KR20190037033A - 거리 측정 센서 조립체 및 그를 갖는 전자기기 - Google Patents

거리 측정 센서 조립체 및 그를 갖는 전자기기 Download PDF

Info

Publication number
KR20190037033A
KR20190037033A KR1020170126627A KR20170126627A KR20190037033A KR 20190037033 A KR20190037033 A KR 20190037033A KR 1020170126627 A KR1020170126627 A KR 1020170126627A KR 20170126627 A KR20170126627 A KR 20170126627A KR 20190037033 A KR20190037033 A KR 20190037033A
Authority
KR
South Korea
Prior art keywords
light
lens
reflector
distance
sensor assembly
Prior art date
Application number
KR1020170126627A
Other languages
English (en)
Inventor
이승수
임원규
홍경의
남이현
이근원
Original Assignee
크루셜텍 (주)
모스탑주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 크루셜텍 (주), 모스탑주식회사 filed Critical 크루셜텍 (주)
Priority to KR1020170126627A priority Critical patent/KR20190037033A/ko
Priority to PCT/KR2018/011495 priority patent/WO2019066527A2/ko
Priority to US16/645,972 priority patent/US20200278424A1/en
Priority to CN201890001209.1U priority patent/CN211740119U/zh
Publication of KR20190037033A publication Critical patent/KR20190037033A/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4816Constructional features, e.g. arrangements of optical elements of receivers alone
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B2003/0093Simple or compound lenses characterised by the shape

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

본 발명의 일실시예는 상부에 개방홀이 형성된 하우징; 상기 하우징의 내부에 구비되되 상기 개방홀과 얼라인을 이루며 대상물을 향해 광을 조사하는 발광부와, 상기 발광부와 이웃하게 배치되는 수광부를 갖는 센서 모듈; 상기 하우징의 상부에 구비되되 상기 개방홀과 이격되고, 상기 대상물로부터 반사되는 광이 유입되는 수신부; 상기 수신부의 하부에 구비되며 상기 수신부로부터 유입된 광을 굴절시키는 렌즈; 및 상기 렌즈와 결합되며 상기 렌즈로부터 전달된 광을 상기 수광부로 안내하는 광도파로부를 포함하는 거리 측정 센서 조립체 및 그를 갖는 전자기기를 제공한다.

Description

거리 측정 센서 조립체 및 그를 갖는 전자기기{DISTANCE MEASURING SENSOR ASSEMBLY AND ELECTRONIC EQUIPMENT HAVING THE SAME}
본 발명은 거리 측정 센서 조립체 및 그를 갖는 전자기기에 관한 것으로, 보다 상세하게는 거리 측정의 정확성을 높인 TOF 측정법이 이용된 거리 측정 센서 조립체 및 그를 갖는 전자기기에 관한 것이다.
거리 측정 센서는 2지점 간의 거리를 측정하는 기기이다.
이러한 거리 측정 센서는 초음파를 이용하여 거리를 측정하는 초음파식 거리 측정 센서와 광원을 이용하여 거리를 측정하는 광학식 거리 측정 센서가 있다.
먼저, 초음파식 거리 측정 센서는 대상물을 향해 초음파를 송신한 후, 대상물로부터 반사되는 반사파의 수신을 통해 대상물의 거리를 측정하게 된다. 그러나 이러한 초음파식 거리 측정 센서는 대상물이 스펀지나 스치로폼 같은 흡음재로 이루어진 경우, 대상물에 대한 거리 측정이 이루어지지 못하는 문제가 있다.
다음으로 광학식 거리 측정 센서는 적외선 또는 자연광 등의 다양한 광원을 이용하여 2지점 간의 거리를 측정하게 된다.
이러한 광학식 거리 측정 센서는 측정 방법에 따라 크게 2가지로 나뉠 수 있다. 구체적으로, 대상물의 거리 변화에 따른 초점거리의 이동을 계산하여 거리를 측정하는 삼각 측정법과 대상물을 향해 광을 조사한 후 반사되어 돌아오는 시간을 계산하여 거리를 측정하는 TOF(Time Of Flight) 측정법이 있다.
도 1은 종래의 삼각 측정법이 이용된 광학식 거리 측정 센서를 보여주는 예시도이다.
도 1을 참고하면, 삼각 측정법이 이용된 광학식 거리 측정 센서(10)는 발광부(11), 제1 렌즈(12), 제2 렌즈(13) 및 수광부(14)를 포함한다.
발광부(11)는 대상물(T)을 향해 광을 조사하도록 이루어진다. 이러한 발광부(11)로부터 조사되는 광은 제1 렌즈(12)를 투과한 후, 대상물(T)로 조사된다.
수광부(14)는 대상물(T)로부터 반사되어 되돌아오는 광을 받아들이도록 이루어진다. 이때, 제2 렌즈(13)는 대상물(T)로부터 반사되는 광을 수광부(14)로 안내하게 된다.
여기서 발광부(11)와 대상물(T) 간에 거리 변동이 이루어지면, 제2 렌즈(13)로 안내되는 광의 경로는 달라지게 되고, 그에 따른 초점거리가 이동하게 된다. 이와 같이, 광학식 거리 측정 센서(10)는 초점거리의 이동을 계산하여 대상물(T)의 거리를 측정한다.
그러나 이러한 삼각 측정법이 이용된 광학식 거리 측정 센서(10)는 광학 시스템의 구조가 복잡하고, 외란광에 취약한 문제가 있다.
도 2는 종래의 TOF 측정법이 이용된 광학식 거리 측정 센서를 보여주는 예시도이다.
도 2를 참고하면, TOF 측정법이 이용된 광학식 거리 측정 센서(20)는 발광부(21)와 수광부(22)를 포함한다. 이러한 광학식 거리 측정 센서(20)는 발광부(21)로부터 조사된 광이 대상물(T)로부터 반사되어 수광부(22)로 안내되는 시간을 계산하여 대상물(T)의 거리를 측정하게 된다.
이와 같은, TOF 측정법이 이용된 광학식 거리 측정 센서(20)는 소형화가 가능하여 로봇 청소기, 냉장고 등의 다양한 전자기기에 적용 가능하다.
그러나 TOF 측정법이 이용된 광학식 거리 측정 센서(20)는 발광부(21)와 수광부(22)가 이웃하게 배치된 구조로, 거리 측정시 오류가 자주 발생되는 문제가 있다.
예를 들어, 로봇 청소기에 광학식 거리 측정 센서(20)가 장착된 경우, 발광부(21)로부터 조사된 광은 광학식 거리 측정 센서(20)를 외부로부터 보호하는 투시창(미도시)을 투과한 후 대상물(T)로 조사된다. 그러나 발광부(21)와 이웃하게 배치된 수광부(22)는 대상물(T)로부터 반사된 광이 아닌 투시창으로부터 반사되는 광을 받아들이게 되어 대상물의 거리 측정시 오류가 발생되는 문제가 있다. 따라서, 대상물(T)에 대한 정확한 거리 측정이 이루어지지 못하는 문제가 있다.
상기와 같은 문제점을 해결하기 위한 본 발명의 기술적 과제는, 거리 측정의 정확성을 높인 TOF 측정법이 이용된 거리 측정 센서 조립체 및 그를 갖는 전자기기를 제공하는 것이다.
상기 기술적 과제를 달성하기 위하여, 본 발명의 일실시예는 상부에 개방홀이 형성된 하우징; 상기 하우징의 내부에 구비되되 상기 개방홀과 얼라인을 이루며 대상물을 향해 광을 조사하는 발광부와, 상기 발광부와 이웃하게 배치되는 수광부를 갖는 센서 모듈; 상기 하우징의 상부에 구비되되 상기 개방홀과 이격되고, 상기 대상물로부터 반사되는 광이 유입되는 수신부; 상기 수신부의 하부에 구비되며 상기 수신부로부터 유입된 광을 굴절시키는 렌즈; 및 상기 렌즈와 결합되며 상기 렌즈로부터 전달된 광을 상기 수광부로 안내하는 광도파로부를 포함하는 거리 측정 센서 조립체를 제공한다.
본 발명의 일실시예에 있어서, 상기 렌즈의 상면은 상기 개방홀 방향으로 갈수록 상방으로 경사를 이루게 된다.
본 발명의 일실시예에 있어서, 상기 렌즈는 구면 렌즈 또는 비구면 렌즈로 이루어진다.
본 발명의 일실시예에 있어서, 상기 렌즈는 원기둥 렌즈로 이루어진다.
본 발명의 일실시예에 있어서, 상기 광도파로부의 내측면은 전반사(total reflection)가 가능하도록 이루어진다.
본 발명의 일실시예에 있어서, 상기 렌즈와 광도파로부는 상기 수신부로 유입된 광을 상기 수광부에 집속(focusing)하도록 이루어진다.
본 발명의 일실시예에 있어서, 상기 광도파로부는, 외형을 이루며, 내부에는 광이 이동되는 경로부가 형성된 몸체부; 상기 몸체부의 일측에 구비되며, 상기 렌즈로부터 전달된 광을 반사시키는 제1 반사부; 및 상기 몸체부의 타측에 구비되며, 상기 제1 반사부와 마주보도록 이루어져 상기 제1 반사부로부터 반사된 광을 상기 수광부로 전달하는 제2 반사부를 포함한다.
본 발명의 일실시예에 있어서, 상기 제1 반사부는 상기 렌즈의 하부에 구비되되, 상기 렌즈로부터 전달된 광을 상기 제2 반사부로 반사시키도록 이루어진다.
본 발명의 일실시예에 있어서, 상기 제1 반사부와 제2 반사부는 오목한 원기둥 형태로 이루어지고, 상기 제1 반사부와 제2 반사부로부터 형성되는 각각의 초점선은 상기 수광부에서 서로 직교되어 초점을 형성하게 된다.
본 발명의 일실시예에 있어서, 상기 제1 반사부로부터 상기 제2 반사부까지의 거리와 상기 제2 반사부로부터 상기 수광부까지의 거리는 하기의 식(1) 및 식(2)의 관계로 이루어진다. 0.8×f1 ≤ d1+d2 ≤ 1.2×f1 … 식(1), 0.8×f2 ≤ d2 ≤ 1.2×f2 … 식(2) [ 제1 반사부의 초점거리는 f1, 제 2 반사부의 초점거리는 f2, 제1 반사부로부터 제2 반사부까지의 거리는 d1, 제2 반사부로부터 수광부까지의 거리는 d2 ]
본 발명의 일실시예에 있어서, 상기 제1 반사부와 제2 반사부는 구면 또는 비구면의 형상으로 이루어진다.
본 발명의 일실시예에 있어서, 상기 몸체부는 상기 제1 반사부로부터 상기 제2 반사부로 갈수록 폭이 좁아진다.
본 발명의 일실시예는 거리 측정 센서 조립체가 구비된 전자기기를 제공한다.
상기에서 설명한 본 발명에 따른 거리 측정 센서 조립체 및 그를 갖는 전자기기의 효과를 설명하면 다음과 같다.
본 발명에 따르면, 수신부는 개방홀로부터 미리 정해진 거리로 이격되어, 개방홀로부터 미리 정해진 거리 범위 내에 존재하는 물체로부터 반사되는 광이 수신부로 안내되는 것을 방지하게 된다.
예로, 거리 측정 센서 조립체가 로봇 청소기에 장착된 경우, 거리 측정 센서 조립체는 수신부와 개방홀이 미리 정해진 간격으로 이격 배치됨에 따라 투시창으로부터 반사되는 광이 수신부로 안내되는 것을 방지하게 된다. 따라서, 거리 측정 센서 조립체는 대상물에 대한 정확한 거리 측정이 이루어질 수 있다.
본 발명에 따르면, 렌즈와 광도파로부는 수신부로 유입된 광을 집속하여 수광부로 전달하도록 이루어진다. 즉, 렌즈와 광도파로부는 수신부로 유입된 광의 초점이 수광부에 형성되도록 수신부로 유입된 광을 집속하게 된다. 따라서, 거리 측정 센서 조립체는 대상물에 대한 정확한 거리 측정이 이루어질 수 있다. 여기서 광도파로부에는 제1 반사부와 제2 반사부가 구비되어 수신부로 유입된 광은 수광부에 효과적으로 집속될 수 있다.
또한, 제1 반사부와 제2 반사부가 구비된 광도파로부는 전반사가 가능하도록 이루어져, 수신부로 유입된 광은 광 손실이 최소화된 상태로 수광부로 전달될 수 있다. 그리고 광도파로부는 제1 반사부를 기준으로 제2 반사부로 갈수록 폭이 좁아지도록 이루어져 수광부로 전달되는 광의 집속 효율을 높일 수 있다. 따라서, 거리 측정 센서 조립체는 대상물에 대한 정확한 거리 측정이 이루어질 수 있다.
본 발명의 효과는 상기한 효과로 한정되는 것은 아니며, 본 발명의 상세한 설명 또는 특허청구범위에 기재된 발명의 구성으로부터 추론가능한 모든 효과를 포함하는 것으로 이해되어야 한다.
도 1은 종래의 삼각 측정법이 이용된 광학식 거리 측정 센서를 보여주는 예시도이다.
도 2는 종래의 TOF 측정법이 이용된 광학식 거리 측정 센서를 보여주는 예시도이다.
도 3은 본 발명의 제1 실시예에 따른 거리 측정 센서 조립체의 사시도이다.
도 4는 본 발명의 제1 실시예에 따른 거리 측정 센서 조립체의 개략적인 예시도이다.
도 5는 본 발명의 제1 실시예에 따른 광도파로부를 상부에서 바라본 예시도이다.
도 6은 본 발명의 제1 실시예에 따른 거리 측정 센서 조립체의 작동 상태도이다.
도 7은 본 발명의 제2 실시예에 따른 거리 측정 센서 조립체의 작동 상태도이다.
도 8은 본 발명의 제3 실시예에 따른 거리 측정 센서 조립체의 작동 상태도이다.
도 9는 본 발명의 제4 실시예에 따른 거리 측정 센서 조립체의 작동 상태도이다.
도 10은 본 발명의 제4 실시예에 따른 광축 방향을 따라 안내되는 각 지점에서의 광의 횡단면을 개략적으로 보여주는 예시도이다.
도 11은 본 발명의 제5 실시예에 따른 거리 측정 센서 조립체의 개략적인 예시도이다.
도 12는 본 발명의 제5 실시예에 따른 발산각 조절렌즈의 사시도이다.
도 13은 본 발명의 제5 실시예에 따른 제1 반사부를 보여주는 개략적인 사시도이다.
도 14는 본 발명의 제5 실시예에 따른 수신부로 유입되는 광을 보여주는 시뮬레이션이다.
도 15는 본 발명의 제5 실시예에 따른 거리 측정 센서 조립체가 설치된 대상물 측정 장치를 보여주는 예시도이다.
이하에서는 첨부한 도면을 참조하여 본 발명을 설명하기로 한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며, 따라서 여기에서 설명하는 실시예로 한정되는 것은 아니다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 부재를 사이에 두고 "간접적으로 연결"되어 있는 경우도 포함한다. 또한 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 구비할 수 있다는 것을 의미한다.
이하 첨부된 도면을 참고하여 본 발명의 실시예를 상세히 설명하기로 한다.
도 3은 본 발명의 제1 실시예에 따른 거리 측정 센서 조립체의 사시도이고, 도 4는 본 발명의 제1 실시예에 따른 거리 측정 센서 조립체의 개략적인 예시도이며, 도 5는 본 발명의 제1 실시예에 따른 광도파로부를 상부에서 바라본 예시도이고, 도 6은 본 발명의 제1 실시예에 따른 거리 측정 센서 조립체의 작동 상태도이다.
도 3 내지 도 6에서 보는 바와 같이, 거리 측정 센서 조립체(1000)는 하우징(100), 센서 모듈(300), 수신부(400), 렌즈(500) 및 광도파로부(600)를 포함한다.
하우징(100)은 거리 측정 센서 조립체(1000)의 외형을 이룬다. 이러한 하우징(100)의 내부에는 센서 모듈(300), 렌즈(500) 및 광도파로부(600)가 구비되며, 하우징(100)은 내부에 구비된 다양한 구성들을 외부로부터 보호하게 된다.
이러한 하우징(100)의 양측에는 결합부(110)가 구비되며, 결합부(110)에는 결합홀(111)이 형성된다. 따라서, 작업자는 볼트 등의 결합부재를 이용하여 거리 측정 센서 조립체(1000)를 다양한 전자기기에 결합할 수 있다. 이와 같은, 하우징(100)은 금속 또는 합성수지 등 다양한 소재로 이루어질 수 있다.
이러한 하우징(100)의 상면에는 개방홀(120)이 형성되며, 개방홀(120)은 발광부(310)와 얼라인(align)을 이루게 된다. 이때, 개방홀(120)은 발광부(310)로부터 대상물(T)로 조사되는 광이 차단되지 않도록 하우징(100)에 형성된다.
그리고 개방홀(120)의 하부에는 광안내홀(130)이 형성된다. 여기서 광안내홀(130)과 개방홀(120)은 연통 형성되어, 발광부(310)로부터 조사된 광은 광안내홀(130)과 개방홀(120)을 통해 대상물(T)로 조사될 수 있다.
이와 같은 광안내홀(130)은 발광부(310)로부터 조사된 광이 수광부(320)로 직접 전달되는 것을 차단하도록 이루어진다.
이러한 거리 측정 센서 조립체(1000)는 다양한 전자기기에 장착될 수 있으며, 설명의 편의를 위해 후술될 전자기기는 로봇 청소기를 일예로 설명하기로 한다.
한편, 하우징(100)의 상면에는 개방홀(120)로부터 미리 정해진 길이로 이격된 제2 안착부(140)가 형성된다. 이러한 제2 안착부(140)에는 수신부(400)가 안착 결합되어, 대상물(T)로부터 반사된 광은 수신부(400)를 통해 광도파로부(600)로 전달될 수 있다.
여기서 수신부(400)는 개방홀(120)로부터 미리 정해진 길이로 이격됨에 따라 개방홀(120)로부터 일정 범위에 존재하는 물체로부터 반사되는 광이 수신부(400)로 유입되는 것이 방지될 수 있다. 예를 들면, 수신부(400)는 로봇 청소기에 구비된 투시창(W)으로부터 반사되는 광이 수신부(400)로 유입되지 않도록 하우징(100)에 배치된다.
렌즈(500)는 수신부(400)의 하부에 구비된다.
그리고 렌즈(500)의 상면은 개방홀(120) 방향으로 갈수록 상방으로 경사를 이루게 된다. 따라서, 수신부(400)로부터 유입된 광은 렌즈(500)로 투과되되, 렌즈(500)의 하부에 구비된 광도파로부(600)로 굴절된다. 여기서 렌즈(500)는 광의 굴절을 통해 방향만 전환시킬 뿐 광을 집속시키지는 않도록 이루어진다. 이러한 렌즈(500)는 수신부(400)와 일체로 결합되도록 이루어질 수도 있음은 물론이다.
여기서 렌즈(500)는 특정 파장의 광만을 선택적으로 투과시킬 수도 있다. 예로, 렌즈(500)는 적외선(IR, Infra-Red)만을 선택적으로 투과시킬 수도 있다. 이 경우, 발광부(310)는 대상물(T)을 향해 적외선을 조사하고, 수광부(320)는 대상물(T)로부터 반사된 적외선만을 수광하여 대상물(T)의 거리를 측정하게 된다. 이러한 경우, 거리 측정 센서 조립체(1000)는 외란 광에 의한 영향이 최소화될 수 있다.
한편, 광도파로부(600)의 일단부는 렌즈(500)와 결합되며, 광도파로부(600)의 내측면은 전반사가 가능하도록 이루어진다. 여기서 전반사(total reflection)는 굴절률이 큰 매질로부터 굴절률이 작은 매질로 광이 진행할 때, 입사각이 임계각보다 클 경우, 경계면에서 100% 반사가 이루어지는 것을 의미하며, 이와 같이 광도파로부(600)는 수신부(400)를 통해 유입된 광에 대한 전반사가 가능하도록 이루어짐에 따라 수신부(400)로 유입된 광은 광의 손실이 최소화된 상태로 수광부(320)로 전달될 수 있다. 이때, 광도파로부(600)는 특정 파장의 광만을 선택적으로 반사시키도록 이루어질 수도 있음은 물론이다.
이러한 광도파로부(600)는 몸체부(610), 제1 반사부(620) 및 제2 반사부(630)를 포함한다. 몸체부(610)는 광도파로부(600)의 외형을 이루며, 내부에는 광이 이동되는 경로부(611)가 형성된다. 여기서 몸체부(610)의 내측면은 전반사가 가능하도록 이루어진다.
그리고 몸체부(610)는 제1 반사부(620)로부터 제2 반사부(630)로 갈수록 폭이 좁아지도록 이루어진다. 따라서, 광도파로부(600)는 수광부(320)로 안내되는 광의 집속 효율을 높일 수 있다.
제1 반사부(620)는 몸체부(610)의 일측에 구비된다. 이러한 제1 반사부(620)는 렌즈(500)로부터 전달된 광을 제2 반사부(630)로 안내하도록 이루어진다. 이때, 제1 반사부(620)는 렌즈(500)의 하측에 구비되되, 하방으로 갈수록 센서 모듈(300)이 배치된 방향으로 경사를 이루게 된다. 따라서, 렌즈(500)로부터 제1 반사부(500)로 전달된 광은 제2 반사부(630)로 반사될 수 있다.
제2 반사부(630)는 몸체부(610)의 타측에 구비되며, 제1 반사부(620)와 마주보도록 이루어진다. 이러한 제2 반사부(630)는 제1 반사부(620)로부터 전달된 광을 수광부(320)로 안내하게 된다.
여기서 제1 반사부(620)와 제2 반사부(630)는 렌즈(500)로부터 전달된 광이 수광부(320)에서 초점(focus)을 형성하도록 다양한 형상으로 이루어질 수 있다. 예를 들어, 제1 반사부(620)의 반사면은 구면의 형상으로 이루어지고, 제2 반사부(630)의 반사면은 평면으로 이루어질 수도 있다. 이 경우, 구면의 형상으로 이루어진 제1 반사부(620)는 렌즈(500)로부터 전달되는 광을 집속시키게 된다. 이후로, 설명의 편의를 위해 렌즈(500), 제1 반사부(620) 및 제2 반사부(630)를 경유하는 광축(A)을 기준으로 설명하기로 한다.
이와 같이, 제1 반사부(620)는 렌즈(500)로부터 전달되는 광이 수광부(320)에서 초점을 형성하도록 구면의 형상으로 이루어질 수 있다.
또는, 제1 반사부(620)와 제2 반사부(630)는 모두 구면의 형상으로 이루어질 수도 있다. 이 경우에는 렌즈(500)로부터 전달되는 광은 제1 반사부(620)에서 1차 집속이 이루어지고, 제2 반사부(630)에서 2차 집속이 이루어져, 수광부(320)에서 광의 초점이 형성되도록 제1 반사부(620)와 제2 반사부(630)는 형상이 조절이 이루어질 수 있다.
이외에도 제1 반사부(620)와 제2 반사부(630)는 비구면의 형상으로 이루어져 렌즈(500)로부터 전달되는 광이 수광부(320)에서 초점이 형성되도록 조정될 수도 있다. 여기서 비구면은 구면이 아닌 곡면을 총칭하는 것으로서, 포물면, 쌍곡면, 타원면 등의 차수가 2차 이상인 곡면이 될 수 있다.
이 밖에도 제1 반사부(620)와 제2 반사부(630)는 다양한 형상 조정을 통해 렌즈(500)로부터 전달되는 광이 수광부(320)에서 초점이 형성되도록 이루어질 수 있음은 물론이다.
한편, 센서 모듈(300)은 발광부(310), 수광부(320) 및 베이스 기판(330)을 포함한다.
발광부(310)는 개방홀(120)과 얼라인을 이루며 대상물(T)을 향해 광을 조사하도록 이루어진다.
수광부(320)는 발광부(310)와 이웃하게 배치되며, 발광부(310)로부터 대상물(T)로 조사된 반사광을 받아들여 대상물(T)의 거리를 측정하게 된다. 이러한 발광부(310)와 수광부(320)의 하부에는 베이스 기판(330)이 구비되고, 발광부(310)와 수광부(320)는 베이스 기판(330)과 전기적으로 연결된다.
이와 같은, 센서 모듈(300)은 TOF 방식으로 거리를 측정하는 센서 모듈일 수 있다. 즉, 센서 모듈(300)은 발광부(310)가 대상물(T)을 향해 광을 조사한 시간과 수광부(320)가 대상물(T)로부터 반사되는 광을 수광한 시간 정보를 통해 센서 모듈(300)로부터 대상물(T)까지의 거리를 측정하게 된다.
이러한 센서 모듈(300)에 구비된 발광부(310)와 수광부(320)는 베이스 기판(330) 상에 이웃하게 배치된다. 이는, 발광부(310)와 수광부(320)가 일정 거리 이상 떨어질 경우, 대상물(T)의 거리 측정 결과값이 실시간으로 제공되지 못하는 문제를 방지하기 위함이다.
이와 같이, 거리 측정 센서 조립체(1000)는 수신부(400)가 개방홀(120)로부터 이격 형성됨에 따라 미리 정해진 거리 범위 내에 존재하는 물체로부터 반사되는 광이 수신부(400)로 안내되는 것을 방지하게 된다. 따라서, 거리 측정 센서 조립체(1000)는 대상물(T)에 대한 정확한 거리 측정이 이루어질 수 있다.
도 7은 본 발명의 제2 실시예에 따른 거리 측정 센서 조립체의 작동 상태도로, 도 3 내지 도 6에 도시된 도면부호와 동일한 도면부호에 의해 지칭되는 구성들은 동일한 기능을 가지는 것으로서, 그들 각각에 대한 상세한 설명은 생략하기로 한다.
도 7에서 보는 바와 같이, 제2 실시예에 따른 거리 측정 센서 조립체(1100)는 제1 실시예에 따른 거리 측정 센서 조립체(1000)와 달리 렌즈(500')가 구면 렌즈로 이루어진다. 따라서, 렌즈(500')는 수신부(400)로부터 전달된 광을 집속하게 된다.
이때, 제1 반사부(620)와 제2 반사부(630)가 곡면이 아닌 평면으로 이루어진 경우, 렌즈(500')로부터 집속된 광은 수광부(320)에서 초점이 형성되도록 이루어진다.
이와 달리, 제1 반사부(620)와 제2 반사부(630)는 구면 또는 비구면의 형상으로 이루어질 수도 있다. 이 경우, 렌즈(500')는 수신부(400)로부터 전달되는 광에 대해 1차 집속이 이루어지고, 제1 반사부(620)는 렌즈(500')로부터 전달되는 광에 대해 2차 집속이 이루어지며, 제2 반사부(630)는 제1 반사부(620)로부터 전달되는 광에 대해 3차 집속이 이루어지게 된다.
이때, 렌즈(500'), 제1 반사부(620) 및 제2 반사부(630)는 수신부(400)로부터 전달된 광이 수광부(320)에서 초점이 형성되도록 이루어진다.
이러한 제1 반사부(620) 및 제2 반사부(630)는 구면 또는 비구면의 형상 이외에 다양한 형상을 이룰 수 있으며, 이 경우에도 수신부(400)로부터 전달된 광은 수광부(320)에서 초점이 형성되도록 이루어진다.
이와 같이, 렌즈(500'), 제1 반사부(620) 및 제2 반사부(630)는 다양한 형상 조절을 통해 수신부(400)로부터 전달된 광이 수광부(320)에서 초점이 형성되도록 이루어진다.
또한, 거리 측정 센서 조립체(1100)는 렌즈(500')가 비구면 렌즈로 이루어질 수도 있다. 이러한 경우, 비구면으로 이루어진 렌즈는 구면으로 이루어진 렌즈(500')와 비교할 때, 광의 집속이 달라질 수 있으나, 제1 반사부(620)와 제2 반사부(630)의 다양한 형상 조절을 통해 수신부(400)로부터 전달된 광이 수광부(320)에서 초점이 형성되도록 조정된다.
표 1은 본 발명에 따른 실시예와 비교예를 시뮬레이션한 결과표이다.
Figure pat00001
여기서 실시예와 비교예는 발광부(310)로부터 조사되는 광의 개수가 200 만개인 경우, 수광부(320)로 유입된 광의 개수를 측정한 실험 데이터이다.
이러한 표 1은 거리 측정 센서 조립체와 대상물(T)의 거리를 10cm, 20cm, 30cm 및 40cm로 조절한 상태에서 수광부(320)로 안내되는 광의 개수를 나타낸 것이다.
비교예는 광도파로부가 구비되지 않은 거리 측정 센서 조립체이고, 실시예 1은 본 발명의 제1 실시예에 따른 거리 측정 센서 조립체(1000)이며, 실시예 2는 본 발명의 제2 실시예에 따른 거리 측정 센서 조립체(1100)이다.
표 1에서 보는 바와 같이, 실시예 1과 실시예 2는 비교예에 비해 수광부(320)로 안내되는 광의 개수가 많은 것을 알 수 있다. 즉, 실시예 1과 실시예 2는 비교예에 비해 수광 성능이 우수한 것을 알 수 있다.
또한, 측정 센서 조립체로부터 대상물(T)까지의 거리가 20cm를 초과하는 경우, 실시예 2는 비교예 및 실시예 1보다 수광 성능이 우수한 것을 알 수 있다.
도 8은 본 발명의 제3 실시예에 따른 거리 측정 센서 조립체의 작동 상태도로, 도 3 내지 도 6에 도시된 도면부호와 동일한 도면부호에 의해 지칭되는 구성들은 동일한 기능을 가지는 것으로서, 그들 각각에 대한 상세한 설명은 생략하기로 한다.
도 8에서 보는 바와 같이, 제3 실시예에 따른 거리 측정 센서 조립체(1200)는 제1 실시예에 따른 거리 측정 센서 조립체(1000)와 달리 렌즈(500")가 원기둥 렌즈(cylindrical lens)로 이루어진다.
이러한 원기둥 렌즈는 원기둥의 축에 평행한 원기둥면을 굴절면으로 이용한 렌즈이다. 이와 같이, 렌즈(500")는 원기둥면으로 입사된 광을 원기둥축에 평행한 직선상에 광을 모으게 된다. 즉, 렌즈(500")는 초점선(focal line)을 형성하도록 이루어진다.
도 8의 (a)의 렌즈(500")는 렌즈(500")를 투과한 광에 대해 몸체부(610)의 폭 방향으로 초점선이 형성되도록 이루어진 형태이고, 도 8의 (b)의 렌즈(500")는 렌즈(500")를 투과한 광에 대해 몸체부(610)의 길이 방향으로 초점선이 형성되도록 이루어진 형태이다. 이와 같이, 렌즈(500")의 배치에 따라 렌즈(500")로부터 형성되는 초점선의 방향은 달라질 수 있다.
이러한 거리 측정 센서 조립체(1200)는 렌즈(500")의 배치에 따라 제1 반사부(620)와 제2 반사부(630)의 다양한 형상 조절을 통해 수신부(400)로부터 전달된 광을 수광부(320)에서 초점이 형성되도록 한다. 이와 같은, 렌즈(500"), 제1 반사부(620)와 제2 반사부(630)를 통해 수광부(320)에 초점을 형성하는 구체적인 내용은 상술된 바 생략하기로 한다.
도 9는 본 발명의 제4 실시예에 따른 거리 측정 센서 조립체의 작동 상태도이고, 도 10은 본 발명의 제4 실시예에 따른 광축 방향을 따라 안내되는 각 지점에서의 광의 횡단면을 개략적으로 보여주는 예시도로, 도 3 내지 도 6에 도시된 도면부호와 동일한 도면부호에 의해 지칭되는 구성들은 동일한 기능을 가지는 것으로서, 그들 각각에 대한 상세한 설명은 생략하기로 한다.
도 9와 도 10에서 보는 바와 같이, 제4 실시예에 따른 거리 측정 센서 조립체(1300)는 제1 반사부(620')와 제2 반사부(630')가 오목한 원기둥으로 형성된다.
여기서 렌즈(500)는 제1 실시예와 같이 렌즈(500)의 상면이 개방홀(120) 방향으로 갈수록 상방으로 경사를 이루는 렌즈를 일예로 설명하기로 한다. 이러한 렌즈(500)는 광을 굴절을 통해 방향만 전환시킬 뿐 광을 집속시키지는 않도록 이루어진다.
그리고 제1 반사부(620')와 제2 반사부(630')는 오목한 원기둥으로 이루어지나 크기에는 차이가 있다. 즉, 몸체부(610)는 제1 반사부(620')로부터 제2 반사부(630')로 갈수록 폭이 좁아지기에 제1 반사부(620')와 제2 반사부(630')의 크기는 다르다. 이때, 제1 반사부(620')와 제2 반사부(630')로부터 형성되는 각각의 초점선은 수광부(320)에서 형성되도록 이루어지되, 제1 반사부(620')와 제2 반사부(630')로부터 형성되는 각각의 초점선은 수광부(320)에서 서로 직교하도록 이루어진다. 따라서, 제1 반사부(620')와 제2 반사부(630')로부터 반사되는 광은 수광부(320)에서 초점이 형성될 수 있다.
다시 말해서, 제1 반사부(620')에 의해 수광부(320)에 형성되는 초점선의 길이는 제2 반사부(630')를 경유한 이후로 초점선의 길이가 점점 줄어들게 되어 수광부(320)에는 초점이 형성된다.
도 10을 참고하여 광축(A)을 따라 이동되는 광의 형태 변화를 개략적으로 살펴보기로 한다.
먼저, 렌즈(500)와 제1 반사부(620') 사이에 위치되는 광축(A)의 제1 지점(P1)에서의 광의 횡단면은 제1 X길이(x1)와 제1 Y길이(y1)를 갖게 된다.
다음으로, 제1 반사부(620')와 제2 반사부(630') 사이에 위치되는 제2 지점(P2)에서의 광의 횡단면은 제2 X길이(x2)와 제2 Y길이(y2)를 갖게 된다. 이때, 제2 Y길이(y2)는 제1 Y길이(y1)에 비해 길이가 짧아지게 되고, 제1 X길이(x1)와 제2 X길이(x2)는 길이에 변화가 없다. 즉, 제1 반사부(620')로부터 반사되는 광은 Y길이에 대해서만 광축(A)을 따라 집속된다. 이러한 제1 반사부(620')로부터 반사되는 광은 수광부(320)로 안내되기까지 Y길이에 대해서만 집속된다.
다음으로, 제2 반사부(630')와 수광부(320) 사이에 위치되는 제3 지점(P3)에서의 광의 횡단면은 제3 X길이(x3)와 제3 Y길이(y3)를 갖게 된다. 이때, 제3 X길이(x3)는 제2 X길이(x2)에 비해 길이가 짧아지게 된다. 여기서 제2 반사부(630')로부터 반사되는 광은 X길이에 대해서만 광축(A)을 따라 집속된다.
그리고 제3 Y길이(y3)는 제2 Y길이(y2)에 비해 길이가 짧아지게 된다. 이렇게 제3 Y길이(y3)가 제2 Y길이(y2)보다 짧아진 것은 제1 반사부(620')에 의한 집속이 이루어지기 때문이다.
이와 같이, 제2 반사부(630')로부터 수광부(320)로 안내되는 광은 광의 X길이와 Y길이가 함께 줄어들며, 수광부(320)에서 초점을 형성하게 된다.
다시 도 9를 참고하면, 거리 측정 센서 조립체(1300)는 하기의 식(1) 및 식(2)으로 이루어진다.
0.8×f1 ≤ d1+d2 ≤ 1.2×f1 … 식(1)
0.8×f2 ≤ d2 ≤ 1.2×f2 … 식(2)
[ 제1 반사부의 초점거리는 f1, 제 2 반사부의 초점거리는 f2, 제1 반사부로부터 제2 반사부까지의 거리는 d1, 제2 반사부로부터 수광부까지의 거리는 d2 ]
이와 같이, 제1 반사부(620')와 제2 반사부(630')에 의해 반사된 광은 수광부(320)에서 초점이 형성되도록 집속이 이루어진다. 이에, 수광부(320)에 집속되는 광량 및 광밀도는 증가하게 되어, 거리 측정 센서 조립체(1300)의 정확도는 향상될 수 있다.
바람직하게는, 거리 측정 센서 조립체(1300)는 하기의 식(3) 및 식(4)으로 이루어진다.
0.9×f1 ≤ d1+d2 ≤ 1.1×f1 … 식(3)
0.9×f2 ≤ d2 ≤ 1.1×f2 … 식(4)
[ 제1 반사부의 초점거리는 f1, 제 2 반사부의 초점거리는 f2, 제1 반사부로부터 제2 반사부까지의 거리는 d1, 제2 반사부로부터 수광부까지의 거리는 d2 ]
나아가, 보다 바람직하게는, 거리 측정 센서 조립체(1300)는 하기의 식(5) 및 식(6)으로 이루어진다.
f1 = d1+d2 … 식(5)
f2 = d2 … 식(6)
[ 제1 반사부의 초점거리는 f1, 제 2 반사부의 초점거리는 f2, 제1 반사부로부터 제2 반사부까지의 거리는 d1, 제2 반사부로부터 수광부까지의 거리는 d2 ]
이와 같이, 제1 반사부(620')와 제2 반사부(630')에 의해 반사된 광은 수광부(320)에서 초점으로 집속된다. 따라서, 제1 반사부(620')와 제2 반사부(630')를 포함하는 광도파로부(600)의 집광력은 최대화되어, 거리 측정 센서 조립체(1300)의 정확도는 향상될 수 있다.
표 2는 본 발명에 따른 제4 실시예와 비교예를 시뮬레이션한 결과표이다.
Figure pat00002
표 2는 발광부(310)로부터 조사된 광의 개수를 200 만개로 설정한 상태에서 수광부(320)로 유입된 광의 개수를 측정한 실험 데이터이다.
비교예는 광도파로부가 구비되지 않은 거리 측정 센서 조립체이고, 실시예는 본 발명의 제4 실시예에 따른 거리 측정 센서 조립체(1300)이다.
표 2에서 보는 바와 같이, 거리 측정 센서 조립체(1300)로부터 대상물(T)까지의 거리가 30cm인 경우, 제4 실시예에 따른 거리 측정 센서 조립체(1300)는 비교예에 비해 300%에 해당하는 개수의 광이 수광부(320)로 전달된 것을 알 수 있다.
그리고 거리 측정 센서 조립체(1300)로부터 대상물(T)까지의 거리가 40cm인 경우, 제4 실시예에 따른 거리 측정 센서 조립체(1300)는 비교예에 비해 266.7% 에 달하는 광이 수광부(320)로 전달된 것을 알 수 있다.
이와 같이, 제4 실시예에 따른 거리 측정 센서 조립체(1300)는 비교예에 비해 거리 측정 센서 조립체(1300)로부터 대상물(T)까지의 거리가 멀리 떨어져 있더라도 거리 측정의 정확도가 높은 것을 알 수 있다.
도 11은 본 발명의 제5 실시예에 따른 거리 측정 센서 조립체의 개략적인 예시도이고, 도 12는 본 발명의 제5 실시예에 따른 발산각 조절렌즈의 사시도이며, 도 13은 본 발명의 제5 실시예에 따른 제1 반사부를 보여주는 개략적인 사시도이고, 도 14는 본 발명의 제5 실시예에 따른 수신부로 유입되는 광을 보여주는 시뮬레이션으로, 도 3 내지 도 6에 도시된 도면부호와 동일한 도면부호에 의해 지칭되는 구성들은 동일한 기능을 가지는 것으로서, 그들 각각에 대한 상세한 설명은 생략하기로 한다.
도 11과 도 12에서 보는 바와 같이, 제5 실시예에 따른 거리 측정 센서 조립체(1400)는 개방홀(120)에 발산각 조절렌즈(200)가 구비된 형태이다.
이러한 발산각 조절렌즈(200)는 광 조절부재(210)와 발산각 조절부재(220)를 포함한다.
여기서 광 조절부재(210)는 발산각 조절렌즈(200)의 하부에 구비된다. 이와 같은, 광 조절부재(210)는 발광부(310)로부터 일정의 각도 범위로 퍼져나가는 광을 평행광으로 조정하게 된다. 이러한 광 조절부재(210)는 콜리메이터(collimator)일 수 있다.
그리고 발산각 조절부재(220)는 광 조절부재(210)의 상부에 구비된다.
이러한 발산각 조절부재(220)는 평행광으로 조사되는 광을 미리 정해진 각도 범위로 퍼트리게 된다. 구체적으로, 발산각 조절부재(220)의 상면에는 산과 골이 교대로 형성되어 있어, 평행광으로 조사되는 광은 발산각 조절부재(220)를 투과하면서 퍼져나가게 된다.
다시 말해서, 대상물(T)을 향해 조사되는 광은 발산각 조절부재(220)에 의해 광의 Y길이(y)가 제한된 상태에서 광의 X길이(x)로만 퍼져나갈 수 있다. 따라서, 거리 측정 센서 조립체(1400)는 요구되는 발산각 범위로 밝은 광을 조사하게 된다. 이에, 거리 측정 센서 조립체(1400)는 대상물(T)에 대한 정확한 거리 측정이 이루어질 수 있다.
제5 실시예에 따른 거리 측정 센서 조립체(1400)에는 오목한 원기둥 형태의 제1 반사부(620")가 구비된 것을 예로 설명하기로 한다.
도 13의 (a)는 제1 반사부(620")의 곡면각이 12°인 형태이고, 도 13의 (b)는 제1 반사부(620")의 곡면각이 6°인 형태이다. 즉, 대상물(T)을 향해 동일한 광이 조사되는 과정에서 제1 반사부(620")의 곡면각에 따라 대상물(T)로부터 반사되어 수신부(400)로 유입되는 광의 유입 각도는 달라지게 된다.
도 14는 제1 반사부(620")의 곡면각에 따른 수신부(400)로 유입되는 광을 보여주는 시뮬레이션이다. 도 14의 (a)는 제1 반사부(620")의 곡면각이 12°인 형태이고, 도 14의 (b)는 제1 반사부(620")의 곡면각이 6°인 형태이다.
도 14에서 보는 바와 같이, 제1 반사부(620")의 곡면각이 6°로 완만하게 형성된 경우는 제1 반사부(620")의 곡면각이 12°로 형성된 경우에 비해 대상물(T)로부터 반사되어 수신부(400)로 유입되는 광의 유입 각도가 큰 것을 알 수 있다. 이와 같이, 수신부(400)로 유입되는 광의 유입 각도는 제1 반사부(620")의 곡면각에 의해 선택적으로 조정될 수 있다.
이에 따라, 거리 측정 센서 조립체(1400)는 제1 반사부(620")의 곡면각 조정을 통해 넓은 각도 범위에 존재하는 대상물(T)의 거리를 측정하도록 이루어진 광각 모듈 형태 또는 멀리 떨어져 있는 대상물(T)의 거리를 측정하도록 이루어진 원거리 모듈 형태로 제조될 수 있다. 즉, 거리 측정 센서 조립체(1400)는 사용 목적에 따라 광각 모듈 형태 또는 원거리 모듈 형태로 제조될 수 있다.
이때, 거리 측정 센서 조립체(1400)는 제1 반사부(620") 이외에 렌즈(500), 제2 반사부(630) 및 광도파로부(600)의 형상 조정을 통해 측정하고자 하는 영역에 대한 시야각(FOV, Field of View) 조정이 이루어질 수도 있음은 물론이다.
도 15는 본 발명의 제5 실시예에 따른 거리 측정 센서 조립체가 설치된 대상물 측정 장치를 보여주는 예시도이다.
도 15를 참조하면, 대상물 측정 장치(800)는 측정 대상 설치부(810), 타켓 배치부(820) 및 타켓부(830)를 포함한다.
이러한 측정 대상 설치부(810)에는 거리 측정 센서 조립체(1400)가 설치된다. 이때, 거리 측정 센서 조립체(1400)의 발광부(310)는 대상물 측정 장치(800)의 센터 방향인 기준선(L)과 얼라인을 이루도록 배치된다.
그리고 타켓 배치부(820)는 측정 대상 설치부(810)로부터 미리 정해진 거리로 이격 배치된다. 예로, 타켓 배치부(820)는 측정 대상 설치부(810)로부터 10cm, 20cm, 30cm, 40cm 등의 다양한 거리로 이격 배치될 수 있다.
또한, 타켓 배치부(820)는 기준선(L)을 기준으로 시계 방향 또는 반시계 방향으로 일정의 각도 범위를 이룰 수 있다. 예로, 타켓 배치부(820)는 기준선(L)을 기준으로 -30°~ 30°의 각도 범위를 이룰 수 있다. 이러한 타켓 배치부(820)의 각도 범위는 반드시 -30°~ 30°의 각도 범위로 한정되지 않으며, 다양한 각도 범위를 이룰 수 있음은 물론이다.
한편, 타켓부(830)는 타켓 배치부(820)와 탈착 가능하도록 이루어진다. 이러한 타켓부(830)는 타켓 배치부(820)의 다양한 위치에 설치될 수 있다.
이에 따라, 거리 측정 센서 조립체(1400)는 타켓 배치부(820)의 다양한 위치에 설치되는 타켓부(830)를 대상물(T)로 인식하며 타켓부(830)의 거리를 측정하게 된다. 따라서, 사용자는 타켓부(830)의 위치 변경을 통해 거리 측정 센서 조립체(1400)의 측정 가능한 위치 및 거리 정보를 파악할 수 있다.
이러한 대상물 측정 장치(800)에 설치된 거리 측정 센서 조립체(1400)의 거리 측정 방법을 살펴보면, 먼저 타켓부(830)를 측정하고자 하는 위치에 배치한다. 예를 들면, 도 15에서의 타켓부(830)의 위치는 측정 대상 설치부(810)로부터 30cm 떨어지며, 20°의 각도 지점이 된다.
다음으로, 거리 측정 센서 조립체(1400)의 작동을 통해 타켓부(830)로부터 반사되어 수광부(320)로 수광되는 광량 값을 측정한다.
다음으로, 수광부(320)에서 측정된 광량 값을 통해 타켓부(830)에 대한 거리 측정 가능 여부를 판단한다.
표 3은 본 발명의 제5 실시예에 따른 거리 측정 센서 조립체에서 측정된 광량 값의 결과표이다.
Figure pat00003
표 3은 제1 반사부(620")의 곡면각이 6°로 이루어진 광각 모듈 형태의 거리 측정 센서 조립체(1400)와 제1 반사부(620")의 곡면각이 12°로 이루어진 원거리 모듈 형태의 거리 측정 센서 조립체(1400)를 대상으로 실험한 결과이다.
이러한 실험은 측정 대상 설치부(810)로부터 타켓 배치부(820)까지의 거리를 20cm와 30cm로 하되, 발산각의 각도는 -20°~ 20°의 각도 범위에서 이루어졌다.
이와 같은 실험을 통해 수광부(320)에서 측정되는 광량 값이 1 mW/sr 미만인 경우, 해당 위치의 대상물(T)에 대해서는 거리 측정 센서 조립체(1400)가 정확한 거리를 측정하지 못하는 것으로 판단한다.
표 3에서 보는 바와 같이, 광각 모듈 형태의 거리 측정 센서 조립체(1400)는 -20°~ 20°의 발산각의 각도 범위에서 모두 1 mW/sr 이상의 광량 값이 측정되었다. 즉, 광각 모듈 형태의 거리 측정 센서 조립체(1400)는 거리 측정 센서 조립체(1400)로부터 20cm ~ 30cm로 떨어지며, -20°~ 20°의 발산각의 각도 범위에 존재하는 대상물(T)에 대해서 정확한 거리 측정이 이루어지는 것을 알 수 있다.
한편, 원거리 모듈 형태의 거리 측정 센서 조립체(1400)는 거리 측정 센서 조립체(1400)로부터 20cm로 떨어지며, -20°와 20°의 발산각에 존재하는 대상물(T)에 대해서는 정확한 거리 측정이 이루어지지 않는 것을 알 수 있다.
또한, 원거리 모듈 형태의 거리 측정 센서 조립체(1400)는 거리 측정 센서 조립체(1400)로부터 30cm로 떨어지며, 발산각의 각도 범위가 -20°~ -15°, 15°~ 20°의 발산각의 각도 범위에 존재하는 대상물(T)에 대해서도 정확한 거리 측정이 이루어지지 않는 것을 알 수 있다.
그러나 발산각의 각도 범위가 -5°~ 5°인 센터 방향에 대해서 원거리 모듈 형태의 거리 측정 센서 조립체(1400)는 광각 모듈 형태의 거리 측정 센서 조립체(1400)보다 수광부(320)에서 측정되는 광량 값이 더 높은 것을 알 수 있다. 따라서, 원거리 모듈 형태의 거리 측정 센서 조립체(1400)는 거리 측정 센서 조립체(1400)로부터 멀리 떨어져 있는 대상물(T)의 거리 측정에 효과적이다.
이러한 본 발명의 다양한 실시예에 따른 거리 측정 센서 조립체는 로봇 청소기, 냉장고, 드론 등의 다양한 전자기기에 적용될 수 있다.
이와 같이, 상술된 본 발명의 거리 측정 센서 조립체는 바람직한 일실시예에 불과할 뿐, 본 발명의 권리 범위가 이러한 실시예의 기재 범위에 의하여 제한되는 것은 아니다.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.
본 발명의 범위는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
100: 하우징 200: 발산각 조절렌즈
300: 센서 모듈 310: 발광부
320: 수광부 400: 수신부
500, 500', 500": 렌즈 600: 광도파로부
620, 620': 제1 반사부 630, 630': 제2 반사부
1000, 1100, 1200, 1300, 1400: 거리 측정 센서 조립체

Claims (13)

  1. 상부에 개방홀이 형성된 하우징;
    상기 하우징의 내부에 구비되되 상기 개방홀과 얼라인을 이루며 대상물을 향해 광을 조사하는 발광부와, 상기 발광부와 이웃하게 배치되는 수광부를 갖는 센서 모듈;
    상기 하우징의 상부에 구비되되 상기 개방홀과 이격되고, 상기 대상물로부터 반사되는 광이 유입되는 수신부;
    상기 수신부의 하부에 구비되며 상기 수신부로부터 유입된 광을 굴절시키는 렌즈; 및
    상기 렌즈와 결합되며 상기 렌즈로부터 전달된 광을 상기 수광부로 안내하는 광도파로부를 포함하는 거리 측정 센서 조립체.
  2. 제1항에 있어서,
    상기 렌즈의 상면은 상기 개방홀 방향으로 갈수록 상방으로 경사를 이루는 것인 거리 측정 센서 조립체.
  3. 제1항에 있어서,
    상기 렌즈는 구면 렌즈 또는 비구면 렌즈로 이루어진 것인 거리 측정 센서 조립체.
  4. 제1항에 있어서,
    상기 렌즈는 원기둥 렌즈로 이루어진 것인 거리 측정 센서 조립체.
  5. 제1항에 있어서,
    상기 광도파로부의 내측면은 전반사(total reflection)가 가능하도록 이루어진 것인 거리 측정 센서 조립체.
  6. 제1항에 있어서,
    상기 렌즈와 광도파로부는 상기 수신부로 유입된 광을 상기 수광부에 집속(focusing)하도록 이루어진 것인 거리 측정 센서 조립체.
  7. 제1항에 있어서,
    상기 광도파로부는,
    외형을 이루며, 내부에는 광이 이동되는 경로부가 형성된 몸체부;
    상기 몸체부의 일측에 구비되며, 상기 렌즈로부터 전달된 광을 반사시키는 제1 반사부; 및
    상기 몸체부의 타측에 구비되며, 상기 제1 반사부와 마주보도록 이루어져 상기 제1 반사부로부터 반사된 광을 상기 수광부로 전달하는 제2 반사부를 포함하는 것인 거리 측정 센서 조립체.
  8. 제7항에 있어서,
    상기 제1 반사부는 상기 렌즈의 하부에 구비되되, 상기 렌즈로부터 전달된 광을 상기 제2 반사부로 반사시키도록 이루어진 것인 거리 측정 센서 조립체.
  9. 제7항에 있어서,
    상기 제1 반사부와 제2 반사부는 오목한 원기둥 형태로 이루어지고, 상기 제1 반사부와 제2 반사부로부터 형성되는 각각의 초점선은 상기 수광부에서 서로 직교되어 초점을 형성하는 것인 거리 측정 센서 조립체.
  10. 제9항에 있어서,
    상기 제1 반사부로부터 상기 제2 반사부까지의 거리와 상기 제2 반사부로부터 상기 수광부까지의 거리는 하기의 식(1) 및 식(2)의 관계에 있는 것인 거리 측정 센서 조립체.

    0.8×f1 ≤ d1+d2 ≤ 1.2×f1 … 식(1)
    0.8×f2 ≤ d2 ≤ 1.2×f2 … 식(2)

    [ 제1 반사부의 초점거리는 f1, 제 2 반사부의 초점거리는 f2, 제1 반사부로부터 제2 반사부까지의 거리는 d1, 제2 반사부로부터 수광부까지의 거리는 d2 ]
  11. 제7항에 있어서,
    상기 제1 반사부와 제2 반사부는 구면 또는 비구면의 형상으로 이루어진 것인 거리 측정 센서 조립체.
  12. 제7항에 있어서,
    상기 몸체부는 상기 제1 반사부로부터 상기 제2 반사부로 갈수록 폭이 좁아지는 것인 거리 측정 센서 조립체.
  13. 제1항 내지 제12항 중 어느 한 항에 따른 거리 측정 센서 조립체가 구비된 전자기기.
KR1020170126627A 2017-09-28 2017-09-28 거리 측정 센서 조립체 및 그를 갖는 전자기기 KR20190037033A (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020170126627A KR20190037033A (ko) 2017-09-28 2017-09-28 거리 측정 센서 조립체 및 그를 갖는 전자기기
PCT/KR2018/011495 WO2019066527A2 (ko) 2017-09-28 2018-09-28 거리 측정 센서
US16/645,972 US20200278424A1 (en) 2017-09-28 2018-09-28 Distance measuring sensor
CN201890001209.1U CN211740119U (zh) 2017-09-28 2018-09-28 距离测定传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170126627A KR20190037033A (ko) 2017-09-28 2017-09-28 거리 측정 센서 조립체 및 그를 갖는 전자기기

Publications (1)

Publication Number Publication Date
KR20190037033A true KR20190037033A (ko) 2019-04-05

Family

ID=66103992

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170126627A KR20190037033A (ko) 2017-09-28 2017-09-28 거리 측정 센서 조립체 및 그를 갖는 전자기기

Country Status (1)

Country Link
KR (1) KR20190037033A (ko)

Similar Documents

Publication Publication Date Title
KR101909252B1 (ko) 거리 측정 센서 조립체 및 그를 갖는 전자기기
KR100624052B1 (ko) 적어도 하나의 비구면 굴절면을 갖는 렌즈를 포함하는 광부품
KR20200040288A (ko) 콜리메이팅 커버 요소에 의해서 커버된 스캐닝 미러를 갖는 송신 장치
US9435515B2 (en) Near-field lens with convex hyperbolic surface
US20110270585A1 (en) Collimation lens having freeform surface and design method thereof
KR101088360B1 (ko) 복수의 독립된 광 경로를 갖는 광 도파관 및 그를 이용한 ndir 가스 센서
KR101990447B1 (ko) 근거리 원거리 겸용 라이다 센서
US20140218810A1 (en) Fresnel lens
US20050206872A1 (en) Optical system for laser range finder
US8029160B2 (en) Illumination device having bi-convex lens assembly and coaxial concave reflector
US7463339B2 (en) Device for measuring the distance to far-off objects and close objects
CN112346254A (zh) 光学单元、照明设备、显示器及光通信设备
US20240003739A1 (en) Optical receiving device and optical sensing device
KR20190037033A (ko) 거리 측정 센서 조립체 및 그를 갖는 전자기기
CN114779267B (zh) 激光测距系统以及激光测距装置
US10634773B2 (en) Monitoring sensor and floor-bound vehicle
EP3332277B1 (en) Backscatter reductant anamorphic beam sampler
US11237399B2 (en) Optical beam shaping unit, distance measuring device and laser illuminator
WO2021134689A1 (zh) 测距装置和测距系统
KR102265045B1 (ko) 광학식 가스센서
CN219915934U (zh) 激光测距装置和电子设备
KR20190032813A (ko) 수광렌즈 모듈 및 라이다
CN212275965U (zh) 遮光组件
WO2021134690A1 (zh) 测距装置和测距系统
CN218412904U (zh) 激光测距系统、激光测距装置以及镜片模组