 제2방향으로 중첩될 수 있으며, 상기 제3 및 제4돌기(P3,P4)는 제2방향으로 중첩될 수 있다. 상기 제1 및 제3돌기(P1,P3)는 제1방향으로 중첩될 수 있으며, 상기 제2 및 제4돌기(P2,P4)는 제1방향으로 중첩될 수 있다. 상기 제1 및 제2돌기(P1,P2) 또는 제3 및 제4돌기(P3,P4) 간의 최대 간격은 상기 발광소자(120)의 제2방향의 길이보다 크며, 최소 간격은 상기 발광소자(120)의 제2방향의 길이보다 작을 수 있다. 상기 제1 및 제3돌기(P1,P3) 또는 상기 제2 및 제4돌기(P2,P4) 간의 최대 간격은 상기 발광소자(120)의 제1방향의 길이보다 크며, 최소 간격은 상기 발광소자(120)의 제1방향의 길이보다 작을 수 있다.
상기 제1 및 제2돌기(P1,P2)의 일부는 상기 제1프레임(111)과 중첩될 수 있으며, 상기 제3 및 제4돌기(P3,P4)의 일부는 상기 제2프레임(113)가 수직 방향으로 중첩될 수 있다. 이러한 제1 내지 제4돌기(P1,P2,P3,P4)가 상기 프레임(111,113)과 부분적으로 중첩됨으로써, 지지될 수 있다.
상기 제1 및 제2돌기(P1,P2)는 상기 제1돌출부(11)의 제2방향 양측에 배치될 수 있다. 상기 제3 및 제4돌기(P3,P4)는 상기 제4돌출부(31)의 제2방향 양측에 배치될 수 있다. 상기 제1 내지 제4돌기(P1,P2,P3,P4)는 예컨대, 몸체(115)와 동일한 재질로 형성될 수 있다. 상기 제1돌기(P1)는 상기 제1반사부(51) 상에 배치되며, 상기 제1반사부(51) 상에서 제1측면 방향으로 배치될 수 있다. 상기 제2돌기(P2)는 상기 제2반사부(52) 상에 배치되며, 상기 제2반사부(52) 상에서 제1측면 방향에 배치될 수 있다. 상기 제1 및 제2돌기(P1,P2)는 상기 제1 및 제2 반사부(51,52)와 중첩되는 영역이 상기 제1프레임(111)과 중첩되는 영역보다 클 수 있다. 이러한 제1 및 제2돌기(P1,P2)는 상기 제1프레임(111)과 수직 방향 또는 제3방향으로 중첩되게 배치되므로, 상기 제1 및 제2돌기(P1,P2)의 지지력을 강화시켜 줄 수 있다.
상기 제3돌기(P3)는 상기 제3반사부(53) 상에 배치되며 상기 제3반사부(53) 상에서 제2측면 방향으로 이격되어 배치될 수 있다. 상기 제4돌기(P4)는 상기 제4반사부(54) 상에 배치되며, 상기 제4반사부(54) 상에서 제2측면 방향으로 이격되어 배치될 수 있다. 상기 제3 및 제4돌기(P3,P4)는 상기 제3 및 제4 반사부(53,54)와 중첩되는 영역이 상기 제2프레임(113)과 중첩되는 영역보다 클 수 있다. 이러한 제3 및 제4돌기(P3,P4)가 상기 제2프레임(113)과 수직 방향 또는 제3방향으로 중첩되게 배치되므로, 상기 제3 및 제4돌기(P3,P4)의 지지력을 강화시켜 줄 수 있다.
상기 제1 및 제2돌기(P1,P2) 간의 최소 간격은 상기 제1돌출부(11)의 제2방향의 폭(b1)보다 작을 수 있어, 상기 제1돌출부(11)의 양측에서 상기 발광소자(120)를 지지할 수 있다. 상기 제3 및 제4돌기(P3,P4) 간의 간격은 상기 제4돌출부(31)의 제2방향의 폭(b1)보다 작을 수 있어, 상기 제4돌출부(31)의 양측에서 상기 발광소자(120)의 측면과 대향될 수 있다. 상기 제1 및 제3돌기(P1,P3) 사이의 최소 간격과 상기 제2 및 제4돌기(P2,P4) 사이의 최소 간격은 상기 발광소자(120)의 제1방향 길이보다 작을 수 있다.
상기 제1 내지 제4돌기(P1,P2,P3,P4)는 상기 캐비티(102)의 바닥으로부터 상기 캐비티(102)의 바닥보다 위로 돌출될 수 있다. 상기 제1 내지 제4돌기(P1,P2,P3,P4)는 몸체(115)의 상면으로부터 돌출될 수 있다. 상기 돌기(P1,P2,P3,P4)의 상면은 상기 제1,2본딩부(121,122)의 하면보다 더 높게 배치될 수 있다.
발명의 실시 예는 복수의 돌기(P1,P2,P3,P4)의 내측면을 제1방향과 제2방향으로 지나는 직선을 서로 연결한 다각형의 면적은 상기 발광소자(120)의 하면 면적보다 클 수 있다. 발명의 실시 예는 복수의 돌기(P1,P2,P3,P4)의 내측면을 제1방향과 제2방향으로 지나는 직선을 서로 연결한 다각형의 면적은 상기 발광소자(120)의 본딩부(121,122)들의 하면 면적의 합보다 클 수 있다. 발명의 실시 예는 복수의 돌기(P1,P2,P3,P4)의 외측면을 제1방향과 제2방향으로 지나는 직선을 서로 연결한 다각형의 면적은 상기 발광소자(120)의 상면 면적보다 클 수 있다.
다른 예로서, 상기 제1 프레임(111)과 상기 제2 프레임(113)은 절연성 프레임으로 제공될 수 있다. 상기 제1 프레임(111)과 상기 제2 프레임(113)은 상기 패키지 몸체(110)의 구조적인 강도를 안정적으로 제공할 수 있다. 상기 프레임(111,113)이 절연성 재질인 경우, 수지 재질 또는 절연 재질일 수 있으며, 예컨대, 폴리프탈아미드(PPA: Polyphthalamide), PCT(Polychloro Tri phenyl), LCP(Liquid Crystal Polymer), PA9T(Polyamide9T), 실리콘, 에폭시 몰딩 컴파운드(EMC: Epoxy molding compound), 실리콘 몰딩 컴파운드(SMC), 세라믹, PSG(photo sensitive glass), 사파이어(Al2O3) 등을 포함하는 그룹 중에서 선택된 적어도 하나로 형성될 수 있다.
발명의 실시 예에 의하면, 상기 발광소자(120)는 제1 본딩부(121), 제2 본딩부(122), 발광 구조물(123)을 포함할 수 있다. 상기 발광소자(120)는 기판(124)을 포함할 수 있다. 상기 발광소자(120)는 제1방향의 길이가 제2방향의 길이와 같거나 더 길 수 있다.
상기 발광 구조물(123)은 제1 도전형 반도체층, 제2 도전형 반도체층, 제1 도전형 반도체층과 제2 도전형 반도체층 사이에 배치된 활성층을 포함할 수 있다. 상기 제1 본딩부(121)는 상기 제1 도전형 반도체층과 전기적으로 연결될 수 있다. 또한, 상기 제2 본딩부(122)는 상기 제2 도전형 반도체층과 전기적으로 연결될 수 있다.
상기 기판(124)는 투광 층으로서, 절연성 재질 또는 반도체 재질로 형성될 수 있다. 상기 기판(124)는 예컨대, 사파이어 기판(Al2O3), SiC, GaAs, GaN, ZnO, Si, GaP, InP, Ge을 포함하는 그룹 중에서 선택될 수 있다. 예로서, 상기 기판(124)은 표면에 요철 패턴이 형성될 수 있다.
발명의 실시 예에 의하면, 상기 발광 구조물(123)은 화합물 반도체로 제공될 수 있다. 상기 발광 구조물(123)은 예로서 2족-6족 또는 3족-5족 화합물 반도체로 제공될 수 있다. 예로서, 상기 발광 구조물(123)은 알루미늄(Al), 갈륨(Ga), 인듐(In), 인(P), 비소(As), 질소(N)로부터 선택된 적어도 두 개 이상의 원소를 포함하여 제공될 수 있다.
상기 발광 구조물(123)은 제1 도전형 반도체층, 활성층, 제2 도전형 반도체층을 포함할 수 있다. 상기 제1 및 제2 도전형 반도체층은 3족-5족 또는 2족-6족의 화합물 반도체 중에서 적어도 하나로 구현될 수 있다. 상기 제1 및 제2 도전형 반도체층은 예컨대 InxAlyGa1 -x- yN (0≤x≤1, 0≤y≤1, 0≤x+y≤1)의 조성식을 갖는 반도체 재료로 형성될 수 있다. 예컨대, 상기 제1 및 제2 도전형 반도체층은 GaN, AlN, AlGaN, InGaN, InN, InAlGaN, AlInN, AlGaAs, GaP, GaAs, GaAsP, AlGaInP 등을 포함하는 그룹 중에서 선택된 적어도 하나를 포함할 수 있다. 상기 제1 도전형 반도체층은 Si, Ge, Sn, Se, Te 등의 n형 도펀트가 도핑된 n형 반도체층일 수 있다. 상기 제2 도전형 반도체층은 Mg, Zn, Ca, Sr, Ba 등의 p형 도펀트가 도핑된 p형 반도체층일 수 있다.
상기 활성층은 화합물 반도체로 구현될 수 있다. 상기 활성층은 예로서 3족-5족 또는 2족-6족의 화합물 반도체 중에서 적어도 하나로 구현될 수 있다. 상기 활성층이 다중 우물 구조로 구현된 경우, 상기 활성층은 교대로 배치된 복수의 우물층과 복수의 장벽층을 포함할 수 있고, InxAlyGa1 -x- yN (0≤x≤1, 0≤y≤1, 0≤x+y≤1)의 조성식을 갖는 반도체 재료로 배치될 수 있다. 예컨대, 상기 활성층은 InGaN/GaN, GaN/AlGaN, AlGaN/AlGaN, InGaN/AlGaN, InGaN/InGaN, AlGaAs/GaAs, InGaAs/GaAs, InGaP/GaP, AlInGaP/InGaP, InP/GaAs을 포함하는 그룹 중에서 선택된 적어도 하나를 포함할 수 있다.
상기 발광소자(120)는 상기 패키지 몸체(110) 위에 배치될 수 있다. 상기 발광소자(120)는 상기 제1 프레임(111)과 상기 제2 프레임(113) 위에 배치될 수 있다. 상기 발광소자(120)는 몸체(115) 위에 배치될 수 있다. 상기 발광소자(120)는 상기 패키지 몸체(110)에 의해 제공되는 상기 캐비티(102) 내에 배치될 수 있다. 상기 캐비티(102)는 패키지 몸체(110)의 상부 몸체(110A)에 의해 형성될 수 있다. 상기 상부 몸체(110A)는 상기 발광소자(120)의 둘레에 배치될 수 있다. 상기 발광소자(120)는 상기 캐비티(102) 내에 배치될 수 있다. 상기 캐비티(102)의 바닥에는 제1프레임(111), 제2프레임(113) 및 몸체(115)가 배치될 수 있다.
도 1 및 도 2와 같이, 상기 캐비티(102)는 내측면 중에서 제3측면 또는 제4측면에 인접한 내측면에 서브 캐비티(133A)가 형성되며, 상기 서브 캐비티(133A)의 바닥에 제1 및 제2프레임(111,113)의 일부가 노출될 수 있다. 상기 서브 캐비티(113A)에는 제1프레임(111) 및 제2프레임(113)이 노출되며, 상기 노출된 어느 한 프레임 상에 보호 소자(125)가 배치되고 와이어(126)로 다른 프레임과 전기적으로 연결될 수 있다. 상기 서브 캐비티(133A)에는 반사 수지(135)가 배치되며, 상기 반사 수지(135)는 상기 보호 소자(125)와 와이어(126)를 밀봉하게 된다. 상기 반사 수지(135)는 실리콘 또는 에폭시와 같은 수지 재질로 형성되고, 내부에 고 굴절 필러를 포함할 수 있다.
상기 제1 본딩부(121)와 제2 본딩부(122)는 상기 발광소자(120)의 하부 면에서 상기 제1리세스(R1)가 배치된 방향을 기준으로 서로 이격되어 배치될 수 있다. 상기 제1 본딩부(121)는 상기 제1 프레임(111) 위에 배치될 수 있다. 상기 제2 본딩부(122)는 상기 제2 프레임(113) 위에 배치될 수 있다.
발명의 실시 예에 따른 발광소자 패키지(100)는 상기 제1프레임(111)을 통해 상기 발광소자(120)의 제1 본딩부(121)에 전원이 연결되고, 상기 제2 프레임(113)를 통해 상기 발광소자(120)의 제2 본딩부(122)에 전원이 연결될 수 있다. 상기 제1,2본딩부(121,122)는 전극 또는 패드일 수 있다. 이에 따라, 상기 제1 본딩부(121) 및 상기 제2 본딩부(122)을 통하여 공급되는 구동 전원에 의하여 상기 발광소자(120)가 구동될 수 있게 된다. 그리고, 상기 발광소자(120)에서 발광된 빛은 상기 패키지 몸체(110)의 상부 방향으로 제공될 수 있게 된다.
상기 제1 본딩부(121)는 상기 발광 구조물(123)과 상기 제1 프레임(111) 사이에 배치될 수 있다. 상기 제2 본딩부(122)는 상기 발광 구조물(123)과 상기 제2 프레임(113) 사이에 배치될 수 있다. 상기 제1 본딩부(121)과 상기 제2 본딩부(122)는 금속 재질일 수 있다. 상기 제1,2본딩부(121,122)는 Ti, Al, In, Ir, Ta, Pd, Co, Cr, Mg, Zn, Ni, Si, Ge, Ag, Ag alloy, Au, Hf, Pt, Ru, Rh, ZnO, IrOx, RuOx, NiO, RuOx/ITO, Ni/IrOx/Au, Ni/IrOx/Au/ITO를 포함하는 그룹 중에서 선택된 하나 이상의 물질 또는 합금을 이용하여 단층 또는 다층으로 형성될 수 있다.
상기 발광소자(120)는 내부에 하나 또는 복수의 발광 셀을 포함할 수 있다. 상기 발광 셀은 n-p 접합, p-n 접합, n-p-n 접합, p-n-p 접합 중 적어도 하나를 포함할 수 있다. 상기 복수의 발광 셀은 하나의 발광소자 내에서 서로 직렬로 연결될 수 있다. 이에 따라 상기 발광소자는 하나 또는 복수의 발광 셀을 가질 수 있으며, 하나의 발광소자에 n개의 발광 셀이 배치된 경우 n배의 구동 전압으로 구동될 수 있다. 예컨대, 하나의 발광 셀의 구동 전압이 3V이고, 2개의 발광 셀이 하나의 발광소자에 배치된 경우, 각 발광소자는 6V의 구동 전압으로 구동될 수 있다. 또는 하나의 발광 셀의 구동 전압이 3V이고, 3개의 발광 셀이 하나의 발광소자에 배치된 경우, 각 발광소자는 9V의 구동 전압으로 구동될 수 있다. 상기 발광소자에 배치된 발광 셀의 개수는 1개 또는 2개 내지 5개일 수 있다.
여기서, 상기 돌기(P1,P2,P3,P4)의 높이 또는 두께는 상기 발광소자(120)의 발광구조물(123)의 상면과 같거나 낮게 배치될 수 있다. 상기 돌기(P1,P2,P3,P4)의 높이 또는 두께가 상기 발광구조물(123)보다 높게 배치된 경우, 광의 지향 특성에 영향을 줄 수 있어, 상기 발광구조물(123) 또는 활성층 이하에 배치될 수 있다.
발명의 발광소자 패키지(100)는 도 4 및 도 6과 같이, 상기 몸체(115)과 상기 발광소자(120) 사이에 제1수지(160)를 포함할 수 있다. 상기 제1수지(160)는 접착성 재질 또는/및 반사성 재질을 포함할 수 있다. 상기 제1수지(160)는 상기 몸체(115)와 상기 발광소자(120) 사이에 배치될 수 있다. 상기 제1수지(160)는 상기 몸체(115)의 상면과 상기 발광소자(120)의 하면 사이에 배치될 수 있다. 상기 제1수지(160)는 상기 발광소자(120)와 수직 방향인 Z축 방향으로 중첩될 수 있다. 예로서, 상기 제1수지(160)는 에폭시(epoxy) 계열의 물질, 실리콘(silicone) 계열의 물질, 에폭시 계열의 물질과 실리콘 계열의 물질을 포함하는 하이브리드(hybrid) 물질 중에서 적어도 하나를 포함할 수 있다. 또한 예로서, 상기 제1수지(160)가 반사 기능을 포함하는 경우 상기 접착제는 화이트 실리콘(white silicone)을 포함할 수 있다.
상기 제1수지(160)는 상기 발광소자(120)와 상기 몸체(115)에 접착될 수 있다. 상기 제1수지(160)는 상기 발광소자(120)의 제1본딩부(121)과 제2본딩부(122) 사이에 배치되거나 상기 제1 및 제2본딩부(121,122)에 접촉될 수 있다. 이러한 상기 제1수지(160)는 상기 발광소자(120)의 하면과 프레임(111,113) 사이의 영역과, 상기 발광소자(120)과 상기 몸체(115) 사이의 영역에 접착될 수 있다. 이에 따라 제1수지(160)는 상기 발광소자(120)의 하부 접착력 및 지지력을 강화시켜 줄 수 있다. 상기 발광소자(120)의 본딩부(121,122)를 본딩하는 공정이나 회로 기판 상에 본딩될 때, 도전층(333)에 의해 상기 발광소자(120)가 틸트되는 문제를 방지할 수 있다. 상기 제1수지(160)는 반사성 수지 재질로 형성되어 광을 확산시키고 반사 효율을 개선시켜 줄 수 있다.
상기 제1리세스(R1)는 상기 몸체(115) 또는 몸체(115)의 상부에 하나 또는 복수로 제공될 수 있다. 상기 제1리세스(R1)는 상기 제1 돌출부(11)와 상기 제4 돌출부(31) 사이의 몸체(115)에 제공될 수 있다. 상기 제1리세스(R1)는 상기 제1 프레임(111)과 제2프레임(113) 사이의 몸체(115)에 제공될 수 있다. 상기 제1리세스(R1)는 상기 몸체(115)의 상면에서 하면 방향으로 오목하게 제공될 수 있다. 상기 제1리세스(R1)는 상기 발광소자(120) 아래에 하나 또는 복수로 배치될 수 있다. 상기 제1리세스(R1)의 적어도 일부 또는 전부는 상기 발광소자(120)와 Z 방향으로 중첩되어 제공될 수 있다. 상기 제1리세스(R1)가 상기 몸체(115) 상에 배치되므로, 상기 제1수지(160)는 상기 제1리세스(R1) 내에 배치될 수 있다. 상기 제1리세스(R1) 내에 배치된 제1수지(160)는 지지 돌기로 기능할 수 있다.
상기 제1수지(160)는 상기 발광소자(120)와 상기 패키지 몸체(110) 간의 안정적인 고정력을 제공할 수 있다. 상기 제1수지(160)는 상기 발광소자(120)와 상기 몸체(115) 간의 안정적인 고정력을 제공할 수 있다. 상기 제1수지(160)는 예로서, 상기 몸체(115)의 상면에 직접 접촉되고 상기 제1리세스(R1) 내에 배치되고, 상기 발광소자(120)의 하부 면에 접촉되어, 상기 발광소자(120)를 고정할 수 있다.
상기 제1수지(160)는 상기 몸체(115)와 상기 발광소자(120) 간의 안정적인 고정력을 제공할 수 있고, 상기 발광소자(120)의 하면으로 광이 방출되는 경우, 상기 발광소자(120)와 상기 몸체(115) 사이에서 광 확산 기능을 제공할 수 있다. 상기 발광소자(120)로부터 상기 발광소자(120)의 하면으로 광이 방출될 때 상기 제1수지(160)는 광 확산 기능을 제공함으로써 상기 발광소자 패키지(100)의 광 추출 효율을 개선할 수 있다. 또한, 상기 제1수지(160)는 상기 발광소자(120)에서 방출하는 광을 반사할 수 있다. 상기 제1수지(160)가 반사 기능을 포함하는 경우, 상기 제1수지(160)는 내부에 TiO2, SiO2, 또는 Al2O3와 같은 필러를 포함할 수 있다.
도 4와 같이, 상기 제1리세스(R1)의 깊이(Za)는 상기 제1수지(160)의 접착력을 고려하여 결정될 수 있다. 상기 제1리세스(R1)이 깊이(Za)는 상기 몸체(115)의 안정적인 강도를 고려하거나 및/또는 상기 발광소자(120)에서 방출되는 열에 의해 상기 발광소자 패키지(100)에 크랙(crack)이 발생하지 않도록 결정될 수 있다.
상기 제1리세스(R1)는 상기 발광소자(120) 하부에 일종의 언더필(under fill) 공정이 수행될 수 있는 적정 공간을 제공할 수 있다. 여기서, 상기 언더필(Under fill) 공정은 발광소자(120)를 패키지 몸체(110)에 실장한 후 상기 제1수지(160)를 상기 발광소자(120) 하부에 배치하는 공정일 수 있고, 상기 발광소자(120)를 패키지 몸체(110)에 실장하는 공정에서 상기 제1수지(160)를 통해 실장하기 위해 상기 제1수지(160)를 상기 제1리세스(R1) 및 몸체(15) 상에 디스펜싱한 후 상기 발광소자(120)를 부착하는 공정일 수 있다.
상기 제1리세스(R1)은 상부 너비가 하부 너비보다 넓게 배치되므로, 내부가 경사진 면이나 곡면으로 제공될 수 있다. 이에 따라 상기 제1리세스(R1)에 제1수지(160)의 가이드 및 지지를 할 수 있다.
상기 각 프레임(111,113)과 상기 각 본딩부(121,122)는 금속간 화합물층에 의해 결합될 수 있다. 상기 금속간 화합물은 CuxSny, AgxSny, AuxSny 중 적어도 하나를 포함할 수 있으며, 상기 x는 0<x<1, y=1-x, x>y의 조건을 만족할 수 있다.
상기 금속간 화합물층은 상기 도전층(333)을 구성하는 물질을 포함할 수 있다. 상기 제1프레임(111)의 제1돌출부(11) 상에 배치된 도전층(333)은 상기 제1 본딩부(121)의 하면과 직접 접촉되어 배치될 수 있고, 상기 제1 본딩부(121)와 전기적으로 연결될 수 있다. 상기 제2프레임(113)의 제4돌출부(31) 상에 배치된 상기 도전층(333)은 상기 제2 본딩부(122)의 하면과 직접 접촉되어 배치될 수 있고, 상기 제2 본딩부(122)와 전기적으로 연결될 수 있다.
상기 도전층(333)은 Ag, Au, Pt, Sn, Cu, Zn, In, Bi, 접촉, Ti 등을 포함하는 그룹 중에서 선택된 하나의 물질 또는 그 합금을 포함할 수 있다. 상기 도전층(333)은 솔더 페이스트로서, 파우더 입자 또는 파티클 입자와 플럭스의 혼합으로 형성될 수 있다. 상기 솔더 페이스트는 Sn-Ag-Cu를 포함할 수 있으며, 각 금속의 중량%는 달라질 수 있다. 상기 도전층(333)은 SAC(Sn-Ag-Cu) 또는 SAC계열의 물질을 포함할 수 있다.
예로서, 상기 도전층(333)은 도전성 페이스트를 이용하여 형성될 수 있다. 상기 도전성 페이스트는 솔더 페이스트(solder paste), 실버 페이스트(silver paste) 등을 포함할 수 있고, 서로 다른 물질로 구성되는 다층 또는 합금으로 구성된 다층 또는 단층으로 구성될 수 있다.
상기 발광소자(120)의 본딩부(121,122)는 상기 도전층(333)을 구성하는 물질과 상기 도전층(333)을 형성되는 과정 또는 상기 도전층(333)이 제공된 후 열처리 과정에서, 상기 도전층(333)과 상기 프레임(111,113) 사이에 금속간 화합물(IMC; intermetallic compound)층이 형성될 수 있다.
여기서, 상기 도전층(333)을 이루는 물질과 상기 프레임(111,113)의 금속 간의 결합에 의해 합금층이 형성될 수 있다. 이에 따라, 상기 도전층(333)과 상기 프레임(111,113)이 물리적으로 또한 전기적으로 안정하게 결합될 수 있게 된다. 상기 도전층(333), 합금층 및 상기 프레임이 물리적으로 또한 전기적으로 안정하게 결합될 수 있게 된다. 상기 합금층이 AgSn, CuSn, AuSn 등을 포함하는 그룹 중에서 선택된 적어도 하나의 금속간 화합물층을 포함할 수 있다. 상기 금속간 화합물층은 제1 물질과 제2 물질의 결합으로 형성될 수 있으며, 제1 물질은 도전층(333)으로부터 제공될 수 있고, 제2 물질은 상기 본딩부(121,122) 또는 상기 프레임(111,113)로부터 제공될 수 있다.
상기 도전층(333)이 Sn 물질을 포함하고 상기 금속층이 Ag 물질을 포함하는 경우, 상기 도전층(333)이 제공되는 과정 또는 제공된 후의 열처리 과정에서 Sn 물질과 Ag 물질의 결합에 의하여 AgSn의 금속간 화합물층이 형성될 수 있다.
또는, 상기 도전층(333)이 Sn 물질을 포함하고 상기 금속층이 Au 물질을 포함하는 경우, 상기 도전층(333)이 제공되는 과정 또는 제공된 후의 열처리 과정에서 Sn 물질과 Au 물질의 결합에 의하여 AuSn의 금속간 화합물층이 형성될 수 있다.
또는, 상기 도전층(333)이 Sn 물질을 포함하고 상기 프레임(111,113)의 금속층이 Cu 물질을 포함하는 경우, 상기 도전층(333)이 제공되는 과정 또는 제공된 후의 열처리 과정에서 Sn 물질과 Cu 물질의 결합에 의하여 CuSn의 금속간 화합물층이 형성될 수 있다.
또는 상기 도전층(333)이 Ag 물질을 포함하고 상기 금속층 또는 상기 프레임(111,113)의 일부 층이 Sn 물질을 포함하는 경우, 상기 도전층(333)이 제공되는 과정 또는 제공된 후의 열처리 과정에서 Ag 물질과 Sn 물질의 결합에 의하여 AgSn의 금속간 화합물층이 형성될 수 있다.
이상에서 설명된 금속간 화합물층은 다른 본딩 물질에 비해 더 높은 용융점을 가질 수 있다. 또한, 상기 금속한 화합물층이 형성되는 열처리 공정은 일반적인 본딩 물질의 용융점에 비해 더 낮은 온도에서 수행될 수 있다. 따라서, 실시 예에 따른 발광소자 패키지(100)는 메인 기판 등에 리플로우(reflow) 공정을 통해 본딩되는 경우에도 리멜팅(re-melting) 현상이 발생되지 않으므로 전기적 연결 및 물리적 본딩력이 열화되지 않는 장점이 있다.
실시 예에 따른 발광소자 패키지(100) 및 발광소자 패키지 제조방법에 의하면, 발광소자 패키지를 제조하는 공정에서 패키지 몸체가 고온에 노출될 필요가 없게 된다. 따라서, 실시 예에 의하면, 패키지 몸체가 고온에 노출되어 손상되거나 변색이 발생되는 것을 방지할 수 있다. 이에 따라, 몸체(115)를 구성하는 물질에 대한 선택 폭이 넓어질 수 있게 된다. 실시 예에 의하면, 상기 몸체(115)는 세라믹 등의 고가의 물질뿐만 아니라, 상대적으로 저가의 수지 물질을 이용하여 제공될 수도 있다.
상기 프레임(111,113)이 베이스층 및 베이스층 표면에 도금층을 갖는 다층 구조인 경우, 상기 도전층(333)과 상기 프레임(111,113)의 적어도 한층 사이에는 합금층이 형성될 수 있다. 상기 합금층은 상기 도전층(333)을 구성하는 물질과 상기 프레임(111,113)의 금속층 간의 결합에 의해 형성될 수 있다. 상기 합금층은 프레임(111,113)의 표면 상에 형성될 수 있다. 상기 합금층은 AgSn, CuSn, AuSn 등을 포함하는 그룹 중에서 선택된 적어도 하나를 갖는 금속간 화합물층을 포함할 수 있다. 상기 금속간 화합물층은 제1 물질과 제2 물질의 결합으로 형성될 수 있으며, 제1 물질은 상기 도전층(333)으로부터 제공될 수 있고, 제2 물질은 상기 금속층 또는 상기 프레임(111,113)의 베이스층으로부터 제공될 수 있다.
상기 제1 및 제2프레임(111,113)이 전도성 재질인 경우, 상기 제1 및 제2프레임(111,113)은 발광소자(120)의 본딩부(121,122)과 전기적으로 연결될 수 있다. 상기 발광소자(120)의 본딩부(121,122)는 상기 도전층(333)과 상기 프레임(111,113) 중 적어도 하나 또는 모두와 전기적으로 연결될 수 있다. 이에 따라, 상기 제1 본딩부(121) 및 상기 제2 본딩부(122)을 통하여 공급되는 구동 전원에 의하여 상기 발광소자(120)가 구동될 수 있게 된다. 그리고, 상기 발광소자(120)에서 발광된 빛은 상기 패키지 몸체(110)의 상부 방향으로 제공될 수 있게 된다.
발명의 실시 예에 따른 발광소자 패키지(100)는, 몰딩부(190)를 포함할 수 있다. 상기 몰딩부(190)는 상기 발광소자(120) 위에 제공될 수 있다. 상기 몰딩부(190)는 상기 제1 프레임(111)과 상기 제2 프레임(113) 위에 배치될 수 있다. 상기 몰딩부(190)는 상기 패키지 몸체(110)에 의하여 제공된 캐비티(102)에 배치될 수 있다.
상기 몰딩부(190)는 절연물질을 포함할 수 있다. 또한, 상기 몰딩부(190)는 상기 발광소자(120)로부터 방출되는 빛을 입사 받고, 파장 변환된 빛을 제공하는 파장변환 수단을 포함할 수 있다. 예로서, 상기 몰딩부(190)는 형광체, 양자점 등을 포함하는 그룹 중에서 선택된 적어도 하나를 할 수 있다. 상기 발광소자(120)는 청색, 녹색, 적색, 백색, 적외선 또는 자외선의 광을 발광할 수 있다. 상기 형광체, 또는 양자점은 청색, 녹색, 적색의 광을 발광할 수 있다. 상기 몰딩부(190)는 형성하지 않을 수 있다.
상기 발광소자 패키지(100)는 서브 마운트 또는 회로기판 등에 실장되어 공급될 수도 있다. 그런데, 종래 발광소자 패키지가 서브 마운트 또는 회로기판 등에 실장됨에 있어 리플로우(reflow) 등의 고온 공정이 적용될 수 있다. 이때, 리플로우 공정에서, 발광소자 패키지에 제공된 리드 프레임과 발광소자 간의 본딩 영역에서 리멜팅(re-melting) 현상이 발생되어 전기적 연결 및 물리적 결합의 안정성이 약화될 수 있게 된다.
발명의 실시 예에 따른 발광소자의 제1 본딩부(121)와 제2 본딩부(122)는 프레임(111,113)과 및 도전층(333) 중 적어도 하나 또는 모두를 통하여 구동 전원을 제공받을 수 있다. 그리고, 상기 도전층(333)의 용융점이 다른 본딩 물질의 용융점에 비해 더 높은 값을 갖도록 선택될 수 있다. 따라서, 발명의 실시 예에 따른 발광소자 소자 패키지(100)는 메인 기판 등에 리플로우(reflow) 공정을 통해 본딩되는 경우에도 리멜팅(re-melting) 현상이 발생되지 않으므로 전기적 연결 및 물리적 본딩력이 열화되지 않는 장점이 있다. 또한, 발명의 실시 예에 따른 발광소자 패키지(100)에 의하면, 발광소자 패키지를 제조하는 공정에서 패키지 몸체(110)가 고온에 노출될 필요가 없게 된다. 따라서, 발명의 실시 예에 의하면, 패키지 몸체(110)가 고온에 노출되어 손상되거나 변색이 발생되는 것을 방지할 수 있다.
이에 따라, 몸체(115)를 구성하는 물질에 대한 선택 폭이 넓어질 수 있게 된다. 발명의 실시 예에 의하면, 상기 몸체(115)는 세라믹 등의 고가의 물질뿐만 아니라, 상대적으로 저가의 수지 물질을 이용하여 제공될 수도 있다. 예를 들어, 상기 몸체(115)는 PPA(PolyPhtalAmide) 수지, PCT(PolyCyclohexylenedimethylene Terephthalate) 수지, EMC(Epoxy Molding Compound) 수지, SMC(Silicone Molding Compound) 수지를 포함하는 그룹 중에서 선택된 적어도 하나의 물질을 포함할 수 있다.
또한 상기 몸체(115)에 제1리세스(R1)를 구비하며, 상기 프레임(111,113) 사이의 몸체(115)에 완충 역할을 수행하도록 하고, 상기 도전층(333)에 의한 크랙 발생을 억제할 수 있다. 상기 돌기(P1,P2,P3,P4)와 제1수지(160)를 제공하여 상기 본딩부(121,122) 하면의 도전층에 의한 발광소자의 틸트나 유동을 억제할 수 있다.
도 7 및 도 8은 다른 예로서, 상기 발광소자(120)의 하부 둘레 즉, 캐비티(102) 바닥에 제2수지(162)가 형성될 수 있다. 상기 제2수지(162)는 상기 몰딩부(190)과 상기 캐비티 바닥 사이에 배치되고, 상기 발광소자(120)의 하면과 같거나 낮게 배치될 수 있다. 상기 제2수지(162)의 두께(b2)는 상기 프레임(111,113)과 상기 발광소자(120)의 하면 사이의 간격과 같거나 작을 수 있다. 상기 제2수지(162)의 일부는 상기 발광소자(120)의 측면에 접촉될 수 있다. 상기 제2수지(162)는 얇은 두께(b3)로 제공되어, 상기 발광소자(120)의 측 방향으로 방출된 광을 반사시켜 줄 수 있다. 상기 제2수지(162)는 도 2의 제1 내지 제4반사부(51,52,53,54)와 상기 돌기(P1,P2,P3,P4)와 접촉될 수 있다. 상기 제2수지(162)는 상기 제1수지(160)의 둘레에 배치되어 상기 제1수지(160)와 접촉될 수 있다.
상기 제2수지(162)는 상기 돌기(P1,P2,P3,P4)의 둘레에 배치되어, 상기 돌기(P1,P2,P3,P4)를 지지할 수 있다. 상기 돌기(P1,P2,P3,P4)는 상기 제2수지(162)의 상면보다 높게 배치되어, 상기 발광소자(120)의 틸트를 방지할 수 있다.
발명의 실시 예는 상기 프레임(111,113)의 주 재질이 구리인 경우, 상기 제2수지(162)는 상기 구리 재질과의 열 팽창 계수(CTE)의 차이가 낮으므로, 상기 구리 재질의 면적 즉, 상기 제1 및 제2프레임(111,113)의 면적을 줄어들도록 내부에 결합홀들을 배치할 수 있다. 이러한 프레임의 면적 감소로 인해 프레임에 의한 열 변형이 줄어들 수 있고 도전층의 크랙 발생을 억제할 수 있다.
도 8과 같이, 상기 제1수지(160)는 상기 발광소자(120)과 수직 방향으로 중첩된 영역과 제1리세스(R1) 내에 배치될 수 있으며, 제2수지(162)는 상기 발광소자(120)의 하부 둘레에 배치되고 일부가 상기 발광소자(120)의 바닥 양측에 배치될 수 있다. 이러한 제1,2수지(160,162)는 상기 발광소자(120)의 하부에 배치된 도전층(333)의 둘레를 감싸게 배치되어, 댐 역할을 할 수 있다. 이 경우 상기 도전층(333)이 리멜팅되더라도, 다른 영역으로 유동되는 것이 억제될 수 있어, 발광소자(120)과 프레임(111,113) 사이의 오픈 불량을 줄일 수 있다.
도 9와 같이, 각 돌기(P5,P6,P7,P8)는 프레임 또는 몸체로부터 선택적으로 형성되어, 상기 발광소자(120)의 각 측면의 센터와 대응될 수 있다. 예컨대, 제1 및 제2돌기(P5,P6)는 서로 대면하게 배치되며 제1,2프레임으로부터 돌출되거나, 몸체로부터 돌출될 수 있다. 제3 및 제4돌기(P7,P7)는 서로 대면하게 배치되며 상기 몸체로부터 돌출될 수 있다. 이러한 돌기(P5,P6,P7,P8)는 발광소자(120)의 각 측면 센터와 인접하게 배치되어, 발광소자(120)의 틸트를 방지할 수 있다.
도 10와 같이, 각 돌기(P1,P2,P3,P4)는 프레임 또는 몸체로부터 선택적으로 형성되어, 상기 발광소자(120)의 양 측면의 에지와 대응될 수 있다. 예컨대, 제1 및 제2돌기(P1,P2)는 상기 발광소자(120)의 제1단변의 양측에 대면하며, 제3 및 제4돌기(P3,P4)는 상기 발광소자(120)의 제2단변의 양측에 대면할 수 있다. 상기 제1 내지 제4돌기(P1,P2,P3,P4)는 발광소자(120)의 장측변에 대면하지 않게 배치될 수 있다. 이는 발광소자(120)의 장측변 하부에는 몸체(115)의 반사부(51,52,53,54)가 배치되어, 도전층의 유동을 억제할 수 있고, 상기 돌기(P1,P2,P3,P4)는 상기 발광소자(120)의 단측변 방향으로의 이동을 방지할 수 잇다. 즉, 돌기(P1,P2,P3,P4)와 발광소자(120)의 대향 면적을 줄여, 광 손실을 줄일 수 있다. 상기 돌기(P1,P2,P3,P4)는 상기 각 반사부(51,52,53,54)로부터 돌출될 수 있고 제2수지(162)와 접촉될 수 있다. 상기 돌기(P1,P2,P3,P4)는 발광소자(120)의 제1방향으로의 유동을 방지할 수 있다.
도 11과 같이, 발광소자(120)의 각 코너에 돌기(P1,P2,P3,P4)가 각각 배치될 수 있다. 상기 돌기(P1,P2,P3,P4)는 탑뷰에서 볼 때, 원 형상 또는 다각형 형상일 수 있다. 상기 돌기(P1,P2,P3,P4)는 상기 발광소자(120)의 측면과 최소로 대향되도록 하여, 측면으로부터 방출된 광의 손실을 줄여줄 수 있다. 상기 돌기(P1,P2,P3,P4)는 상기 각 반사부(51,52,53,54)로부터 돌출될 수 있고 제2수지(162)와 접촉될 수 있다.
도 12 및 도 13은 발명의 실시 예에 따른 발광소자 패키지의 변형 예이다.
도 12 및 도 13와 도 2를 참조하면, 몸체(115)의 제2방향을 따라 캐비티(102)의 측면 하부에 지지부(116,117)가 배치될 수 있다. 상기 지지부(116,117)는 상기 제1리세스(R1)의 제2방향 양측에 배치된 제1 및 제2지지부(116,117)를 포함할 수 있다. 상기 제1지지부(116)는 상기 제1리세스(R1)보다 상기 패키지 몸체의 제3측면(S3) 방향에 인접한 캐비티(102)의 측면 하부에 배치될 수 있고, 상기 제2지지부(117)는 상기 제1리세스(R1)보다 상기 패키지 몸체의 제4측면(S4) 방향에 인접한 캐비티(102)의 측면 하부에 배치될 수 있다.
상기 제1 및 제2지지부(116,117)는 상기 제1 및 제2프레임(111,113) 사이의 간격보다 넓은 폭을 갖고 배치될 수 있다. 상기 제1지지부(116)는 상기 제1프레임(111)의 제2돌출부(12, 도 2 참조)와 상기 제2프레임(113)의 제5돌출부(32, 도 2 참조) 상에 배치되고 제2,5돌출부(12,32)와 수직 방향으로 중첩될 수 있다. 상기 제2지지부(117)는 상기 제1프레임(111)의 제3돌출부(13, 도 2참조)와 상기 제2프레임(113)의 제6돌출부(33, 도 2참조) 상에 배치되고 상기 제3,6돌출부(13,33)와 수직 방향으로 중첩될 수 있다. 상기 제1,2지지부(116,117) 간의 간격은 상기 발광소자(120)의 제2방향의 길이보다 넓게 이격될 수 있다. 이에 따라 상기 제1,2지지부(116,117)는 상기 캐비티(102)의 바닥과 캐비티(120)의 측면의 경계 부분에서 상기 몸체(115)의 두께를 더 증가시켜 주어, 상기 몸체(115)의 파단 강도를 강화시켜 줄 수 있다.
상기 제1,2지지부(116,117)는 상기 발광소자(120)의 측면 또는 장측변과 대면하거나 이격되게 배치될 수 있다. 상기 제1,2지지부(116,117)는 상기 제1리세스(R1)와 소정 간격으로 이격되게 배치되므로, 상기 제1리세스(R1)에 배치된 제1수지(160)가 상기 제1,2지지부(116,117)로 확산되는 것을 방지할 수 있다.
상기 제1,2지지부(116,117)의 두께는 상기 돌기(P1,P2,P3,P4)의 두께보다 얇을 수 있다. 상기 제1,2지지부(116,117)의 두께는 상기 몸체(115)의 상면, 또는 프레임(111,113)의 상면으로부터 40 마이크로 미터 이상 예컨대, 40 내지 60 마이크로 미터의 범위로 돌출될 수 있다. 상기 제1,2지지부(116,117)의 두께가 상기 범위보다 두꺼우면 광 손실이 발생될 수 있고 상기 범위보다 작으면 파단 강도의 강화 효과가 미미할 수 있다. 상기 제1,2지지부(116,117)의 상면은 평탄한 면이거나 경사진 면일 수 있다. 여기서, 상기 제1지지부(116)는 상기 보호 소자(125)를 위한 홈(133A)이 배치된 경우, 상기 홈(133A) 바닥에 배치된 제2,5돌출부(12,32) 상에 중첩되게 배치될 수 있다.
발명의 실시 예는 몸체(115)의 외측 예컨대, 장변 방향의 외측 면 또는 제2방향의 측면(S3,S4)에는 리브(107,108)가 배치될 수 있다. 상기 리브(107,108)는 상기 몸체(115)이 장변을 지지할 수 있다. 상기 리브(107,108)는 상기 몸체(115)의 측면(S3,S4)의 하부에 외측 방향으로 돌출되며, 상기 캐비티(105)의 바닥의 제1방향 길이보다 긴 길이로 제공될 수 있다. 이러한 리브(107,108)는 몸체 측벽을 지지할 수 있다.
도 14는 발명의 실시 예에 따른 발광소자 패키지의 변형 예로서, 돌기의 구조를 변형한 예이다.
도 14를 도 2와 참조하여 설명하면, 돌기(P1,P3)는 발광소자(120)의 측면에 배치될 수 있고, 상기 돌기(P1,P3)의 내측부(P11,P31)는 상기 발광소자(120)의 하면에 연장될 수 있다. 상기 돌기(P1,P3)의 내측부(P11,P31)는 상기 발광소자(120)의 제1,2본딩부(121,122)의 외측에 배치되며 상기 발광소자(120)과 수직 방향으로 중첩될 수 있다. 상기 돌기(P1,P3)의 내측부(P11,P31)는 도전층(333)과 접촉될 수 있다. 이러한 상기 돌기(P1,P3)의 내측부(P11,P31)는 상기 발광소자(120)의 하면과 접촉되어, 상기 발광소자(120)의 제1,2본딩부(121,122)를 상기 프레임(111,113)의 상면으로부터 이격시켜 줄 수 있다.
상기 도전층(333)은 상기 제1프레임(111)과 제1본딩부(121) 사이와, 상기 제2프레임(113)과 제2본딩부(122) 사이에 접착될 수 있다. 이러한 도전층(333)은 본딩 공정 시, 발광소자(120)로부터 가해지는 압력에 의해 퍼지거나 리플로우 공정시 확산될 수 있다. 이러한 도전층(333)의 퍼짐 현상으로 인해 상기 제1,2본딩부(121,122) 아래에 위치하는 도전층(333)의 두께가 얇아지거나 불균일할 수 있다. 실시 예는 상기 도전층(333)이 다른 방향으로 퍼지는 문제를 줄여주기 위해, 상기 발광소자(120)의 본딩부(121,122)를 상기 프레임(111,113)의 상면으로부터 이격시켜 주어, 도전층(333)의 퍼짐성을 억제할 수 있다. 따라서, 상기 도전층(333)은 상기 제1프레임(111)과 제1본딩부(121) 사이와, 상기 제2프레임(113)과 제2본딩부(122) 사이의 영역에서 두꺼운 두께와 균일한 분포를 갖고 접착될 수 있다.
상기 제1리세스(R1)에는 제1수지(160)가 배치될 수 있다. 상기 발광소자(120)의 하부 둘레에는 제2수지가 배치될 수 있다. 상기 제1수지(160)는 상기 발광소자(120)를 몸체(115) 상에 접착시켜 줄 수 있다. 상기 제1수지(160)는 상기 발광소자(120)의 하면과 상기 제1,2본딩부(121,122)와 상기 몸체(115)의 상면에 접착될 수 있다. 이러한 제1수지(160)는 상기 발광소자(120)을 지지하여, 틸트되는 것을 억제할 수 있고 리멜팅될 경우 상기 발광소자(120)를 지지할 수 있다.
상기 제1수지(160)는 제1리세스(R1) 및 상기 몸체(115) 상에 배치되어 상기 발광소자(120)와 상기 패키지 몸체(110) 간의 안정적인 고정력을 제공할 수 있다. 상기 제1수지(160)는 몸체(115)의 수지 재질과 접착되는 면적이 증가되어, 상기 발광소자(120)와 상기 몸체(115) 간의 안정적인 고정력을 제공할 수 있다. 상기 제1수지(160)는 예로서 상기 몸체(115)의 상면에 직접 접촉되어 배치될 수 있다. 또한, 상기 제1수지(160)는 상기 발광소자(120)의 하부 면에 직접 접촉되어 배치될 수 있다.
예로서, 상기 제1수지(160)는 에폭시(epoxy) 계열의 물질, 실리콘(silicone) 계열의 물질, 에폭시 계열의 물질과 실리콘 계열의 물질을 포함하는 하이브리드(hybrid) 물질 중에서 적어도 하나를 포함할 수 있다. 또한 예로서, 상기 제1수지(160)가 반사 기능을 포함하는 경우 상기 제1수지는 화이트 실리콘(white silicone)을 포함할 수 있다. 상기 제1수지(160)는 접착 기능뿐만 아니라, 열을 하부로 방열하는 열 전도성 재질로 형성될 수 있다. 이 경우 상기 제1수지(160)에 금속 산화물의 함량을 증가시켜 배치할 수 있다.
상기 제1수지(160)는 상기 몸체(115)와 상기 발광소자(120) 간의 안정적인 고정력을 제공할 수 있고, 상기 발광소자(120)의 하면으로 광이 방출되는 경우, 상기 발광소자(120)와 상기 몸체(115) 사이에서 광 확산 기능을 제공할 수 있다. 상기 발광소자(120)로부터 상기 발광소자(120)의 하면으로 광이 방출될 때 상기 제1수지(160)는 광 확산 기능을 제공함으로써 상기 발광소자 패키지(100)의 광 추출 효율을 개선할 수 있다. 또한, 상기 제1수지(160)는 상기 발광소자(120)에서 방출하는 광을 반사할 수 있다. 상기 제1수지(160)가 반사 기능을 포함하는 경우, 상기 제1수지(160)는 TiO2, Silicone, Al2O3 등을 포함하는 물질로 구성될 수 있다.
실시 예에 따른 프레임(111,113)은 제1 및 제2 금속층을 포함하며, 상기 제1금속층은 베이스층으로서, Cu, Ni, Ti를 포함할 수 있으며, 단층 또는 다층으로 형성될 수 있다. 상기 제2금속층은 Au, Ni층, Ag 층 중에서 적어도 하나를 포함할 수 있다. 상기 제2금속층이 Ni층을 포함하는 경우, Ni층은 열 팽창에 대한 변화가 작으므로, 패키지 몸체가 열 팽창에 의하여 그 크기 또는 배치 위치가 변화되는 경우에도, 상기 Ni층에 의하여 상부에 배치된 발광소자의 위치가 안정적으로 고정될 수 있게 된다. 상기 제2 금속층이 Ag층을 포함하는 경우, Ag층은 상부에 배치된 발광소자에서 발광되는 빛을 효율적으로 반사시키고 광도를 향상시킬 수 있다. 상기 제2금속층이 Au층을 포함하는 경우, 상기 발광소자(120)의 본딩부(121,122)와의 본딩력이 개선시키고 반사 효율을 개선시켜 줄 수 있다.
도 15은 도 7의 발광소자 패키지가 회로 기판에 배치된 광원 장치 또는 광원 모듈의 예이다. 일 예로서, 실시 예의 발광소자 패키지를 갖는 광원 장치의 예로 설명하기로 하며, 상기에 개시된 설명 및 도면을 참조하여 후술하기로 한다. 상기의 발광소자 패키지는 상기에 개시된 실시 예(들)을 선택적으로 적용할 수 있다.
도 15 및 도 7를 참조하면, 실시 예에 따른 광원 모듈은 회로기판(201) 상에 하나 또는 복수의 발광소자 패키지(100)가 배치될 수 있다.
상기 회로기판(201)은 패드(211,213)을 갖는 기판 부재를 포함할 수 있다. 상기 회로 기판(201)에 상기 발광소자(120)의 구동을 제어하는 전원 공급 회로가 제공될 수 있다. 발광소자 패키지(100)의 각 프레임(111,113)은 회로 기판(201)의 각 패드(211,213)들과 본딩층(231,233)로 연결될 수 있다. 이에 따라 발광소자 패키지(100)의 발광소자(120)는 회로 기판(201)의 각 패드(211,213)들로부터 전원을 공급받을 수 있다. 상기 회로 기판(201)의 각 패드(211,213)는 예컨대, Ti, Cu, Ni, Au, Cr, Ta, Pt, Sn, Ag, P, Fe, Sn, Zn, Al를 포함하는 그룹 중에서 선택된 적어도 하나의 물질 또는 그 합금을 포함할 수 있다.
상기 회로 기판(201)의 각 패드(211,213)는 상기 프레임(111,113) 및 상기 각 제1 및 제3돌출부와 중첩되게 배치될 수 있다. 상기 각 패드(211,213)와 상기 프레임(111,113) 사이는 본딩층(231,233)이 제공될 수도 있다. 상기 본딩층(231,233)은 상기 프레임(111,113) 및/또는 제1 및 제3 돌출부의 도전층(333)에 연결될 수 있다.
실시 예에 따른 발광소자 패키지에 의하면, 발광소자(120)의 본딩부(121,122)는 프레임(111,113)에 배치된 도전층(333)을 통하여 구동 전원을 제공 받을 수 있다. 그리고, 도전층(333)의 용융점이 일반적인 본딩 물질의 용융점에 비해 더 높은 값을 갖도록 선택될 수 있다. 실시 예에 따른 발광소자 소자 패키지는 메인 기판 등에 리플로우(reflow) 공정을 통해 본딩되는 경우에도 리멜팅(re-melting) 현상이 발생되지 않으므로 전기적 연결 및 물리적 본딩력이 열화되지 않는 장점이 있다. 실시 예에 따른 발광소자 패키지에 의하면, 발광소자 패키지를 제조하는 공정에서 패키지 몸체(110) 및 몸체(115)가 고온에 노출될 필요가 없게 된다. 따라서, 실시 예에 의하면, 패키지 몸체(110) 및 몸체(115)가 고온에 노출되어 손상되거나 변색이 발생되는 것을 방지할 수 있다.
발명의 실시 예는 발광소자(120)의 외측에 돌기(P1,P2,P3,P4)가 상기에 개시된 실시 예와 같이 배치되어, 상기 발광소자 패키지(100)가 회로 기판(201)에 본딩될 때, 상기 도전층(333)이 리멜팅될 경우 상기 발광소자(120)의 틸트를 방지할 수 있다. 이에 따라 발광소자(120)과 프레임(111,113) 간의 오픈 불량을 줄일 수 있어, 신뢰성을 개선시켜 줄 수 있다.
실시 예에 따른 발광소자 패키지(100)는 서브 마운트 또는 회로기판(201) 등에 실장되어 공급될 수도 있다. 그런데, 종래 발광소자 패키지가 서브 마운트 또는 회로기판 등에 실장됨에 있어 리플로우(reflow) 등의 고온 공정이 적용될 수 있다. 이때, 리플로우 공정에서, 발광소자 패키지에 제공된 프레임과 발광소자 간의 본딩 영역에서 리멜팅(re-melting) 현상이 발생되어 전기적 연결 및 물리적 결합의 안정성이 약화될 수 있고 이에 따라 상기 발광소자의 위치가 변할 수 있어, 상기 발광소자 패키지의 광학적, 전기적 특성 및 신뢰성이 저하될 수 있다. 그러나, 실시 예에 따른 발광소자 패키지에 의하면, 실시 예에 따른 발광소자의 제1 본딩부는 관통홀에 배치된 도전층을 통하여 구동 전원을 제공 받을 수 있다. 따라서, 실시 예에 따른 발광소자 소자 패키지(100)는 메인 기판 등에 리플로우(reflow) 공정을 통해 본딩되는 경우에도 리멜팅(re-melting) 현상이 발생되지 않으므로 전기적 연결 및 물리적 본딩력이 열화되지 않는 장점이 있다.
발명의 실시 예에 따른 몸체(115)에 제1리세스(R1)가 발광소자(120)의 제1,2본딩부(121,122) 간의 이격되는 방향과 직교되는 방향이거나, 제1,2본딩부(121,122) 사이의 영역이 놓이는 방향과 같은 방향으로 배치되어, 프레임(111,113)의 열 팽창 및 수축에 대해 완화시켜 줄 수 있다. 이에 따라 상기 몸체(115)의 제1리세스(R1)에 의한 완화 작용으로 상기 도전층(333)의 크랙 발생이 억제될 수 있어, 제품에 대한 신뢰성이 개선될 수 있다.
상기 제1리세스(R1)의 깊이(Za)는 상기 제1 및 제2프레임(111,113)의 두께(Z2)보다 작을 수 있다. 상기 제1리세스(R1)의 깊이(Za)는 상기 제1 및 제2프레임(111,113) 사이에 배치된 상기 몸체(115)의 두께(예, Z2)보다 작을 수 있다. 여기서, 상기 제1리세스(R1)가 도 7과 같이, 상부의 제1리세스만 배치된 경우, 상기 제1리세스(R1)의 깊이(Zc)는 제1 및 제2프레임(111,113)의 두께(Z2)의 50% 이상 예컨대, 50% 내지 80%의 범위일 수 있다. 도 7과 같이 상기 제1리세스(R1)의 깊이(Zc)는 125 마이크로 미터 이상 예컨대, 125 내지 200 마이크로 미터의 범위일 수 있다. 상기 제1리세스(R1)의 깊이(Zc)에 의해 상기 몸체(115)의 열 변형에 따른 솔더 크랙을 억제할 수 있고 상기 두 프레임(111,113) 사이의 몸체(115)의 하부 크랙을 방지할 수 있다. 이러한 도 7과 같은 제1리세스(R1)는 상기 깊이(Zc)의 범위보다 작은 경우 완충 역할이 미미할 수 있으며 상기 범위보다 큰 경우 센터 측 파단 강도가 저하될 수 있다.
여기서, 상기 제1리세스(R1)을 하나를 형성한 구조(도 7)와, 상기 제1 및 제2리세스(R1,R2)를 양측에 배치한 구조(도 4)에서 상기 몸체(115)의 연결부(Rr)의 최소 두께(a3)는 45 마이크로 미터 이상 예컨대, 45 내지 55 마이크로 미터의 범위일 수 있다. 상기 몸체(115)의 연결부(Rr)의 최소 두께(a3)는 상기 제1 및 제2프레임(111,113)의 두께(T2)를 기준으로 0.25 이하 예컨대, 0.15 내지 0.25 범위일 수 있다. 상기 연결부(Rr)의 최소 두께(a3)는 55 마이크로 미터 이하 예컨대, 45 내지 55 마이크로 미터의 범위일 수 있다. 상기 몸체(115)의 연결부(Rr)가 최소 두께(a3)로 제공함으로써, 상기 제1 및 제2프레임(111,113)에 의한 열 변형이 발생할 경우, 상기 최소 두께(a3)로 상기 몸체(115)를 지지하고 완충시켜 줄 수 있다. 이 경우 상기 몸체(115)가 열 가소성 수지인 온도 변화에 따라 상기 몸체(114)가 부드러워지거나 굳어지게 되어 완충시켜 줄 수 있어, 상기 연결부(Rr)가 파손되는 문제를 방지할 수 있다.
상기 몸체(115)에 리세스가 없는 경우, 몸체의 열 변형에 의해 솔더에 전달되는 충격으로 솔더 크랙이 발생될 수 있고, 이러한 열 변형이 반복될 경우 두 프레임 사이의 몸체가 파손되는 문제가 발생될 수 있다. 발명의 실시 예는 도전층(333)의 두께 확보와, 상기 몸체의 열 변형의 완호를 통해 상기한 문제를 해결할 수 있다. 발명의 실시 예는 상기 제1 프레임(111)과 상기 제2프레임(113) 사이에 배치되며 상기 발광소자(120)과 수직 방향으로 중첩된 영역에 위치한 상기 몸체(115)의 부피를 줄여주어, 상기 제1 및 제2프레임(111,113)에 의한 열 변형이 발생될 때 상기 몸체(115)가 완충시켜 줄 수 있다.
발명의 실시 예는 상기 제1 프레임(111)과 상기 제2프레임(113) 사이에 배치되며 상기 발광소자(120)과 수직 방향으로 중첩된 영역에 위치한 상기 몸체(115)의 부피를 줄여주어, 상기 제1 및 제2프레임(111,113)에 의한 열 변형이 발생될 때 상기 몸체(115)가 완충시켜 줄 수 있다.
발명의 실시 예는 몸체의 리세스에 의해 발광소자 패키지 내에서 열 충격 특성을 개선시켜 줄 수 있다. 또한 열 충격 특성 개선으로 솔더와 같은 도전층의 크랙 발생을 억제할 수 있다. 몸체 또는 프레임 상에 배치된 돌기의 내측부(P11,P31, 도 14 참조)에 의해 발광소자를 몸체와 프레임의 상면으로부터 이격시켜 주어, 솔더와 같은 도전층의 두께를 확보하거나 조절할 수 있어, 발광소자의 틸트를 방지하는 한편, 도전층의 크랙을 방지할 수 있고, 제1수지의 언더필 공정이 용이할 수 있다.
발명의 실시 예는 발광소자 패키지의 제1 및 제2프레임의 외측에 반사부를 배치하여, 발광소자가 리멜팅될 때 자동으로 얼라인(Align)되도록 할 수 있어, 발광소자의 영역 이탈을 최소화할 수 있다.
도 16은 발명의 실시 예에 따른 발광소자를 나타낸 평면도이고, 도 17은 도 16에 도시된 발광소자의 F-F 선에 따른 단면도이다.
한편, 이해를 돕기 위해, 도 16을 도시함에 있어, 제1 본딩부(1171)와 제2 본딩부(1172) 아래에 배치되지만, 상기 제1 본딩부(1171)에 전기적으로 연결된 제1 서브전극(1141)과 상기 제2 본딩부(1172)에 전기적으로 연결된 제2 서브전극(1142)이 보일 수 있도록 도시되었다.
실시 예에 따른 발광소자(1000)는, 도 17과 같이, 기판(1105) 위에 배치된 발광 구조물(1110)을 포함할 수 있다. 상기 기판(1105)은 사파이어 기판(Al2O3), SiC, GaAs, GaN, ZnO, Si, GaP, InP, Ge을 포함하는 그룹 중에서 선택될 수 있다. 예로서, 상기 기판(1105)은 상부 면에 요철 패턴이 형성된 PSS(Patterned Sapphire Substrate)로 제공될 수 있다.
상기 발광 구조물(1110)은 제1 도전형 반도체층(1111), 활성층(1112), 제2 도전형 반도체층(1113)을 포함할 수 있다. 상기 활성층(1112)은 상기 제1 도전형 반도체층(1111)과 상기 제2 도전형 반도체층(1113) 사이에 배치될 수 있다. 예로서, 상기 제1 도전형 반도체층(1111) 위에 상기 활성층(1112)이 배치되고, 상기 활성층(1112) 위에 상기 제2 도전형 반도체층(1113)이 배치될 수 있다.
실시 예에 따른 발광소자(1000)는, 투광성 전극층(1130)을 포함할 수 있다. 상기 투광성 전극층(1130)은 전류 확산을 향상시켜 광출력을 증가시킬 수 있다. 예로서, 상기 투광성 전극층(1130)은 금속, 금속 산화물, 금속 질화물을 포함하는 그룹 중에서 선택된 적어도 하나를 포함할 수 있다. 상기 투광성 전극층(1130)은 투광성의 물질을 포함할 수 있다. 상기 투광성 전극층(1130)은, 예를 들어 ITO(indium tin oxide), IZO(indium zinc oxide), IZON(IZO nitride), IZTO (indium zinc tin oxide), IAZO(indium aluminum zinc oxide), IGZO(indium gallium zinc oxide), IGTO(indium gallium tin oxide), AZO(aluminum zinc oxide), ATO(antimony tin oxide), GZO(gallium zinc oxide), IrOx, RuOx, RuOx/ITO, Ni/IrOx/Au, Ni/IrOx/Au/ITO, Pt, Ni, Au, Rh, Pd를 포함하는 그룹 중에서 선택된 적어도 하나를 포함할 수 있다.
실시 예에 따른 발광소자(1000)는, 반사층(1160)을 포함할 수 있다. 상기 반사층(1160)은 제1 반사층(1161), 제2 반사층(1162), 제3 반사층(1163)을 포함할 수 있다. 상기 반사층(1160)은 상기 투광성 전극층(1130) 위에 배치될 수 있다. 상기 제2 반사층(1162)은 상기 투광성 전극층(1130)을 노출시키는 제1 개구부(h1)를 포함할 수 있다. 상기 제2 반사층(1162)은 상기 투광성 전극층(1130) 위에 배치된 복수의 제1 개구부(h1)를 포함할 수 있다. 상기 제1 반사층(1161)은 상기 제1 도전형 반도체층(1111)의 상부 면을 노출시키는 복수의 제2 개구부(h2)를 포함할 수 있다.
상기 제3 반사층(1163)은 상기 제1 반사층(1161)과 상기 제2 반사층(1162) 사이에 배치될 수 있다. 예로서, 상기 제3 반사층(1163)은 상기 제1 반사층(1161)과 연결될 수 있다. 또한, 상기 제3 반사층(1163)은 상기 제2 반사층(1162)과 연결될 수 있다. 상기 제3 반사층(1163)은 상기 제1 반사층(1161)과 상기 제2 반사층(1162)에 물리적으로 직접 접촉되어 배치될 수 있다.
실시 예에 따른 상기 반사층(1160)은 상기 투광성 전극층(1130)에 제공된 복수의 컨택홀을 통하여 상기 제2 도전형 반도체층(1113)에 접촉될 수 있다. 상기 반사층(1160)은 상기 투광성 전극층(1130)에 제공된 복수의 컨택홀을 통하여 상기 제2 도전형 반도체층(1113)의 상부 면에 물리적으로 접촉될 수 있다.
상기 반사층(1160)은 절연성 반사층으로 제공될 수 있다. 예로서, 상기 반사층(1160)은 DBR(Distributed Bragg Reflector)층으로 제공될 수 있다. 또한, 상기 반사층(1160)은 ODR(Omni Directional Reflector)층으로 제공될 수 있다. 또한, 상기 반사층(1160)은 DBR층과 ODR층이 적층되어 제공될 수도 있다.
실시 예에 따른 발광소자(1000)는, 제1 서브전극(1141)과 제2 서브전극(1142)을 포함할 수 있다. 상기 제1 서브전극(1141)은 상기 제2 개구부(h2) 내부에서 상기 제1 도전형 반도체층(1111)과 전기적으로 연결될 수 있다. 상기 제1 서브전극(1141)은 상기 제1 도전형 반도체층(1111) 위에 배치될 수 있다. 예로서, 실시 예에 따른 발광소자(1000)에 의하면, 상기 제1 서브전극(1141)은 상기 제2 도전형 반도체층(1113), 상기 활성층(1112)을 관통하여 제1 도전형 반도체층(1111)의 일부 영역까지 배치되는 리세스 내에서 상기 제1 도전형 반도체층(1111)의 상면에 배치될 수 있다.
상기 제1 서브전극(1141)은 상기 제1 반사층(1161)에 제공된 제2 개구부(h2)를 통하여 상기 제1 도전형 반도체층(1111)의 상면에 전기적으로 연결될 수 있다. 상기 제2 개구부(h2)와 상기 리세스는 수직으로 중첩할 수 있고 예로서, 상기 제1 서브전극(1141)은, 복수의 리세스 영역에서 상기 제1 도전형 반도체층(1111)의 상면에 직접 접촉될 수 있다.
상기 제2 서브전극(1142)은 상기 제2 도전형 반도체층(1113)에 전기적으로 연결될 수 있다. 상기 제2 서브전극(1142)은 상기 제2 도전형 반도체층(1113) 위에 배치될 수 있다. 실시 예에 의하면, 상기 제2 서브전극(1142)과 상기 제2 도전형 반도체층(1113) 사이에 상기 투광성 전극층(1130)이 배치될 수 있다.
상기 제2 서브전극(1142)은 상기 제2 반사층(1162)에 제공된 제1 개구부(h1)를 통하여 상기 제2 도전형 반도체층(1113)과 전기적으로 연결될 수 있다. 예로서, 상기 제2 서브전극(1142)은, 복수의 P 영역에서 상기 투광성 전극층(1130)을 통하여 상기 제2 도전형 반도체층(1113)에 전기적으로 연결될 수 있다.
상기 제2 서브전극(1142)은, 복수의 P 영역에서 상기 제2 반사층(1162)에 제공된 복수의 제1 개구부(h1)를 통하여 상기 투광성 전극층(1130)의 상면에 직접 접촉될 수 있다. 실시 예에 의하면, 상기 제1 서브전극(1141)과 상기 제2 서브전극(1142)은 서로 극성을 가질 수 있고, 서로 이격되어 배치될 수 있다.
상기 제1 서브전극(1141)과 상기 제2 서브전극(1142)은 단층 또는 다층 구조로 형성될 수 있다. 예를 들어, 상기 제1 서브전극(1141)과 상기 제2 서브전극(1142)은 오믹 전극일 수 있다. 예를 들어, 상기 제1 서브전극(1141)과 상기 제2 서브전극(1142)은 ZnO, IrOx, RuOx, NiO, RuOx/ITO, Ni/IrOx/Au, 및 Ni/IrOx/Au/ITO, Ag, Ni, Cr, Ti, Al, Rh, Pd, Ir, Ru, Mg, Zn, Pt, Au, Hf 중 적어도 하나 또는 이들 중 2개 이상의 물질의 합금일 수 있다. 도 17에서 영역 R11,R12,R13은 각 서브 전극의 영역별 중첩 영역을 구분하기 위해 나타낸다.
실시 예에 따른 발광소자(1000)는, 보호층(1150)을 포함할 수 있다. 상기 보호층(1150)은 상기 제2 서브전극(1142)을 노출시키는 복수의 제3 개구부(h3)를 포함할 수 있다. 상기 복수의 제3 개구부(h3)는 상기 제2 서브전극(1142)에 제공된 복수의 PB 영역에 대응되어 배치될 수 있다. 또한, 상기 보호층(1150)은 상기 제1 서브전극(1141)을 노출시키는 복수의 제4 개구부(h4)를 포함할 수 있다. 상기 복수의 제4 개구부(h4)는 상기 제1 서브전극(1141)에 제공된 복수의 NB 영역에 대응되어 배치될 수 있다. 상기 보호층(1150)은 상기 반사층(1160) 위에 배치될 수 있다. 상기 보호층(1150)은 상기 제1 반사층(1161), 상기 제2 반사층(1162), 상기 제3 반사층(1163) 위에 배치될 수 있다. 예로서, 상기 보호층(1150)은 절연물질로 제공될 수 있다. 예를 들어, 상기 보호층(1150)은 SixOy, SiOxNy, SixNy, AlxOy 를 포함하는 그룹 중에서 선택된 적어도 하나의 물질로 형성될 수 있다.
실시 예에 따른 발광소자(1000)는, 상기 보호층(1150) 위에 배치된 제1 본딩부(1171)와 제2 본딩부(1172)를 포함할 수 있다. 상기 제1 본딩부(1171)는 상기 제1 반사층(1161) 위에 배치될 수 있다. 또한, 상기 제2 본딩부(1172)는 상기 제2 반사층(1162) 위에 배치될 수 있다. 상기 제2 본딩부(1172)는 상기 제1 본딩부(1171)와 이격되어 배치될 수 있다. 상기 제1 본딩부(1171)는 복수의 NB 영역에서 상기 보호층(1150)에 제공된 복수의 상기 제4 개구부(h4)를 통하여 상기 제1 서브전극(1141)의 상부 면에 접촉될 수 있다. 상기 복수의 NB 영역은 상기 제2 개구부(h2)와 수직으로 어긋나도록 배치될 수 있다. 상기 복수의 NB 영역과 상기 제2 개구부(h2)가 서로 수직으로 어긋나는 경우, 상기 제1 본딩부(1171)로 주입되는 전류가 상기 제1 서브전극(1141)의 수평 방향으로 골고루 퍼질 수 있고, 따라서 상기 복수의 NB 영역에서 전류가 골고루 주입될 수 있다.
또한, 상기 제2 본딩부(1172)는 복수의 PB 영역에서 상기 보호층(1150)에 제공된 복수의 상기 제3 개구부(h3)를 통하여 상기 제2 서브전극(1142)의 상부 면에 접촉될 수 있다. 상기 복수의 PB 영역과 상기 복수의 제1 개구부(h1)가 수직으로 중첩되지 않도록 하는 경우 상기 제2 본딩부(1172)로 주입되는 전류가 상기 제2 서브전극(1142)의 수평 방향으로 골고루 퍼질 수 있고, 따라서 상기 복수의 PB 영역에서 전류가 골고루 주입될 수 있다. 복수의 영역을 통해 전원이 공급될 수 있으므로, 접촉 면적 증가 및 접촉 영역의 분산에 따라 전류 분산 효과가 발생되고 동작전압이 감소될 수 있는 장점이 있다.
이에 따라, 상기 제1 반사층(1161)과 상기 제2 반사층(1162)은 상기 발광 구조물(1110)의 활성층(1112)에서 발광되는 빛을 반사시켜 제1 서브전극(1141)과 제2 서브전극(1142)에서 광 흡수가 발생되는 것을 최소화하여 광도(Po)를 향상시킬 수 있다. 상기 제1 반사층(1161)과 상기 제2 반사층(1162)은 굴절률이 다른 물질이 서로 반복하여 배치된 DBR 구조를 이룰 수 있다. 예를 들어, 상기 제1 반사층(1161)과 상기 제2 반사층(1162)은 TiO2, SiO2, Ta2O5, HfO2 중 적어도 하나 이상을 포함하는 단층 또는 적층 구조로 배치될 수 있다. 또한, 다른 실시 예에 의하면, 상기 제1 반사층(1161)과 상기 제2 반사층(1162)은 ODR층으로 제공될 수도 있다. 또 다른 실시 예에 의하면, 상기 제1 반사층(1161)과 상기 제2 반사층(1162)은 DBR층과 ODR층이 적층된 일종의 하이브리드(hybrid) 형태로 제공될 수도 있다.
실시 예에 따른 발광소자가 플립칩 본딩 방식으로 실장되어 발광소자 패키지로 구현되는 경우, 상기 발광 구조물(1110)에서 제공되는 빛은 상기 기판(1105)을 통하여 방출될 수 있다. 상기 발광 구조물(1110)에서 방출되는 빛은 상기 제1 반사층(1161)과 상기 제2 반사층(1162)에서 반사되어 상기 기판(1105) 방향으로 방출될 수 있다.
또한, 상기 발광 구조물(1110)에서 방출되는 빛은 상기 발광 구조물(1110)의 측면 방향으로도 방출될 수 있다. 또한, 상기 발광 구조물(1110)에서 방출되는 빛은, 상기 제1 본딩부(1171)와 상기 제2 본딩부(1172)가 배치된 면 중에서, 상기 제1 본딩부(1171)와 상기 제2 본딩부(1172)가 제공되지 않은 영역을 통하여 외부로 방출될 수 있다.
이에 따라, 실시 예에 따른 발광소자(1000)는 상기 발광 구조물(1110)을 둘러싼 6면 방향으로 빛을 방출할 수 있게 되며, 광도를 현저하게 향상시킬 수 있다.
한편, 실시 예에 따른 발광소자에 의하면, 발광소자(1000)의 상부 방향에서 보았을 때, 상기 제1 본딩부(1171)와 상기 제2 본딩부(1172)의 면적의 합은, 상기 제1 본딩부(1171)와 상기 제2 본딩부(1172)가 배치된 상기 발광소자(1000)의 상부 면 전체 면적의 60%에 비해 같거나 작게 제공될 수 있다.
예로서, 상기 발광소자(1000)의 상부 면 전체 면적은 상기 발광 구조물(1110)의 제1 도전형 반도체층(1111)의 하부 면의 가로 길이 및 세로 길이에 의하여 정의되는 면적에 대응될 수 있다. 또한, 상기 발광소자(1000)의 상부 면 전체 면적은 상기 기판(1105)의 상부 면 또는 하부 면의 면적에 대응될 수 있다.
이와 같이, 상기 제1 본딩부(1171)와 상기 제2 본딩부(1172)의 면적의 합이 상기 발광소자(1000)의 전체 면적의 60%에 비해 같거나 작게 제공되도록 함으로써, 상기 제1 본딩부(1171)와 상기 제2 본딩부(1172)가 배치된 면으로 방출되는 빛의 양이 증가될 수 있게 된다. 이에 따라, 실시 예에 의하면, 상기 발광소자(1000)의 6면 방향으로 방출되는 빛의 양이 많아지게 되므로 광 추출 효율이 향상되고 광도(Po)가 증가될 수 있게 된다.
또한, 상기 발광소자(1000)의 상부 방향에서 보았을 때, 상기 제1 본딩부(1171)의 면적과 상기 제2 본딩부(1172)의 면적의 합은 상기 발광소자(1000)의 전체 면적의 30%에 비해 같거나 크게 제공될 수 있다.
이와 같이, 상기 제1 본딩부(1171)와 상기 제2 본딩부(1172)의 면적의 합이 상기 발광소자(1000)의 전체 면적의 30%에 비해 같거나 크게 제공되도록 함으로써, 상기 제1 본딩부(1171)와 상기 제2 본딩부(1172)를 통하여 안정적인 실장이 수행될 수 있고, 상기 발광소자(1000)의 전기적인 특성을 확보할 수 있게 된다.
실시 예에 따른 발광소자(1000)는, 광 추출 효율 및 본딩의 안정성 확보를 고려하여, 상기 제1 본딩부(1171)와 상기 제2 본딩부(1172)의 면적의 합이 상기 발광소자(1000)의 전체 면적의 30% 이상이고 60% 이하로 선택될 수 있다.
즉, 상기 제1 본딩부(1171)와 상기 제2 본딩부(1172)의 면적의 합이 상기 발광소자(1000)의 전체 면적의 30% 이상 내지 100% 이하인 경우, 상기 발광소자(1000)의 전기적 특성을 확보하고, 발광소자 패키지에 실장되는 본딩력을 확보하여 안정적인 실장이 수행될 수 있다.
또한, 상기 제1 본딩부(1171)와 상기 제2 본딩부(1172)의 면적의 합이 상기 발광소자(1000)의 전체 면적의 0% 초과 내지 60% 이하인 경우, 상기 제1 본딩부(1171)와 상기 제2 본딩부(1172)가 배치된 면으로 방출되는 광량이 증가하여 상기 발광소자(1000)의 광추출 효율이 향상되고, 광도(Po)가 증가될 수 있다.
실시 예에서는 상기 발광소자(1000)의 전기적 특성과 발광소자 패키지에 실장되는 본딩력을 확보하고, 광도를 증가시키기 위해, 상기 제1 본딩부(1171)와 상기 제2 본딩부(1172)의 면적의 합이 상기 발광소자(1000)의 전체 면적의 30% 이상 내지 60% 이하로 선택하였다.
또한, 실시 예에 따른 발광소자(1000)에 의하면, 상기 제3 반사층(1163)이 상기 제1 본딩부(1171)와 상기 제2 본딩부(1172) 사이에 배치될 수 있다. 예로서, 상기 제3 반사층(1163)의 상기 발광소자(1000)의 장축 방향에 따른 길이는 상기 제1 본딩부(1171)와 상기 제2 본딩부(1172) 사이의 간격에 대응되어 배치될 수 있다. 또한, 상기 제3 반사층(1163)의 면적은 예로서 상기 발광소자(1000)의 상부 면 전체의 10% 이상이고 25% 이하로 제공될 수 있다.
상기 제3 반사층(1163)의 면적이 상기 발광소자(1000)의 상부 면 전체의 10% 이상일 때, 상기 발광소자의 하부에 배치되는 패키지 몸체가 변색되거나 균열의 발생을 방지할 수 있고, 25% 이하일 경우 상기 발광소자의 6면으로 발광하도록 하는 광추출효율을 확보하기에 유리하다.
또한, 다른 실시 예에서는 이에 한정하지 않고 상기 광추출효율을 더 크게 확보하기 위해 상기 제3 반사층(1163)의 면적을 상기 발광소자(1000)의 상부 면 전체의 0% 초과 내지 10% 미만으로 배치할 수 있고, 상기 패키지 몸체에 변색 또는 균열의 발생을 방지하는 효과를 더 크게 확보하기 위해 상기 제3 반사층(1163)의 면적을 상기 발광소자(1000)의 상부 면 전체의 25% 초과 내지 100% 미만으로 배치할 수 있다.
또한, 상기 발광소자(1000)의 장축 방향에 배치된 측면과 이웃하는 상기 제1 본딩부(1171) 또는 상기 제2 본딩부(1172) 사이에 제공된 제2 영역으로 상기 발광 구조물(1110)에서 생성된 빛이 투과되어 방출될 수 있다.
또한, 상기 발광소자(1000)의 단축 방향에 배치된 측면과 이웃하는 상기 제1 본딩부(1171) 또는 상기 제2 본딩부(1172) 사이에 제공된 제3 영역으로 상기 발광구조물에서 생성된 빛이 투과되어 방출될 수 있다.
실시 예에 의하면, 상기 제1 반사층(1161)의 크기는 상기 제1 본딩부(1171)의 크기에 비하여 수 마이크로 미터 더 크게 제공될 수 있다. 예를 들어, 상기 제1 반사층(1161)의 면적은 상기 제1 본딩부(1171)의 면적을 완전히 덮을 수 있을 정도의 크기로 제공될 수 있다. 공정 오차를 고려할 때, 상기 제1 반사층(1161)의 한 변의 길이는 상기 제1 본딩부(1171)의 한 변의 길이에 비해 예로서 4 마이크로 미터 내지 10 마이크로 미터 정도 더 크게 제공될 수 있다.
또한, 상기 제2 반사층(1162)의 크기는 상기 제2 본딩부(1172)의 크기에 비하여 수 마이크로 미터 더 크게 제공될 수 있다. 예를 들어, 상기 제2 반사층(1162)의 면적은 상기 제2 본딩부(1172)의 면적을 완전히 덮을 수 있을 정도의 크기로 제공될 수 있다. 공정 오차를 고려할 때, 상기 제2 반사층(1162)의 한 변의 길이는 상기 제2 본딩부(1172)의 한 변의 길이에 비해 예로서 4 마이크로 미터 내지 10 마이크로 미터 정도 더 크게 제공될 수 있다.
실시 예에 의하면, 상기 제1 반사층(1161)과 상기 제2 반사층(1162)에 의하여, 상기 발광 구조물(1110)로부터 방출되는 빛이 상기 제1 본딩부(1171)와 상기 제2 본딩부(1172)에 입사되지 않고 반사될 수 있게 된다. 이에 따라, 실시 예에 의하면, 상기 발광 구조물(1110)에서 생성되어 방출되는 빛이 상기 제1 본딩부(1171)와 상기 제2 본딩부(1172)에 입사되어 손실되는 것을 최소화할 수 있다.
또한, 실시 예에 따른 발광소자(1000)에 의하면, 상기 제3 반사층(1163)이 상기 제1 본딩부(1171)와 상기 제2 본딩부(1172) 사이에 배치되므로, 상기 제1 본딩부(1171)와 상기 제2 본딩부(1172) 사이로 방출되는 빛의 양을 조절할 수 있게 된다.
앞에서 설명된 바와 같이, 실시 예에 따른 발광소자(1000)는 예를 들어 플립칩 본딩 방식으로 실장되어 발광소자 패키지 형태로 제공될 수 있다. 이때, 발광소자(1000)가 실장되는 패키지 몸체가 수지 등으로 제공되는 경우, 상기 발광소자(1000)의 하부 영역에서, 상기 발광소자(1000)로부터 방출되는 단파장의 강한 빛에 의하여 패키지 몸체가 변색되거나 균열이 발생될 수 있다.
그러나, 실시 예에 따른 발광소자(1000)에 의하면 상기 제1 본딩부(1171)와 상기 제2 본딩부(1172)가 배치된 영역 사이로 방출되는 빛의 양을 조절할 수 있으므로, 상기 발광소자(1000)의 하부 영역에 배치된 패키지 몸체가 변색되거나 균열되는 것을 방지할 수 있다.
실시 예에 의하면, 상기 제1 본딩부(1171), 상기 제2 본딩부(1172), 상기 제3 반사층(1163)이 배치된 상기 발광소자(1000)의 상부 면의 20% 이상 면적에서 상기 발광 구조물(1110)에서 생성된 빛이 투과되어 방출될 수 있다.
이에 따라, 실시 예에 의하면, 상기 발광소자(1000)의 6면 방향으로 방출되는 빛의 양이 많아지게 되므로 광 추출 효율이 향상되고 광도(Po)가 증가될 수 있게 된다. 또한, 상기 발광소자(1000)의 하부 면에 근접하게 배치된 패키지 몸체가 변색되거나 균열되는 것을 방지할 수 있게 된다.
또한, 실시 예예 따른 발광소자(1000)에 의하면, 상기 투광성 전극층(1130)에 복수의 컨택홀(C1, C2, C3)이 제공될 수 있다. 상기 투광성 전극층(1130)에 제공된 복수의 컨택홀(C1, C2, C3)을 통하여 상기 제2 도전형 반도체층(1113)과 상기 반사층(1160)이 접착될 수 있다. 상기 반사층(1160)이 상기 제2 도전형 반도체층(1113)에 직접 접촉될 수 있게 됨으로써, 상기 반사층(1160)이 상기 투광성 전극층(1130)에 접촉되는 것에 비하여 접착력이 향상될 수 있게 된다.
상기 반사층(1160)이 상기 투광성 전극층(1130)에만 직접 접촉되는 경우, 상기 반사층(1160)과 상기 투광성 전극층(1130) 간의 결합력 또는 접착력이 약화될 수도 있다. 예를 들어, 절연층과 금속층이 결합되는 경우, 물질 상호 간의 결합력 또는 접착력이 약화될 수도 있다.
예로서, 상기 반사층(1160)과 상기 투광성 전극층(1130) 간의 결합력 또는 접착력이 약한 경우, 두 층 간에 박리가 발생될 수 있다. 이와 같이 상기 반사층(1160)과 상기 투광성 전극층(1130) 사이에 박리가 발생되면 발광소자(1000)의 특성이 열화될 수 있으며, 또한 발광소자(1000)의 신뢰성을 확보할 수 없게 된다.
그러나, 실시 예에 의하면, 상기 반사층(1160)이 상기 제2 도전형 반도체층(1113)에 직접 접촉될 수 있으므로, 상기 반사층(1160), 상기 투광성 전극층(1130), 상기 제2 도전형 반도체층(1113) 간의 결합력 및 접착력이 안정적으로 제공될 수 있게 된다.
따라서, 실시 예에 의하면, 상기 반사층(1160)과 상기 제2 도전형 반도체층(1113) 간의 결합력이 안정적으로 제공될 수 있으므로, 상기 반사층(1160)이 상기 투광성 전극층(1130)으로부터 박리되는 것을 방지할 수 있게 된다. 또한, 상기 반사층(1160)과 상기 제2 도전형 반도체층(1113) 간의 결합력이 안정적으로 제공될 수 있으므로 발광소자(1000)의 신뢰성을 향상시킬 수 있게 된다.
한편, 이상에서 설명된 바와 같이, 상기 투광성 전극층(1130)에 복수의 컨택홀(C1, C2, C3)이 제공될 수 있다. 상기 활성층(1112)으로부터 발광된 빛은 상기 투광성 전극층(1130)에 제공된 복수의 컨택홀(C1, C2, C3)을 통해 상기 반사층(1160)에 입사되어 반사될 수 있게 된다. 이에 따라, 상기 활성층(1112)에서 생성된 빛이 상기 투광성 전극층(1130)에 입사되어 손실되는 것을 감소시킬 수 있게 되며 광 추출 효율이 향상될 수 있게 된다. 이에 따라, 실시 예에 따른 발광소자(1000)에 의하면 광도가 향상될 수 있게 된다.
다른 예로서, 상기 발광소자는 각 본딩부의 면적이 패턴 형태로 제공되고, 각 본딩부의 영역이 기둥 형상으로 제공될 수 있으며, 이에 대해 한정하지는 않는다.
상기의 발광소자는 하나의 발광 셀을 갖는 구조로 설명되었다. 이는 발광 셀이 상기의 발광 구조물을 포함하는 경우, 발광소자의 구동 전압은 하나의 발광 셀에 걸리는 전압일 수 있다. 실시 예에 개시된 발광소자의 예로서, 2개 또는 3개 이상의 발광 셀을 갖는 발광소자를 포함할 수 있다. 이에 따라 고전압의 발광소자 패키지를 제공할 수 있다.
한편, 이상에서 설명된 발명의 실시 예에 따른 발광소자 패키지(100)는 서브 마운트 또는 회로기판 등에 실장되어 공급될 수도 있다. 그런데, 종래 발광소자 패키지가 서브 마운트 또는 회로기판 등에 실장됨에 있어 리플로우(reflow) 등의 고온 공정이 적용될 수 있다. 이때, 리플로우 공정에서, 발광소자 패키지에 제공된 프레임과 발광소자 간의 본딩 영역에서 리멜팅(re-melting) 현상이 발생되어 전기적 연결 및 물리적 결합의 안정성이 약화될 수 있고 이에 따라 상기 발광소자의 위치가 변할 수 있어, 상기 발광소자 패키지의 광학적, 전기적 특성 및 신뢰성이 저하될 수 있다. 그러나, 발명의 실시 예에 따른 발광소자 패키지 및 발광소자 패키지 제조방법에 의하면, 발명의 실시 예에 따른 발광소자의 본딩부들은 돌출부 및 도전층을 통하여 구동 전원을 제공 받을 수 있다. 그리고, 돌출부 및 도전층의 용융점이 일반적인 본딩 물질의 용융점에 비해 더 높은 값을 갖도록 선택될 수 있다. 따라서, 발명의 실시 예에 따른 발광소자 소자 패키지는 메인 기판 등에 리플로우(reflow) 공정을 통해 본딩되는 경우에도 리멜팅(re-melting) 현상이 발생되지 않으므로 전기적 연결 및 물리적 본딩력이 열화되지 않는 장점이 있다.
또한, 발명의 실시 예에 따른 발광소자 패키지(100) 및 발광소자 패키지 제조방법에 의하면, 발광소자 패키지를 제조하는 공정에서 패키지 몸체가 고온에 노출될 필요가 없게 된다. 따라서, 발명의 실시 예에 의하면, 패키지 몸체가 고온에 노출되어 손상되거나 변색이 발생되는 것을 방지할 수 있다. 이에 따라, 몸체(115)를 구성하는 물질에 대한 선택 폭이 넓어질 수 있게 된다. 발명의 실시 예에 의하면, 상기 몸체(115)는 세라믹 등의 고가의 물질뿐만 아니라, 상대적으로 저가의 수지 물질을 이용하여 제공될 수도 있다. 예를 들어, 상기 몸체(115)는 PPA(PolyPhtalAmide) 수지, PCT(PolyCyclohexylenedimethylene Terephthalate) 수지, EMC(Epoxy Molding Compound) 수지, SMC(Silicone Molding Compound) 수지를 포함하는 그룹 중에서 선택된 적어도 하나의 물질을 포함할 수 있다.
한편, 발명의 실시 예에 따른 발광소자 패키지는 하나 또는 복수개가 회로 기판에 배치되어 광원 장치에 적용될 수 있다. 또한, 광원 장치는 산업 분야에 따라 표시 장치, 조명 장치, 헤드 램프 등을 포함할 수 있다.
광원 장치의 예로, 표시 장치는 바텀 커버와, 바텀 커버 위에 배치되는 반사판과, 광을 방출하며 발광소자를 포함하는 발광 모듈과, 반사판의 전방에 배치되며 발광 모듈에서 발산되는 빛을 전방으로 안내하는 도광판과, 도광판의 전방에 배치되는 프리즘 시트들을 포함하는 광학 시트와, 광학 시트 전방에 배치되는 디스플레이 패널과, 디스플레이 패널과 연결되고 디스플레이 패널에 화상 신호를 공급하는 화상 신호 출력 회로와, 디스플레이 패널의 전방에 배치되는 컬러 필터를 포함할 수 있다. 여기서 바텀 커버, 반사판, 발광 모듈, 도광판, 및 광학 시트는 백라이트 유닛(Backlight Unit)을 이룰 수 있다. 또한, 표시 장치는 컬러 필터를 포함하지 않고, 적색(Red), 녹색(Gren), 청색(Blue) 광을 방출하는 발광소자가 각각 배치되는 구조를 이룰 수도 있다.
광원 장치의 또 다른 예로, 헤드 램프는 기판 상에 배치되는 발광소자 패키지를 포함하는 발광 모듈, 발광 모듈로부터 조사되는 빛을 일정 방향, 예컨대, 전방으로 반사시키는 리플렉터(reflector), 리플렉터에 의하여 반사되는 빛을 전방으로 굴절시키는 렌즈, 및 리플렉터에 의하여 반사되어 렌즈로 향하는 빛의 일부분을 차단 또는 반사하여 설계자가 원하는 배광 패턴을 이루도록 하는 쉐이드(shade)를 포함할 수 있다.
광원 장치의 다른 예인 조명 장치는 커버, 광원 모듈, 방열체, 전원 제공부, 내부 케이스, 소켓을 포함할 수 있다. 또한, 발명의 실시 예에 따른 광원 장치는 부재와 홀더 중 어느 하나 이상을 더 포함할 수 있다. 상기 광원 모듈은 발명의 실시 예에 따른 발광소자 패키지를 포함할 수 있다.
이상에서 실시 예들에 설명된 특징, 구조, 효과 등은 적어도 하나의 실시 예에 포함되며, 반드시 하나의 실시 예에만 한정되는 것은 아니다. 나아가, 각 실시 예에서 예시된 특징, 구조, 효과 등은 실시 예들이 속하는 분야의 통상의 지식을 가지는 자에 의해 다른 실시 예들에 대해서도 조합 또는 변형되어 실시 가능하다. 따라서 이러한 조합과 변형에 관계된 내용들은 실시 예의 범위에 포함되는 것으로 해석되어야 할 것이다.
이상에서 실시 예를 중심으로 설명하였으나 이는 단지 예시일 뿐 실시 예를 한정하는 것이 아니며, 실시 예가 속하는 분야의 통상의 지식을 가진 자라면 본 실시 예의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 실시 예에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부된 특허청구범위에서 설정하는 실시 예의 범위에 포함되는 것으로 해석되어야 할 것이다.
110: 패키지 몸체
111,113: 프레임
115: 몸체
120: 발광소자
121: 제1 본딩부
122: 제2 본딩부
123: 발광구조물
124: 기판
160: 제1수지
162: 제2수지
333: 도전층
R1,R2: 리세스
P1,P2,P3,P4: 돌기

Claims (9)

  1. 서로 이격되어 배치되는 제1 프레임 및 제2 프레임;
    상기 제1 프레임 및 제2 프레임 사이에 배치된 몸체;
    상기 제1 프레임 및 제2 프레임 상에 배치되는 발광소자; 및
    상기 발광소자 주위에 배치된 돌기를 포함하고,
    상기 발광소자는 서로 다른 방향으로 연장되는 복수의 측면, 및 상기 복수의 측면이 서로 만나는 영역인 복수의 코너부를 포함하며,
    상기 돌기는 상기 복수의 측면 및 상기 복수의 코너부 중 적어도 하나에 대향되는 발광소자 패키지.
  2. 제1항에 있어서,
    상기 복수의 돌기는 상기 몸체 또는 상기 제1 및 제2프레임로부터 돌출되는 발광소자 패키지.
  3. 제1항에 있어서,
    상기 복수의 돌기 간의 최소 간격은 상기 발광소자의 제1 방향 또는 제2방향의 길이보다 작은 발광소자 패키지.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서,
    상기 복수의 돌기 각각은 상기 발광소자의 두 측면에 대향되게 배치되는 발광소자 패키지.
  5. 제1항 내지 제3항 중 어느 한 항에 있어서,
    상기 제1 및 제2프레임 사이에 배치된 상기 몸체에 제1리세스를 포함하며,
    상기 제1리세스는 상기 발광소자와 수직 방향으로 중첩되며, 상기 제1 및 제2본딩부 사이의 영역 아래에 배치되며,
    상기 제1리세스에 배치된 제1수지를 포함하는 발광소자 패키지.
  6. 제5항에 있어서,
    상기 제1프레임은 상기 발광소자의 제1본딩부 아래에 배치된 제1돌출부와, 상기 제1돌출부의 양측에 배치된 제2돌출부 및 제3돌출부를 포함하며,
    상기 제2프레임은 상기 발광소자의 제2본딩부 아래에 배치된 제4돌출부와, 상기 제4돌출부의 양측에 배치된 제5돌출부 및 제6돌출부를 포함하며,
    상기 몸체는 상기 제1돌출부와 상기 제2돌출부의 사이, 상기 제1돌출부와 상기 제3돌출부의 사이, 상기 제4돌출부와 상기 제5돌출부의 사이, 상기 제4돌출부와 상기 제6돌출부 사이로 연장되는 반사부를 포함하며,
    상기 복수의 돌기는 상기 반사부로부터 돌출되는 발광소자 패키지.
  7. 제5항에 있어서,
    상기 발광소자의 하부 둘레에 배치되며 상기 제1 및 제2본딩부의 둘레에 배치된 제2수지를 포함하는 발광소자 패키지.
  8. 제5항에 있어서,
    상기 제1 및 제2프레임 사이에 상기 발광소자의 폭보다 넓은 간격을 갖고, 상기 몸체로부터 돌출된 제1 및 제2지지부를 포함하는 발광소자 패키지.
  9. 회로 기판; 및
    상기 회로 기판 상에 하나 또는 복수의 발광소자 패키지를 포함하며,
    상기 발광소자 패키지는, 청구항 제5항의 발광소자 패키지인 광원 장치.
KR1020170169573A 2017-12-11 2017-12-11 발광소자 패키지 및 광원 장치 KR102455087B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170169573A KR102455087B1 (ko) 2017-12-11 2017-12-11 발광소자 패키지 및 광원 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170169573A KR102455087B1 (ko) 2017-12-11 2017-12-11 발광소자 패키지 및 광원 장치

Publications (2)

Publication Number Publication Date
KR20190069152A true KR20190069152A (ko) 2019-06-19
KR102455087B1 KR102455087B1 (ko) 2022-10-14

Family

ID=67104533

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170169573A KR102455087B1 (ko) 2017-12-11 2017-12-11 발광소자 패키지 및 광원 장치

Country Status (1)

Country Link
KR (1) KR102455087B1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11362244B2 (en) 2020-02-03 2022-06-14 Au Optronics Corporation Light-emitting diode display

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101511032B1 (ko) * 2013-09-25 2015-04-10 앰코 테크놀로지 코리아 주식회사 Led 패키지 제조용 리드프레임을 이용한 led 패키지
JP2015226056A (ja) * 2014-05-28 2015-12-14 エルジー イノテック カンパニー リミテッド 発光素子
KR20160005885A (ko) * 2014-07-08 2016-01-18 엘지이노텍 주식회사 발광 소자 패키지

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101511032B1 (ko) * 2013-09-25 2015-04-10 앰코 테크놀로지 코리아 주식회사 Led 패키지 제조용 리드프레임을 이용한 led 패키지
JP2015226056A (ja) * 2014-05-28 2015-12-14 エルジー イノテック カンパニー リミテッド 発光素子
KR20160005885A (ko) * 2014-07-08 2016-01-18 엘지이노텍 주식회사 발광 소자 패키지

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11362244B2 (en) 2020-02-03 2022-06-14 Au Optronics Corporation Light-emitting diode display

Also Published As

Publication number Publication date
KR102455087B1 (ko) 2022-10-14

Similar Documents

Publication Publication Date Title
KR102385940B1 (ko) 발광소자 패키지 및 광원 장치
JP7182782B2 (ja) 発光素子パッケージ及び光源装置
KR20180131336A (ko) 발광소자 패키지 및 광원 장치
KR20190006889A (ko) 발광소자 패키지
KR20190083042A (ko) 발광소자 패키지
KR20190025333A (ko) 발광소자 패키지
KR20190029399A (ko) 발광소자 패키지
KR102432024B1 (ko) 발광소자 패키지 및 광원 장치
KR102471686B1 (ko) 발광소자 패키지 및 광원 장치
KR102401825B1 (ko) 발광소자 패키지 및 광원 장치
KR20190034016A (ko) 발광소자 패키지 및 조명 모듈
KR102455087B1 (ko) 발광소자 패키지 및 광원 장치
KR20190031087A (ko) 발광소자 패키지
KR102453886B1 (ko) 발광소자 패키지 및 광원 장치
KR102407337B1 (ko) 발광소자 패키지 및 조명 모듈
KR20190044449A (ko) 발광소자 패키지 및 광원 장치
KR20190065011A (ko) 발광소자 패키지
KR20190029250A (ko) 발광소자 패키지 및 조명 모듈
KR102542297B1 (ko) 발광소자 패키지
KR102426849B1 (ko) 발광소자 패키지 및 광원 장치
KR102523782B1 (ko) 발광소자 패키지 및 광원 장치
KR102490162B1 (ko) 발광소자 및 이를 포함하는 발광소자 패키지
KR102369237B1 (ko) 발광소자 패키지 및 그 제조방법
KR20190083139A (ko) 발광소자 패키지 및 광원 장치
KR20190078968A (ko) 발광소자 패키지 및 광원 장치

Legal Events

Date Code Title Description
N231 Notification of change of applicant
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant