KR20190038421A - 객체 분석 시스템 및 방법 - Google Patents

객체 분석 시스템 및 방법 Download PDF

Info

Publication number
KR20190038421A
KR20190038421A KR1020180115925A KR20180115925A KR20190038421A KR 20190038421 A KR20190038421 A KR 20190038421A KR 1020180115925 A KR1020180115925 A KR 1020180115925A KR 20180115925 A KR20180115925 A KR 20180115925A KR 20190038421 A KR20190038421 A KR 20190038421A
Authority
KR
South Korea
Prior art keywords
substrate material
gamma
reactive particles
emitter
wall
Prior art date
Application number
KR1020180115925A
Other languages
English (en)
Other versions
KR102630584B1 (ko
Inventor
대그 혼
카시미르 스토에브
Original Assignee
아토믹 에너지 오브 캐나다 리미티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 아토믹 에너지 오브 캐나다 리미티드 filed Critical 아토믹 에너지 오브 캐나다 리미티드
Publication of KR20190038421A publication Critical patent/KR20190038421A/ko
Application granted granted Critical
Publication of KR102630584B1 publication Critical patent/KR102630584B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C17/00Monitoring; Testing ; Maintaining
    • G21C17/017Inspection or maintenance of pipe-lines or tubes in nuclear installations
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C16/00Alloys based on zirconium
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/221Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material by activation analysis
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21GCONVERSION OF CHEMICAL ELEMENTS; RADIOACTIVE SOURCES
    • G21G4/00Radioactive sources
    • G21G4/04Radioactive sources other than neutron sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Measurement Of Radiation (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

원자로용 압력관의 벽을 검정하기 위한 방법이 개시된다. 벽은 기질 물질 및 기질 물질에 중수소 핵들을 갖는다. 상기 방법은: (a) 중수소 핵들의 적어도 일부의 광분해를 유도하기 위해 기질 물질로 감마선을 투사하는 단계로서, 이에 의해 핵들의 반응 입자들이 벽으로부터 방출되는, 감마선을 투사하는 단계; (b) 입자 검출기를 사용하여 단계 (a)에서 방출된 반응 입자들의 적어도 일부를 검출하는 단계; 및 (c) 단계 (b)에서 입자들을 검출하는 것에 반응하여 입자 신호들을 발생시키는 단계를 포함한다.

Description

객체 검정 시스템 및 방법{SYSTEMS AND METHODS FOR ASSAYING AN OBJECT}
관련 출원 상호 참조
본 출원은 2017년 9월 29일자로 출원된 객체 검정 시스템 및 방법(Systems and Methods for Assaying an Object)이라는 명칭의 동시 계류중인 미국 가 출원 번호 62/256,632의 혜택을 주장하며, 그 전체 내용은 본원에 참조로 통합된다.
기술분야
본 발명은 객체의 검정과 관련된 하나 이상의 시스템 및 방법에 관한 것이다. 더 구체적으로, 본 발명은 객체 내 중수소의 농도를 결정하기 위한, 원자로용 압력관의 벽과 같은 객체의 비파괴 검정에 관한 것이다.
미국 특허 번호 4,925,621(Muth 등)은 특히 중수소 분석을 위해 현장 원자로의 압력관들로부터 샘플들을 취하기 위한 방법에 관한 것이고, 원자로에서 압력관을 제거하지 않고 중수소 분석을 위한 CANDU 유형 원자로의 압력관의 샘플을 얻기 위한 샘플링 도구를 개시한다. 바람직한 샘플링 도구는 두 개의 커터 및 제거된 재료를 잡기 위한 수단을 포함하되, 하나의 커터는 표면 산화층을 제거하고, 두 번째 커터는 분석을 위해 샘플을 제거한다. 커터들 및 커팅 작업은 압력관의 온전함을 손상시키지 않도록 하여 압력관이 가동 상태를 유지하도록 설계된다. 바람직한 실시 예에서, 샘플링 도구는 간단한 선형 움직임으로 급유 장비로 표면 및 샘플 제거 작업을 수행한다.
미국 특허 번호 7,563,022(Tashiro 등)는 원자로 압력관들과 같이, 수소화물을 형성할 수 있는 재료들의 말단 고용해 온도를 결정하기 위한 장치 및 방법을 개시한다. 검사 장치는 테스트 중인 원자로 압력관 내에 위치하고 한 쌍의 환형 씰이 방사상으로 배치되어 압력관의 한 섹션을 밀봉한다. 밀봉된 섹션 내의 모든 물은 가스의 주입 및 밀봉된 섹션의 가열을 통해 관 및 장치를 건조시키기 위해 옮겨진다. 장치 상의 프로브 어셈블리는 압력관의 내부 표면과 접촉하여 온도의 함수로서 압력관 벽의 저항률 변화를 측정하도록 배치된다. 프로브 어셈블리는 온도를 측정하기 위한 열전쌍 프로브 및 압력관 벽 내에 와전류를 유도하기 위한 송수신 코일들을 포함한다. 압력관은 소정의 속도로 냉각되고, 소정의 속도로 재가열되며, 다시 냉각된다. 저항률의 온도 계수 내의 불연속은 석출 또는 용해의 말단 고용해 온도를 나타내며, 이는 원자로 압력관의 밀봉된 섹션의 수소 농도를 결정하는 데 사용될 수 있다.
다음의 발명의 내용은 독자에게 본 출원인의 교시 내용의 다양한 측면을 소개하기 위한 것이지 발명을 정의하는 것은 아니다.
일부 측면에 따르면, 원자로용 압력관의 벽을 검정하기 위한 방법이 개시된다. 상기 벽은 기질 물질 및 상기 기질 물질에 중수소 핵들을 갖는다. 상기 방법은: (a) 상기 중수소 핵들의 적어도 일부의 광분해를 유도하기 위해 상기 기질 물질로 감마선을 투사하는 단계로서, 이에 의해 상기 핵들의 반응 입자들이 상기 벽으로부터 방출되는, 상기 감마선을 투사하는 단계; (b) 입자 검출기를 사용하여 단계 (a)에서 방출된 상기 반응 입자들의 적어도 일부를 검출하는 단계; 및 (c) 단계 (b)에서 상기 입자들을 검출하는 것에 반응하여 입자 신호들을 발생시키는 단계를 포함한다.
일부 예에서, 상기 방법은 상기 입자 신호들에 적어도 부분적으로 기초하여 상기 벽의 속성을 결정하는 단계를 더 포함한다. 일부 예에서, 상기 속성은 상기 기질 물질 내 상기 중수소 핵들의 농도를 포함한다. 일부 예에서, 상기 입자 신호들은 단계 (b)에서 검출된 상기 반응 입자들의 수를 나타낸다. 일부 예에서, 상기 속성을 결정하는 단계는 단계 (b)에서 검출된 상기 반응 입자들의 수를 소정의 기준값과 비교하는 단계를 포함한다.
일부 예에서, 상기 기질 물질은 지르코늄 합금을 포함한다. 일부 예에서, 상기 지르코늄 합금은 지르칼로이-2 및 Zr-2.5Nb 중 적어도 하나를 포함한다.
일부 예에서, 상기 방법은 단계 (a) 이전에, n-감마 반응을 유도하기 위해 n-감마 방사체에 중성자 선속을 가하는 단계를 더 포함하며, 이에 의해 단계 (a)에서 투사된 상기 감마선이 상기 방사체로부터 방출된다. 일부 예에서, 상기 방법은 단계 (a) 이전에 상기 방사체를 상기 벽에 근접하게 위치시키는 단계를 더 포함한다. 일부 예에서, 상기 중성자 선속은 열 중성자 선속을 포함한다. 일부 예에서, 상기 방사체는 2 barn 이상의 열 중성자 단면을 포함한다. 일부 예에서, 상기 방사체는 니켈을 포함한다. 일부 예에서, 상기 방사체는 니켈-58을 포함한다.
일부 예에서, 상기 방법은 단계 (a) 이전에, 상기 방사체를 상기 원자로의 노심 내에 위치시키는 단계를 더 포함하되, 상기 중성자 선속은 상기 노심의 주변 열 중성자 선속을 포함한다.
일부 예에서, 상기 압력관은 적어도 단계 (a) 내지 단계 (b)가 수행되는 동안 상기 원자로의 노심 내 원 위치에 있다.
일부 예에서, 단계 (a)에서 투사되는 상기 감마선은 7.5 MeV 이상의 에너지를 갖는다.
일부 예에서, 상기 반응 입자들은 양성자들을 포함한다. 일부 예에서, 상기 양성자들은 방출시 약 1 MeV 내지 약 3 MeV의 에너지를 갖는다.
일부 예에서, 단계 (a)는 상기 벽의 제1 표면을 통해 상기 기질 물질로 상기 감마선을 투사하는 단계를 포함하고, 단계 (b)는 상기 검출기를 상기 제1 표면에 근접하게 위치시키는 단계 및 상기 제1 표면으로부터 방출되는 상기 반응 입자들의 적어도 일부를 검출하는 단계를 포함한다.
일부 예에서, 단계 (a)는 상기 벽의 제1 표면을 통해 상기 기질 물질로 상기 감마선을 투사하는 단계를 포함하고, 단계 (b)는 상기 검출기를 상기 제1 표면에서 이격된 상기 벽의 제2 표면에 근접하게 위치시키는 단계 및 상기 제2 표면으로부터 방출되는 상기 반응 입자들의 적어도 일부를 검출하는 단계를 포함한다.
일부 예에서, 상기 제1 표면은 상기 압력관의 내부 표면을 포함한다.
일부 예에서, 상기 원자로는 가압 중수로 원자로(pressurized heavy-water reactor)를 포함한다.
일부 측면에 따르면, 원자로용 압력관의 벽을 검정하기 위한 시스템이 개시된다. 상기 벽은 기질 물질 및 상기 기질 물질에 중수소 핵들을 갖는다. 상기 시스템은: (a) 상기 벽에 근접하게 위치할 수 있는 이동식 n-감마 방사체를 포함한다. 상기 방사체는 중성자 선속을 받을 때 n-감마 반응을 통해 감마선을 방출하도록, 그리고 상기 중수소 핵들의 광분해를 유도하기 위해 상기 기질 물질로 상기 감마선을 투사하며, 이에 의해 상기 핵들의 반응 입자들이 상기 벽으로부터 방출되도록 구성된다. 상기 시스템은: (b) 상기 벽에 근접하게 위치할 수 있는 이동식 입자 검출기를 더 포함한다. 상기 검출기는 상기 벽으로부터 방출되는 상기 반응 입자들의 적어도 일부를 검출하도록, 그리고 상기 반응 입자들의 검출에 반응하여 입자 신호들을 생성하도록 구성된다.
일부 예에서, 상기 기질 물질은 지르코늄 합금을 포함한다. 일부 예에서, 상기 지르코늄 합금은 지르칼로이-2 및 Zr-2.5Nb 중 적어도 하나를 포함한다.
일부 예에서, 상기 중성자 선속은 열 중성자 선속을 포함한다. 일부 예에서, 상기 방사체는 2 barn 이상의 열 중성자 단면을 포함한다. 일부 예에서, 상기 방사체는 니켈을 포함한다. 일부 예에서, 상기 방사체는 니켈-58을 포함한다. 일부 예에서, 상기 중성자 선속은 상기 원자로의 노심의 주변 열 중성자 선속을 포함한다.
일부 예에서, 상기 방사체는 7.5 MeV 이상 에너지의 상기 감마선을 방출하도록 구성된다.
일부 예에서, 상기 반응 입자들은 양성자들을 포함한다. 일부 예에서, 상기 양성자들은 방출시 약 1 MeV 내지 약 3 MeV의 에너지를 갖는다.
일부 예에서, 상기 검출기는 양성자들의 상기 양성자 선속 방향으로 층 두께를 갖는 능동형 검출기 층을 포함하고, 상기 층은 대략 상기 능동형 검출기 층을 통한 상기 반응 입자들의 침투 거리 이하이다. 일부 예에서, 상기 검출기 층은 실리콘을 포함하고 상기 층 두께는 대략 60 미크론 이하이다.
일부 예에서, 상기 방사체는 상기 제1 표면을 통해 상기 기질 물질로 상기 감마선을 투사하기 위해 상기 벽의 상기 제1 표면에 인접하게 위치할 수 있고, 상기 검출기는 상기 제1 표면으로부터 방출되는 상기 반응 입자들의 적어도 일부를 검출하기 위해 상기 제1 표면에 인접하게 위치할 수 있다.
일부 예에서, 상기 방사체는 상기 제1 표면을 통해 상기 기질 물질로 상기 감마선을 투사하기 위해 상기 벽의 상기 제1 표면에 인접하게 위치할 수 있고, 상기 검출기는 제2 표면으로부터 방출되는 상기 반응 입자들의 적어도 일부를 검출하기 위해 상기 제1 표면에서 이격된 상기 벽의 상기 제2 표면에 인접하게 위치할 수 있다.
일부 예에서, 상기 시스템은 상기 입자 신호들에 기초하여 상기 벽의 속성을 결정하도록 구성된 프로세서를 더 포함한다. 일부 예에서, 상기 속성은 상기 기질 물질 내 상기 중수소 핵들의 농도를 포함한다. 일부 예에서, 상기 입자 신호들은 상기 입자 검출기에 의해 검출된 상기 반응 입자들의 수를 나타낸다. 일부 예에서, 상기 프로세서는 상기 입자 검출기에 의해 검출된 상기 반응 입자들의 수를 소정의 기준값과 비교함으로써 상기 속성을 결정하도록 구성된다.
일부 예에서, 상기 방사체는 상기 벽의 내부 표면에 인접하게 위치할 수 있다. 일부 예에서, 상기 검출기는 상기 벽의 내부 표면에 인접하게 위치할 수 있다.
일부 측면에 따르면, n-감마 방사체가 원자로 노심 내 원 위치에서 압력관의 벽에서의 중수소 핵들의 광분해를 유도하기 위한 용도로 사용된다. 일부 예에서, 상기 노심은 가압 중수로 노심을 포함한다.
일부 측면에 따르면, 기질 물질 및 상기 기질 물질에 타겟 핵들을 갖는 객체를 검정하기 위한 방법이 개시된다. 상기 방법은: (a) n-감마 반응을 유도하기 위해 n-감마 방사체에 중성자 선속을 가하는 단계; (b) 상기 타겟 핵들의 적어도 일부의 광분해를 유도하기 위해 상기 기질 물질로 단계 (a)에서 상기 방사체로부터 방출된 상기 감마선을 투사하는 단계로서, 이에 의해 상기 핵들의 반응 입자들이 상기 객체로부터 방출되는, 상기 감마선을 투사하는 단계; (c) 입자 검출기를 사용하여 단계 (b)에서 상기 객체로부터 방출된 상기 반응 입자들의 적어도 일부를 검출하는 단계; 및 (d) 단계 (c)에서 상기 입자들을 검출하는 것에 반응하여 입자 신호들을 발생시키는 단계를 포함한다.
일부 예에서, 상기 방법은 상기 입자 신호들에 적어도 부분적으로 기초하여 상기 객체의 속성을 결정하는 단계를 더 포함한다. 일부 예에서, 상기 속성은 상기 기질 물질 내 상기 타겟 핵들의 농도를 포함한다. 일부 예에서, 상기 입자 신호들은 단계 (c)에서 검출된 상기 반응 입자들의 수를 나타낸다. 일부 예에서, 상기 속성을 결정하는 단계는 단계 (c)에서 검출된 상기 반응 입자들의 수를 소정의 기준값과 비교하는 단계를 포함한다.
일부 예에서, 상기 타겟 핵들은 중수소 핵들을 포함한다.
일부 예에서, 상기 기질 물질은 금속을 포함한다. 일부 예에서, 상기 기질 물질은 지르코늄 합금을 포함한다. 일부 예에서, 상기 지르코늄 합금은 지르칼로이-2 및 Zr-2.5Nb 중 적어도 하나를 포함한다.
일부 예에서, 상기 중성자 선속은 열 중성자 선속을 포함한다.
일부 예에서, 상기 방사체는 2 barn 이상의 열 중성자 단면을 포함한다. 일부 예에서, 상기 방사체는 니켈을 포함한다. 일부 예에서, 상기 방사체는 니켈-58을 포함한다.
일부 예에서, 단계 (a)에서 방출되는 상기 감마선은 7.5 MeV 이상의 에너지를 갖는다.
일부 예에서, 상기 광분해는 감마-p 반응을 포함하고, 상기 반응 입자들은 양성자들을 포함한다.
일부 예에서, 상기 양성자들은 방출시 약 1 MeV 내지 약 3 MeV의 에너지를 갖는다.
일부 예에서, 상기 방법은 단계 (a) 이전에, 상기 객체의 제1 표면에 인접하게 상기 방사체를 위치시키는 단계, 그리고 단계 (b)에, 상기 제1 표면을 통해 상기 기질 물질로 상기 감마선을 투사하는 단계를 포함하고, 그리고 단계 (c)에, 상기 검출기를 상기 제1 표면에 근접하게 위치시키는 단계 및 상기 제1 표면으로부터 방출되는 상기 반응 입자들의 적어도 일부를 검출하는 단계를 더 포함한다.
일부 예에서, 상기 방법은 단계 (a) 이전에, 상기 객체의 제1 표면에 인접하게 상기 방사체를 위치시키는 단계, 그리고 단계 (b)에, 상기 제1 표면을 통해 상기 기질 물질로 상기 감마선을 투사하는 단계를 포함하고, 그리고 단계 (c)에, 상기 입자 검출기를 상기 제1 표면에서 이격된 상기 객체의 제2 표면에 근접하게 위치시키는 단계 및 상기 제2 표면으로부터 방출되는 입자들의 적어도 일부를 검출하는 단계를 더 포함한다.
일부 예에서, 상기 객체는 원자로용 압력관의 벽을 포함한다. 일부 예에서, 상기 압력관은 적어도 단계 (a) 내지 단계 (c)가 수행되는 동안 상기 원자로의 노심 내 원 위치에 있다. 일부 예에서, 상기 방법은 상기 방사체를 상기 노심 내에 위치시키는 단계를 더 포함하되, 상기 중성자 선속은 상기 노심의 주변 열 중성자 선속을 포함한다.
일부 측면에 따르면, 기질 물질 및 상기 기질 물질에 중성자 핵들을 갖는 객체를 검정하기 위한 방법이 개시된다. 상기 방법은: (a) 상기 중수소 핵들의 적어도 일부의 광분해를 유도하기 위해 상기 기질 물질로 감마선을 투사하는 단계로서, 이에 의해 상기 중수소 핵들의 양성자들이 상기 객체로부터 방출되는, 상기 감마선을 투사하는 단계; (b) 입자 검출기를 사용하여 단계 (a)에서 상기 객체로부터 방출된 상기 양성자자들의 적어도 일부를 검출하는 단계; 및 (c) 단계 (b)에서 상기 양성자들을 검출하는 것에 반응하여 입자 신호들을 발생시키는 단계를 포함한다.
일부 예에서, 상기 방법은 상기 입자 신호들에 적어도 부분적으로 기초하여 상기 객체의 속성을 결정하는 단계를 더 포함한다. 일부 예에서, 상기 속성은 상기 기질 물질 내 상기 중수소 핵들의 농도를 포함한다. 일부 예에서, 상기 입자 신호들은 단계 (b)에서 검출된 상기 양성자들의 수를 나타낸다. 일부 예에서, 상기 속성을 결정하는 단계는 단계 (b)에서 검출된 상기 양성자들의 수를 소정의 기준값과 비교하는 단계를 포함한다.
일부 예에서, 상기 기질 물질은 금속을 포함한다. 일부 예에서, 상기 기질 물질은 지르코늄 합금을 포함한다. 일부 예에서, 상기 지르코늄 합금은 지르칼로이-2 및 Zr-2.5Nb 중 적어도 하나를 포함한다.
일부 예에서, 상기 방법은 단계 (a) 이전에, n-감마 반응을 유도하기 위해 n-감마 방사체에 중성자 선속을 가하는 단계를 더 포함하며, 이에 의해 단계 (a)에서 투사된 상기 감마선이 상기 방사체로부터 방출된다.
일부 예에서, 상기 중성자 선속은 열 중성자 선속을 포함한다.
일부 예에서, 상기 방사체는 2 barn 이상의 열 중성자 단면을 포함한다.
일부 예에서, 상기 방사체는 니켈을 포함한다. 일부 예에서, 상기 방사체는 니켈-58을 포함한다.
일부 예에서, 단계 (a)에서 투사되는 상기 감마선은 7.5 MeV 이상의 에너지를 갖는다.
일부 예에서, 상기 양성자들은 방출시 약 1 MeV 내지 약 3 MeV의 에너지를 갖는다.
일부 예에서, 단계 (a)는 상기 객체의 제1 표면을 통해 상기 기질 물질로 상기 감마선을 투사하는 단계를 포함하고, 단계 (b)는 상기 검출기를 상기 제1 표면에 근접하게 위치시키는 단계 및 상기 제1 표면으로부터 방출되는 상기 양성자들의 적어도 일부를 검출하는 단계를 포함한다.
일부 예에서, 단계 (a)는 상기 객체의 제1 표면을 통해 상기 기질 물질로 상기 감마선을 투사하는 단계를 포함하고, 단계 (b)는 상기 검출기를 상기 제1 표면에서 이격된 상기 객체의 제2 표면에 근접하게 위치시키는 단계 및 상기 제2 표면으로부터 방출되는 상기 양성자들의 적어도 일부를 검출하는 단계를 포함한다.
일부 예에서, 상기 객체는 원자로용 압력관의 벽을 포함한다. 일부 예에서, 상기 압력관은 적어도 단계 (a) 내지 단계 (b)가 수행되는 동안 상기 원자로의 노심 내 원 위치에 있다.
일부 측면에 따르면, 금속성 기질 물질 및 상기 기질 물질에 타겟 핵들을 갖는 객체를 검정하기 위한 방법이 개시된다. 상기 방법은: (a) 상기 타겟 핵들의 적어도 일부의 광분해를 유도하기 위해 상기 금속성 기질 물질로 감마선을 투사하는 단계로서, 이에 의해 상기 핵들의 반응 입자들이 상기 객체로부터 방출되는, 상기 감마선을 투사하는 단계; 및 (b) 반응 입자 검출기를 사용하여 단계 (a)에서 상기 객체로부터 방출된 상기 반응 입자들의 적어도 일부를 검출하는 단계; 및 (c) 단계 (b)에서 상기 입자들을 검출하는 것에 반응하여 입자 신호들을 발생시키는 단계를 포함한다.
일부 예에서, 상기 방법은 상기 입자 신호들에 적어도 부분적으로 기초하여 상기 객체의 속성을 결정하는 단계를 더 포함한다. 일부 예에서, 상기 속성은 상기 기질 물질 내 상기 타겟 핵들의 농도를 포함한다. 일부 예에서, 상기 입자 신호들은 단계 (b)에서 검출된 상기 반응 입자들의 수를 나타낸다. 일부 예에서, 상기 속성을 결정하는 단계는 단계 (b)에서 검출된 상기 반응 입자들의 수를 소정의 기준값과 비교하는 단계를 포함한다.
일부 예에서, 상기 타겟 핵들은 중수소 핵들을 포함한다.
일부 예에서, 상기 기질 물질은 지르코늄 합금을 포함한다. 일부 예에서, 상기 지르코늄 합금은 지르칼로이-2 및 Zr-2.5Nb 중 적어도 하나를 포함한다.
일부 예에서, 상기 방법은 단계 (a) 이전에, n-감마 반응을 유도하기 위해 n-감마 방사체에 중성자 선속을 가하는 단계를 더 포함하며, 이에 의해 단계 (a)에서 투사된 상기 감마선이 상기 방사체로부터 방출된다.
일부 예에서, 상기 중성자 선속은 열 중성자 선속을 포함한다.
일부 예에서, 상기 방사체는 2 barn 이상의 열 중성자 단면을 포함한다. 일부 예에서, 상기 방사체는 니켈을 포함한다. 일부 예에서, 상기 방사체는 니켈-58을 포함한다.
일부 예에서, 단계 (a)에서 투사되는 상기 감마선은 7.5 MeV 이상의 에너지를 갖는다.
일부 예에서, 상기 광분해는 감마-p 반응을 포함하고, 상기 반응 입자들은 양성자들을 포함한다. 일부 예에서, 상기 양성자들은 방출시 약 1 MeV 내지 약 3 MeV의 에너지를 갖는다.
일부 예에서, 단계 (a)는 상기 객체의 제1 표면을 통해 상기 금속성 기질 물질로 상기 감마선을 투사하는 단계를 포함하고, 단계 (b)는 상기 검출기를 상기 제1 표면에 근접하게 위치시키는 단계 및 상기 제1 표면으로부터 방출되는 상기 반응 입자들의 적어도 일부를 검출하는 단계를 포함한다.
일부 예에서, 단계 (a)는 상기 객체의 제1 표면을 통해 상기 금속성 기질 물질로 상기 감마선을 투사하는 단계를 포함하고, 단계 (b)는 상기 검출기를 상기 제1 표면에서 이격된 상기 객체의 제2 표면에 근접하게 위치시키는 단계 및 상기 제2 표면으로부터 방출되는 상기 반응 입자들의 적어도 일부를 검출하는 단계를 포함한다.
일부 예에서, 상기 객체는 원자로용 압력관의 벽을 포함한다. 일부 예에서, 상기 압력관은 적어도 단계 (a) 내지 단계 (b)가 수행되는 동안 상기 원자로의 노심 내 원 위치에 있다.
일부 측면에 따르면, 기질 물질 및 상기 기질 물질에 타겟 핵들을 갖는 객체를 검정하기 위한 시스템이 개시된다. 상기 시스템은: (a) 중성자 선속을 받을 때 n-감마 반응을 통해 감마선을 방출하도록, 그리고 상기 타겟 핵들의 적어도 일부의 광분해를 유도하기 위해 상기 기질 물질로 상기 감마선을 투사하며, 이에 의해 상기 핵들의 반응 입자들이 상기 객체로부터 방출되도록 구성되는 n-감마 방사체; 및 (b) 상기 객체로부터 방출되는 상기 반응 입자들의 적어도 일부를 검출하도록, 그리고 상기 입자들의 검출에 반응하여 입자 신호들을 생성하도록 구성되는 입자 검출기를 포함한다.
일부 예에서, 상기 타겟 핵들은 중수소 핵들을 포함한다.
일부 예에서, 상기 기질 물질은 금속을 포함한다. 일부 예에서, 상기 기질 물질은 지르코늄 합금을 포함한다. 일부 예에서, 상기 지르코늄 합금은 지르칼로이-2 및 Zr-2.5Nb 중 적어도 하나를 포함한다.
일부 예에서, 상기 중성자 선속은 열 중성자 선속을 포함한다. 일부 예에서, 상기 방사체는 2 barn 이상의 열 중성자 단면을 포함한다. 일부 예에서, 상기 방사체는 니켈을 포함한다. 일부 예에서, 상기 방사체는 니켈-58을 포함한다. 일부 예에서, 상기 방사체는 7.5 MeV 이상 에너지의 상기 감마선을 방출하도록 구성된다.
일부 예에서, 상기 광분해는 감마-p 반응을 포함하고, 상기 반응 입자들은 양성자들을 포함한다. 일부 예에서, 상기 양성자들은 방출시 약 1 MeV 내지 약 3 MeV의 에너지를 갖는다.
일부 예에서, 상기 검출기는 반응 입자들의 상기 반응 입자 선속 방향으로 층 두께를 갖는 능동형 검출기 층을 포함하고, 상기 층은 대략 상기 능동형 검출기 층을 통한 상기 반응 입자들의 침투 거리 이하이다. 일부 예에서, 상기 능동형 검출기 층은 실리콘을 포함하고 상기 층 두께는 대략 60 미크론 이하이다.
일부 예에서, 상기 방사체는 상기 제1 표면을 통해 상기 기질 물질로 상기 감마선을 투사하기 위해 상기 객체의 상기 제1 표면에 근접하게 위치할 수 있고, 상기 검출기는 상기 제1 표면으로부터 방출되는 상기 반응 입자들의 적어도 일부를 검출하기 위해 상기 제1 표면에 근접하게 위치할 수 있다.
일부 예에서, 상기 방사체는 상기 제1 표면을 통해 상기 기질 물질로 상기 감마선을 투사하기 위해 상기 객체의 상기 제1 표면에 근접하게 위치할 수 있고, 상기 검출기는 제2 표면으로부터 방출되는 상기 반응 입자들의 적어도 일부를 검출하기 위해 상기 제1 표면에서 이격된 상기 객체의 상기 제2 표면에 근접하게 위치할 수 있다.
일부 예에서, 상기 시스템은 상기 입자 신호들에 기초하여 상기 객체의 속성을 결정하도록 구성된 프로세서를 더 포함한다. 일부 예에서, 상기 속성은 상기 기질 물질 내 상기 타겟 핵들의 농도를 포함한다. 일부 예에서, 상기 입자 신호들은 상기 입자 검출기에 의해 검출된 상기 반응 입자들의 수를 나타낸다. 일부 예에서, 상기 프로세서는 또한 상기 입자 검출기에 의해 검출된 상기 반응 입자들의 수를 소정의 기준값과 비교함으로써 상기 속성을 결정하도록 구성된다.
일부 예에서, 상기 시스템은 상기 중성자 선속을 만들어 내기 위한 중성자를 더 포함한다.
일부 예에서, 상기 객체는 원자로용 압력관의 벽을 포함하고, 상기 방사체 및 검출기는 상기 원자로의 노심 내 원 위치에서 상기 벽을 검정하도록 구성된다. 일부 예에서, 상기 중성자 선속은 상기 의 주변 열 중성자 선속을 포함한다.
본원에 포함된 도면들은 본 명세서의 물품들, 방법들 및 장치들의 다양한 예를 예시하기 위한 것이며 어떠한 방법으로도 교시된 내용의 범위를 제한하려는 것이 아니다. 도면들에서:
도 1은 원자로용 압력관의 벽에 인접하게 위치된, 객체를 검정하기위한 예시적인 시스템의 개략도이다;
도 2는 원 위치에 도시된 도 1의 압력관을 갖는 예시적인 원자로의 개략도이다;
도 3은 도 1의 시스템과 같은 시스템을 사용하여, 도 1의 압력관과 같은 객체를 분석하기 위한 예시적인 방법의 흐름도이다;
도 4는 양성자 에너지의 함수로서 중수소가 든 지르코늄 샘플과 배경에 대한 스펙트럼들 간 차이를 도시하는 차트이며, 그 위에 양성자 수율에 대한 컴퓨터 시뮬레이션이 축척으로 그려지고 중첩된다;
도 5는 고진공 추출 질량 분석법(HVEMS, hot vacuum extraction mass spectrometry)으로부터의 상대적인 양성자 수율을 중수소 농도의 함수로서 도시하는 차트이다;
도 6은 객체를 검정하기 위한 다른 예시적인 시스템의 부분들의 개략도이다;
도 7은 객체를 검정하기 위한 다른 예시적인 시스템의 부분들의 개략도이다;
도 8은 객체를 검정하기 위한 다른 예시적인 시스템의 부분들의 개략도이다;
도 9는 도 8의 시스템과 같은 시스템의 동시 검출율(coincidence detection rate) 및 단일 검출율(singles detection rate)을 양성자 에너지의 함수로서 도시하는 차트이다;
도 10은 도 1의 시스템과 같은 시스템을 위한 예시적인 검출기의 개략도이다;
도 11은 도 10의 검출기와 같은 검출기를 테스트하기 위한 실험 시스템의 다양한 모습을 도시한다;
도 12는 도 11의 시스템을 사용하는 실험 테스트와 관련된 단일 및 다양한 동시 계수율(coincidence count rate)에 대한 배경이 분리된 스펙트럼들을 도시하는 차트이다;
도 13은 도 11의 시스템을 사용하여 테스트되는 중수소가 든 샘플과 관련된 계수율들을 결정하기 위해 사용된 대안적인 분석의 결과들을 도시하는 차트이다;
도 14는 도 11의 시스템을 사용하여 테스트되는 중수소가 없는 샘플과 관련된 계수율들을 결정하기 위해 사용된 대안적인 분석의 결과들을 도시하는 차트이다;
도 15는 총 방출된 양성자 에너지를 파선으로 도시하고, 얇은 25 미크론 다이아몬드 검출기에 침적되는 에너지를 점선으로 도시하며, 그러한 데이터의 일치 부분 집합을 실선으로 도시하여 시뮬레이션된 에너지 스펙트럼들을 도시하는 차트이다; 그리고
그림 16은 동시 이벤트들에 대해 도 15를 기반으로 넓어진 시뮬레이션 스펙트럼(굵은 선으로 도시), 그리고 83 ppm 중수소가 든 것에 대해 축적으로 그려진 단일률을 초과하여 측정된 동시율들(얇은 선으로 도시)을 도시한 차트이다.
이하, 각 청구된 발명의 실시 예의 예를 제공하기 위해 다양한 장치 또는 프로세스가 설명될 것이다. 이하에 설명되는 실시 예는 어떠한 청구된 발명도 제한하지 않으며 청구된 발명은 아래에서 설명되는 프로세스들 또는 장치들과 상이한 프로세스들 또는 장치들을 커버할 수 있다. 청구된 발명들은 이하에서 설명되는 임의의 하나의 장치 또는 프로세스의 모든 특징을 갖는 장치들 또는 프로세스들에 또는 이하에서 설명되는 다수 또는 모든 장치에 공통적인 특징들에 제한되지 않는다. 이하에서 설명되는 장치 또는 프로세스는 임의의 청구된 발명의 실시 예가 아닐 수 있다. 본 문서에서 청구되지 않은 이하에서 설명되는 장치 또는 프로세스에 개시되는 모든 발명은 다른 보호 문서, 예를 들어, 계속 특허 출원의 대상이 될 수 있으며, 본 출원인들, 발명자들 또는 소유권자들은 본 문서에 모든 상기한 발명 내용을 개시함으로써 그것을 포기하거나, 그 권리를 포기하거나 또는 공공용으로 제공할 의도가 없다.
본원에는 기질 물질 및 기질 물질에 타겟 핵들을 갖는 객체를 검정하기 위한 시스템들 및 방법들이 개시된다. 개시된 시스템들 및 방법들은 예를 들어, 상기 기질 물질 내 상기 타겟 핵들의 농도와 같은 객체의 속성을 결정하는 것을 용이하게 할 수 있다. 일부 예에서, 기질 물질은 예를 들어, 지르코늄 합금과 같은 금속성 기질 물질을 포함할 수 있다. 일부 예에서, 타겟 핵들은 중수소 핵들을 포함할 수 있다. 본 교시 내용은 다른 기질 물질들 및/또는 타겟 핵들의 다른 유형들 적용 가능할 수 있다.
본 발명의 일부 측면에 따르면, 타겟 핵들의 적어도 일부의 광분해를 유도하기 위해 금속성 기질 물질로 감마선을 투사하며, 이에 의해 핵들의 반응 입자들이 객체로부터 방출됨으로써 객체가 검정될 수 있다. 반응 입자들은 예를 들어, 타겟 핵들의 양성자들 및/또는 중성자들을 포함할 수 있다.
선택적으로, 기질 물질로 투사되는 감마선은 예를 들어, n-감마 방사체와 같은 감마선원으로부터 방출될 수 있다. 예를 들어, n-감마 방사체에는 n-감마 반응을 유도하기 위해 중성자 선속이 가해지며, 이에 의해 감마선이 방사체로부터 방출되고, 타겟 핵들의 광분해를 유도하기 위해 기질 물질로 투사될 수 있다.
객체로부터 방출된 반응 입자들의 적어도 일부는 반응 입자 검출기를 사용하여 검출될 수 있고, 반응 입자들을 검출하는 것에 반응하여 입자 신호들이 생성될 수 있다. 일부 예에서, 반응 입자들은 양성자들을 포함할 수 있고, 입자 검출기는 양성자들을 검출하기 위한 하전 입자 검출기를 포함할 수 있다. 일부 상황에서, 객체의 내부를 향한 광분해를 통해 방출된 양성자들의 일부는 객체의 둘레/표면을 이탈할 수 없으며, 객체 외부의 검출기를 사용하여 검출하기는 상대적으로 어려울 수 있다. 객체의 표면 부근에 있을 수 있는 다른 양성자들은 객체의 둘레를 벗어나 이탈하여 그로부터 방출될 가능성이 더 높을 수 있다. 이러한 양성자 그룹은 이를테면, 예를 들어, 입자 검출기에서 물질의 이온화를 통해, 객체 외부의 검출기를 사용하여 검출하기가 상대적으로 더 쉬울 수 있다. 일부 예에서(그리고 선택적으로 하전 입자 검출기의 사용에 더하여), 반응 입자 검출기는 객체로부터 방출되는 중성자들의 적어도 일부를 검출하도록 구성된 중성자 검출기를 포함할 수 있다. 일부 상황에서, 중성자들은 양성자들보다 객체를 통해 더 먼 거리를 이동할 수 있을 수 있고, 일부 중성자는 물질 기질 내에서 더 멀리 이탈할 수 있다. 일부 실시 예에서, 양성자들보다 더 많은 중성자가 객체를 이탈할 수 있다. 그러나, 중성자 검출기는 하전 입자 검출기보다 상대적으로 효율이 더 낮을 수 있으며, 이는 중성자들이 더 낮은 효율로 검출될 수 있음을 의미하는데, 중성자 검출이 일반적으로 원자핵들과의 상호 작용에 의존할 수 있기 때문이다. 일부 실시 예에서, 방출된 양성자들을 검출하기 위한 하전 입자 검출기의 사용이 바람직할 수 있다. 또한, 시스템이 다른 중성자 선속(들)에 노출되는 환경에서 사용되는 경우에는, 중성자 검출기 대신, 또는 이에 더하여 하전 입자 검출기를 이용하여 주변 중성자 자속으로부터의 배경 간섭 또는 잡음을 감소시키는 것이 바람직할 수 있다(즉, 중성자 검출기는 반응 입자들과 배경 중성자 자속을 구별하기가 어려울 수 있다).
선택적으로, 객체의 속성은 입자 신호들에 적어도 부분적으로 기초하여 결정될 수 있다. 예를 들어, 반응 입자들의 풍부함이 기질 물질 내 타겟 핵들의 농도를 결정하는 데 도움이 되기 위해 사용될 수 있다. 일부 실시 예에서, 반응 입자들의 양은 일반적으로 기질 물질 내의(또는 적어도 검정되는 객체의 섹션 내의) 타겟 핵들의 농도에 비례할 수 있다. 전체 객체 내의 타겟 핵의 농도에 대한 결론은 객체 속성들(그것이 균등질인지, 그것이 유사한 환경 조건에 노출되었는지 등), 측정된 반응 입자 농도 등에 기초하여 추론될 수 있다. 선택적으로, 객체는 둘 이상의 상이한 위치에서 검정될 수 있고, 각 위치로부터의 결과들이 비교 및 분석된다. 일부 상황에서, 반응 입자들의 검출율은 일반적으로 객체 내의 타겟 핵들의 농도와 관련될 수 있다. 일부 예에서, 입자 신호들은 입자 검출기에 의해 검출된 반응 입자들의 수를 나타낼 수 있고, 속성은 검출된 반응 입자들의 수를 소정의 기준값과 비교함으로써 결정될 수 있다.
본원에 개시된 상기한 방법들 및 시스템들의 측면들은 상기 객체의 비파괴 및/또는 원 위치 검정을 용이하게 하도록 돕는 데 유용할 수 있다. 선택적으로, 시스템의 적어도 일부 측면은 이동식일 수 있고, 현장 사용을 위해 구성될 수 있다 - 테스트를 위해 객체를 실험실 또는 다른 그러한 시설로 가져올 필요가 있는 것과는 달리. 이는 원 위치 테스트를 용이하게 하는 데 도움이 될 수 있고, 비교적 큰 객체들 상의 다수의 위치를 검정하는 것을 용이하게 하는 데 도움이 될 수 있다.
예를 들어, 도면들을 참조하여 이하에서 더 상세히 설명될 바와 같이, 객체는 예를 들어, 가압 중수로(PHWR, pressurized heavy-water reactor)와 같은 원자로용 압력관의 벽을 포함할 수 있다. 일부 예에서, 압력관의 벽은 지르칼로이-2 및 Zr-2.5Nb 중 적어도 하나를 포함할 수 있는, 지르코늄 합금의 기질 물질을 가질 수 있다. 압력관들 및 PHWR들의 가능한 다른 구성요소들은 원자로가 사용되는 동안 고온, 압력, 방사선 노출, 주변 중성자 선속(들) 등과 함께, 중수소에 노출될 수 있다. 정해진 수명이 다한 PHWR들에서 제거된 일부 압력관을 분석한 결과 중수소 원자들은 원자로가 사용되는 동안 지르코늄 합금 벽 재료 안으로 들어갈 수 있음이 밝혀졌다. 이러한 적용 예들에서, 기질 물질 안에 중수소가 들어가는 것은 압력관 측벽의 속성들에 대해 바람직하지 않은 변화를 초래할 수 있고, 일부 경우에는 취화 및 균열을 초래할 수 있으며, 이는 수명 제한 저하 모드일 수 있다. 그 결과, 벽 내 중수소 농도의 주기적인 측정은 원자로들이 압력관 벽 내 상승된 수소 수준으로 작동하지 않도록 보장하기 위한 PHWR에 대한 규제 사항이 될 수 있다.
PHWR들에 적용될 수 있는 하나의 알려진 검정 방법은 시스템의 압력 경계에서 재료의 샘플을 기계적으로 제거한 다음 고진공 추출 질량 분석(HVEMS, hot vacuum extraction mass spectrometry)하는 것을 수반한다. 이 방법은 예를 들어, 관심 구성요소의 샘플의 제거를 필요로 하고, 테스트가 수행될 때마다 압력관의 압력 경계 상에 상흔을 남기고, 샘플의 재료를 소모하고, 방사성 재료 조각의 수송을 필요로 하며, 적시에 현장 결과들을 제공할 수 없는 것과 같은 여러 단점을 가질 수 있다. 다른 알려진 방법은 말단 고용해(TSS, terminal solid solubility)의 온도를 측정하여 수소 농도를 추정하는 것을 수반한다. 이 TSS 방법은 샘플 제거 및 방사성 재료 조각의 수송을 반드시 필요로 하지는 않지만, 일부 상황에서는 결과들이 일치하지 않는 것으로 밝혀졌다.
본원에 설명된 하나 이상의 검정 방법 및 시스템은 예를 들어, 그 중수소의 농도와 같은 압력관 벽의 기질 물질의 속성을 결정하는 것을 용이하게 하는 데 도움이 될 수 있고, 일부 경우에는, 압력관이 원자로의 노심 내 원 위치에 있으면서 수행될 수 있다. 이는 검정을 위해 압력관의 샘플을 반드시 제거할 필요 없이 압력관 벽의 검정을 용이하게 하는 데 도움이 될 수 있고, 하나 이상의 알려진 방법과 비교할 때 압력관 벽을 검정하는 것과 관련된 비용, 시간 및 복잡성의 감소에 도움이 될 수 있다.
도 1을 참조하면, 객체(102)를 검정하기 위한 예시적인 시스템(100)이 개략적으로 도시되어 있다. 도시된 예에서, 객체(102)는 가압 중수 원자로(108)(PHWR로도 지칭됨―도 2 참조)용 압력관(106)의 대체로 축 방향으로 연장되는 벽(104)(압력관 벽(104)으로도 지칭됨)을 포함한다. 도시된 예에서, 압력관 벽(104)은 기질 물질(110)을 갖고 타겟 핵들(112)은 원자로(108)가 사용되는 동안 기질 물질(110) 내에 분산되었다. 다양한 상이한 핵이 기질 물질로 도입될 수 있고, 도시된 예에서, 타겟 핵들(112)은 적어도 몇몇 중수소 핵(114)을 포함한다. 기질 물질(110)은 금속성 기질 물질일 수 있다. 도시된 예에서, 기질 물질(110)은 지르코늄 합금을 포함한다. 지르코늄 합금은 지르칼로이-2 및 Zr-2.5Nb 중 적어도 하나, 또는 원자로(108)의 노심 내에 사용하기에 적합할 수 있는 다른 그러한 물질들일 수 있다.
바람직하게는, 시스템(100)은 타겟 핵들(112)의 광분해를 유도하는 데 사용될 수 있는 감마선을 제공하기 위해 적어도 하나의 감마선원을 포함한다. 도시된 예에서, 시스템(100)은 중수소 핵들(114)의 적어도 일부의 광분해를 유도하기 위해 기질 물질(110)로 감마선(118)을 투사하며, 이에 의해 중수소 핵들(114)의 반응 입자들(120)의 적어도 일부가 압력관 벽(104)으로부터 방출될 수 있도록 구성되는 감마선원(116)을 포함한다. 도시된 예에서, 반응 입자들(120)은 분해된 중수소 핵들(114)의 양성자들(120a) 및 중성자들(120b)을 포함한다.
선택적으로, 감마선원(116)은 특정 검정의 초점이 되는 기질 물질(110) 내 중수소 핵들(114)을 분해하기에 충분한 에너지를 갖지만, 기질 물질(110)을 형성하는 원자들을 분해하기에는 충분하지 않은 에너지 준위에 있는 감마선(118)을 투사하도록 구성될 수 있다. 이는 기질 물질(110)의 온전함에 물질적으로 영향을 미치지 않고 중수소 핵들(114)의 분해를 용이하게 하는 데 도움이 될 수 있다. 이는 압력관(106)이 작동 상태를 유지하고/거나 검정이 수행된 후에 재사용되게 의도된 경우 유용할 수 있다. 이러한 에너지 준위는 시스템의 주어진 실시 예에서 이용되는 특정 기질 물질 및 핵들에 기초하여 선택될 수 있다.
도시된 예에서, 감마선원(116)은 7.5 MeV 이상 에너지의 감마선을 투사하도록 구성된다. 이는 1 MeV 내지 약 3 MeV의 에너지를 갖는 양성자들(120a)의 객체(102)로부터의 방출을 용이하게 할 수 있다. 감마선원은 감마선을 일반적으로, 자연 발생적으로 방출하는 감마선 방출 물질을 포함할 수 있다. 대안적으로, 감마선원은 일반적으로 또는 자연 발생적으로 감마선을 방출하는 것이 아니라, 필요에 따라 감마선을 발생시키는 데 이용될 수 있는 요구형 공급원으로 구성될 수 있다. 도시된 예에서, 감마선원(116)은 유입 중성자 자속(124)을 받을 때 n-감마 반응을 통해 감마선(118)을 방출하도록 구성되나, 중성자 자속(124)이 없을 때에는 감마선을 방출하지 않는 n-감마 방사체(122)를 포함한다. n-감마 방사체로부터 방출된 감마선(118)은 그 다음 기질 물질(110)로 투사되어 중수소 핵들(114)의 광분해를 유도할 수 있다. n-감마 방사체(122)는 방출된 감마선(118)을 원하는 방향으로(즉, 물체(102)를 향해) 보내고, 다른 방향들로 방출되는 것을 제한하는 것을 돕기 위해 다양한 차폐층, 제어 기구 등을 포함할 수 있다.
n-감마 방사체(122)와 같은 n- 감마 방사체가 사용되는 경우, 중성자 자속(124)은 임의의 적절한 중성자원에 의해 제공될 수 있다. 이는 중성자 방출원/객체(중성자 빔 장치와 같은)를 포함할 수 있고/거나, 예를 들어, 원자로의 노심에 존재하는 열 중성자 자속을 포함하여, 검정이 수행되고 있는 환경에 존재하는 주변 중성자 자속을 이용하는 것을 포함할 수 있다.
도시된 예에서, 시스템(100)은 중성자 선속(124)을 만들어 내기 위한 중성자원(126)을 포함한다. 도시된 예에서, 중성자 선속(124)은 열 중성자 선속을 포함한다. 도시된 예에서, 중성자원(126)은 원자로(108)의 노심(130)(도 2)의 주변 열 중성자 선속(128)을 포함한다. 이는 n-감마 방사체(122)에서 n-감마 반응을 유도하는 데 필요한 열 중성자 자속을 만들어 내기 위한 별도의 장치(예를 들어, 열 중성자 빔 방출기)에 대한 필요성을 줄이거나 없앨 수 있다. 이러한 주변 중성자 자속은 검정이 노심 외부에서 수행되는 경우에는 이용 가능하지 않을 수 있으며, 이 경우 열 중성자 빔 방출기 등이 제공될 수 있다.
n-감마 방사체(122)는 임의의 적합한 재료로 형성될 수 있고, 일부 실시 예에서는 니켈을 포함할 수 있다. 도시된 예에서, n-감마 방사체(122)는 니켈-58을 포함한다.
n-감마 방사체(122)는 예상되는 중성자 자속 입력에 반응하여 원하는 양의 감마선을 만들어 내는 것을 도울 수 있는 임의의 적절한 열 중성자 단면을 가질 수 있다. 도시된 예에서, n-감마 방사체의 열 중성자 단면은 바람직하게는 2 barn 이상이다. 일부 예에서, n-감마 방사체(122)는 대략 3 barn 이상의 열 중성자 단면을 가질 수 있다. 선택적으로, n-감마 방사체(122)는 3 MeV 범위의 에너지의 객체(102)로부터 양성자들(120a)의 방출을 용이하게 하기 위해 7.5 MeV 내지 약 9.0 MeV의 에너지를 갖는 감마선(118)을 만들어 낼 수 있다. 선택적으로, n-감마 방사체(122)는 유입 중성자 자속에 평행한 방향으로, 일반적으로 중성자 자속(124)의 대부분의 입사 중성자를 흡수하기에 충분한 방사체 두께를 가질 수 있다. 따라서 방사체 두께는 다량의 자체-차폐 재료를 남기지 않도록, 그리고 감마선(118)을 불필요하게 산란시키지 않도록 선택될 수 있다. 구체적인 방사체 기하학적 구조는, 예를 들어, 방사체 재료의 열 중성자 포획 단면, 관심 에너지 범위에서 방출된 광자들의 흡수를 위한 반감 두께, 그리고 유입 중성자들의 방향성에 의존적일 수 있다. 일부 예에서, 방사체는 직경이 대략 25 mm이고 높이가 대략 15 mm인 니켈 실린더를 포함할 수 있다.
도시된 예에서, 압력관(106)은 관 축(131)을 따라 길이 방향으로 연장된다. 압력관 벽(104)은 벽 제1 측(104a) 및 방사상 반대편의, 벽 제2 측(104b)을 갖는다. 도시된 예에서, 벽 제1 측(104a)은 압력관(106)의 내부를 향하는 내부 표면이고, 벽 제2 측(104b)은 압력관(106)의 외면인 외부 표면이다. 이러한 예에서 압력관(106)은 내경(105a) 및 제1 및 제2 측들(104a, 104b) 간 벽 두께(105b)를 갖는다. 일부 예에서, 내경(105a)은 대략 104 mm일 수 있고, 벽 두께(105b)는 약 4.3 mm일 수 있다.
선택적으로, 시스템(100)의 적어도 몇몇 부분은 이동식일 수 있고, 그것이 원자로(108) 내 원 위치에 있으면서 압력관(106)의 내부로 삽입되도록 구성될 수 있다. 이는 원 위치 테스트를 용이하게 하는 데 도움이 될 수 있고, 원자로(108)의 제거 및/또는 재구성 양을 줄일 수 있다. 이는 또한 관(106)이 설치된 채로 유지될 수 있고 관(106)을 제거하고 노심 내에 재설치하는 것의 결과로서 손상 또는 다른 부작용에 영향을 덜 받기 때문에, 검정의 결과에 따라, 검정이 완료된 후에 주어진 압력관(106)의 계속적인 사용을 용이하게 하는 데 도움이 될 수 있다. 이는 또한 조사후 재료(즉, 사용된 압력관(106))을 원자로(108) 밖으로 그리고 테스트를 위한 현장 밖의 설비로 수송해야 할 필요성을 줄이는 데 도움이 될 수 있다. 시스템(100)은 그것의 구성요소들 중 일부가 관(106) 내부에 위치할 수 있는 한편(이를테면 n- 감마 방사체 및 검출기 등), 다른 구성요소들은 방사선 차폐 밖에 위치할 수 있도록(이를테면 제어기들, 컴퓨터들 등) 사실상 일반적으로 모듈식일 수 있다.
도시된 예에서, n-감마 방사체(122)는 이동식이고, 압력관 벽(104)에 근접하게 위치할 수 있다. 이는 노심(130) 내 원 위치에서의 압력관(106)의 검정을 용이하게 할 수 있다. 도시된 예에서, n-감마 방사체(122)는 제1 표면(132)을 통해 기질 물질(110)로 감마선(118)을 투사하기 위해 압력관 벽(104)의 제1 표면(132)에 인접하게 위치할 수 있다. 도시된 예에서, 제1 표면(132)은 벽 제1 측(104a) 상의 압력관 벽(104)의 내부 표면을 포함하고, n-감마 방사체(122)는 그 내부 표면에 인접하게 압력관(106)의 내경(105a) 내에 위치할 수 있다. 도시된 예에서, 시스템(100)은 압력관 벽(104)으로부터 방출되는 반응 입자들(120)의 적어도 일부를 검출하도록, 그리고 반응 입자들(120)의 검출에 반응하여 입자 신호들(136)을 생성하도록 구성된 반응 입자 검출기(134)를 더 포함한다. 도시된 예에서, 입자 검출기(134)는 압력관 벽(104)으로부터 방출되는 양성자들(120a)의 적어도 일부를 검출하도록 구성된 양성자 검출기를 포함하나, 그 외 중성자 검출기(중성자들(120b)의 적어도 일부를 검출하기 위한) 또는 다른 적합한 검출기를 포함할 수 있다.
일부 예에서, 입자 검출기(134)를 예를 들어, 고-중성자 선속 환경으로부터 유래하는 감마선 및 베타 입자들에 대한 그것의 반응을 줄이도록, 그리고 약 1 MeV 내지 약 3 MeV의 에너지를 갖는 양성자들에 대한 그것의 반응은 증가시키는 데 도움이 되도록 최적화하는 것이 바람직할 수 있다. 이는 검출기(134)에 대한 신호 대 잡음비를 개선하는 데 도움이 될 수 있다. 도시된 예에서, 입자 검출기(134)는 양성자들(120a)의 선속 방향으로 층 두께(140)를 갖는 능동형 검출기 층(134a)을 갖는다. 일부 예에서, 층 두께(140)는 대략 능동형 검출기 층(134a)을 통한 양성자들(120a)의 침투 거리 이하이다. 예를 들어, 두께(140)는 능동 층에서 양성자들(120a)의 침투 거리의 약 90% 내지 약 110%일 수 있고, 침투 거리의 약 95% 내지 약 105%, 약 98% 내지 약 102%, 약 98% 내지 약 100%일 수 있고/거나 약 100%일 수 있다. 이는 방출된 양성자들(120a)의 검출을 용이하게 하면서, 예를 들어, 감마선 및 베타 입자들로부터의 배경 간섭을 줄이는 데 도움이 될 수 있다. 일부 예에서, 능동형 검출기 층(134a)은 실리콘을 포함하고, 층 두께(140)는 대략 60 미크론 이하이다.
일부 예에서, 입자 검출기(134)와 압력관 벽(104)의 제1 표면 간 거리를 줄이는 것이 방출된 반응 입자들(120)의 검출을 용이하게 하는 것에 그리고/또는 배경 잡음 감소에 도움이 되는 데 유리할 수 있다. 도시된 예에서, 검출기(134)는 또한 제1 표면(132)으로부터 방출된 반응 입자들(120)의 적어도 일부를 검출하기 위해 압력관(106)의 내부 내에 그리고 압력관 벽(104)의 제1 표면(132)에 인접하게 위치할 수 있다. 도시된 예에서, 제1 표면(132)은 압력관 벽(104)의 내부 표면을 포함한다. 도시된 예에서, 입자 검출기(134)는 이동식이고, 압력관 벽(104)의 내부 표면(132)에 인접하게 압력관(106)의 내경(135a) 내에 위치할 수 있다. 이러한 구성은 기질 물질(110) 내로부터 검출기(134)로 양성자들(120a)이 이동하는 거리의 감소를 용이하게 할 수 있다. 이는 또한 압력관(106)의 외부로 접근할 필요 없이(일부 경우, 접근하기 어려울 수 있다) 검출기(134)의 사용을 용이하게 하는데 도움이 될 수 있다. 일부 예에서, 입자 검출기(134)는 압력관 벽(104)과 감마선원(116) 중간에 있을 수 있고, 감마선원(116)은 감마선(118)을 입자 검출기(134)의 적어도 일부를 통해 그리고 제1 표면(132)을 통해 기질 재료(110)로 투사하도록 구성될 수 있다.
도시된 예에서, 시스템(100)은 입자 신호들(136)에 기초하여 압력관 벽(104)의 속성을 결정하도록 구성된 프로세서(142)(예를 들어, 임의의 적합한 컴퓨팅 장치, 컴퓨터, PLC 등)를 더 포함한다. 일부 예에서, 속성은 기질 물질(110) 내 중수소 핵들(114)의 농도를 포함할 수 있다. 예를 들어, 압력관 벽(104)으로부터 방출되는 반응 입자들의 풍부함이 기질 물질(110) 내 중수소 핵들(114)의 농도에 비례할 수 있고, 입자 검출기(134)에 의한 양성자들(120a)의 검출율이 압력관 벽(104) 내 중수소 핵들(114)의 농도에 관련될 수 있다.
일부 예에서, 입자 신호들(136)은 입자 검출기(134)에 의해 검출되는 반응 입자들(120a)의 수를 나타낼 수 있다. 프로세서(142)는 검출된 양성자들(120a)의 수를 예를 들어, 프로세서(142)에 접근 가능한 소정의 기준값과 비교함으로써 속성을 결정하도록 구성될 수 있다. 소정의 기준값은 컴퓨터-판독 가능한 메모리에 저장될 수 있고 예를 들어, 타겟 핵들(예를 들어, 중수소 핵들)의 알려진 농도와 같은 알려진 속성을 갖는 샘플 객체로부터 방출되는 양성자들(또는 다른 반응 입자들)의 수에 대응할 수 있다. 알려진 농도는 예를 들어, 0 ppm일 수 있다. 일부 예에서, 기준 샘플들, 예를 들어, 중수소를 갖지 않는 제1 기준 샘플 및 알려져 있는 상승된 중수소 수준을 갖는 제2 기준 샘플이 캘리브레이션을 위해 사용될 수 있다.
도 3을 참조하면, 객체(102)(즉, 도시된 예에서, 압력관 벽(104))를 검정하기 위한 예시적인 방법(200)이 도시되어 있다. 단계(210)에서, 감마선원(116)이 중수소 핵들(112)(즉, 도시된 예에서, 중수소 핵들(114))의 적어도 일부의 광분해를 유도하기 위해 기질 물질(110)로 감마선(118)을 투사하며, 이에 의해 핵들(112)의 반응 입자들(120)이 압력관 벽(104)으로부터 방출된다. 단계(220)에서, 단계(210)에서 방출된 반응 입자들(120)(즉, 도시된 예에서, 양성자들(120a))의 적어도 일부가 입자 검출기(134)를 사용하여 검출된다. 단계(230)에서, 입자 신호들(136)이 단계(220)에서 반응 입자들을 검출하는 것에 반응하여 발생된다. 선택적으로, 단계(240)에서, 압력관 벽(104)의 속성은 입자 신호들(136)에 적어도 부분적으로 기초하여 프로세서(142)에 의해 결정된다.
일부 예에서, 감마선원(116)은 n-감마 방사체(122)를 포함할 수 있고, 단계(205)에서, n-감마 방사체(122)에는 선택적으로 n-감마 반응을 유도하기 위해 중성자 선속(124)이 가해질 수 있으며, 이에 의해 단계(210)에서 투사된 감마선(118)이 n-감마 방사체(122)로부터 방출된다. 그러한 예들에서, 단계(205) 이전에, 방사체(122)는 압력관 벽(104)에 근접하게 위치될 수 있다. 그러한 예들에서, 단계(205) 이전에, 방사체(122)는 방사체(122)에 원자로(130)의 주변 열 중성자 선속(128)을 가하기 위해 원자로(108)의 노심(130) 내에(예를 들어, 압력관(106)의 내부 내에) 위치될 수 있다.
일부 예에서, 단계(210) 동안, 감마선(118)은 압력관 벽(104)의 제1 표면(132)을 통해 기질 물질(110)로 투사될 수 있다. 일부 예에서, 단계(220) 동안 입자 검출기(134)는 제1 표면(132)으로부터 방출된 반응 입자들(120)의 적어도 일부를 검출하기 위해 제1 표면(132)에 근접하게 위치될 수 있다.
도시된 예에서, 압력관(106)은 적어도 단계들(205 내지 230)이 수행되는 동안 노심(130) 내 원 위치에 있을 수 있다. 일부 예에서, 압력관(106)은 단계(240)가 수행되는 동안 노심(130) 내 원 위치에 있을 수 있다. 이는 검정의 현장 결과들의 제공을 용이하게 할 수 있다.
본원에 개시된 시스템들 및 방법들의 측면들은 니켈 n-감마 방사체에 대한 중성자 공급원으로서 열 중성자 빔을, 그리고 실리콘(Si) 입자 검출기를 사용하여 실험적으로 증명되었다. 테스트들은 중수소가 없는 Zr 샘플로부터의 배경 스펙트럼과 비교할 때, HVEMS로부터 규명될 때, 알려진 농도의 중수소가 주입된 Zr 샘플에 대해 예상된 에너지 범위 내 특징을 나타냈다. 도 4의 차트(300)를 참조하면, 0 ppm 중수소(제2 라인(320)으로 도시됨)를 갖는 샘플로부터의 배경 스펙트럼과 비교하여, 55 ppm 중수소를 갖는 샘플에 대한 측정치들이(제1 라인(310)으로) 도시된다. 제1 라인(310)과 제2 라인(320) 사이의 실 스펙트럼(net spectrum)은 선형 척도(차트(300)의 오른쪽 축 상에 도시됨) 상에 산점도(325)로서 표시된다. 실 스펙트럼(플롯 325)에는 예상 양성자 수율에 대한 컴퓨터 시뮬레이션이 에너지의 함수(제3 라인(330)으로 도시됨)로서 중첩되며, 진폭이 실 스펙트럼(플롯 325)의 50-주기(50-채널) 이동 평균(제2 라인(345)으로 도시됨)과 조화를 이루도록 조정되었다. 데이터와 시뮬레이션 간 조화는 배경 잡음이 우세하며, 양성자 에너지의 1.5 MeV 미만에서 멀어진다. 다양한 샘플의 측정치들에 대한 상대적인 수율은 중수소 농도의 함수로서 증가하며, 농도를 평가하는 수단을 제공한다.
다양한 샘플에 대한 상대적인 수율은 1.7 MeV를 초과하는 양성자 계수의 총 수로서 취해졌으며, 이는 배경에 가장 영향을 받지 않는 부분이었던 양성자 스펙트럼의 상반부를 n-감마 방사체 상에 입사된 제곱 센티미터 당 열 중성자들의 총 수로 나눈 값에 해당한다. 결과들은 도 5의 차트(400)에 그려져 있다. 다양한 샘플의 수집 시간은 20,000초에서 거의 190,000초까지 다양했다. 선형 추세선에 대한 산포는 주로 배경 분리의 불확실성으로 인한 것이고, 차트(400)에서 볼 수 있듯이, 대략 ±20 ppm에 해당한다. 저에너지에서의 높은 계수율의 감소 또는 더 정교한 배경 분리 기술이 이러한 값을 개선하는 데 도움이 될 수 있다.
도 6을 참조하면, 객체(502)를 검정하기 위한 다른 예시적인 시스템(500)의 부분들이 도시되어 있다. 시스템(500)은 시스템(100)과 유사하고, 같은 특징들은 400씩 증가된 동일한 참조 부호들로 식별된다.
도시된 예에서, 시스템(500)은 감마선(518)을 제1 표면(532)을 통해 객체(502)의 기질 물질(510)로 투사하기 위해 객체(502)의 제1 표면(532)에 인접하게 위치할 수 있는 감마선원(516)(예를 들어, n-감마 방사체(522))을 포함한다. 도시된 예에서, 시스템(500)은 제2 표면(533)으로부터 방출되는 반응 입자들(520)(예를 들어, 양성자들(520a))의 적어도 일부를 검출하기 위해 객체(502)의 제2 표면(533)에 인접하게 위치할 수 있는 입자 검출기(534)를 더 포함한다. 도시된 예에서, 제2 표면(533)은 제1 표면(532)으로부터 이격되어 있다. 도시된 예에서, 제1 표면(532)은 객체(502)의 제1 측(504a) 상에 있고, 제2 표면(533)은 객체(502)의 제1 측(504a)에 대향하는 제2 측(504b) 상에 있다.
도 7을 참조하면, 객체(602)를 검정하기 위한 다른 예시적인 시스템(600)의 부분들이 도시되어 있다. 시스템(600)은 시스템(100)과 유사하고, 같은 특징들은 500씩 증가된 동일한 참조 부호들로 식별된다.
도시된 예에서, 시스템(600)은 감마선(618)을 제1 표면(632)을 통해 객체(602)의 기질 물질(610)로 투사하기 위해 객체(602)의 제1 표면(632)에 인접하게 위치할 수 있는 감마선원(616)(예를 들어, n-감마 방사체(622))을 포함한다. 도시된 예에서, 시스템(500)은 제1 표면(632)으로부터 방출되어 제1 입자 신호들(636a)을 발생시키는 반응 입자들(620)(예를 들어, 양성자들(620a))의 적어도 일부를 검출하기 위해 제1 표면(632)에 인접하게 위치할 수 있는 제1 입자 검출기(634a)를 더 포함한다. 시스템(600)은 제2 표면(633)으로부터 방출되어 제2 입자 신호들(636b)을 발생시키는 반응 입자들(620)의 적어도 일부를 검출하기 위해 객체(602)의 제2 표면(633)에 인접하게 위치할 수 있는 입자 검출기(634b)를 더 포함한다. 제2 표면(633)은 제1 표면(632)으로부터 이격되어 있을 수 있고, 도시된 예에서 제1 및 제2 표면들(632, 633)은 객체(602)의 대향 측들 상에 있다.
도 8을 참조하면, 객체(702)를 검정하기 위한 다른 예시적인 시스템(700)의 부분들이 도시되어 있다. 시스템(700)은 시스템(100)과 유사하고, 같은 특징들은 600씩 증가된 동일한 참조 부호들로 식별된다.
도시된 예에서, 시스템(700)은 객체(702)로부터 방출된 반응 입자들(720)을 검출하기 위한 일치형 입자 검출기(coincidence-type particle detector)(734)를 포함한다. 검출기(734)는 제1 검출기 층(734a)과 직렬로 위치되는 능동형 제1 검출기 층(734a) 및 능동형 제2 검출기 층(734b)을 포함한다. 도시된 예에서, 제1 검출 층(734a)은 제1 층 두께(740a)를 갖고, 제2 검출 층(734b)은 제2 층 두께(740b)를 갖는다. 일부 예에서, 제1 층 두께(740a)는 제2 층 두께(740b)보다 작다. 일부 예에서, 제1 층 두께(740a)는 25 미크론이고, 제2 층 두께(740b)는 50 미크론이다.
정전 동안 원자로의 노심에서 발생할 수 있는 바와 같은, 고방사선 적용 환경들에서, 실리콘 검출기들은 손상을 받기 쉬울 수 있고, 보다 내방사선성의 검출 시스템이 유용할 수 있다. 일부 예에서, 검출기(734)는 다결정 화학 기상 증착(pCVD, polycrystalline chemical vapor deposition) 다이아몬드 검출기(Applied Diamond Inc.로부터 입수 가능)를 포함할 수 있다. 이러한 유형의 검출기는 예를 들어, 실리콘 검출기에 비해 더 유리한 내방사선 속성들을 가질 수 있고, 이를테면 원심 내 원 위치에서의 압력관들의 검정 동안, 고방사선 적용 환경들에서 유용할 수 있다.
도시된 예에서, 검출기(734)는 객체(702)에 인접하게 위치할 수 있으며 객체(702) 및 제2 검출기 층(734b) 중간에 제1 검출기 층(734a)이 있다. 시스템(700)은 제1 검출기 층(734a)에 의해 발생되는 제1 입자 신호(736a)와 제2 검출기 층(734b)에 의해 발생되는 제2 입자 신호(736b) 간의 관계에 기초하여 검출 이벤트들을 정합하도록 구성된 프로세서(742)를 더 포함할 수 있다. 예를 들어, 프로세서(742)는 단지 제1 검출기 층(734a)으로부터 발생되는 제1 입자 신호(736a), 및 제2 검출기 층(734b)으로부터 결정되는 최소 진폭을 갖는 제2 입자 신호(736b)를 수신 시 반응 입자들(720)의 검출을 정합하도록 구성될 수 있다. 그러한 일치 구성(coincidence configuration)은 특정 적용 환경들에서 신호 대 잡음비를 최적화하는 데 도움이 될 수 있다.
예를 들어, 도 9를 참조하면, 차트(800)는 검출기(734)와 유사한 일치형 입자 검출기의 제1 검출기 층에 의해 발생되는 제1 입자 신호들을 나타내는 단일 검출율 라인(810), 및 제1 입자 신호들과 입자 검출기의 제2 검출기 층에 의해 발생되는 제2 입자 신호들 간 관계에 기초하여 정합된 검출 이벤트들을 나타내는 동시 검출율 라인(820)을 포함한다. 제2 입자 신호들이 제1 검출기 층에 의해 발생되는 제1 입자 신호들의 수용을 트리거하기 위해 소정의 최소 진폭을 갖도록 요구하는 것은 예를 들어, 단일 검출율(차트(800)의 오른쪽 축 상에 도시됨)보다 약 5배 작은 크기인 동시 검출율(차트(800)의 왼쪽 축 상에 도시됨)을 제공할 수 있다.
가능한 원자로 내 중수소 검정을 위한 pCVD 다이아몬드 검출기들의 테스트들은 열 중성자들로 수행되었다. 도 10을 참조하면, 테스트에 사용된 pCVD 다이아몬드 검출기의 개략도가 도시되어 있다.
도 11을 참조하면, 테스트 시스템은 동일한 유형의 더 두꺼운(50 미크론) 제2 다이아몬드 검출기(D2)에 의해 지지되는, 얇은(25 미크론) 제1 다이아몬드 검출기(D1)를 사용했다. 다이아몬드 검출기들, 특히 다결정 변종은 Si 검출기들에 비해 열등한 에너지 분해능을 가질 수 있다; 알파 입자 벤치 테스트들은 반감폭 ±40%를 나타냈다.
열 중성자 빔은 하나는 83 ppm 중수소 또는 하나는 중수소가 없는 Zr 샘플들과 접촉한 Ni(n, gamma) 방사체 상에 입사했다. 중성자 빔 세기는 초당 cm2 당 약 4x109 중성자였다.
도 12를 참조하면, 일련의 실험―더 얇은 제1 검출기(D1)로부터의 신호들이 더 두꺼운 제2 검출기(D2)에 의해 트리거될 때 수집되는―을 중수소 및 비-중수소 Zr 샘플들을 사용하여, 상이한 임계값들에 대해 수행했다. 수집을 트리거하는 단일 채널 분석이 임계값들(140, 190, 240, 290, 및 340)은 전위차계 판독치들로 주어졌고 에너지 값들은 부여되지 않았다. "블랭크(blank)", 중수소가 없는 샘플로 획득되는 스펙트럼들이 중수소가 든 샘플로 획득되는 대응하는 스펙트럼들에서 분리되며, 계수 시간의 비율로 조정되었다. 배경이 분리된 스펙트럼들이 도 12에 도시되어 있다. bs290 곡선에 도달할 때까지 임계값이 증가함에 따라 계수가 감소하여, 제2 검출기(D2)의 저에너지 잡음이 해당 지점까지 트리거들의 주요 원인이 될 수 있음을 나타낸다. bs340 곡선은 초당 0.11 양성자들의 계수율을 나타낸다.
대안적인 분석은: 단일 스펙트럼의 형태를 동시 스펙트럼들의 형태들과 비교하고, 저에너지 정규화 지점을 찾으며, 동시 스펙트럼들에서 조정된 단일 형태를 분리하는 것을 포함한다. 이는 분석시 중성자 빔 속도들의 일정성에 대한 가정을 피하는 데 도움이 될 수 있고, 대신 저에너지 지점에서 무시할 수 있는 진정한 우연의 일치를 가정한다. 도 13을 참조하면, 83 ppm 중수소가 든 샘플에 대해 조정된 단일률을 초과하는 동시율이 도시되어 있으며, 대안적인 분석은 340 임계값 데이터에 대해 0.06 계수/초(cps, counts per seconds) 그리고 290 임계값 데이터에 대해 0.07 cps의 계수율을 제공한다. 도 14를 참조하면, 중수소가 들지 않은 샘플에 대해 조정된 단일률을 초과하는 동시율이 도시되어 있으며, 동일한 대안적인 분석은 제로와 일치하는 결과를 제공한다.
비교를 위해, Si 검출기를 사용하여 얻어진 초기 결과들의 조정은 0.1 MeV 내지 1.0 MeV 범위의 임계값들에 대해, 도 11에 도시된 테스트 시스템 구성과 0.04 cps 내지 0.10 cps의 동시 계수율을 예측한다. 일치 어셈블리(coincidence assembly)의 컴퓨터 시뮬레이션은 도 11에 도시된 구성의 재료들 및 검출기들에 대한 저지능 데이터(stopping power data)와 함께, 니켈 상의 차동(n, γ) 생성 단면들 및 2H(γ, p)n 반응에 대한 결과적인 양성자 수율을 사용하여, 단일 및 동시 스펙트럼들을 예측한다. 시뮬레이션은 총 에너지 단일 스펙트럼이 도 15에 도시된 파선 형태를 가질 것으로 예측한다. 얇은 25 미크론 다이아몬드 검출기에 침적되는 에너지는 도 15에서 점선으로 도시된다. 이러한 라인 형태는 부드럽게 상승하며 약 2 MeV까지 연장되는 성분으로 구성된다; 그 총 에너지를 초과하는 양성자들이 검출기를 통과하고 검출기 통과시 더 적은 에너지를 침적하며, 가장 높은 에너지(3.1 MeV)의 입자들은 단지 제1 검출기에서 1.1 MeV를 남긴다; 이는 1.1 MeV와 2.0 MeV 사이에 단일 스펙트럼의 범프를 만든다. 적어도 0.5 MeV가 제2(트리거) 검출기에 침적되어야 한다는 요구 사항에 대해, 시뮬레이션은 데이터의 일치 부분 집합을 실선으로 선택한다(도 15, 좁은 스파이크는 약 1.2 MeV를 중심으로 함).
다이아몬드 검출기들의 에너지 분해능은 상대적으로 낮기 때문에, 시뮬레이션된 스펙트럼을 인위적으로 넓혀 데이터와 비교하는 것이 유리할 수 있다. 반최대에서 ±55%의 폭은 실현 가능한 것으로 보인다; 도 16 참조.
결론적으로, pCVD 다이아몬드 검출기 일치 시스템은 적어도 배경이 분리된 스펙트럼들, 조정된 단일 스펙트럼들을 초과하는 형태, 블랭크 샘플들에 대한 일관성 검사, 및 측정 비율들의 Si 검출기 시스템으로부터 조정된 것들과의 대략적인 조화에 기초하여, 금속 내 중수소 함량을 측정하는 데 사용될 수 있다.

Claims (128)

  1. 원자로용 압력관의 벽을 검정하기 위한 방법으로서, 상기 벽은 기질 물질 및 중수소 핵들을 가지며, 상기 방법은:
    상기 중수소 핵들의 적어도 일부의 광분해를 유도하기 위해 상기 기질 물질로 감마선을 투사하는 단계로서, 이에 의해 상기 핵들의 반응 입자들이 상기 벽으로부터 방출되는, 상기 감마선을 투사하는 단계;
    입자 검출기를 사용하여 단계 (a)에서 방출된 상기 반응 입자들의 적어도 일부를 검출하는 단계; 및
    단계 (b)에서 상기 입자들을 검출하는 것에 반응하여 입자 신호들을 발생시키는 단계를 포함하는 방법.
  2. 청구항 1에 있어서, 상기 입자 신호들에 적어도 부분적으로 기초하여 상기 벽의 속성을 결정하는 단계를 더 포함하는 방법.
  3. 청구항 2에 있어서, 상기 속성은 상기 기질 물질 내 상기 중수소 핵들의 농도를 포함하는 방법.
  4. 청구항 2 또는 3에 있어서, 상기 입자 신호들은 단계 (b)에서 검출된 상기 반응 입자들의 수를 나타내는 방법.
  5. 청구항 4에 있어서, 상기 속성을 결정하는 단계는 단계 (b)에서 검출된 상기 반응 입자들의 수를 소정의 기준값과 비교하는 단계를 포함하는 방법.
  6. 청구항 1 내지 5 중 어느 한 항에 있어서, 상기 기질 물질은 지르코늄 합금을 포함하는 방법.
  7. 청구항 6에 있어서, 상기 지르코늄 합금은 지르칼로이-2 및 Zr-2.5Nb 중 적어도 하나를 포함하는 방법.
  8. 청구항 1 내지 7 중 어느 한 항에 있어서, 단계 (a) 이전에, n-감마 반응을 유도하기 위해 n-감마 방사체에 중성자 선속을 가하는 단계를 더 포함하며, 이에 의해 단계 (a)에서 투사된 상기 감마선이 상기 방사체로부터 방출되는 방법.
  9. 청구항 8에 있어서, 단계 (a) 이전에 상기 방사체를 상기 벽에 근접하게 위치시키는 단계를 더 포함하는 방법.
  10. 청구항 8 또는 9에 있어서, 상기 중성자 선속은 열 중성자 선속을 포함하는 방법.
  11. 청구항 8 내지 10 중 어느 한 항에 있어서, 상기 방사체는 2 barn 이상의 열 중성자 단면을 포함하는 방법.
  12. 청구항 8 내지 11 중 어느 한 항에 있어서, 상기 방사체는 니켈을 포함하는 방법.
  13. 청구항 8 내지 12 중 어느 한 항에 있어서, 상기 방사체는 니켈-58을 포함하는 방법.
  14. 청구항 8 내지 13 중 어느 한 항에 있어서, 단계 (a) 이전에, 상기 방사체를 상기 원자로의 노심 내에 위치시키는 단계를 더 포함하되, 상기 중성자 선속은 상기 노심의 주변 열 중성자 선속을 포함하는 방법.
  15. 청구항 1 내지 14 중 어느 한 항에 있어서, 상기 압력관은 적어도 단계 (a) 내지 단계 (b)가 수행되는 동안 상기 원자로의 노심 내 원 위치에 있는 방법.
  16. 청구항 1 내지 15 중 어느 한 항에 있어서, 단계 (a)에서 투사되는 상기 감마선은 7.5 MeV 이상의 에너지를 갖는 방법.
  17. 청구항 1 내지 16 중 어느 한 항에 있어서, 상기 반응 입자들은 양성자들을 포함하는 방법.
  18. 청구항 17에 있어서, 상기 양성자들은 방출시 약 1 MeV 내지 약 3 MeV의 에너지를 갖는 방법.
  19. 청구항 1 내지 18 중 어느 한 항에 있어서, 단계 (a)는 상기 벽의 제1 표면을 통해 상기 기질 물질로 상기 감마선을 투사하는 단계를 포함하고, 단계 (b)는 상기 검출기를 상기 제1 표면에 근접하게 위치시키는 단계 및 상기 제1 표면으로부터 방출되는 상기 반응 입자들의 적어도 일부를 검출하는 단계를 포함하는 방법.
  20. 청구항 1 내지 18 중 어느 한 항에 있어서, 단계 (a)는 상기 벽의 제1 표면을 통해 상기 기질 물질로 상기 감마선을 투사하는 단계를 포함하고, 단계 (b)는 상기 검출기를 상기 제1 표면에서 이격된 상기 벽의 제2 표면에 근접하게 위치시키는 단계 및 상기 제2 표면으로부터 방출되는 상기 반응 입자들의 적어도 일부를 검출하는 단계를 포함하는 방법.
  21. 청구항 1 내지 20 중 어느 한 항에 있어서, 상기 제1 표면은 상기 압력관의 내부 표면을 포함하는 방법.
  22. 청구항 1 내지 21 중 어느 한 항에 있어서, 상기 원자로는 가압 중수로(pressurized heavy-water reactor)를 포함하는 방법.
  23. 원자로용 압력관의 벽을 검정하기 위한 시스템으로서, 상기 벽은 기질 물질 및 중수소 핵들을 가지며, 상기 시스템은:
    a) 상기 벽에 근접하게 위치할 수 있는 이동식 n-감마 방사체로서, 중성자 선속을 받을 때 n-감마 반응을 통해 감마선을 방출하도록, 그리고 상기 중수소 핵들의 광분해를 유도하기 위해 상기 기질 물질로 상기 감마선을 투사하며, 이에 의해 상기 핵들의 반응 입자들이 상기 벽으로부터 방출되도록 구성되는, 상기 방사체; 및
    b) 상기 벽에 근접하게 위치할 수 있는 이동식 입자 검출기로서, 상기 벽으로부터 방출되는 상기 반응 입자들의 적어도 일부를 검출하도록, 그리고 상기 반응 입자들의 검출에 반응하여 입자 신호들을 생성하도록 구성되는, 상기 검출기를 포함하는 시스템.
  24. 청구항 23에 있어서, 상기 기질 물질은 지르코늄 합금을 포함하는 시스템.
  25. 청구항 24에 있어서, 상기 지르코늄 합금은 지르칼로이-2 및 Zr-2.5Nb 중 적어도 하나를 포함하는 시스템.
  26. 청구항 23 내지 25 중 어느 한 항에 있어서, 상기 중성자 선속은 열 중성자 선속을 포함하는 시스템.
  27. 청구항 23 내지 26 중 어느 한 항에 있어서, 상기 방사체는 2 barn 이상의 열 중성자 단면을 포함하는 시스템.
  28. 청구항 23 내지 27 중 어느 한 항에 있어서, 상기 방사체는 니켈을 포함하는 시스템.
  29. 청구항 23 내지 28 중 어느 한 항에 있어서, 상기 방사체는 니켈-58을 포함하는 시스템.
  30. 청구항 23 내지 29 중 어느 한 항에 있어서, 상기 중성자 선속은 상기 원자로의 노심의 주변 열 중성자 선속을 포함하는 시스템.
  31. 청구항 23 내지 30 중 어느 한 항에 있어서, 상기 방사체는 7.5 MeV 이상 에너지의 상기 감마선을 방출하도록 구성되는 시스템.
  32. 청구항 23 내지 31 중 어느 한 항에 있어서, 상기 반응 입자들은 양성자들을 포함하는 시스템.
  33. 청구항 32에 있어서, 상기 양성자들은 방출시 약 1 MeV 내지 약 3 MeV의 에너지를 갖는 시스템.
  34. 청구항 32 또는 33에 있어서, 상기 검출기는 양성자들의 상기 양성자 선속 방향으로 층 두께를 갖는 능동형 검출기 층을 포함하며, 상기 층은 대략 상기 능동형 검출기 층을 통한 상기 반응 입자들의 침투 거리 이하인 시스템.
  35. 청구항 34에 있어서, 상기 검출기 층은 실리콘을 포함하고 상기 층 두께는 대략 60 미크론 이하인 시스템.
  36. 청구항 23 내지 35 중 어느 한 항에 있어서, 상기 방사체는 상기 제1 표면을 통해 상기 기질 물질로 상기 감마선을 투사하기 위해 상기 벽의 상기 제1 표면에 인접하게 위치할 수 있고, 상기 검출기는 상기 제1 표면으로부터 방출되는 상기 반응 입자들의 적어도 일부를 검출하기 위해 상기 제1 표면에 인접하게 위치할 수 있는 시스템.
  37. 청구항 23 내지 35 중 어느 한 항에 있어서, 상기 방사체는 상기 제1 표면을 통해 상기 기질 물질로 상기 감마선을 투사하기 위해 상기 벽의 상기 제1 표면에 인접하게 위치할 수 있고, 상기 검출기는 제2 표면으로부터 방출되는 상기 반응 입자들의 적어도 일부를 검출하기 위해 상기 제1 표면에서 이격된 상기 벽의 상기 제2 표면에 인접하게 위치할 수 있는 시스템.
  38. 청구항 23 내지 37 중 어느 한 항에 있어서, 상기 입자 신호들에 기초하여 상기 벽의 속성을 결정하도록 구성된 프로세서를 더 포함하는 시스템.
  39. 청구항 38에 있어서, 상기 속성은 상기 기질 물질 내 중수소 핵들의 농도를 포함하는 시스템.
  40. 청구항 38 또는 39에 있어서, 상기 입자 신호들은 상기 입자 검출기에 의해 검출된 상기 반응 입자들의 수를 나타내는 시스템.
  41. 청구항 40에 있어서, 상기 프로세서는 상기 입자 검출기에 의해 검출된 상기 반응 입자들의 수를 소정의 기준값과 비교함으로써 상기 속성을 결정하도록 구성되는 시스템.
  42. 청구항 23 내지 41 중 어느 한 항에 있어서, 상기 방사체는 상기 벽의 내부 표면에 인접하게 위치할 수 있는 시스템.
  43. 청구항 23 내지 41 중 어느 한 항에 있어서, 상기 검출기는 상기 벽의 내부 표면에 인접하게 위치할 수 있는 시스템.
  44. 원자로 노심 내 원 위치에서 압력관의 벽에서의 중수소 핵들의 광분해를 유도하기 위한 n-감마 방사체.
  45. 청구항 44에 있어서, 상기 노심은 가압 중수로 노심을 포함하는 중수소 핵들의 광분해를 유도하기 위한 n-감마 방사체.
  46. 기질 물질 및 상기 기질 물질에 타겟 핵들을 갖는 객체를 검정하기 위한 방법으로서,
    a) n-감마 반응을 유도하기 위해 n-감마 방사체에 중성자 선속을 가하는 단계;
    b) 상기 타겟 핵들의 적어도 일부의 광분해를 유도하기 위해 상기 기질 물질로 단계 (a)에서 상기 방사체로부터 방출된 상기 감마선을 투사하는 단계로서, 이에 의해 상기 핵들의 반응 입자들이 상기 객체로부터 방출되는, 상기 감마선을 투사하는 단계;
    c) 입자 검출기를 사용하여 단계 (b)에서 상기 객체로부터 방출된 상기 반응 입자들의 적어도 일부를 검출하는 단계; 및
    d) 단계 (c)에서 상기 입자들을 검출하는 것에 반응하여 입자 신호들을 발생시키는 단계를 포함하는 방법.
  47. 청구항 46에 있어서, 상기 입자 신호들에 적어도 부분적으로 기초하여 상기 객체의 속성을 결정하는 단계를 더 포함하는 방법.
  48. 청구항 47에 있어서, 상기 속성은 상기 기질 물질 내 상기 타겟 핵들의 농도를 포함하는 방법.
  49. 청구항 47 또는 48에 있어서, 상기 입자 신호들은 단계 (c)에서 검출된 상기 반응 입자들의 수를 나타내는 방법.
  50. 청구항 49에 있어서, 상기 속성을 결정하는 단계는 단계 (c)에서 검출된 상기 반응 입자들의 수를 소정의 기준값과 비교하는 단계를 포함하는 방법.
  51. 청구항 46 내지 50 중 어느 한 항에 있어서, 상기 타겟 핵들은 중수소 핵들을 포함하는 방법.
  52. 청구항 46 내지 51 중 어느 한 항에 있어서, 상기 기질 물질은 금속을 포함하는 방법.
  53. 청구항 46 내지 52 중 어느 한 항에 있어서, 상기 기질 물질은 지르코늄 합금을 포함하는 방법.
  54. 청구항 53 있어서, 상기 지르코늄 합금은 지르칼로이-2 및 Zr-2.5Nb 중 적어도 하나를 포함하는 방법.
  55. 청구항 46 내지 54 중 어느 한 항에 있어서, 상기 중성자 선속은 열 중성자 선속을 포함하는 방법.
  56. 청구항 46 내지 55 중 어느 한 항에 있어서, 상기 방사체는 2 barn 이상의 열 중성자 단면을 포함하는 방법.
  57. 청구항 46 내지 56 중 어느 한 항에 있어서, 상기 방사체는 니켈을 포함하는 방법.
  58. 청구항 46 내지 57 중 어느 한 항에 있어서, 상기 방사체는 니켈-58을 포함하는 방법.
  59. 청구항 46 내지 58 중 어느 한 항에 있어서, 단계 (a)에서 투사되는 상기 감마선은 7.5 MeV 이상의 에너지를 갖는 방법.
  60. 청구항 46 내지 59 중 어느 한 항에 있어서, 상기 광분해는 감마-p 반응을 포함하고, 상기 반응 입자들은 양성자들을 포함하는 방법.
  61. 청구항 60에 있어서, 상기 양성자들은 방출시 약 1 MeV 내지 약 3 MeV의 에너지를 갖는 방법.
  62. 청구항 46 내지 61 중 어느 한 항에 있어서, 단계 (a) 이전에, 상기 객체의 제1 표면에 인접하게 상기 방사체를 위치시키는 단계, 그리고 단계 (b)에, 상기 제1 표면을 통해 상기 기질 물질로 상기 감마선을 투사하는 단계를 포함하고, 그리고 단계 (c)에, 상기 검출기를 상기 제1 표면에 근접하게 위치시키는 단계 및 상기 제1 표면으로부터 방출되는 상기 반응 입자들의 적어도 일부를 검출하는 단계를 더 포함하는 방법.
  63. 청구항 46 내지 61 중 어느 한 항에 있어서, 단계 (a) 이전에, 상기 객체의 제1 표면에 인접하게 상기 방사체를 위치시키는 단계, 그리고 단계 (b)에, 상기 제1 표면을 통해 상기 기질 물질로 상기 감마선을 투사하는 단계를 포함하고, 그리고 단계 (c)에, 상기 입자 검출기를 상기 제1 표면에서 이격된 상기 객체의 제2 표면에 근접하게 위치시키는 단계 및 상기 제2 표면으로부터 방출되는 입자들의 적어도 일부를 검출하는 단계를 더 포함하는 방법.
  64. 청구항 46 내지 63 중 어느 한 항에 있어서, 상기 객체는 원자로용 압력관의 벽을 포함하는 방법.
  65. 청구항 64에 있어서, 상기 압력관은 적어도 단계 (a) 내지 단계 (c)가 수행되는 동안 상기 원자로의 노심 내 원 위치에 있는 방법.
  66. 청구항 65에 있어서, 상기 방사체를 상기 노심 내에 위치시키는 단계를 더 포함하되, 상기 중성자 선속은 상기 노심의 주변 열 중성자 선속을 포함하는 방법.
  67. 기질 물질 및 상기 기질 물질에 중수소 핵들을 갖는 객체를 검정하기 위한 방법으로서,
    a) 상기 중수소 핵들의 적어도 일부의 광분해를 유도하기 위해 상기 기질 물질로 감마선을 투사하는 단계로서, 이에 의해 상기 중수소 핵들의 양성자들이 상기 객체로부터 방출되는, 상기 감마선을 투사하는 단계;
    b) 양성자 검출기를 사용하여 단계 (a)에서 상기 객체로부터 방출된 상기 양성자들의 적어도 일부를 검출하는 단계; 및
    c) 단계 (b)에서 상기 양성자들을 검출하는 것에 반응하여 입자 신호들을 발생시키는 단계를 포함하는 방법.
  68. 청구항 67에 있어서, 상기 입자 신호들에 적어도 부분적으로 기초하여 상기 객체의 속성을 결정하는 단계를 더 포함하는 방법.
  69. 청구항 68에 있어서, 상기 속성은 상기 기질 물질 내 상기 중수소 핵들의 농도를 포함하는 방법.
  70. 청구항 68 또는 69에 있어서, 상기 입자 신호들은 단계 (b)에서 검출된 상기 양성자들의 수를 나타내는 방법.
  71. 청구항 70에 있어서, 상기 속성을 결정하는 단계는 단계 (b)에서 검출된 상기 양성자들의 수를 소정의 기준값과 비교하는 단계를 포함하는 방법.
  72. 청구항 67 내지 71 중 어느 한 항에 있어서, 상기 기질 물질은 금속을 포함하는 방법.
  73. 청구항 67 내지 72 중 어느 한 항에 있어서, 상기 기질 물질은 지르코늄 합금을 포함하는 방법.
  74. 청구항 73에 있어서, 상기 지르코늄 합금은 지르칼로이-2 및 Zr-2.5Nb 중 적어도 하나를 포함하는 방법.
  75. 청구항 67 내지 74 중 어느 한 항에 있어서, 단계 (a) 이전에, n-감마 반응을 유도하기 위해 중성자 선속에 n-감마 방사체를 가하는 단계를 더 포함하며, 이에 의해 단계 (a)에서 투사된 상기 감마선이 상기 방사체로부터 방출되는 방법.
  76. 청구항 75에 있어서, 상기 중성자 선속은 열 중성자 선속을 포함하는 방법.
  77. 청구항 75 또는 76에 있어서, 상기 방사체는 2 barn 이상의 열 중성자 단면을 포함하는 방법.
  78. 청구항 75 내지 77 중 어느 한 항에 있어서, 상기 방사체는 니켈을 포함하는 방법.
  79. 청구항 75 내지 78 중 어느 한 항에 있어서, 상기 방사체는 니켈-58을 포함하는 방법.
  80. 청구항 67 내지 79 중 어느 한 항에 있어서, 단계 (a)에서 투사되는 상기 감마선은 7.5 MeV 이상의 에너지를 갖는 방법.
  81. 청구항 67 내지 80 중 어느 한 항에 있어서, 상기 양성자들은 방출시 약 1 MeV 내지 약 3 MeV의 에너지를 갖는 방법.
  82. 청구항 67 내지 81 중 어느 한 항에 있어서, 단계 (a)는 상기 객체의 제1 표면을 통해 상기 기질 물질로 상기 감마선을 투사하는 단계를 포함하고, 단계 (b)는 상기 검출기를 상기 제1 표면에 근접하게 위치시키는 단계 및 상기 제1 표면으로부터 방출되는 상기 양성자들의 적어도 일부를 검출하는 단계를 포함하는 방법.
  83. 청구항 67 내지 81 중 어느 한 항에 있어서, 단계 (a)는 상기 객체의 제1 표면을 통해 상기 기질 물질로 상기 감마선을 투사하는 단계를 포함하고, 단계 (b)는 상기 검출기를 상기 제1 표면에서 이격된 상기 객체의 제2 표면에 근접하게 위치시키는 단계 및 상기 제2 표면으로부터 방출되는 상기 양성자들의 적어도 일부를 검출하는 단계를 포함하는 방법.
  84. 청구항 67 내지 83 중 어느 한 항에 있어서, 상기 객체는 원자로용 압력관의 벽을 포함하는 방법.
  85. 청구항 84에 있어서, 상기 압력관은 적어도 단계 (a) 내지 단계 (b)가 수행되는 동안 상기 원자로의 노심 내 원 위치에 있는 방법.
  86. 금속성 기질 물질 및 상기 기질 물질에 타겟 핵들을 갖는 객체를 검정하기 위한 방법으로서,
    a) 상기 타겟 핵들의 적어도 일부의 광분해를 유도하기 위해 상기 금속성 기질 물질로 감마선을 투사하는 단계로서, 이에 의해 상기 핵들의 반응 입자들이 상기 객체로부터 방출되는, 상기 감마선을 투사하는 단계;
    b) 반응 입자 검출기를 사용하여 단계 (a)에서 상기 객체로부터 방출된 상기 반응 입자들의 적어도 일부를 검출하는 단계; 및
    c) 단계 (b)에서 상기 입자들을 검출하는 것에 반응하여 입자 신호들을 발생시키는 단계를 포함하는 방법.
  87. 청구항 86에 있어서, 상기 입자 신호들에 적어도 부분적으로 기초하여 상기 객체의 속성을 결정하는 단계를 더 포함하는 방법.
  88. 청구항 87에 있어서, 상기 속성은 상기 기질 물질 내 상기 타겟 핵들의 농도를 포함하는 방법.
  89. 청구항 87 또는 88에 있어서, 상기 입자 신호들은 단계 (b)에서 검출된 상기 반응 입자들의 수를 나타내는 방법.
  90. 청구항 89에 있어서, 상기 속성을 결정하는 단계는 단계 (b)에서 검출된 상기 반응 입자들의 수를 소정의 기준값과 비교하는 단계를 포함하는 방법.
  91. 청구항 86 내지 90 중 어느 한 항에 있어서, 상기 타겟 핵들은 중수소 핵들을 포함하는 방법.
  92. 청구항 86 내지 91 중 어느 한 항에 있어서, 상기 기질 물질은 지르코늄 합금을 포함하는 방법.
  93. 청구항 92에 있어서, 상기 지르코늄 합금은 지르칼로이-2 및 Zr-2.5Nb 중 적어도 하나를 포함하는 방법.
  94. 청구항 86 내지 93 중 어느 한 항에 있어서, 단계 (a) 이전에, n-감마 반응을 유도하기 위해 n-감마 방사체에 중성자 선속을 가하는 단계를 더 포함하며, 이에 의해 단계 (a)에서 투사된 상기 감마선이 상기 방사체로부터 방출되는 방법.
  95. 청구항 94에 있어서, 상기 중성자 선속은 열 중성자 선속을 포함하는 방법.
  96. 청구항 94 또는 95에 있어서, 상기 방사체는 2 barn 이상의 열 중성자 단면을 포함하는 방법.
  97. 청구항 94 내지 96 중 어느 한 항에 있어서, 상기 방사체는 니켈을 포함하는 방법.
  98. 청구항 94 내지 97 중 어느 한 항에 있어서, 상기 방사체는 니켈-58을 포함하는 방법.
  99. 청구항 86 내지 98 중 어느 한 항에 있어서, 단계 (a)에서 투사되는 상기 감마선은 7.5 MeV 이상의 에너지를 갖는 방법.
  100. 청구항 86 내지 99 중 어느 한 항에 있어서, 상기 광분해는 감마-p 반응을 포함하고, 상기 반응 입자들은 양성자들을 포함하는 방법.
  101. 청구항 100에 있어서, 상기 양성자들은 방출시 약 1 MeV 내지 약 3 MeV의 에너지를 갖는 방법.
  102. 청구항 86 내지 101 중 어느 한 항에 있어서, 단계 (a)는 상기 객체의 제1 표면을 통해 상기 금속성 기질 물질로 상기 감마선을 투사하는 단계를 포함하고, 단계 (b)는 상기 검출기를 상기 제1 표면에 근접하게 위치시키는 단계 및 상기 제1 표면으로부터 방출되는 상기 반응 입자들의 적어도 일부를 검출하는 단계를 포함하는 방법.
  103. 청구항 86 내지 101 중 어느 한 항에 있어서, 단계 (a)는 상기 객체의 제1 표면을 통해 상기 금속성 기질 물질로 상기 감마선을 투사하는 단계를 포함하고, 단계 (b)는 상기 검출기를 상기 제1 표면에서 이격된 상기 객체의 제2 표면에 근접하게 위치시키는 단계 및 상기 제2 표면으로부터 방출되는 상기 반응 입자들의 적어도 일부를 검출하는 단계를 포함하는 방법.
  104. 청구항 86 내지 103 중 어느 한 항에 있어서, 상기 객체는 원자로용 압력관의 벽을 포함하는 방법.
  105. 청구항 104에 있어서, 상기 압력관은 적어도 단계 (a) 내지 단계 (b)가 수행되는 동안 상기 원자로의 노심 내 원 위치에 있는 방법.
  106. 기질 물질 및 상기 기질 물질에 타겟 핵들을 갖는 객체를 검정하기 위한 시스템으로서,
    a) 중성자 선속을 받을 때 n-감마 반응을 통해 감마선을 방출하도록, 그리고 상기 타겟 핵들의 적어도 일부의 광분해를 유도하기 위해 상기 기질 물질로 상기 감마선을 투사하며, 이에 의해 상기 핵들의 반응 입자들이 상기 객체로부터 방출되도록 구성되는 n-감마 방사체; 및
    b) 상기 객체로부터 방출되는 상기 반응 입자들의 적어도 일부를 검출하도록, 그리고 상기 입자들의 검출에 반응하여 입자 신호들을 생성하도록 구성되는 입자 검출기를 포함하는 시스템.
  107. 청구항 106에 있어서, 상기 타겟 핵들은 중수소 핵들을 포함하는 시스템.
  108. 청구항 106 또는 107에 있어서, 상기 기질 물질은 금속을 포함하는 시스템.
  109. 청구항 106 내지 108 중 어느 한 항에 있어서, 상기 기질 물질은 지르코늄 합금을 포함하는 시스템.
  110. 청구항 109에 있어서, 상기 지르코늄 합금은 지르칼로이-2 및 Zr-2.5Nb 중 적어도 하나를 포함하는 시스템.
  111. 청구항 106 내지 110 중 어느 한 항에 있어서, 상기 중성자 선속은 열 중성자 선속을 포함하는 시스템.
  112. 청구항 106 내지 111 중 어느 한 항에 있어서, 상기 방사체는 2 barn 이상의 열 중성자 단면을 포함하는 시스템.
  113. 청구항 106 내지 112 중 어느 한 항에 있어서, 상기 방사체는 니켈을 포함하는 시스템.
  114. 청구항 106 내지 113 중 어느 한 항에 있어서, 상기 방사체는 니켈-58을 포함하는 시스템.
  115. 청구항 106 내지 114 중 어느 한 항에 있어서, 상기 방사체는 7.5 MeV 이상 에너지의 상기 감마선을 방출하도록 구성되는 시스템.
  116. 청구항 106 내지 115 중 어느 한 항에 있어서, 상기 광분해는 감마-p 반응을 포함하고, 상기 반응 입자들은 양성자들을 포함하는 시스템.
  117. 청구항 116에 있어서, 상기 양성자들은 방출시 약 1 MeV 내지 약 3 MeV의 에너지를 갖는 시스템.
  118. 청구항 106 내지 117 중 어느 한 항에 있어서, 상기 검출기는 반응 입자들의 상기 반응 입자 선속 방향으로 층 두께를 갖는 능동형 검출기 층을 포함하며, 상기 층은 대략 상기 능동형 검출기 층을 통한 상기 반응 입자들의 침투 거리 이하인 시스템.
  119. 청구항 118에 있어서, 상기 능동형 검출기 층은 실리콘을 포함하고 상기 층 두께는 대략 60 미크론 이하인 시스템.
  120. 청구항 106 내지 119 중 어느 한 항에 있어서, 상기 방사체는 상기 제1 표면을 통해 상기 기질 물질로 상기 감마선을 투사하기 위해 상기 객체의 상기 제1 표면에 근접하게 위치할 수 있고, 상기 검출기는 상기 제1 표면으로부터 방출되는 상기 반응 입자들의 적어도 일부를 검출하기 위해 상기 제1 표면에 근접하게 위치할 수 있는 시스템.
  121. 청구항 106 내지 119 중 어느 한 항에 있어서, 상기 방사체는 상기 제1 표면을 통해 상기 기질 물질로 상기 감마선을 투사하기 위해 상기 객체의 상기 제1 표면에 근접하게 위치할 수 있고, 상기 검출기는 제2 표면으로부터 방출되는 상기 반응 입자들의 적어도 일부를 검출하기 위해 상기 제1 표면에서 이격된 상기 객체의 상기 제2 표면에 근접하게 위치할 수 있는 시스템.
  122. 청구항 106 내지 121 중 어느 한 항에 있어서, 상기 입자 신호들에 기초하여 상기 객체의 속성을 결정하도록 구성된 프로세서를 더 포함하는 시스템.
  123. 청구항 122에 있어서, 상기 속성은 상기 기질 물질 내 상기 타겟 핵들의 농도를 포함하는 시스템.
  124. 청구항 122 또는 123에 있어서, 상기 입자 신호들은 상기 입자 검출기에 의해 검출된 상기 반응 입자들의 수를 나타내는 시스템.
  125. 청구항 124에 있어서, 상기 프로세서는 또한 상기 입자 검출기에 의해 검출된 상기 반응 입자들의 수를 소정의 기준값과 비교함으로써 상기 속성을 결정하도록 구성되는 시스템.
  126. 청구항 106 내지 125 중 어느 한 항에 있어서, 상기 중성자 선속을 만들어 내기 위한 중성자를 더 포함하는 시스템.
  127. 청구항 106 내지 126 중 어느 한 항에 있어서, 상기 객체는 원자로용 압력관의 벽을 포함하고, 상기 방사체 및 검출기는 상기 원자로의 노심 내 원 위치에서 상기 벽을 검정하도록 구성되는 시스템.
  128. 청구항 127에 있어서, 상기 중성자 선속은 상기 노심의 주변 열 중성자 선속을 포함하는 시스템.
KR1020180115925A 2017-09-29 2018-09-28 객체 분석 시스템 및 방법 KR102630584B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762565632P 2017-09-29 2017-09-29
US62/565,632 2017-09-29

Publications (2)

Publication Number Publication Date
KR20190038421A true KR20190038421A (ko) 2019-04-08
KR102630584B1 KR102630584B1 (ko) 2024-01-30

Family

ID=65897229

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180115925A KR102630584B1 (ko) 2017-09-29 2018-09-28 객체 분석 시스템 및 방법

Country Status (3)

Country Link
US (1) US11094422B2 (ko)
KR (1) KR102630584B1 (ko)
CA (1) CA3018475A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4980901A (en) * 1988-09-09 1990-12-25 The Titan Corporation Apparatus for and methods of detecting common explosive materials
US20090067574A1 (en) * 2007-09-12 2009-03-12 Pratt & Whitney Rocketdyne, Inc. Neutron-gamma ray tomography
KR20120069228A (ko) * 2010-12-20 2012-06-28 한국원자력연구원 극초단 레이저유도 고속중성자를 이용한 화합시료 분석을 위한 즉발 감마선 측정장치
JP2015523560A (ja) * 2012-06-01 2015-08-13 ラピスカン システムズ、インコーポレイテッド 物質識別のための飛行時間中性子検査方法及びシステム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6010257B2 (ja) * 1973-09-08 1985-03-15 正人 森田 同位元素の定量法
CA1274322C (en) 1987-11-23 1990-09-18 Walter E Muth SAMPLING ON A PRESSURE TUBE OF A REACTOR
US7563022B2 (en) 2003-11-28 2009-07-21 Ontario Power Generation Inc. Methods and apparatus for inspecting reactor pressure tubes
US7388369B2 (en) * 2004-11-30 2008-06-17 Electric Power Research Institute, Inc. Method and apparatus for measuring hydrogen concentration in zirconium alloy components in the fuel pool of a nuclear power plant

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4980901A (en) * 1988-09-09 1990-12-25 The Titan Corporation Apparatus for and methods of detecting common explosive materials
US20090067574A1 (en) * 2007-09-12 2009-03-12 Pratt & Whitney Rocketdyne, Inc. Neutron-gamma ray tomography
KR20120069228A (ko) * 2010-12-20 2012-06-28 한국원자력연구원 극초단 레이저유도 고속중성자를 이용한 화합시료 분석을 위한 즉발 감마선 측정장치
JP2015523560A (ja) * 2012-06-01 2015-08-13 ラピスカン システムズ、インコーポレイテッド 物質識別のための飛行時間中性子検査方法及びシステム

Also Published As

Publication number Publication date
CA3018475A1 (en) 2019-03-29
US20190103196A1 (en) 2019-04-04
KR102630584B1 (ko) 2024-01-30
US11094422B2 (en) 2021-08-17

Similar Documents

Publication Publication Date Title
CN111801571B (zh) 用于基于中子活化进行多元素分析的方法和装置、以及用途
US20100046690A1 (en) Apparatus and Method for Detection of Fissile Material Using Active Interrogation
Lindstrom et al. Prompt gamma neutron activation analysis (PGAA): recent developments and applications
US11742101B2 (en) System and method for stand-off monitoring of nuclear reactors using neutron detection
Chatzidakis et al. Analysis of spent nuclear fuel imaging using multiple coulomb scattering of cosmic muons
US20130208843A1 (en) Neutron activation analysis using a standardized sample container for determining the neutron flux
EP2891880B1 (en) Nuclear material detection device and nuclear material detection method
Frosio et al. A new gamma spectroscopy methodology based on probabilistic uncertainty estimation and conservative approach
US5781602A (en) PGNAA system for non-invasively inspecting RPV weld metal in situ, to determine the presence and amount of trace embrittlement-enhancing element
Morichi et al. Developments and experiences of the CHANCE, MICADO and PREDIS projects in radioactive waste characterization
Cui et al. The epithermal neutron activation analysis of mineral ores driven by an electron linear accelerator-based photoneutron source
JPH10123070A (ja) 水素含有量分析装置
KR102630584B1 (ko) 객체 분석 시스템 및 방법
JPH09264984A (ja) 原子炉炉外計装装置およびその方法
Al-Bahi et al. Concept design of a PGNAA system for optimizing the performance of gravity separators
JP2008157763A (ja) 水分計測装置及び水分計測方法
Kiff et al. Using fast neutron signatures for improved UF6 cylinder enrichment measurements.
Enqvist Used fuel storage monitoring using helium-4 scintillation fast neutron detectors and neutron spectral analysis
n-TOF Collaboration Cross section measurements of 155,157 Gd (n, γ) induced by thermal and epithermal neutrons
Moss et al. Development of a portable active interrogation system for characterizing special nuclear material
Sepúlveda et al. LIATAN, a new laboratory for applied research at the Universidad Tecnológica Metropolitana
Al-Smairat et al. Determination of scale deposition in a flare line by neutron back-diffusion
King et al. Simulation Of A Photofission‐Based Cargo Interrogation System
Hori et al. Non-destructive assay of nuclear materials using a self-indication method
Romodanov et al. Monitoring of 235 U content of fuel assemblies for nuclear reactors based on neutron and γ-ray scintillation detector systems

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant