KR20190054644A - Manufacturing method of bismuth telluride nano powder using waste thermoelectric module - Google Patents

Manufacturing method of bismuth telluride nano powder using waste thermoelectric module Download PDF

Info

Publication number
KR20190054644A
KR20190054644A KR1020170151458A KR20170151458A KR20190054644A KR 20190054644 A KR20190054644 A KR 20190054644A KR 1020170151458 A KR1020170151458 A KR 1020170151458A KR 20170151458 A KR20170151458 A KR 20170151458A KR 20190054644 A KR20190054644 A KR 20190054644A
Authority
KR
South Korea
Prior art keywords
bismuth telluride
waste heat
solder
thermoelectric chip
heat transfer
Prior art date
Application number
KR1020170151458A
Other languages
Korean (ko)
Other versions
KR102609576B1 (en
Inventor
박지환
Original Assignee
(주)엠티아이지
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)엠티아이지 filed Critical (주)엠티아이지
Priority to KR1020170151458A priority Critical patent/KR102609576B1/en
Publication of KR20190054644A publication Critical patent/KR20190054644A/en
Application granted granted Critical
Publication of KR102609576B1 publication Critical patent/KR102609576B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • C01B19/007Tellurides or selenides of metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/82Recycling of waste of electrical or electronic equipment [WEEE]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Powder Metallurgy (AREA)

Abstract

The present invention relates to a method for manufacturing a bismuth telluride-based nanopowder using a waste thermoelectric module. An aspect of the method for manufacturing the bismuth telluride nanopowder using the waste thermoelectric module according to an embodiment of the present invention comprises: a thermoelectric chip collecting step of collecting the thermoelectric chip in which perylene coating and impurities comprised in the waste thermoelectric module are removed; a solder removing step of removing a solder component comprised in the thermoelectric chip; a selective dissolution step in which the thermoelectric chip from which the solder is removed reacts with acid to dissolve only n-type bismuth telluride; and a powder manufacturing process in which n-type bismuth telluride is reacted with a reducing agent and an additive, thereby manufacturing the bismuth telluride-based nanopowder. According to an embodiment of the present invention, a bismuth telluride nanopowder can be manufactured more economically.

Description

폐열전모듈을 재활용한 비스무스 텔루라이드 나노 분말 제조 방법{MANUFACTURING METHOD OF BISMUTH TELLURIDE NANO POWDER USING WASTE THERMOELECTRIC MODULE}TECHNICAL FIELD [0001] The present invention relates to a bismuth telluride nano powder, and more particularly, to a bismuth telluride nano-

본 발명은 폐열전모듈을 재활용한 비스무스 텔루라이드 나노 분말 제조 방법에 관한 것이다. The present invention relates to a method for producing bismuth telluride nano powder by recycling waste heat transfer modules.

열전소재는, 재료 양단 간에 발생한 온도차가 전압으로 변환되거나, 반대로 재료에 전압을 가했을 때 재료 양단 간에 온도차가 발생하는 에너지 변환 현상인 열전효과(thermoelectric effect)를 나타내는 소재를 말한다. 이러한 열전소재는, 특수 전원장치, 반도체 온도 조절장치, 열교환기, 가열 장치 및 온도 센서 등으로 다양한 산업분야에서 널리 사용되고 있다. The thermoelectric material refers to a material exhibiting a thermoelectric effect, which is an energy conversion phenomenon in which a temperature difference between both ends of a material is converted into a voltage, or a temperature difference occurs between opposite ends of the material when a voltage is applied to the material. These thermoelectric materials are widely used in various industrial fields such as special power supply devices, semiconductor temperature control devices, heat exchangers, heating devices, and temperature sensors.

그 중, 비스무스 텔루라이드(Bismuth Telluride, Bi2Te3)는, 열전 효과의 성능을 나타내는 척도인 열전 성능 지수가 실온에서 가장 높은 열전소재이다. 그러나, 비스무스 텔루라이드는, 구성 원소인 비스무스(Bi) 및 텔루륨(Te)이 단가가 높을 뿐만 아니라, 대부분이 해외에서 산출되기 때문에 수급에 어려움이 있는 실정이다. 따라서, 비스무스 텔루라이드 사용량의 대부분을 수입에 의존하고 있는 국내 현실에서는, 산업 현장에서 발생하는 비스무스 텔루라이드 함유 폐기물로부터, 비스무스 텔루라이드를 재활용하는 기술이 중요하게 부각되고 있다. Among them, bismuth telluride (Bi 2 Te 3 ) is the thermoelectric material having the highest thermoelectric performance index as a measure of the performance of the thermoelectric effect at room temperature. However, in the bismuth telluride, bismuth (Bi) and tellurium (Te), which are constituent elements, are not only high in unit price, but are mostly produced overseas, making supply and demand difficult. Therefore, in the domestic reality where most of the amount of bismuth telluride used is dependent on imports, the technology of recycling bismuth telluride from the bismuth telluride-containing wastes generated in the industrial field is becoming important.

대한민국 등록특허공보 제10-1768274호(명칭: 연속식 공정을 이용한 비스무스 텔루라이드 나노입자 제조 방법 및 비스무스 텔루라이드 나노입자)Korean Patent Registration No. 10-1768274 (entitled "Bismuth Telluride Nanoparticle Production Method Using Continuous Process and Bismuth Telluride Nanoparticle) 대한민국 등록특허공보 제10-1068966호(명칭: 비스무스-텔루륨 열전재료 및 이의 제조방법)Korean Patent Registration No. 10-1068966 (entitled: Bismuth-tellurium thermoelectric material and its production method)

본 발명은 상술한 바와 같은 종래 기술에 의한 문제점을 해결하기 위한 것으로, 본 발명의 목적은 보다 경제적으로 비스무스 텔루라이드 나노 분말을 제조할 수 있도록 구성되는 폐열전모듈을 재활용한 비스무스 텔루라이드 나노 분말 제조 방법을 제공하는 것이다. Disclosure of the Invention The present invention has been made to solve the problems of the prior art as described above, and it is an object of the present invention to provide a bismuth telluride nano powder recycling method for manufacturing a bismuth telluride nano powder, Method.

상술한 목적을 달성하기 위한 본 발명의 실시예에 의한 폐열전모듈을 재활용한 비스무스 텔루라이드 나노 분말 제조 방법의 일 양태는, 폐열전모듈에 포함된 페릴렌 코팅(perylene coating) 및 불순물이 제거되어 열전 칩이 수거되는 열전 칩 수거 단계(S100); 상기 열전 칩에 포함된 솔더 성분이 제거되는 솔더 제거 단계(S200); 상기 솔더가 제거된 열전 칩이, 산과 반응하여 n-type 비스무스 텔루라이드만 용해되는 선택적 용해 단계(S300); 및 상기 n-type 비스무스 텔루라이드가, 환원제 및 첨가제와 반응하여 비스무스 텔루라이드계 나노 분말이 제조되는 분말 제조 단계(S400)를 포함한다.According to an aspect of the present invention, there is provided a method of manufacturing a bismuth telluride nano powder by recycling a pre-waste heat module according to an embodiment of the present invention, wherein perylene coating and impurities contained in the pre- A thermoelectric chip collection step (S100) in which thermoelectric chips are collected; A solder removing step (S200) for removing a solder component included in the thermoelectric chip; An optional dissolution step (S300) in which the thermoelectric chip from which the solder is removed reacts with acid to dissolve only n-type bismuth telluride; And a step (S400) of preparing powder in which the n-type bismuth telluride is reacted with a reducing agent and an additive to produce a bismuth telluride nano powder.

그리고, 상기 열전 칩 수거 단계(S100)에서, 상기 폐열전모듈에 포함된 페릴렌 코팅 및 불순물은, THF(Tetrahydrofuran, L(-)-5,6,7,8-tetrahydrofolic acid)과 반응하여 제거될 수 있다. In the thermoelectric chip collection step S100, the perylene coating and the impurities contained in the waste heat transfer module react with THF (Tetrahydrofuran, L (-) - 5,6,7,8-tetrahydrofolic acid) .

또한, 상기 열전 칩 수거 단계(S100)에서, 상기 폐열전모듈에 포함된 페릴렌 코팅 및 불순물은, 310℃의 온도에서 열처리되어 제거될 수 있다.In addition, in the thermoelectric chip collection step (S100), the perylene coating and the impurities contained in the waste heat transfer module may be removed by heat treatment at a temperature of 310 ° C.

그리고, 상기 솔더 제거 단계(S200)에서, 상기 열전 칩에 포함된 솔더 성분은, 기설정된 온도에서, 기설정된 농도의 염산(HCl)과 반응하여 제거될 수 있다.In the solder removing step S200, the solder component included in the thermoelectric chip may be removed by reacting with a predetermined concentration of hydrochloric acid (HCl) at a predetermined temperature.

또한, 상기 솔더 제거 단계(S200)에서, 상기 열전 칩에 포함된 솔더 성분은, 35% 농도의 염산과 반응하여 제거될 수 있다.In addition, in the solder removing step (S200), the solder component included in the thermoelectric chip can be removed by reacting with hydrochloric acid having a concentration of 35%.

그리고, 상기 솔더 제거 단계(S200)에서, 상기 열전 칩에 포함된 솔더 성분과 염산의 반응은, 25℃에서 이루어질 수 있다. In the solder removing step S200, the reaction between the solder component included in the thermoelectric chip and hydrochloric acid may be performed at 25 ° C.

또한, 상기 선택적 용해 단계(S300)에서, 상기 n-type 비스무스 텔루라이드는, 기설정된 온도에서, 기설정된 농도의 질산(HNO3)과 반응하여 용해될 수 있다.In addition, in the selective dissolution step (S300), the n-type bismuth telluride may be dissolved and reacted with a predetermined concentration of nitric acid (HNO 3 ) at a predetermined temperature.

그리고, 상기 선택적 용해 단계(S300)에서, 상기 n-type 비스무스 텔루라이드는, 70% 농도의 질산과 반응하여 용해될 수 있다.In the selective dissolution step (S300), the n-type bismuth telluride can be dissolved by reacting with a nitric acid at a concentration of 70%.

또한, 상기 선택적 용해 단계(S300)에서, 상기 n-type 비스무스 텔루라이드와 질산의 반응은, 40℃에서 이루어질 수 있다. Also, in the selective dissolution step (S300), the reaction of the n-type bismuth telluride and nitric acid may be performed at 40 ° C.

그리고, 상기 분말 제조 단계(S400)에서, 상기 환원제는, 하이드라진(hydrazine, N2H4·H2O)일 수 있다. In the powder production step (S400), the reducing agent may be hydrazine (N 2 H 4 .H 2 O).

또한, 상기 분말 제조 단계(S400)에서, 상기 첨가제는, critic acid, tartaric acid, CTAB(Cetyltrimethylammonium bromide) 및 PVP K55로 이루어진 군(群)에서 선택된 어느 하나의 첨가제가 첨가될 수 있다. In the powder preparation step (S400), the additive may be any one selected from the group consisting of critic acid, tartaric acid, CTAB (Cetyltrimethylammonium bromide) and PVP K55.

본 발명의 실시예에 의한 폐열전모듈을 재활용한 비스무스 텔루라이드 나노 분말 제조 방법에서는, 폐열전모듈을 재활용하여 비스무스 텔루라이드 나노 분말이 제조된다. 따라서, 본 발명의 실시예에 의하면, 보다 경제적으로 비스무스 텔루라이드 나노 분말을 제조할 수 있다. In the bismuth telluride nano powder manufacturing method in which the pre-waste heat module according to the embodiment of the present invention is recycled, the bismuth telluride nano powder is produced by recycling the waste heat pre-module. Therefore, according to the embodiment of the present invention, the bismuth telluride nano powder can be produced more economically.

도 1은 본 발명의 실시예에 의한 폐열전모듈을 재활용한 비스무스 텔루라이드 나노 분말 제조 방법을 보인 플로우 차트.
도 2는 본 발명의 제조예에 의하여 제조된 비스무스 텔루라이드 나노 분말의 주사전자현미경 (fe-SEM : Field Emission Scanning Election Micrescope) 사진.
도 3은 본 발명의 제조예에 의하여 제조된 비스무스 텔루라이드 나노 분말의 XRD(X-ray Diffraction) 분석 결과를 나타낸 그래프.
도 4 내지 6은 본 발명의 제조예 및 비교예 1,2의 솔더 제거 단계의 XRF(X-Ray Flourescence Spectrometry) 분석 결과를 나타낸 그래프.
도 7 내지 9는 본 발명의 제조예 및 비교예 3,4의 선택적 용해 단계의 XRF(X-Ray Flourescence Spectrometry) 분석 결과를 나타낸 그래프.
1 is a flow chart showing a method of manufacturing a bismuth telluride nano powder by recycling a pre-waste heat module according to an embodiment of the present invention.
2 is a photograph of a field emission scanning electron microscope (fe-SEM) of the bismuth telluride nano powder prepared according to the production example of the present invention.
FIG. 3 is a graph showing XRD (X-ray diffraction) analysis results of the bismuth telluride nano powder prepared according to the production example of the present invention.
FIGS. 4 to 6 are graphs showing XRF (X-Ray Flourescence Spectrometry) analysis results of the production example of the present invention and the solder removing step of Comparative Examples 1 and 2.
FIGS. 7 to 9 are graphs showing X-ray fluorescence spectrometry (XRF) analysis results of the production example of the present invention and the selective dissolution step of Comparative Examples 3 and 4. FIG.

이하에서는 본 발명의 실시예에 의한 폐전지모듈을 재활용한 비스무스 텔루라이드 나노 분말 제조 방법을 보인 플로우 차트이다. Hereinafter, a method of manufacturing a bismuth telluride nano powder using recycled waste battery module according to an embodiment of the present invention will be described.

도 1은 본 발명의 실시예에 의한 폐전지모듈을 재활용한 비스무스 텔루라이드 나노 분말 제조 방법을 보인 플로우 차트이다.FIG. 1 is a flow chart showing a method of manufacturing a bismuth telluride nano powder by recycling a waste battery module according to an embodiment of the present invention.

도 1을 참조하면, 본 실시예에 의한 폐전지모듈을 재활용한 비스무스 텔루라이드 나노 분말 제조 방법은, 열전 칩 수거 단계(S100), 솔더 제거 단계(S200), 선택적 용해 단계(S300) 및 분말 제조 단계(S400)을 포함한다. Referring to FIG. 1, a method of manufacturing a bismuth telluride nano powder by recycling a waste battery module according to the present embodiment includes a thermoelectric chip collection step (S100), a solder removing step (S200), a selective melting step (S300) Step S400.

보다 상세하게는, 상기 열전 칩 수거 단계(S100)에서는, 폐열전모듈에 포함된 페릴렌 코팅(perylene coating) 및 불순물이 제거되어 열전 칩이 수거된다. 이 때, 상기 폐열전모듈에 포함된 페릴렌 코팅 및 불순물은, THF(Tetrahydrofuran, L(-)-5,6,7,8-tetrahydrofolic acid)과 반응하고, 310℃의 온도에서 열처리되어 제거될 수 있다.More specifically, in the thermoelectric chip collection step (S100), the perylene coating and the impurities contained in the pre-waste heat module are removed and the thermoelectric chips are collected. At this time, the perylene coating and impurities contained in the waste heat transfer module react with THF (tetrahydrofuran, L (-) - 5,6,7,8-tetrahydrofolic acid) and are removed by heat treatment at 310 ° C .

그리고, 상기 솔더 제거 단계(S200)에서는, 상기 열전 칩에 포함된 솔더 성분이 제거된다. 예를 들면, 상기 솔더 성분은, 35% 농도의 염산과 25℃에서 반응하여 제거될 수 있다. In the solder removing step S200, the solder component included in the thermoelectric chip is removed. For example, the solder component can be removed by reacting with 35% strength hydrochloric acid at 25 < 0 > C.

또한, 상기 선택적 용해 단계(S300)에서는, 상기 솔더가 제거된 열전 칩이, 산과 반응하여 n-type 비스무스 텔루라이드만 용해된다. 예를 들면, 상기 n-type 비스무스 텔루라이드는, 70% 농도의 질산과 40℃에서 반응하여 용해될 수 있다. In addition, in the selective dissolution step (S300), the thermoelectric chips from which the solder is removed react with acid to dissolve only n-type bismuth telluride. For example, the n-type bismuth telluride can be dissolved by reacting with a nitric acid at a concentration of 70% at 40 캜.

마지막으로, 상기 분말 제조 단계(S400)에서는, 상기 n-type 비스무스 텔루라이드가, 환원제 및 첨가제와 반응하여 비스무스 텔루라이드계 나노 분말이 제조된다. 이 때, 상기 환원제는, 하이드라진(hydrazine, N2H4·H2O)이고, 상기 첨가제는, critic acid, tartaric acid, CTAB(Cetyltrimethylammonium bromide) 및 PVP K55로 이루어진 군(群)에서 선택된 어느 하나의 첨가제가 첨가될 수 있다. Finally, in the powder production step (S400), the n-type bismuth telluride is reacted with a reducing agent and an additive to produce a bismuth telluride nano powder. At this time, the reducing agent is hydrazine (N 2 H 4 .H 2 O), and the additive is any one selected from the group consisting of critic acid, tartaric acid, CTAB (Cetyltrimethylammonium bromide) and PVP K55 Can be added.

실시예Example

<제조예><Production Example>

제조예에서는, 열전 칩 수거 단계(S100)에서, 폐열전모듈에 포함된 페릴렌 코팅(perylene coating) 및 불순물이, THF(Tetrahydrofuran, L(-)-5,6,7,8-tetrahydrofolic acid)와 310℃의 온도에서 열처리되어 제거된 후 열전 칩이 수거되었다. In the production example, in the thermoelectric chip collection step (S100), perylene coating and impurities contained in the pre-waste heat module are mixed with THF (Tetrahydrofuran, L (-) - 5,6,7,8-tetrahydrofolic acid) And 310 ° C, and thermoelectric chips were collected.

그리고, 솔더 제거 단계(S200)에서는, 상기 열전 칩에 포함된 솔더 성분이, 25℃에서 35% 농도의 염산과 반응하여 제거되었다. Then, in the solder removing step (S200), the solder component included in the thermoelectric chip was removed by reacting with hydrochloric acid at a concentration of 35% at 25 캜.

또한, 선택적 용해 단계(S300)에서는, 상기 솔더가 제거된 열전 칩이, 40℃에서 70% 농도의 질산과 반응하여 n-type 비스무스 텔루라이드가 용해되었다. Further, in the selective dissolution step (S300), the thermoelectric chip from which the solder is removed reacted with nitric acid at a concentration of 70% at 40 占 폚 to dissolve the n-type bismuth telluride.

마지막으로, 분말 제조 단계(S400)에서는, n-type 비스무스 텔루라이드가, 하이드라진(hydrazine, N2H4·H2O) 및 critic acid과 반응하여 비스무스 텔루라이드 나노 분말이 제조되었다. Finally, in the powder preparation step (S400), n-type bismuth telluride was reacted with hydrazine (N 2 H 4 .H 2 O) and critic acid to produce bismuth telluride nano powder.

<비교예 1>&Lt; Comparative Example 1 &

비교예 1에서는, 제조예와 동일하게 비스무스 텔루라이드 나노 분말을 제조하되, 솔더 제거 단계(S200)에서, 열전 칩에 포함된 솔더 성분이, 25℃에서 15% 농도의 염산과 반응하여 제거되었다.In Comparative Example 1, the bismuth telluride nano powder was prepared in the same manner as in Production Example, and in the solder removing step (S200), the solder component contained in the thermoelectric chip was removed by reacting with hydrochloric acid at 15% concentration at 25 占 폚.

<비교예 2>&Lt; Comparative Example 2 &

비교예 2에서는, 제조예와 동일하게 비스무스 텔루라이드 나노 분말을 제조하되, 솔더 제거 단계(S200)에서, 열전 칩에 포함된 솔더 성분이, 50℃에서 35% 농도의 염산과 반응하여 제거되었다.In Comparative Example 2, a bismuth telluride nano powder was produced in the same manner as in Production Example. In the solder removing step (S200), the solder component contained in the thermoelectric chip was removed by reacting with hydrochloric acid at a concentration of 35% at 50 캜.

<비교예 3>&Lt; Comparative Example 3 &

비교예 3에서는, 제조예와 동일하게 비스무스 텔루라이드 나노 분말을 제조하되, 선택적 용해 단계(S300)에서, 솔더가 제거된 열전 칩이, 25℃에서 70% 농도의 질산과 반응하여 n-type 비스무스 텔루라이드가 용해되었다. In Comparative Example 3, the bismuth telluride nano powder was produced in the same manner as in Production Example, and in the selective dissolution step (S300), the thermoelectric chip from which the solder was removed reacted with nitric acid at a concentration of 70% at 25 ° C to form n-type bismuth Telluride dissolved.

<비교예 4>&Lt; Comparative Example 4 &

비교예 4에서는, 제조예와 동일하게 비스무스 텔루라이드 나노 분말을 제조하되, 선택적 용해 단계(S300)에서, 솔더가 제거된 열전 칩이, 40℃에서 35% 농도의 질산과 반응하여 n-type 비스무스 텔루라이드가 용해되었다. In Comparative Example 4, the bismuth telluride nano powder was produced in the same manner as in Production Example, and in the selective dissolution step (S300), the thermoelectric chips from which the solder was removed reacted with nitric acid at a concentration of 35% at 40 ° C to form n-type bismuth Telluride dissolved.

실험예Experimental Example

<실험예 1><Experimental Example 1>

상기 제조예에 의하여 제조된 비스무스 텔루라이드 나노 분말에 대하여 주사전자현미경(fe-SEM : Field Emission Scanning Election Microscope) 및 XRD(X-ray Diffraction) 분석을 수행하였고, 사진 및 그래프를 도 2,3에 첨부하였다. SEM (Fe-SEM) and X-ray diffraction (XRD) analyzes were performed on the bismuth telluride nano powder prepared according to the preparation example. Respectively.

도 2를 참조하면, 구형의 비스무스 텔루라이드 나노 입자가 제조된 것을 확인할 수 있고, 도 3을 참조하면 n-type 비스무스 텔루라이드에 해당하는 피크가 나타나는 것을 확인할 수 있다. Referring to FIG. 2, it can be confirmed that spherical bismuth telluride nanoparticles were produced. Referring to FIG. 3, it can be seen that a peak corresponding to n-type bismuth telluride appears.

<실험예 2><Experimental Example 2>

상기 제조예 및 비교예 1,2의 솔더 제거 단계(S200)의 XRF(X-Ray Flourescence Spectrometry) 분석을 수행하였고, 그래프를 도 4 내지 6에 첨부하였다. X-ray fluorescence spectrometry (XRF) analysis of the solder removing step (S200) of the production example and the comparative examples 1 and 2 was performed, and a graph was attached to FIGS.

도 4 내지 6을 참조하면, 제조예의 경우 비교예 1,2에 비하여 솔더의 용해가 단시간에 진행되는 것을 확인할 수 있다. 따라서, 제조예의 경우, 비교예 1,2에 비하여 솔더의 제거 시간이 단축되는 것을 확인할 수 있다. Referring to FIGS. 4 to 6, it can be confirmed that dissolution of the solder proceeds in a short time in comparison with Comparative Examples 1 and 2 in the production example. Accordingly, it can be confirmed that the removal time of the solder is shorter in the production example than in Comparative Examples 1 and 2.

<실험예 3><Experimental Example 3>

상기 제조예 및 비교예 3,4의 선택적 용해 단계(S300)의 XRF(X-Ray Flourescence Spectrometry) 분석을 수행하였고, 그래프를 도 7 내지 9에 첨부하였다. X-Ray Flourescence Spectrometry (XRF) analysis of the selective dissolution step (S300) of the preparation example and the comparative examples 3 and 4 was carried out, and the graph was attached to FIGS.

도 7 내지 9을 참조하면, 제조예의 경우 비교예 3,4에 비하여 n-type 비스무스 텔루라이드가 용해가 단시간에 진행되는 것을 확인할 수 있다. 따라서, 제조예의 경우, 비교예 3,4에 비하여 n-type 비스무스 텔루라이드의 용해 시간이 단축되는 것을 확인할 수 있다. Referring to FIGS. 7 to 9, it can be confirmed that the dissolution of n-type bismuth telluride proceeds in a short time in the case of the preparation examples, as compared with those of Comparative Examples 3 and 4. Therefore, it can be confirmed that the dissolution time of n-type bismuth telluride is shortened in the case of the production example, as compared with those of Comparative Examples 3 and 4.

Claims (12)

폐열전모듈에 포함된 페릴렌 코팅(perylene coating) 및 불순물이 제거되어 열전 칩이 수거되는 열전 칩 수거 단계(S100);
상기 열전 칩에 포함된 솔더 성분이 제거되는 솔더 제거 단계(S200);
상기 솔더가 제거된 열전 칩이, 산과 반응하여 n-type 비스무스 텔루라이드만 용해되는 선택적 용해 단계(S300); 및
상기 n-type 비스무스 텔루라이드가, 환원제 및 첨가제와 반응하여 비스무스 텔루라이드계 나노 분말이 제조되는 분말 제조 단계(S400)를 포함하는 폐열전모듈을 재활용한 비스무스 텔루라이드계 나노 분말 제조 방법.
A thermoelectric chip collection step (S100) in which perylene coating and impurities contained in the pre-waste heat module are removed and thermoelectric chips are collected;
A solder removing step (S200) for removing a solder component included in the thermoelectric chip;
An optional dissolution step (S300) in which the thermoelectric chip from which the solder is removed reacts with acid to dissolve only n-type bismuth telluride; And
Wherein the n-type bismuth telluride is reacted with a reducing agent and an additive to produce a bismuth telluride nano powder (S400).
제 1 항에 있어서,
상기 열전 칩 수거 단계(S100)에서,
상기 폐열전모듈에 포함된 페릴렌 코팅 및 불순물은, THF(Tetrahydrofuran, L(-)-5,6,7,8-tetrahydrofolic acid)과 반응하여 제거되는 폐열전모듈을 재활용한 비스무스 텔루라이드계 나노 분말 제조 방법.
The method according to claim 1,
In the thermoelectric chip collection step S100,
The perylene coating and the impurities contained in the waste heat transfer module are made of a bismuth telluride nano-type recycled waste heat transfer module which is removed by reacting with THF (Tetrahydrofuran, L (-) - 5,6,7,8-tetrahydrofolic acid) Powder.
제 1 항에 있어서,
상기 열전 칩 수거 단계(S100)에서,
상기 폐열전모듈에 포함된 페릴렌 코팅 및 불순물은, 310℃의 온도에서 열처리되어 제거되는 폐열전모듈을 재활용한 비스무스 텔루라이드계 나노 분말 제조 방법.
The method according to claim 1,
In the thermoelectric chip collection step S100,
Wherein the perylene coating and the impurities contained in the waste heat transfer module are heat treated at a temperature of 310 ° C to be removed, thereby recycling the waste heat transfer module.
제 1 항에 있어서,
상기 솔더 제거 단계(S200)에서,
상기 열전 칩에 포함된 솔더 성분은, 기설정된 온도에서, 기설정된 농도의 염산(HCl)과 반응하여 제거되는 폐열전모듈을 재활용한 비스무스 텔루라이드계 나노 분말 제조 방법.
The method according to claim 1,
In the solder removing step (S200)
Wherein the solder component included in the thermoelectric chip is reused by reacting with a predetermined concentration of hydrochloric acid (HCl) at a preset temperature to remove the module.
제 4 항에 있어서,
상기 솔더 제거 단계(S200)에서,
상기 열전 칩에 포함된 솔더 성분은, 35% 농도의 염산과 반응하여 제거되는 폐열전모듈을 재활용한 비스무스 텔루라이드계 나노 분말 제조 방법.
5. The method of claim 4,
In the solder removing step (S200)
Wherein the solder component contained in the thermoelectric chip is removed by reacting with hydrochloric acid having a concentration of 35%.
제 4 항에 있어서,
상기 솔더 제거 단계(S200)에서,
상기 열전 칩에 포함된 솔더 성분과 염산의 반응은, 25℃에서 이루어지는 폐열전모듈을 재활용한 비스무스 텔루라이드계 나노 분말 제조 방법.
5. The method of claim 4,
In the solder removing step (S200)
Wherein the reaction between the solder component contained in the thermoelectric chip and hydrochloric acid is performed at 25 ° C by recycling the waste heat transfer module.
제 1 항에 있어서,
상기 선택적 용해 단계(S300)에서,
상기 n-type 비스무스 텔루라이드는, 기설정된 온도에서, 기설정된 농도의 질산(HNO3)과 반응하여 용해되는 폐열전모듈을 재활용한 비스무스 텔루라이드계 나노 분말 제조 방법.
The method according to claim 1,
In the selective dissolution step (S300)
Wherein the n-type bismuth telluride is recycled at a predetermined temperature by reacting with a predetermined concentration of nitric acid (HNO 3 ) to dissolve the waste heat pre-module.
제 7 항에 있어서,
상기 선택적 용해 단계(S300)에서,
상기 n-type 비스무스 텔루라이드는, 70% 농도의 질산과 반응하여 용해되는 폐열전모듈을 재활용한 비스무스 텔루라이드계 나노 분말 제조 방법.
8. The method of claim 7,
In the selective dissolution step (S300)
Wherein the n-type bismuth telluride is recycled before reacting with a nitric acid at a concentration of 70% to dissolve the waste heat transfer module.
제 7 항에 있어서,
상기 선택적 용해 단계(S300)에서,
상기 n-type 비스무스 텔루라이드와 질산의 반응은, 40℃에서 이루어지는 폐열전모듈을 재활용한 비스무스 텔루라이드계 나노 분말 제조 방법.
8. The method of claim 7,
In the selective dissolution step (S300)
Wherein the reaction between the n-type bismuth telluride and nitric acid is performed at a temperature of 40 캜, and the module for recycling waste heat is recycled to the bismuth telluride nano powder.
제 1 항에 있어서,
상기 분말 제조 단계(S400)에서,
상기 환원제는, 하이드라진(hydrazine, N2H4·H2O)인 폐열전모듈을 재활용한 비스무스 텔루라이드계 나노 분말 제조 방법.
The method according to claim 1,
In the powder production step (S400)
Wherein the reducing agent is hydrazine (N 2 H 4 .H 2 O), and recycling the waste heat transfer module.
제 1 항에 있어서,
상기 분말 제조 단계(S400)에서,
상기 첨가제는, critic acid, tartaric acid, CTAB(Cetyltrimethylammonium bromide) 및 PVP K55로 이루어진 군(群)에서 선택된 어느 하나의 첨가제가 첨가되는 폐열전모듈을 재활용한 비스무스 텔루라이드계 나노 분말 제조 방법.
The method according to claim 1,
In the powder production step (S400)
Wherein the additive is one selected from the group consisting of critic acid, tartaric acid, CTAB (Cetyltrimethylammonium bromide) and PVP K55 is added, and the pre-heat module is recycled to the bismuth telluride nano powder.
제 1 항 내지 제 11 항 중 어느 한 항의 폐열전모듈을 재활용한 비스무스 텔루라이드계 나노 분말 제조 방법에 의하여 제조된 비스무스 텔루라이드계 나노 분말.
A bismuth telluride nano powder prepared by the method of manufacturing a bismuth telluride nano powder recycled by the waste heat transfer module according to any one of claims 1 to 11.
KR1020170151458A 2017-11-14 2017-11-14 Manufacturing method of bismuth telluride nano powder using waste thermoelectric module KR102609576B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170151458A KR102609576B1 (en) 2017-11-14 2017-11-14 Manufacturing method of bismuth telluride nano powder using waste thermoelectric module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170151458A KR102609576B1 (en) 2017-11-14 2017-11-14 Manufacturing method of bismuth telluride nano powder using waste thermoelectric module

Publications (2)

Publication Number Publication Date
KR20190054644A true KR20190054644A (en) 2019-05-22
KR102609576B1 KR102609576B1 (en) 2023-12-04

Family

ID=66680638

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170151458A KR102609576B1 (en) 2017-11-14 2017-11-14 Manufacturing method of bismuth telluride nano powder using waste thermoelectric module

Country Status (1)

Country Link
KR (1) KR102609576B1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101068966B1 (en) 2010-01-05 2011-09-29 한국기계연구원 Bismuth-tellurium thermoelectric material and manufacturing method thereof
KR20130099569A (en) * 2012-02-29 2013-09-06 고등기술연구원연구조합 Apparatus for separating thermoelectric materials from waste thermoelectric modules and method therefor
KR20150006558A (en) * 2013-07-09 2015-01-19 한양대학교 에리카산학협력단 Method for slective recovering p-type and n-type thermoelectric material
KR101494774B1 (en) * 2013-12-03 2015-02-23 한국과학기술연구원 Separation of tellurium and selenium, and preration method of tellurium using the same
KR20160146249A (en) * 2015-06-12 2016-12-21 고등기술연구원연구조합 Method for recovering tellurium oxide from waste thermoelectric module
KR101768274B1 (en) 2014-08-13 2017-08-14 주식회사 엘지화학 Manufacturing of nanoparticles of Bismuth Telluride by continuous process and nanoparticles of Bismuth Telluride

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101068966B1 (en) 2010-01-05 2011-09-29 한국기계연구원 Bismuth-tellurium thermoelectric material and manufacturing method thereof
KR20130099569A (en) * 2012-02-29 2013-09-06 고등기술연구원연구조합 Apparatus for separating thermoelectric materials from waste thermoelectric modules and method therefor
KR20150006558A (en) * 2013-07-09 2015-01-19 한양대학교 에리카산학협력단 Method for slective recovering p-type and n-type thermoelectric material
KR101494774B1 (en) * 2013-12-03 2015-02-23 한국과학기술연구원 Separation of tellurium and selenium, and preration method of tellurium using the same
KR101768274B1 (en) 2014-08-13 2017-08-14 주식회사 엘지화학 Manufacturing of nanoparticles of Bismuth Telluride by continuous process and nanoparticles of Bismuth Telluride
KR20160146249A (en) * 2015-06-12 2016-12-21 고등기술연구원연구조합 Method for recovering tellurium oxide from waste thermoelectric module

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
소형섭 외, J. Korean Powder Metall. Inst. Vol. 24, No. 2, 141-146, 2017* *

Also Published As

Publication number Publication date
KR102609576B1 (en) 2023-12-04

Similar Documents

Publication Publication Date Title
Portehault et al. A general solution route toward metal boride nanocrystals
Hu et al. Composite-hydroxide-mediated approach as a general methodology for synthesizing nanostructures
JP6735342B2 (en) Novel method for manufacturing silver nanowires with uniform aspect ratio and nodes
KR20110049580A (en) Thermoelectric nano-complex, and thermoelectric module and thermoelectric apparatus comprising same
Finefrock et al. Large-scale solution-phase production of Bi 2 Te 3 and PbTe nanowires using Te nanowire templates
CN102534630A (en) Porous titanium nitride nanotube array film and preparation method thereof
Shahmiri et al. Effect of pH on the synthesis of CuO nanosheets by quick precipitation method
CN108640152B (en) One kind having one-dimensional micro-nanometer stick LiMgVO4Material and preparation method
CN111362321A (en) Preparation method of metal sulfide
CN101693620B (en) Preparation method of rare earth fluoride in air
CN102280570A (en) Trace Cu-doped Bi2S3-based thermoelectric material
JP6365950B2 (en) Thermoelectric material and manufacturing method thereof
KR102609576B1 (en) Manufacturing method of bismuth telluride nano powder using waste thermoelectric module
WO2019224619A1 (en) A method for the manufacture of graphene oxide from electrode graphite scrap
CN101891217B (en) Method for preparing high-purity rare earth boride 6 (REB6) nano-powder
JP2016163028A (en) Method of producing thermoelectric material
CN107793155B (en) Ultra-fast preparation of Cu2Method for Se bulk thermoelectric material
KR101104677B1 (en) A Method for fabricating thermoelectric material by mechano-chemical process
Fang et al. Phase Evolution of Cu S System in Ethylene Glycol Solution: the Effect of Anion and PVP on the Transformation of Thiourea
CN104310479A (en) Silver-doped lithium niobate nano polycrystalline powder and preparation method thereof
DE112008003423T5 (en) Process for recovering silicon
Wang et al. Maltose-assisted sol–gel synthesis, structural, magnetic and optical properties of multiferroic BiFeO 3 nanopowders
Assahsahi et al. Influence of the synthesis parameters on the transport properties of Mg2Si0. 4Sn0. 6 solid solutions produced by melting and spark plasma sintering
Chettri et al. Plasma augmented structural and electrical properties of half doped neodymium strontium manganites
CN101525127B (en) Method for preparing boron nitride nanometer hollow sphere by self-initiation solid state reaction

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant