KR20190033323A - 태양광 모듈의 전력 하드웨어 연계 모의 실험장치 - Google Patents
태양광 모듈의 전력 하드웨어 연계 모의 실험장치 Download PDFInfo
- Publication number
- KR20190033323A KR20190033323A KR1020170121959A KR20170121959A KR20190033323A KR 20190033323 A KR20190033323 A KR 20190033323A KR 1020170121959 A KR1020170121959 A KR 1020170121959A KR 20170121959 A KR20170121959 A KR 20170121959A KR 20190033323 A KR20190033323 A KR 20190033323A
- Authority
- KR
- South Korea
- Prior art keywords
- unit
- output
- value
- photovoltaic module
- simulating
- Prior art date
Links
- 238000004088 simulation Methods 0.000 claims abstract description 99
- 238000004364 calculation method Methods 0.000 claims abstract description 34
- 230000005855 radiation Effects 0.000 claims abstract description 21
- 238000013178 mathematical model Methods 0.000 claims abstract description 7
- 238000012360 testing method Methods 0.000 claims abstract description 7
- 238000004891 communication Methods 0.000 claims description 18
- 238000001514 detection method Methods 0.000 claims description 4
- 238000000034 method Methods 0.000 claims 5
- 230000002596 correlated effect Effects 0.000 claims 1
- 238000005259 measurement Methods 0.000 abstract description 19
- 230000000903 blocking effect Effects 0.000 description 21
- 230000008878 coupling Effects 0.000 description 11
- 238000010168 coupling process Methods 0.000 description 11
- 238000005859 coupling reaction Methods 0.000 description 11
- 238000010586 diagram Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02S—GENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
- H02S50/00—Monitoring or testing of PV systems, e.g. load balancing or fault identification
- H02S50/10—Testing of PV devices, e.g. of PV modules or single PV cells
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/2832—Specific tests of electronic circuits not provided for elsewhere
- G01R31/2836—Fault-finding or characterising
- G01R31/2846—Fault-finding or characterising using hard- or software simulation or using knowledge-based systems, e.g. expert systems, artificial intelligence or interactive algorithms
- G01R31/2848—Fault-finding or characterising using hard- or software simulation or using knowledge-based systems, e.g. expert systems, artificial intelligence or interactive algorithms using simulation
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B21/00—Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
- G08B21/18—Status alarms
- G08B21/185—Electrical failure alarms
-
- G—PHYSICS
- G08—SIGNALLING
- G08C—TRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
- G08C19/00—Electric signal transmission systems
- G08C19/02—Electric signal transmission systems in which the signal transmitted is magnitude of current or voltage
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02S—GENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
- H02S40/00—Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
- H02S40/30—Electrical components
- H02S40/32—Electrical components comprising DC/AC inverter means associated with the PV module itself, e.g. AC modules
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/56—Power conversion systems, e.g. maximum power point trackers
-
- Y02E10/566—
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- Medical Informatics (AREA)
- General Engineering & Computer Science (AREA)
- Photovoltaic Devices (AREA)
Abstract
본 발명은 태양광 모듈의 전력 하드웨어 연계 모의 실험장치에 관한 것이다. 본 발명에 의한 태양광 모듈의 전력 하드웨어 연계 모의 실험장치는 특성 실험 대상인 태양광 모듈을 수학적 모델로 모의하는 태양광 모듈 모의부; 태양광 모듈 모의부에 연결되어 태양광 모듈 모의부에 부하값을 모의하고, 태양광 모듈 모의부의 출력 전압값 및 출력 전류값을 전달받는 계통 전원인 DC 전원부; 그리고 태양광 모듈 모의부의 출력값과 특성 실험 대상인 태양광 모듈의 특성 출력값을 비교하여 전압-전류 출력값 그래프(V-I 출력 그래프)로서 출력부에 실시간 출력하도록 연산하고, 외부로부터 일사량 입력값 및 부하 입력값을 입력받아 태양광 모듈에 제어신호로 인가하는 연산 및 제어부;를 포함하여, 특성 측정 대상 태양광 모듈의 출력 전력을 DC 전원부인 하드웨어에 연계하여 모의 실험하는 것을 특징으로 한다. 본 발명에 의하면 태양광 모듈에 인가되는 일사량을 변경하거나 태양광 모듈에 연계되는 부하를 변경하며 태양광 모듈의 인버터 특성을 모의 실험하여, 태양광 모듈의 신뢰성을 향상할 수 있다.
Description
본 발명은 태양광 모듈의 전력 하드웨어 연계 모의 실험장치에 관한 것으로, 보다 상세하게는 태양광(PV; photovoltaic) 모듈의 인버터 성능 시험을 위해 태양광 모듈을 모사하는 시뮬레이터를 제공하기 위한 것이다.
마이크로그리드(microgrid)는 전력계통을 일정 단위로 모아 시스템을 구성하고, 소규모 시스템들을 제어함으로써 운영, 관리하는 전력계통 제어시스템이다. 이러한 마이크로그리드는 도서지역에 설치된 디젤발전기에 신재생에너지원과 에너지저장장치를 도입하여, 에너지관리시스템(EMS, energy management system)을 통해 전력망의 안정적이고 효율적인 운영을 수행한다.
태양광 모듈은 대용량 규모의 발전소에 태양광 발전소 설비로 적용되거나, 마이크로그리드 등에서 전기자동차(EV, electric vehicle)용 전기충전장치 또는 가정용 전력공급원 등의 소규모의 분산전원으로서 적용될 수 있다.
이러한 태양광 모듈은 크기 및 인버터 성능을 최적화하도록 연구 및 개발되고 있으며, 개발된 태양광 모듈의 인버터 성능을 검증하기 위한 검증하는 장치가 필요하다. 이때, 태양광 모듈의 성능 검증을 위해 사용되는 장비는 RTDS(real time digital simulator) 등으로 고가의 장비임에 따라, 태양광 모듈의 모의 실험을 위한 장치의 개발이 필요한 실정이다.
본 발명이 이루고자 하는 기술적 과제는 태양광 모듈의 신뢰성 검증을 위해, 태양광 모듈의 특성을 측정하는 태양광 모듈 모의 시험장치를 제공하기 위한 것이다.
본 발명의 한 실시예에 따른 태양광 모듈의 전력 하드웨어 연계 모의 실험장치는 특성 실험 대상인 태양광 모듈을 수학적 모델로 모의하는 태양광 모듈 모의부; 상기 태양광 모듈 모의부에 연결되어 상기 태양광 모듈 모의부에 부하값을 모의하고, 상기 태양광 모듈 모의부의 출력 전압값 및 출력 전류값을 전달받는 계통 전원인 DC 전원부; 그리고 상기 태양광 모듈 모의부의 출력값과 상기 특성 실험 대상인 태양광 모듈의 특성 출력값을 비교하여 전압-전류 출력값 그래프(V-I 출력 그래프)로서 출력부에 실시간 출력하도록 연산하고, 외부로부터 일사량 입력값 및 부하 입력값을 입력받아 상기 태양광 모듈에 제어신호로 인가하는 연산 및 제어부;를 포함하여, 특성 측정 대상 태양광 모듈의 출력 전력을 DC 전원부인 하드웨어에 연계하여 모의 실험하는 것을 특징으로 한다.
상기 태양광 모듈 모의부는, 태양전지를 수학적 모델로 모의하여 전력을 출력하는 태양전지 모의부; 상기 태양전지 모의부에 연결되고, 상기 태양전지 모의부에서 출력하는 전력을 조정하는 인버터를 모의하는 인버터 모의부; 상기 인버터 모의부에 연결되어 상기 인버터 모의부에서 조정된 전력을 사용하는 부하인 가변선로를 모의하고, 아날로그 회로인 계통전원에 연결되는 가변 모의선로부; 그리고 상기 인버터 모의부와 상기 가변 모의선로부 사이에 구성되어 3상 교류 임피던스의 가변부하를 모의하는 가변 임피던스부;를 포함하는 것을 특징으로 한다.
상기 태양광 모듈 모의부는 회로 시뮬레이션 프로그램 상에 태양전지 어레이로 구현되는 것을 특징으로 한다.
상기 연산 및 제어부는 외부 기기로부터 일사량 입력값 및 부하 입력값을 입력받고, 상기 연산 및 제어부와 상기 외부 기기는 TCP/IP 통신을 통해 상기 일사량 입력값 및 상기 부하 입력값을 송수신하는 것을 특징으로 한다.
상기 연산 및 제어부는 상기 태양광 모듈 모의부의 출력값과 상기 특성 실험 대상인 태양광 모듈의 특성 출력값을 비교하여 상기 태양광 모듈 모의부의 오류를 감지하고, 상기 출력부에 오류 감지결과를 출력하는 것을 특징으로 한다.
상기 연산 및 제어부는 상기 오류 감지결과에 따라 오류 상태를 자동으로 회복 처리하는 것을 특징으로 한다.
이러한 본 발명에 따른 태양광 모듈의 전력 하드웨어 연계 모의 실험장치는 태양광 모듈에 인가되는 일사량을 변경하거나 태양광 모듈에 연계되는 부하를 변경하며 태양광 모듈의 인버터 특성을 모의 실험하여, 태양광 모듈의 신뢰성을 향상할 수 있다.
도 1은 본 발명의 일 실시예에 따른 태양광 모듈의 전력 하드웨어 연계 모의 실험장치의 개략적인 구조를 나타낸 블록도이다.
도 2는 본 발명의 한 실시예에 따른 태양광 모듈의 전력 하드웨어 연계 모의 실험장치 중 태양전지 모의부를 나타낸 수학적 회로이다.
도 3은 본 발명의 한 실시예에 따른 태양광 모듈의 전력 하드웨어 연계 모의 실험장치의 출력부에서 제공하는 인터페이스 화면을 나타낸 도면이다.
도 4는 본 발명의 한 실시예에 따른 태양광 모듈의 전력 하드웨어 연계 모의 실험장치의 동작 흐름을 나타낸 순서도이다.
도 5는 본 발명의 한 실시예에 따른 태양광 모듈의 전력 하드웨어 연계 모의 실험장치에서 출력하는 태양광 모듈의 출력 특성값 그래프이다.
도 6은 본 발명의 한 실시예에 따른 태양광 모듈의 전력 하드웨어 연계 모의 실험장치에서 출력하는 태양광 모듈의 출력 특성값 그래프이다.
도 2는 본 발명의 한 실시예에 따른 태양광 모듈의 전력 하드웨어 연계 모의 실험장치 중 태양전지 모의부를 나타낸 수학적 회로이다.
도 3은 본 발명의 한 실시예에 따른 태양광 모듈의 전력 하드웨어 연계 모의 실험장치의 출력부에서 제공하는 인터페이스 화면을 나타낸 도면이다.
도 4는 본 발명의 한 실시예에 따른 태양광 모듈의 전력 하드웨어 연계 모의 실험장치의 동작 흐름을 나타낸 순서도이다.
도 5는 본 발명의 한 실시예에 따른 태양광 모듈의 전력 하드웨어 연계 모의 실험장치에서 출력하는 태양광 모듈의 출력 특성값 그래프이다.
도 6은 본 발명의 한 실시예에 따른 태양광 모듈의 전력 하드웨어 연계 모의 실험장치에서 출력하는 태양광 모듈의 출력 특성값 그래프이다.
아래에서는 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
도 1은 본 발명의 일 실시예에 따른 태양광 모듈의 전력 하드웨어 연계 모의 실험장치의 개략적인 구조를 나타낸 블록도이고, 도 2는 본 발명의 한 실시예에 따른 태양광 모듈의 전력 하드웨어 연계 모의 실험장치 중 태양전지 모의부를 나타낸 수학적 회로이고, 도 3은 본 발명의 한 실시예에 따른 태양광 모듈의 전력 하드웨어 연계 모의 실험장치의 출력부에서 제공하는 인터페이스 화면을 나타낸 도면이다.
본 실시예에서, 태양광 모듈의 전력 하드웨어 연계 모의 실험장치(1)는 태양광 발전을 이용하여 전력을 생성하는 태양광 모듈(PV)의 전력을 하드웨어에 연계(PHIL;Power-Hardware-In-Loop)하여 모의 실험하는 시뮬레이터 장치이다.
태양광 모듈의 전력 하드웨어 연계 모의 실험장치(1)는 태양광 모듈을 모의하는 태양광 모듈 모의부(20), 태양광 모듈 모의부(20)로부터 출력값을 전달받는 DC 전원부(10), 태양광 모듈 모의부(20)의 출력값을 측정하는 측정부(30), 측정부(30)로부터 측정값을 전달받아 연산하고 통신환경을 제어하는 연산 및 제어부(40), 그리고 연산 및 제어부(40)로부터 연산결과를 전달받아 출력하는 출력부(50)를 포함하여 구성된다.
태양광 모듈 모의부(20)는 태양광 모듈을 모의하는 구성으로서, 태양전지를 수학적 모델로 모의한 태양전지 모의부(21), 태양전지 모의부(21)에 연결되어 인버터를 모의하는 인버터 모의부(22), 인버터 모의부(22)에 연결되고 부하를 모의하는 가변 모의선로부(23)와 가변 임피던스부(24)를 포함하여 구성된다.
태양전지 모의부(21)는 태양전지를 직렬 및 병렬로 복수 개 구비하는 태양전지 어레이(PV array)를 회로 시뮬레이션 프로그램 상에서 구현한 형태로 형성되고, 인버터 모의부(22)도 회로 시뮬레이션 프로그램 상에서 구현되는 형태로 형성된다. 태양광 모듈 모의부(20)는 태양전지 모의부(21)와 인버터 모의부(22)가 모의 회로 모델로 구현된 회로 시뮬레이션 프로그램이 저장된 저장장치를 포함하도록 형성될 수 있다.
회로 시뮬레이션 프로그램은 매트랩(MATLAB)과 시뮬링크(SIMULINK)일 수 있다.
태양전지 모의부(21)는 태양광 모듈 모의부(20)의 발전량에 영향을 미치는 외부 환경 요인 데이터인 일사량, 온도 및 태양 전지 어레이의 전류값을 입력값으로서 인가하기 위해, 일사량을 입력하는 부분(41), 온도를 입력하는 부분(42), 전류값을 입력하는 부분(43)을 포함한다.
일사량을 입력하는 부분(41), 온도를 입력하는 부분(42) 및 전류값을 입력하는 부분(43)은 회로 시뮬레이션 프로그램을 통해 일사량 입력값, 온도 입력값, 그리고 전류 입력값을 각각 입력받고, 자신에 연결된 모의 회로 구성으로 각 입력값을 전달한다.
일사량을 입력하는 부분(41), 온도를 입력하는 부분(42) 및 전류값을 입력하는 부분(43)이 회로 시뮬레이션 프로그램을 통해 입력된 값을 입력값으로 이용함에 있어서, 각 입력값은 연산 및 제어부(40)를 통해 입력된 입력신호로부터 생성된 입력값이다.
다른 한 예로서, 일사량을 입력받는 부분(41), 온도를 입력하는 부분(42) 및 전류값을 입력하는 부분(43)은 외부 기기와 TCP/IP 통신을 통해 일사량, 온도 및 전류값을 입력받는 구조로 구현될 수 있다.
일사량을 입력하는 부분(41)을 통해 입력된 일사량 입력값 및 온도를 입력하는 부분(42)을 통해 입력된 온도 입력값은 태양전지의 전류를 모의하는 구성(201)에 전달된다.
태양전지 모의부(21)는 태양전지의 전류를 모의하는 구성(201), 다이오드 포화 전류를 모의하는 구성(202), 온도 대비 전압을 모의하는 구성(203), 태양광 모듈의 전압을 모의하는 구성(204), 바이패스 다이오드를 모의하는 구성(205), 블로킹 다이오드를 모의하는 구성(206) 및 태양전지 어레이를 모의하는 구성(208)을 포함하여 구성된다.
온도를 입력하는 부분(42)을 통해 입력된 온도 입력값은 태양전지의 전류를 모의하는 구성(201) 외에도, 다이오드 포화 전류를 모의하는 구성(202), 온도 대비 전압을 모의하는 구성(203) 및 블로킹 다이오드(blocking diode)를 모의하는 구성(206)으로 각 전달된다.
이때, 온도를 입력하는 부분(42)을 통해 입력된 온도 입력값이 태양전지의 전류를 모의하는 구성(201), 다이오드 포화 전류를 모의하는 구성(202), 온도 대비 전압을 모의하는 구성(203) 및 블로킹 다이오드를 모의하는 구성(206)에 전달됨에 있어서, 온도를 입력하는 부분(42)과 태양전지의 전류를 모의하는 구성(201)의 사이에 형성된 섭씨 단위(℃)로 입력된 온도 입력값을 절대 온도 단위(K)로 변환하는 구성을 거쳐 변환된 온도값으로서 태양전지의 전류를 모의하는 구성(201), 다이오드 포화 전류를 모의하는 구성(202), 온도 대비 전압을 모의하는 구성(203) 및 블로킹 다이오드를 모의하는 구성(206)으로 각각 전달될 수 있다.
전류값을 입력하는 부분(43)은 회로 시뮬레이션 프로그램을 통해 입력된 전류 입력값을 태양광 모듈의 전압을 모의하는 구성(204)과 블로킹 다이오드를 모의하는 구성(206), 그리고 전력값을 출력하는 부분(210)으로 각각 전달한다.
태양전지의 전류를 모의하는 구성(201)은 일사량을 입력하는 부분(41)으로부터 일사량 입력값을 전달받고, 온도를 입력하는 부분(42)에서 입력된 온도 입력값이 절대 온도 단위로 변환하는 구성을 통해 절대 온도 단위로 변환된 형태의 온도 입력값을 전달받아 태양전지의 전류를 모의하여, 태양전지의 전류값을 출력한다.
태양전지의 전류를 모의하는 구성(201)에서 출력하는 태양전지의 전류값은 태양광 모듈의 전압을 모의하는 구성(204)으로 전달된다.
다이오드 포화 전류를 모의하는 구성(202)은 위에서 이미 설명한 것처럼, 온도를 입력하는 부분(42)을 통해 입력된 온도 입력값을 절대 온도로 변환된 온도값으로서 전달받아, 태양광 모듈의 전압을 모의하는 구성(204)으로 다이오드의 포화 전류값을 출력한다.
온도 대비 전압을 모의하는 구성(203)은 위에서 이미 설명한 것처럼, 온도를 입력하는 부분(42)을 통해 입력된 온도 입력값을 절대 온도로 변환된 온도값으로서 전달받아 열전압값을 모의하고, 열전압값을 태양광 모듈의 전압을 모의하는 구성(204), 바이패스 다이오드를 모의하는 구성(205) 및 블로킹 다이오드를 모의하는 구성(206)으로 각각 전달한다.
태양광 모듈의 전압을 모의하는 구성(204)은 위에서 이미 설명한 것처럼, 태양전지의 전류를 모의하는 구성(201), 다이오드 포화 전류를 모의하는 구성(202), 온도 대비 전압을 모의하는 구성(203), 그리고 전류값을 입력하는 부분(43)으로부터 태양전지의 전류값과 다이오드의 포화 전류값, 열전압값, 그리고 전류 입력값을 각각 전달받고, 전달받은 값들을 이용하여 태양광 모듈의 전압값을 출력한다.
태양광 모듈의 전압을 모의하는 구성(204)은 출력한 태양광 모듈의 전압값에 단위 딜레이를 적용하여 태양광 모듈의 전압을 모의하는 구성(204)에 입력값으로서 다시 입력받고, 출력된 태양광 모듈의 전압값을 태양전지 어레이를 모의하는 구성(208)에 전달한다.
바이패스 다이오드를 모의하는 구성(205)은 위에서 이미 설명한 것처럼, 온도를 입력하는 부분(42)에서 출력되어 절대 온도로 변환된 온도 입력값과, 온도 대비 전압을 모의하는 구성(203)으로부터 열전압값, 그리고 전류값을 입력하는 부분(43)으로부터 전류 입력값을 각각 전달받아, 태양광 모듈에서의 바이패스 다이오드의 동작을 모의하고, 바이패스 다이오드의 동작 특성에 따른 전압값을 출력하여 이를 태양전지 어레이를 모의하는 구성(208)에 전달한다.
바이패스 다이오드를 모의하는 구성(205)이 태양광 모듈에서의 바이패스 다이오드의 동작 특성을 모의함에 있어서, 태양광 모듈에서 바이패스 다이오드는 태양전지에 직렬로 연결되고, 태양광이 균질하게 도달하는 정상 상태에서는 전류가 태양전지에 순방향 바이어스됨에 따라 바이패스 다이오드에는 전류가 역방향 바이어스되어 전류가 흐르지 않는 특성을 갖는다. 그리고, 음영으로 인해 태양광이 불균일하게 태양전지에 도달하고 이에 따라 태양광 모듈간 출력 불일치가 발생하는 경우, 태양전지에 전류가 역방향 바이어스됨에 따라 바이패스 다이오드에는 전류가 순방향 바이어스되어 음영 발생시 열점 현상으로 인해 태양광 모듈이 손상되는 것을 방지하는 특성을 갖는다.
바이패스 다이오드를 모의하는 구성(205)은 다음의 식 1을 이용하여 바이패스 다이오드의 동작 특성에 따른 전압값을 출력한다.
[식 1]
위의 식 1에서, V BY 는 바이패스 다이오드의 동작 특성에 따른 전압값이고, nBY는 바이패스 다이오드의 이상계수이고(1≤nBY≤2), k는 볼츠만 상수이고(단위는 J/K; 줄/절대온도), Top는 동작 온도(절대온도 단위)이고, q는 태양전지에서 광전효과에 따라 발생하는 전자의 전하량이고(단위는 C), I는 태양전지의 출력 전류값이고(단위는 A), Iph는 광전류값이고(단위는 A), Isat BY 는 바이패스 다이오드의 포화 전류값이다(단위는 A).
블로킹 다이오드를 모의하는 구성(206)은 위에서 이미 설명한 것처럼, 온도를 입력하는 부분(42)에서 출력되어 절대 온도로 변환된 온도 입력값과, 온도 대비 전압을 모의하는 구성(203)으로부터 열전압값, 그리고 전류값을 입력하는 부분(43)으로부터 전류 입력값을 각각 전달받아, 태양광 모듈에서의 블로킹 다이오드의 동작을 모의하고, 블로킹 다이오드의 동작 특성에 따른 전압값을 출력하여 이를 태양전지 어레이를 모의하는 구성(208)에 전달한다.
블로킹 다이오드를 모의하는 구성(206)이 태양광 모듈에서의 블로킹 다이오드의 동작 특성을 모의함에 있어서, 태양광 모듈에서 블로킹 다이오드는 태양전지에 병렬로 연결되고, 부정합(mismatching)에 의해 정상인 태양전지에서 음영이 발생한 태양전지로 전류가 흐르는 것을 방지하는 특성을 갖는다.
블로킹 다이오드를 모의하는 구성(206)은 다음의 식 2를 이용하여 블로킹 다이오드의 동작 특성에 따른 전압값을 출력한다.
[식 2]
위의 식 2에서, V BK 는 블로킹 다이오드의 동작 특성에 따른 전압값이고, nBK는 블로킹 다이오드의 이상계수이고(1≤nBK≤2), k는 볼츠만 상수이고(단위는 J/K; 줄/절대온도), Top는 동작 온도(절대온도 단위)이고, q는 태양전지에서 광전효과에 따라 발생하는 전자의 전하량이고(단위는 C), I는 태양전지의 출력 전류값이고(단위는 A), Isat은 다이오드의 포화전류값이다(단위는 A).
태양전지 어레이를 모의하는 구성(208)은 위에서 이미 설명한 것처럼, 태양광 모듈의 전압을 모의하는 구성(204), 바이패스 다이오드를 모의하는 구성(205), 블로킹 다이오드를 모의하는 구성(206), 그리고 전류값을 입력하는 부분(43)으로부터 각각 태양광 모듈의 전압값과 바이패스 다이오드의 동작 특성에 따른 전압값, 블로킹 다이오드의 동작 특성에 따른 전압값, 그리고 전류 입력값을 전달받아 태양전지 어레이의 전압 출력값으로서 전압값을 출력하는 부분(209) 및 전력값을 출력하는 부분(210)으로 각각 전달한다.
전력값을 출력하는 부분(210)은 전류값을 입력하는 부분(43)으로부터 전달받은 전류 입력값과. 태양전지 어레이를 모의하는 구성(208)으로부터 전달받은 태양전지 어레이의 전압 출력값을 곱 연산하여 전력값으로서 출력한다.
전력값을 출력하는 부분(210)은 다음의 식 3을 이용하여 태양전지 모의부(21)에서 최종 모의되는 전력값을 출력한다.
[식 3]
위의 식 3에서, Vout은 태양전지 모의부(210)에서 최종 모의되는 전력값이고, V는 태양광 모듈의 전압을 모의하는 구성(204)에서 출력하는 태양광 모듈의 전압값이고, VBY는 바이패스 다이오드의 동작 특성에 따른 전압값이고, VBK는 블로킹 다이오드의 동작 특성에 따른 전압값이며, 전력값(Vout)은 태양광 모듈의 전압값(V)과 바이패스 다이오드의 동작 특성에 따른 전압값(VBY)을 비교하여 그 중 큰 값(max 연산)에서 태양전지의 병렬연결에 사용된 전압강하(VBK)를 제외한 값으로 계산된다.
입력변수 초기화부(207)는 일사량, 온도 및 전류값의 입력값을 초기화하도록 제어하는 부분으로서, 일사량을 입력하는 부분(41), 온도를 입력하는 부분(42) 및 전류값을 입력하는 부분(43)에 입력된 입력변수를 초기화한다.
도 2를 참고로 하여 설명한 것처럼, 태양전지 모의부(21)가 일사량, 온도 및 전류값의 입력값을 이용하여 태양전지를 모의하는 수학적 모델로서 회로 시뮬레이션 프로그램에 구현됨에 따라, 태양광 모듈 모의부(20)가 특정 모델로 구현된 태양광 모듈에 입력되는 데이터에 따른 전압 및 전력 출력값을 모의할 수 있다.
인버터 모의부(22)는 태양전지 모의부(21)에 연결되는 인버터를 모의하는 구성으로서, 태양전지 모의부(21)의 출력을 조정하거나, 최대 전력을 추종하거나 또는 운전을 정지하여 태양전지 모의부(21)의 출력을 유효하게 도출하고, 태양전지 모의부(21)에서 출력하는 직류전력을 교류전력으로 변환하도록 모의한다.
가변 모의선로부(23)는 인버터 모의부(22)에 연결되는 교류 임피던스인 가변선로를 모의하는 구성으로서, 아날로그 회로인 계통에 연결될 수 있고, 가변 임피던스부(24)는 인버터 모의부(22)와 가변 모의선로부(23) 사이에 연결되어 3상 교류 임피던스의 가변부하를 모의하는 구성이다.
인버터 모의부(22)에 연결되는 가변 모의선로부(23)와 가변 임피던스부(24)는 태양전지 모의부(21)에서 출력되어 인버터 모의부(22)에서 조정된 전력을 인버터 모의부(22)로부터 전달받아 전력을 사용하는 부하를 모의한다.
가변 모의선로부(23) 및 가변 임피던스부(24)는 태양전지 모의부(21) 및 인버터 모의부(22)와 마찬가지로 회로 시뮬레이션 프로그램 상에서 구현되는 형태로 형성될 수 있다.
이처럼, 태양전지 모의부(21), 인버터 모의부(22), 가변 모의선로부(23) 및 가변 임피던스부(24)를 포함하여 태양광 모듈을 모의하는 태양광 모듈 모의부(20)는 DC 전원부(10)와 연결되어 태양전지 모의부(21)의 출력 전압값 및 전력값을 DC 전원부(10)로 전달한다. 한 예에서 태양광 모듈 모의부(20)는 태양전지 모의부(21)의 출력 전압값 및 전력값으로부터 V-I(전압-전류) 출력값을 생성하여 DC 전원부(10)로 전달할 수 있다.
또는, 태양광 모듈 모의부(20)의 가변 모의선로부(23) 및 가변 임피던스부(24)는 계통전원인 DC 전원부(10)로부터 부하값을 전달받아 부하를 모의할 수 있다.
태양광 모듈 모의부(20)는 태양전지 모의부(21)에서 출력되는 전압값 및 전력값을 일사량과 온도에 따른 V-I 출력값으로 계산하여 이를 DC 전원부(10)로 전달할 수 있다.
그리고, 태양광 모듈 모의부(20)는 측정부(30)와 연결되어 태양전지 모의부(21)에서 출력되는 전압값 및 전력값, 인버터 모의부(22)의 출력값, 가변 모의선로부(23) 및 가변 임피던스부(24)의 부하값을 측정부(30)로 전달한다.
태양광 모듈 모의부(20)는 연산 및 제어부(40)와 연결되어, 연산 및 제어부(40)로부터 제어신호를 인가받아 태양광 모듈 모의부(20)의 구성요소에 인가되는 입력값을 제어한다. 한 예에서, 태양전지 모의부(21)는 연산 및 제어부(40)로부터 전달받은 제어신호에 따라 일사량을 입력하는 부분(41), 온도를 입력하는 부분(42), 전류값을 입력하는 부분(43)에 입력값을 제어한다.
한 예에서, 태양전지 모의부(21)의 태양전지의 전류를 모의하는 구성(201), 다이오드 포화 전류를 모의하는 구성(202), 온도 대비 전압을 모의하는 구성(203), 태양광 모듈의 전압을 모의하는 구성(204), 바이패스 다이오드를 모의하는 구성(205), 블로킹 다이오드를 모의하는 구성(206) 및 태양전지 어레이를 모의하는 구성(208)은 연산 및 제어부(40)로부터 전달받은 제어신호에 따라 모의로 구현된 회로의 구성이 변경되도록 제어될 수 있다.
태양광 모듈 모의부(20)는 연산 및 제어부(40)로부터 전달받은 제어신호에 따라 인버터 모의부(22)를 조정하거나, 신호 가변 모의선로부(23) 및 가변 임피던스부(24)의 부하 크기를 변경할 수 있다.
그리고, 태양광 모듈 모의부(20)는 출력부(50)와 연결되어 태양전지 모의부(21)에서 출력되는 전압값 및 전력값, 인버터 모의부(22)의 출력값, 가변 모의선로부(23) 및 가변 임피던스부(24)의 부하값을 출력부(50)로 전달한다.
태양광 모듈 모의부(20)가 이와 같이 구성되고 DC 전원부(10), 측정부(30), 연산 및 제어부(40) 및 출력부(50)와 각각 연결되어 출력값을 전달하거나 입력신호 또는 제어신호를 입력받는 구조를 가지므로, 태양광 모듈 모의부(20)의 출력 특성을 모의 실험하거나 주변 계통과 연계한 모의 실험을 수행할 수 있는 구조를 제공할 수 있다.
DC 전원부(10)는 위에서 이미 설명한 것처럼, 태양광 모듈 모의부(20)에 연결되는 아날로그 회로인 계통으로서, 태양광 모듈 모의부(20)로부터 출력값을 전달받거나 부하를 변경하도록 제어하며, 태양광 모듈 모의부(20)의 가변형 모의선로부(23)와 시리얼(serial) 통신을 통해 연결되어 계통전원의 부하값을 가변형 모의선로부(23)의 부하를 변경하도록 제어할 수 있다.
DC 전원부(10)는 태양광 모듈의 전력 하드웨어 연계 모의 실험장치(1)에 있어서, 태양광 모듈 모의부(20)과 전력 하드웨어로 연계되는 구성으로서, 태양광 모듈 모의부(20)와 USB 통신을 통해 연결될 수 있다.
측정부(30)는 위에서 이미 설명한 것처럼, 태양광 모듈 모의부(20)에 연결되어 태양광 모듈 모의부(20)의 출력값을 측정하고 이를 연산 및 제어부(40)로 전달하는 구성으로서, 태양광 모듈 모의부(20)에서 출력되는 전류값, 전압값 및 전력값을 연산 및 제어부(40)로 전달한다. 한 예에서, 측정부(30)는 회로 시뮬레이션 프로그램 상에서 구현되어, 태양광 모듈 모의부(20)가 회로 시뮬레이션 프로그램 상에서 출력하는 출력값을 전달받는 형태로 구현될 수 있다.
이때, 태양광 모듈 모의부(20)와 DC 전원부(10)가 연결되는 구조를 가짐에 따라, 측정부(30)는 DC 전원부(10)의 출력부하를 태양광 모듈 모의부(20)로부터 전달받고, DC 전원부(10)의 출력부하로부터 전류값 및 전압값을 측정하여 이를 연산 및 제어부(40)로 전달한다.
연산 및 제어부(40)는 위에서 이미 설명한 것처럼, 측정부(30)가 태양광 모듈 모의부(20)의 출력값을 측정한 데이터를 전달받아 연산을 수행하고, 연산결과를 출력부(50)로 전달하며, 태양광 모듈 모의부(20)를 제어하는 제어신호를 생성하여 태양광 모듈 모의부(20)로 전달한다.
연산 및 제어부(40)는 회로 시뮬레이션 프로그램에 입력되는 입력값을 제어하거나, 입력값을 초기화하도록 제어하거나, 또는 태양광 모듈 모의부(20)의 모의 구성들을 변경하는 제어를 수행할 수 있고, 제어신호를 입력받기 위한 입력장치와 연결될 수 있다.
연산 및 제어부(40)는 일사량, 온도 및 전류값을 입력받는 외부 기기와 태양광 모듈 모의부(20) 사이의 통신상태를 제어하고, DC 전원부(10)의 온 또는 오프를 제어할 수 있다.
출력부(50)는 연산 및 제어부(40)로부터 태양광 모듈 모의부(20)의 측정값을 연산한 연산결과를 전달받아 출력하거나, 태양광 모듈 모의부(20)로부터 출력값을 전달받아 이를 출력할 수 있다. 출력부(50)가 태양광 모듈 모의부(20)로부터 출력값을 전달받는 한 예에서, 출력부(50)는 태양광 모듈 모의부(20)와 TCP/IP 통신을 통해 연결되어 출력값 데이터를 전달받고 이를 V-I 출력 그래프로서 실시간 시각화 처리하여 출력하며, 실시간으로 시각화된 데이터를 출력하는 출력장치와 연결될 수 있다.
한 예에서, 연산 및 제어부(40)가 제어신호를 입력받기 위한 인터페이스와 출력부(50)에서 출력하는 실시간 시각화 데이터를 출력하기 위한 인터페이스 화면이 도 3과 같이 형성될 수 있고, 제어신호로서 입력되어 출력결과가 도출되게 한 해당 입력 데이터와 이에 따른 출력 데이터를 각각 수치로서 출력하고, 입력에 따른 출력 데이터를 그래프 상에 도시하며, 산출된 그래프를 태양광 모듈의 출력 성능 데이터와 비교하도록 출력 성능 데이터를 그래프로서 함께 도시한다.
본 발명의 한 실시예에 따른 태양광 모듈의 전력 하드웨어 연계 모의 실험장치(1)가 이와 같이 구성됨에 따라, 일사량, 부하 및 전류값을 변경하며 실시간으로 태양광 모듈의 특성을 실험하여, 실험 대상 태양광 모듈의 출력특성에 부합하는지를 효율적으로 확인할 수 있고, 실험 대상인 태양광 모듈의 신뢰성을 향상할 수 있는 효과가 있다.
또한, 태양광 모듈의 출력 특성을 실험함에 있어서, 태양광 모듈과 전력 하드웨어 연계 구조를 모의로 구현하여 실험함으로써, 태양광 모듈의 실험에 소요되는 비용을 절감할 수 있는 효과가 있다.
도 4는 본 발명의 한 실시예에 따른 태양광 모듈의 전력 하드웨어 연계 모의 실험장치의 동작 흐름을 나타낸 순서도이고, 도 5는 본 발명의 한 실시예에 따른 태양광 모듈의 전력 하드웨어 연계 모의 실험장치에서 출력하는 태양광 모듈의 출력 특성값 그래프이고, 도 6은 본 발명의 한 실시예에 따른 태양광 모듈의 전력 하드웨어 연계 모의 실험장치에서 출력하는 태양광 모듈의 출력 특성값 그래프이다.
본 실시예에 따른 태양광 모듈의 전력 하드웨어 연계 모의 실험장치(1)의 동작흐름을 도 4 내지 도 6을 참고로 하여 설명하면, 먼저, 태양광 모듈 모의부(20)를초기화하고 연산 및 제어부(40)의 통신상태를 확인하는 단계(S10)가 수행된다.
위 단계(S10)는 연산 및 제어부(40)가 외부로부터 인가받은 제어신호에 따라 태양광 모듈 모의부(20)의 입력변수 초기화부(207)를 통해 태양광 모듈 모의부(20)를 초기화하고, 외부로부터 일사량, 온도 및 전류값을 입력받는 외부 기기와의 통신상태가 정상 연결되고 있는지의 여부를 연산 및 제어부(40)에서 확인하는 단계이다.
다음으로, DC 전원부(10)의 전원을 태양광 모듈 모의부(20)에 인가하는 단계(S20)에서는 연산 및 제어부(40)가 DC 전원부(10)의 전원이 온 되도록 제어하고, DC 전원부(10)의 전원을 태양광 모듈 모의부(20)의 가변 모의선로부(23) 및 가변 임피던스부(24)에 인가하도록 제어한다.
이때, 연산 및 제어부(40)는 DC 전원부(10)의 전원상태가 정상인지, 측정부(30)의 통신 연결 상태가 정상인지, 그리고 외부 기기와의 통신 연결 상태가 정상인지를 각각 확인하고, 비정상으로 확인되는 경우 DC 전원부(10)를 재구동하거나 측정부(30)의 통신 연결상태 또는 외부 기기와의 통신 연결상태를 복구하도록 제어한다. 연산 및 제어부(40)는 DC 전원부(10)의 상태, 측정부(30)와 태양광 모듈 모의부(20)간의 통신 연결상태, 그리고 외부 기기와 태양광 모듈 모의부(20)간의 통신 연결상태의 정상여부 판단을 위한 기준값을 설정하였다가 위의 정상여부를 판단하는 동작을 수행할 수 있다.
연산 및 제어부(40)가 DC 전원부(10)의 상태, 측정부(30) 및 외부 기기의 통신상태가 정상인 것으로 확인하는 경우, 측정부(30)가 태양광 모듈 모의부(20)의 특성을 측정하는 단계(S30)를 수행하는데, 측정부(30)는 태양광 모듈 모의부(20)에서 출력하는 전류값, 전압값 및 전력값 중 적어도 하나를 측정하여 연산 및 제어부(40)로 전달한다. 이때, 연산 및 제어부(40)는 측정부(30)로부터 전달받은 태양광 모듈 모의부(20)의 출력 전류값, 전압값 및 전력값을 이용하여 V-I 그래프를 생성하여 출력부(50)에 출력할 수 있다.
출력부(50)는 온도에 따른 V-I 출력 그래프를 도 5의 (a)와 같이 출력하고, 일사량에 따른 V-I 출력 그래프를 도 5의 (b)와 같이 출력할 수 있다.
그리고, 연산 및 제어부(40)는 인터페이스를 통해 입력된 값을 제어신호로서 태양광 모듈 모의부(20)로 전달하고, 태양광 모듈 모의부(20)는 입력받은 제어신호에 따른 전류값, 전압값 및 전력값을 연산 수행하며, 연산 수행결과로서 출력된 전압값 및 전류값을 DC 전원부(10)에 명령값으로서 전송하는 단계(S400)를 수행한다.
이 단계(S400)에서, 연산 및 제어부(40)는 도 3의 인터페이스 화면을 통해 일사량, 부하 및 전류값의 입력데이터를 입력받아 이를 제어신호로서 태양광 모듈 모의부(20)에 전달하며, 태양광 모듈 모의부(20)가 출력 전압값 및 전류값을 DC 전원부(10)로 전송함에 따라 DC 전원부(10)는 태양광 모듈 모의부(20)로부터 전달받은 전압값 및 전류값에 의해 출력되는 전력값을 확인할 수 있다.
이때, 인터페이스를 통해 입력되어 태양광 모듈 모의부(20)에 제어신호로 인가된 일사량, 부하 및 전류값 데이터에 따라 DC 전원부(10)에서 출력되는 전력값이 인터페이스 화면에 출력되므로, 인터페이스 화면을 모니터링하는 사용자는 실험 대상 태양광 모듈에 인가되는 입력특성에 따른 특성 출력값이 해당 설비의 기준 특성값에 부합하는지의 여부를, 회로 시뮬레이션 프로그램상에 구현된 태양광 모듈 모의부(20)의 출력결과로부터 저비용으로 신뢰성 있는 모니터링을 수행할 수 있다.
마지막으로, 연산 및 제어부(40)가 측정부(30)의 측정결과를 모니터링하여 오류발생 여부를 감지하고, 오류가 발생된 것으로 확인되는 경우 오류를 알리는 처리를 수행하거나 발생된 오류를 해결하는 동작을 수행하는 단계(S500)를 수행할 수 있다. 이 단계(S500)에서, 연산 및 제어부(40)는 태양광 모듈 모의부(20)의 정상동작여부를 판단하는 기준을 구비하고 측정부(30)의 측정결과를 구비하고 있는 판단 기준값과 비교하여 오류발생 여부를 감지한다. 이때, 판단 기준값은 실험 대상인 태양광 모듈의 특성 기준값일 수 있다.
연산 및 제어부(40)는 측정부(30)로부터 전달받은 측정결과와 실험 대상인 태양광 모듈의 특성을 출력부(50)의 인터페이스에 도 6의 V-I 특성 비교 그래프처럼 함께 출력할 수 있고, 해당 그래프로부터, 실험 대상인 태양광 모듈 모의부(20)의 출력 특성이 태양광 모듈의 기준 출력 특성에 부합하는 것으로 확인할 수 있다.
그리고, 위 단계(S500)에서, 연산 및 제어부(40)가 태양광 모듈 모의부(20)의 오류를 감지한 경우 출력부(50)에 출력되는 인터페이스 화면을 통해 오류가 감지되었음을 알림으로서 출력하거나, 감지된 오류의 상세내역을 함께 출력할 수 있고, 감지된 오류를 처리하는 한 예로서, 통신부의 연결상태가 비정상인 경우 통신 연결상태를 정상으로 회복하도록 오류 처리를 수행하거나, 입력된 데이터의 입력범위 또는 입력 형태를 기준값에 부합하도록 변경하는 형태로 오류 처리를 수행할 수 있다.
이상에서 본 발명의 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.
1 : 태양광 모듈의 전력 하드웨어 연계 모의 실험장치
10 : DC 전원부 20 : 태양광 모듈 모의부
21 : 태양전지 모의부 22 : 인버터 모의부
23 : 가변 모의선로부 24 : 가변 임피던스부
30 : 측정부 40 : 연산 및 제어부
50 : 출력부
10 : DC 전원부 20 : 태양광 모듈 모의부
21 : 태양전지 모의부 22 : 인버터 모의부
23 : 가변 모의선로부 24 : 가변 임피던스부
30 : 측정부 40 : 연산 및 제어부
50 : 출력부
Claims (6)
- 특성 실험 대상인 태양광 모듈을 수학적 모델로 모의하는 태양광 모듈 모의부;
상기 태양광 모듈 모의부에 연결되어 상기 태양광 모듈 모의부에 부하값을 모의하고, 상기 태양광 모듈 모의부의 출력 전압값 및 출력 전류값을 전달받는 계통 전원인 DC 전원부; 그리고
상기 태양광 모듈 모의부의 출력값과 상기 특성 실험 대상인 태양광 모듈의 특성 출력값을 비교하여 전압-전류 출력값 그래프(V-I 출력 그래프)로서 출력부에 실시간 출력하도록 연산하고, 외부로부터 일사량 입력값 및 부하 입력값을 입력받아 상기 태양광 모듈에 제어신호로 인가하는 연산 및 제어부;
를 포함하여, 특성 측정 대상 태양광 모듈의 출력 전력을 DC 전원부인 하드웨어에 연계하여 모의 실험하는 것을 특징으로 하는 태양광 모듈의 전력 하드웨어 연계 모의 실험장치. - 제1항에 있어서,
상기 태양광 모듈 모의부는,
태양전지를 수학적 모델로 모의하여 전력을 출력하는 태양전지 모의부;
상기 태양전지 모의부에 연결되고, 상기 태양전지 모의부에서 출력하는 전력을 조정하는 인버터를 모의하는 인버터 모의부;
상기 인버터 모의부에 연결되어 상기 인버터 모의부에서 조정된 전력을 사용하는 부하인 가변선로를 모의하고, 아날로그 회로인 계통전원에 연결되는 가변 모의선로부; 그리고
상기 인버터 모의부와 상기 가변 모의선로부 사이에 구성되어 3상 교류 임피던스의 가변부하를 모의하는 가변 임피던스부;를 포함하는 것을 특징으로 하는 태양광 모듈의 전력 하드웨어 연계 모의 실험장치. - 제1항에 있어서,
상기 태양광 모듈 모의부는 회로 시뮬레이션 프로그램 상에 태양전지 어레이로 구현되는 것을 특징으로 하는 태양광 모듈의 전력 하드웨어 연계 모의 실험장치. - 제1항에 있어서,
상기 연산 및 제어부는 외부 기기로부터 일사량 입력값 및 부하 입력값을 입력받고, 상기 연산 및 제어부와 상기 외부 기기는 TCP/IP 통신을 통해 상기 일사량 입력값 및 상기 부하 입력값을 송수신하는 것을 특징으로 하는 태양광 모듈의 전력 하드웨어 연계 모의 실험장치. - 제1항에 있어서,
상기 연산 및 제어부는 상기 태양광 모듈 모의부의 출력값과 상기 특성 실험 대상인 태양광 모듈의 특성 출력값을 비교하여 상기 태양광 모듈 모의부의 오류를 감지하고, 상기 출력부에 오류 감지결과를 출력하는 것을 특징으로 하는 태양광 모듈의 전력 하드웨어 연계 모의 실험장치. - 제5항에 있어서,
상기 연산 및 제어부는 상기 오류 감지결과에 따라 오류 상태를 자동으로 회복 처리하는 것을 특징으로 하는 태양광 모듈의 전력 하드웨어 연계 모의 실험장치.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020170121959A KR101987269B1 (ko) | 2017-09-21 | 2017-09-21 | 태양광 모듈의 전력 하드웨어 연계 모의 실험장치 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020170121959A KR101987269B1 (ko) | 2017-09-21 | 2017-09-21 | 태양광 모듈의 전력 하드웨어 연계 모의 실험장치 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20190033323A true KR20190033323A (ko) | 2019-03-29 |
KR101987269B1 KR101987269B1 (ko) | 2019-06-11 |
Family
ID=65898970
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020170121959A KR101987269B1 (ko) | 2017-09-21 | 2017-09-21 | 태양광 모듈의 전력 하드웨어 연계 모의 실험장치 |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101987269B1 (ko) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110262456A (zh) * | 2019-06-26 | 2019-09-20 | 商飞信息科技(上海)有限公司 | 一种基于实时仿真控制器的光伏并网测试和研发平台 |
KR102513554B1 (ko) * | 2022-01-11 | 2023-03-24 | 가천대학교 산학협력단 | 직류 전원 공급기와 전력 다이오드로 구성된 태양광 모듈 전압/전류 출력 장치 |
CN118249745A (zh) * | 2024-03-26 | 2024-06-25 | 江苏云邦电子科技有限公司 | 一种光伏逆变器电性能检测方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20130110481A (ko) | 2012-03-29 | 2013-10-10 | 주식회사 세원 | 태양전지 실증시스템 |
-
2017
- 2017-09-21 KR KR1020170121959A patent/KR101987269B1/ko active IP Right Grant
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20130110481A (ko) | 2012-03-29 | 2013-10-10 | 주식회사 세원 | 태양전지 실증시스템 |
Non-Patent Citations (2)
Title |
---|
Jung, Jee-Hoon. "Power hardware-in-the-loop simulation (PHILS) of photovoltaic power generation using real-time simulation techniques and power interfaces." Journal of Power Sources 285 (2015): 137-14* * |
Seo, Hyo-Ryong, et al. "Performance analysis and evaluation of a multifunctional grid-connected PV system using power hardware-in-the-loop simulation." Applied Power Electronics Conference and Exposit* * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110262456A (zh) * | 2019-06-26 | 2019-09-20 | 商飞信息科技(上海)有限公司 | 一种基于实时仿真控制器的光伏并网测试和研发平台 |
CN110262456B (zh) * | 2019-06-26 | 2024-03-08 | 商飞信息科技(上海)有限公司 | 一种基于实时仿真控制器的光伏并网测试和研发平台 |
KR102513554B1 (ko) * | 2022-01-11 | 2023-03-24 | 가천대학교 산학협력단 | 직류 전원 공급기와 전력 다이오드로 구성된 태양광 모듈 전압/전류 출력 장치 |
CN118249745A (zh) * | 2024-03-26 | 2024-06-25 | 江苏云邦电子科技有限公司 | 一种光伏逆变器电性能检测方法 |
Also Published As
Publication number | Publication date |
---|---|
KR101987269B1 (ko) | 2019-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Silvestre et al. | Automatic fault detection in grid connected PV systems | |
ES2383856T3 (es) | Sistemas, procedimientos y aparatos para hacer funcionar un convertidor de potencia | |
KR101987269B1 (ko) | 태양광 모듈의 전력 하드웨어 연계 모의 실험장치 | |
US10848099B2 (en) | Power generation abnormality detection method and system thereof for photovoltaic panels | |
US20130274946A1 (en) | Methods and systems for controlling a power plant | |
Khouzam et al. | Simulation and real-time modelling of space photovoltaic systems | |
Jenitha et al. | Fault detection in PV systems | |
Johnson et al. | Design and evaluation of SunSpec-compliant smart grid controller with an automated hardware-in-the-loop testbed | |
KR101509536B1 (ko) | 태양광 발전 모니터링시스템 | |
US9748769B2 (en) | Serially connected micro-inverter system having concertina output voltage control | |
WO2023033002A1 (ja) | 太陽電池モジュールの故障診断方法及びプログラム | |
Rivai et al. | A low-cost photovoltaic (PV) array monitoring system | |
JP6607134B2 (ja) | Dc/dcコンバータ及び太陽発電システム | |
Fezzani et al. | Modeling and analysis of the photovoltaic array faults | |
CN117424275A (zh) | 光伏系统及其控制方法、控制系统及存储介质 | |
KR20110133696A (ko) | 태양광 발전시스템의 고장 진단 장치 및 고장 진단 방법 | |
KR101448990B1 (ko) | 태양전지 발전 시스템의 인버터 고장 검출 방법 및 장치 | |
EP2058669A1 (en) | A dynamic electric power supply unit that simulates an electric power source | |
KR20200044490A (ko) | 태양광 시뮬레이터의 운영 제어 시스템 및 방법 | |
TWI718779B (zh) | 自適性輕量型太陽能板發電異常測試方法及其系統 | |
KR20180001160A (ko) | 태양전지패널의 부분음영 진단장치 | |
Belaout et al. | Development of real time emulator for control and diagnosis purpose of Photovoltaic Generator | |
Gonzalez et al. | Performance of utility interconnected photovoltaic inverters operating beyond typical modes of operation | |
do Nascimento et al. | Internet of Things-Aided Smart Home Off-Grid Photovoltaic-Powered | |
KR20090108754A (ko) | 휴대형 태양광 어레이 측정장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
AMND | Amendment | ||
E601 | Decision to refuse application | ||
AMND | Amendment | ||
X701 | Decision to grant (after re-examination) | ||
GRNT | Written decision to grant |