KR20190064536A - Wheel nut and method for producing the same - Google Patents

Wheel nut and method for producing the same Download PDF

Info

Publication number
KR20190064536A
KR20190064536A KR1020190061280A KR20190061280A KR20190064536A KR 20190064536 A KR20190064536 A KR 20190064536A KR 1020190061280 A KR1020190061280 A KR 1020190061280A KR 20190061280 A KR20190061280 A KR 20190061280A KR 20190064536 A KR20190064536 A KR 20190064536A
Authority
KR
South Korea
Prior art keywords
coating
wheel nut
thickness
coating layer
coated
Prior art date
Application number
KR1020190061280A
Other languages
Korean (ko)
Other versions
KR102085982B1 (en
Inventor
배철홍
윤광민
김영찬
Original Assignee
현대자동차주식회사
기아자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사, 기아자동차주식회사 filed Critical 현대자동차주식회사
Priority to KR1020190061280A priority Critical patent/KR102085982B1/en
Publication of KR20190064536A publication Critical patent/KR20190064536A/en
Application granted granted Critical
Publication of KR102085982B1 publication Critical patent/KR102085982B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B7/00Wheel cover discs, rings, or the like, for ornamenting, protecting, venting, or obscuring, wholly or in part, the wheel body, rim, hub, or tyre sidewall, e.g. wheel cover discs, wheel cover discs with cooling fins
    • B60B7/06Fastening arrangements therefor
    • B60B7/061Fastening arrangements therefor characterised by the part of the wheels to which the discs, rings or the like are mounted
    • B60B7/068Fastening arrangements therefor characterised by the part of the wheels to which the discs, rings or the like are mounted to the wheel bolts or wheel nuts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K1/00Making machine elements
    • B21K1/56Making machine elements screw-threaded elements
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B37/00Nuts or like thread-engaging members
    • F16B37/14Cap nuts; Nut caps or bolt caps

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Forging (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

Provided are a method for manufacturing a vehicle wheel nut and the wheel nut, wherein the method comprises: a preparation step of annealing and preheating an aluminum alloy material; a molding step of molding the preheated material into a wheel nut through a forging process; a primary coating step of anodizing the molded wheel nut; a secondary coating step of coating the first coated wheel nut through a vacuum deposition surface treatment method; and a tertiary coating step of surface-treating the secondary coated wheel nut with powder-shaped paint.

Description

차량 휠너트 및 그 제조방법 {WHEEL NUT AND METHOD FOR PRODUCING THE SAME}WHEEL NUT AND METHOD FOR PRODUCING THE SAME [0002]

본 발명은 기존 스틸 소재 대비 우수한 내식성을 확보할 수 있는 차량의 휠너트 및 그 제조방법에 관한 것이다.The present invention relates to a wheel nut for a vehicle and a method of manufacturing the same, which can secure excellent corrosion resistance compared to a conventional steel material.

차량의 휠너트는 차량 주행이 가능케 하는 휠을 차량에 고정시키는 역할을 하며 휠과 함께 외관미를 나타내는 역할을 한다. 기존 휠너트는 냉간단조 바디(600MPa급, 스틸 선재)와 딥 드로잉 캡(스틸 판재)을 용접하고 표면에 크롬 도금처리를 실시하여 제조된다.The wheel nut of the vehicle serves to fix the wheel which enables the vehicle to run on the vehicle, and serves as an exterior appearance together with the wheel. The existing wheel nut is manufactured by welding a cold forging body (600MPa grade, steel wire) and a deep drawing cap (steel plate) and chrome plating the surface.

종래의 이러한 일반적인 휠너트는 도 1에 도시된 바와 같이, 2-piece의 냉간단조 바디(10) + 딥드로잉 캡(30) 구조로써 두 부품을 용접(S)하고 외관 상품성 향상을 위해 습식 크롬 도금을 실시하여 제조된다. As shown in FIG. 1, the conventional wheel nut of the related art is manufactured by welding (S) two parts with the structure of 2-piece cold forging body 10 + deep drawing cap 30 and wet chrome plating .

대부분의 휠너트는 그 형상만 다를 뿐 이러한 2-piece 방식을 채택하여 부품을 생산하고 있다. 하지만 이는 타이어 위치변경 및 교환 시 공구 회전에 의해 표면이 손상되어 주행이 길어질수록 부식 등의 품질 문제를 발생시키고 있다. Most of the wheel nuts are manufactured using the 2-piece method. However, as the surface is damaged due to rotation of the tool during tire position change and exchange, the longer the travel, the more the quality problem such as corrosion occurs.

즉, 종래의 휠너트는 스틸 재질로써 손상시 부식이 심하였고, 특히 2-piece로 구성됨에 따라 손상시 크랙이 쉽게 발생하여 부식이 빠르게 진행되었던 것이다.That is, the conventional wheel nut is made of a steel material, which is highly corrosive when damaged. Especially, since it is composed of 2-piece, cracks are easily generated at the time of damage and the corrosion has progressed rapidly.

따라서, 이러한 휠너트를 2-piece(냉간단조 바디 + 딥드로잉 캡) 구조로 하지 않고 하나의 일물로써 제조할 필요성이 있었으며, 동시에 잦은 공구의 사용시에도 부식 등의 문제가 발생될 수 없도록 하는 휠너트가 필요하였던 것이다.Therefore, there is a need to manufacture such a wheel nut as a one-piece structure instead of a 2-piece (cold forging body + deep drawing cap) structure, and at the same time, there is a need for a wheel nut to prevent problems such as corrosion even when using a frequent tool .

본 발명은 이러한 문제점을 해결하기 위하여 제안된 것으로, 기존 스틸 소재 대비 우수한 내식성을 확보할 수 있는 차량 휠너트 및 그 제조방법을 제공하는데 그 목적이 있다.SUMMARY OF THE INVENTION It is an object of the present invention to provide a vehicle wheel nut and a method of manufacturing the same which can provide excellent corrosion resistance as compared with conventional steel materials.

상기의 목적을 달성하기 위한 본 발명에 따른 차량 휠너트의 제조방법은, 알루미늄합금 재료를 어닐링하고 예열하는 준비단계; 상기 예열된 재료를 단조공정을 통하여 휠너트로 성형하는 성형단계; 상기 성형된 휠너트를 아노다이징 코팅하는 1차코팅단계; 상기 1차코팅된 휠너트를 진공증착 표면처리 공법을 통하여 코팅하는 2차코팅단계; 및 상기 2차코팅된 휠너트를 분체도료를 이용하여 표면처리하는 3차코팅단계;를 포함한다.According to an aspect of the present invention, there is provided a method of manufacturing a vehicle wheel nut, the method comprising: preparing an aluminum alloy material by annealing and preheating; A molding step of molding the preheated material into a wheel nut through a forging process; A primary coating step of anodizing the formed wheelet; A second coating step of coating the first coated wheelet through a vacuum deposition surface treatment method; And a tertiary coating step of surface-treating the secondary coated wheat with a powder coating material.

상기 알루미늄합금 재료는 Al을 주성분으로 하고, Cr : 0.18~0.28 wt%, Cu : 1.2~2.0 wt%, Fe : 0.5 wt%이하(0은 불포함), Mg : 2.1~2.9 wt%, Mn : 0.3 wt%이하(0은 불포함), Si : 0.4 wt%이하(0은 불포함), Ti : 0.2 wt%이하(0은 불포함), Zn : 5.1~6.1wt% 및 기타 필수불가결한 불순물을 포함할 수 있다.Wherein the aluminum alloy material contains Al as a main component and contains 0.18 to 0.28 wt% of Cr, 1.2 to 2.0 wt% of Cu, 0.5 wt% or less of Fe (excluding 0), 2.1 to 2.9 wt% of Mg, 0.3 , Ti: not more than 0.2 wt% (zero is not included), Zn: 5.1 to 6.1 wt%, and other indispensable impurities. have.

상기 준비단계의 어닐링은 380~420℃의 분위기에서 2~5시간 유지한 후 로냉할 수 있다.The annealing in the preparation step may be carried out in an atmosphere of 380 to 420 DEG C for 2 to 5 hours followed by roasting.

상기 준비단계는 어닐링된 재료를 200~300℃로 예열할 수 있다.The preparation step may preheat the annealed material to 200-300 < 0 > C.

상기 1차코팅단계의 아노다이징 두께는 20~70㎛일 수 있다.The anodizing thickness of the primary coating step may be 20 to 70 mu m.

상기 1차코팅단계는 성형된 휠너트를 PEO 코팅할 수 있다.The primary coating step may be PEO coating of the molded wheel.

상기 2차코팅단계는 코팅층이 2~10㎛의 두께가 되도록 진공증착 표면처리할 수 있다.The secondary coating step may be a vacuum deposition surface treatment such that the coating layer has a thickness of 2 to 10 mu m.

상기 3차코팅단계는 아크릴 분체 도료를 이용하여 코팅층이 20~50㎛의 두께가 되도록 도장할 수 있다.In the third coating step, the coating layer may be coated to a thickness of 20 to 50 mu m using an acrylic powder coating.

또한, 본 발명의 차량 휠너트는, 알루미늄합금으로 조성되며, 표면이 산화피막으로 형성된 1차코팅층, 진공증착에 의해 표면처리된 2차코팅층 및 분체도료를 이용하여 도장된 3차코팅층으로 표면처리된다.Further, the vehicle wheel nut of the present invention is surface-treated with a tertiary coating layer formed of an aluminum alloy and having a surface coated with an oxide film, a secondary coating layer surface-treated by vacuum deposition, and a powder coating material .

상술한 바와 같은 구조로 이루어진 차량 휠너트 및 그 제조방법에 따르면, 초고강도 알루미늄(600MPa급, A7075)소재를 압출하고 냉간단조를 통해 성형 한 후 표면처리(3층구조, 아노다이징/진공증착/클리어코팅)를 통해 부품을 제작함으로써 기존 스틸 소재대비 우수한 내식성을 가지며 외관 상품성을 향상시킨다. 또한, 휠의 중량이 감소되어 연비개선에 도움이 된다.According to the vehicle wheel nut having the above-described structure and the method of manufacturing the same, extruded material of ultra-high strength aluminum (600 MPa grade, A7075) is formed by cold forging and then subjected to surface treatment (three layer structure, anodizing / vacuum deposition / ), It has excellent corrosion resistance compared to conventional steel materials and improves appearance merchantability. Also, the weight of the wheel is reduced, which contributes to improvement in fuel economy.

도 1은 종래의 차량 휠너트를 나타낸 도면.
도 2는 본 발명의 일 실시예에 따른 차량 휠너트를 제조하는 순서도.
도 3은 본 발명의 일 실시예에 따른 차량 휠너트의 단면도.
1 shows a conventional vehicle wheel nut.
2 is a flowchart of manufacturing a vehicle wheel nut according to an embodiment of the present invention;
3 is a cross-sectional view of a vehicle wheel nut according to one embodiment of the present invention.

이하에서는 첨부된 도면을 참조하여 본 발명의 바람직한 실시 예에 따른 차량 휠너트 및 그 제조방법에 대하여 살펴본다.Hereinafter, a vehicle wheel nut according to a preferred embodiment of the present invention and a method of manufacturing the same will be described with reference to the accompanying drawings.

도 2는 본 발명의 일 실시예에 따른 차량 휠너트를 제조하는 순서도이다. 본 발명의 휠너트는, 알루미늄합금 재료를 어닐링하고 예열하는 준비단계(S100); 상기 예열된 재료를 단조공정을 통하여 휠너트로 성형하는 성형단계(S200); 상기 성형된 휠너트를 아노다이징 코팅하는 1차코팅단계(S300); 상기 1차코팅된 휠너트를 진공증착 표면처리 공법을 통하여 코팅하는 2차코팅단계(S400); 및 상기 2차코팅된 휠너트를 분체도료를 이용하여 표면처리하는 3차코팅단계(S500);를 포함하는 과정을 통해 제조된다.2 is a flow chart for manufacturing a vehicle wheel nut according to an embodiment of the present invention. The wheel nut of the present invention comprises a preparing step (S100) for annealing and preheating an aluminum alloy material; A forming step (S200) of forming the preheated material into a wheel nut through a forging process; A first coating step (S300) of anodizing the formed wheelet; A second coating step (S400) of coating the first coated wheelet through a vacuum deposition surface treatment method; And a tertiary coating step (S500) of surface-treating the secondary coated wheel litter using a powder coating (S500).

즉, 본 발명의 휠너트는 종래의 경우 2개의 부품을 용접을 하는데 반해 본 발명은 일체형으로 소재를 제작하므로 공정수 삭제 효과가 있으며 종래의 표면처리 방법인 습식 크롬도금은 폐수 발생 및 중금속 사용금지 규제(6가크롬 사용 불가)에 저촉되어 많은 문제를 유발하였다. 이에 반해 본 발명은 폐수 발생이 적은 아노다이징법, 건식 진공증착법 등을 사용하므로 환경친화적인 공정이라 할 수 있으며 다양한 색상 구현이 가능하므로 상품성 향상이 기대된다. 또한 비중이 높은 스틸 대신 알루미늄을 사용하므로 기존 기술대비 경량화가 가능하다.In other words, the wheel nut of the present invention has the effect of eliminating the process water since the two parts are welded in the conventional case, whereas the present invention produces the material integrally, and the wet chromium plating, which is a conventional surface treatment method, (Which can not use hexavalent chromium), causing many problems. On the other hand, since the present invention uses an anodizing method and a dry vacuum deposition method which generate little wastewater, it can be regarded as an environmentally friendly process and various colors can be realized, so that the commerciality is expected to be improved. In addition, since aluminum is used instead of steel with a high specific gravity, it can be lightweight compared to existing technologies.

즉, 본 발명의 휠너트는 우선 알루미늄합금을 이용하여 1물로써 제조되는데, 그 알루미늄합금 재료는 Al을 주성분으로 하고, Cr : 0.18~0.28 wt%, Cu : 1.2~2.0 wt%, Fe : 0.5 wt%이하(0은 불포함), Mg : 2.1~2.9 wt%, Mn : 0.3 wt%이하(0은 불포함), Si : 0.4 wt%이하(0은 불포함), Ti : 0.2 wt%이하(0은 불포함), Zn : 5.1~6.1wt% 및 기타 필수불가결한 불순물을 포함하는 조성으로 구성된다.That is, the wheel nut of the present invention is first made of an aluminum alloy, and the aluminum alloy material contains Al as a main component, 0.18 to 0.28 wt% of Cr, 1.2 to 2.0 wt% of Cu, 0.5 wt , Ti: not more than 0.2 wt% (0 is not included), Mg: 2.1 to 2.9 wt%, Mn: not more than 0.3 wt% ), Zn: 5.1 to 6.1 wt%, and other indispensable impurities.

알루미늄 휠너트는 휠너트의 체결시 공구 마찰에 의한 표면 손상이 있을 수 있으므로 소재의 표면 경도가 중요하다. 이에 본 실시예에서는 초고강도 알루미늄 합금인 A7075 알루미늄 합금을 사용하였다. 그리고 합금 용융 후 압출을 위한 빌렛으로 제조한 후 소정 직경의 환봉으로 압출한다.The surface hardness of the material is important for aluminum wheel nuts because there is a possibility of surface damage due to tool friction during fastening of wheel nuts. Therefore, in this embodiment, A7075 aluminum alloy, which is an ultra-high strength aluminum alloy, is used. After the alloy is melted, it is made into a billet for extrusion and extruded into a round bar having a predetermined diameter.

압출 직후 소재는 강도가 높고 연신율이 낮은 상태가 되는데 이는 휠너트 형상으로 제조하는 단조 공정에서 성형성을 저하시키는 원인이 되므로 강도를 낮추고 연신율을 높이는 어닐링 처리를 하였다.Immediately after extrusion, the material is in a state of high strength and low elongation, which causes annealing process to lower the strength and increase the elongation, which is a cause of deterioration of the moldability in the forging process to be produced in the form of a wheel nut.

즉, 상기 준비단계(S100)에서는 알루미늄합금 재료를 어닐링하고 예열하는데, 어닐링은 380~420℃의 분위기에서 2~5시간 유지한 후 로냉하도록 한다(온도:400±20℃, 시간:2~5시간, 냉각:200℃까지 로냉).That is, in the preparing step (S100), the aluminum alloy material is annealed and preheated. The annealing is performed in an atmosphere of 380 to 420 占 폚 for 2 to 5 hours and then cooled down (temperature: 400 占 폚, Time, cooling: low temperature to 200 < 0 > C).

그 후 예열된 재료를 단조공정을 통하여 휠너트로 성형하는 성형단계(S200)를 수행한다. 성형단계에서는 제조된 알루미늄 압출 환봉을 기존 스틸 휠너트 양산 단조기를 활용하여 단조 제작하였다. 어닐링 처리를 실시한 압출환봉의 연신율은 약 20%로서 스틸 소재 연신율(약 40%)의 1/2수준에 불과하다. 따라서, 어닐링된 재료를 200~300℃로 예열하도록 한다. 이에 성형성 향상을 위해 소재 주입시 알루미늄 압출 환봉을 200~300℃로 예열하여 단조기에 투입 후 단조를 실시하여 제품 형상을 구현한다.Thereafter, the preheated material is subjected to a molding step (S200) of molding the material into a wheel nut through a forging process. In the molding step, the aluminum extruded round bar produced was forged by using a conventional steel wheel nut mass forging machine. The elongation of the extruded round bar subjected to the annealing treatment is about 20%, which is only half the elongation of the steel material (about 40%). Therefore, the annealed material is preheated to 200 to 300 占 폚. In order to improve the formability, aluminum extrusion round bar is preheated to 200 ~ 300 ℃ when material is injected, and it is put into forging machine and forged to realize product shape.

그리고 온간단조를 통해 제품 형상으로 제조된 소재는 휠 장착을 위한 내부 나사산 탭 가공을 통해 최종 제품 성형은 완료된다.The final product molding is completed by internal thread tapping for the wheel mounting, which is made of the product shape through the on-off joint.

한편, 내부식성 향상/컬러구현/소재표면경도 향상의 목적 달성을 위해 성형완료된 휠너트에 표면처리를 실시한다.On the other hand, a surface treatment is performed on a molded wheel nut to achieve the purpose of improving corrosion resistance / color implementation / material surface hardness improvement.

1차코팅단계(S300)에서는 상기 성형된 휠너트를 아노다이징 코팅한다. 상기 1차코팅단계(S300)의 아노다이징 두께는 20~70㎛이 되도록 하며, 아노다이징의 경우 전압을 더욱 높여 PEO 코팅(PEO, Plasma Electrolytic Oxidation, 플라즈마 전해 산화)을 하는 것도 가능하다. In the first coating step (S300), the molded wheel is anodized. The anodizing thickness of the primary coating step S300 is 20 to 70 占 퐉. In case of anodizing, the PEO coating (PEO, plasma electrolytic oxidation) can be performed by further increasing the voltage.

아노다이징/PEO 처리는 알루미늄 소재와의 직접반응에 의해 생성된 알루미나(Al2O3)를 활용한다. 알루미나는 산화물로써 경도가 매우 높기 때문에 너트 장착/탈거 시 공구가 인가하는 하중에 의해 소재가 찍히는 현상을 방지하는 역할을 한다. 아노다이징 두께에 따라 반응 생성물(알루미나)에 의한 자연발색 컬러가 변한다. 20~70㎛ 두께일 경우 다크브라운~블랙 컬러가 구현되며 컬러 구현을 위한 2차코팅층과 유사색상이 구현되어 다크블랙, 티탄 그레이 등의 색깔 구현이 가능하다. 또한, 아노다이징 두께가 20㎛ 이하일 경우 공구 하중에 의한 소재 찍힘 현상이 계속 존재하여 부품이 요구하는 품질을 만족할 수 없다. 한편, 70㎛ 이상일 경우 표면이 너무 경하여 공구 사용 시 아노다이징 층이 깨지게 된다.Anodizing / PEO treatment utilizes alumina (Al2O3) produced by direct reaction with aluminum material. Since alumina is an oxide, it has a very high hardness, so it prevents the material from being taken by the load applied by the tool when mounting / detaching the nut. Depending on the anodizing thickness, the natural color of the reaction product (alumina) changes. In case of 20 ~ 70㎛ thickness, dark brown to black color is realized and color similar to that of secondary coating layer for color implementation is realized, and colors such as dark black and titanium gray can be realized. In addition, when the anodizing thickness is 20 μm or less, material sticking phenomenon due to the tool load is still present, and the quality required by the parts can not be satisfied. On the other hand, when the thickness is 70 mu m or more, the surface is too small to break the anodizing layer when the tool is used.

또한, 상기 1차코팅된 휠너트를 진공증착 표면처리 공법을 통하여 코팅하는 2차코팅단계(S400)를 수행한다. 2차코팅단계(S400)는 코팅층이 2~10㎛의 두께가 되도록 진공증착 표면처리하도록 한다. 2차코팅에 사용된 표면처리 방법은 진공증착법(DLC/스퍼터링/PECVD)으로써 각 방법 모두 증착층이 저마찰 특성 및 내마모성이 우수하여 공구가 인가하는 하중을 분산시켜 소재 찍힘 현상을 방지한다.Also, a secondary coating step (S400) is performed in which the primary coated quencher is coated through a vacuum deposition surface treatment method. In the secondary coating step (S400), the coating layer is subjected to a vacuum deposition surface treatment so as to have a thickness of 2 to 10 mu m. The surface treatment method used in the secondary coating is vacuum deposition (DLC / sputtering / PECVD). In each method, the deposition layer is excellent in low friction property and abrasion resistance, and the load applied by the tool is dispersed to prevent material picking.

두께가 2㎛ 이하일 경우 아노다이징층 색깔 및 표면이 그대로 드러나기 때문에 상품성이 저하되고 10㎛ 이상일 경우 표면이 매우 경하여 외부 충격이 들어올 때 처리층의 깨짐 현상이 발생한다. When the thickness is less than 2 탆, the color and surface of the anodizing layer are exposed as such, resulting in poor commercial quality. When the thickness is more than 10 탆, the surface of the anodizing layer is very small.

그 후 2차코팅된 휠너트를 분체도료를 이용하여 표면처리하는 3차코팅단계(S500)를 수행한다. 3차코팅단계(S500)는 아크릴 분체 도료를 이용하여 코팅층이 20~50㎛의 두께가 되도록 도장하도록 한다.Thereafter, a tertiary coating step (S500) is carried out in which a secondary coated wheel nut is subjected to a surface treatment using a powder coating material. In the third coating step (S500), the coating layer is coated to a thickness of 20 to 50 mu m using an acrylic powder coating.

알루미늄 휠의 상도 도장에 사용되는 분체클리어를 사용하였으며 알루미늄 휠의 내부식성, 내치핑성, 내후성 등을 만족하는 수준의 두께가 20~50㎛ 수준이므로 동일한 방법으로 클리어 도장을 실시한다. 클리어 층의 두께가 20㎛ 이하일 경우 도장품질을 불만족하고, 두께가 50㎛ 이상일 경우 클리어층의 흘러내림 현상 발생 및 오렌지빛 발생으로 상품성이 저하된다.Clear coating is used for painting the top surface of aluminum wheel. Since the thickness of the aluminum wheel is 20 ~ 50㎛, which satisfies corrosion resistance, chipping resistance and weather resistance, clear coating is performed in the same way. When the thickness of the clear layer is 20 mu m or less, paint quality is unsatisfactory, and when the thickness is 50 mu m or more, the clear layer is caused to flow down and orange light is generated, resulting in lowering of the merchantability.

한편, 상기 3차코팅에서 사용되는 아크릴 분체의 성분은 아래의 표와 같다.The components of the acrylic powder used in the third coating are shown in the following table.

Figure pat00001
Figure pat00001

도 3은 본 발명의 일 실시예에 따른 차량 휠너트의 단면도로서, 본 발명의 휠너트(100)는, 알루미늄합금으로 조성되며, 표면이 산화피막으로 형성된 1차코팅층(200), 진공증착에 의해 표면처리된 2차코팅층(300) 및 분체도료를 이용하여 도장된 3차코팅층(400)으로 표면처리된다.FIG. 3 is a cross-sectional view of a vehicle wheel nut according to an embodiment of the present invention. The wheel nut 100 of the present invention includes a primary coating layer 200 formed of an aluminum alloy and having an oxide film on its surface, Treated with the coated secondary coating layer 300 and the coated powdered primary coating layer 400.

각 코팅층의 성형에 관하여는 상기 제조방법에서 상세히 설명하였는바, 자세한 설명은 생략토록 한다.The formation of each coating layer has been described in detail in the above manufacturing method, and a detailed description thereof is omitted.

상술한 바와 같은 구조로 이루어진 차량 휠너트 및 그 제조방법에 따르면, 초고강도 알루미늄(600MPa급, A7075)소재를 압출하고 냉간단조를 통해 성형 한 후 표면처리(3층구조, 아노다이징/진공증착/클리어코팅)를 통해 부품을 제작함으로써 기존 스틸 소재대비 우수한 내식성을 가지며 외관 상품성을 향상시킨다. 또한, 휠의 중량이 감소되어 연비개선에 도움이 된다.According to the vehicle wheel nut having the above-described structure and the method of manufacturing the same, extruded material of ultra-high strength aluminum (600 MPa grade, A7075) is formed by cold forging and then subjected to surface treatment (three layer structure, anodizing / vacuum deposition / ), It has excellent corrosion resistance compared to conventional steel materials and improves appearance merchantability. Also, the weight of the wheel is reduced, which contributes to improvement in fuel economy.

즉, 본 발명의 휠너트는 종래의 경우 2개의 부품을 용접을 하는데 반해 본 발명은 일체형으로 소재를 제작하므로 공정수 삭제 효과가 있으며 종래의 표면처리 방법인 습식 크롬도금은 폐수 발생 및 중금속 사용금지 규제(6가크롬 사용 불가)에 저촉되어 많은 문제를 유발하였다. 이에 반해 본 발명은 폐수 발생이 적은 아노다이징법, 건식 진공증착법 등을 사용하므로 환경친화적인 공정이라 할 수 있으며 다양한 색상 구현이 가능하므로 상품성 향상이 기대된다. 또한 비중이 높은 스틸 대신 알루미늄을 사용하므로 기존 기술대비 경량화가 가능하다.In other words, the wheel nut of the present invention has the effect of eliminating the process water since the two parts are welded in the conventional case, whereas the present invention produces the material integrally, and the wet chromium plating, which is a conventional surface treatment method, (Which can not use hexavalent chromium), causing many problems. On the other hand, since the present invention uses an anodizing method and a dry vacuum deposition method which generate little wastewater, it can be regarded as an environmentally friendly process and various colors can be realized, so that the commerciality is expected to be improved. In addition, since aluminum is used instead of steel with a high specific gravity, it can be lightweight compared to existing technologies.

본 발명은 특정한 실시예에 관련하여 도시하고 설명하였지만, 이하의 특허청구범위에 의해 제공되는 본 발명의 기술적 사상을 벗어나지 않는 한도 내에서, 본 발명이 다양하게 개량 및 변화될 수 있다는 것은 당 업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.While the present invention has been particularly shown and described with reference to specific embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the following claims It will be apparent to those of ordinary skill in the art.

100 : 휠너트 200 : 1차코팅층
300 : 2차코팅층 400 : 3차코팅층
S100 : 준비단계 S200 : 성형단계
S300 : 1차코팅단계 S400 : 2차코팅단계
S500 : 3차코팅단계
100: a wheel nut 200: a primary coating layer
300: Secondary coating layer 400: Third coating layer
S100: preparation step S200: molding step
S300: primary coating step S400: secondary coating step
S500: Third coating step

Claims (5)

Cr : 0.18~0.28 wt%, Cu : 1.2~2.0 wt%, Fe : 0.5 wt%이하(0은 불포함), Mg : 2.1~2.9 wt%, Mn : 0.3 wt%이하(0은 불포함), Si : 0.4 wt%이하(0은 불포함), Ti : 0.2 wt%이하(0은 불포함), Zn : 5.1~6.1wt%, 기타 필수불가결한 불순물 및 잔부 Al로 구성된 알루미늄합금 재료를 어닐링하고 예열하는 준비단계(S100);
상기 예열된 재료를 단조공정을 통하여 휠너트로 성형하는 성형단계(S200);
상기 성형된 휠너트의 표면에 20~70㎛ 두께의 산화피막을 형성하도록 아노다이징 코팅하는 1차코팅단계(S300);
상기 1차코팅된 휠너트를 진공증착 표면처리 공법을 통하여 코팅하되, 마찰특성을 감소시키기 위하여 아노다이징 코팅된 표면에 코팅층이 2~10㎛의 두께가 되도록 진공증착 표면처리하는 2차코팅단계(S400); 및
상기 2차코팅된 휠너트를 분체도료를 이용하여 표면처리하되, 진공증착 표면처리된 표면에 아크릴 분체 도료를 이용하여 코팅층이 20~50㎛의 두께가 되도록 도장하는 3차코팅단계(S500);를 포함하는 차량 휠너트의 제조방법.
0.1 to 0.28 wt% of Cr, 1.2 to 2.0 wt% of Cu, 0.5 wt% or less of Fe (excluding 0), 2.1 to 2.9 wt% of Mg and 0.3 wt% or less of Mn, The aluminum alloy material composed of 0.4 wt% or less (0 is not included), Ti is 0.2 wt% or less (0 is not included), Zn is 5.1 to 6.1 wt%, other indispensable impurities and Al (S100);
A forming step (S200) of forming the preheated material into a wheel nut through a forging process;
A first coating step (S300) of applying an anodizing coating to the surface of the molded wheel nut to form an oxide coating having a thickness of 20 to 70 mu m;
A second coating step (S400) of performing vacuum deposition surface treatment on the anodized coating surface so that the coating layer has a thickness of 2 to 10 mu m in order to reduce the friction characteristics by coating the primary coated wheelet through a vacuum deposition surface treatment method, ; And
A third coating step (S500) of coating the surface of the second coated varnish with a powder coating material and coating the surface of the vacuum coated surface with an acrylic powder coating so as to have a thickness of 20 to 50 탆; Comprising the steps of:
청구항 1에 있어서,
상기 준비단계(S100)의 어닐링은 380~420℃의 분위기에서 2~5시간 유지한 후 로냉하는 것을 특징으로 하는 차량 휠너트의 제조방법.
The method according to claim 1,
Wherein the annealing in the preparing step (S100) is performed in an atmosphere of 380 to 420 占 폚 for 2 to 5 hours, followed by roasting.
청구항 1에 있어서,
상기 준비단계(S100)는 어닐링된 재료를 200~300℃로 예열하는 것을 특징으로 하는 차량 휠너트의 제조방법.
The method according to claim 1,
Wherein the preparing step (S100) preheats the annealed material to 200 to 300 占 폚.
청구항 1에 있어서,
상기 1차코팅단계(S300)는 성형된 휠너트를 PEO 코팅하는 것을 특징으로 하는 차량 휠너트의 제조방법.
The method according to claim 1,
Wherein the primary coating step (S300) comprises PEO coating of the molded wheel nut.
알루미늄합금으로 조성되는 휠너트로서,
상기 휠너트(100)의 표면에 아노다이징 코팅하여 20~70㎛ 두께의 산화피막으로 형성된 1차코팅층(200),
상기 1차코팅층(200)의 표면에 진공증착에 의해 표면처리되어 2~10㎛의 두께로 형성된 2차코팅층(300) 및
상기 2차코팅층(300)의 표면에 분체도료를 이용하여 20~50㎛의 두께로 도장된 3차코팅층(400)으로 표면처리된 차량 휠너트.
A wheel nut made of an aluminum alloy,
A primary coating layer 200 formed by anodizing on the surface of the wheel nut 100 to form an oxide film having a thickness of 20 to 70 탆,
A secondary coating layer 300 formed on the surface of the primary coating layer 200 by vacuum deposition to have a thickness of 2 to 10 탆,
The surface of the secondary coating layer (300) is surface treated with a tertiary coating layer (400) painted with a thickness of 20 to 50 탆 using a powder paint.
KR1020190061280A 2019-05-24 2019-05-24 Wheel nut and method for producing the same KR102085982B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190061280A KR102085982B1 (en) 2019-05-24 2019-05-24 Wheel nut and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190061280A KR102085982B1 (en) 2019-05-24 2019-05-24 Wheel nut and method for producing the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020120125126A Division KR102132028B1 (en) 2012-11-07 2012-11-07 Wheel nut and method for producing the same

Publications (2)

Publication Number Publication Date
KR20190064536A true KR20190064536A (en) 2019-06-10
KR102085982B1 KR102085982B1 (en) 2020-03-06

Family

ID=66848449

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190061280A KR102085982B1 (en) 2019-05-24 2019-05-24 Wheel nut and method for producing the same

Country Status (1)

Country Link
KR (1) KR102085982B1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3242037A (en) * 1962-06-11 1966-03-22 Olin Mathieson Method of forming a multicolored design on aluminum and the article so formed
US4895762A (en) * 1986-01-27 1990-01-23 Yamaha Corporation Magnetic recording material
US5401338A (en) * 1993-07-28 1995-03-28 Lin; Ching-Bin Process for making metal-matrix composites reinforced by ultrafine reinforcing materials products thereof
US5884600A (en) * 1998-02-20 1999-03-23 General Motors Corporation Aluminum bore engine having wear and scuff-resistant aluminum piston
JPH11257325A (en) * 1998-03-12 1999-09-21 Nissan Diesel Motor Co Ltd Detent structure of hub bolt
KR20040093137A (en) * 2002-03-27 2004-11-04 아일 코트 리미티드 Process and device for forming ceramic coatings on metals and alloys, and coatings produced by this process
US20060000094A1 (en) * 2004-07-01 2006-01-05 Garesche Carl E Forged aluminum vehicle wheel and associated method of manufacture and alloy
US20080173378A1 (en) * 2006-07-07 2008-07-24 Aleris Aluminum Koblenz Gmbh Aa7000-series aluminum alloy products and a method of manufacturing thereof
US20120103819A1 (en) * 2010-10-28 2012-05-03 Hon Hai Precision Industry Co., Ltd. Aluminum article and process for making same

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3242037A (en) * 1962-06-11 1966-03-22 Olin Mathieson Method of forming a multicolored design on aluminum and the article so formed
US4895762A (en) * 1986-01-27 1990-01-23 Yamaha Corporation Magnetic recording material
US5401338A (en) * 1993-07-28 1995-03-28 Lin; Ching-Bin Process for making metal-matrix composites reinforced by ultrafine reinforcing materials products thereof
US5884600A (en) * 1998-02-20 1999-03-23 General Motors Corporation Aluminum bore engine having wear and scuff-resistant aluminum piston
JPH11257325A (en) * 1998-03-12 1999-09-21 Nissan Diesel Motor Co Ltd Detent structure of hub bolt
KR20040093137A (en) * 2002-03-27 2004-11-04 아일 코트 리미티드 Process and device for forming ceramic coatings on metals and alloys, and coatings produced by this process
US6896785B2 (en) * 2002-03-27 2005-05-24 Isle Coat Limited Process and device for forming ceramic coatings on metals and alloys, and coatings produced by this process
US20060000094A1 (en) * 2004-07-01 2006-01-05 Garesche Carl E Forged aluminum vehicle wheel and associated method of manufacture and alloy
US20080173378A1 (en) * 2006-07-07 2008-07-24 Aleris Aluminum Koblenz Gmbh Aa7000-series aluminum alloy products and a method of manufacturing thereof
US8608876B2 (en) * 2006-07-07 2013-12-17 Aleris Aluminum Koblenz Gmbh AA7000-series aluminum alloy products and a method of manufacturing thereof
US20120103819A1 (en) * 2010-10-28 2012-05-03 Hon Hai Precision Industry Co., Ltd. Aluminum article and process for making same

Also Published As

Publication number Publication date
KR102085982B1 (en) 2020-03-06

Similar Documents

Publication Publication Date Title
KR20140059320A (en) Wheel nut and method for producing the same
KR102075278B1 (en) Method for the manufacture of a hardened part which does not have lme issues
CA2990366C (en) Steel sheet coated with a metallic coating based on aluminum
CA2806263C (en) Steel sheet for hot pressing and method of manufacturing hot-pressed part using steel sheet for hot pressing
RU2584105C2 (en) Clad steel plate for hot pressing and method for hot pressing clad steel plate
JPWO2018221738A1 (en) Hot stamp member
TW201447040A (en) Plated steel sheet for hot pressing, process for hot-pressing plated steel sheet and automobile part
WO2012070482A1 (en) Steel sheet for hot pressing and method for producing hot-pressed member using steel sheet for hot pressing
CA2930636C (en) Al-plated steel sheet used for hot pressing and method for manufacturing al-plated steel sheet used for hot pressing
JP2009293078A (en) AUTOMOTIVE MEMBER HAVING EXCELLENT CORROSION RESISTANCE AFTER COATING AND Al-PLATED STEEL SHEET FOR HOT PRESS
WO2012074132A1 (en) Process for production of hot-pressed member
WO2019198728A1 (en) Production method for hot press molded articles, press molded article, die mold, and mold set
JPWO2014068939A1 (en) Steel sheet for hot pressing, hot pressing member, and manufacturing method of hot pressing member
WO2013083021A1 (en) High strength aluminum alloy wheel
KR20190064536A (en) Wheel nut and method for producing the same
JPH04268038A (en) Surface treated aluminum alloy sheet excellent in press formability
CN112236243B (en) Method for manufacturing hot press-molded product, die and die set
WO2020009170A1 (en) Hot press-formed item manufacturing method, press-formed item, die, and die set
WO2019066063A1 (en) Plated steel sheet, plated steel sheet coil, method for producing hot pressed article, and automobile component
JPH042780A (en) High corrosion-resistant colored surface treated steel sheet
JPH06240469A (en) Ultra-high tensile strength cold rolled steel sheet having high corrosion resistance and high workability and its production
JPH03249180A (en) Galvanized steel sheet having excellent press formability and chemical convertibility
JPH0741962A (en) Lubricating resin-treated steel sheet excellent in press forming property and corrosion resistance
JP2007216180A (en) Coated aluminum plate excellent in forming characteristics
JPH11285753A (en) Coated aluminum sheet for can lid

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant