KR101104677B1 - A Method for fabricating thermoelectric material by mechano-chemical process - Google Patents

A Method for fabricating thermoelectric material by mechano-chemical process Download PDF

Info

Publication number
KR101104677B1
KR101104677B1 KR1020100013119A KR20100013119A KR101104677B1 KR 101104677 B1 KR101104677 B1 KR 101104677B1 KR 1020100013119 A KR1020100013119 A KR 1020100013119A KR 20100013119 A KR20100013119 A KR 20100013119A KR 101104677 B1 KR101104677 B1 KR 101104677B1
Authority
KR
South Korea
Prior art keywords
mechanical
tellurium
heat treatment
aqueous solution
thermoelectric material
Prior art date
Application number
KR1020100013119A
Other languages
Korean (ko)
Other versions
KR20110093215A (en
Inventor
하국현
김경태
이혜문
이길근
Original Assignee
한국기계연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국기계연구원 filed Critical 한국기계연구원
Priority to KR1020100013119A priority Critical patent/KR101104677B1/en
Publication of KR20110093215A publication Critical patent/KR20110093215A/en
Application granted granted Critical
Publication of KR101104677B1 publication Critical patent/KR101104677B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • B22F9/26Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions using gaseous reductors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/01Reducing atmosphere
    • B22F2201/013Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/03Oxygen

Abstract

본 발명의 실시예에 따른 기계-화학반응에 의한 열전재료 제조방법은, 상기와 같은 목적을 달성하기 위한 본 발명에 따른 기계-화학반응에 의한 열전재료 제조방법은, 광석에서 구리(Cu) 추출시 생성된 부산물인 텔루륨을 포함한 수용액을 준비하는 재료준비단계와, 상기 수용액에 포함된 불순물을 제거하는 불순물제거단계와, 상기 불순물이 제거된 수용액에 HNO3 와 H2SO4 중 하나 이상을 투입하여 수용액을 중화하는 중화단계와, 중화된 수용액에서 반응하여 형성된 텔루륨산화물 분말을 추출하는 텔루륨산화물추출단계와, 상기 텔루륨산화물분말과 비스무스염을 기계적 밀링 공정으로 혼합하여 혼합분말을 제조하는 기계적혼합단계와, 상기 혼합분말을 산화분위기에서 열처리하여 Bi-Te계 복합산화물을 제조하는 산화열처리단계와, 상기 Bi-Te계 복합산화물의 분말 크기를 기계적 밀링 공정을 이용하여 제어하는 기계적분쇄단계와, 분쇄된 Bi-Te계 복합산화물을 환원열처리하여 열전재료를 형성하는 환원열처리단계로 이루어진다. 이와 같이 구성되는 본 발명에 따르면, 광석 제련시에 생성된 부산물을 재활용하여 열전재료의 제조가 가능하므로 제조원가를 절감할 수 있으며, 자원 재활용률을 극대화할 수 있는 이점이 있다..Method for producing a thermoelectric material by the mechanical-chemical reaction according to an embodiment of the present invention, the method for producing a thermoelectric material by the mechanical-chemical reaction according to the present invention for achieving the above object, copper (Cu) extraction from the ore At least one of HNO 3 and H 2 SO 4 in the material preparation step of preparing an aqueous solution containing tellurium as a by-product generated during the production process, an impurity removing step of removing impurities contained in the aqueous solution, and the aqueous solution from which the impurities are removed Neutralization step of neutralizing the aqueous solution by adding, Tellurium oxide extraction step of extracting the tellurium oxide powder formed by reacting in the neutralized aqueous solution, and mixing the tellurium oxide powder and bismuth salt by mechanical milling process to prepare a mixed powder A mechanical mixing step, an oxidation heat treatment step of manufacturing a Bi-Te-based composite oxide by heat-treating the mixed powder in an oxidizing atmosphere, and the Bi-Te-based composite A mechanical grinding step of controlling the powder size of the oxide using a mechanical milling process, and a reduction heat treatment step of forming a thermoelectric material by reducing heat treatment of the pulverized Bi-Te based composite oxide. According to the present invention configured as described above, it is possible to manufacture the thermoelectric material by recycling the by-products generated during the ore smelting can reduce the manufacturing cost, there is an advantage to maximize the resource recycling rate.

Description

기계-화학반응에 의한 열전재료 제조방법{A Method for fabricating thermoelectric material by mechano-chemical process}A method for fabricating thermoelectric material by mechano-chemical process

본 발명은 광석에서 구리(Cu) 추출시에 부산물로 발생하는 텔루륨-수산화나트륨(NaOH) 용액에서 텔루륨 산화물(TeO2)을 추출하고, 이를 비스무스염과 기계적 밀링 후 산화/하소하여 Bi산화물과 Te산화물로 이루어진 복합산화물을 제조한 후 환원열처리에 의해 비스무스와 텔루륨으로 이루어진 열전재료(Bi2Te3)를 제조할 수 있도록 한 기계-화학반응에 의한 열전재료 제조방법에 관한 것이다.The present invention extracts tellurium oxide (TeO 2 ) from the tellurium-sodium hydroxide (NaOH) solution generated as a by-product during copper (Cu) extraction from the ore, and the oxidation and calcination after bismuth salt and mechanical milling Bi oxide The present invention relates to a method of manufacturing a thermoelectric material by a mechanical-chemical reaction, which enables the production of a thermoelectric material (Bi 2 Te 3 ) made of bismuth and tellurium by reducing heat treatment after preparing a composite oxide made of a Te oxide.

열전재료란 재료 양단 간에 온도차를 주었을 때 전기에너지가 생기고 반대로 재료에 전기에너지를 주었을 때 재료 양단 간에 온도차가 생기는 에너지 변환 재료이다. A thermoelectric material is an energy conversion material in which electrical energy is generated when a temperature difference is applied between both ends of a material, and conversely, a temperature difference is generated between both ends of a material when an electric energy is applied to a material.

열전재료는 19세기 초에 열전현상인 지백효과(Seebeck effect), 펠티에효과(Peltier effect), 톰슨효과(Thomson effect) 등이 발견 후, 1930년대 후반부터 반도체의 발전과 더불어 열전 성능지수가 높은 열전재료로 개발되어 최근에는 열전 발전을 이용한 산간 벽지용, 우주용, 군사용 등의 특수 전원장치로의 사용과 열전 냉각을 이용한 반도체 레이저 다이오드, 적외선 검출소자 등에서의 정밀한 온도제어나 컴퓨터 관련 소형 냉각기와, 광통신레이저 냉각장치, 냉온수기의 냉각장치, 반도체 온도조절장치, 열교환기 등에 사용되고 있다.After the discovery of thermoelectric phenomena such as Seebeck effect, Peltier effect, and Thomson effect in the early 19th century, thermoelectric materials have been developed in the late 1930s. It is developed as a material and recently used as a special power supply device for mountain wallpaper, space, military, etc. using thermoelectric power generation, and precise temperature control or computer-related small cooler in semiconductor laser diode, infrared detection device using thermoelectric cooling, It is used for optical communication laser chiller, chiller and water cooler, semiconductor temperature control device, heat exchanger and so on.

열전재료의 가장 유망한 실용화소재로 가장 널리 알려진 Bismuth Telluride (Bi2Te3)의 핵심원료는 비스무스(Bi)와 텔루륨(Te)이다. 두 금속 원소 중 텔루륨(Te)은 특히 세계적으로 매장량이 적어 자원선진국의 채굴량이 적고 원재료 가격도 높아 백금에 버금가는 가격으로 수입되고 있다. Bismuth Telluride (Bi 2 Te 3 ), the core material of the most promising thermoelectric material, is bismuth (Bi) and tellurium (Te). Of the two metal elements, tellurium (Te) is imported at a price comparable to that of platinum due to its low reserves in the world, especially in developed countries, and high raw material prices.

또한 기존에는 원소재인 Bi와 Te의 잉곳을 용융, 분쇄하여 분말형태로 제조한 후 이를 다시 소결하는 방법으로 열전소재를 제조하였다. 따라서, 제조공정이 복잡하고 잉곳 제조, 제조된 잉곳의 용융 및 분쇄과정에서의 불순물 혼입문제. 어려운 입도제어 문제 등이 여전히 해결과제로 남아있다. In addition, conventional thermoelectric materials were manufactured by melting and pulverizing ingots of Bi and Te, which are raw materials, into powders, and then sintering them again. Therefore, the manufacturing process is complicated, and the problem of incorporation of impurities during melting and grinding of the ingot manufactured and manufactured. Difficult particle size control problems remain a challenge.

그러나 원광석 단계에서 바로 열전원소재를 추출하고 이를 원하는 열전분말소재로 제조한다면 상기 문제를 상당히 해결할 수 있을 것으로 판단되며, 원소재의 혼합시에도 값이 싸고 공정처리동안 순도가 높아지는 염상태의 분말을 사용함으로서 최종적으로 Bi와 Te만으로 이루어진 합금분말 상태로 제조하여 제조공정 간소화와 원소재 재료비의 원가절감을 이루어낼 수 있다. However, the extraction of the thermal power material directly from the ore stage and manufacturing it into the desired thermal powder material may solve the above problems, and the use of salt powders, which are inexpensive even when mixing the raw materials and the purity of the raw materials, increases during processing. By finally manufacturing in the state of alloy powder consisting of only Bi and Te, it is possible to simplify the manufacturing process and reduce the cost of raw material costs.

본 발명의 목적은 종래의 문제점을 해결하기 위한 것으로, 보다 구체적으로는, 광석에서 구리(Cu) 추출시에 발생하는 부산물인 수산화나트륨(NaOH) 용액에 포함된 텔루륨을 산화물 형태로 추출하고, 비스무스염과의 기계적 밀링공정에 의해 복합산화물을 제조한 후 이를 환원처리함으로써 최종적으로 비스무스와 텔루륨으로 이루어진 열전재료를 제조할 수 있도록 한 기계-화학반응에 의한 열전재료 제조방법을 제공하는 것에 있다.An object of the present invention is to solve the conventional problems, more specifically, to extract the tellurium contained in the sodium hydroxide (NaOH) solution which is a by-product generated when extracting copper (Cu) from the ore in the form of oxide, The present invention provides a method of manufacturing a thermoelectric material by a mechanical-chemical reaction, in which a composite oxide is prepared by a mechanical milling process with a bismuth salt, followed by reduction, thereby producing a thermoelectric material consisting of bismuth and tellurium. .

상기와 같은 목적을 달성하기 위한 본 발명에 따른 기계-화학반응에 의한 열전재료 제조방법은, 광석에서 구리(Cu) 추출시 생성된 부산물인 텔루륨을 포함한 수용액을 준비하는 재료준비단계와, 상기 수용액에 포함된 불순물을 제거하는 불순물제거단계와, 상기 불순물이 제거된 수용액에 HNO3 와 H2SO4 중 하나 이상을 투입하여 수용액을 중화하는 중화단계와, 중화된 수용액에서 반응하여 형성된 텔루륨산화물 분말을 추출하는 텔루륨산화물추출단계와, 상기 텔루륨산화물분말과 비스무스염을 기계적 밀링 공정으로 혼합하여 혼합분말을 제조하는 기계적혼합단계와, 상기 혼합분말을 산화분위기에서 열처리하여 Bi-Te계 복합산화물을 제조하는 산화열처리단계와, 상기 Bi-Te계 복합산화물의 분말 크기를 기계적 밀링 공정을 이용하여 제어하는 기계적분쇄단계와, 분쇄된 Bi-Te계 복합산화물을 환원열처리하여 열전재료를 형성하는 환원열처리단계로 이루어진다.Method for producing a thermoelectric material by the mechanical-chemical reaction according to the present invention for achieving the above object, the material preparation step of preparing an aqueous solution containing tellurium which is a by-product generated during copper (Cu) extraction from the ore, An impurity removal step of removing impurities contained in the aqueous solution, a neutralization step of neutralizing the aqueous solution by adding one or more of HNO 3 and H 2 SO 4 to the aqueous solution from which the impurities are removed, and tellurium formed by reacting in the neutralized aqueous solution The tellurium oxide extraction step of extracting the oxide powder, the mechanical mixing step of preparing a mixed powder by mixing the tellurium oxide powder and bismuth salt in a mechanical milling process, and heat treatment the mixed powder in an oxidizing atmosphere to Bi-Te system Oxidation heat treatment step of producing a composite oxide, and mechanically controlling the powder size of the Bi-Te-based composite oxide using a mechanical milling process By reducing the heat treatment step with the chain, the pulverized Bi-Te based composite oxide comprises a reducing heat treatment to form a thermoelectric material.

상기 불순물제거단계는, 상기 수용액 내부에 포함된 Cu, Fe 등을 포함하는 불순물을 NaSH를 첨가하여 제거하는 과정임을 특징으로 한다.The impurity removing step may be a process of removing impurities including Cu and Fe contained in the aqueous solution by adding NaSH.

상기 중화단계는, 상기 수용액 내부에 포함된 NaOH를 제거하고 텔루륨산화 물을 형성하는 과정임을 특징으로 한다.The neutralization step is characterized in that to remove the NaOH contained in the aqueous solution to form tellurium oxide.

상기 텔루륨산화물추출단계에서는, 상기 텔루륨산화물 분말의 크기 제어를 위해 SDS 또는 SDBS 중 어느 하나인 계면활성제가 첨가됨을 특징으로 한다.In the tellurium oxide extracting step, a surfactant which is either SDS or SDBS is added to control the size of the tellurium oxide powder.

상기 기계적혼합단계에서, 텔루륨산화물 분말은 TeO2이고, 비스무스염은 비스무스 질화물, 비스무스 염화물, 비스무스 황화물 중 하나 이상이 적용되며, 텔루륨과 비스무스는 3:2의 몰비로 혼합되는 것을 특징으로 한다.In the mechanical mixing step, the tellurium oxide powder is TeO 2 , the bismuth salt is one or more of bismuth nitride, bismuth chloride, bismuth sulfide is applied, tellurium and bismuth is characterized in that mixed in a molar ratio of 3: 2. .

상기 산화열처리단계는, 상기 비스무스염에 포함된 황산염(SO4)-, 질산염(NO3)-, 염소염(Cl)-을 제거하는 과정임을 특징으로 한다.The oxidizing heat treatment step, a sulfate (SO 4) contained in the bismuth salts - is characterized in that the process of removing -, nitrate (NO 3) -, chlorine salt (Cl).

상기 산화열처리단계는, 비스무스염을 비스무스산화물로 제조하여 텔루륨산화물과 복합화하는 과정임을 특징으로 한다.The oxidation heat treatment step is characterized in that the bismuth salt is made of bismuth oxide and complexed with tellurium oxide.

상기 산화열처리단계는 산소분위기로 350℃의 온도에서 실시됨을 특징으로 한다.The oxidation heat treatment step is characterized in that carried out at a temperature of 350 ℃ in the oxygen atmosphere.

삭제delete

상기 환원열처리단계는 수소분위기에서 350℃이하의 온도에서 가열하여 텔루륨의 휘발량이 최소화되도록 하는 과정임을 특징으로 한다.The reduction heat treatment step is characterized in that the process to minimize the volatilization of tellurium by heating at a temperature of less than 350 ℃ in a hydrogen atmosphere.

상기 환원열처리단계에서 제조된 열전재료는 Bi2Te3 상을 가지는 분말 형태임을 특징으로 한다.The thermoelectric material prepared in the reduction heat treatment step is characterized in that the powder form having a Bi 2 Te 3 phase.

이상 설명한 바와 같이 본 발명에서는, 광석에서 구리(Cu) 추출시에 발생하는 부산물인 수산화나트륨(NaOH) 용액에 포함된 텔루륨산화물을 추출하여 이를 비스무스염과 혼합 및 반응시켜 2원계 또는 3원계 열전분말을 제조할 수 있도록 하였다.As described above, in the present invention, by extracting tellurium oxide contained in the sodium hydroxide (NaOH) solution, which is a by-product generated when extracting copper (Cu) from the ore, and mixed with and reacted with bismuth salt to binary or ternary thermoelectric It was possible to prepare a powder.

따라서, 광석 제련시에 생성된 텔루륨이 포함된 부산물을 폐기하지 않고 재활용하여 열전분말의 제조가 가능하므로 기존 잉곳을 구매하여 재용융하여 다단계로 분쇄하는 방법에 비해 제조원가를 절감할 수 있으며, 자원 재활용률을 극대화할 수 있는 이점이 있다.Therefore, it is possible to manufacture the thermal starch powder by recycling the by-products containing tellurium generated during the ore smelting without disposing, thus reducing the manufacturing cost compared to the method of purchasing the existing ingot and remelting and crushing in multiple stages. There is an advantage to maximize the recycling rate.

도 1 은 본 발명에 의한 기계-화학반응에 의한 열전재료 제조방법을 나타낸 공정 순서도.
도 2a 는 본 발명 중 중화단계 후 제조된 텔루륨 산화물 분말을 나타낸 SEM 사진.
도 2b 는 본 발명 중 중화단계 후 제조된 텔루륨 산화물 분말의 원소 성분 분석결과를 나타낸 표.
도 2c 는 본 발명 중 중화단계 후 제조된 텔루륨 산화물 분말의 상분석결과를 나타낸 XRD 그래프.
도 2d 는 본 발명 중 중화단계시 투입된 SDS계면활성제에 의해 입자크기가 50㎚급으로 제어된 텔루륨산화물 분말을 나타낸 SEM사진
도 3a 는 본 발명의 실시예에 의한 열전재료 제조방법에 따라 산화열처리 및 밀링 후 제조된 열전분말을 나타낸 SEM사진
도 3b 는 본 발명의 실시예에 의한 열전재료 제조방법에 따라 산화열처리 및 밀링 후 제조된 열전분말의 상분석결과를 나타낸 XRD그래프
도 4a 는 본 발명의 실시예에 의한 열전재료 제조방법에 따라 환원 열처리 후 제조된 열전분말을 나타낸 SEM사진
도 4b 는 본 발명의 실시예에 의한 열전재료 제조방법에 따라 환원 열처리 후 제조된 열전분말의 상분석 결과를 나타낸 XRD그래프
1 is a process flowchart showing a method of manufacturing a thermoelectric material by a mechanical-chemical reaction according to the present invention.
Figure 2a is a SEM photograph showing the tellurium oxide powder prepared after the neutralization step of the present invention.
Figure 2b is a table showing the elemental component analysis of the tellurium oxide powder prepared after the neutralization step of the present invention.
Figure 2c is an XRD graph showing the phase analysis of the tellurium oxide powder prepared after the neutralization step of the present invention.
FIG. 2d is a SEM photograph showing tellurium oxide powder having a particle size of 50 nm controlled by an SDS surfactant added during the neutralization step of the present invention.
Figure 3a is a SEM photograph showing the thermoelectric powder prepared after the oxidation heat treatment and milling in accordance with the thermoelectric material manufacturing method according to an embodiment of the present invention
Figure 3b is an XRD graph showing the results of the phase analysis of the thermoelectric powder prepared after the oxidation heat treatment and milling in accordance with the thermoelectric material manufacturing method according to an embodiment of the present invention
Figure 4a is a SEM photograph showing the thermoelectric powder prepared after the reduction heat treatment according to the thermoelectric material manufacturing method according to an embodiment of the present invention
Figure 4b is an XRD graph showing the phase analysis results of the thermoelectric powder prepared after the reduction heat treatment according to the thermoelectric material manufacturing method according to an embodiment of the present invention

이하에서는 첨부된 도 1을 참조하여 본 발명에 의한 열전재료의 제조방법을 설명한다.Hereinafter, a method of manufacturing a thermoelectric material according to the present invention will be described with reference to FIG. 1.

도 1에는 본 발명에 의한 기계-화학반응에 의한 열전재료 제조방법을 나타낸 공정 순서도가 도시되어 있다.1 is a process flowchart showing a method of manufacturing a thermoelectric material by a mechanical-chemical reaction according to the present invention.

본 발명의 바람직한 실시예에 따른 기계-화학반응에 의한 열전재료 제조방법을 개략적으로 설명하면, 광산에서 수거된 광석으로부터 구리원광석을 추출하는 과정에서 생성되는 부산물인 수용액으로부터 텔루륨산화물을 추출하고, 이렇게 추출된 텔루륨산화물을 비스무스염과 혼합한 후 산화열처리, 분쇄 및 환원열처리를 순차적으로 실시함으로써 열전재료인 Bi2Te3 가 얻어지도록 하는 것이다.Referring to the method of manufacturing a thermoelectric material by a mechanical-chemical reaction according to a preferred embodiment of the present invention, tellurium oxide is extracted from an aqueous solution which is a by-product generated in the process of extracting a copper source ore from the ore collected from the mine, The extracted tellurium oxide is mixed with a bismuth salt, followed by oxidative heat treatment, pulverization and reduction heat treatment in order to obtain Bi 2 Te 3 as a thermoelectric material.

이를 위해 상기 열전재료는, 광석에서 구리(Cu) 추출시 생성된 부산물인 텔루륨을 포함한 수용액을 준비하는 재료준비단계(S100)와, 상기 수용액에 NaSH를 투입하여 구리나 철 등의 금속불순물을 침전시키는 불순물제거단계(S200)와, 불순물이 제거된 상기 수용액에 HNO3 와 H2SO4 중 하나 이상을 투입하여 수용액을 중화하는 중화단계(S300)와, 중화된 수용액에 환원제 및 계면활성제를 첨가하여 텔루륨산화물분말을 추출하는 텔루륨산화물추출단계(S400)와, 상기 텔루륨산화물분말과 비스무스염을 기계적 밀링 공정으로 혼합하여 혼합분말을 제조하는 기계적혼합단계(S500)와, 상기 혼합분말을 산화분위기에서 열처리하여 Bi-Te계 복합산화물을 제조하는 산화열처리단계(S500)와, 상기 Bi-Te계 복합산화물의 분말 크기를 기계적 밀링 공정을 이용하여 제어하는 기계적분쇄단계(S600)와, 분쇄된 Bi-Te계 복합산화물을 환원열처리하여 열전재료를 형성하는 환원열처리단계(S700)를 거쳐 제조된다.To this end, the thermoelectric material is a material preparation step (S100) of preparing an aqueous solution containing tellurium, which is a by-product generated when copper (Cu) is extracted from ore, and metal impurities such as copper or iron by adding NaSH to the aqueous solution. Impurity removal step (S200) to precipitate, neutralization step (S300) to neutralize the aqueous solution by adding one or more of HNO 3 and H 2 SO 4 to the aqueous solution from which impurities are removed, and a reducing agent and a surfactant in the neutralized aqueous solution Tellurium oxide extraction step (S400) for extracting tellurium oxide powder by adding, the mechanical mixing step (S500) and mixing the tellurium oxide powder and bismuth salts in a mechanical milling process to prepare a mixed powder, and the mixed powder Oxidation heat treatment step (S500) of producing a Bi-Te-based composite oxide by heat-treating it in an oxidizing atmosphere, and controlling the powder size of the Bi-Te-based composite oxide using a mechanical milling process. Ever and the milling step (S600), a reducing heat treatment to the pulverized Bi-Te based composite oxide is produced via the reduction heat treatment step (S700) of forming a thermoelectric material.

상기 재료준비단계(S100)에서 구리제련과정을 거친 수용액 내부에는 NaOH가 다량 포함되어 있으며, 구리(Cu)와 철(Fe) 및 텔루륨(Te)도 함께 용해되어 있다.In the aqueous solution preparation step (S100), the aqueous solution of NaOH is contained in the aqueous solution, and copper (Cu), iron (Fe), and tellurium (Te) are also dissolved together.

이렇게 텔루륨과 NaOH가 포함되어 있는 수용액은 불순물제거단계(S200)를 거쳐 텔루륨만이 포함된 NaOH 용액을 제조하게 된다.The aqueous solution containing tellurium and NaOH is prepared through the impurity removal step (S200) to produce a NaOH solution containing only tellurium.

상기 불순물제거단계(S200)는 수용액 내부에 포함된 금속인 구리, 철, 텔루륨 등을 침전하기 위한 과정으로, 상기 수용액에는 NaSH를 첨가함으로써 가능하다.The impurity removal step (S200) is a process for precipitating copper, iron, tellurium, and the like, which are metals contained in the aqueous solution, and is possible by adding NaSH to the aqueous solution.

보다 구체적으로 살펴보면, 상기 불순물제거단계(S200)는 수용액 내부에 NaSH를 용해시켜 황화물 형성이 용이한 철과 구리를 황화물형태로 추출해내 용액 중에서 침전시킨다. 이때 침전물에는 원광석 용액에 남아있는 구리 및 철 등의 미량원소가 함께 침전된다. 침전물은 필터링을 통해 되며, 침전물이 제거된 용액에는 NaOH와 텔루륨만이 용해된 상태가 된다.In more detail, the impurity removal step (S200) is to dissolve NaSH in the aqueous solution to extract the iron and copper easy to form sulfide in the form of sulfide to precipitate in the solution. At this time, the precipitate is precipitated with trace elements such as copper and iron remaining in the ore solution. The precipitate is filtered, and only NaOH and tellurium are dissolved in the solution from which the precipitate is removed.

이후 텔루륨만 용해된 NaOH 용액에서 텔루륨만을 추출해내기 위해 질산(HNO3)또는 황산(H2SO4)을 투입하는 중화단계(S300)가 실시된다.Thereafter, a neutralization step (S300) is performed in which nitric acid (HNO 3 ) or sulfuric acid (H 2 SO 4 ) is added to extract only tellurium from the solution of NaOH containing only tellurium.

상기 중화단계(S200)에서 TeO2는 침전되어 추출 가능하며, 상기 텔루륨 산화물 분말의 입도제어를 위해 수용액과 친화도가 높은 SDS 또는 SDBS 등의 계면활성제를 사용할 수 있다.In the neutralization step (S200), TeO 2 may be precipitated and extracted, and a surfactant such as SDS or SDBS having high affinity with an aqueous solution may be used to control the particle size of the tellurium oxide powder.

상기 중화단계(S200) 이후에는 침전된 텔루륨 산화물 분말을 텔루륨산화물추출단계(S400)를 통해 추출하게 된다. 이때 상기 텔루륨산화물분말은 필터링방법이나 원심분리법을 통해 추출 가능하며, 추출된 텔루륨산화물 분말은 일정 시간 및 온도에서 건조됨이 바람직하다.After the neutralization step (S200), the precipitated tellurium oxide powder is extracted through the tellurium oxide extraction step (S400). In this case, the tellurium oxide powder may be extracted through a filtering method or a centrifugal separation method, and the extracted tellurium oxide powder may be dried at a predetermined time and temperature.

상기 텔루륨산화물추출단계(S400)를 통해 수용액으로부터 추출된 텔루륨(Te)은 TeO2분말로 분리된 후 기계적혼합단계(S500)를 거치게 된다.Tellurium (Te) extracted from the aqueous solution through the tellurium oxide extraction step (S400) is separated into TeO 2 powder and then subjected to a mechanical mixing step (S500).

상기 기계적혼합단계(S500)는 텔루륨산화물추출단계(S400)에서 만들어진 TeO2분말과 비스무스계 부산물인 Bi(SO4)3 분말 또는 Bi 염화물 또는 Bi 질화물과 기계적 밀링 공정으로 혼합하는 과정이다.The mechanical mixing step (S500) is a process of mixing TeO 2 powder and Bi (SO4) 3 powder or Bi chloride or Bi nitride, which are produced by the tellurium oxide extraction step (S400), with Bi chloride or Bi nitride, by a mechanical milling process.

이때, 상기 TeO2분말과 비스무스염 분말은 최종적으로 산화물과 염분말 내에 포함된 Te와 Bi가 각각 3:2의 몰비를 갖도록 혼합된다.At this time, the TeO 2 powder and bismuth salt powder are finally mixed so that the Te and Bi contained in the oxide and salt powder each have a molar ratio of 3: 2.

그리고 기계적혼합단계(S500) 중 발생하는 마찰열로 인해 혼합분말의 일부는 BI-Te계 산화물로 합성되며, 일부는 Bi(SO4)3-TeO2 혼합분말 상태로 존재할 수 있다.And due to the frictional heat generated during the mechanical mixing step (S500), a part of the mixed powder is synthesized as a BI-Te-based oxide, a part may be present in the state of Bi (SO 4 ) 3 -TeO 2 mixed powder.

이후 상기 산화열처리단계(S600)가 실시된다. 상기 산화열처리단계(S600)는 혼합분말을 산화분위기에서 열처리하여 Bi-Te계 복합산화물을 제조하는 과정으로, 비스무스염에 포함된 황산염, 염소염, 질산염을 제거하기 위함이다.After the oxidation heat treatment step (S600) is carried out. The oxidation heat treatment step (S600) is a process of manufacturing a Bi-Te-based composite oxide by heat-treating the mixed powder in an oxidizing atmosphere to remove sulfates, chlorine salts, and nitrates contained in bismuth salts.

즉, 상기 비스무스염은 비스무스계의 부산물인 비스무스황화물 (Bi(SO4)3)을 기본으로하여 비스무스 염소염 (BiCl3) 또는 비스무스 질산염(Bi(NO3)3) 이 사용되는데 염중에 포함된 황산기, 질산기, 염소기를 제거하기 위해 상기 혼합분말은 열처리로 내부에 장입되고, 열처리로 내부는 연속적으로 산화분위기가 조성될 수 있도록 공기 또는 산소가 지속적으로 공급되며, 이런 상태에서 350℃로 열처리되어 황산기, 질산기, 염소기가 열에너지에 의해 Bi와 분리되어 제거되며 공급된 산소에 의해 Bi의 산화가 이루어진다.That is, the bismuth salt is based on bismuth sulfide (Bi (SO 4 ) 3 ), which is a by-product of bismuth, and bismuth chlorine salt (BiCl 3 ) or bismuth nitrate (Bi (NO 3 ) 3 ) is used. In order to remove sulfuric acid group, nitric acid group and chlorine group, the mixed powder is charged inside the heat treatment furnace, and air or oxygen is continuously supplied to the inside of the heat treatment furnace so that an oxidizing atmosphere can be continuously formed. Sulfuric acid groups, nitric acid groups and chlorine groups are separated from Bi by thermal energy, and Bi is oxidized by supplied oxygen.

이때 상기 비스무스염에서 유기물등이 열처리로 외부로 배출되어 제거되며, TeO2와 반응에 의해 Bi-Te계 복합 산화물이 제조될 수 있다.At this time, the organic material is removed from the bismuth salt to the outside by heat treatment, and Bi-Te-based composite oxide may be prepared by reaction with TeO 2 .

이후 상기 기계적분쇄단계(S700)가 실시된다. 상기 기계적분쇄단계(S700)는 Bi-Te계 복합 산화물의 분말 크기를 제어하기 위한 것으로, 기계적 밀링 공정이 적용된다.After the mechanical grinding step (S700) is carried out. The mechanical grinding step (S700) is to control the powder size of the Bi-Te-based composite oxide, a mechanical milling process is applied.

상기 기계적분쇄단계(S700)에서 크기가 제어된 Bi-Te계 복합산화물은 마지막으로 환원열처리단계(S700)를 거쳐 열전재료를 형성하게 된다.The Bi-Te-based composite oxide whose size is controlled in the mechanical grinding step (S700) is finally formed through the reduction heat treatment step (S700) to form a thermoelectric material.

상기 환원열처리단계(S800)는 본 발명의 실시예에서 수소환원 열처리 공정이 적용되었으며, 이에 따라 상기 Bi-Te계 복합산화물은 Bi2Te3 상을 가지는 열전재료가 된다.In the reduction heat treatment step (S800), a hydrogen reduction heat treatment process was applied in an embodiment of the present invention, whereby the Bi-Te-based composite oxide is a thermoelectric material having a Bi 2 Te 3 phase.

이하 본 발명의 바람직한 실시예를 설명한다.Hereinafter, preferred embodiments of the present invention will be described.

[실시예][Example]

텔루륨(Te)이 포함된 수용액 500㎖에 2% NaSH를 투입하여 불순물 제거단계(S200)을 실시하였다. 불순물이 제거되고 텔루륨만 녹아있는 NaOH용액 500ml에 60% 황산용액을 투입하여 pH를 5~6 수준으로 맞추어 중화단계(S300)를 실시하였다.Impurity removal step (S200) was performed by adding 2% NaSH to 500 ml of an aqueous solution containing tellurium (Te). The neutralization step (S300) was performed by adding 60% sulfuric acid solution to 500 ml of NaOH solution in which impurities were removed and only tellurium was dissolved.

이후 텔루륨산화물추출단계(S400)에서 추출된 텔루륨산화물(TeO2) 분말을 비스무스염인 Bi(SO4)3 분말과 3:2의 몰비가 되도록 혼합한 후 기계적 밀링 공법으로 혼합하게 된다 (기계적혼합단계:S500).Then, the tellurium oxide (TeO 2 ) powder extracted in the tellurium oxide extraction step (S400) is mixed with Bi (SO 4 ) 3 powder, which is a bismuth salt, in a molar ratio of 3: 2, and then mixed by a mechanical milling method ( Mechanical mixing step: S500).

혼합된 혼합분말은 BI-Te계 산화물과, Bi(SO4)3-TeO2 혼합분말 상태로 존재하며, 열처리로에 장입된 후 350℃에서 공기분위기의 산화열처리단계(S600)을 통해 황산염(SO4)-을 제거하여 Bi-Te계 복합산화물을 제조하였다.The mixed powder is present in the state of BI-Te-based oxide and Bi (SO 4 ) 3 -TeO 2 mixed powder, charged in a heat treatment furnace and sulfated through the oxidation heat treatment step (S600) of the air atmosphere at 350 ° C. SO 4) - to remove to prepare a Bi-Te based composite oxide.

상기 Bi-Te계 복합산화물은 기계적 밀링 공정에 의해 분쇄하여 분말크기를 제어한 후(기계적분쇄단계:S700), 수소분위기에서 환원 열처리하여 열전분말을 제조하였다.(환원열처리단계:S800)The Bi-Te composite oxide was pulverized by a mechanical milling process to control the powder size (mechanical grinding step: S700), followed by reduction heat treatment in a hydrogen atmosphere to prepare a thermoelectric powder. (Reduction heat treatment step: S800)

이와 같은 과정에 따라 만들어진 열전재료는 첨부된 도 2와 같다.The thermoelectric material made according to such a process is as shown in FIG. 2.

즉, 도 2a는 본 발명에 의한 열전재료 제조방법중 텔루륨산화물 추출단계후 제조된 제조된 텔루륨산화물을 나타낸 SEM사진으로서, 산화물 분말의 크기는 1~2㎛임을 확인할 수 있다. That is, Figure 2a is a SEM photograph showing the produced tellurium oxide prepared after the tellurium oxide extraction step of the thermoelectric material manufacturing method according to the present invention, it can be confirmed that the size of the oxide powder is 1 ~ 2㎛.

도 2b와 2c는 본 발명에 의한 열전재료 제조방법중 텔루륨 산화물 추출단계후 제조된 텔루륨산화물의 조성을 나타낸 표와 XRD그래프로서 각각 TeO2상이 명확히 형성되었음을 확인할 수 있다. Figures 2b and 2c is a table and XRD graph showing the composition of the tellurium oxide prepared after the tellurium oxide extraction step of the thermoelectric material manufacturing method according to the present invention it can be confirmed that the TeO 2 phase was formed clearly.

조성표에서 Si과 과량의 O는 SEM관찰시 사용된 Si기판에서 나온 것으로 측정오차로 확인되었다. 도 2d는 중화반응단계에서 계면활성제를 첨가하였을 경우 50nm급으로 나노입자화되어 제조된 TeO2분말을 나타낸 SEM사진이다.In the composition table, Si and excess O were derived from the Si substrate used in the SEM observation, and it was confirmed as a measurement error. Figure 2d is a SEM photograph showing the TeO 2 powder prepared by nanoparticles to 50nm when the surfactant was added in the neutralization step.

또한, 도 3a는 본 발명에 의한 열전재료 제조방법중 산화열처리와 기계적분쇄단계를 거친후 제조된 복합산화물을 나타낸 SEM사진으로서 1차입자의 크기가 수백nm수준으로 제어되었음을 확인할 수 있다.In addition, Figure 3a is a SEM photograph showing the composite oxide prepared after the oxidation heat treatment and mechanical grinding step in the thermoelectric material manufacturing method according to the present invention can be seen that the size of the primary particle is controlled to several hundred nm level.

도 3b에서는 복합산화물의 상을 나타낸 XRD 그래프로서 산화물은 Bi2TeO5의 복합산화물을 기본으로 TeO2와 Bi2O3 가 대표적으로 발견되고 있다. 이를 통해 Bi에 포함되었던 유기물은 완전히 제거되고 TeO2와 반응을 통해 복합산화물상이 제조되었음을 확인할 수 있다. In FIG. 3B, an XRD graph showing a phase of a composite oxide is representative of TeO 2 and Bi 2 O 3 based on a composite oxide of Bi 2 TeO 5 . This confirms that the organic material contained in Bi is completely removed and the composite oxide phase is prepared by reacting with TeO 2 .

도 4a는 환원열처리 단계후 제조된 열전분말을 나타낸 SEM사진으로 환원전에 비해 입자크기가 켜졌음을 확인할 수 있으며 도4b의 XRD결과에서 확인할 수 있는 바와 같이 Bi2Te3상이 형성되어 있음을 확인할 수 있다.Figure 4a is a SEM photograph showing the thermal powder prepared after the reduction heat treatment step can confirm that the particle size is turned on compared to before reduction and can be seen that the Bi 2 Te 3 phase is formed as can be seen in the XRD results of Figure 4b have.

지금까지 설명한 본 발명의 실시예는 본 발명의 기술적 사상의 구체적인 일예들에 불과하며, 제조 과정상의 온도, 시간, 환원제 및 계면활성제 등의 부피분율 등과 같은 처리 조건 등은 당업자에 의하여 선택적으로 변형가능할 것이다. Embodiments of the present invention described so far are only specific examples of the technical idea of the present invention, and processing conditions such as temperature, time, volume fraction of a reducing agent and surfactant, etc. may be selectively modified by those skilled in the art. will be.

S100. 재료준비단계 S200. 불순물제거단계
S300. 중화단계 S400. 텔루륨산화물추출단계
S500. 기계적혼합단계 S600. 산화열처리단계
S700. 기계적분쇄단계 S800. 환원열처리단계
S100. Material preparation step S200. Impurity Removal Step
S300. Neutralization step S400. Tellurium Oxide Extraction Step
S500. Mechanical mixing step S600. Oxidation heat treatment step
S700. Mechanical grinding step S800. Reduction heat treatment step

Claims (11)

광석에서 구리(Cu) 추출시 생성된 부산물인 텔루륨을 포함한 수용액을 준비하는 재료준비단계와,
상기 수용액에 포함된 불순물을 제거하는 불순물제거단계와,
상기 불순물이 제거된 수용액에 HNO3 와 H2SO4 중 하나 이상을 투입하여 수용액을 중화하는 중화단계와,
중화된 수용액에서 반응하여 형성된 텔루륨산화물 분말을 추출하는 텔루륨산화물추출단계와,
상기 텔루륨산화물분말과 비스무스염을 기계적 밀링 공정으로 혼합하여 혼합분말을 제조하는 기계적혼합단계와,
상기 혼합분말을 산화분위기에서 열처리하여 Bi-Te계 복합산화물을 제조하는 산화열처리단계와,
상기 Bi-Te계 복합산화물의 분말 크기를 기계적 밀링 공정을 이용하여 제어하는 기계적분쇄단계와,
분쇄된 Bi-Te계 복합산화물을 환원열처리하여 열전재료를 형성하는 환원열처리단계로 이루어지는 것을 특징으로 하는 기계-화학반응에 의한 열전재료 제조방법.
A material preparation step of preparing an aqueous solution containing tellurium, a by-product generated when copper (Cu) is extracted from the ore,
An impurity removal step of removing impurities contained in the aqueous solution;
Neutralizing the aqueous solution by adding one or more of HNO 3 and H 2 SO 4 to the aqueous solution from which the impurities are removed;
Tellurium oxide extraction step of extracting the tellurium oxide powder formed by reacting in a neutralized aqueous solution,
A mechanical mixing step of preparing the mixed powder by mixing the tellurium oxide powder and the bismuth salt by a mechanical milling process;
An oxidation heat treatment step of producing a Bi-Te-based composite oxide by heat-treating the mixed powder in an oxidizing atmosphere;
A mechanical grinding step of controlling the powder size of the Bi-Te-based composite oxide using a mechanical milling process;
A method of manufacturing a thermoelectric material by a mechanical-chemical reaction, characterized in that the reduction heat treatment step of forming a thermoelectric material by reducing heat treatment of the pulverized Bi-Te-based composite oxide.
제 1 항에 있어서, 상기 불순물제거단계는,
상기 수용액 내부에 포함된 Cu, Fe 등을 포함하는 불순물을 NaSH를 첨가하여제거하는 과정임을 특징으로 하는 기계-화학반응에 의한 열전재료 제조방법.
The method of claim 1, wherein the impurity removing step,
Method for producing a thermoelectric material by a mechanical-chemical reaction, characterized in that for removing impurities including Cu, Fe, etc. contained in the aqueous solution by adding NaSH.
제 2 항에 있어서, 상기 중화단계는,
상기 수용액 내부에 포함된 NaOH를 제거하고 텔루륨산화물을 형성하는 과정임을 특징으로 하는 기계-화학반응에 의한 열전재료 제조방법.
The method of claim 2, wherein the neutralizing step,
Method of producing a thermoelectric material by a mechanical-chemical reaction, characterized in that to remove the NaOH contained in the aqueous solution to form tellurium oxide.
제 1 항에 있어서, 상기 텔루륨산화물추출단계에서는,
상기 텔루륨산화물 분말의 크기 제어를 위해 SDS 또는 SDBS 중 어느 하나인 계면활성제가 첨가됨을 특징으로 하는 기계-화학반응에 의한 열전재료 제조방법.
According to claim 1, In the tellurium oxide extraction step,
Method for producing a thermoelectric material by a mechanical-chemical reaction, characterized in that the surfactant of any one of SDS or SDBS is added to control the size of the tellurium oxide powder.
제 4 항에 있어서, 상기 기계적혼합단계에서, 텔루륨산화물 분말은 TeO2이고, 비스무스염은 비스무스 질화물, 비스무스 염화물, 비스무스 황화물 중 하나 이상이 적용되며, 텔루륨과 비스무스는 3:2의 몰비로 혼합되는 것을 특징으로 하는 기계-화학반응에 의한 열전재료 제조방법.The method of claim 4, wherein in the mechanical mixing step, the tellurium oxide powder is TeO 2 , bismuth salt is applied at least one of bismuth nitride, bismuth chloride, bismuth sulfide, tellurium and bismuth in a molar ratio of 3: 2 Method for producing a thermoelectric material by a mechanical-chemical reaction, characterized in that the mixing. 제 1 항에 있어서, 상기 산화열처리단계는, 상기 비스무스염에 포함된 황산염(SO4)-, 질산염(NO3)-, 염소염(Cl)-을 제거하는 과정임을 특징으로 하는 기계-화학반응에 의한 열전재료 제조방법.The method of claim 1, wherein the oxidizing heat treatment step, a sulfate (SO 4) contained in the bismuth salt -, nitrate (NO 3) -, chlorine salt (Cl) - machine, characterized in that the process for removing - chemical reaction Thermoelectric material manufacturing method by 제 1 항 또는 제 6 항에 있어서, 상기 산화열처리단계는, 비스무스염을 비스무스산화물로 제조하여 텔루륨산화물과 복합화하는 과정임을 특징으로 하는 기계-화학반응에 의한 열전재료 제조방법.7. The method of claim 1 or 6, wherein the oxidation heat treatment step is a process of preparing bismuth salts into bismuth oxides and complexing them with tellurium oxides. 제 7 항에 있어서, 상기 산화열처리단계는 산소분위기로 350℃의 온도에서 실시됨을 특징으로 하는 기계-화학반응에 의한 열전재료 제조방법.The method of claim 7, wherein the oxidation heat treatment step is performed at a temperature of 350 ° C. under an oxygen atmosphere. 삭제delete 제 8 항에 있어서, 상기 환원열처리단계는 수소분위기에서 350℃이하의 온도에서 가열하여 텔루륨의 휘발량이 최소화되도록 하는 과정임을 특징으로 하는 기계-화학반응에 의한 열전재료 제조방법.The method of claim 8, wherein the reducing heat treatment is a process of minimizing the volatilization of tellurium by heating at a temperature of 350 ° C. or less in a hydrogen atmosphere. 제 1 항에 있어서, 상기 환원열처리단계에서 제조된 열전재료는 Bi2Te3 상을 가지는 분말 형태임을 특징으로 하는 기계-화학반응에 의한 열전재료 제조방법.The method of claim 1, wherein the thermoelectric material prepared in the reducing heat treatment step is a powder form having a Bi 2 Te 3 phase.
KR1020100013119A 2010-02-12 2010-02-12 A Method for fabricating thermoelectric material by mechano-chemical process KR101104677B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100013119A KR101104677B1 (en) 2010-02-12 2010-02-12 A Method for fabricating thermoelectric material by mechano-chemical process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100013119A KR101104677B1 (en) 2010-02-12 2010-02-12 A Method for fabricating thermoelectric material by mechano-chemical process

Publications (2)

Publication Number Publication Date
KR20110093215A KR20110093215A (en) 2011-08-18
KR101104677B1 true KR101104677B1 (en) 2012-01-13

Family

ID=44929941

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100013119A KR101104677B1 (en) 2010-02-12 2010-02-12 A Method for fabricating thermoelectric material by mechano-chemical process

Country Status (1)

Country Link
KR (1) KR101104677B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190136654A (en) 2018-05-31 2019-12-10 공주대학교 산학협력단 METHOD FOR MANUFACTURING Bi-Sb-Te BASED THERMOELECTRIC MATERIAL CONTAINING CARBON NANOTUBE AND THERMOELECTRIC MATERIAL MANUFACTURED THEREBY
KR20200002435A (en) 2018-06-29 2020-01-08 공주대학교 산학협력단 METHOD FOR MANUFACTURING Bi-Sb-Te BASED THERMOELECTRIC MATERIAL WITH CONTROLLED GRAIN SIZE AND THERMOELECTRIC MATERIAL MANUFACTURED THEREBY

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101402229B1 (en) * 2012-10-30 2014-06-11 한국기계연구원 A Manufacturing Method of Thermolectric Semiconductor
US20160190422A1 (en) * 2014-12-26 2016-06-30 Toyota Jidosha Kabushiki Kaisha Thermoelectric conversion material, manufacturing method of the same, and thermoelectric conversion device using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0341781A (en) * 1989-07-10 1991-02-22 Agency Of Ind Science & Technol Manufacture of thermoelectric material
JP2003089804A (en) 2001-09-18 2003-03-28 Mitsubishi Heavy Ind Ltd METHOD FOR MANUFACTURING Bi-Te-BASED THERMOELECTRIC MATERIAL
JP2005343728A (en) 2004-06-02 2005-12-15 Denki Kagaku Kogyo Kk Boron nitride powder and its use
KR20070098434A (en) * 2006-03-31 2007-10-05 닛코킨조쿠 가부시키가이샤 Method of recovering platinum-group metals from waste liquid having selenium using copper powder

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0341781A (en) * 1989-07-10 1991-02-22 Agency Of Ind Science & Technol Manufacture of thermoelectric material
JP2003089804A (en) 2001-09-18 2003-03-28 Mitsubishi Heavy Ind Ltd METHOD FOR MANUFACTURING Bi-Te-BASED THERMOELECTRIC MATERIAL
JP2005343728A (en) 2004-06-02 2005-12-15 Denki Kagaku Kogyo Kk Boron nitride powder and its use
KR20070098434A (en) * 2006-03-31 2007-10-05 닛코킨조쿠 가부시키가이샤 Method of recovering platinum-group metals from waste liquid having selenium using copper powder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190136654A (en) 2018-05-31 2019-12-10 공주대학교 산학협력단 METHOD FOR MANUFACTURING Bi-Sb-Te BASED THERMOELECTRIC MATERIAL CONTAINING CARBON NANOTUBE AND THERMOELECTRIC MATERIAL MANUFACTURED THEREBY
KR20200002435A (en) 2018-06-29 2020-01-08 공주대학교 산학협력단 METHOD FOR MANUFACTURING Bi-Sb-Te BASED THERMOELECTRIC MATERIAL WITH CONTROLLED GRAIN SIZE AND THERMOELECTRIC MATERIAL MANUFACTURED THEREBY

Also Published As

Publication number Publication date
KR20110093215A (en) 2011-08-18

Similar Documents

Publication Publication Date Title
KR101682217B1 (en) A Method Of Manufacturing A Lithium Carbonate With High Purity By Recycling A Lithium From A Anode Material Of Used Lithium Ion Secondary Battery
JP5146658B2 (en) Recovery method of rare earth elements
KR101104677B1 (en) A Method for fabricating thermoelectric material by mechano-chemical process
WO2014125292A1 (en) Thermoelectric materials and devices comprising graphene
Gaur et al. Recycling of rhenium-containing wire scrap
Park et al. Aqueous chemical synthesis of tellurium nanowires using a polymeric template for thermoelectric materials
JP5132226B2 (en) Ruthenium recovery method
CN103311426A (en) Method for preparing N-type Bi2Te3 based thermoelectric materials by refrigeration crystal bar processing waste
Im et al. Solvothermal synthesis of Sb2Te3 nanoplates under various synthetic conditions and their thermoelectric properties
Li et al. Transformation of selenium-containing phases in copper anode slimes during leaching
KR20120115851A (en) Manufacturing method of te and bismuth telluride nano wire by solvothermal synthesis
CN108950213A (en) A method of recycling tellurium and bismuth from bismuth telluride material
CN114561558A (en) Method for recovering antimony and solid arsenic from arsenic-containing crystal
US9982322B2 (en) Solvent-free syntheses of silver products produced thereby
KR20140129597A (en) Fabrication method for synthesizing a BixSb2-xTe3 thermoelectric nanocompound and thermoelectric nanocompound thereby
Zhan et al. Separation and extraction of bismuth and manganese from roasted low-grade bismuthinite and pyrolusite: thermodynamic analysis and sulfur fixing
CN103318852B (en) Method for preparing P-type Bi2Te3-based thermoelectric material by employing refrigeration crystal bar processed wastes
KR101062145B1 (en) Thermoelectric material manufacturing method
Bayer et al. Thermal analysis of chalcopyrite roasting reactions
Setoudeh et al. Mechanochemical reduction of SrSO4 by Mg
US10050189B2 (en) Method of synthesizing bismuth-antimony seleno-telluride nanocrystals
Xu et al. An efficient process for recycling of copper telluride residue out of copper anode slime
Behmadi et al. Investigation of chalcopyrite removal from low-grade molybdenite using response surface methodology and its effect on molybdenum trioxide morphology by roasting
CN113666410B (en) Method for directly preparing gallium oxide by using gallium nitride waste
KR101473750B1 (en) Fabrication method for synthesizing a Bi2TeySe3-y thermoelectric nanocompound and thermoelectric nanocompound thereby

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20141230

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20151209

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20161207

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20171218

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20181211

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20191210

Year of fee payment: 9