KR20190055655A - Non-Genetically Modified Escherichia Strain for Expressing Membrane Protein and Method for Producing Membrane Protein using the Same - Google Patents

Non-Genetically Modified Escherichia Strain for Expressing Membrane Protein and Method for Producing Membrane Protein using the Same Download PDF

Info

Publication number
KR20190055655A
KR20190055655A KR1020170152618A KR20170152618A KR20190055655A KR 20190055655 A KR20190055655 A KR 20190055655A KR 1020170152618 A KR1020170152618 A KR 1020170152618A KR 20170152618 A KR20170152618 A KR 20170152618A KR 20190055655 A KR20190055655 A KR 20190055655A
Authority
KR
South Korea
Prior art keywords
strain
pkj606
membrane protein
gene
coli
Prior art date
Application number
KR1020170152618A
Other languages
Korean (ko)
Inventor
필 김
이민주
Original Assignee
가톨릭대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가톨릭대학교 산학협력단 filed Critical 가톨릭대학교 산학협력단
Priority to KR1020170152618A priority Critical patent/KR20190055655A/en
Publication of KR20190055655A publication Critical patent/KR20190055655A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1241Nucleotidyltransferases (2.7.7)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/07Nucleotidyltransferases (2.7.7)
    • C12Y207/07065Diguanylate cyclase (2.7.7.65)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y306/00Hydrolases acting on acid anhydrides (3.6)
    • C12Y306/01Hydrolases acting on acid anhydrides (3.6) in phosphorus-containing anhydrides (3.6.1)
    • C12Y306/01003Adenosine triphosphatase (3.6.1.3)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

The present invention relates to a non-genetically modified strain of colon bacillus for producing membrane proteins and a method of producing membrane proteins using the same. The present invention provides a modified strain of Escherichia sp. for producing membrane proteins, which comprises genes encoding the membrane proteins and has increased activity of diguanylate cyclase compared to a mother strain thereof. By using the non-genetically modified strain of colon bacillus according to an embodiment of the present invention, the membrane proteins may be efficiently produced.

Description

막단백질 발현용 비-유전자재조합 대장균 균주 및 그를 이용한 막단백질 생산 방법{Non-Genetically Modified Escherichia Strain for Expressing Membrane Protein and Method for Producing Membrane Protein using the Same}TECHNICAL FIELD [0001] The present invention relates to a non-recombinant Escherichia coli strain for membrane protein expression and a membrane protein production method using the same,

본 발명은 막단백질 발현용 비-유전자재조합 대장균 균주 및 그를 이용한 막단백질 생산 방법에 관한 것이다.The present invention relates to a non-recombinant E. coli strain for membrane protein expression and a method for producing membrane protein using the same.

막단백질은 생물체 프로테옴의 약 25% 내지 30%를 차지하며, 호흡이나 광합성과 같은 기초적인 에너지 대사부터 세포와 세포 사이 또는 세포와 외부의 커뮤니케이션, 물질 수송, 지질 대사 등에 관여하는 다양한 단백질이다. 막단백질은 약제 개발의 중요한 대상으로서, 시중에서 판매되는 약제의 약 50% 정도가 막단백질의 일종인 G-단백질 연결 수용체(G-protein coupled receptor, GPCR)를 기반으로 작용한다고 보고된 바 있다(Lundstrom, K., Bioorg. Med. Chem. Lett., 15:3654, 2005). 막단백질은 기존의 수용성 단백질과는 달리 여러 가지 담체에 고정화할 수 있는 특성이 있어 새로운 의약품, 식품, 생물전환 효소 제품 등으로 안전하게 개발될 수 있는 장점이 있다. 그러나 경제적으로 중요한 단백질임에도 불구하고 막단백질의 기능 또는 구조에 대한 연구는 부족한 편이며, 이는 수용성 단백질과 비교하여 막단백질의 발현 및 분리가 어렵기 때문이다.Membrane proteins account for about 25% to 30% of the biological proteome, and are various proteins involved in basic energy metabolism such as respiration and photosynthesis, communication between cells and cells, or external communication with cells, transport of substances, and lipid metabolism. Membrane proteins are an important target for drug development, and about 50% of commercially available drugs have been reported to act on G-protein coupled receptors (GPCRs), a type of membrane protein Lundstrom, K., Bioorg. Med. Chem. Lett., 15: 3654, 2005). Membrane proteins can be immobilized on various carriers unlike conventional water-soluble proteins, and thus can be safely developed with new medicines, foods, and bioconversion enzymes. However, even though it is an economically important protein, studies on the function or structure of the membrane protein are insufficient, because it is difficult to express and isolate the membrane protein as compared with the water-soluble protein.

의학용, 산업용 등으로 사용할 수 있는 아미노산, 항체, 핵산 및 유기산 등의 유용한 물질을 효율적으로 생산하는 미생물 및 그를 이용한 방법이 활발히 연구되고 있다. 그러나 유용 물질을 생산하기 위하여 미생물을 인위적으로 조작하는 경우 유전자 재조합으로 인한 안전성 문제가 발생할 수 있다.Microorganisms that efficiently produce useful substances such as amino acids, antibodies, nucleic acids and organic acids which can be used for medical, industrial, etc., and methods using the microorganisms have been actively studied. However, when microorganisms are artificially manipulated to produce useful substances, safety problems due to recombination of genes may arise.

본 발명자들은 유전자 재조합 없이 막단백질을 안전하고, 효율적으로 생산하는 미생물을 개발하기 위한 연구를 수행하여 본 발명을 완성하였다.The present inventors completed the present invention by carrying out a study to develop a microorganism which can produce membrane protein safely and efficiently without genetic recombination.

1. 대한민국 등록특허 제10-1197129호1. Korean Patent No. 10-1197129

1. Plant Physiol., 1987; 84: 25-30. 1. Plant Physiol., 1987; 84: 25-30. 2. Biochemistry, 2009; 48: 10948-10955. 2. Biochemistry, 2009; 48: 10948-10955.

본 발명의 일 목적은 모균주 대비 막단백질의 생산성이 증가된 에스케리치아(Escherichia) 속 변이 균주를 제공하는 것이다.It is an object of the present invention to provide an Escherichia genus mutant having increased productivity of membrane protein versus parent strain.

본 발명의 다른 목적은 모균주 대비 막단백질의 생산성이 증가된 에스케리치아 속 변이 균주를 이용한 막단백질 생산 방법을 제공하는 것이다.Another object of the present invention is to provide a method for producing a membrane protein using Escherichia genus mutant strains with increased productivity of membrane protein versus parent strain.

상기 목적을 달성하기 위하여, 본 발명의 일 양상은 막단백질을 암호화하는 유전자를 포함하고, 모균주 대비 구아닐레이트 사이클라제(diguanylate cyclase)의 활성이 증가된 막단백질 생산용 에스케리치아(Escherichia) 속 변이 균주를 제공한다.In order to accomplish the above object, one aspect of the present invention is a method for producing a membrane protein, which comprises a gene encoding a membrane protein and which has an increased activity of diguanylate cyclase relative to the parent strain ( Escherichia ) ≪ / RTI >

본 명세서에서 사용된 용어, '모균주(mother strain)'는 변이가 발생하기 이전의 균주를 의미하며, 조상 균주(ancestral strain) 또는 야생형 균주(wildtype strain)와 호환적으로 사용된다.As used herein, the term " mother strain " refers to a strain prior to the occurrence of a mutation, and is used interchangeably with an ancestral strain or a wildtype strain.

본 발명의 일 구체예에서, 상기 모균주는 막단백질을 암호화하는 유전자를 포함할 수 있다.In one embodiment of the present invention, the parent strain may include a gene encoding a membrane protein.

본 명세서에서 사용된 용어, '막단백질(membrane protein)'은 세포막의 지질이중층으로 이입되는 단백질 또는 당단백질을 의미한다. 막단백질은 세포막의 지질이중층을 관통하거나, 세포막의 표층에 위치할 수 있으며, 다른 단백질과 결합하여 세포막에 고정되어 있을 수 있다.As used herein, the term " membrane protein " refers to a protein or glycoprotein that is introduced into the lipid bilayer of the cell membrane. Membrane proteins may penetrate the lipid bilayer of the cell membrane, or may be located in the surface layer of the cell membrane, and may be fixed to the cell membrane by binding to other proteins.

본 명세서에서 사용된 용어, '막단백질 생산용 에스케리치아 속 변이 균주'는 막단백질을 생산 또는 분비할 수 있는 균주로서, 모균주, 조상 균주 또는 야생형 균주보다 대량으로 또는 고농도로 막단백질을 생산할 수 있는 균주를 의미한다.As used herein, the term Escherichia mutant strain for membrane protein production refers to a strain capable of producing or secreting a membrane protein, which produces membrane protein in a larger or higher concentration than the parent strain, ancestor strain or wild type strain ≪ / RTI >

본 발명의 일 구체예에서, 상기 에스케리치아 속 변이 균주는 모균주 또는 조상 균주의 진화를 통하여 선택된 것인 막단백질의 생산성이 증가된 진화 균주일 수 있으며, 유전자 재조합 생물체(Genetically Modified Organism, GMO)와 달리 인위적인 유전자 변형을 거치지 않은 비-유전자 재조합 균주(Non-Genetically Modified strain)이다.In one embodiment of the present invention, the Escherichia spp. Strain may be an evolutionary strain with increased productivity of a membrane protein selected through the evolution of parent strain or ancestor strain, and genetically modified organism (GMO ) Is a non-genetically modified strain that is not artificially modified.

본 발명의 일 구체예에서, 상기 에스케리치아 속 변이 균주는 구아닐레이트 사이클라제를 암호화하는 dgcQ 유전자(서열번호 1)에 위치 특이적 변이가 발생하여 구아닐레이트 사이클라제의 활성이 증가된 것일 수 있다. In one embodiment of the present invention, the Escherichia spp. Mutant strain is characterized in that a locus- specific mutation occurs in the dgcQ gene (SEQ ID NO: 1) encoding guanylate cyclase to increase the activity of guanylate cyclase .

본 발명의 일 구체예에서, 상기 에스케리치아 속 변이 균주는 dgcQ 유전자(서열번호 1) 서열에서 1082번째 뉴클레오티드가 C에서 A로 치환된 돌연변이를 포함할 수 있다. In one embodiment of the present invention, the Escherichia genus mutant strain may comprise a mutation in which the 1082nd nucleotide in the dgcQ gene (SEQ ID NO: 1) sequence is substituted with C to A.

본 발명의 일 구체예에서, 상기 에스케리치아 속 변이 균주는 대장균(Escherichia coli)일 수 있다.In one embodiment of the present invention, the Escherichia spp. Strain may be Escherichia coli .

본 발명의 일 구체예에서, 상기 에스케리치아 속 변이 균주는 진화 과정에서 발생한, 막단백질의 생산성이 증가된 변이를 모균주에 도입하여 제조된 것일 수 있다.In one embodiment of the present invention, the Escherichia spp. Strain may be prepared by introducing into the parent strain a mutation with increased productivity of membrane protein, which occurs in the evolution process.

본 발명의 일 구체예에서, 상기 막단백질은 글로에오박터(Gloeobacter) 유래의 로돕신(rhodopsin), 또는 atpF 유전자(서열번호 4)에 의해 암호화되는 ATP 합성효소(ATP synthase) F0 부위의 b 서브유닛일 수 있고, dctA 유전자(서열번호 5)에 의해 암호화되는 디카복실레이트 수송체(dicarboxylate transporter)일 수 있다.In one embodiment of the invention, the membrane protein is global to five bakteo (Gloeobacter) derived from the rhodopsin (rhodopsin), or atpF gene ATP encoded by (SEQ ID NO: 4) synthase (ATP synthase) F 0 portion of b Subunit and may be a dicarboxylate transporter that is encoded by the dctA gene (SEQ ID NO: 5).

본 명세서에서 사용된 용어, '글로에오박터(Gloeobacter)'는 단세포 시아노박테리움(Cyanobacterium)으로 틸라코이드 막이 없는 대신 세포막에 광합성 기구와 호흡 시스템을 갖고 있다(Rippka Ret al., Arch Microbiol. 100:419-436, 1974). 글로에오박터의 게놈에서 미생물 유래의 로돕신과 상동성이 있는 유전자가 발견되었고, 상기 유전자에 의하여 암호화되는 단백질이 프로테오로돕신(proteorhodopsin, PR)과 같이 양성자를 펌핑하기 때문에 상기 유전자는 GR(Gloeobacter Rhodopsin)로 명명되었다.As used herein, the term ' Gloeobacter ' is a unicellular Cyanobacterium , which has a photosynthetic apparatus and respiratory system in the cell membrane instead of a thylakoid membrane ( Rippka Ret. Al., Arch Microbiol . 100: 419-436, 1974). Glow O bakteo genome a gene with a rhodopsin and the homology of microbial was found in the in the gene because the protein encoded by the gene to pump protons as proteosome rhodopsin (proteorhodopsin, PR) is GR (Gloeobacter Rhodopsin).

본 발명의 일 구체예에서, 상기 에스케리치아 속 변이 균주는 글로에오박터 유래 로돕신을 암호화하는 GR 유전자 서열(서열번호 2)을 포함하고, 상기 유전자는 형질전환과 같은 당업계에 알려진 유전자 전달 방법에 의하여 에스케리치아 속 변이 균주에 포함될 수 있다.In one embodiment of the present invention, the Escherichia spp. Mutant strain comprises a GR gene sequence (SEQ ID NO: 2) that encodes rodeobacterium rhodopsin, and the gene includes a gene transfer And can be included in Escherichia spp.

본 발명의 다른 양상은 상기 에스케리치아 속 변이 균주를 배지에서 배양하는 단계; 상기 배양액을 회수하는 단계; 및 회수한 배양액으로부터 막단백질을 수득하는 단계를 포함하는 막단백질 생산 방법을 제공한다.Another aspect of the present invention relates to a method for producing Escherichia sp. Collecting the culture liquid; And obtaining a membrane protein from the recovered culture medium.

본 명세서에서 사용되는 용어, '배양(culture)'은 미생물을 적절히 조절한 환경조건에서 생육시키는 것을 의미한다. 본 발명의 미생물을 배양하는 방법은 당업계에 알려져 있는 적당한 배지와 배양조건에 따라 수행할 수 있으며, 선택되는 균주에 따라 당업자가 용이하게 조정하여 사용할 수 있다. 상기 배양 방법의 예로는 회분식 배양(batch culture), 연속 배양(continuous culture) 및 유가식 배양(fed-batch culture)이 포함될 수 있다.As used herein, the term " culture " means that the microorganism is grown under suitably controlled environmental conditions. The method of culturing the microorganism of the present invention can be carried out according to a suitable culture medium and culture conditions known in the art and can be easily adjusted by those skilled in the art depending on the selected strain. Examples of the culture method may include a batch culture, a continuous culture, and a fed-batch culture.

본 명세서에서 사용되는 용어, '배지(media)'는 막단백질 생산 균주의 배양에 사용되는 것으로 상기 균주가 막단백질을 생산할 수 있도록 탄소원, 질소원 및 무기염류를 포함하는 배지를 의미한다. 탄소원으로는 전분, 포도당, 자당, 갈락토스, 과당, 글리세롤 및 이들의 혼합물로 이루어진 군으로부터 선택된 것을 사용할 수 있으며, 예를 들어 글리세롤일 수 있다. 질소원으로는 황산암모늄, 질산암모늄, 질산나트륨, 글루탐산, 카사미노산, 효모추출물, 펩톤, 트립톤, 대두박 및 이들의 혼합물로 이루어진 군으로부터 선택된 것을 사용할 수 있으며, 미네랄은 염화나트륨, 인산제이칼륨, 황산 마그네슘 및 이들의 혼합물로 이루어진 군으로부터 선택된 것을 사용할 수 있다.As used herein, the term " media " refers to a medium used for culturing a membrane protein producing strain, wherein the strain comprises a carbon source, a nitrogen source and inorganic salts so as to produce a membrane protein. The carbon source may be selected from the group consisting of starch, glucose, sucrose, galactose, fructose, glycerol, and mixtures thereof, for example, glycerol. The nitrogen source may be selected from the group consisting of ammonium sulfate, ammonium nitrate, sodium nitrate, glutamic acid, casamino acid, yeast extract, peptone, tryptone, soybean meal and mixtures thereof. The minerals include sodium chloride, potassium phosphate, magnesium sulfate And a mixture thereof can be used.

상기 막단백질을 수득하는 단계는 본 발명의 미생물의 배양 방법, 예를 들어 회분식, 연속식 또는 유가식 배양 방법 등에 따라 당해 기술 분야에 공지된 적합한 방법을 이용할 수 있으며, 상기 회수 단계는 정제 공정을 포함할 수 있다.The step of obtaining the membrane protein may be carried out by a suitable method known in the art according to the culture method of the microorganism of the present invention, for example, batch, continuous, or fed-batch culture method, .

본 발명의 일 구체예에 따른 비-유전자 재조합 대장균 균주를 이용하여 막단백질을 효율적으로 생산할 수 있다.The membrane protein can be efficiently produced using the non-recombinant E. coli strain according to one embodiment of the present invention.

도 1은 키모스탯(chemostat) 발효조에서 E. coli W3110/pKJ606-GR 균주를 88일 동안 배양하면서 흡광도(OD600)를 측정한 결과를 보여준다: 상방향 화살표는 저장조에 새로운 배지를 공급한 시점을 나타낸다.
도 2는 빛을 조사한 조건으로, 키모스탯 발효조에서 E. coli W3110/pKJ606-GR 균주(조상 균주)를 88일 동안 배양하면서 주사 전자 현미경으로 세포의 형태를 관찰한 결과를 보여준다: a는 배양 0일차에 관찰한 E. coli W3110/pKJ606-GR 균주(x10,000 배율); b는 배양 30일차에 관찰한 진화된 E. coli W3110/pKJ606-GR 균주(x9,000 배율); 및 c는 배양 88일차에 관찰한 진화된 E. coli W3110/pKJ606-GR 균주(x10,000 배율).
도 3은 회분배양 전 및 후에 주사 전자 현미경으로 E. coli ET5/pKJ606-GR 균주의 세포 형태를 관찰한 결과를 보여준다: a는 회분배양 전 관찰한 E. coli ET5/pKJ606-GR 균주(x10,000 배율); b는 회분배양 후 관찰한 E. coli ET5/pKJ606-GR 균주(x10,000 배율); c는 회분배양 전 관찰한 E. coli ET5/pKJ606-GR 균주(x80,000 배율); 및 d는 회분배양 후 관찰한 E. coli ET5/pKJ606-GR 균주(x80,000 배율).
도 4는 E. coli W3110/pKJ606-GR 균주와 E. coli ET5/pKJ606-GR 균주의 양성자 펌핑(proton pumping) 능력을 비교한 결과를 보여준다: 도면 내의 삽도(inset)는 양성자 펌핑 수준을 측정하는 동안 식염수의 pH 변화를 측정한 그래프이다.
도 5는 E. coli W3110/pKJ606-GR 균주와 E. coli ET5/pKJ606-GR 균주에서 발현되는 글로에오박터 로돕신의 수를 확인한 결과를 보여준다.
도 6은 E. coli W3110/pTrc99a-atpF 균주와 E. coli ET5/pTrc99a-atpF 균주에서 ATP 합성효소(ATP synthase) F0 부위의 b 서브유닛 생산 능력을 비교한 결과를 보여준다.
도 7은 E. coli W3110/pTrc99a- dctA 균주와 E. coli ET5/pTrc99a-dctA 균주의 디카복실레이트 수송체(dicarboxylate transporter) 생산 능력을 비교한 결과를 보여준다.
FIG. 1 shows the absorbance (OD 600 ) of E. coli W3110 / pKJ606-GR strain cultured for 88 days in a chemostat fermenter. The upward arrow indicates the time point when a fresh medium was supplied to the storage tank .
FIG. 2 shows the result of observing the morphology of cells with a scanning electron microscope while culturing the E. coli W3110 / pKJ606-GR strain (ancestor strain) in a Kimostat fermenter for 88 days under light irradiation conditions: E. coli W3110 / pKJ606-GR strain (x10,000 magnification) observed first; b is an evolved E. coli W3110 / pKJ606-GR strain (x9,000 magnification) observed at 30 days of culture; And c is an evolved E. coli W3110 / pKJ606-GR strain (x10,000 magnification) observed at 88 days in culture.
Figure 3 shows the results of observing the cell morphology of the E. coli ET5 / pKJ606-GR strain by SEM before and after ash culture: a was the E. coli ET5 / pKJ606-GR strain (x10, 000 magnification); b is the E. coli ET5 / pKJ606-GR strain (x10,000 magnification) observed after ash culture; c was E. coli ET5 / pKJ606-GR strain (x80,000 magnification) observed before ash culture; And d is the E. coli ET5 / pKJ606-GR strain (x80,000 magnification) observed after ash culture.
Figure 4 shows the results of comparing the proton pumping ability of the E. coli W3110 / pKJ606-GR and E. coli ET5 / pKJ606-GR strains: The inset in the figure shows the proton pumping level The pH of the saline solution was measured.
FIG. 5 shows the results of confirming the number of gliobacteridopsis expressed in the E. coli W3110 / pKJ606-GR strain and the E. coli ET5 / pKJ606-GR strain.
FIG. 6 shows the results of comparing the b-subunit production ability of the ATP synthase F 0 site in the E. coli W3110 / pTrc99a-atpF and E. coli ET5 / pTrc99a-atpF strains.
Figure 7 shows the results of comparing the ability of E. coli W3110 / pTrc99a- dctA and E. coli ET5 / pTrc99a-dctA to produce dicarboxylate transporters.

이하 하나 이상의 구체예를 실시예를 통하여 보다 상세하게 설명한다. 그러나, 이들 실시예는 하나 이상의 구체예를 예시적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.Hereinafter, one or more embodiments will be described in more detail by way of examples. However, these embodiments are intended to illustrate one or more embodiments, and the scope of the present invention is not limited to these embodiments.

실험 방법Experimental Method

1. 미생물 균주, 배지 및 적응 진화(adaptive evolution) 유도1. Microbial strains, medium and inducing adaptive evolution

J. Nanosci. Nanotechnol., 2011;11:4261-4264에 개시된 글로에오박터 유래 로돕신(Gloeobacter rhodopsin, 이하 GR로 기재함)을 암호화하는 pKJ606-GR 플라스미드(서열번호 3)를 대장균 W3110(Escherichia coli W3110) 균주에 도입하여 적응 진화를 위한 조상 균주(ancestral strain)로 이용하였다. 조상 균주(이하, W3110/pKJ606-GR 균주로 기재함)의 키모스탯 배양(chemostat culture)은 M9 최소배지(M9 minimal medium)를 일부 변형하여 빛을 조사(illumination)하면서 수행하였다.J. Nanosci. Nanotechnol, 2011; 11:. Glow bakteo O (referred to Gloeobacter rhodopsin, hereinafter GR) derived from the rhodopsin disclosed 4261-4264 cryptographic pKJ606-GR plasmid (SEQ ID NO: 3), E. coli W3110 (Escherichia coli W3110) and used as an ancestral strain for adaptive evolution. Chemostat cultures of ancestor strains (hereinafter referred to as W3110 / pKJ606-GR strains) were performed by light transformation with some modification of M9 minimal medium.

배양에 이용한 M9 최소배지의 조성은 하기와 같다: 1 g/L 글루코스, 0.8 g/L NH4Cl, 0.5 g/L NaCl, 7.5 g/L Na2HPO4·2H2O, 3 g/L KH4PO4, 0.2 g/L MgSO4·7H2O, 0.1 g/L CaCl2, 50 ㎍/㎖ 암피실린, 0.1 mM IPTG 및 에탄올에 용해된 5 μM all-trans-retinal(Cat. Number R-2500, Sigma-Aldrich Co., USA)을 첨가한 1 ㎎/L 티아민(thiamine)·HCl.The composition of M9 minimal medium used for the culture is as follows: 1 g / L glucose, 0.8 g / L NH 4 Cl , 0.5 g / L NaCl, 7.5 g / L Na 2 HPO 4 · 2H 2 O, 3 g / L 5 μM all-trans-retinal (Cat. No. R-1) dissolved in KH 4 PO 4 , 0.2 g / L MgSO 4 .7H 2 O, 0.1 g / L CaCl 2 , 50 μg / ml ampicillin, 0.1 mM IPTG, 2500, Sigma-Aldrich Co., USA), 1 mg / L thiamine HCl.

상기 배지를 이용하여 하기와 같이 W3110/pKJ606-GR 균주(조상 균주)의 진화를 유도하였다.The culture medium was used to induce the evolution of the W3110 / pKJ606-GR strain (ancestor strain) as described below.

W3110/pKJ606-GR 균주의 단일 콜로니를 하나 취하여 M9 최소배지 3 ㎖에 접종하고, 200 rpm으로 교반하면서 37℃에서 16시간 동안 배양하였다. 배양액(culture broth) 1 ㎖을 회수하여 M9 최소배지 100 ㎖이 들어 있는 미니키모스탯 발효조(minichemostat fermenter jar; Hanil Inc., Korea)에 접종하였다. 발효조에는 1 ㎝ 간격으로 4개의 1W LED 전구를 설치하여 광원으로 이용하였다. 발효조는 37℃, 200 rpm 및 환기(100 ㎖/min) 조건으로 운전하고, 지속적으로 빛을 조사하였다. 20 L 배지 저장조(reservoir)는 고갈될 때마다 초기 배양 배지와 동일한 조성의 새로운 배지를 공급하였다. 저장조는 광-민감성 레티날(light-sensitive retinal)의 활성 감소를 방지하기 위하여 알루미늄 호일로 포장하였다. 유입(inlet) 및 유출(outlet) 튜브는 10 ㎖/L 속도의 연동 펌프(peristaltic pump)로 조절하였으며, 상기 속도는 0.1 h-1의 희석 비율에 해당한다. 배양 88일 동안 유출 튜브에서 배양액 1 ㎖를 회수하여 흡광도(OD600)를 측정하였다.One single colony of W3110 / pKJ606-GR strain was taken and inoculated into 3 ml of M9 minimal medium and cultured at 37 DEG C for 16 hours with stirring at 200 rpm. 1 ml of the culture broth was collected and inoculated into a minichemostat fermenter jar (Hanil Inc., Korea) containing 100 ml of M9 minimal medium. In the fermenter, four 1W LED bulbs were installed at intervals of 1 cm and used as a light source. The fermenter was operated under conditions of 37 ° C, 200 rpm and ventilation (100 ml / min) and continuously irradiated with light. The 20 L medium reservoir was fed with fresh medium of the same composition as the initial culture medium whenever depleted. The reservoir was packed with aluminum foil to prevent the loss of light-sensitive retinal activity. The inlet and outlet tubes were controlled with a peristaltic pump at a rate of 10 ml / L, which corresponds to a dilution rate of 0.1 h -1 . 1 ml of the culture broth was collected from the effluent tube for 88 days to measure the absorbance (OD 600 ).

2. 미생물 형태 확인2. Identification of microorganism type

유출 튜브에서 회수한 배양액을 매일 양안 현미경(binocular microscope; BX41, Olympus, Japan)으로 확인(1,000X 배율)하였다. 또한, 키모스탯 배양액 내 E.coli 개체군(population) 및 진화된 후손 E. coli(evolved descendant E. coli)를 주사 전자 현미경(S-4800, Hitachi, Japan)으로 배양 0일차, 30일차 및 88일차에 각각 관찰하였다.The culture solution recovered from the outflow tube was confirmed (1,000X magnification) with a binocular microscope (BX41, Olympus, Japan) daily. Also, chymotrypsin stat culture in E.coli population (population) and the evolved descendants E. coli (evolved descendant E. coli) to the culture day 0, 30 and 88 primary linear scanning electron microscope (S-4800, Hitachi, Japan ) Respectively.

배양 88일차 되는 날의 키모스탯 배양액을 M9 최소배지 한천 플레이트(1.5% agar)에 도말하였다. 빛을 조사(10 ㎝ 간격의 13W 전구 이용)하면서 37℃에서 48시간 동안 배양한 후, 단일 콜로니를 무작위로 선택하여 E. coli ET5(5-㎛-long evolved type; 진화 균주)로 명명하고 추후 실험에 이용하였다. E . coli ET5 균주는 W3110/pKJ606-GR 균주와 같이 pKJ606-GR 플라스미드를 포함하고 있으므로 이하에서는 pKJ606-GR 플라스미드를 포함하는 ET5 균주를 ET5/pKJ606-GR 균주로 기재한다.Cultures of chymostat on day 88 of culture were plated on M9 minimal medium agar plates (1.5% agar). A single colony was randomly selected to be named E. coli ET5 (5-㎛-long evolved type) after incubation at 37 ° C for 48 hours with light irradiation (using a 13 W bulb at 10 cm intervals) Respectively. E. Since the E. coli ET5 strain contains the pKJ606-GR plasmid in the same way as the W3110 / pKJ606-GR strain, the ET5 strain containing the pKJ606-GR plasmid will be described as the ET5 / pKJ606-GR strain hereinafter.

3. 3. 광영양Photo nutrition 생장 측정( Growth Measurement ( phototrophic광학 growth measurement) growth measurement)

W3110/pKJ606-GR 균주(조상 균주) 및 ET5/pKJ606-GR 균주(진화 균주)의 광영양 생장 정도를 측정하기 위하여 세포를 회분배양(batch-culture)하였다. 구체적으로, 250 ㎖ 용량의 엘렌마이어 플라스크(Erlenmeyer flask)에 배지 50 ㎖를 첨가하고, 균주를 접종하여 37℃ 교반 배양기(13W 전구가 20 ㎝ 간격으로 설치됨)에서 200 rpm으로 24시간 동안 배양하였다. 글루코스 농도가 2 g/L인 것을 제외하고, 키모스탯 배양과 동일한 배지를 이용하였고, 세포 생장 정도는 흡광도(OD600)를 측정하여 확인하였다. 화학영양 생장(chemotrophic growth)은 플라스크를 알루미늄 호일로 포장하여 빛이 차단된 조건에서 측정하였다. 광영양 생장은 명상태(light condition)에서의 세포 생장으로부터 암상태(dark condition)에서의 세포 생장을 뺀 값으로 계산하였다. 세포 생장 정도는 3회 반복하여 측정하였다.Cells were batch-cultured to determine the extent of photo-nutrient growth of W3110 / pKJ606-GR strain (ancestor strain) and ET5 / pKJ606-GR strain (evolutionary strain). Specifically, 50 ml of the medium was added to a 250 ml Erlenmeyer flask, and the strain was inoculated and cultured in a 37 ° C agitating incubator (13 W bulbs were installed at intervals of 20 cm) at 200 rpm for 24 hours. The same medium as the chymostat culture was used except that the glucose concentration was 2 g / L, and the degree of cell growth was determined by measuring the absorbance (OD 600 ). For chemotrophic growth, the flasks were packed with aluminum foil and measured under light-shielded conditions. Photoperiodic growth was calculated from cell growth in light condition minus cell growth in dark condition. The degree of cell growth was measured three times.

4. 양성자 4. Proton 펌핑Pumping 수준 측정(proton pumping measurement) Proton pumping measurement

GR에 의한 양성자 펌핑 수준을 확인하기 위하여, W3110/pKJ606-GR 균주(조상 균주) 및 ET5/pKJ606-GR 균주(진화 균주)를 배양하였다. 대수기(log phase)의 세포를 원심분리(3,600 rpm, 10분 및 실온)로 회수하여, 식염수(10 mM NaCl, 10 mM MgSO7H2O, 및 0.1 mM CaCl2)로 세포 펠렛을 2회 세척하였다. 세척한 세포 펠렛을 분광광도계 큐벳(spectrophotometric cuvette; path length 1 ㎝)에 넣고, 100 W/㎡의 세기로 빛을 조사하였다. 빛 조사에는 단파장 차단 필터(short-wave cutoff filter; >440 ㎚, Sigma Koki SCF50S-44Y, Japan), 포커싱 볼록 렌즈(focusing convex lens) 및 열-보호 CuSO4 필터(heat-protecting CuSO4 filter)를 이용하였다. 양성자 펌핑 수준은 F-51 pH meter(Horiba Ltd., Kyoto, Japan)로 1분 동안 pH를 측정함으로써 확인하였고, 3회 이상 반복하여 측정하였다. 양성자 농도의 차이를 확인한 후, 산 첨가에 의한 보정을 고려하여 양성자 농도를 pH=-log10[H+]으로 계산하였다.W3110 / pKJ606-GR (ancestor strain) and ET5 / pKJ606-GR strain (an evolutionary strain) were cultured in order to confirm the level of proton pumping by GR. The cells in the log phase were collected by centrifugation (3,600 rpm, 10 min and room temperature) and the cell pellet was resuspended in saline (10 mM NaCl, 10 mM MgSO 4 .7H 2 O, and 0.1 mM CaCl 2 ) Lt; / RTI > The washed cell pellet was placed in a spectrophotometric cuvette (path length 1 cm) and irradiated with light at an intensity of 100 W / m < 2 >. Protected CuSO 4 filter (heat-protecting CuSO 4 filter) -; (> 440 ㎚, Sigma Koki SCF50S-44Y, Japan short-wave cutoff filter), a focusing convex lens (focusing convex lens) and heat light irradiation, the short wavelength cut-off filter Respectively. Proton pumping levels were determined by measuring the pH for 1 min with an F-51 pH meter (Horiba Ltd., Kyoto, Japan) and repeated three or more times. After confirming the difference in the proton concentration, the proton concentration was calculated as pH = -log 10 [H + ] by considering the correction by adding the acid.

5. 게놈 분석(genome analysis)5. Genome analysis

W3110/pKJ606-GR 균주(조상 균주) 및 ET5/pKJ606-GR 균주(진화 균주)의 게놈 DNA와 플라스미드 DNA는 Wizard genomic DNA purification kit (Promega, USA) 및 Plasmid miniprep kit (Qiagen, Germany)를 이용하여 제조사의 프로토콜에 따라 각각 분리하였다. 서열분석을 위하여, 분리한 게놈 DNA와 플라스미드 DNA를 100:1의 질량비로 혼합하고, Illumina TruSeq Nano DNA kit(San Diego, CA, USA)를 이용하여 평균 인서트 사이즈(average insert size)가 600 bp인 시퀀싱 라이브러리 컨스트럭션(sequencing library construction)을 제작하였다. 상기 시퀀싱 라이브러리 컨스트럭션의 서열분석은 Illumina MiSeq platform (San Diego, CA, USA)을 이용하여 한국생명공학연구원(Korea Research Institute of Bioscience and Biotechnology; 대한민국)에서 수행하였으며, 300-cycle paired-end sequencing 방법을 이용하였다. 판독 전처리(read preprocessing)는 품질 트림 한계(quality trim limit) 0.01, 판독마다 1개의 불확실한 뉴클레오티드 허용, 및 최소 판독 길이 100 bp 조건으로 수행하였다. 레퍼런스 맵핑(reference mapping)과 삽입결실(indel) 및 구조적 변이체 검출을 포함하는 고정 배수성 변이체 검출(fixed ploidy variant detection)은 모두 CLC Genomics Workbench 8.0(Insilicogen, 대한민국)을 이용하여 수행하였다. E . coli W3110 균주의 공개된 완전한 게놈 서열(RefSeq NC_007779.1)과 pKJ606-GR의 서열(서열번호 3)을 참조서열로 이용하였다.Genomic DNA and plasmid DNA of W3110 / pKJ606-GR strain and ET5 / pKJ606-GR strain (evolutionary strain) were purified using Wizard genomic DNA purification kit (Promega, USA) and Plasmid miniprep kit (Qiagen, Germany) Respectively, according to the protocol of the manufacturer. For the sequencing, the separated genomic DNA and plasmid DNA were mixed at a mass ratio of 100: 1, and the average insert size was 600 bp using an Illumina TruSeq Nano DNA kit (San Diego, Calif., USA) Sequencing library construction was constructed. Sequencing of the sequencing library constructs was carried out using the Illumina MiSeq platform (San Diego, Calif., USA) at the Korea Research Institute of Bioscience and Biotechnology, Korea, and a 300-cycle paired-end sequencing method Respectively. Read preprocessing was performed with a quality trim limit of 0.01, one uncertain nucleotide per reading, and a minimum read length of 100 bp. Reference mapping and fixed ploidy variant detection including insertion deletion (indel) and structural variant detection were all performed using CLC Genomics Workbench 8.0 (Insilicogen, Korea). E. The published complete genome sequence of the E. coli W3110 strain (RefSeq NC_007779.1) and the sequence of pKJ606-GR (SEQ ID NO: 3) were used as reference sequences.

6. 형질 도입된 6. Transduced E. E. colicoli 균주 제작 Strain production

6-1. HK769 균주(6-1. HK769 strain ( KmRKmR -tagged -tagged dgcQdgcQ C1082AC1082A 균주) 제작 Strain) production

E. coli JW1912 균주[#CGSC(Coli Genetic Stock Center) 9590]는 Keio collection으로부터 수득하였으며, 이 균주는 알파-아밀라아제(α-amylase)를 암호화하는 amyA 유전자의 개방 해독 프레임(open reading frame) 대신 카나마이신 저항성 유전자(kanamycin resistance gene; KmR)를 갖고 있다. 카나마이신 저항성 유전자는 염색체 내의 dgcQ C1082A 돌연변이로부터 20 kb 떨어진 곳에 위치해 있다. ET5/pKJ606-GR 균주에 ΔamyA::KmR 형질을 도입하여 HK769 균주를 제작하기 위해 하기와 같이 실험하였다. E. coli JW1912 strain [#CGSC (Coli Genetic Stock Center) 9590] was obtained from the Keio collection, which is an open reading frame of the amyA gene encoding alpha- amylase (kanamycin It has a resistance gene (kanamycin resistance gene; KmR). The kanamycin resistance gene is located 20 kb away from the dgcQ C1082A mutation in the chromosome. By introducing Δ amyA :: KmR transformants in ET5 / pKJ606 GR-strain was tested as described below to produce strain HK769.

6-1-1.6-1-1. JW1912 균주의 P1 P1 of JW1912 strain 용해물Melt (( lysatelysate ) 제조) Produce

JW1912 균주(공여 균주)를 LB 액체배지 5 ㎖에 접종하여 밤새(overnight) 배양하였다. 다음날 20% 포도당 50 ㎕ 및 1M CaCl2 25 ㎕를 포함하는 LB 액체배지 5 ㎖에 상기 배양액 50 ㎕를 첨가(1:100 희석)하고, 37℃에서 30분 내지 45분 동안 배양하였다. 여기에 P1vir phage stock(109 내지 1010 pfu/㎖; 발명자 보유) 1 방울을 첨가하고, 세포가 용해될 때까지 2시간 내지 4시간 동안 추가로 배양하였다. 세포가 충분히 용해되면 클로로포름 50 ㎕을 첨가하고, 30초 동안 볼텍싱(vortexing)하여 15분 동안 방치하였다. JW1912 균주의 P1 용해물을 멸균된 원심분리 튜브로 옮기고, 4℃에서 보관하였다.The strain JW1912 (donor strain) was inoculated overnight in 5 ml of LB liquid medium. On the next day, 50 μl of the above culture was added (1: 100 dilution) to 5 ml of LB liquid medium containing 50 μl of 20% glucose and 25 μl of 1M CaCl 2 and incubated at 37 ° C for 30 minutes to 45 minutes. One drop of P1vir phage stock (10 9 to 10 10 pfu / ml; inventor's own) was added and further cultured for 2 to 4 hours until the cells were dissolved. When the cells were sufficiently dissolved, 50 μl of chloroform was added, vortexed for 30 seconds, and left for 15 minutes. The P1 lysate of strain JW1912 was transferred to a sterile centrifuge tube and stored at 4 < 0 > C.

6-1-2. 형질도입6-1-2. Transduction

ET5/pKJ606-GR 균주(수여 균주)를 LB 액체배지 5 ㎖에 접종하여 밤새 배양하고, 배양액 1.5 ㎖를 14,000 rpm에서 2분 동안 원심분리하여 세포 펠렛을 회수하였다. 세포 펠렛을 P1 염용액(10 mM CaCl, 5 mM MgSO4) 0.75 ㎖에 현탁시키고, 현탁액 100 ㎕를 멸균된 테스트 튜브에 담았다. 테스트 튜브에 상기 실시예 6-1-1에서 제조한 JW1912 균주의 P1 용해물을 3 방울 첨가하고, 30℃에서 30분 동안 배양하였다. 이후, LB 액체배지 1 ㎖ 및 1M 시트르산 나트륨(sodium citrate) 200 ㎕를 테스트 튜브에 첨가하고, 37℃에서 1시간 동안 추가로 배양하였다. 배양액을 원심분리(14,000 rpm, 2분)하여 세포 펠렛을 회수하고, LB 액체배지 100 ㎕에 펠렛을 재현탁시켰다. 현탁액 일부를 5 mM 시트르산 나트륨이 포함된 LB 선택배지 플레이트에 도말하여 밤새 배양하였다. 플레이트에서 단일 콜로니를 하나 취하여 5 mM 시트르산 나트륨이 포함된 선택배지 플레이트에 스트리킹(streaking)하고, 다시 밤새 배양하였다. 다음날, 플레이트에서 단일 콜로니를 하나 취하여 선택배지 플레이트에 스트리킹하고, 배양한 후 형질전환된 HK769 균주를 수득하였다. 형질 도입 여부는 DNA 서열분석으로 확인하였다.The ET5 / pKJ606-GR strain (donor strain) was inoculated in 5 ml of LB liquid medium overnight, and 1.5 ml of the culture broth was centrifuged at 14,000 rpm for 2 minutes to recover the cell pellet. The cell pellet P1 salt solution (10 mM CaCl, 5 mM MgSO 4) was suspended in 0.75 ㎖, captured in a test tube with a sterile suspension 100 ㎕. Three drops of the P1 lysate of the strain JW1912 prepared in Example 6-1-1 were added to the test tube and cultured at 30 DEG C for 30 minutes. Then, 1 ml of LB liquid medium and 200 占 퐇 of 1M sodium citrate were added to the test tubes and further cultured at 37 占 폚 for 1 hour. The culture broth was centrifuged (14,000 rpm, 2 minutes) to recover the cell pellet, and the pellet was resuspended in 100 μl of LB liquid medium. A portion of the suspension was plated on LB selective medium plates containing 5 mM sodium citrate and incubated overnight. One single colony was taken from the plate, streaked on selective medium plates containing 5 mM sodium citrate, and incubated overnight. The next day, a single colony was picked from the plate, streaked on selective medium plates, and cultured to obtain transformed strain HK769. Transduction was confirmed by DNA sequencing.

6-2. HK775 균주(6-2. HK775 strain ( E. E. colicoli ΔΔ amyAamyA :::: KmRKmR , , dgcQdgcQ C1082AC1082A ) 제작Production

상기 6-1과 동일한 방법으로 HK774 균주(E. coli ΔamyA::KmR, dgcQ WT)에 dgcQ C1082A의 점 돌연변이를 도입하여 동질 유전자형의 HK775 균주(isogenic HK775 strain; E. coli ΔamyA::KmR, dgcQ C1082A)를 제작하였다. 다만, HK769 균주를 공여 균주로 이용하고, 수여 균주는 HK774 균주를 이용하였다. HK774 균주는 W3110 균주에 ΔamyA::KmR 형질을 도입하여 제작한 균주이다.In the same manner as in 6-1 above, the strain HK774 ( E. coli Δ amyA :: KmR, dgcQ WT ) by introducing a point mutation of dgcQ C1082A into the homologous genotype HK775 strain (isogenic HK775 strain; E. coli ? AmyA :: KmR, dgcQ C1082A ). However, strain HK769 was used as a donor strain and strain HK774 was used as the strain. The strain HK774 is a strain produced by introducing Δ amyA :: KmR trait into W3110 strain.

7. 세포 내 7. Intracellular cdiGMPcdiGMP 농도 측정 Concentration measurement

세포 내 c-di-GMP 농도는 당업계에 알려진 방법(Methods Mol Biol. 2014;1149:271-279)을 이용하여 측정하였다. W3110/pKJ606-GR 균주(조상 균주; 유전자형 E. coli W3110 dgcQ WT/pKJ606-GR)와 ET5/pKJ606-GR 균주(진화 균주; 유전자형 E. coli W3110 dgcQ C1082A/pKJ606-GR)를 5 μM all-trans-retinal 및 암피실린(50 ㎍/㎖)이 보충된 M9 글루코스 최소배지에서 암상태 또는 명상태로 배양하였다.Intracellular c-di-GMP concentrations were determined using methods known in the art (Methods Mol Biol. 2014; 1149: 271-279). (Strain E. coli W3110 dgcQ WT / pKJ606-GR) and strain ET5 / pKJ606-GR (genotype E. coli W3110 dgcQ C1082A / pKJ606-GR) trans-retinal and ampicillin (50 [mu] g / ml) in a minimal medium supplemented with M9 glucose.

OD600 값이 0.5에 도달하면 배양액을 원심분리(6000xg, 4℃ 및 10분)하고, 상등액은 버린 후 액체 질소로 세포를 신속하게 동결시켜 -80℃에 보관하였다. 튜브에서 동결된 세포를 녹인 후 미리 냉각시킨 추출 버퍼 (메탄올:아세토니트릴:0.1 N 포름산 용액=40:40:20) 500 ㎕ 및 내부 표준물질(3', 5'-cyclic xanthosine monophosphate, cXMP; Sigma-Aldrich, USA) 5 ㎕와 혼합하였다. 상기 튜브를 단단히 밀봉하고, 액체 질소와 열 블록(heating block; 30℃)으로 동결과 해동을 3회 반복하여 세포를 파괴하였다. 이후 튜브를 얼음에 30분 동안 방치한 후 원심분리(10,000xg, 4℃ 및 10분)하였다. 상등액 400 ㎕를 새로운 튜브로 옮겨 진공 원심분리(vacuum centrifuge)로 농축한 후, 3차 증류수(triple distilled water; TDW) 100 ㎕를 첨가하여 재현탁시켰다. 재현탁시킨 샘플을 다시 원심분리(10,000xg, 4℃ 및 30분)하여 고체 성분을 제거하고, 상등액은 -80℃에 보관하였다. 상등액에 포함된 c-di-GMP 농도는 C18 컬럼(Hypersil Gold column, 2.1x100 ㎜, 1.8 ㎛; Thermo Fisher Scientific, USA)과 질량 분석기(mass spectrometer; TSQ Quantum Access MAX Quadrupole MS, Thermo Fisher Scientific)가 장착된 LC-MS/MS(Accela 1250 UPLC system, Thermo Fisher Scientific)를 이용하여 분석하였다.When the OD 600 value reached 0.5, the culture was centrifuged (6000 x g, 4 캜 and 10 minutes), the supernatant was discarded, the cells were quickly frozen with liquid nitrogen and stored at -80 ° C. After dissolving the frozen cells in the tube, 500 μl of an extraction buffer (methanol: acetonitrile: 0.1 N formic acid solution = 40: 40: 20) and an internal standard (3 ', 5'-cyclic xanthosine monophosphate, cXMP; Sigma -Aldrich, USA). The tube was sealed tightly and the cells were disrupted by freezing and thawing three times with liquid nitrogen and heating block (30 ° C). The tubes were then placed on ice for 30 minutes and then centrifuged (10,000xg, 4 ° C and 10 minutes). 400 μl of the supernatant was transferred to a new tube, concentrated by vacuum centrifuge, and resuspended by adding 100 μl of triple distilled water (TDW). The resuspended sample was centrifuged again (10,000xg, 4 < 0 > C and 30 minutes) to remove the solids and the supernatant was stored at -80 < 0 > C. The concentration of c-di-GMP contained in the supernatant was measured using a C18 column (Hypersil Gold column, 2.1 x 100 mm, 1.8 쨉 m; Thermo Fisher Scientific, USA) and a mass spectrometer (TSQ Quantum Access MAX Quadrupole MS, Thermo Fisher Scientific) And analyzed using an attached LC-MS / MS (Accela 1250 UPLC system, Thermo Fisher Scientific).

8. 8. GRGR 단백질 발현 수준 측정 Measurement of protein expression level

암피실린(50 ㎍/㎖)을 포함하는 LB 액체배지 3 ㎖에 W3110/pKJ606-GR 균주 및 ET5/pKJ606-GR 균주의 스톡(stock) 10 ㎕를 각각 접종하여 OD600이 1이 될때까지 37℃에서 배양하였다. 엘렌마이어 플라스크에 M9 최소배지 50 ㎖을 첨가하고, 상기 배양액을 접종하여 추가로 배양하였다. 사용한 M9 글루코스 최소배지의 조성은 다음과 같다: 1 g/L 글루코스, 1 g/L NH4Cl, 0.5 g/L NaCl, 12.8 g/L Na2HPO4 ·7H2O, 3 g/L KH2PO4, 2 mM MgSO4, 0.1 mM CaCl2, 50 ㎍/㎖ 암피실린 및 에탄올에 용해된 5 μM all-trans-retinal(Cat. Number R-2500, Sigma-Aldrich Co., USA)을 첨가한 1 ㎎/L 티아민(thiamine)·HCl.Ampicillin in 3 ㎖ LB liquid medium containing (50 ㎍ / ㎖) W3110 / pKJ606-GR strain and ET5 / pKJ606-GR respectively inoculated with stock (stock) 10 ㎕ of the strain at 37 ℃ until this OD 600 1 Lt; / RTI > 50 ml of M9 minimal medium was added to an Ellenmeyer flask, and the above culture was inoculated and further cultured. The composition of the M9 glucose minimal medium used is as follows: 1 g / L glucose, 1 g / L NH 4 Cl , 0.5 g / L NaCl, 12.8 g / L Na 2 HPO 4 · 7H 2 O, 3 g / L KH 2 PO 4, 2 mM MgSO 4 , 0.1 mM CaCl 2, 50 ㎍ / ㎖ ampicillin and dissolved in ethanol 5 μM all-trans-retinal ( Cat. Number R-2500, Sigma-Aldrich Co., USA) was added to 1 mg / L thiamine HCl.

GR 발현을 유도하기 위해 IPTG(0.01 또는 0.1 mM)를 첨가하고, OD600이 1이 될때까지 배양하였다. 조명이 설치되어 있는 배양기에서 빛 조사군은 플라스크 그대로 배양하고, 빛 비조사군은 플라스크를 알루미늄 호일로 포장하여 배양하였다. 배양이 끝나면 배양액 1 ㎖을 회수하여 OD600을 측정하였고, 나머지 배양액은 원심분리하여 펠렛을 수거하였다. 수거한 펠렛은 액체질소로 냉동시켜 -80℃에 보관하였다.To induce GR expression, IPTG (0.01 or 0.1 mM) was added and cultured until OD 600 was 1. In the lighted incubator, the irradiated group was cultured as a flask, and the light non-irradiated group was cultured by packing the flask with aluminum foil. When the culture was completed, 1 ml of the culture solution was recovered and the OD 600 was measured. The remaining culture was centrifuged to collect the pellet. The collected pellets were frozen in liquid nitrogen and stored at -80 ° C.

해동시킨 펠렛에 식염수(unbuffered solution)를 첨가하여 세포를 풀어주고, UV-2450 UV visible spectrophotometer(Shimadzu, 일본)로 350 ㎚ 내지 750 ㎚ 파장의 OD를 측정하였다. OD 측정 결과를 이용하여 origin 61 프로그램(OriginLab, 미국)으로 350 ㎚와 750 ㎚에 해당하는 점을 지나는 지수 곡선(exponential curve)을 작성하고, OD 측정 결과와의 차이를 그래프로 표시하였다. 상기 그래프에서 피크(peak)가 나타내는 지점의 값을 구하고, 하기 수학식 1에 따라 GR의 수를 계산하였다. 또한, 헤모사이토미터 (hemocytometer)로 세포 수를 측정하고, 추정되는 GR의 수를 세포 수로 나누어서 세포 하나의 표면에 발현되는 GR의 수를 계산하였다.Cells were unfastened by adding unbuffered solution to the thawed pellet, and OD of 350 nm to 750 nm wavelength was measured with a UV-2450 UV visible spectrophotometer (Shimadzu, Japan). Using the OD measurement results, an exponential curve was created through the origin 61 program (OriginLab, USA) over the points corresponding to 350 ㎚ and 750 ㎚, and the difference from the OD measurement result was displayed in a graph. The value of the point indicated by the peak in the graph was obtained, and the number of GR was calculated according to the following equation (1). In addition, the cell number was measured with a hemocytometer, and the number of GRs expressed on the surface of one cell was calculated by dividing the estimated number of GRs by the number of cells.

Figure pat00001
Figure pat00001

9. ET5 균주의 9. The strain of ET5 막단백질Membrane protein 생산 능력 측정 Capacity measurement

9-1. 형질전환9-1. Transformation

W3110/pKJ606-GR 균주 및 ET5/pKJ606-GR 균주에 포함된 플라스미드를 제거(curing)하였다. 구체적으로, 노보바이오신(novobiocin) 33 μM을 첨가한 LB 액체배지에서 W3110/pKJ606-GR 균주 및 ET5/pKJ606-GR 균주를 밤새 배양한 후 LB 플레이트에 도말하였다. 콜로니가 형성되면 암피실린(50 ㎍/㎖)을 포함하는 LB 플레이트에 복제(replica plating)하여 추가로 배양하고, 암피실린 배지에서 자라지 않는 균주를 각각 선발하였다. 플라스미드가 제거된 W3110/pKJ606-GR 균주 및 ET5/pKJ606-GR 균주는 각각 W3110 균주 및 ET5 균주로 기재한다.The plasmids contained in the W3110 / pKJ606-GR strain and the ET5 / pKJ606-GR strain were cured. Specifically, the W3110 / pKJ606-GR strain and the ET5 / pKJ606-GR strain were cultured overnight in an LB liquid medium supplemented with 33 μM novobiocin, and then plated on an LB plate. Once colonies were formed, replica plating was performed on LB plates containing ampicillin (50 μg / ml) to further culture, and strains that did not grow in the ampicillin medium were selected. The plasmid-free W3110 / pKJ606-GR strain and the ET5 / pKJ606-GR strain are described as W3110 strain and ET5 strain, respectively.

내막 단백질을 암호화하는 atpF(ATP synthase에서 F0 part의 b 서브유닛을 암호화, 서열번호 4) 유전자와 dctA(dicarboxylate transporter 암호화, 서열번호 5) 유전자를 각각 pTrc99a 벡터에 삽입시켜 pTrc99a-atpF 벡터 및 pTrc99a-dctA 벡터를 제작하였다. 형광현미경으로 내막 단백질의 발현 여부를 확인할 수 있도록 atpF 유전자의 말단에는 GFP(green fluorescent protein) 서열을 추가하였다. 상기에서 선별한 W3110 및 ET5 균주에 각각의 벡터를 첨가하고, 42℃에서 1분 동안 열충격을 가하여 형질전환시켰다. 암피실린(50 ㎍/㎖)을 포함하는 선택배지에 도말하여 형질전환체를 선별하였다: W3110/pTrc99a-atpF 균주, W3110/pTrc99a-dctA 균주, ET5/pTrc99a-atpF 균주 및 ET5/pTrc99a-dctA 균주.(Encoding the b subunit of the F 0 part in the ATP synthase, SEQ ID NO: 4) atpF encoding the endometrial protein gene and dctA (dicarboxylate transporter encryption, SEQ ID NO: 5) by inserting the gene in each pTrc99a vector pTrc99a-atpF vector and pTrc99a -dctA vector. GFP (green fluorescent protein) sequence was added to the end of the atpF gene to confirm the expression of endogenous protein by fluorescence microscopy. Each vector was added to the W3110 and ET5 strains selected above, and transformed by thermal shock at 42 DEG C for 1 minute. Transformants were selected by plating on selective media containing ampicillin (50 占 퐂 / ml): W3110 / pTrc99a-atpF strain, W3110 / pTrc99a-dctA strain, ET5 / pTrc99a-atpF strain and ET5 / pTrc99a-dctA strain.

9-2. 9-2. atpFatpF 유전자에 의해 암호화되는 ATP 합성효소 FATP synthase F 00 부위의 b 서브유닛 발현 측정 Measurement of b subunit expression at the site

상기 9-1에서 선별한 W3110/pTrc99a-atpF 및 ET5/pTrc99a-atpF의 스톡 10 ㎕를 LB 액체배지 3 ㎖에 각각 접종하여 37℃ 및 230 rpm의 조건으로 12시간 동안 배양하였다. 글루코스를 첨가(2 g/L)한 LB 액체배지 50 ㎖에 OD600이 0.1이 되도록 상기 배양액을 접종하고, IPTG를 0.1 mM 농도로 첨가하여 37℃에서 180 rpm으로 3시간 동안 배양하였다. 3시간 후 여기(excitation) 489 ㎚ 및 방출(emission) 530 ㎚의 조건에서 형광분광광도계(Synergy MX, BioTek)로 형광을 3번 반복하여 측정하였다.10 스톡 stocks of W3110 / pTrc99a-atpF and ET5 / pTrc99a-atpF selected in 9-1 were inoculated in 3 ml of LB liquid medium and cultured at 37 캜 and 230 rpm for 12 hours. The culture solution was inoculated in 50 ml of LB liquid medium supplemented with glucose (2 g / L), and the culture solution was inoculated such that the OD 600 was 0.1. IPTG was added at a concentration of 0.1 mM and cultured at 37 캜 for 3 hours at 180 rpm. After 3 hours, fluorescence was measured three times by fluorescence spectrophotometer (Synergy MX, BioTek) under the conditions of excitation 489 nm and emission 530 nm.

9-3. 9-3. dctAdctA 유전자에 의해 암호화되는 Encoded by a gene 디카복실레이트Dicarboxylate 수송체의Transporter 활성 측정 Active measurement

상기 9-1에서 선별한 W3110 pTrc99a- dctA 및 ET5 pTrc99a- dctA의 스톡 10 ㎕를 접종하여 LB 액체배지 3 ㎖에 37℃ 및 230 rpm의 조건으로 12시간 동안 배양하였다. 글루코스를 첨가(2 g/L)한 LB 액체배지 50 ㎖에 OD600이 0.1이 되도록 상기 배양액을 접종하고, IPTG를 0.1 mM 농도로 첨가하여 37℃에서 180 rpm으로 6시간 동안 배양하였다. 배양이 종료하면 10분 동안 원심분리(4℃, 4,000 rpm)하여 세포 펠렛을 회수하고, 숙신산염 용액(succinate salt in PBS(potassium buffer system; 10 g/L) 5 ㎖에 펠렛을 재현탁시켰다. 현탁액을 2.5 ㎖씩 분주하여 볼텍싱한 후 25℃에 1분 동안 방치하였다. 이는 dctA에 의해 암호화되는 디카복실레이트 수송체가 숙신산염을 세포 내로 운반한 시간을 주기 위함이다. 이후, 10분 동안 원심분리(4℃ 및 4,000 rpm)하고, 펠렛을 PBS로 2회 세척하였다. 현탁액 1 ㎖을 PBS 1 ㎖과 혼합하여 초음파분쇄(sonication)하고, 원심분리하여 상등액을 분리하였다. 분리한 상등액을 HPLC로 분석하여 세포 내 숙신산염 양을 측정하였다.10 占 퐇 of stocks of W3110 pTrc99a- dctA and ET5 pTrc99a- dctA selected in 9-1 were inoculated and cultured in 3 ml of LB liquid medium at 37 占 폚 and 230 rpm for 12 hours. The culture solution was inoculated in 50 ml of LB liquid medium supplemented with glucose (2 g / L), and the culture solution was inoculated such that the OD 600 was 0.1. IPTG was added at a concentration of 0.1 mM and cultured at 37 캜 for 6 hours at 180 rpm. After the incubation, the cell pellet was recovered by centrifugation (4 ° C, 4,000 rpm) for 10 minutes, and the pellet was resuspended in 5 ml of succinate salt in PBS (potassium buffer system; 10 g / L). The suspension was vortexed at 2.5 ml each and vortexed for 1 minute at 25 ° C. This was to give the time for the dicarboxylate transporter encoded by dctA to transport the succinate into the cell. The supernatant was separated by centrifugation, and the separated supernatant was separated by HPLC (silica gel), and the supernatant was separated by centrifugation, followed by separation (4 ° C and 4,000 rpm) and washing the pellet twice with PBS. And the amount of succinate in the cells was measured.

실험 결과Experiment result

1. One. GR을GR 발현하는  Expressed E. E. colicoli W3110W3110 (( E. E. colicoli W3110/ W3110 / pKJ606pKJ606 -- GRGR )) 균주의 적응 진화(adaptive evolution)Adaptive evolution of strains

적응 진화를 위하여, 제한된 농도(1 g/L)의 D-글루코스가 함유된 M9 최소배지를 이용하여 키모스탯 발효조에서 W3110/pKJ606-GR 균주(조상 균주)를 88일 동안 배양하였고, 이때 빛은 지속적으로 조사하였다.For adaptive evolution, the W3110 / pKJ606-GR strain (ancestor strain) was cultured in a chymostat fermentor for 88 days using M9 minimal medium with a limited concentration (1 g / L) of D-glucose, And continued research.

키모스탯 배양을 진행하면서 배양액(culture broth)의 흡광도를 측정한 결과, 도 1에 나타난 바와 같이 저장조에 새로운 배지가 공급되면 흡광도가 증가하다가 이후 점차적으로 감소하는 것을 확인할 수 있었다. 또한, 키모스탯 배양 동안 OD600은 0.1 내지 0.7 수준으로 유지되었다.As a result of measuring the absorbance of the culture broth in the course of culturing the chymostat, it was confirmed that when the new medium was supplied to the storage tank as shown in FIG. 1, the absorbance was increased and then gradually decreased. In addition, the OD 600 remained at 0.1 to 0.7 levels during chymostatic culturing.

현미경으로 세포의 형태를 관찰한 결과, 배양 15일차에 길이가 신장된 세포(elongated cells)를 확인할 수 있었다. 키모스탯 배양 동안 길이가 신장된 세포의 수는 점차 증가하였고, 배양 88일차에는 대부분의 세포들이 길이가 신장된 것을 관찰할 수 있었다.Observation of cell morphology by microscope revealed elongated cells in the 15th day of culture. The number of cells elongated during the growth of chymostats gradually increased, and most of the cells were observed to be elongated at 88 days of culture.

배양 30일차(100 세대에 해당) 및 배양 88일차(300 세대에 해당)에 나타나는 E. coli의 형태적 특징을 주사 전자 현미경(scanning electron microscopy)으로 추가로 확인하였다. 확인 결과, 배양 0일차의 W3110/pKJ606-GR 균주는 1.5 내지 2.2 ㎛ 범위의 장축(long axis)을 가지는 전형적인 막대 형태(rod-shaped)를 나타냈다(도 2의 a 참조). 배양 30일차에는 W3110/pKJ606-GR 균주와 비교하여 이례적으로 길이가 신장된, 진화된 형태의 E. coli가 확인되었다(도 2의 b 참조). 배양액 내 길이가 가장 신장된 세포는 장축 길이가 9.3 ㎛였고, 단축 길이는 0.5 ㎛로 야생형 세포와 유사하였다. 배양 88일차에 비전형적 형태를 보이는 세포의 수가 배양 30일차와 비교하여 증가하였다(도 2의 c 참조). 88일 동안 진화된 E. coli 중에서 단일 콜로니를 무작위로 하나 선택하고, ET5/pKJ606-GR 균주(진화 균주)로 명명하였다.The morphological characteristics of E. coli on the 30th day of culture (corresponding to 100th generation) and the 88th day of culture (corresponding to 300th generation) were further confirmed by scanning electron microscopy. As a result, the W3110 / pKJ606-GR strain at day 0 of culture showed a typical rod-shaped shape having a long axis in the range of 1.5 to 2.2 mu m (see Fig. 2 (a)). On the 30th day of culture, an evolved form of E. coli with an unusual elongation compared to the strain W3110 / pKJ606-GR was identified (see Fig. 2b). The cells with the longest length in the culture medium had a major axis length of 9.3 ㎛ and a minor axis length of 0.5 ㎛. The number of cells showing atypical morphology at 88 days of culture increased compared with the 30th day of culture (c in Fig. 2). A single colony was randomly selected from E. coli evolved for 88 days and named ET5 / pKJ606-GR strain (evolutionary strain).

2. ET5/2. ET5 / pKJ606pKJ606 -- GRGR 균주의  Strain 광영양Photo nutrition 생장 growth

W3110 균주(음성 대조군), W3110/pKJ606-GR 균주(조상 균주) 및 ET5/pKJ606-GR 균주(진화 균주)를 빛을 조사(명상태)하거나 또는 조사하지 않은(암상태)에서 최소배지로 배양한 후 흡광도를 측정하여 생장 정도를 확인하였다. Cultured in a minimal medium in a light irradiation condition (light state) or in a non-irradiated state (dark state), W3110 strain (negative control), W3110 / pKJ606-GR strain (parent strain) and ET5 / pKJ606- And the absorbance was measured to confirm the degree of growth.

확인 결과, 하기 표 1에 나타난 바와 같이 세포 내 광영양 소기관(phototrophic machinery)이 없기 때문에 W3110의 생장은 빛의 조사 유무에 영향을 받지 않았다. 반면, W3110/pKJ606-GR 균주의 생장은 빛을 조사하지 않은 경우 OD600이 1.52였고, 빛 조사에 의하여 OD600이 1.75까지 약간 증가하여 광영양 생장은 OD600에서 0.23이었다. ET5/pKJ606-GR 균주의 경우, 광영양 생장이 OD600에서 0.51로 나타나 W3110/pKJ606-GR 균주보다 2.2배 증가한 것을 확인할 수 있었다.As a result, the growth of W3110 was not influenced by light irradiation because there was no intracellular phototrophic machinery as shown in Table 1 below. On the other hand, W3110 / pKJ606 growth of GR-strain if it is not irradiated with light was OD 600 is 1.52, the light irradiation by OD 600 is slightly increased to 1.75 optical vegetative growth was 0.23 at OD 600. In the case of the ET5 / pKJ606-GR strain, the photo-nutritional growth was 0.51 at OD 600 , which was 2.2 times higher than the W3110 / pKJ606-GR strain.

균 주Bacterium 설 명Explanation 세포 생장(OD600)a Cell growth (OD 600 ) a 광영양 생장
Δ[B-A](배수)
Photo nutrition growth
Δ [BA] (multiples)
암상태(A)Cancer status (A) 명상태(B)State (B) W3110W3110 음성 대조군Negative control group 1.78±0.051.78 ± 0.05 1.78±0.041.78 + 0.04 0b 0 b W3110/pKJ606-GRW3110 / pKJ606-GR 조상 균주Ancestral strain 1.52±0.051.52 ± 0.05 1.75±0.081.75 + 0.08 0.23 (1.0)0.23 (1.0) ET5/pKJ606-GRET5 / pKJ606-GR 진화 균주Evolutionary strain 1.52?0.001.52? 0.00 2.03±0.082.03 ± 0.08 0.51 (2.2)0.51 (2.2)

a 최소 3회 반복 측정한 결과의 흡광도 평균±표준 편차(SD)를 의미함 a means absorbance average of at least 3 repeated measurements ± standard deviation (SD)

b 야생형 E. coli W3110 균주는 암상태(A)와 명상태(B)에서의 생장에 차이가 없었음 b The wild-type E. coli W3110 strain showed no difference in growth between dark (A) and light (B)

상기 실험 결과를 통하여 키모스탯 배양 동안 빛 조사 조건에서 효과적으로 생장하기 위해 W3110/pKJ606-GR 균주로부터 ET5/pKJ606-GR 균주가 진화한 것임을 알 수 있다.From the above experimental results, it can be seen that the ET5 / pKJ606-GR strain evolved from the W3110 / pKJ606-GR strain to grow effectively under the light irradiation condition during the kimostat culture.

3. ET5/3. ET5 / pKJ606pKJ606 -- GRGR 균주의 형태 및 게놈 변이 Type of strain and genome variation

키모스탯 배양으로 W3110/pKJ606-GR 균주의 진화를 유도하는 동안 비전형적으로 길이가 신장된 세포가 관찰되었으므로 분리한 ET5/pKJ606-GR 균주를 회분배양하여 주사 전자 현미경으로 형태를 관찰하였다.As a result of the development of the W3110 / pKJ606-GR strain by the chymostat culturing, atypically elongated cells were observed. Therefore, the isolated strain ET5 / pKJ606-GR was asymmetrically cultured and observed under a scanning electron microscope.

회분배양 전 및 후의 ET5/pKJ606-GR 균주를 10,000배 배율로 관찰한 결과, 길이가 신장된 세포를 확인할 수 없었다(도 3의 a 및 도 3의 b 참조). 반면, 80,000배 배율로 확인한 결과 배양 전 ET5/pKJ606-GR 균주(도 3의 c)와 비교하여 회분배양한 ET5/pKJ606-GR 균주(도 3의 d)가 좀 더 주름진 표면 구조를 가지고 있는 것을 확인할 수 있었다.Observation of the strain ET5 / pKJ606-GR before and after ash culture at a magnification of 10,000 magnifications revealed no elongated cells (see FIG. 3 a and FIG. 3 b). On the other hand, it was confirmed that the ET5 / pKJ606-GR strain (Fig. 3 (d)) obtained by ash culture as compared with the pre-culture ET5 / pKJ606-GR strain (c in Fig. 3) had a more corrugated surface structure I could confirm.

또한, E. coli W3110의 게놈 서열(NC_007779.1)과 pKJ606-GR의 서열(서열번호 3)을 참조서열로 하여 W3110/pKJ606-GR 균주와 ET5/pKJ606-GR 균주의 게놈 및 플라스미드 서열을 분석하였다.The genomic and plasmid sequences of W3110 / pKJ606-GR and ET5 / pKJ606-GR strains were analyzed using the genomic sequence (NC_007779.1) of E. coli W3110 and the sequence of pKJ606-GR (SEQ ID NO: Respectively.

그 결과, 하기 표 2에 기재된 바와 같이 W3110/pKJ606-GR 균주의 게놈 서열은 공개된 참조서열(NC_007779.1)과 일부 차이가 있는 것을 확인하였다. W3110/pKJ606-GR 균주의 게놈 서열에서 확인된 16개의 단일 염기 변이(single nucleotide variants, SNV), 4개의 짧은 삽입결실(indel), 및 e14 프로파지 부위의 15.2 kb 결실(icdicdC 사이의 교차에 의하여 유도된 것으로 예상됨)을 포함하는 변이는 배양된 모든 E. coli 세포에 공통으로 존재하였으므로 진화에 의하여 수득된 ET5/pKJ606-GR 균주의 새로운 획득 형질(광영양 생장 증가)에 대한 후보 유전자에서 제외하였다.As a result, it was confirmed that the genomic sequence of the W3110 / pKJ606-GR strain was partially different from the published reference sequence (NC_007779.1) as shown in Table 2 below. Cross between W3110 / 16 single nucleotide mutations identified in the genomic sequence of pKJ606-GR strains (single nucleotide variants, SNV), 4 of short insertion deletion (indel), and e14 15.2 kb deletion of Pro gripping portion (icd and icdC ) Was commonly present in all cultured E. coli cells, so that the candidate gene for the newly acquired trait (increased photoperiodic growth) of the ET5 / pKJ606-GR strain obtained by the evolution .

Reference PositionReference Position TypeType LengthLength ReferenceReference AlleleAllele ConsequenceConsequence 547694547694 SNVSNV 1One AA GG 547832547832 InsertionInsertion 1One -- GG 556858556858 SNVSNV 1One AA TT 696892696892 SNVSNV 1One CC TT 987574987574 SNVSNV 1One GG TT 10936861093686 SNVSNV 1One TT CC 11979291197929 SNVSNV 1One CC AA IcdIcd D401ED401E 15192221519222 SNVSNV 1One GG TT 16695991669599 DeletionDeletion 1One CC -- 19799571979957 SNVSNV 1One GG TT 20054012005401 SNVSNV 1One CC TT 22454552245455 SNVSNV 1One AA GG 29455412945541 SNVSNV 1One GG AA 32688253268825 SNVSNV 1One AA GG 32760463276046 SNVSNV 1One GG TT 37469113746911 SNVSNV 1One GG AA 37550173755017 SNVSNV 1One TT AA 39581233958123 DeletionDeletion 3232 AN30TAN 30 T -- 43712714371271 DeletionDeletion 22 AAAA -- 45917294591729 SNVSNV 1One CC TT

또한, ET5/pKJ606-GR 균주에서 플라스미드 돌연변이는 발견할 수 없었으며, 이는 pKJ606-GR 플라스미드에 의하여 암호화되는 GR 단백질 자체는 W3110/pKJ606-GR 균주와 ET5/pKJ606-GR 균주에서 동일함을 의미한다. 서열분석 결과 ET5/pKJ606-GR 균주의 경우 W3110/pKJ606-GR 균주와 비교하여, dgcQ 유전자에 단일 뉴클레오티드 점 돌연변이(C1082A)가 발생한 것을 확인할 수 있었으며, 이로 인하여 dgcQ 유전자에 의하여 암호화되는 디구아닐레이트 사이클라제(diguanylate cylase)의 아미노산 서열이 변화되었다(A361E).In addition, no plasmid mutation was found in the ET5 / pKJ606-GR strain, which means that the GR protein itself encoded by the pKJ606-GR plasmid is identical in the W3110 / pKJ606-GR strain and the ET5 / pKJ606-GR strain . For sequence analysis ET5 / pKJ606-GR strain W3110 / pKJ606-GR compared to the strain was confirmed that the dgcQ gene occurred a single nucleotide point mutations (C1082A), Due to this between Dhigu not rate encoded by dgcQ gene The amino acid sequence of the diguanylate cylase was changed (A361E).

W3110/pKJ606-GR 균주와 ET5/pKJ606-GR 균주의 게놈 DNA 서열 분석 결과를 하기 표 3에 기재하였다.The genomic DNA sequence analysis results of W3110 / pKJ606-GR and ET5 / pKJ606-GR strains are shown in Table 3 below.

균 주Bacterium W3110/pKJ606-GR
(조상 균주)
W3110 / pKJ606-GR
(Ancestral strain)
ET5
(진화 균주)
ET5
(Evolutionary strain)
DNADNA 염색체chromosome 플라스미드Plasmid 염색체chromosome 플라스미드Plasmid 돌연변이Mutation -- -- dgcQdgcQ C1081AC1081A -- 평균 커버리지
(Average coverage)
Average coverage
(Average coverage)
479479 58,50458,504 468468 90,53490,534
판독(트림 후)
x106
Read (after trim)
x10 6
13.213.2 14.214.2
염기(트림 후)
x106
Base (after trim)
x10 6
27542754 29802980
평균 길이(트림 후)
x106
Average length (after trim)
x10 6
208208 210210
판독 맵핑 비율(%)
x106
% Of read mapping
x10 6
99.4199.41 99.5099.50

판독 수에 기초한 트림 비율은 각각 87.48% 및 88.79%이다.The trim ratios based on the number of readings are 87.48% and 88.79%, respectively.

4. 광-유도성 양성자 4. Photo-inducible proton 펌핑Pumping (light-driven proton pumping)(light-driven proton pumping)

ET5/pKJ606-GR 균주의 광영양 생장이 W3110/pKJ606-GR 균주보다 현저히 우수하므로 식염수(unbuffered saline solution)의 pH 감소 정도를 측정하여 두 균주의 광-유도성 양성자 펌핑 효율을 확인하였다.The photo-induced growth rate of ET5 / pKJ606-GR strain was significantly better than that of W3110 / pKJ606-GR strain. Therefore, the degree of pH reduction of unbuffered saline solution was measured to confirm the photo-induced proton pumping efficiency of both strains.

그 결과, 도 4에 나타난 바와 같이 W3110/pKJ606-GR 균주는 양성자 펌핑 수준이 0.38(extracellular ΔH+x10-7/min OD)인 반면, ET5/pKJ606-GR 균주는 3.12(extracellular ΔH+x10-7/min OD)인 것을 확인하여 ET5/pKJ606-GR 균주의 양성자 펌핑 수준이 약 8배 증가한 것을 알 수 있었다. 도 4에 포함된 삽도는 식염수의 pH 변화를 측정한 결과이며, 빛을 조사한 경우 ET5 균주를 포함하는 식염수의 pH 변화가 큰 것을 확인할 수 있다.As a result, as shown in FIG. 4 W3110 / pKJ606 GR-strain whereas the proton pumping level 0.38 (extracellular ΔH + x10 -7 / min OD), ET5 / pKJ606-GR strain is 3.12 (extracellular ΔH + x10 -7 / min OD), indicating that the proton pumping level of ET5 / pKJ606-GR strain was increased about 8 times. 4 is a result of measuring the pH change of the saline solution, and it can be confirmed that when the light is irradiated, the pH of the saline containing the strain ET5 is greatly changed.

또한, 광-유도성 양성자 펌핑 증가의 원인이 dgcQ C1082A 돌연변이에 의한 것인지 확인하기 위하여 HK774 균주에 상기 돌연변이를 도입하였다.In addition, the mutation was introduced into strain HK774 to determine if the cause of the increase in the photo-induced proton pumping was due to dgcQ C1082A mutation.

그 결과, 하기 표 4에 나타난 바와 같이 HK774 균주의 광영양 생장은 OD600에서 0.10인 반면, HK775 균주의 광영양 생장은 0.51인 것을 확인할 수 있었다. 두 균주의 양성자 펌핑 효율 또한 유사한 결과를 나타내어 단일 점 돌연변이에 의하여 HK775 균주의 양성자 펌핑 효율이 HK774 균주보다 2배 정도 증가한 것을 알 수 있었다.As a result, as shown in Table 4, it was confirmed that the photo-nutritional growth of HK774 strain was 0.10 at OD 600 , while the photo-nutritional growth of HK775 strain was 0.51. The proton pumping efficiencies of the two strains showed similar results, indicating that the proton pumping efficiency of the HK775 strain was doubled by the single point mutation compared to the HK774 strain.

균 주Bacterium HK774HK774 HK775HK775 유전형Genotype E. coli ΔamyA::KmR, dgcQ WT E. coli Δ amyA :: KmR, dgcQ WT E. coli ΔamyA::KmR, dgcQ C1082A E. coli ? AmyA :: KmR, dgcQ C1082A 암상태 성장(A)Cancer Status Growth (A) 0.98±0.020.98 + 0.02 1.13±0.041.13 + 0.04 명상태 성장(B)State growth (B) 1.08±0.041.08 + 0.04 1.64±0.031.64 + 0.03 광영양 생장
Δ[B-A]a
Photo nutrition growth
Δ [BA] a
0.100.10 0.510.51
양성자 펌핑
(ΔH+x10-7/min OD)
Proton pumping
(ΔH + x10 -7 / min OD )
0.475±0.0200.475 + 0.020 0.903±0.1070.903 + - 0.107

a광영양 생장은 명상태(B)에서의 성장과 암상태(A)에서의 성장 차이로부터 계산하고, 생장 결과는 최소 3회 반복 측정한 결과의 흡광도 평균±표준 편차(SD)를 의미함 a Light nutrient growth is calculated from the difference in growth in light state (B) and growth in dark state (A), and the growth result means the mean absorbance ± standard deviation (SD) of at least three repeated measurements

5. c-5. c- didi -- GMPGMP 수준 비교 Level comparison

단일 점 돌연변이(C1082A)가 효소 활성에 미치는 영향을 확인하기 위하여 구아닐레이트 사이클라제의 대사산물인 c-di-GMP 수준을 측정하였다.To confirm the effect of single point mutation (C1082A) on enzyme activity, the metabolite of guanylate cyclase c-di-GMP levels were measured.

측정 결과, 하기 표 5에 나타난 바와 같이 암상태에서 배양한 W3110/pKJ606-GR (유전형 E. coli W3110 dgcQ WT/pKJ606-GR) 균주의 cdiGMP 수준은 0.3 μM/OD 미만인 반면, ET5/pKJ606-GR (유전형 E. coli W3110 dgcQ C1082A/pKJ606-GR) 균주의 cdiGMP 수준은 6.46 μM/OD로 현저하게 증가한 것을 확인할 수 있었다. 명상태에서 배양한 경우에도 유사한 결과를 확인할 수 있었으며, W3110/pKJ606-GR 균주의 cdiGMP 수준은 0.02 μM/OD 미만인 반면, ET5/pKJ606-GR 균주의 cdiGMP 수준은 7.16 μM/OD로 현저하게 증가한 것을 알 수 있었다.As shown in Table 5, the cdiGMP level of W3110 / pKJ606-GR (genotype E. coli W3110 dgcQ WT / pKJ606-GR) cultured in the dark state was less than 0.3 μM / OD, whereas ET5 / pKJ606-GR (Genotype E. coli W3110 dgcQ C1082A / pKJ606-GR) strain, cdiGMP level was significantly increased to 6.46 μM / OD. The cdiGMP level of the W3110 / pKJ606-GR strain was less than 0.02 μM / OD, while the cdiGMP level of the ET5 / pKJ606-GR strain was remarkably increased to 7.16 μM / OD Could know.

균 주Bacterium 유전형Genotype c-di-GMP(μM/OD)c-di-GMP ([mu] M / OD) 암상태Cancer status 명상태State W3110/pKJ606-GRW3110 / pKJ606-GR E. coli W3110 dgcQ WT/pKJ606-GR E. coli W3110 dGCQ WT / pKJ606-GR <0.03<0.03 <0.02&Lt; 0.02 ET5/pKJ606-GRET5 / pKJ606-GR E. coli W3110 dgcQ C1082A/pKJ606-GR E. coli W3110 dGCQ C1082A / pKJ606-GR 6.46±3.436.46 3.43 7.16±2.407.16 ± 2.40

6. 6. 막단백질Membrane protein 발현 비교 Comparison of expression

6-1. 6-1. GRGR 단백질 발현 Protein expression

W3110/pKJ606-GR 균주 및 ET5/pKJ606-GR 균주에서 발현되는 GR 단백질의 수를 산출한 결과, 하기 표 6 및 도 5와 같은 결과를 얻을 수 있었다.The number of GR proteins expressed in the W3110 / pKJ606-GR strain and the ET5 / pKJ606-GR strain was calculated. As a result, the results shown in Table 6 and FIG. 5 were obtained.

Number of rhodopsin/cellNumber of rhodopsin / cell 암상태Cancer status 명상태State IPTG(mM)IPTG (mM) 0.010.01 0.10.1 0.010.01 0.10.1 W3110/pKJ606-GRW3110 / pKJ606-GR 9.63x102±3.88x102 9.63 × 10 2 ± 3.88 × 10 2 5.84x104±2.10x103 5.84x10 4 ± 2.10x10 3 6.87x102±8.55x101 6.87 × 10 2 ± 8.55 × 10 1 8.51x104±1.22x104 8.51 × 10 4 ± 1.22 × 10 4 ET5/pKJ606-GRET5 / pKJ606-GR 6.05x102±1.41x102 6.05 x 10 2 ? 1.41 x 10 2 1.12x106±1.55x105 1.12x10 6 ± 1.55x10 5 5.03x102±1.20x102 5.03x10 2 ± 1.20x10 2 7.05x105±1.38x105 7.05 x 10 5 ? 1.38 x 10 5

실험 결과, 발현되는 GR 단백질의 수가 W3110/pKJ606-GR 균주와 비교하여 ET5/pKJ606-GR 균주에서 더 많은 것을 확인할 수 있었다. 구체적으로, 암상태에서는 약 19배, 명상태에서는 8배 정도 GR 단백질의 수가 많은 것을 알 수 있으며, ET5/pKJ606-GR 균주의 양성자 펌핑 효율이 높은 이유를 알 수 있었다.As a result, the number of expressed GR proteins was found to be larger in the strain ET5 / pKJ606-GR than in the strain W3110 / pKJ606-GR. Specifically, the number of GR proteins was found to be about 19 times in the cancerous state and about 8 times in the light state, and it was found that the proton pumping efficiency of the ET5 / pKJ606-GR strain was high.

6-2. ATP 합성효소 F6-2. ATP synthase F 00 부위의 b 서브유닛과 디카복실레이트 수송체 발현 Site b-subunit and dicarboxylate transporter expression

ET5 균주의 막단백질 생산 능력이 증가했는지 확인한 결과, W3110 균주와 비교하여 막단백질 생산 능력이 증가한 것을 확인할 수 있었다.As a result of confirming that the membrane protein production capacity of the ET5 strain was increased, the membrane protein production ability .

도 6에 나타난 바와 같이 ET5 균주의 형광 신호가 높은 것을 확인하여 atpF 유전자에 의해 암호화되는 ATP 합성효소 F0 부위의 b 서브유닛이 많이 발현된 것을 알 수 있었다. 또한, 도 7에 나타난 바와 같이 ET5 균주의 세포내 숙신산염 함량이 높은 것을 확인하여 dctA 유전자에 의해 암호화되는 디카복실레이트 수송체 또한 많이 발현된 것을 알 수 있었다.As shown in Figure 6 to determine that the fluorescent signal of the high strain ET5 atpF It was found that the b subunit at the F 0 site of the ATP synthase, which is encoded by the gene, was highly expressed. In addition, as shown in FIG. 7, it was confirmed that the content of intracellular succinic acid salt of ET5 strain was high, so that a dicarboxylate transporter encoded by the dctA gene was also expressed to a large extent.

이제까지 본 발명에 대하여 그 바람직한 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.The present invention has been described with reference to the preferred embodiments. It will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims. Therefore, the disclosed embodiments should be considered in an illustrative rather than a restrictive sense. The scope of the present invention is defined by the appended claims rather than by the foregoing description, and all differences within the scope of equivalents thereof should be construed as being included in the present invention.

<110> CATHOLIC UNIVERSITY INDUSTRY-ACADEMIC COOPERATION FOUNDATION <120> Non-Genetically Modified Escherichia Strain for Expressing Membrane Protein and Method for Producing Membrane Protein using the Same <130> PN170253 <160> 5 <170> KoPatentIn 3.0 <210> 1 <211> 1695 <212> DNA <213> Escherichia coli <220> <221> gene <222> (1)..(1695) <223> dgcQ gene <400> 1 gtgcagcacg agacaaaaat ggaaaaccag agctggttga aaaaactcgc acgccgcctg 60 gggcctggtc atgtcgttaa tctctgcttt atcgtggtat tgcttttttc caccttgctc 120 acctggcgtg aagtggtggt gctggaagat gcctatatct ccagccagcg taatcatctg 180 gaaaacgttg ccaacgcgct cgataagcat ttgcagtata acgtcgacaa actgatcttt 240 ttacgtaatg gcatgcgcga agctctcgta gcgccactgg atttcacctc tctgcgtgat 300 gctgtaaccg agttcgaaca gcatcgcgac gagcacgcct ggaaaatcga actcaaccga 360 cgacgcactc tgccagttaa tggtgtgtcg gatgcattag tcagcgaggg gaatctcctg 420 tctcgcgaaa atgaaagcct cgacaatgaa attaccgctg cactggaagt tggttacttg 480 ctgcgactag cgcacaactc ctcgtcgatg gttgaacagg cgatgtatgt ctcgcgtgcc 540 ggattttacg tttcgacgca gccgaccttg tttacgcgca atgttccaac gcgttattac 600 ggctatgtca cccaaccctg gtttattggc cattcacaac gagaaaatcg tcaccgcgcg 660 gtacgctggt tcacttcgca accggaacac gccagcaata ctgaaccgca ggttaccgtc 720 agtgttccgg tagacagtaa taactactgg tatggcgtgc tggggatgag tattcccgtg 780 cgtactatgc agcaattttt aagaaacgcc atcgataaaa acctcgatgg tgagtatcag 840 ctctatgaca gtaagctgag atttttgacc tcttccaatc ctgaccatcc aacagggaat 900 atttttgatc ctcgtgaact ggccttgctg gcgcaggcaa tggaacatga cacgcggggc 960 ggcattcgta tggacagtcg ctatgttagc tgggaacgtc tggaccattt cgacggtgtg 1020 ctggtgcgtg tccatacgtt aagcgaaggc gtgcgcggcg atttcggcag tatcagcatt 1080 gcattaaccc tgctgtgggc gctctttacc accatgttac tcatctcctg gtatgtgatt 1140 cgccggatgg ttagcaacat gtatgttctg caaagctcgt tgcagtggca ggcgtggcac 1200 gacaccttaa cgcgtttata taaccgtggc gcactgttcg aaaaagcccg tccgctcgct 1260 aaattgtgtc agacgcacca acatcctttt tctgtcattc aggtcgatct tgaccatttt 1320 aaagcgatta atgaccgctt tggtcatcag gcgggcgacc gtgttctttc tcatgctgcc 1380 ggattaatta gcagttcctt gcgtgcgcag gacgttgccg ggcgggtcgg tggtgaggag 1440 ttttgtgtga ttctgccagg cgcgagtctg acggaggctg cggaggtcgc agaacgtatt 1500 cgactgaaat taaatgaaaa agagatgttg atcgccaaga gtacgacgat acgcatcagt 1560 gcctcgctgg gggtaagcag cagcgaggaa accggtgatt atgattttga acaactccag 1620 tcactggccg accgtcggct ttatctcgct aaacaggctg ggcgtaatcg ggtattcgcg 1680 agcgataacg cttaa 1695 <210> 2 <211> 714 <212> DNA <213> Gloeobacter violaceus <220> <221> gene <222> (1)..(714) <223> Gloeobacter Rhodopsin <400> 2 atacatatga atttggagag tcttttacac tggatttatg ttgcgggaat gacaattggt 60 gcattgcact tttggtcact tagtcgaaat ccgcgcggtg ttccccagta cgaatacctt 120 gtggcgatgt ttattcccat ttggtcggga ctagcctata tggcaatggc aatagaccaa 180 ggtaaagttg aagcggctgg gcaaattgcc cactatgccc gttatattga ttggatggtg 240 acaacaccat tattactgct atctctttct tggacagcga tgcagtttat caaaaaagat 300 tggacactca ttggtttttt gatgagtacc cagatagttg taattacctc tgggttaatc 360 gcagatttat ctgagcgcga ttgggtgaga tatctatggt atatctgcgg ggtttgcgct 420 tttctcatta ttctttgggg tatttggaat ccattgcgcg ccaaaaccag aactcaaagt 480 tcagaactag cgaacttata cgataagctt gttacttatt ttacagtgct ttggataggc 540 tacccaatag tctggattat tggccctagt ggttttggct ggataaatca aactatagat 600 acatttttgt tttgtctact gccctttttc tccaaggttg gatttagttt tctggattta 660 cacggcttac gtaatctcaa tgattcccgc caacatcacc accatcatca ctag 714 <210> 3 <211> 4386 <212> DNA <213> Artificial Sequence <220> <223> recombinant vector <400> 3 gaattccgac accatcgaat ggcgcaaaac ctttcgcggt atggcatgat agcgcccgga 60 agagagtcaa ttcagggtgg tgaatgtgaa accagtaacg ttatacgatg tcgcagagta 120 tgccggtgtc tcttatcaga ccgtttcccg cgtggtgaac caggccagcc acgtttctgc 180 gaaaacgcgg gaaaaagtgg aagcggcgat ggcggagctg aattacattc ccaaccgcgt 240 ggcacaacaa ctggcgggca aacagtcgtt gctgattggc gttgccacct ccagtctggc 300 cctgcacgcg ccgtcgcaaa ttgtcgcggc gattaaatct cgcgccgatc aactgggtgc 360 cagcgtggtg gtgtcgatgg tagaacgaag cggcgtcgaa gcctgtaaag cggcggtgca 420 caatcttctc gcgcaacgcg tcagtgggct gatcattaac tatccgctgg atgaccagga 480 tgccattgct gtggaagctg cctgcactaa tgttccggcg ttatttcttg atgtctctga 540 ccagacaccc atcaacagta ttattttctc ccatgaagac ggtacgcgac tgggcgtgga 600 gcatctggtc gcattgggtc accagcaaat cgcgctgtta gcgggcccat taagttctgt 660 ctcggcgcgt ctgcgtctgg ctggctggca taaatatctc actcgcaatc aaattcagcc 720 gatagcggaa cgggaaggcg actggagtgc catgtccggt tttcaacaaa ccatgcaaat 780 gctgaatgag ggcatcgttc ccactgcgat gctggttgcc aacgatcaga tggcgctggg 840 cgcaatgcgc gccattaccg agtccgggct gcgcgttggt gcggatatct cggtagtggg 900 atacgacgat accgaagaca gctcatgtta tatcccgccg ttaaccacca tcaaacagga 960 ttttcgcctg ctggggcaaa ccagcgtgga ccgcttgctg caactctctc agggccaggc 1020 ggtgaagggc aatcagctgt tgcccgtctc actggtgaaa agaaaaacca ccctggcgcc 1080 caatacgcaa accgcctctc cccgcgcgtt ggccgattca ttaatgcagc tggcacgaca 1140 ggtttcccga ctggaaagcg ggcagtgagc gcaacgcaat taatgtgagt tagctcactc 1200 attaggcacc ccaggcttta cactttatgc ttccggctcg tatgttgtgt ggaattgtga 1260 gcggataaca atttcacaca ggaaacagct atgaccatga ttacggattc actggccgtc 1320 gttttacaac gtcgtgactg ggaaaaccct ggcgttaccc aacttaatcg ccttgcagca 1380 catccccctt tcgccagctg gcgtaatagc gaagaggccc gcaccggggg atcctctaga 1440 aataattttg tttaacttta agaaggagat atacatatga atttggagag tcttttacac 1500 tggatttatg ttgcgggaat gacaattggt gcattgcact tttggtcact tagtcgaaat 1560 ccgcgcggtg ttccccagta cgaatacctt gtggcgatgt ttattcccat ttggtcggga 1620 ctagcctata tggcaatggc aatagaccaa ggtaaagttg aagcggctgg gcaaattgcc 1680 cactatgccc gttatattga ttggatggtg acaacaccat tattactgct atctctttct 1740 tggacagcga tgcagtttat caaaaaagat tggacactca ttggtttttt gatgagtacc 1800 cagatagttg taattacctc tgggttaatc gcagatttat ctgagcgcga ttgggtgaga 1860 tatctatggt atatctgcgg ggtttgcgct tttctcatta ttctttgggg tatttggaat 1920 ccattgcgcg ccaaaaccag aactcaaagt tcagaactag cgaacttata cgataagctt 1980 gttacttatt ttacagtgct ttggataggc tacccaatag tctggattat tggccctagt 2040 ggttttggct ggataaatca aactatagat acatttttgt tttgtctact gccctttttc 2100 tccaaggttg gatttagttt tctggattta cacggcttac gtaatctcaa tgattcccgc 2160 caacatcacc accatcatca ctaggcggcc gccctgaagc ttggcctttt tgcgtttcta 2220 caaactcttt tgtttatttt tctaaataca ttcaaatatg tatccgctca tgagacaata 2280 accctgataa atgcttcaat aatattgaaa aaggaagagt atgagtattc aacatttccg 2340 tgtcgccctt attccctttt ttgcggcatt ttgccttcct gtttttgctc acccagaaac 2400 gctggtgaaa gtaaaagatg ctgaagatca gttgggtgca cgagtgggtt acatcgaact 2460 ggatctcaac agcggtaaga tccttgagag ttttcgcccc gaagaacgtt ttccaatgat 2520 gagcactttt aaagttctgc tatgtggcgc ggtattatcc cgtgttgacg ccgggcaaga 2580 gcaactcggt cgccgcatac actattctca gaatgacttg gttgagtact caccagtcac 2640 agaaaagcat cttacggatg gcatgacagt aagagaatta tgcagtgctg ccataaccat 2700 gagtgataac actgcggcca acttacttct gacaacgatc ggaggaccga aggagctaac 2760 cgcttttttg cacaacatgg gggatcatgt aactcgcctt gatcgttggg aaccggagct 2820 gaatgaagcc ataccaaacg acgagcgtga caccacgatg cctgcagcaa tggcaacaac 2880 gttgcgcaaa ctattaactg gcgaactact tactctagct tcccggcaac aattaataga 2940 ctggatggag gcggataaag ttgcaggacc acttctgcgc tcggcccttc cggctggctg 3000 gtttattgct gataaatctg gagccggtga gcgtgggtct cgcggtatca ttgcagcact 3060 ggggccagat ggtaagccct cccgtatcgt agttatctac acgacgggga gtcaggcaac 3120 tatggatgaa cgaaatagac agatcgctga gataggtgcc tcactgatta agcattggta 3180 actgtcagac caagtttact catatatact ttagattgat ttaaaacttc atttttaatt 3240 taaaaggatc taggtgaaga tcctttttga taatctcatg accaaaatcc cttaacgtga 3300 gttttcgttc cactgagcgt cagaccccgt agaaaagatc aaaggatctt cttgagatcc 3360 tttttttctg cgcgtaatct gctgcttgca aacaaaaaaa ccaccgctac cagcggtggt 3420 ttgtttgccg gatcaagagc taccaactct ttttccgaag gtaactggct tcagcagagc 3480 gcagatacca aatactgtcc ttctagtgta gccgtagtta ggccaccact tcaagaactc 3540 tgtagcaccg cctacatacc tcgctctgct aatcctgtta ccagtggctg ctgccagtgg 3600 cgataagtcg tgtcttaccg ggttggactc aagacgatag ttaccggata aggcgcagcg 3660 gtcgggctga acggggggtt cgtgcacaca gcccagcttg gagcgaacga cctacaccga 3720 actgagatac ctacagcgtg agctatgaga aagcgccacg cttcccgaag ggagaaaggc 3780 ggacaggtat ccggtaagcg gcagggtcgg aacaggagag cgcacgaggg agcttccagg 3840 gggaaacgcc tggtatcttt atagtcctgt cgggtttcgc cacctctgac ttgagcgtcg 3900 atttttgtga tgctcgtcaa gggggcggag cctatggaaa aacgccagca acgcggcctt 3960 tttacggttc ctggcctttt gctggccttt tgctcacatg ttctttcctg cgttatcccc 4020 tgattctgtg gataaccgta ttaccgcctt tgagtgagct gataccgctc gccgcagccg 4080 aacgaccgag cgcagcgagt cagtgagcga ggaagcggaa gagcgcctga tgcggtattt 4140 tctccttacg catctgtgcg gtatttcaca ccgcatatgc ggtgtgaaat accgcacaga 4200 tgcgtaagga gaaaataccg catcaggcgc cattcgccat tcaggctgcg caactgttgg 4260 gaagggcgat cggtgcgggc ctcttcgcta ttacgccagc tggcgaaagg gggatgtgct 4320 gcaaggcgat taagttgggt aacgccaggg ttttcccagt cacgacgttg taaaacgacg 4380 gccagt 4386 <210> 4 <211> 471 <212> DNA <213> Escherichia coli <220> <221> gene <222> (1)..(471) <223> atpF gene <400> 4 atgaatctta acgcaacaat cctcggccag gccatcgcgt ttgtcctgtt cgttctgttc 60 tgcatgaagt acgtatggcc gccattaatg gcagccatcg aaaaacgtca aaaagaaatt 120 gctgacggcc ttgcttccgc agaacgagca cataaggacc ttgaccttgc aaaggccagc 180 gcgaccgacc agctgaaaaa agcgaaagcg gaagcccagg taatcatcga gcaggcgaac 240 aaacgccgct cgcagattct ggacgaagcg aaagctgagg cagaacagga acgtactaaa 300 atcgtggccc aggcgcaggc ggaaattgaa gccgagcgta aacgtgcccg tgaagagctg 360 cgtaagcaag ttgctatcct ggctgttgct ggcgccgaga agatcatcga acgttccgtg 420 gatgaagctg ctaacagcga catcgtggat aaacttgtcg ctgaactgta a 471 <210> 5 <211> 1287 <212> DNA <213> Escherichia coli <220> <221> gene <222> (1)..(1287) <223> dctA gene <400> 5 atgaaaacct ctctgtttaa aagcctttac tttcaggtcc tgacagcgat agccattggt 60 attctccttg gccatttcta tcctgaaata ggcgagcaaa tgaaaccgct tggcgacggc 120 ttcgttaagc tcattaagat gatcatcgct cctgtcatct tttgtaccgt cgtaacgggc 180 attgcgggca tggaaagcat gaaggcggtc ggtcgtaccg gcgcagtcgc actgctttac 240 tttgaaattg tcagtaccat cgcgctgatt attggtctta tcatcgttaa cgtcgtgcag 300 cctggtgccg gaatgaacgt cgatccggca acgcttgatg cgaaagcggt agcggtttac 360 gccgatcagg cgaaagacca gggcattgtc gccttcatta tggatgtcat cccggcgagc 420 gtcattggcg catttgccag cggtaacatt ctgcaggtgc tgctgtttgc cgtactgttt 480 ggttttgcgc tccaccgtct gggcagcaaa ggccaactga tttttaacgt catcgaaagt 540 ttctcgcagg tcatcttcgg catcatcaat atgatcatgc gtctggcacc tattggtgcg 600 ttcggggcaa tggcgtttac catcggtaaa tacggcgtcg gcacactggt gcaactgggg 660 cagctgatta tctgtttcta cattacctgt atcctgtttg tggtgctggt attgggttca 720 atcgctaaag cgactggttt cagtatcttc aaatttatcc gctacatccg tgaagaactg 780 ctgattgtac tggggacttc atcttccgag tcggcgctgc cgcgtatgct cgacaagatg 840 gagaaactcg gctgccgtaa atcggtggtg gggctggtca tcccgacagg ctactcgttt 900 aaccttgatg gcacatcgat atacctgaca atggcggcgg tgtttatcgc ccaggccact 960 aacagtcaga tggatatcgt ccaccaaatc acgctgttaa tcgtgttgct gctttcttct 1020 aaaggggcgg caggggtaac gggtagtggc tttatcgtgc tggcggcgac gctctctgcg 1080 gtgggccatt tgccggtagc gggtctggcg ctgatcctcg gtatcgaccg ctttatgtca 1140 gaagctcgtg cgctgactaa cctggtcggt aacggcgtag cgaccattgt cgttgctaag 1200 tgggtgaaag aactggacca caaaaaactg gacgatgtgc tgaataatcg tgcgccggat 1260 ggcaaaacgc acgaattatc ctcttaa 1287 <110> CATHOLIC UNIVERSITY INDUSTRY-ACADEMIC COOPERATION FOUNDATION <120> Non-Genetically Modified Escherichia Strain for Expressing          Membrane Protein and Method for Producing Membrane Protein using          the Same <130> PN170253 <160> 5 <170> KoPatentin 3.0 <210> 1 <211> 1695 <212> DNA <213> Escherichia coli <220> <221> gene &Lt; 222 > (1) .. (1695) <223> dGCQ gene <400> 1 gtgcagcacg agacaaaaat ggaaaaccag agctggttga aaaaactcgc acgccgcctg 60 gggcctggtc atgtcgttaa tctctgcttt atcgtggtat tgcttttttc caccttgctc 120 acctggcgtg aagtggtggt gctggaagat gcctatatct ccagccagcg taatcatctg 180 gaaaacgttg ccaacgcgct cgataagcat ttgcagtata acgtcgacaa actgatcttt 240 ttacgtaatg gcatgcgcga agctctcgta gcgccactgg atttcacctc tctgcgtgat 300 gctgtaaccg agttcgaaca gcatcgcgac gagcacgcct ggaaaatcga actcaaccga 360 cgacgcactc tgccagttaa tggtgtgtcg gatgcattag tcagcgaggg gaatctcctg 420 tctcgcgaaa atgaaagcct cgacaatgaa attaccgctg cactggaagt tggttacttg 480 ctgcgactag cgcacaactc ctcgtcgatg gttgaacagg cgatgtatgt ctcgcgtgcc 540 ggattttacg tttcgacgca gccgaccttg tttacgcgca atgttccaac gcgttattac 600 ggctatgtca cccaaccctg gtttattggc cattcacaac gagaaaatcg tcaccgcgcg 660 gtacgctggt tcacttcgca accggaacac gccagcaata ctgaaccgca ggttaccgtc 720 agtgttccgg tagacagtaa taactactgg tatggcgtgc tggggatgag tattcccgtg 780 cgtactatgc agcaattttt aagaaacgcc atcgataaaa acctcgatgg tgagtatcag 840 ctctatgaca gtaagctgag atttttgacc tcttccaatc ctgaccatcc aacagggaat 900 atttttgatc ctcgtgaact ggccttgctg gcgcaggcaa tggaacatga cacgcggggc 960 ggcattcgta tggacagtcg ctatgttagc tgggaacgtc tggaccattt cgacggtgtg 1020 ctggtgcgtg tccatacgtt aagcgaaggc gtgcgcggcg atttcggcag tatcagcatt 1080 gcattaaccc tgctgtgggc gctctttacc accatgttac tcatctcctg gtatgtgatt 1140 cgccggatgg ttagcaacat gtatgttctg caaagctcgt tgcagtggca ggcgtggcac 1200 gacaccttaa cgcgtttata taaccgtggc gcactgttcg aaaaagcccg tccgctcgct 1260 aaattgtgtc agacgcacca acatcctttt tctgtcattc aggtcgatct tgaccatttt 1320 aaagcgatta atgaccgctt tggtcatcag gcgggcgacc gtgttctttc tcatgctgcc 1380 ggattaatta gcagttcctt gcgtgcgcag gacgttgccg ggcgggtcgg tggtgaggag 1440 ttttgtgtga ttctgccagg cgcgagtctg acggaggctg cggaggtcgc agaacgtatt 1500 cgactgaaat taaatgaaaa agagatgttg atcgccaaga gtacgacgat acgcatcagt 1560 gcctcgctgg gggtaagcag cagcgaggaa accggtgatt atgattttga acaactccag 1620 tcactggccg accgtcggct ttatctcgct aaacaggctg ggcgtaatcg ggtattcgcg 1680 agcgataacg cttaa 1695 <210> 2 <211> 714 <212> DNA <213> Gloeobacter violaceus <220> <221> gene <222> (1). (714) <223> Gloeobacter Rhodopsin <400> 2 atacatatga atttggagag tcttttacac tggatttatg ttgcgggaat gacaattggt 60 gcattgcact tttggtcact tagtcgaaat ccgcgcggtg ttccccagta cgaatacctt 120 gtggcgatgt ttattcccat ttggtcggga ctagcctata tggcaatggc aatagaccaa 180 ggtaaagttg aagcggctgg gcaaattgcc cactatgccc gttatattga ttggatggtg 240 acaacaccat tattactgct atctctttct tggacagcga tgcagtttat caaaaaagat 300 tggacactca ttggtttttt gatgagtacc cagatagttg taattacctc tgggttaatc 360 gcagatttat ctgagcgcga ttgggtgaga tatctatggt atatctgcgg ggtttgcgct 420 tttctcatta ttctttgggg tatttggaat ccattgcgcg ccaaaaccag aactcaaagt 480 tcagaactag cgaacttata cgataagctt gttacttatt ttacagtgct ttggataggc 540 tacccaatag tctggattat tggccctagt ggttttggct ggataaatca aactatagat 600 acatttttgt tttgtctact gccctttttc tccaaggttg gatttagttt tctggattta 660 cacggcttac gtaatctcaa tgattcccgc caacatcacc accatcatca ctag 714 <210> 3 <211> 4386 <212> DNA <213> Artificial Sequence <220> <223> recombinant vector <400> 3 gaattccgac accatcgaat ggcgcaaaac ctttcgcggt atggcatgat agcgcccgga 60 agagagtcaa ttcagggtgg tgaatgtgaa accagtaacg ttatacgatg tcgcagagta 120 tgccggtgtc tcttatcaga ccgtttcccg cgtggtgaac caggccagcc acgtttctgc 180 gaaaacgcgg gaaaaagtgg aagcggcgat ggcggagctg aattacattc ccaaccgcgt 240 ggcacaacaa ctggcgggca aacagtcgtt gctgattggc gttgccacct ccagtctggc 300 cctgcacgcg ccgtcgcaaa ttgtcgcggc gattaaatct cgcgccgatc aactgggtgc 360 cagcgtggtg gtgtcgatgg tagaacgaag cggcgtcgaa gcctgtaaag cggcggtgca 420 caatcttctc gcgcaacgcg tcagtgggct gatcattaac tatccgctgg atgaccagga 480 tgccattgct gtggaagctg cctgcactaa tgttccggcg ttatttcttg atgtctctga 540 ccagacaccc atcaacagta ttattttctc ccatgaagac ggtacgcgac tgggcgtgga 600 gcatctggtc gcattgggtc accagcaaat cgcgctgtta gcgggcccat taagttctgt 660 ctcggcgcgt ctgcgtctgg ctggctggca taaatatctc actcgcaatc aaattcagcc 720 gatagcggaa cgggaaggcg actggagtgc catgtccggt tttcaacaaa ccatgcaaat 780 gctgaatgag ggcatcgttc ccactgcgat gctggttgcc aacgatcaga tggcgctggg 840 cgcaatgcgc gccattaccg agtccgggct gcgcgttggt gcggatatct cggtagtggg 900 atacgacgat accgaagaca gctcatgtta tatcccgccg ttaaccacca tcaaacagga 960 ttttcgcctg ctggggcaaa ccagcgtgga ccgcttgctg caactctctc agggccaggc 1020 ggtgaagggc aatcagctgt tgcccgtctc actggtgaaa agaaaaacca ccctggcgcc 1080 caatacgcaa accgcctctc cccgcgcgtt ggccgattca ttaatgcagc tggcacgaca 1140 ggtttcccga ctggaaagcg ggcagtgagc gcaacgcaat taatgtgagt tagctcactc 1200 attaggcacc ccaggcttta cactttatgc ttccggctcg tatgttgtgt ggaattgtga 1260 gcggataaca atttcacaca ggaaacagct atgaccatga ttacggattc actggccgtc 1320 gttttacaac gtcgtgactg ggaaaaccct ggcgttaccc aacttaatcg ccttgcagca 1380 catccccctt tcgccagctg gcgtaatagc gaagaggccc gcaccggggg atcctctaga 1440 aataattttg tttaacttta agaaggagat atacatatga atttggagag tcttttacac 1500 tggatttatg ttgcgggaat gacaattggt gcattgcact tttggtcact tagtcgaaat 1560 ccgcgcggtg ttccccagta cgaatacctt gtggcgatgt ttattcccat ttggtcggga 1620 ctagcctata tggcaatggc aatagaccaa ggtaaagttg aagcggctgg gcaaattgcc 1680 gt; tggacagcga tgcagtttat caaaaaagat tggacactca ttggtttttt gatgagtacc 1800 cagatagttg taattacctc tgggttaatc gcagatttat ctgagcgcga ttgggtgaga 1860 tatctatggt atatctgcgg ggtttgcgct tttctcatta ttctttgggg tatttggaat 1920 ccattgcgcg ccaaaaccag aactcaaagt tcagaactag cgaacttata cgataagctt 1980 gttacttatt ttacagtgct ttggataggc tacccaatag tctggattat tggccctagt 2040 ggttttggct ggataaatca aactatagat acatttttgt tttgtctact gccctttttc 2100 tccaaggttg gatttagttt tctggattta cacggcttac gtaatctcaa tgattcccgc 2160 caacatcacc accatcatca ctaggcggcc gccctgaagc ttggcctttt tgcgtttcta 2220 caaactcttt tgtttatttt tctaaataca ttcaaatatg tatccgctca tgagacaata 2280 accctgataa atgcttcaat aatattgaaa aaggaagagt atgagtattc aacatttccg 2340 tgtcgccctt attccctttt ttgcggcatt ttgccttcct gtttttgctc acccagaaac 2400 gctggtgaaa gtaaaagatg ctgaagatca gttgggtgca cgagtgggtt acatcgaact 2460 ggatctcaac agcggtaaga tccttgagag ttttcgcccc gaagaacgtt ttccaatgat 2520 gagcactttt aaagttctgc tatgtggcgc ggtattatcc cgtgttgacg ccgggcaaga 2580 gcaactcggt cgccgcatac actattctca gaatgacttg gttgagtact caccagtcac 2640 agaaaagcat cttacggatg gcatgacagt aagagaatta tgcagtgctg ccataaccat 2700 gagtgataac actgcggcca acttacttct gacaacgatc ggaggaccga aggagctaac 2760 cgcttttttg cacaacatgg gggatcatgt aactcgcctt gatcgttggg aaccggagct 2820 gaatgaagcc ataccaaacg acgagcgtga caccacgatg cctgcagcaa tggcaacaac 2880 gttgcgcaaa ctattaactg gcgaactact tactctagct tcccggcaac aattaataga 2940 ctggatggag gcggataaag ttgcaggacc acttctgcgc tcggcccttc cggctggctg 3000 gtttattgct gataaatctg gagccggtga gcgtgggtct cgcggtatca ttgcagcact 3060 ggggccagat ggtaagccct cccgtatcgt agttatctac acgacgggga gtcaggcaac 3120 tatggatgaa cgaaatagac agatcgctga gataggtgcc tcactgatta agcattggta 3180 actgtcagac caagtttact catatatact ttagattgat ttaaaacttc atttttaatt 3240 taaaaggatc taggtgaaga tcctttttga taatctcatg accaaaatcc cttaacgtga 3300 gttttcgttc cactgagcgt cagaccccgt agaaaagatc aaaggatctt cttgagatcc 3360 tttttttctg cgcgtaatct gctgcttgca aacaaaaaaa ccaccgctac cagcggtggt 3420 ttgtttgccg gatcaagagc taccaactct ttttccgaag gtaactggct tcagcagagc 3480 gcagatacca aatactgtcc ttctagtgta gccgtagtta ggccaccact tcaagaactc 3540 tgtagcaccg cctacatacc tcgctctgct aatcctgtta ccagtggctg ctgccagtgg 3600 cgataagtcg tgtcttaccg ggttggactc aagacgatag ttaccggata aggcgcagcg 3660 gtcgggctga acggggggtt cgtgcacaca gcccagcttg gagcgaacga cctacaccga 3720 actgagatac ctacagcgtg agctatgaga aagcgccacg cttcccgaag ggagaaaggc 3780 ggacaggtat ccggtaagcg gcagggtcgg aacaggagag cgcacgaggg agcttccagg 3840 gggaaacgcc tggtatcttt atagtcctgt cgggtttcgc cacctctgac ttgagcgtcg 3900 atttttgtga tgctcgtcaa gggggcggag cctatggaaa aacgccagca acgcggcctt 3960 tttacggttc ctggcctttt gctggccttt tgctcacatg ttctttcctg cgttatcccc 4020 tgattctgtg gataaccgta ttaccgcctt tgagtgagct gataccgctc gccgcagccg 4080 aacgaccgag cgcagcgagt cagtgagcga ggaagcggaa gagcgcctga tgcggtattt 4140 tctccttacg catctgtgcg gtatttcaca ccgcatatgc ggtgtgaaat accgcacaga 4200 tgcgtaagga gaaaataccg catcaggcgc cattcgccat tcaggctgcg caactgttgg 4260 gaagggcgat cggtgcgggc ctcttcgcta ttacgccagc tggcgaaagg gggatgtgct 4320 gcaaggcgat taagttgggt aacgccaggg ttttcccagt cacgacgttg taaaacgacg 4380 gccagt 4386 <210> 4 <211> 471 <212> DNA <213> Escherichia coli <220> <221> gene &Lt; 222 > (1) .. (471) <223> The atpF gene <400> 4 atgaatctta acgcaacaat cctcggccag gccatcgcgt ttgtcctgtt cgttctgttc 60 tgcatgaagt acgtatggcc gccattaatg gcagccatcg aaaaacgtca aaaagaaatt 120 gctgacggcc ttgcttccgc agaacgagca cataaggacc ttgaccttgc aaaggccagc 180 gcgaccgacc agctgaaaaa agcgaaagcg gaagcccagg taatcatcga gcaggcgaac 240 aaacgccgct cgcagattct ggacgaagcg aaagctgagg cagaacagga acgtactaaa 300 atcgtggccc aggcgcaggc ggaaattgaa gccgagcgta aacgtgcccg tgaagagctg 360 cgtaagcaag ttgctatcct ggctgttgct ggcgccgaga agatcatcga acgttccgtg 420 gatgaagctg ctaacagcga catcgtggat aaacttgtcg ctgaactgta a 471 <210> 5 <211> 1287 <212> DNA <213> Escherichia coli <220> <221> gene &Lt; 222 > (1) .. (1287) <223> dctA gene <400> 5 atgaaaacct ctctgtttaa aagcctttac tttcaggtcc tgacagcgat agccattggt 60 attctccttg gccatttcta tcctgaaata ggcgagcaaa tgaaaccgct tggcgacggc 120 ttcgttaagc tcattaagat gatcatcgct cctgtcatct tttgtaccgt cgtaacgggc 180 attgcgggca tggaaagcat gaaggcggtc ggtcgtaccg gcgcagtcgc actgctttac 240 tttgaaattg tcagtaccat cgcgctgatt attggtctta tcatcgttaa cgtcgtgcag 300 cctggtgccg gaatgaacgt cgatccggca acgcttgatg cgaaagcggt agcggtttac 360 gccgatcagg cgaaagacca gggcattgtc gccttcatta tggatgtcat cccggcgagc 420 gtcattggcg catttgccag cggtaacatt ctgcaggtgc tgctgtttgc cgtactgttt 480 ggttttgcgc tccaccgtct gggcagcaaa ggccaactga tttttaacgt catcgaaagt 540 ttctcgcagg tcatcttcgg catcatcaat atgatcatgc gtctggcacc tattggtgcg 600 ttcggggcaa tggcgtttac catcggtaaa tacggcgtcg gcacactggt gcaactgggg 660 cagctgatta tctgtttcta cattacctgt atcctgtttg tggtgctggt attgggttca 720 atcgctaaag cgactggttt cagtatcttc aaatttatcc gctacatccg tgaagaactg 780 ctgattgtac tggggacttc atcttccgag tcggcgctgc cgcgtatgct cgacaagatg 840 gagaaactcg gctgccgtaa atcggtggtg gggctggtca tcccgacagg ctactcgttt 900 aaccttgatg gcacatcgat atacctgaca atggcggcgg tgtttatcgc ccaggccact 960 aacagtcaga tggatatcgt ccaccaaatc acgctgttaa tcgtgttgct gctttcttct 1020 aaaggggcgg caggggtaac gggtagtggc tttatcgtgc tggcggcgac gctctctgcg 1080 gtgggccatt tgccggtagc gggtctggcg ctgatcctcg gtatcgaccg ctttatgtca 1140 gaagctcgtg cgctgactaa cctggtcggt aacggcgtag cgaccattgt cgttgctaag 1200 tgggtgaaag aactggacca caaaaaactg gacgatgtgc tgaataatcg tgcgccggat 1260 ggcaaaacgc acgaattatc ctcttaa 1287

Claims (7)

막단백질을 암호화하는 유전자를 포함하고, 모균주 대비 구아닐레이트 사이클라제(diguanylate cyclase)의 활성이 증가된 막단백질 생산용 에스케리치아(Escherichia) 속 변이 균주.
An Escherichia genus mutant strain for the production of a membrane protein containing a gene encoding a membrane protein and having increased diguanylate cyclase activity relative to the parent strain.
제1항에 있어서, 상기 변이 균주는 구아닐레이트 사이클라제를 암호화하는 서열번호 1의 dgcQ 유전자 서열에서 1082번째 뉴클레오티드가 C에서 A로 치환된 것인 변이 균주.
The mutant strain according to claim 1, wherein the mutant strain is a mutant strain wherein the 1082nd nucleotide in the dgcQ gene sequence of SEQ ID NO: 1 encoding guanylate cyclase is substituted with C to A.
제2항에 있어서, 상기 에스케리치아 속 변이 균주는 대장균(Escherichia coli)인 것인 균주.
The strain according to claim 2, wherein the Escherichia spp. Mutant strain is Escherichia coli .
제3항에 있어서, 상기 막단백질은 글로에오박터 유래 로돕신(Gloeobacter rhodopsin), 서열번호 4의 atpF 유전자에 의해 암호화되는 ATP 합성효소(ATP synthase) F0 부위의 b 서브유닛 및 서열번호 5의 dctA 유전자에 의해 암호화되는 디카복실레이트 수송체(dicarboxylate transporter)로 이루어진 군에서 선택되는 것인 에스케리치아 속 변이 균주.
The membrane protein according to claim 3, wherein the membrane protein is selected from the group consisting of Glooobacter rhodopsin, b subunit of ATP synthase F 0 region encoded by the atpF gene of SEQ ID NO: 4, and a dicarboxylate transporter encoded by the dctA gene. &lt; RTI ID = 0.0 &gt; 11. &lt; / RTI &gt;
(a) 제1항에 따른 에스케리치아 속 변이 균주를 배지에서 배양하는 단계;
(b) 상기 배양액을 회수하는 단계; 및
(c) 회수한 배양액으로부터 막단백질을 수득하는 단계를 포함하는 막단백질의 생산 방법.
(a) culturing the Escherichia sp. strain according to claim 1 in a culture medium;
(b) recovering the culture medium; And
(c) obtaining a membrane protein from the recovered culture.
제5항에 있어서, 상기 에스케리치아 속 변이 균주는 구아닐레이트 사이클라제를 암호화하는 서열번호 1의 dgcQ 유전자 서열에서 1082번째 뉴클레오티드가 C에서 A로 치환된 대장균인 것인 막단백질의 생산 방법.
6. The production method of a membrane protein according to claim 5, wherein the Escherichia sp. Strain is Escherichia coli substituted with C at position 1082 in the dgcQ gene sequence of SEQ ID NO: 1 encoding guanylate cyclase .
제5항에 있어서, 상기 막단백질은 글로에오박터 유래 로돕신(Gloeobacter rhodopsin), 서열번호 4의 atpF 유전자에 의해 암호화되는 ATP 합성효소(ATP synthase) F0 부위의 b 서브유닛 및 서열번호 5의 dctA 유전자에 의해 암호화되는 디카복실레이트 수송체(dicarboxylate transporter)로 이루어진 군에서 선택되는 것인 막단백질의 생산 방법.6. The membrane protein according to claim 5, wherein the membrane protein is globobacter rhodopsin, a b subunit of the ATP synthase F 0 region encoded by the atpF gene of SEQ ID NO: 4, and a dicarboxylate transporter encoded by the dctA gene.
KR1020170152618A 2017-11-15 2017-11-15 Non-Genetically Modified Escherichia Strain for Expressing Membrane Protein and Method for Producing Membrane Protein using the Same KR20190055655A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170152618A KR20190055655A (en) 2017-11-15 2017-11-15 Non-Genetically Modified Escherichia Strain for Expressing Membrane Protein and Method for Producing Membrane Protein using the Same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170152618A KR20190055655A (en) 2017-11-15 2017-11-15 Non-Genetically Modified Escherichia Strain for Expressing Membrane Protein and Method for Producing Membrane Protein using the Same

Publications (1)

Publication Number Publication Date
KR20190055655A true KR20190055655A (en) 2019-05-23

Family

ID=66681296

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170152618A KR20190055655A (en) 2017-11-15 2017-11-15 Non-Genetically Modified Escherichia Strain for Expressing Membrane Protein and Method for Producing Membrane Protein using the Same

Country Status (1)

Country Link
KR (1) KR20190055655A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101197129B1 (en) 2009-09-14 2012-11-07 서강대학교산학협력단 ATP synthesis system constructed with Gloeobacter rhodopsin and ATP synthase to have orientation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101197129B1 (en) 2009-09-14 2012-11-07 서강대학교산학협력단 ATP synthesis system constructed with Gloeobacter rhodopsin and ATP synthase to have orientation

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
1. Plant Physiol., 1987; 84: 25-30.
2. Biochemistry, 2009; 48: 10948-10955.

Similar Documents

Publication Publication Date Title
CN108949721B (en) Recombinant strain for expressing phospholipase D and application
CN102146371B (en) High glyphosate resistant variant gene and improvement method and application of high glyphosate resistant variant gene
CN112251464B (en) Gene point mutation induction method
WO2021110993A1 (en) An efficient shuttle vector system for the expression of heterologous and homologous proteins for the genus zymomonas
CN107058367A (en) The construction method of the recombined bacillus subtilis of high yield Pullulanase
CN111748546B (en) Fusion protein for generating gene point mutation and induction method of gene point mutation
CN103911334A (en) Clostridium beijerinckii with high stress resistance and application thereof
CN108586571B (en) Novel antimycin derivative and preparation method and application thereof
CN101157935A (en) Novel expression enzyme yeast gene engineering system
CN110066801B (en) Sialic acid induced expression element in bacillus subtilis and construction method
CN114317584B (en) Construction system of novel transposon mutant strain library, novel transposon mutant library and application
KR102064475B1 (en) Microorganism for producing muconic acid and method for manufacturing the strain
CN105567603B (en) A method of Clostridium beijerinckii is improved to 4- hydroxycinnamic acid resistance
KR102676309B1 (en) Microorganism for producing shikimic acid and method for producing shikimic acid using the microorganism
CN111471635B (en) Method for increasing content of nucleic acid in bacillus subtilis
CN111118049B (en) Plasmid vector and application thereof
CN113481114B (en) Yeast cell surface display technology-based explosive visualization biosensor and preparation method and application thereof
KR20190055655A (en) Non-Genetically Modified Escherichia Strain for Expressing Membrane Protein and Method for Producing Membrane Protein using the Same
CN108611312B (en) New antimycin biosynthesis pathway ketoreductase gene deletion strain, construction method and application
CN109880837B (en) Method for degrading lignin in tobacco straw
CN106676135A (en) Alb-uPA-teton lentiviral vector and preparation method and application thereof
CN112662573B (en) Microbial strain for efficiently synthesizing L-piperazinic acid and construction method and application thereof
CN106978445A (en) The method of the goat EDAR gene knockouts of CRISPER Cas9 System-mediateds
CN112625138A (en) Multi-site recombinant antigen for detecting novel coronavirus and preparation method thereof
KR20120060603A (en) Construction of agelaxanthin A metabolic pathway and synthesis of agelaxanthin A through E.coli