KR20190041680A - Recombinant Microorganism Producing 1-Deoxynojirymicin and Method of Preparing 1-Deoxynojirymicin Using the Same - Google Patents
Recombinant Microorganism Producing 1-Deoxynojirymicin and Method of Preparing 1-Deoxynojirymicin Using the Same Download PDFInfo
- Publication number
- KR20190041680A KR20190041680A KR1020170133187A KR20170133187A KR20190041680A KR 20190041680 A KR20190041680 A KR 20190041680A KR 1020170133187 A KR1020170133187 A KR 1020170133187A KR 20170133187 A KR20170133187 A KR 20170133187A KR 20190041680 A KR20190041680 A KR 20190041680A
- Authority
- KR
- South Korea
- Prior art keywords
- deoxynojirimycin
- coli
- gene
- present
- dna
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/1096—Transferases (2.) transferring nitrogenous groups (2.6)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/12—Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
- C12N9/1205—Phosphotransferases with an alcohol group as acceptor (2.7.1), e.g. protein kinases
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/16—Hydrolases (3) acting on ester bonds (3.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P19/00—Preparation of compounds containing saccharide radicals
- C12P19/02—Monosaccharides
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y206/00—Transferases transferring nitrogenous groups (2.6)
- C12Y206/01—Transaminases (2.6.1)
- C12Y206/01019—4-Aminobutyrate—2-oxoglutarate transaminase (2.6.1.19)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y207/00—Transferases transferring phosphorus-containing groups (2.7)
- C12Y207/01—Phosphotransferases with an alcohol group as acceptor (2.7.1)
- C12Y207/01004—Fructokinase (2.7.1.4)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y301/00—Hydrolases acting on ester bonds (3.1)
- C12Y301/03—Phosphoric monoester hydrolases (3.1.3)
- C12Y301/03011—Fructose-bisphosphatase (3.1.3.11)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y301/00—Hydrolases acting on ester bonds (3.1)
- C12Y301/03—Phosphoric monoester hydrolases (3.1.3)
- C12Y301/03025—Inositol-phosphate phosphatase (3.1.3.25)
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
Description
본 발명은 1-데옥시노지리마이신 생산능을 가지는 재조합 미생물 및 이를 이용한 1-데옥시노지리마이신의 제조방법에 관한 것으로, 더욱 자세하게는 과당-6-인산(F6P) 생성능을 가지는 미생물에서, 4-아미노부틸레이트 트랜스아미나제(4-aminobutyrate transaminase)를 코딩하는 유전자, 이노시톨 또는 포스파티딜이노시톨 포스파타제(inositol or phosphatidylinositol phosphatase)를 코딩하는 유전자, I236V변이를 가지는 산화환원효소(oxidoreductase)를 코딩하는 유전자가 도입되어 있고, 프룩토키나제(fructokinase)를 코딩하는 유전자 또는 프룩토스-1,6-비스포스파타제(fructose-1,6-bisphosphatase)를 코딩하는 유전자가 도입 또는 증폭되어 있는 1-데옥시노지리마이신 생성능을 가지는 재조합 미생물 및 이를 이용하여 1-데옥시노지리마이신의 제조방법에 관한 것이다.The present invention relates to a recombinant microorganism having 1-deoxynojirimycin producing ability and a process for producing 1-deoxynojirimycin using the recombinant microorganism. More particularly, the present invention relates to a microorganism having fructose- A gene encoding 4-aminobutyrate transaminase, a gene encoding inositol or phosphatidylinositol phosphatase, a gene encoding oxidoreductase having I236V mutation, 1-deoxynojirimycin, in which a gene encoding fructokinase or a gene encoding fructose-1,6-bisphosphatase is introduced or amplified And a process for producing 1-deoxynojirimycin using the recombinant microorganism.
다중 수산화된 알칼로이드인 1-데옥시노지리마이신(1-Deoxynojirimycin; DNJ)은 피라노오스 고리의 산소 원자가 NH 그룹으로 치환된 글루코오스 유사체이다. DNJ는 항당뇨성, 항암성 및 항바이러스성과 같은 중요한 생물학적 활성을 나타내며, α-글루코시다아제를 저해한다(Asano N., Curr Top Med Chem., 3:471-84, 2003; Kang KD. et al, J Microbiol. 49:431-40, 2011). 최근에는, 항비만 활성을 가지며, HIV감염 치료, 고셔병 치료제에 사용되고 있다(Kong WH. et al, J Agric Food Chem, 56:2613-9, 2008; Shimizu H. et al, AIDS;. 4:975-80, 1990; Yu L. et al, Bioorg Med Chem. 14:7736-44, 2006). 이런 다양한 잠재적인 활성으로 인하여 기능성 식품 및 약학 산업에서 DNJ 및 유사체의 생산 개발이 진행되어 왔다.1-Deoxynojirimycin (DNJ), a multiple hydroxylated alkaloid, is a glucose analogue in which the oxygen atom of the pyranose ring has been replaced with an NH group. DNJ exhibits important biological activities such as antidiabetic, anticancer and antiviral activity and inhibits? -Glucosidase (Asano N., Curr Top Med Chem ., 3 : 471-84, 2003; Kang KD et. al., J Microbiol., 49 : 431-40, 2011). Has in recent years, has an anti-obesity activity, used to treat HIV infection, Gaucher disease therapeutic agent (Kong WH et al, J Agric Food Chem, 56: 2613-9, 2008; Shimizu H. et al, AIDS; 4:.. 975 -80, 1990; Yu L. et al., Bioorg Med Chem. 14 : 7736-44, 2006). These diverse potential activities have led to the development and production of DNJ and analogs in the functional food and pharmaceutical industries.
1-데옥시노지리마이신은 뽕나무(Morus alba L.) 또는 누에(Bombyx mori L.) 등으로부터 분리되며(Aasno, N. et al, J. Agric. Food Chem., vol.49, pp.4208-4213, 2001), 1-데옥시노지리마이신을 얻는 방법으로는 식물에서 추출하는 방법(Evans, S. V. et al, Phytochemistry, vol.24, pp.1953-1955, 1985; Murao, S. et al, Agric. Biol. Chem., vol.44, pp.219-221, 1980; Yamada, H. et al, Shoyakugaku Zasshi, vol.47, pp.47-55, 1993)과 미생물인 스트랩토마이세스와 바실러스로부터 생산하는 방법 등이 있는 것으로 알려져 있다(Ezure, Y. et al, Agric. Biol., Chem., vol.49, pp.1119-1125, 1985; Hardick, D. J. et al, Biochemistry, vol.49, pp.6707-6716, 1993; Shibano, M. et al, Phytochemistry, vol.65, pp.2661-2665, 2004). 또한 화학적 합성으로 얻는 방법이 있다(Bernotas RC. et al, Tetrahedron Lett., 26:1123-6; 1985; Iida H. et al, J Org Chem., 52:3337-42, 1987; Schaller C. et al, Carbohydr Res., 314:25-35, 1998). 1-deoxynojirimycin is isolated from Morus alba L. or Bombyx mori L. (Aasno, N. et al, J. Agric. Food Chem. , Vol . 49 , (Evans, SV et al, Phytochemistry, vol . 24, pp . 1953-1955, 1985; Murao, S. et al , Agric Biol Chem, vol.44, pp.219-221 , 1980;... Yamada, H. et al, Shoyakugaku Zasshi, vol.47, pp.47-55, 1993) and the microorganism of the strap Sat My process and (Ezure, Y. et al, Agric. Biol., Chem. , Vol . 49 , pp . 1119-1125, 1985; Hardick, DJ et al, Biochemistry, vol. , pp. 6707-6716, 1993; Shibano, M. et al, Phytochemistry, vol . 65, pp . 2661-2665, 2004). There is also a method of chemical synthesis (Bernotas RC et al., Tetrahedron Lett., 26 : 1123-6; 1985; Iida H. et al, J Org Chem., 52 : 3337-42, 1987; Schaller C. et al., Carbohydr Res ., 314 : 25-35, 1998).
한편, 식물로부터 추출하는 방법은 다양한 성분들과 유사구조가 많아 정제가 어렵고 매우 낮은 수율이 문제가 되고 있는 반면에 미생물로부터 1-데옥시노지리마이신을 생산하는 방법은 짧은 시간 내에 생산이 가능하고, 식물추출법과는 달리 환경을 파괴하지 않으며, 높은 수율의 1-데옥시노지리마이신을 생산할 수 있는 장점을 갖고 있다. 그러나, 상기와 같은 유용성에서도 불구하고 미생물의 복잡한 배양 배지 조건 또는 생장 조건 때문에 산업 수준의 생산에는 어려움이 있다.On the other hand, the method of extracting from plants has difficulties in purification and very low yields due to its numerous components and similar structures, while the method of producing 1-deoxynojirimycin from microorganisms can be produced in a short time Unlike the plant extraction method, it does not destroy the environment and has an advantage of producing 1-deoxynojirimycin with a high yield. However, despite such usefulness as described above, it is difficult to produce at industrial level because of complicated culture medium conditions or growth conditions of microorganisms.
최근, 4-아미노부틸레이트 트랜스아미나제(4-aminobutyrate transaminase)를 코딩하는 유전자, 이노시톨 또는 포스파티딜이노시톨 포스파타제(inositol or phosphatidylinositol phosphatase)를 코딩하는 유전자, I236V변이를 가지는 산화환원효소(oxidoreductase)를 코딩하는 유전자가 도입되어 있는 재조합 미생물을 이용한 1-데옥시노지리마이신의 제법이 알려져 있으나, 1-데옥시노지리마이신의 농도 및 생산량이 낮은 문제점이 있다(Jiang P. et al, Sci Rep., 5:8563, 2015).Recently, a gene encoding 4-aminobutyrate transaminase, a gene encoding inositol or phosphatidylinositol phosphatase, a gene coding for an oxidoreductase having an I236V mutation Deoxynojirimycin using a recombinant microorganism into which a gene is introduced is known, but there is a problem in that the concentration and yield of 1-deoxynojirimycin are low (Jiang P. et al, Sci. Rep., 5 : 8563, 2015).
이에, 본 발명자들은 대사공학적 방법으로 제조된 재조합 미생물을 이용하여 1-데옥시노지리마이신의 농도 및 생산량을 증대시키고자 예의 노력한 결과, 과당-6-인산(F6P) 생성능을 가지는 미생물에서, 4-아미노부틸레이트 트랜스아미나제(4-aminobutyrate transaminase)를 코딩하는 유전자, 이노시톨 또는 포스파티딜이노시톨 포스파타제(inositol or phosphatidylinositol phosphatase)를 코딩하는 유전자, I236V변이를 가지는 산화환원효소(oxidoreductase)를 코딩하는 유전자가 도입되어 있는 재조합 미생물에, 프룩토키나제(fructokinase)를 코딩하는 유전자 또는 프룩토스-1,6-비스포스파타제(fructose-1,6-bisphosphatase)를 코딩하는 유전자를 추가로 도입하거나 증폭시킨 결과, 종래에 비하여 1-데옥시노지리마이신의 농도 및 생산량이 획기적으로 증대되는 것을 확인하고, 본 발명을 완성하게 되었다.Thus, the present inventors have made intensive efforts to increase the concentration and yield of 1-deoxynojirimycin using recombinant microorganisms produced by a metabolic engineering method. As a result, in the microorganism having the ability to produce fructose-6-phosphate (F6P) A gene encoding 4-aminobutyrate transaminase, a gene encoding inositol or phosphatidylinositol phosphatase, and a gene encoding oxidoreductase having I236V mutation are introduced As a result of further introducing or amplifying a gene encoding fructokinase or a gene encoding fructose-1,6-bisphosphatase into the recombinant microorganism, Deoxynojirimycin and the production amount thereof were remarkably increased compared with that of the present invention, and the present invention was completed It was good.
본 발명의 목적은 1-데옥시노지리마이신의 농도 및 생산량이 증대된 1-데옥시노지리마이신 생성능을 가지는 재조합 미생물을 제공하는데 있다.It is an object of the present invention to provide a recombinant microorganism having 1-deoxynojirimycin-producing ability with increased concentration and yield of 1-deoxynojirimycin.
본 발명의 다른 목적은 1-데옥시노지리마이신 생성능을 가지는 재조합 미생물을 이용한 1-데옥시노지리마이신의 제조방법을 제공하는데 있다.It is another object of the present invention to provide a process for producing 1-deoxynojirimycin using a recombinant microorganism having 1-deoxynojirimycin producing ability.
상기 목적을 달성하기 위하여, 본 발명은 과당-6-인산(F6P) 생성능을 가지는 미생물에서, 4-아미노부틸레이트 트랜스아미나제(4-aminobutyrate transaminase)를 코딩하는 유전자, 이노시톨 또는 포스파티딜이노시톨 포스파타제(inositol or phosphatidylinositol phosphatase)를 코딩하는 유전자, I236V변이를 가지는 산화환원효소(oxidoreductase)를 코딩하는 유전자가 도입되어 있는 재조합 미생물에, 프룩토키나제(fructokinase)를 코딩하는 유전자 또는 프룩토스-1,6-비스포스파타제(fructose-1,6-bisphosphatase)를 코딩하는 유전자를 추가로 도입하거나 증폭시킨 1-데옥시노지리마이신 생성능을 가지는 재조합 미생물을 제공한다.In order to achieve the above object, the present invention provides a gene encoding a 4-aminobutyrate transaminase in a microorganism having a fructose-6-phosphate (F6P) producing ability, an inositol or a phosphatidylinositol phosphatase or phosphatidylinositol phosphatase) and a gene encoding an oxidoreductase having an I236V mutation are introduced into a recombinant microorganism, a gene encoding fructokinase or a fructose-1,6-bis A recombinant microorganism having the ability to produce 1-deoxynojirimycin by further introducing or amplifying a gene encoding fructose-1,6-bisphosphatase.
본 발명은 또한, (a) 상기 재조합 미생물을 배양하여 1-데옥시노지리마이신을 생성시키는 단계; 및 (b) 상기 생성된 1-데옥시노지리마이신을 회수하는 단계를 포함하는 1-데옥시노지리마이신의 제조방법을 제공한다.The present invention also provides a method for producing 1-deoxynojirimycin, comprising: (a) culturing the recombinant microorganism to produce 1-deoxynojirimycin; And (b) recovering the produced 1-deoxynojirimycin. The present invention also provides a method for producing 1-deoxynojirimycin.
본 발명에 따른 1-데옥시노지리마이신 생성능을 가지는 재조합 미생물을 이용할 경우, 종래에 비하여 고농도로 1-데옥시노지리마이신을 생산하여, 항당뇨성 활성, 항암성 활성, 항바이러스 활성, 항비만 활성, HIV 감염 치료, 고셔병 치료에 이르는 다양한 작용을 통해 약학적 조성물로 유용하게 이용할 수 있다.When the recombinant microorganism having the ability to produce 1-deoxynojirimycin according to the present invention is used, 1-deoxynojirimycin is produced at a higher concentration than in the prior art, and the antidiabetic activity, anticancer activity, antiviral activity, And can be usefully used as a pharmaceutical composition through various actions ranging from anti-obesity activity, HIV infection treatment, and Gaucher disease treatment.
도 1은 약학적 조성물로 이용되는 대표적인 아자당(azasugar)의 구조식이다.
도 2는 본 발명의 재조합 대장균에서 1-데옥시노지리마이신 생합성시, 대사경로를 나타낸 모식도이다.
도 3a는 본 발명의 재조합 미생물을 이용하여 제조한 1-데옥시노지리마이신을 HPLC 크로마토그램을 이용하여 검출한 결과이다((i) TYB 유전자 클러스터를 함유하는 재조합 대장균의 배양액; (ii) 표준 1-데옥시노지리마이신).
도 3b는 1-데옥시노지리마이신을 정량하기 위하여 작성한 검량선이다.
도 4a는 표준 1-데옥시노지리마이신을 HR-QTOF로 질량 분석한 결과이다.
도 4b는 본 발명의 재조합 미생물을 이용하여 제조한 1-데옥시노지리마이신을 HR-QTOF로 질량 분석한 결과이다.
도 5는 본 발명의 재조합 미생물의 1-데옥시노지리마이신의 생산량을 나타낸 그래프이다.
도 6은 본 발명의 E.coli S5 균주를 배양하여 생성된 1-데옥시노지리마이신의 생산량 및 세포 성장을 나타낸 그래프이다.
도 7은 본 발명의 E.coli piBR181 및 E.coli S5의 전사수준을 나타낸 결과이다.Figure 1 is a representative azasugar structural formula used as a pharmaceutical composition.
Fig. 2 is a schematic diagram showing a metabolic pathway during 1-deoxynojirimycin biosynthesis in the recombinant E. coli of the present invention.
(I) a culture solution of recombinant Escherichia coli containing a TYB gene cluster; (ii) a culture solution of a recombinant Escherichia coli containing a TYB gene cluster 1-deoxynojirimycin).
3B is a calibration curve prepared for quantifying 1-deoxynojirimycin.
4A is a result of mass spectrometry of standard 1-deoxynojirimycin with HR-QTOF.
4B shows the result of mass spectrometry of 1-deoxynojirimycin prepared using the recombinant microorganism of the present invention with HR-QTOF.
5 is a graph showing the production yield of 1-deoxynojirimycin of the recombinant microorganism of the present invention.
6 is a graph showing the yield and cell growth of 1-deoxynojirimycin produced by culturing the strain of E. coli S5 of the present invention.
Figure 7 shows the transcription levels of E. coli piBR181 and E. coli S5 of the present invention.
본 발명에서는 과당-6-인산(F6P) 생성능을 가지는 미생물에서, 4-아미노부틸레이트 트랜스아미나제(4-aminobutyrate transaminase)를 코딩하는 유전자, 이노시톨 또는 포스파티딜이노시톨 포스파타제(inositol or phosphatidylinositol phosphatase)를 코딩하는 유전자, I236V변이를 가지는 산화환원효소(oxidoreductase)를 코딩하는 유전자가 도입되어 있는 재조합 미생물에, 프룩토키나제(fructokinase)를 코딩하는 유전자 또는 프룩토스-1,6-비스포스파타제(fructose-1,6-bisphosphatase)를 코딩하는 유전자를 추가로 도입하거나 증폭시킨 결과, 종래에 비하여 고농도로 1-데옥시노지리마이신(1-DNJ)을 생성할 수 있다는 것을 확인하였다. In the present invention, in a microorganism having the ability to produce fructose-6-phosphate (F6P), a gene encoding 4-aminobutyrate transaminase, a gene coding for inositol or phosphatidylinositol phosphatase Gene, a recombinant microorganism into which a gene encoding an oxidoreductase having an I236V mutation has been introduced, a gene encoding fructokinase or a fructose-1,6-bisphosphatase -bisphosphatase was further introduced or amplified. As a result, it was confirmed that 1-deoxynojirimycin (1-DNJ) can be produced at a higher concentration than the conventional one.
따라서, 본 발명은 일 관점에서, 과당-6-인산(F6P) 생성능을 가지는 미생물에서, 4-아미노부틸레이트 트랜스아미나제(4-aminobutyrate transaminase)를 코딩하는 유전자, 이노시톨 또는 포스파티딜이노시톨 포스파타제(inositol or phosphatidylinositol phosphatase)를 코딩하는 유전자, I236V변이를 가지는 산화환원효소(oxidoreductase)를 코딩하는 유전자가 도입되어 있고, 프룩토키나제(fructokinase)를 코딩하는 유전자 또는 프룩토스-1,6-비스포스파타제(fructose-1,6-bisphosphatase)를 코딩하는 유전자가 도입 또는 증폭되어 있는 1-데옥시노지리마이신 생성능을 가지는 재조합 미생물에 관한 것이다.Accordingly, in one aspect, the present invention relates to a gene encoding 4-aminobutyrate transaminase, inositol or phosphatidylinositol phosphatase (inositol or phosphatidylinositol phosphatase) in a microorganism having fructose-6-phosphate (F6P) a gene encoding phosphatidylinositol phosphatase, a gene encoding an oxidoreductase having an I236V mutation, and a gene encoding fructokinase or a fructose-1,6-bisphosphatase- 1,6-bisphosphatase) is introduced or amplified. The present invention also relates to a recombinant microorganism having the ability to produce 1-deoxynojirimycin.
본 발명에서, 1-데옥시노지리마이신은 아자당(azasugar)의 일종으로, 상기 아자당은 피페리딘(piperidine) 구조가 테트라히드로피란(tetrahydropyran) 구조를 대체하는 당의 질소 유도체이다(도 1).In the present invention, 1-deoxynojirimycin is a kind of azasugar, which is a nitrogen derivative of a sugar in which the piperidine structure replaces the tetrahydropyran structure (Fig. 1 ).
본 발명에서 있어서, 상기 미생물은 프룩토키나제(fructokinase)를 코딩하는 유전자 및 프룩토스-1,6-비스포스파타제(fructose-1,6-bisphosphatase)를 코딩하는 유전자를 포함하는 것을 특징으로 할 수 있다.In the present invention, the microorganism may be characterized in that it contains a gene encoding a fructokinase and a gene encoding fructose-1,6-bisphosphatase .
본 발명에서, 상기 4-아미노부틸레이트 트랜스아미나제(4-aminobutyrate transaminase)를 코딩하는 유전자(서열번호 1)는 gabT1인 것을 특징으로 하고, 상기 이노시톨 또는 포스파티딜이노시톨 포스파타제(inositol or phosphatidylinositol phosphatase)를 코딩하는 유전자(서열번호 2)는 yktc1인 것을 특징으로 하고, 상기 산화환원효소(oxidoreductase)를 코딩하는 유전자(서열번호 3)는 gutB1인 것을 특징으로 하며, 상기 유전자들은 Bacillus amyloliquefaciens KCTC1660 유래이다(도 2).In the present invention, the gene coding for the 4-aminobutyrate transaminase (SEQ ID NO: 1) is gabT1 . The gene encoding inositol or phosphatidylinositol phosphatase (SEQ ID NO: 2) is yktc1 , and the gene encoding the oxidoreductase (SEQ ID NO: 3) is gutB1 , and the genes are derived from Bacillus amyloliquefaciens KCTC1660 ).
본 발명에서, 상기 유전자 gabT1, yktc1 및 gutB1는 TYB 유전자 클러스터라고 명명하였다.In the present invention, the genes gabT1, yktc1 and gutB1 were named TYB gene clusters.
본 발명에서, 상기 프룩토키나제(fructokinase)를 코딩하는 유전자는 yajF인 것을 특징으로 하고, 상기 프룩토스-1,6-비스포스파타제(fructose-1,6-bisphosphatase)를 코딩하는 유전자는 glpX인 것을 특징으로 한다(도 2).In the present invention, the gene coding for the fructose Tokina claim (fructokinase) is characterized in that the yajF, gene coding for the fructose-1,6-bis phosphatase (fructose-1,6-bisphosphatase) has to be the glpX (Fig. 2).
본 발명에 있어서, 상기 프룩토키나제(fructokinase)를 코딩하는 유전자는 서열번호 4로 표시되는 것을 특징으로 할 수 있고, 상기 프룩토스-1,6-비스포스파타제(fructose-1,6-bisphosphatase)를 코딩하는 유전자는 서열번호 5로 표시되는 것을 특징으로 할 수 있다.In the present invention, the gene coding for the fructokinase may be represented by SEQ. ID. NO. 4, and the fructose-1,6-bisphosphatase may be The coding gene may be characterized by being represented by SEQ ID NO: 5.
본 발명에서, 상기 yajF 및 glpX는 1-데옥시노지리마이신의 전구체인 과당-6-인산(F6P)의 농도를 증가시키기 위해 도입하였다. In the present invention, yajF and glpX were introduced to increase the concentration of fructose-6-phosphate (F6P) which is a precursor of 1- deoxynojirimycin .
본 발명의 일 실시예에서, 상기 gutB1에 I236V 변이를 가지는 TYB 유전자 클러스트에 yajF 및 glpX 유전자를 도입하면, 1-데옥시노지리마이신의 생성능이 유의하게 증가됨을 확인하였다(도 5).In one embodiment of the invention, the introduction of the yajF and glpX genes in TYB gene cluster with the I236V mutations in the gutB1, it was confirmed that 1-having increased significantly the producing ability of oxy Nojiri azithromycin (Fig. 5).
본 발명에서 벡터는 멀티-모노시스트로닉 벡터인 piBR818을 사용하며, 상기 벡터에 삽입되는 외래 유전자 각각은 자체 프로모터, RBS 및 종결자를 포함하고 있다. In the present invention, the vector is a multi-monocystronic vector piBR818, and each of the foreign genes inserted into the vector contains its own promoter, RBS and terminator.
본 발명에서, 상기 미생물은 대장균인 것을 특징으로 하며, 바람직하게는 E. coli BL21(DE3)이다.In the present invention, the microorganism is characterized by being E. coli , preferably E. coli BL21 (DE3).
상기 유전자의 도입은 통상적으로 알려진 유전자조작방법을 사용할 수 있다. 예를 들어, 바이러스 등의 벡터를 이용하는 방법, 합성 인지질이나 합성 양이온성 고분자 등을 사용하는 비바이러스성 방법 및 세포막에 일시적인 전기 자극을 가하여 유전자를 도입하는 전기투과법 등 물리적인 방법을 사용할 수 있으며, 이에 한정하지 않는다.The introduction of the gene can be carried out by a commonly known gene manipulation method. For example, a physical method such as a method using a vector such as a virus, a non-viral method using a synthetic phospholipid or a synthetic cationic polymer, or an electrotransfer method in which a gene is introduced by applying temporary electrical stimulation to the cell membrane can be used , But is not limited thereto.
본 발명에서 "증폭"이란 해당 유전자의 일부 염기를 변이, 치환, 또는 삭제시키거나, 일부 염기를 도입시키거나, 또는 동일한 효소를 코딩하는 다른 미생물 유래의 유전자를 도입시켜 대응하는 효소의 활성을 증가시키는 것을 포괄하는 개념이다.The term " amplification " in the present invention refers to amplification, substitution, or deletion of a part of the gene, introduction of a certain base, or introduction of a gene derived from another microorganism encoding the same enzyme to increase the activity of the corresponding enzyme .
본 발명에서 “벡터(vector)”는 적합한 숙주 내에서 DNA를 발현시킬 수 있는 적합한 조절 서열에 작동가능하게 연결된 DNA 서열을 함유하는 DNA 제조물을 의미한다. 벡터는 플라스미드, 파지 입자, 또는 간단하게 잠재적 게놈 삽입물일 수 있다. 적당한 숙주로 형질전환되면, 벡터는 숙주 게놈과 무관하게 복제하고 기능할 수 있거나, 또는 일부 경우에 게놈 그 자체에 통합될 수 있다. 플라스미드가 현재 벡터의 가장 통상적으로 사용되는 형태이므로, 본 발명의 명세서에서 “플라스미드(plasmid)” 및 “벡터(vector)”는 때로 상호 교환적으로 사용된다. 그러나, 본 발명은 당업계에 알려진 또는 알려지게 되는 바와 동등한 기능을 갖는 벡터의 다른 형태를 포함한다.As used herein, the term " vector " means a DNA construct containing a DNA sequence operably linked to a suitable regulatory sequence capable of expressing the DNA in an appropriate host. The vector may be a plasmid, phage particle, or simply a potential genome insert. Once transformed into the appropriate host, the vector may replicate and function independently of the host genome, or, in some cases, integrate into the genome itself. Because the plasmid is the most commonly used form of the current vector, the terms " plasmid " and " vector " are sometimes used interchangeably in the context of the present invention. However, the present invention includes other forms of vectors having functions equivalent to those known or known in the art.
본 발명에서 “발현 벡터”는 통상 이종의 DNA의 단편이 삽입된 재조합 캐리어(recombinant carrier)로서 일반적으로 이중 가닥의 DNA의 단편을 의미한다. 여기서, 이종 DNA는 숙주 세포에서 천연적으로 발견되지 않는 DNA인 이형 DNA를 의미한다. 발현 벡터는 일단 숙주 세포내에 있으면 숙주 염색체 DNA와 무관하게 복제할 수 있으며 벡터의 수 개의 카피 및 그의 삽입된 (이종) DNA가 생성될 수 있다. 당업계에 주지된 바와 같이, 숙주세포에서 형질감염 유전자의 발현 수준을 높이기 위해서는, 해당 유전자가, 선택된 발현 숙주 내에서 기능을 발휘하는 전사 및 해독 발현 조절 서열에 작동가능하도록 연결되어야만 한다. 바람직하게는 발현 조절서열 및 해당 유전자는 세균 선택 마커 및 복제 개시점(replication origin)을 같이 포함하고 있는 하나의 발현 벡터 내에 포함되게 된다. 발현 숙주가 진핵세포인 경우에는, 발현 벡터는 진핵 발현 숙주 내에서 유용한 발현 마커를 더 포함하여야만 한다.In the present invention, " expression vector " is usually a recombinant carrier into which a fragment of different DNA is inserted, and generally means a fragment of double stranded DNA. Herein, the heterologous DNA means a heterologous DNA that is not naturally found in the host cell. Once an expression vector is in a host cell, it can replicate independently of the host chromosomal DNA, and several copies of the vector and its inserted (heterologous) DNA can be generated. As is well known in the art, to increase the level of expression of a transfected gene in a host cell, the gene must be operably linked to a transcriptional and detoxification regulatory sequence that functions in the selected expression host. Preferably the expression control sequence and the gene are contained within an expression vector containing a bacterial selection marker and a replication origin. If the expression host is a eukaryotic cell, the expression vector should further comprise a useful expression marker in the eukaryotic expression host.
본 발명에서 "통합 벡터"는 핵산으로의 통합 또는 삽입이 인테그라제(integrase)를 통해 수행되는 벡터를 의미하는 것으로, 통합 벡터의 예로는 레트로바이러스 벡터, 트란스포손 및 아데노 관련 바이러스 벡터 등이 있으나 이에 제한되지는 않는다.In the present invention, " integrative vector " means a vector in which integration or insertion into a nucleic acid is performed through integrase. Examples of integrated vectors include retrovirus vector, transposon and adeno-associated viral vector. But is not limited to.
상기 벡터에 의해 형질전환 또는 형질감염된 숙주 세포는 본 발명의 또 다른 측면을 구성한다. 본 발명에서 사용된 용어 “형질전환”은 DNA를 숙주로 도입하여 DNA가 염색체외 인자로서 또는 염색체 통합완성에 의해 복제가능하게 되는 것을 의미한다. 이는 핵산을 유기체, 세포, 조직 또는 기관에 도입하는 어떤 방법도 포함되며 당 분야에서 공지된 바와 같이 숙주 세포에 따라 적합한 표준 기술을 선택하여 수행될 수 있다. 이러한 방법에는 전기충격유전자전달법(electroporation), 원형질 융합, 인산 칼슘(CaPO4) 침전, 염화 칼슘(CaCl2) 침전, 실리콘카바이드 섬유를 이용한 교반, 아그로 박테리아 매개된 형질전환, PEG, 덱스트란 설페이트, 리포펙타민 및 건조/억제 매개된 형질전환 방법 등이 포함되나 이에 제한되지 않는다. 발명의 숙주 세포는 원핵 또는 진핵생물 세포일 수 있다. 또한, DNA의 도입효율이 높고, 도입된 DNA의 발현효율이 높은 숙주가 통상 사용된다. 대장균, 슈도모나스, 바실러스, 스트렙토마이세스, 진균, 효모와 같은 주지의 진핵 및 원핵 숙주들, 스포도프테라 프루기페르다(SF9)와 같은 곤충 세포, CHO 및 생쥐 세포같은 동물 세포, COS 1, COS 7, BSC 1, BSC 40 및 BMT 10과 같은 아프리카 그린 원숭이 세포, 및 조직배양된 인간 세포는 사용될 수 있는 숙주 세포의 예이다.A host cell transformed or transfected with the vector constitutes another aspect of the present invention. As used herein, the term " transformation " means introducing DNA into a host and allowing the DNA to replicate as an extrachromosomal factor or by chromosomal integration. This includes any method of introducing the nucleic acid into an organism, cell, tissue or organ, and can be carried out by selecting a suitable standard technique depending on the host cell as is known in the art. Such methods include electroporation, protoplast fusion, calcium phosphate (CaPO 4 ) precipitation, calcium chloride (CaCl 2 ) precipitation, agitation with silicon carbide fibers, Agrobacterium mediated transformation, PEG, dextran sulfate , Lipofectamine, and dry / inhibition-mediated transformation methods, and the like. The host cell of the invention may be a prokaryotic or eukaryotic cell. In addition, a host having high efficiency of introduction of DNA and high efficiency of expression of the introduced DNA is usually used. Known eukaryotic and prokaryotic hosts such as Escherichia coli, Pseudomonas, Bacillus, Streptomyces, fungi and yeast, insect cells such as Spodoptera prolipida (SF9), animal cells such as CHO and mouse cells,
물론 모든 벡터가 본 발명의 DNA 서열을 발현하는데 모두 동등하게 기능을 발휘하지는 않는다는 것을 이해하여야만 한다. 마찬가지로 모든 숙주가 동일한 발현 시스템에 대해 동일하게 기능을 발휘하지는 않는다. 그러나, 당업자라면 과도한 실험적 부담없이 본 발명의 범위를 벗어나지 않는 채로 여러 벡터, 발현 조절 서열 및 숙주 중에서 적절한 선택을 할 수 있다. 예를 들어, 벡터를 선택함에 있어서는 숙주를 고려하여야 하는데, 이는 벡터가 그 안에서 복제되어야만 하기 때문이다. 벡터의 복제 수, 복제 수를 조절할 수 있는 능력 및 당해 벡터에 의해 코딩되는 다른 단백질, 예를 들어 항생제 마커의 발현도 또한 고려되어야만 한다. 발현 조절 서열을 선정함에 있어서도, 여러 가지 인자들을 고려하여야만 한다. 예를 들어, 서열의 상대적 강도, 조절가능성 및 본 발명의 DNA 서열과의 상용성 등, 특히 가능성있는 이차 구조와 관련하여 고려하여야 한다. 단세포 숙주는 선정된 벡터, 본 발명의 DNA 서열에 의해 코딩되는 산물의 독성, 분비 특성, 단백질을 정확하게 폴딩시킬 수 있는 능력, 배양 및 발효 요건들, 본 발명 DNA 서열에 의해 코딩되는 산물을 숙주로부터 정제하는 것의 용이성 등의 인자를 고려하여 선정되어야만 한다. 이들 변수의 범위 내에서, 당업자는 본 발명의 DNA 서열을 발효 또는 대규모 동물배양에서 발현시킬 수 있는 각종 벡터/발현 조절 서열/숙주 조합을 선정할 수 있다. 발현 클로닝에 의해 NSP 단백질의 cDNA를 클로닝 하려고 할 때의 스크리닝법으로서 바인딩법(binding법), 페닝법(panning법), 필름에멀션법(film emulsion 법) 등이 적용될 수 있다.Of course, it should be understood that not all vectors function equally well in expressing the DNA sequences of the present invention. Likewise, not all hosts function identically for the same expression system. However, those skilled in the art will be able to make appropriate selections among a variety of vectors, expression control sequences, and hosts without undue experimentation and without departing from the scope of the present invention. For example, in selecting a vector, the host should be considered because the vector must be replicated within it. The number of copies of the vector, the ability to control the number of copies, and the expression of other proteins encoded by the vector, such as antibiotic markers, must also be considered. In selecting the expression control sequence, a number of factors must be considered. For example, the relative strength of the sequence, controllability and compatibility with the DNA sequences of the present invention should be considered in relation to particularly possible secondary structures. The single cell host may be selected from a selected vector, the toxicity of the product encoded by the DNA sequence of the present invention, the secretion characteristics, the ability to fold the protein correctly, the culture and fermentation requirements, the product encoded by the DNA sequence of the invention And ease of purification. Within the scope of these variables, one skilled in the art can select various vector / expression control sequences / host combinations that can express the DNA sequences of the invention in fermentation or in large animal cultures. A binding method, a panning method, a film emulsion method, or the like can be applied as a screening method for cloning cDNA of NSP protein by expression cloning.
본 발명에서 "원형질체 융합"은 식물세포 또는 균류 등의 세포벽을 제거한 원형질체(protoplast)를 이용하여 서로 다른 형질을 가진 두 세포를 융합하는 기술을 의미한다. 원형질체 융합에는 고농도의 삼투압 용액에 칼슘, 마그네슘 등의 금속이온을 첨가하는 등의 화학적 방법 또는 전기충격을 주어 세포막에 일시적으로 작은 구멍이 생기도록 원형질체를 노출시켜 원형질체의 DNA흡수를 증가시키는 등의 물리적 방법이 있다.In the present invention, " protoplast fusion " means a technique of fusing two cells having different traits using a protoplast from which cell walls of plant cells or fungi have been removed. Protoplast fusion involves the use of chemical methods such as the addition of metal ions such as calcium and magnesium to high osmotic solutions or physical exposure such as by increasing the DNA absorption of the protoplasts by exposing the protoplasts to temporary pores in the cell membrane, There is a way.
본 발명은 다른 관점에서, (a) 상기 재조합 미생물을 배양하여 1-데옥시노지리마이신을 생성시키는 단계; 및 (b) 상기 생성된 1-데옥시노지리마이신을 회수하는 단계를 포함하는 1-데옥시노지리마이신의 제조방법에 관한 것이다.In another aspect, the present invention provides a method for producing a recombinant microorganism, comprising: (a) culturing the recombinant microorganism to produce 1-deoxynojirimycin; And (b) recovering the produced 1-deoxynojirimycin. The present invention also relates to a method for producing 1-deoxynojirimycin.
본 발명에서, 상기 재조합 미생물을 배양하는 배지는 LB배지를 사용할 수 있으며, 1-데옥시노지리마이신의 생산을 향상시키기 위해 글루코스, 과당 및 L-글루타민을 추가로 첨가할 수 있다.In the present invention, the culture medium for culturing the recombinant microorganism may be LB medium, and glucose, fructose and L-glutamine may be further added to improve the production of 1-deoxynojirimycin.
표 1은 종래의 1-데옥시노지리마이신을 생산하는 식물, 미생물 및 재조합 미생물의 생산능을 비교한 것이다.Table 1 compares the ability of plants, microorganisms and recombinant microorganisms to produce conventional 1-deoxynojirimycin.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. It is to be understood by those skilled in the art that these embodiments are only for illustrating the present invention and that the scope of the present invention is not construed as being limited by these embodiments.
실시예 1: 재조합 미생물의 제조Example 1: Preparation of recombinant microorganisms
1-1 : 화학물질 및 시약 준비1-1: Preparation of chemicals and reagents
표준 1-DNJ는 Sigma-Aldrich에서 구입하고, HPLC 등급의 아세토니트릴 및 물은 Mallinckrodt Baker (Phillipsburg, USA)에서 구입하였다. 배양 배지 및 분석 성분은 BD-Difco(뉴저지, 미국) 또는 Sigma-Aldrich(St. Louis)에서 구입하였다. 사용된 모든 화학 물질은 높은 분석 등급이고, 상업적으로 이용 가능하다.Standard 1-DNJ was purchased from Sigma-Aldrich, HPLC grade acetonitrile and water were purchased from Mallinckrodt Baker (Phillipsburg, USA). Culture medium and assay components were purchased from BD-Difco (New Jersey, USA) or Sigma-Aldrich (St. Louis). All chemicals used are of high analytical grade and are commercially available.
1-2 : 박테리아 균주, 플라스미드 및 배양 조건1-2: Bacterial strains, plasmids and culture conditions
표 2는 본 발명에 사용된 박테리아 균주 및 플라스미드를 나타낸 것이다.Table 2 shows the bacterial strains and plasmids used in the present invention.
표 3은 본 발명에 사용된 PCR 프라이머를 나타낸 것이다.Table 3 shows the PCR primers used in the present invention.
(서열번호 6)yktC1-F
(SEQ ID NO: 6)
(서열번호 7)yktC1-R
(SEQ ID NO: 7)
(서열번호 8)gabT1-F
(SEQ ID NO: 8)
(서열번호 9)gabT1-R
(SEQ ID NO: 9)
(서열번호 10)gutB1-F
(SEQ ID NO: 10)
(서열번호 11)gutB1-R
(SEQ ID NO: 11)
(서열번호 12)mgutB-F
(SEQ ID NO: 12)
(서열번호 13)mgutB-R
(SEQ ID NO: 13)
(서열번호 14)yajF-F
(SEQ ID NO: 14)
(서열번호 15)YajF-R
(SEQ ID NO: 15)
(서열번호 16)glpX-F
(SEQ ID NO: 16)
(서열번호 17)glpX-R
(SEQ ID NO: 17)
중합효소 연쇄반응(PCR) 산물을 클로닝하기 위하여, pGEM®-T Easy 벡터(Promega, WI)를 사용하였고,DNA 조작은 대장균 XL1-Blue(Stratagene, California)에서 수행하였다.PGEM®-T Easy vector (Promega, WI) was used to clone the PCR product and DNA manipulation was performed in E. coli XL1-Blue (Stratagene, California).
1-데옥시노지리마이신 생합성에 필요한 유전자 gabT1(4-aminobutyrate transaminase를 코딩하는 유전자), yktc1(inositol or phosphatidylinositol phosphatase를 코딩하는 유전자) 및 gutB1(oxidoreductase를 코딩하는 유전자)을 분리하기 위하여, 표 3의 프라이머와 통상의 PCR 기술을 이용하여 Bacillus amyloliquefaciens KCTC1660 게놈으로부터 효소 유전자 단편을 수득하였다. glpX(fructose-1,6-bisphosphatase를 코딩하는 유전자, 1,011 bp)및 yajF(fructokinase를 코딩하는 유전자, 909 bp)는 각각의 프라이머(표 3)을 사용하여 대장균 BL21로부터 PCR 증폭시켰다.To isolate the gene gabT1 (a gene encoding 4-aminobutyrate transaminase), yktc1 (a gene encoding inositol or phosphatidylinositol phosphatase) and gutB1 (a gene encoding oxidoreductase) required for 1- deoxynojirimycin biosynthesis, And an enzyme gene fragment was obtained from Bacillus amyloliquefaciens KCTC1660 genome using a conventional PCR technique. glpX (gene encoding fructose-1,6-bisphosphatase, 1,011 bp) and yajF (gene encoding fructokinase, 909 bp) were PCR amplified from E. coli BL21 using the respective primers (Table 3).
PCR 증폭은 20㎕의 총 부피에서 95℃에서 7분 동안 수행하고, 이후, 95℃에서 1분간, 55℃에서 1분간, 72℃에서 1분간 30사이클 수행한 후, 72℃에서 7분 동안 수행하였다.The PCR amplification was carried out at 95 캜 for 7 minutes at a total volume of 20 7, then 30 cycles of 1 min at 95 캜, 1 min at 55 캜, 1 min at 72 캜 and then 7 min at 72 캜 Respectively.
각각의 증폭 산물인 gabT1(1,269 bp), yktc1(951 bp), gutB1 (1,047 bp), yajF(909 bp) 및 glpX(1,011 bp)의 서열을 시퀀싱으로 확인한 후, 이전에 보고된 프로토콜에 따라, 다중 모노시스트로닉 벡터인 piBR181에 gabT1, yktc1, gutB1 및 yajF 를 순차적 클로닝에 사용하였다. 상기 gutB1 는 표준 프로토콜에 따라 위치 지정 돌연변이를 일으켜 I236V 변이를 생성하였다. glpX 는 운반체로 pCDF-duet 벡터를 사용하였다.After sequencing the sequence of each amplification product gabT1 (1,269 bp), yktc1 (951 bp), gutB1 (1,047 bp), yajF (909 bp) and glpX (1,011 bp) GibT1, yktc1, gutB1 and yajF were used for sequential cloning in piBR181, a multiple monocystronic vector. The gutB1 produced a positional mutation according to standard protocols to produce the I236V mutation. glpX used the pCDF-duet vector as the carrier.
단백질의 발현 균주로는 대장균 BL21(DE3)(Stratagene, California)을 사용하였고, Lysogeny broth (LB) 배양액을 배양 배지로 사용하였다. 상기 벡터를 함유하는 재조합 균주는 적절한 항생제와 함께 진탕 배양기에서 37 ℃, 150 rpm조건으로 밤새 배양하였다. 종균(seed) 배양액 500 μL를 새로운 50 mL LB 배지에 옮기고, 적절한 항생제와 추가적으로 탄소 공급원을 보충하였다. 이어서, 세포 농도가 OD600=0.5-0.6 될 때까지 37℃ 조건에서 배양하였다. 이 후, 0.5 mM의 IPTG로 단백질의 발현을 유도한 다음, 15℃조건에서 72-96 시간 동안 계속 배양하였다.E. coli strain BL21 (DE3) (Stratagene, California) was used as a protein expression strain and Lysogeny broth (LB) culture medium was used as a culture medium. The recombinant strains containing the vectors were incubated overnight at 37 ° C and 150 rpm in a shaking incubator with the appropriate antibiotics. 500 μL of seed culture was transferred to fresh 50 mL LB medium, supplemented with appropriate antibiotic plus an additional carbon source. Then, the cells were cultured at 37 ° C until the cell concentration reached OD 600 = 0.5-0.6. Subsequently, the expression of the protein was induced with 0.5 mM IPTG, followed by continued incubation at 15 ° C for 72-96 hours.
실시예 2: 1-데옥시노지리마이신의 생산 Example 2: Production of 1-deoxynojirimycin
표 2에 나타난 5개의 재조합 균주(E. coli S1, E. coli S2, E. coli S3, E. coli S4 및 E. coli S5)를 실시예 1의 배양 조건으로 배양한 후, 1-데옥시노지리마이신 생산량을 조사하였다. Five recombinant strains ( E. coli S1, E. coli S2, E. coli S3, E. coli S4 and E. coli S5) shown in Table 2 were cultured under the culture conditions of Example 1, The production of nojirimycin was investigated.
그 결과, E. coli S1(TYB 유전자 클러스터를 함유하는 piBR818이 도입됨)의 경우, 생산된 1-데옥시노지리마이신의 농도는 42 mg/L이다.As a result, in the case of E. coli S1 (piBR818 containing TYB gene cluster was introduced), the concentration of 1-deoxynojirimycin produced was 42 mg / L.
E. coli S2(gutB1에 I236V 변이가 일어난 TYB 유전자 클러스터를 함유하는 piBR818이 도입됨)의 경우, 생산된 1-데옥시노지리마이신의 농도는 68.24 mg/ml이며, 이는 E. coli S1의 생산량보다 1.62 배 더 높다.The concentration of 1-deoxynojirimycin produced was 68.24 mg / ml for E. coli S2 (gutB1 introduced piBR818 containing a TYB gene cluster with I236V mutation), indicating that E. coli S1 production Which is 1.62 times higher.
E. coli S3(gutB1에 I236V 변이가 일어난 TYB 유전자 클러스터와 fructokinase를 코딩하는 유전자를 함유하는 piBR818이 도입됨)의 경우, 생산된 1-데옥시노지리마이신의 농도는 81.97 mg/L이며, 이는 E. coli S1보다 약 1.9 배 더 높다. In the case of E. coli S3 (piB818, which contains the TYB gene cluster with I236V mutation in gutB1 and the gene encoding fructokinase), the concentration of 1-deoxynojirimycin produced is 81.97 mg / L, It is about 1.9 times higher than E. coli S1.
E. coli S4(gutB1에 I236V 변이가 일어난 TYB 유전자 클러스터를 함유하는 piBR818 및 glpX를 함유하는 벡터가 도입됨)의 경우, 생산된 1-데옥시노지리마이신의 농도는 89.24 mg/L이며, 이는 E. coli 1보다 약 2.1 배 높다. E. coli S4 In the case of (the vector is introduced containing piBR818 and glpX containing TYB gene cluster is I236V mutation takes place gutB1), the production of 1-deoxy Nojiri concentration of azithromycin is 89.24 mg / L, which It is about 2.1 times higher than
E. coli S5(gutB1에 I236V 변이가 일어난 TYB 유전자 클러스터와 fructokinase를 코딩하는 유전자를 함유하는 piBR818 및 glpX를 함유하는 벡터가 도입됨)의 경우, 생산된 1-데옥시노지리마이신의 농도는 117.42 mg/L이며, 이는 E. coli S1보다 약 2.7 배 더 높다(도 5). E. coli In S5 (the vector is introduced containing piBR818 and glpX containing the gene coding for the mutation I236V TYB gene cluster and fructokinase gutB1 takes place), the concentration of oxy Nojiri azithromycin to produce the 1-is 117.42 mg / L, which is about 2.7 times higher than E. coli S1 (FIG. 5).
바이오매스와 1-데옥시노지리마이신의 생산량은 12시간 간격으로 관찰하였다. 바이오매스는 단백질 유도(induction)후 8~10시간 후인 배양 24시간 후에 생산되었으며, 바이오매스의 증가와 더불어 1-데옥시노지리마이신의 생산량도 증가하였다(도 6).Production of biomass and 1-deoxynojirimycin was observed at intervals of 12 hours. Biomass was produced 24 hours after incubation, 8-10 hours after induction of protein, and increased production of 1-deoxynojirimycin as well as increased biomass (FIG. 6).
실시예 3: 1-데옥시노지리마이신 검출 및 정량Example 3: Detection and quantification of 1-deoxynojirimycin
1-데옥시노지리마이신의 검출 및 정량을 위하여, HPLC 분석 및 표준 프로토콜에 따른 검량선 작성을 수행하였다.For the detection and quantification of 1-deoxynojirimycin, HPLC analysis and calibration curve creation according to standard protocols were performed.
1-데옥시노지리마이신의 검량선을 작성하기 위해, 이전에 보고된 프로토콜(Kimura T. et al, J Agric Food Chem., 55:5869-74, 2007)에 따라 HPLC-ELSD(high performance liquid chromatography-Evaporative light scattering detector)를 수행하였다.To prepare a calibration curve for 1-deoxynojirimycin, HPLC-ELSD (High Performance Liquid Chromatography (HPLC-ELSD) according to a previously reported protocol (Kimura T. et al, J Agric Food Chem., 55: 5869-74, 2007) -Evaporative light scattering detector.
서로 다른 농도((2mg/ml, 1mg/ml, 0.2mg/ml, 0.1mg/ml, 0.05mg/ml)의 표준 1-데옥시노지리마이신 10μL를 주입하여 검량선을 작성하였다.10 占 퐇 of standard 1-deoxynojirimycin at different concentrations (2 mg / ml, 1 mg / ml, 0.2 mg / ml, 0.1 mg / ml, and 0.05 mg / ml) was injected to prepare a calibration curve.
그 후, 상기 50 ml의 발효액을 원심분리하고, 원심 분리에 의해 생성된 세포 펠릿을 제거한 후, 배양 여액을 Amberlite IR-120 수지(H+ 형태)의 컬럼에 가하였다. 이후, H2O로 세척하고, 0.5N NH4OH로 용출시켰다. 상기 용출액을 농축 건조시키고, 잔류 물을 10 ml 추출 용매(아세토니트릴과 물의 혼합물 (50:50, 6.5 mM 아세트산 암모늄을 함유; pH 5.5)에 용해시켰다. 10 μl의 추출된 상등액을 1 ㎖의 추출용매에 용해시키고, 0.45 ㎛ 크기의 PTFE 필터로 여과하여 샘플을 수득하였다. 상기 수득한 샘플 10 μl를 TSK gel Amide-80 컬럼(4.6 x 250 mm, Tosoh, Japan)에 연결된 Shimadzu LC-10A 고속액체크로마토그래피(HPLC) 시스템에 주입하였다. 아세토니트릴과 증류수의 혼합물(81:19(v/v); 6.5 mM 아세트산암모늄 함유, pH 5.5)을 유속 1 ㎖/분으로 유지하고, 칼럼 온도를 40 ℃로 유지하였다. ELSD는 질소 가스는 분무 가스를 사용하고, 1.2 bar의 압력을 유지하며, gain 값을 8로 설정하여, 조건을 최적화하였다. 이 후, 피크 면적을 계산하고, 검량선을 작성하였다(도 3b).생산물은 UPLC-ESI-QTOF-MS /MS로 분석하였다.Then, 50 ml of the fermentation broth was centrifuged, and cell pellets produced by centrifugation were removed, and the culture filtrate was added to a column of Amberlite IR-120 resin (H + form). It was then washed with H 2 O and eluted with 0.5 N NH 4 OH. The eluate was concentrated to dryness and the residue was dissolved in 10 ml of extraction solvent (mixture of acetonitrile and water (50:50, containing 6.5 mM ammonium acetate, pH 5.5) 10 μl of the extracted supernatant was extracted with 1 ml of extraction 10 [mu] l of the obtained sample was applied to a Shimadzu LC-10A high-speed liquid (4.6 x 250 mm, Tosoh, Japan) connected to a TSK gel Amide-80 column (4.6 x 250 mm, Tosoh, Japan). The sample was dissolved in a solvent and filtered with a PTFE filter having a size of 0.45 mu m. A mixture of acetonitrile and distilled water (81:19 (v / v); containing 6.5 mM ammonium acetate, pH 5.5) was maintained at a flow rate of 1 ml / min and the column temperature was maintained at 40 ° C The ELSD optimized the conditions by using a nitrogen gas as the atomizing gas, maintaining the pressure at 1.2 bar, and setting the gain to 8. Then, the peak area was calculated and a calibration curve was prepared 3b). The product was analyzed by UPLC-ESI-QTOF-MS / MS.
초고압 액체크로마토 그래피(UPLC)-광다이오드 어레이(PDA) 분석은 PDA(UPLC LG 500 nm)에 연결된 C18 컬럼(ACQUITY UPLC BEH, C18, 1.7μm)와 결합된 역상 UPLC-PDA를 이용하여 254nm의 흡광도에서 수행하였다.Ultra-high pressure liquid chromatography (UPLC) -photodiode array (PDA) analysis was carried out using a reversed phase UPLC-PDA coupled with a C 18 column (ACQUITY UPLC BEH, C 18 , 1.7 μm) connected to a PDA Lt; / RTI >
이원 이동성 위상은 앞과 동일한 용매를 사용하였다. 총 유량은 0.3 μL/분으로 15분 동안 유지하였다. 메탄올의 흐름은 (0-9)분까지 (0-100)%이고, (9-12)분까지 100%로 유지하고, (12-15)분에 (100-0)%이며, 이후, 15 분에서 멈추었다.The same binary solvent phase was used for the binary mobile phase. The total flow rate was maintained at 0.3 μL / min for 15 minutes. The flow rate of methanol is (0-100)% until (0-9) minute, 100% until (9-12) minute, (100-0)% after (12-15) I stopped at the minute.
그 결과, 표준 1-데옥시노지리마이신의 정체시간(retention time)과 본 발명의 재조합 대장균 배양액의 정체시간(retention time)이 일치하는 것을 확인하였다(도 3a).As a result, it was confirmed that the retention time of the standard 1-deoxynojirimycin coincided with the retention time of the culture solution of the recombinant E. coli of the present invention (Fig. 3A).
정확한 질량 분석을 위하여, 양이온모드에서 SYNAPT G2-S(Waters Corp.)컬럼와 결합된 ACQUITY(Billerica, USA) 컬럼을 이용하여 HR-QTOF ESI/MS(high-resolution quadrupole-time of flight electrospray ionization-mass spectrometry) 분석을 수행하였다.For accurate mass analysis, HR-QTOF ESI / MS (high-resolution quadrupole-time of flight electrospray ionization-mass) was performed using ACQUITY (Billerica, USA) column coupled with SYNAPT G2- spectrometry analysis was performed.
그 결과, 표준 1-데옥시노지리마이신의 경우, 정체시간(retention time) 0.801에서 화합물의 질량은 [M+H]+m/z~164.0922로 측정되었고(도 4a), 본 발명의 재조합 대장균 배양액의 경우, 정체시간(retention time) 0.809에서 화합물의 질량은 [M+H]+m/z~164.0922로 측정되었다(도 4b).As a result, in the case of the standard 1-deoxynojirimycin, the mass of the compound was measured as [M + H] + m / z to 164.0922 at a retention time of 0.801 (FIG. 4A), and the recombinant E. coli For the culture, the mass of the compound was measured as [M + H] + m / z ~ 164.0922 at retention time 0.809 (FIG. 4b).
따라서, 상기 재조합 대장균은 1-데옥시노지리마이신을 생산하는 것을 확인하였다.Therefore, it was confirmed that the recombinant E. coli produced 1-deoxynojirimycin.
실시예 4: 효소 분석법에 의한 1-데옥시노지리마이신 검출Example 4: Detection of 1-deoxynojirimycin by enzyme analysis
α-글루코시다아제 억제 분석법에 의한 1-데옥시노지리마이신의 생산 분석 및 확인은 마이크로 플레이트 판독기를 이용하여, 405nM에서 흡광도를 측정하였고, E. coli-piBR181은 대조군으로 사용하였다.Production and confirmation of 1-deoxynojirimycin by α-glucosidase inhibition assay was carried out by measuring the absorbance at 405 nM using a microplate reader, and E. coli- piBR181 was used as a control.
α-글루코시다제 용액을 제조하기 위하여, 0.1% 쥐 장내 아세톤 분말(rat intestinal acetone powder)을 0.1M 인산칼륨 완충액(pH 6.8)에 용해시키고, 얼음에서 6분 동안 초음파 처리한 후, 상등액을 수집하였다.To prepare a-glucosidase solution, 0.1% rat intestinal acetone powder was dissolved in 0.1 M potassium phosphate buffer (pH 6.8), sonicated for 6 minutes on ice, and then the supernatant was collected Respectively.
α-글루코시다제 억제 분석을 위한 반응 혼합물을 제조하기 위하여, 본 발명에서 배양한 배양액을 100℃에서 10 분간 가열한 후, 원심분리하여 상등액을 획득하고, 상기 가열한 배양 상등액 50ml, 0.1M 인산 칼륨 완충액(pH 6.8) 170ml 및 α-글루코시다아제를 함유하는 1% 쥐 장내(rat intestinal) 용액 20㎕를 첨가하였다. 이후, 진탕 배양기에서 37℃ 조건으로 배양하였다. 배양 10분 후, 12 mM의 p-니트로페닐-α-D-글루코피라노시드(p-nitrophenyl-α-D-glucopyranoside) 50㎖를 혼합물에 첨가하고, 동일한 조건에서 추가로 45분 동안 배양하였다. 최종적으로, 200mM의 탄산나트륨 50 ml를 첨가하여 반응을 종결시키고, 마이크로 플레이트 판독기를 이용하여 405nm에서 흡광도를 측정하였다.In order to prepare a reaction mixture for inhibition of α-glucosidase, the culture medium cultured in the present invention was heated at 100 ° C. for 10 minutes, and centrifuged to obtain a supernatant. Then, 50 ml of the heated culture supernatant, 170 ml of potassium buffer (pH 6.8) and 20 [mu] l of a 1% rat intestinal solution containing [alpha] -glucosidase were added. Then, the cells were cultured in a shaking incubator at 37 ° C. After 10 minutes of incubation, 50 ml of 12 mM p-nitrophenyl-α-D-glucopyranoside was added to the mixture and incubated for an additional 45 minutes under the same conditions . Finally, the reaction was terminated by the addition of 50 ml of 200 mM sodium carbonate and the absorbance was measured at 405 nm using a microplate reader.
α- 글루코시다제 억제 활성을 계산하기 위해, 사용한 공식은 다음과 같다.In order to calculate the? -glucosidase inhibitory activity, the formula used is as follows.
% Inhibition = {(Ac-Ab /Ac) * 100} 여기서, Ac는 대조군의 흡광도이고, Ab는 405 nm에서 생산액의 흡광도이다.% Inhibition = {(Ac-Ab / Ac) * 100} where Ac is the absorbance of the control and Ab is the absorbance of the product at 405 nm.
그 결과, 모든 재조합 미생물에서 1-데옥시노지리마이신이 생산되는 것을 확인하였다.As a result, it was confirmed that 1-deoxynojirimycin was produced from all the recombinant microorganisms.
실시예 4: 배지에 따른 1-데옥시노지리마이신 생산능 비교Example 4: Comparison of production ability of 1-deoxynojirimycin according to medium
배지에 따른 1-데옥시노지리마이신의 생산능을 비교하기 위하여, E.coli S5를 글리세롤 (1% v/v), 과당 (1% w/v) 및 10mM의 L-글루타메이트를 함유하는 변형된 LB배지에서 실시예 1의 배양조건으로 배양하였다.In order to compare the ability of 1-deoxynojirimycin to produce according to the medium, E.coli S5 was cultured in a strain containing glycerol (1% v / v), fructose (1% w / v) and 10 mM L- glutamate Lt; RTI ID = 0.0 > LB < / RTI >
그 결과, 변형된 LB 배지에서 배양한 E. coli S5는 263.82 mg/L의 1-데옥시노지리마이신를 생산하였다. 이는 LB 배지에서 배양한 E. coli S5의 1-데옥시노지리마이신 생산량인 117.42 mg/L과 비교하여, 약 2.2 배 더 높은 생산량이다. 또한, LB 배지에서 성장한 E. coli S1보다 약 6.2 배 정도 높다(도 5).As a result, E. coli S5 cultured in modified LB medium produced 263.82 mg / L 1-deoxynojirimycin. This is approximately 2.2 times higher than the 1-deoxynojirimycin production of 117.42 mg / L of E. coli S5 cultured on LB medium. It is about 6.2 times higher than E. coli S1 grown on LB medium (Fig. 5).
실시예 5: 유전자 발현의 비교Example 5: Comparison of gene expression
모든 유전자의 전사 수준을 확인하기 위하여, E.coli S5 및 E. coli piBR181에서의 발현 수준을 비교하였다. E.coli piBR181은 빈 piBR181 벡터만을 보유하고, 음성 대조군으로 사용하였다. 두 균주 모두 50ml의 LB 배지에서 배양하였다.In order to determine the level of transcription of all genes, we compared the expression levels in E.coli E. coli and S5 piBR181. E. coli piBR181 retained only the empty piBR181 vector and was used as a negative control. Both strains were cultured in 50 ml of LB medium.
RNA를 분리하고, 정량하고, 표준 프로토콜에 따라 유전자의 PCR 증폭에 사용한 것과 동일한 프라이머(표 3)을 사용하여 RT-PCR을 수행하였다.RNA was isolated, quantified, and subjected to RT-PCR using the same primers (Table 3) used for PCR amplification of genes according to standard protocols.
그 결과, E.coli piBR181에서는 gabT1, yktc1 gutB1 유전자가 발현되지 않는 반면, E.coli S5에서는 발현되었다. 또한, E.coli S5에서 yajF 및 glpX의 발현이 E.coli piBR181에 비해 증가한 것을 확인하였다(도 7).As a result, gabT1 and yktc1 gutB1 genes were not expressed in E. coli piBR181, whereas they were expressed in E. coli S5. In addition, it was confirmed that expression of yajF and glpX was increased in E. coli S5 as compared to E. coli piBR181 (Fig. 7).
따라서, 과당-6-인산(F6P)의 농도를 증가시킴으로서, 1-데옥시노지리마이신의 생산량이 증가한다는 것을 확인하였다.Therefore, it was confirmed that the production of 1-deoxynojirimycin was increased by increasing the concentration of fructose-6-phosphate (F6P).
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.While the present invention has been particularly shown and described with reference to specific embodiments thereof, those skilled in the art will appreciate that such specific embodiments are merely preferred embodiments and that the scope of the present invention is not limited thereto will be. It is therefore intended that the scope of the invention be defined by the claims appended hereto and their equivalents.
<110> Industry-University Cooperation Foundation Sunmoon University <120> Recombinant Microorganism Producing 1-Deoxynojirymicin and Method of Preparing 1-Deoxynojirymicin Using the Same <130> P17-B235 <160> 17 <170> KoPatentIn 3.0 <210> 1 <211> 1269 <212> DNA <213> Bacillus amyloliquefaciens <400> 1 gtgggaacga aggaaatcac gaatccagac agcttgtatt acagtgttga cgatgtagta 60 atggagcgcg gagaagggat ttacctgtac gatcaagaag gtaatgagta tattgattgt 120 gcttctgcca cgtttaactt gaatttagga tacggtaaca aagaagtcat tgatacggtt 180 aaagatcaag ccgataagct gatccatgtg acatcgtcct ttcaaacaga cgccgtaaat 240 aaactagcag aaaaactagt cgaaatcgcc cccgataatc tcacaaaagt acaccctaaa 300 gtcagcagcg gttccggtgc gaatgaagga gctattaaaa tggctcagta ttactccggg 360 aaaaccgacg tcatctcctt atttcgaagc cacctcggac aaacctatat gacatccgct 420 ttgtccggca actcattcag aaaagaacct ttcccgccgc aaatctcttt tggcctacaa 480 gtacctgatc cctattgcag ccgctgtttt tataatcaga aacctgattc gtgcggtatg 540 ctgtgcgtag aaagaattaa tgattttatt gagtatgcga gcaatggaaa aattgccgcc 600 atgattattg aaccgatatc cggaaacgga ggaaacgtcg ttccgcctaa agagtatttt 660 aaacagctga gaaagctatg tgatgaacat gatatcgccc tgatctttga tgaaattcag 720 accgggttcg gacggacggg taaaatgttt gccgcggacc atttcgatgt gaaacccaat 780 atgatgaccg tagcaaaagg gctcgggggc acaggctttc aagttgccgc cactctgacg 840 gaggagaagt ataccggact tccgggatat acacattcct ttacgtacgg atctaatgtg 900 atggccgctg cagccgcgtg taaaaccata gatatcatgc agcgtccagg atttttggaa 960 aacgtaacga cggtcggaaa ttatattatg gaccgcttag aaacgatgaa agaggatttt 1020 gcttttattt ctgaagtaag aggcgtcggt ctgatgatcg gtgttgagat tgtcaaagag 1080 aacaatgaac ctgatgtgga gctgaccaat tatattgcca aacgggcgat ggattacgga 1140 ctgattctcc ggacatcccg ttacggattc ggaaatgtat ttaaaatccg tccgccttta 1200 accattacac ttagtgaagc tgaggtgctc tgctacagac ttcgcaagct attggaggaa 1260 atcaagtga 1269 <210> 2 <211> 951 <212> DNA <213> Bacillus amyloliquefaciens <400> 2 gtgagagact atatcattga gcttggacaa tatgtttatc aaaaggtgaa aaatcaaaaa 60 ggcacgctga aaaatcggct cgtaaacgga tattcccccg gaggcgatgc tcaatttaat 120 atagacgccg ctgctgagga ggcggtgctg gattatattc aagaaaaggg ccatccggtt 180 gctttttaca cggaggatgg cggcctcaag ctgattggag agaatccgca atatatttta 240 attgtagatc cgatagacgg aacgcgcccg gccgccgcgg gacttgaaat gtcatgtatt 300 tcgattgcgc ttgcttccta taagccaaac gcaagaatta aggatatcga atttgctttt 360 ttacttgaat tgaaatcagg cgcttatatg tacggtgata tttacagcga taccattcaa 420 tttgaagggt atcagggaga attgccgaat ttgagcggag tgcaggatat taaaaatatg 480 ttttggagcc ttgagtttaa cgggcatccg gcgcagctga tgacggacgc atacggccat 540 ttgattgacc agtcggccaa taacggcgga gtctttgttt tcaacagcgc ttcttattcg 600 atttcacgaa ttattacggg gcagatggat gcttatgtgg atatcggcaa tcgtctgctg 660 aaagatgatc cgaagctgct ttcagatttt cagcaggtcg ggaacggaca ggtgctgcac 720 ttatttcctt atgatattgc cgcgagcgtc tttttggcga agaaagcggg agtggtcatt 780 acggatgcgt acggccggtc tttagacgac acacttctga cagatttaag ttaccagaat 840 cagcaatcat gtatcgctgc atcaacgaag gagcttcatc agacattatt agaccaaatc 900 cgctggggca gaaaggaaga gagatatgaa ggcgttggtc tggactccta a 951 <210> 3 <211> 1047 <212> DNA <213> Bacillus amyloliquefaciens <400> 3 atgaaggcgt tggtctggac tcctaatgat aaactagaat atcaagaggt ggacgagcct 60 caaattcgaa aagccaatga tgtgaaggtg aaaattttcg gcaccggtat ctgcggcacg 120 gacttaaatg tgctgaaagg aaaaatgaat gcaacccatc atatgattat ggggcatgaa 180 tcggtgggag cggtcgtgga agtcgggccg gacgtgacaa atgtaaaagt cggagaccgc 240 gtcgtgatag atcccacaca gttttgcggg aaatgccatt attgccggag aggactgacg 300 tgttattgcg aaaccttcga ggaatggcag cttggaatcg gggcgcatgg gacgtttgcg 360 gaatattacg tgggggaaga tcggttcatg tacaaaattc cggattccat ggaatgggag 420 cgagccacgt tggttgaacc tctctcctgt gtgctgaacg ttgtggataa ggcttcgatt 480 cagccggagg attcggtttt ggttttgggt tccggaccga tcggactgct tgtgcaaatg 540 atggtgaaaa aactggcgcg tttgacggtc gcgactgaaa taggcagctt ccggagtgag 600 gcggcaagcc ggatatcgga ttatgtctac catcctgaag cgctaaccgt ggatgaagtg 660 aaacggatta atcaaggaag aaaatttgat gtgatttttg acgcgatcgg caaccagctt 720 gattgggctt atcctttcat tgaaaaggga ggcagaattg tgccgatggg ctttgatgat 780 acgtatgaga tgacggtaag gccgtaccag ctgctgtcaa acggcgtgac gattgtgggc 840 acaggtgaag cccggcagat catggaggct gcgttggcat gtgcgtccga ccttccgcag 900 ctctatgatt tcattactga aaagacggaa ctgaagaatt atgaagaagc cattgatcat 960 ctcatgggca tcgacccggt gacaaaagag agaaaggata tcagcgcgat aaaaaccatt 1020 ctcgtgtctg atccggaact tttataa 1047 <210> 4 <211> 909 <212> DNA <213> Escherichia coli <400> 4 gtgcgtatag gtatcgattt aggcggcacc aaaactgaag tgattgcact gggcgatgca 60 ggggagcagt tgtaccgcca tcgtctgccc acgccgcgtg atgattaccg gcagactatt 120 gaaacgatcg ccacgttggt tgatatggcg gagcaggcga cggggcagcg cggaacggta 180 ggtatgggca ttcctggctc aatttcgcct tacaccggtg tggtgaagaa tgccaattca 240 acctggctca acggtcagcc attcgataaa gacttaagcg cgaggttgca gcgggaagtg 300 cggctggcaa atgacgctaa ctgtctggcg gtttcagaag cagtagatgg cgcggcagcg 360 ggagcgcaga cggtatttgc cgtgattatc ggcacgggat gcggcgcggg cgtggcattc 420 aatgggcggg cgcatatcgg cggcaatggc acggcaggtg agtggggaca caatccgcta 480 ccgtggatgg acgaagacga actgcgttat cgcgaggaag tcccttgtta ttgcggtaaa 540 caaggttgta ttgaaacctt tatttcgggc acgggattcg cgatggatta tcgtcgtttg 600 agcggacatg cgctgaaagg cagtgaaatt atccgcctgg ttgaagaaag cgatccggta 660 gcggaactgg cattgcgtcg ctacgagctg cggctggcaa aatcgctggc acatgtcgtg 720 aatattctcg atccggatgt gattgtcctg gggggcggga tgagcaatgt agaccgttta 780 tatcaaacgg ttgggcagtt gattaaacaa tttgtcttcg gcggcgaatg tgaaacgccg 840 gtgcgtaagg cgaagcacgg tgattccagc ggcgtacgcg gcgctgcgtg gttatggcca 900 caagagtaa 909 <210> 5 <211> 1011 <212> DNA <213> Escherichia coli <400> 5 atgagacgag aacttgccat cgaattttcc cgcgtcaccg aatcagcggc gctggctggc 60 tacaaatggt taggacgcgg cgataaaaac accgcggacg gcgcggcggt aaacgccatg 120 cgtattatgc tcaaccaggt caacattgac ggcaccatcg tcattggtga aggtgaaatc 180 gacgaagcac cgatgctcta cattggtgaa aaagtcggta ctggtcgcgg cgacgcggta 240 gatattgctg ttgatccgat tgaaggcacg cgcatgacgg cgatgggcca ggctaacgcg 300 ctggcggtgc tggcagtagg cgataaaggc tgcttcctca atgcgccgga tatgtatatg 360 gagaagctga ttgtcgggcc gggagccaaa ggcaccattg atctgaacct gccgctggcg 420 gataacctgc gcaatgtagc ggcggcgctc ggcaaaccgt tgagcgaact gacggtaacg 480 attctggcta aaccacgcca cgatgccgtt atcgctgaaa tgcagcaact cggcgtacgc 540 gtatttgcta ttccggacgg cgacgttgcg gcctcaattc tcacctgtat gccagacagc 600 gaagttgacg tgctgtacgg tattggtggc gcgccggaag gcgtagtttc tgcggcggtg 660 atccgcgcat tagatggcga catgaacggt cgtctgctgg cgcgtcatga cgtcaaaggc 720 gacaacgaag agaatcgtcg cattggcgag caggagctgg cacgctgcaa agcgatgggc 780 atcgaagccg gtaaagtatt gcgcctgggc gatatggcgc gcagcgataa cgtcatcttc 840 tctgccaccg gtattaccaa aggcgatctg ctggaaggca ttagccgcaa aggcaatatc 900 gcgactaccg aaacgctgct gatccgcggc aagtcacgca ccattcgccg cattcagtcc 960 atccactatc tggatcgcaa agacccggaa atgcaggtgc acatcctctg a 1011 <210> 6 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> yktC1-F primer <400> 6 tctagaatga gagactatat cattgagc 28 <210> 7 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> yktC1-R primer <400> 7 aagcttttag gagtccagac caacgcct 28 <210> 8 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> gabT1-F primer <400> 8 tctagaatgg gaacgaagga aatcacga 28 <210> 9 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> gabT1-R primer <400> 9 aagctttcac ttgatttcct ccaatagc 28 <210> 10 <211> 64 <212> DNA <213> Artificial Sequence <220> <223> gutB1-F primer <400> 10 tctagaatga aggcgttggt ctggactcct aatgataaac tagaatatca agaggtggac 60 gagc 64 <210> 11 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> gutB1-R primer <400> 11 aagcttttat aaaagttccg gatcagac 28 <210> 12 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> mgutB-F primer <400> 12 atgtgatttt tgacgcggtc ggcaaccagc ttgattgg 38 <210> 13 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> mgutB-R primer <400> 13 ccaatcaagc tggttgccga ccgccgcgtc aaacacat 38 <210> 14 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> yajF-F primer <400> 14 ggtctagagt gcgtataggt atcgattt 28 <210> 15 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> yajF-R primer <400> 15 aagcttactc ttgtggccat aac 23 <210> 16 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> glpX-F primer <400> 16 catatgagac gagaacttgc catc 24 <210> 17 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> glpX-R primer <400> 17 ctcgagtcag aggatgtgca cctgcat 27 <110> Industry-University Cooperation Foundation Sunmoon University <120> Recombinant Microorganism Producing 1-Deoxynojirymicin and Method of Preparing 1-Deoxynojirymicin Using the Same <130> P17-B235 <160> 17 <170> KoPatentin 3.0 <210> 1 <211> 1269 <212> DNA <213> Bacillus amyloliquefaciens <400> 1 gtgggaacga aggaaatcac gaatccagac agcttgtatt acagtgttga cgatgtagta 60 atggagcgcg gagaagggat ttacctgtac gatcaagaag gtaatgagta tattgattgt 120 gcttctgcca cgtttaactt gaatttagga tacggtaaca aagaagtcat tgatacggtt 180 aaagatcaag ccgataagct gatccatgtg acatcgtcct ttcaaacaga cgccgtaaat 240 aaactagcag aaaaactagt cgaaatcgcc cccgataatc tcacaaaagt acaccctaaa 300 gtcagcagcg gttccggtgc gaatgaagga gctattaaaa tggctcagta ttactccggg 360 aaaaccgacg tcatctcctt atttcgaagc cacctcggac aaacctatat gacatccgct 420 ttgtccggca actcattcag aaaagaacct ttcccgccgc aaatctcttt tggcctacaa 480 gtacctgatc cctattgcag ccgctgtttt tataatcaga aacctgattc gtgcggtatg 540 ctgtgcgtag aaagaattaa tgattttatt gagtatgcga gcaatggaaa aattgccgcc 600 atgattattg aaccgatatc cggaaacgga ggaaacgtcg ttccgcctaa agagtatttt 660 aaacagctga gaaagctatg tgatgaacat gatatcgccc tgatctttga tgaaattcag 720 accgggttcg gacggacggg taaaatgttt gccgcggacc atttcgatgt gaaacccaat 780 atgatgaccg tagcaaaagg gctcgggggc acaggctttc aagttgccgc cactctgacg 840 gaggagaagt ataccggact tccgggatat acacattcct ttacgtacgg atctaatgtg 900 atggccgctg cagccgcgtg taaaaccata gatatcatgc agcgtccagg atttttggaa 960 aacgtaacga cggtcggaaa ttatattatg gaccgcttag aaacgatgaa agaggatttt 1020 gcttttattt ctgaagtaag aggcgtcggt ctgatgatcg gtgttgagat tgtcaaagag 1080 aacaatgaac ctgatgtgga gctgaccaat tatattgcca aacgggcgat ggattacgga 1140 ctgattctcc ggacatcccg ttacggattc ggaaatgtat ttaaaatccg tccgccttta 1200 accattacac ttagtgaagc tgaggtgctc tgctacagac ttcgcaagct attggaggaa 1260 atcaagtga 1269 <210> 2 <211> 951 <212> DNA <213> Bacillus amyloliquefaciens <400> 2 gtgagagact atatcattga gcttggacaa tatgtttatc aaaaggtgaa aaatcaaaaa 60 ggcacgctga aaaatcggct cgtaaacgga tattcccccg gaggcgatgc tcaatttaat 120 atagacgccg ctgctgagga ggcggtgctg gattatattc aagaaaaggg ccatccggtt 180 gctttttaca cggaggatgg cggcctcaag ctgattggag agaatccgca atatatttta 240 attgtagatc cgatagacgg aacgcgcccg gccgccgcgg gacttgaaat gtcatgtatt 300 tcgattgcgc ttgcttccta taagccaaac gcaagaatta aggatatcga atttgctttt 360 ttacttgaat tgaaatcagg cgcttatatg tacggtgata tttacagcga taccattcaa 420 tttgaagggt atcagggaga attgccgaat ttgagcggag tgcaggatat taaaaatatg 480 ttttggagcc ttgagtttaa cgggcatccg gcgcagctga tgacggacgc atacggccat 540 ttgattgacc agtcggccaa taacggcgga gtctttgttt tcaacagcgc ttcttattcg 600 atttcacgaa ttattacggg gcagatggat gcttatgtgg atatcggcaa tcgtctgctg 660 aaagatgatc cgaagctgct ttcagatttt cagcaggtcg ggaacggaca ggtgctgcac 720 ttatttcctt atgatattgc cgcgagcgtc tttttggcga agaaagcggg agtggtcatt 780 acggatgcgt acggccggtc tttagacgac acacttctga cagatttaag ttaccagaat 840 cagcaatcat gtatcgctgc atcaacgaag gagcttcatc agacattatt agaccaaatc 900 cgctggggca gaaaggaaga gagatatgaa ggcgttggtc tggactccta a 951 <210> 3 <211> 1047 <212> DNA <213> Bacillus amyloliquefaciens <400> 3 atgaaggcgt tggtctggac tcctaatgat aaactagaat atcaagaggt ggacgagcct 60 caaattcgaa aagccaatga tgtgaaggtg aaaattttcg gcaccggtat ctgcggcacg 120 gacttaaatg tgctgaaagg aaaaatgaat gcaacccatc atatgattat ggggcatgaa 180 tcggtgggag cggtcgtgga agtcgggccg gacgtgacaa atgtaaaagt cggagaccgc 240 gtcgtgatag atcccacaca gttttgcggg aaatgccatt attgccggag aggactgacg 300 tgttattgcg aaaccttcga ggaatggcag cttggaatcg gggcgcatgg gacgtttgcg 360 gaatattacg tgggggaaga tcggttcatg tacaaaattc cggattccat ggaatgggag 420 cgagccacgt tggttgaacc tctctcctgt gtgctgaacg ttgtggataa ggcttcgatt 480 cagccggagg attcggtttt ggttttgggt tccggaccga tcggactgct tgtgcaaatg 540 atggtgaaaa aactggcgcg tttgacggtc gcgactgaaa taggcagctt ccggagtgag 600 gcggcaagcc ggatatcgga ttatgtctac catcctgaag cgctaaccgt ggatgaagtg 660 aaacggatta atcaaggaag aaaatttgat gtgatttttg acgcgatcgg caaccagctt 720 gattgggctt atcctttcat tgaaaaggga ggcagaattg tgccgatggg ctttgatgat 780 acgtatgaga tgacggtaag gccgtaccag ctgctgtcaa acggcgtgac gattgtgggc 840 acaggtgaag cccggcagat catggaggct gcgttggcat gtgcgtccga ccttccgcag 900 ctctatgatt tcattactga aaagacggaa ctgaagaatt atgaagaagc cattgatcat 960 ctcatgggca tcgacccggt gacaaaagag agaaaggata tcagcgcgat aaaaaccatt 1020 ctcgtgtctg atccggaact tttataa 1047 <210> 4 <211> 909 <212> DNA <213> Escherichia coli <400> 4 gtgcgtatag gtatcgattt aggcggcacc aaaactgaag tgattgcact gggcgatgca 60 ggggagcagt tgtaccgcca tcgtctgccc acgccgcgtg atgattaccg gcagactatt 120 gaaacgatcg ccacgttggt tgatatggcg gagcaggcga cggggcagcg cggaacggta 180 ggtatgggca ttcctggctc aatttcgcct tacaccggtg tggtgaagaa tgccaattca 240 acctggctca acggtcagcc attcgataaa gacttaagcg cgaggttgca gcgggaagtg 300 cggctggcaa atgacgctaa ctgtctggcg gtttcagaag cagtagatgg cgcggcagcg 360 ggagcgcaga cggtatttgc cgtgattatc ggcacgggat gcggcgcggg cgtggcattc 420 aatgggcggg cgcatatcgg cggcaatggc acggcaggtg agtggggaca caatccgcta 480 ccgtggatgg acgaagacga actgcgttat cgcgaggaag tcccttgtta ttgcggtaaa 540 caaggttgta ttgaaacctt tatttcgggc acgggattcg cgatggatta tcgtcgtttg 600 agcggacatg cgctgaaagg cagtgaaatt atccgcctgg ttgaagaaag cgatccggta 660 gcggaactgg cattgcgtcg ctacgagctg cggctggcaa aatcgctggc acatgtcgtg 720 aatattctcg atccggatgt gattgtcctg gggggcggga tgagcaatgt agaccgttta 780 tatcaaacgg ttgggcagtt gattaaacaa tttgtcttcg gcggcgaatg tgaaacgccg 840 gtgcgtaagg cgaagcacgg tgattccagc ggcgtacgcg gcgctgcgtg gttatggcca 900 caagagtaa 909 <210> 5 <211> 1011 <212> DNA <213> Escherichia coli <400> 5 atgagacgag aacttgccat cgaattttcc cgcgtcaccg aatcagcggc gctggctggc 60 tacaaatggt taggacgcgg cgataaaaac accgcggacg gcgcggcggt aaacgccatg 120 cgtattatgc tcaaccaggt caacattgac ggcaccatcg tcattggtga aggtgaaatc 180 gacgaagcac cgatgctcta cattggtgaa aaagtcggta ctggtcgcgg cgacgcggta 240 gatattgctg ttgatccgat tgaaggcacg cgcatgacgg cgatgggcca ggctaacgcg 300 ctggcggtgc tggcagtagg cgataaaggc tgcttcctca atgcgccgga tatgtatatg 360 gagaagctga ttgtcgggcc gggagccaaa ggcaccattg atctgaacct gccgctggcg 420 gataacctgc gcaatgtagc ggcggcgctc ggcaaaccgt tgagcgaact gacggtaacg 480 attctggcta aaccacgcca cgatgccgtt atcgctgaaa tgcagcaact cggcgtacgc 540 gtatttgcta ttccggacgg cgacgttgcg gcctcaattc tcacctgtat gccagacagc 600 gaagttgacg tgctgtacgg tattggtggc gcgccggaag gcgtagtttc tgcggcggtg 660 atccgcgcat tagatggcga catgaacggt cgtctgctgg cgcgtcatga cgtcaaaggc 720 gacaacgaag agaatcgtcg cattggcgag caggagctgg cacgctgcaa agcgatgggc 780 atcgaagccg gtaaagtatt gcgcctgggc gatatggcgc gcagcgataa cgtcatcttc 840 tctgccaccg gtattaccaa aggcgatctg ctggaaggca ttagccgcaa aggcaatatc 900 gcgactaccg aaacgctgct gatccgcggc aagtcacgca ccattcgccg cattcagtcc 960 atccactatc tggatcgcaa agacccggaa atgcaggtgc acatcctctg a 1011 <210> 6 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> yktC1-F primer <400> 6 tctagaatga gagactatat cattgagc 28 <210> 7 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> yktC1-R primer <400> 7 aagcttttag gagtccagac caacgcct 28 <210> 8 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> gabT1-F primer <400> 8 tctagaatgg gaacgaagga aatcacga 28 <210> 9 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> gabT1-R primer <400> 9 aagctttcac ttgatttcct ccaatagc 28 <210> 10 <211> 64 <212> DNA <213> Artificial Sequence <220> <223> gutB1-F primer <400> 10 tctagaatga aggcgttggt ctggactcct aatgataaac tagaatatca agaggtggac 60 gagc 64 <210> 11 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> gutB1-R primer <400> 11 aagcttttat aaaagttccg gatcagac 28 <210> 12 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> mgutB-F primer <400> 12 atgtgatttt tgacgcggtc ggcaaccagc ttgattgg 38 <210> 13 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> mgTB-R primer <400> 13 ccaatcaagc tggttgccga ccgccgcgtc aaacacat 38 <210> 14 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> yajF-F primer <400> 14 ggtctagagt gcgtataggt atcgattt 28 <210> 15 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> yajF-R primer <400> 15 aagcttactc ttgtggccat aac 23 <210> 16 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> glpX-F primer <400> 16 catatgagac gagaacttgc catc 24 <210> 17 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> glpX-R primer <400> 17 ctcgagtcag aggatgtgca cctgcat 27
Claims (4)
A gene coding for 4-aminobutyrate transaminase, a gene encoding inositol or phosphatidylinositol phosphatase (I236V), a gene coding for inositol or phosphatidylinositol phosphatase, and a gene coding for 4-aminobutyrate transaminase in a microorganism having fructose-6-phosphate (F6P) A gene coding for an oxidoreductase having a mutation has been introduced and a gene coding for a fructokinase or a gene coding for a fructose-1,6-bisphosphatase A recombinant microorganism having the ability to produce 1-deoxynojirimycin in which a gene is introduced or amplified.
The recombinant microorganism of claim 1, wherein the microorganism comprises a gene encoding a fructokinase and a gene encoding fructose-1,6-bisphosphatase. microbe.
3. The method according to claim 1 or 2, wherein the gene coding for the fructokinase is represented by SEQ ID NO: 4, wherein the fructose-1,6-bisphosphatase (fructose-1,6- wherein the gene coding for bisphosphatase is SEQ ID NO: 5.
(a) 제1항의 재조합 미생물을 배양하여 1-데옥시노지리마이신을 생성시키는 단계; 및
(b) 상기 생성된 1-데옥시노지리마이신을 회수하는 단계.A process for preparing 1-deoxynojirimycin comprising the steps of:
(a) culturing the recombinant microorganism of claim 1 to produce 1-deoxynojirimycin; And
(b) recovering the produced 1-deoxynojirimycin.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020170133187A KR102009015B1 (en) | 2017-10-13 | 2017-10-13 | Recombinant Microorganism Producing 1-Deoxynojirimycin and Method of Preparing 1-Deoxynojirimycin Using the Same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020170133187A KR102009015B1 (en) | 2017-10-13 | 2017-10-13 | Recombinant Microorganism Producing 1-Deoxynojirimycin and Method of Preparing 1-Deoxynojirimycin Using the Same |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20190041680A true KR20190041680A (en) | 2019-04-23 |
KR102009015B1 KR102009015B1 (en) | 2019-08-08 |
Family
ID=66285409
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020170133187A KR102009015B1 (en) | 2017-10-13 | 2017-10-13 | Recombinant Microorganism Producing 1-Deoxynojirimycin and Method of Preparing 1-Deoxynojirimycin Using the Same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102009015B1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20040071953A (en) * | 2003-02-07 | 2004-08-16 | (주)바이오토피아 | Novel microorganism producing 1-deoxynojirimycin and its composition containing the same |
KR20070016253A (en) * | 2005-08-02 | 2007-02-08 | (주)바이오토피아 | 1-deoxynojirimycin-producing bacillus subtilis s10 strain and composition comprising same |
KR101087301B1 (en) * | 2010-09-03 | 2011-11-29 | (주)바이오토피아 | Genes which are related to deoxynojirimycin synthesis, vectors and transformnants containing the genes and method of producing deoxynojirimycin using thereof |
KR20120023513A (en) * | 2011-06-16 | 2012-03-13 | (주)바이오토피아 | Genes which are related to deoxynojirimycin synthesis, vectors and transformnants containing the genes and method of producing deoxynojirimycin using thereof |
-
2017
- 2017-10-13 KR KR1020170133187A patent/KR102009015B1/en active IP Right Grant
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20040071953A (en) * | 2003-02-07 | 2004-08-16 | (주)바이오토피아 | Novel microorganism producing 1-deoxynojirimycin and its composition containing the same |
KR20070016253A (en) * | 2005-08-02 | 2007-02-08 | (주)바이오토피아 | 1-deoxynojirimycin-producing bacillus subtilis s10 strain and composition comprising same |
KR101087301B1 (en) * | 2010-09-03 | 2011-11-29 | (주)바이오토피아 | Genes which are related to deoxynojirimycin synthesis, vectors and transformnants containing the genes and method of producing deoxynojirimycin using thereof |
KR20120023513A (en) * | 2011-06-16 | 2012-03-13 | (주)바이오토피아 | Genes which are related to deoxynojirimycin synthesis, vectors and transformnants containing the genes and method of producing deoxynojirimycin using thereof |
Non-Patent Citations (4)
Title |
---|
Scientific Reports (2015) 5:8563 * |
Tetrahedron (1992) 48(30):6285-6296 * |
The Journal of Microbiology (2011) 49(3):431-440 * |
차우드리 아밋 쿠마르, "선택한 미생물 대사 산물 생산을 위한 합성 생물학 방법의 구축과 응용 : 2-Deoxystreptamine, 1-deoxynojirimycin and doxorubicin", 박사학위논문, 선문대학교 (2014) * |
Also Published As
Publication number | Publication date |
---|---|
KR102009015B1 (en) | 2019-08-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102114493B1 (en) | Recombinant production of steviol glycosides | |
KR101802547B1 (en) | Recombinant Production of Steviol Glycosides | |
US8735129B2 (en) | Ginsenoside glycosidase derived from the genus Terrabacter, and use thereof | |
CN103168047B (en) | Relevant polypeptide and application thereof is synthesized to 1-DNJ | |
KR20210090218A (en) | Method of manufacturing high intensity sweetener | |
CN111051515B (en) | Use of bacterial type III polyketide synthases as phloroglucinol synthases | |
KR101808749B1 (en) | Production method of ginsenoside 20(S)-Rg3 and 20(S)-Rh2 using ginsenoside glycosidase | |
US8697409B2 (en) | Ketoreductase mutant | |
JP2023515250A (en) | Method for producing sulfated polysaccharide and method for producing PAPS | |
KR102009015B1 (en) | Recombinant Microorganism Producing 1-Deoxynojirimycin and Method of Preparing 1-Deoxynojirimycin Using the Same | |
CN113493756A (en) | Genetically engineered bacterium and application thereof | |
CN109628476B (en) | Method for producing 4-hydroxyisoleucine by using whole cell transformation | |
CN108441503B (en) | Dicamba intermediate product 3, 6-dichloro-gentisic acid dechlorination enzyme DsmH2 and application of encoding gene thereof | |
CN113444758B (en) | Method for preparing dibekacin by using combined biosynthesis technology | |
KR20020029767A (en) | Cyclic depsipeptide synthases, genes thereof and mass production system of cyclic depsipeptide | |
JP2024528104A (en) | Highly specific glycosyltransferase for rhamnose and its application | |
JP2007097536A (en) | Method for producing natto containing pinitol highly and natto deleted with pinitol-decomposing activity | |
CN110184250B (en) | Flavone glycosyltransferase protein, and coding gene and application thereof | |
KR101718508B1 (en) | Recombinat Bacillus subtilis Having Metabolic Engineered Biosynthesis Pathway of 2-Deoxy-scyllo-inosose and Method for Preparing 2-Deoxy-scyllo-inosose Using Thereof | |
KR20020064788A (en) | Transformant producing secondary metabolite modified with functional group and novel biosynthesis genes | |
KR100853891B1 (en) | Transformant producing pf1022 substance derivatives, process for producing the same and novel biosynthesis gene | |
KR20130055224A (en) | NOVEL β-GLYCOSIDASE PROTEIN AND USE THEREOF | |
KR101551899B1 (en) | Method for Preparing Astragalin from Naringenin Using Microorganism Mutants | |
EP1291417B1 (en) | Novel (r)-2-hydroxy-3-phenylpropionate (d-phenyllactate) dehydrogenase and gene encoding the same | |
CN110218711B (en) | Enzyme protein and coding gene and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right |