KR20190048618A - 초파리를 통한 저선량 방사선의 항산화 효과 분석 방법 및 항산화 증진 방법 - Google Patents

초파리를 통한 저선량 방사선의 항산화 효과 분석 방법 및 항산화 증진 방법 Download PDF

Info

Publication number
KR20190048618A
KR20190048618A KR1020170143731A KR20170143731A KR20190048618A KR 20190048618 A KR20190048618 A KR 20190048618A KR 1020170143731 A KR1020170143731 A KR 1020170143731A KR 20170143731 A KR20170143731 A KR 20170143731A KR 20190048618 A KR20190048618 A KR 20190048618A
Authority
KR
South Korea
Prior art keywords
oxidative stress
drosophila
dose radiation
low
radiation
Prior art date
Application number
KR1020170143731A
Other languages
English (en)
Inventor
남선영
정해민
황수진
백윤미
Original Assignee
한국수력원자력 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국수력원자력 주식회사 filed Critical 한국수력원자력 주식회사
Priority to KR1020170143731A priority Critical patent/KR20190048618A/ko
Priority to PCT/KR2018/012969 priority patent/WO2019088636A2/ko
Publication of KR20190048618A publication Critical patent/KR20190048618A/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/70Mechanisms involved in disease identification
    • G01N2800/7004Stress
    • G01N2800/7009Oxidative stress
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/70Mechanisms involved in disease identification
    • G01N2800/7042Aging, e.g. cellular aging

Abstract

본 발명은 초파리를 통한 저선량 방사선의 항산화 효과 분석 방법 및 항산화 증진 방법에 관한 것으로서, (a)초파리의 알에 저선량 방사선을 조사하는 단계; (b)상기 저선량 방사선을 조사한 초파리의 알을 성체로 배양시키는 단계; (c)상기 초파리의 성체를 산화스트레스 환경에 노출시키는 단계; 및 (d)상기 산화스트레스 환경에 노출된 성체의 산화스트레스를 평가하는 단계;를 포함하는 저선량 방사선의 항산화 효과 분석방법과 저선량 방사선을 초파리의 알에 조사하여 항산화 활성을 증진시키는 초파리 항산화 증진 방법을 포함한다.
상기와 같은 본 발명에 따르면, 저선량 방사선의 항산화 효과 분석방법에 의해 저선량 방사선과 산화스트레스간의 관계를 파악할 수 있고 기초 연구 자료를 제공할 수 있으며 초파리에게 저선량 방사선 조사시 산화스트레스 환경에서도 항산화 효과가 있음을 확인할 수 있는 효과가 있다.

Description

초파리를 통한 저선량 방사선의 항산화 효과 분석 방법 및 항산화 증진 방법{The method of analysis of antioxidative effect of low doses of radiation on drosophila and promotion of antioxidants}
본 발명은 초파리를 통한 저선량 방사선의 항산화 효과 분석 방법 및 항산화 증진 방법에 관한 것으로서, 더욱 상세하게는 저선량 방사선을 조사하여 초파리의 항산화 능력을 증진시키고 이에 따른 저선량 방사선의 항산화 효과를 분석하는 방법에 관한 것이다.
최근 100 mSv이하의 저선량방사선 조사에 의해 개체성장을 촉진시킬 수 있는 가능성 뿐만 아니라 초파리의 수명 연장 효과를 확인한 연구 결과가 다수 발표되고 있다.(Zhikrevetskaya et al., (2015) PLoS One, Seong et al., (2011) Biogerontology, Moskalev, (2007) Biogerontology). 초파리는 약 2~3개월의 짧은 수명을 가지기 때문에 노화 연구의 모델로서 가치가 높기 때문에 다양한 생물학 연구에 주로 활용된다.(Partridge et al., (2011) Exp. Gerontol.)
노화의 주된 원인 중 하나인 산화스트레스는, 노화 뿐 아니라 알츠하이머병과 같은 노인성 질환의 대표적인 환경적 요인으로 지목되고 있다.(Moskalev, (2007) Biogerontology, Finkle & Hobrook, (2000) Nature) 산화스트레스란 인체의 에너지 생성과정에서 체내 활성산소가 급격히 증가하여 인체내 산화 균형이 무너진 상태를 의미하며 이는 현대인들의 식습관과 생활환경으로 인해 다수 발현되고 있는 문제점 중 하나이다. 그 결과 산화스트레스로 인해 단백질 및 세포소기관의 산화적 손상을 방지하기 위해 단백질 항상성 유지의 중요성이 대두되고 있다.
초파리를 이용한 실험에 있어서 과산화수소(Hydrogen peroxide, H2O2) 혹은 파라쿼트(Paraquat) 등을 첨가한 배지로 산화스트레스 환경을 유도할 수 있다. 상기한 환경에서 초파리의 항산화 반응을 확인할 수 있는 실험 방법은 앞서 보고된 바 있다. (Sohal, (1996) Science, Biteau et al., (2011) Exp. Gerontol.)
다만, 상기한 바와 같이 저선량 방사선에 의해 초파리의 수명이 증가하였다는 보고는 다수 있으나, 노화의 주된 원인으로 여겨지는 산화스트레스와 저선량방사선의 연관성에 대한 연구는 아직 이루어지지 않아 초파리 실험 모델에서 저선량 방사선 조사와 산화스트레스 유도를 동시에 진행한 연구 사례가 부족하다. 그 결과 방사선 조사 시기 및 적정 선량, 산화스트레스 유도시간 등 기초 자료가 부족하여 유사한 연구과제 해결에 있어서도 어려움이 있다.
Zhikrevetskaya et al., (2015) PLoS One Seong et al., (2011) Biogerontology Moskalev, (2007) Biogerontology Finkle & Hobrook, (2000) Nature Sohal, (1996) Science Biteau et al., (2011) Exp. Gerontol. Partridge et al., (2011) Exp. Gerontol. Hwang et al., (2013) PLoS Genet. Chaudhuri et al., (2007) J. Neurosci. Ma et al., (2016) Int. J. Mol. Med. Saberi et al., (2008) Am. J. Physiol. Cell Physiol.
본 발명의 목적은, 초파리의 알에 저선량 방사선을 조사함으로써, 항산화 효과를 증진시켜 노화를 방지함에 있다.
본 발명의 다른 목적은 저선량 방사선의 항산화 효과 분석 방법을 제공함에 있다.
상기 목적을 달성하기 위하여, 본 발명은 (a)초파리의 알에 저선량 방사선을 조사하는 단계; (b)상기 저선량 방사선을 조사한 초파리의 알을 성체로 배양시키는 단계; (c)상기 초파리의 성체를 산화스트레스 환경에 노출시키는 단계; 및 (d)상기 산화스트레스 환경에 노출된 성체의 산화스트레스를 평가하는 단계;를 포함하는 저선량 방사선의 항산화 효과 분석방법을 제공한다.
본 발명의 일실시예에 따르면 상기 (a)단계는 0.01 내지 0.2 Gy의 저선량 방사선을 조사하는 것을 특징으로 한다.
본 발명의 다른 일실시예에 따르면 상기 (c)단계의 산화스트레스 환경은 1%이하의 과산화수소를 포함한 배지인 것을 특징으로 한다.
본 발명의 또다른 일실시예에 따르면 상기 (d)단계의 산화스트레스 평가는 초파리의 생존율, 운동성, 체내 활성산소종 축적량 및 AKT/p70S6K 단백질의 활성화 중 적어도 하나 이상을 측정하여 평가하는 것을 특징으로 한다.
또한 상기 목적을 달성하기 위하여, 본 발명은 저선량 방사선을 초파리의 알에 조사하여 항산화 활성을 증진시키는 초파리 항산화 증진 방법을 제공한다.
본 발명의 일실시예에 따르면 상기 저선량 방사선은 0.01 내지 0.2 Gy 인 것을 특징으로 할 수 있다.
상기와 같은 본 발명에 따르면, 저선량 방사선의 항산화 효과 분석방법에 의해 저선량 방사선과 산화스트레스간의 관계를 파악할 수 있고 그를 이용하여 산화스트레스로 인한 다양한 질환의 치료법을 고안해낼 수 있다. 또한 산화스트레스 방어 효과 검증을 위한 산화스트레스 평가 방법 등 기초 연구 자료를 제공할 수 있는 효과가 있다.
이와 더불어 초파리에게 저선량 방사선 조사시 산화스트레스 환경에서도 항산화 효과가 있다.
도 1은 산화스트레스 환경에서 초파리 생존율을 도시한 것이다.
도 2는 산화스트레스 환경에서 초파리 운동성을 도시한 것이다.
도 3은 산화스트레스 환경에서 초파리 체내 ROS 축적량을 도시한 것이다.
도 4는 산화스트레스 환경에서 AKT 및 p70S6K의 활성화를 도시한 것이다.
이하, 본 발명을 상세히 설명한다.
본 발명의 일 형태에 따르면 (a)초파리의 알에 저선량 방사선을 조사하는 단계; (b)상기 저선량 방사선을 조사한 초파리의 알을 성체로 배양시키는 단계; (c)상기 초파리의 성체를 산화스트레스 환경에 노출시키는 단계; 및 (d)상기 산화스트레스 환경에 노출된 성체의 산화스트레스를 평가하는 단계;를 포함하는 저선량 방사선의 항산화 효과 분석방법을 제공한다.
상기 (a)단계에서 야생형 초파리(Oregon R)의 알(embryo)에 저선량방사선을 조사한다. 바람직하게는 0.01 내지 0.2Gy의 저선량 방사선을 조사하고 더욱 바람직하게는 0.05 Gy의 저선량 방사선을 조사한다.
상기 (b)단계에서는 상기 (a)단계에서 방사선을 각각 조사한 초파리의 알을 25℃ 인큐베이터에서 성체가 될 때까지 배양하였다.
상기 (c)단계에서는 상기 초파리의 성체 중 수컷 초파리를 산화스트레스 환경에 노출시킨다. 상기 산화스트레스 환경이란 과산화수소(Hydrogen peroxide, H2O2) 혹은 파라쿼트(Paraquat)를 첨가한 배지내 환경을 의미한다. 파라쿼트의 경우 배지 내 농도가 20mmol/L일 수 있고, 과산화수소(Hydrogen peroxide, H2O2)의 경우 1 %이하일 수 있다. 산화스트레스 환경의 배지에 초파리 성체를 10 내지 20 마리/vial의 비율로 첨가한다. 바람직하게는 생존율 측정시 약 9일동안, 운동성 및 AKT/p70S6K(AKT 혹은 p70S6K) 단백질의 활성화 측정시 72시간 동안, 체내 활성산소종 축적량 측정시 0 내지 72시간 동안 초파리 성체를 산화스트레스 환경에 노출시키며 측정하였다.
상기 (d)단계에서 성체의 산화스트레스를 평가한다. 산화스트레스 평가는 초파리의 생존율, 운동성, 체내 활성산소종(ROS) 축적량 및 AKT/p70S6K 단백질의 활성화 중 적어도 하나 이상을 측정하여 평가할 수 있다.
도 1에서 산화스트레스 환경에서의 초파리 생존율을 도시한다. 0.05 Gy의 저선량 방사선을 조사한 경우 저선량 방사선을 조사하지 않을 때에 비해 초파리의 생존율이 높은 것을 확인할 수 있다. 이는 저선량 방사선에 의해 초파리가 산화스트레스에 대한 저항성을 가지게 됨을 의미한다. 반면 10 Gy의 고선량 방사선을 조사한 경우 방사선을 조사하지 않을 때보다 생존율이 낮아졌다. 이는 고선량 방사선을 조사하면 조사하지 않을 때보다 초파리가 산화스트레스에 더 취약해짐을 유추할 수 있다.
도 2는 산화스트레스 환경 내의 초파리의 운동성을 도시한 것이다. 상기 초파리 생존율 실험과 동일하게 저선량 방사선 조사 후 배양한 성체 초파리 중 수컷을 72시간 동안 산화스트레스 환경에 노출시킨다. Climbing ability test 방법을 이용하여 각 초파리의 운동성을 측정하였다. 산화스트레스 환경 내에서 0.05 Gy의 저선량 방사선을 조사한 경우 초파리의 climbing ability는 대략 68%로 저선량 방사선을 조사하지 않은 경우의 climbing ability인 약 48%에 비해 개선됨을 확인할 수 있다. 이는 산화스트레스가 없는 환경에서의 climbing ability인 약 78%와 유사하다. 반면 10 Gy의 고선량 방사선을 조사한 경우 방사선을 조사하지 않을 때보다 운동성이 낮아짐을 확인할 수 있다.
도 3은 산화스트레스 환경에서 초파리 체내 활성산소종(ROS-Reactive Oxygen Species)의 축적량을 도시한 것이다. ROS는 노화의 주된 원인으로 지목되고 있는 원인 중 하나이다. 이러한 ROS의 초파리 체내 축적량을 DCF-DA microplate assay를 통해 측정하였다. 산화스트레스 환경에 노출된 시간대별로 ROS 축적량을 비교한 결과 0.05 Gy의 저선량 방사선을 조사한 경우, 산화스트레스에 의한 체내 ROS 축적이 지연되는 것을 확인할 수 있다.
산화스트레스 환경에서 저선량 방사선의 신호전달경로를 확인하기 위해 Cell survival 신호 단백질인 AKT(단백질인산화효소B)와 p70S6K의 활성화 즉 인산화 정도를 비교, 분석하였다. AKT와 p70S6K 단백질은 산화스트레스에 의해 활성도가 감소되기 때문이다. 분석결과는 도 4에서 확인할 수 있다. 산화스트레스 환경에서도 0.05Gy의 저선량 방사선을 조사한 경우 p-AKT, p-p70S6K로 인해 신호전달경로가 활성화 됨을 알 수 있다.
상기 산화스트레스 평가를 통해 저선량 방사선 조사시 산화스트레스에 대한 초파리의 저항성 증진 효과 즉 항산화 증진 효과를 확인할 수 있었다. 또한 저선량 방사선에 의한 산화스트레스 방어 기작에 AKT 신호 기작이 연관되어 있음을 확인하였다.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
실시예 1. 저선량 방사선의 항산화 효과 분석
6시간 이하의 야생형 초파리(Oregon R)의 알(embryo)에 각각 저선량방사선 0.05 Gy와 고선량방사선 10 Gy(137Cs, 0.0159 Gy/s)를 조사하였다.
상기 방사선을 조사한 초파리의 알을 25℃ 인큐베이터에서 성체가 될 때까지 배양한다.
1% 과산화수소(Hydrogen peroxide, H2O2)를 포함한 배지로 산화스트레스와 유사한 환경을 유도한다. 성체 수컷 초파리를 1% 과산화수소(Hydrogen peroxide, H2O2)를 포함한 배지로 옮겨 72시간동안 노출시킨다(20마리/vial).
산화스트레스 환경에서의 초파리 생존율, 운동성, 체내 활성산소종 축적량, AKT/p70S6K 단백질의 활성화를 측정한다.
이상, 본 발명내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적인 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의해 정의된다고 할 것이다.

Claims (6)

  1. (a)초파리의 알에 저선량 방사선을 조사하는 단계;
    (b)상기 저선량 방사선을 조사한 초파리의 알을 성체로 배양시키는 단계;
    (c)상기 초파리의 성체를 산화스트레스 환경에 노출시키는 단계; 및
    (d)상기 산화스트레스 환경에 노출된 성체의 산화스트레스를 평가하는 단계;를 포함하는 저선량 방사선의 항산화 효과 분석방법.

  2. 제 1항에 있어서,
    상기 (a)단계는 0.01 내지 0.2 Gy의 저선량 방사선을 조사하는 것을 특징으로 하는 저선량 방사선의 항산화 효과 분석방법.
  3. 제 1항에 있어서,
    상기 (c)단계의 산화스트레스 환경은 과산화수소를 포함하되, 1% 이하의 과산화수소를 포함한 배지인 것을 특징으로 하는 저선량 방사선의 항산화 효과 분석방법.
  4. 제 1항에 있어서,
    상기 (d)단계의 산화스트레스 평가는 초파리의 생존율, 운동성, 체내 활성산소종 축적량 및 AKT/p70S6K 단백질의 활성화 중 적어도 하나 이상을 측정하여 평가하는 것을 특징으로 하는 저선량 방사선의 항산화 효과 분석방법.
  5. 저선량 방사선을 초파리의 알에 조사하여 항산화 활성을 증진시키는 초파리 항산화 증진 방법.
  6. 제 5항에 있어서,
    상기 저선량 방사선은 0.01 내지 0.2 Gy 인 것을 특징으로 하는 초파리 항산화 증진 방법.

KR1020170143731A 2017-10-31 2017-10-31 초파리를 통한 저선량 방사선의 항산화 효과 분석 방법 및 항산화 증진 방법 KR20190048618A (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020170143731A KR20190048618A (ko) 2017-10-31 2017-10-31 초파리를 통한 저선량 방사선의 항산화 효과 분석 방법 및 항산화 증진 방법
PCT/KR2018/012969 WO2019088636A2 (ko) 2017-10-31 2018-10-30 초파리를 통한 저선량 방사선의 항산화 효과 분석 방법 및 항산화 증진 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170143731A KR20190048618A (ko) 2017-10-31 2017-10-31 초파리를 통한 저선량 방사선의 항산화 효과 분석 방법 및 항산화 증진 방법

Publications (1)

Publication Number Publication Date
KR20190048618A true KR20190048618A (ko) 2019-05-09

Family

ID=66332941

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170143731A KR20190048618A (ko) 2017-10-31 2017-10-31 초파리를 통한 저선량 방사선의 항산화 효과 분석 방법 및 항산화 증진 방법

Country Status (2)

Country Link
KR (1) KR20190048618A (ko)
WO (1) WO2019088636A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112881357A (zh) * 2021-01-19 2021-06-01 福州大学 一种活体检测功能食品或药物抗氧化能力的方法及应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140079248A (ko) * 2009-09-21 2014-06-26 엔시아 바이오사이언스 인크 산화적 스트레스, 알츠하이머 질환 및 관련 질환 상태의 치료를 위한 비타민 d2 강화 버섯 및 진균류

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
Biteau et al., (2011) Exp. Gerontol.
Chaudhuri et al., (2007) J. Neurosci.
Finkle & Hobrook, (2000) Nature
Hwang et al., (2013) PLoS Genet.
Ma et al., (2016) Int. J. Mol. Med.
Moskalev, (2007) Biogerontology
Partridge et al., (2011) Exp. Gerontol.
Saberi et al., (2008) Am. J. Physiol. Cell Physiol.
Seong et al., (2011) Biogerontology
Sohal, (1996) Science
Zhikrevetskaya et al., (2015) PLoS One

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112881357A (zh) * 2021-01-19 2021-06-01 福州大学 一种活体检测功能食品或药物抗氧化能力的方法及应用

Also Published As

Publication number Publication date
WO2019088636A3 (ko) 2019-07-04
WO2019088636A2 (ko) 2019-05-09

Similar Documents

Publication Publication Date Title
Osmanovic et al. Evaluation of periodontal ligament cell viability in different storage media based on human PDL cell culture experiments—A systematic review
Bruel-Jungerman et al. Adult hippocampal neurogenesis, synaptic plasticity and memory: facts and hypotheses
Seluanov et al. Distinct tumor suppressor mechanisms evolve in rodent species that differ in size and lifespan
Britten et al. Altered cognitive flexibility and synaptic plasticity in the rat prefrontal cortex after exposure to low (≤ 15 cGy) doses of 28Si radiation
Wang et al. Angiogenesis is repressed by ethanol exposure during chick embryonic development
Christy et al. p53 and rapamycin are additive
MacIntyre et al. Enumerating viable phytoplankton using a culture-based Most Probable Number assay following ultraviolet-C treatment
Singh et al. Bisphenol A reduces fertilizing ability and motility by compromising mitochondrial function of sperm
Zhao et al. Exposure to bisphenol A at physiological concentrations observed in Chinese children promotes primordial follicle growth through the PI3K/Akt pathway in an ovarian culture system
Edamatsu et al. Hapln4/Bral2 is a selective regulator for formation and transmission of GABA ergic synapses between Purkinje and deep cerebellar nuclei neurons
Docquier et al. eIF3f depletion impedes mouse embryonic development, reduces adult skeletal muscle mass and amplifies muscle loss during disuse
Pandya et al. Advanced and high-throughput method for mitochondrial bioenergetics evaluation in neurotrauma
KR20190048618A (ko) 초파리를 통한 저선량 방사선의 항산화 효과 분석 방법 및 항산화 증진 방법
Rigo et al. TsNTxP, a non-toxic protein from Tityus serrulatus scorpion venom, induces antinociceptive effects by suppressing glutamate release in mice
Bublat et al. Seasonal and genera-specific variations in semen availability and semen characteristics in large parrots
Gelaude et al. Nitric Oxide Donor s‐Nitroso‐n‐Acetyl Penicillamine (SNAP) Alters Meiotic Spindle Morphogenesis in Xenopus Oocytes
Zhong et al. Chronic prenatal lead exposure impairs long-term memory in day old chicks
Cai et al. Damage effects induced by electrically generated negative air ions in Caenorhabditis elegans
Li et al. Comparative proteomic profiling and possible toxicological mechanism of acute injury induced by carbon ion radiation in pubertal mice testes
Sangsuwan et al. Transgenerational effects of gamma radiation dose and dose rate on Drosophila flies irradiated at an early embryonal stage
Adinath et al. Chromium induced alterations in different individual microalga and their consortia
Moreno et al. HSP70 level in blood is associated with eggshell blue-green colouration the pied flycatcher
Fellows Testing the possibility for photosynthetic compensation in an alga-invertebrate symbiosis under thermal stress: implications for carbon production and translocation
Tuncbilek et al. Detection of DNA damage in Ephestia kuehniella by single cell gel electrophoresis after exposure to gamma radiation.
Zaza Testing the Teratogenic Effects of Alcohol on Chicken Embryo Growth

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application