KR20190028883A - 자율주행차량의 경로회피방법 - Google Patents

자율주행차량의 경로회피방법 Download PDF

Info

Publication number
KR20190028883A
KR20190028883A KR1020170115715A KR20170115715A KR20190028883A KR 20190028883 A KR20190028883 A KR 20190028883A KR 1020170115715 A KR1020170115715 A KR 1020170115715A KR 20170115715 A KR20170115715 A KR 20170115715A KR 20190028883 A KR20190028883 A KR 20190028883A
Authority
KR
South Korea
Prior art keywords
path
vehicle
traveling
autonomous vehicle
component
Prior art date
Application number
KR1020170115715A
Other languages
English (en)
Inventor
유동수
오동진
김석환
Original Assignee
현대로템 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대로템 주식회사 filed Critical 현대로템 주식회사
Priority to KR1020170115715A priority Critical patent/KR20190028883A/ko
Publication of KR20190028883A publication Critical patent/KR20190028883A/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • B60W60/0015Planning or execution of driving tasks specially adapted for safety
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0088Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots characterized by the autonomous decision making process, e.g. artificial intelligence, predefined behaviours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/18Steering angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/50Barriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/08Predicting or avoiding probable or impending collision
    • B60Y2300/095Predicting travel path or likelihood of collision
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/14Cruise control

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Game Theory and Decision Science (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Medical Informatics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Human Computer Interaction (AREA)
  • Traffic Control Systems (AREA)

Abstract

본 발명은 자율주행차량에 관한 것이다. 본 발명의 일 실시예에 따르면, 도로 상에 있는 임의의 차로를 따라 주행 중 장애물을 회피하거나 주행경로를 변경하기 위한 자율주행차량의 회피 경로 및 복귀 경로를 코사인 함수의 반주기를 이용하여 설정하는, 자율주행차량의 경로회피방법을 제공한다.

Description

자율주행차량의 경로회피방법{THE METHOD OF COLLISION AVOIDANCE FOR AUTONOMOUS VEHICLE}
본 발명은 자율주행차량의 경로회피방법에 관한 것으로, 보다 상세하게는 본 발명은 충돌 회피를 위한 경로 생성 및 생성된 경로를 추종하기 위한 자율주행차량의 경로회피방법에 관한 것이다.
기존 자율주행차량의 경로생성은 현재 차량의 위치에서 충돌영역을 고려한 경로점까지의 경로 생성 및 경로점에서 기존 주행경로 복귀를 위한 경로생성은 5차 다항식을 이용한 곡선으로 표현되며, 5차 다항식에 포함된 6개의 계수를 구하기 위해 다항식의 1계도함수, 2계도함수 및 초기조건 등으로 구성된 6원1차연립방정식을 도출한 후 해를 구하기 위한 행렬연산을 수행해야 한다.
비록 고성능의 마이크로프로세서는 상기 연산을 하기 위한 프로세서 부하를 무시할 정도이나 상대적으로 성능이 낮은 프로세서에 대해서는 프로세서의 연산 속도가 낮으므로, 이는 샘플링 시간의 주기가 작아질수록 연산에 문제가 발생할 가능성이 높다.
한국등록특허공보 제10-1371930호(2014.03.03)
본 발명은 도로 상에 있는 임의의 차로의 중앙을 따라 이동하는 자율주행차량의 주행을 위해 사용되며, 차량 이동 중 차량 앞에 이동하는 대상물이 있을 경우 대상물의 이동방향과 속도를 고려하여 설정된 충돌영역을 회피하기 위한 경로를 생성하는 자율주행차량의 경로회피방법을 제공하는 것이다.
또한, 본 발명은 생성된 경로를 추종하기 위한 차량의 선속도 및 조향각을 도출하기 위한 자율주행차량의 경로회피방법을 제공하는 것이다.
본 발명의 일 실시예에 따르면, 도로 상에 있는 임의의 차로를 따라 주행 중 장애물을 회피하거나 주행경로를 변경하기 위한 자율주행차량의 회피 경로 및 복귀 경로를 코사인 함수의 반주기를 이용하여 설정하는, 자율주행차량의 경로회피방법을 제공한다.
또한, 상기 자율주행차량은, 주행경로 주변의 상황을 감시하는 주변 감시부, 주행경로를 설정하는 주행경로 설정부 및 설정된 주행 경로를 따라 상기 자율주행차량을 구동하는 차량 구동부를 포함할 수 있다.
또한, 상기 주행경로 설정부는, 상기 자율주행차량과 이동 대상물 간의 X축 성분의 길이 및 차로 중심에서 충돌 영역의 가장자리 간의 Y축 성분의 길이를 고려하여 코사인 함수의 각가속도 및 진폭을 결정하여 상기 회피 경로의 이동길이 및 편차를 결정할 수 있다.
또한, 상기 주행경로 설정부는, 시간의 함수에서 X성분의 위치 X(t) 및 Y성분의 위치 Y(t)를 미리 설정된 횟수만큼 미분하여 임의의 위치에 대한 X축의 속도 Vx(t) 및 Y축의 속도 Vy(t)를 정의할 수 있다.
또한, 상기 주행경로 설정부는, 상기 Vx(t) 및 Vy(t)의 값을 속도벡터 V(t)의 X성분과 Y성분으로 각각 정의하고, 속도 벡터 V(t)의 크기값을 상기 자율주행차량의 선속도로 설정하고, 아크탄젠트값을 조향각으로 설정할 수 있다.
또한, 상기 주행경로 설정부는, 테일러 급수를 이용하여 대수학적 연산으로 근사값을 구하여 주행경로를 설정할 수 있다.
본 발명은 자율주행차량 주행시 전방의 이동 대상물을 회피하기 위한 경로를 간단하게 생성할 수 있으며, 좌표축을 기준으로 X, Y 값의 위치를 시간에 대한 매개변수 함수로 지정하여, X축 및 Y축에 대한 방정식을 1계도 미분하여 경로주행을 위한 자율주행차량의 선속도 및 조향각을 간단하게 정의할 수 있다.
또한, 본 발명은 보조프로세서를 지원하지 않는 저성능의 프로세서를 위해 삼각함수를 테일러 급수로 변환하여 대수학적 연산을 이용하여 삼각함수의 경로를 유사하게 계산할 수 있다.
도 1은 본 발명의 일 실시예에 따른 자율주행차량의 구성을 나타내는 도면이다.
도 2는 도로 상에서 주행하는 자율주행차량의 전방에 움직이는 이동 대상물을 회피하는 방법을 나타내는 도면이다.
도 3은 자율주행차량의 경로 및 임의의 시간에서 X축 및 Y축 속도 성분을 표현하기 위한 기준좌표계를 나타내는 도면이다.
도 4는 X축 및 Y축 속도 성분을 이용한 속도벡터의 합과 방향을 정의하는 방법을 나타내는 도면이다.
도 5는 속도벡터와 방향을 차량에 적용하는 방법을 나타내는 도면이다.
이하에서는, 본 발명의 바람직한 실시예에 기초하여 본 발명을 보다 구체적으로 설명한다. 그러나, 하기 실시예는 본 발명의 이해를 돕기 위한 일 예에 불과한 것으로 이에 의해 본 발명의 권리범위가 축소되거나 한정되는 것은 아니다.
도 1은 본 발명의 일 실시예에 따른 자율주행차량의 구성을 나타내는 도면이다.
도 1을 참조하면, 본 발명의 일 실시예에 따른 자율주행차량(100)은 주행경로 주변의 상황을 감시하는 주변 감시부(110), 주행경로를 설정하는 주행경로 설정부(120), 설정된 주행경로를 따라 자율주행차량을 구동하는 차량 구동부(130)를 포함할 수 있다.
주변 감시부(110)는 카메라, 적외선 감지기, 음향 감지기 등을 이용하여 자율주행차량(100)의 주변 상황을 감시할 수 있다. 예를 들면, 주변 감시부(110)는 자율주행차량(100)의 주행경로 전방에 움직이는 대상물을 감지할 수 있다.
주행경로 설정부(120)는 자율주행차량(100)의 주행경로를 설정할 수 있다. 주행경로 설정부(120)에 대한 상세한 설명은 아래에서 도면을 참조하여 서술한다.
차량 구동부(130)는 설정된 주행경로를 따라 주행하도록 자율주행차량(100)을 구동할 수 있다. 이를 위해, 차량 구동부(130)는 동력을 발생시키고, 자율주행차량(100)의 조향을 제어하고, 자율주행차량(100)의 가속 및 감속을 제어할 수 있다.
여기서는, 도 2 내지 도 5를 참조하여 주행경로 설정부의 기능을 상세하게 설명한다.
구체적으로, 도로(200) 내의 차로(210) 상을 지나는 자율주행차량(100)은 가상의 가상 차로 중심선(220)을 추종할 때 이동 대상물(250)이 도로(200)를 가로지를 경우 현재 자율주행차량(100)과 이동 대상물(250) 간의 거리 및 충돌 영역(260)을 고려한 편차를 계산하여 회피 경로(310) 및 복귀 경로(320)를 설정하고, 회피 경로(310) 및 복귀 경로(320)를 추종하여 주행할 수 있다.
여기서, 자율주행차량(100)의 회피 경로(310) 및 복귀 경로(320)는 주행경로 설정부(120)에서 코사인 함수의 반주기 형태로 설정될 수 있다.
또한, 회피 경로(310) 및 복귀 경로(320)의 길이 및 가상 차로 중심선(220)과의 충돌 영역(260)을 고려한 편차(이하, Y)는 도 2에 도시된 바와 같이 자율주행차량(100)에서 이동 대상물(250)까지의 거리(이하, D) 값과, 차로 가상 중심선(220)에서 경로점(280)까지의 편차(이하, A) 값을 조정하여 변경시킬 수 있다. 이러한 Y는 아래의 수학식으로 나타낼 수 있다.
[수학식 1]
Y(X)=Acos((D/π)X-D)+A
여기서, 상기 D 값이 커짐에 따라 수학식 1의 반주기 폭은 증가하고, 상기 A 값이 증가하면 수학식 1의 편차값이 커지게 된다.
다음, 회피 경로를 추종하는 속도는 주행경로 설정부(120)에서 차량의 X 방향 및 Y 방향으로 정의할 수 있다.
여기서, X 방향의 속도는 대상 물체가 이동하는 시간 T 동안에 D만큼 이동한 거리를 Vx로 설정할 수 있다. 이때, 자율주행차량(100)은 등속운동을 한다고 가정할 수 있다.
또한, Y 방향의 속도는 시간 T 동안에 시간 중심선에서 A만큼 이동한 거리를 Vy로 설정할 수 있다.
회피 경로(310) 및 복귀 경로(320)를 이동할 때 임의의 시간에서의 위치를 (X, Y)라고 할 때 위치는 시간의 함수로 표현할 수 있으며, 위치에 대한 각 함수는 아래의 수학식 2와 같이 정의할 수 있다.
[수학식 2]
X(t) = (Vx)(t)
Y(t) = Acos((D/π)(Vx)t-D)+A
여기서, Vx 및 Vy는 시간에 대해서 1계도 미분을 수행하면 각각 구할 수 있으며, 그 값은 아래의 수학식 3과 같다.
[수학식 3]
X'(t) = Vx
Y'(t) = Vy = -(AD(Vx)/π)sin(D(Vx)/πt-D)
도 5를 참조하면, 자율주행차량(100)의 선속도 V(t) 및 조향각 θ(t)는 주행경로 설정부(120)에서 수학식 2 및 3에 정의된 속도 성분을 도 4와 같이 벡터를 이용하여 설정할 수 있다.
속도의 X 성분인 Vx와 Y 성분인 Vy를 벡터의 X와 Y 성분으로 가정하면 선속도 벡터 V(t)=(Vx, Vy)의 크기는 피타고라스 정리를 이용하여 크기를 구할 수 있고, V(t)의 방향인 θ(t)는 (Vy/Vx)의 아크탄젠트(arctangent) 값을 계산하여 구할 수 있다. 이 값을 자율주행차량(100)의 선속도와 조향각으로 설정할 수 있다.
자율주행차량(100)에 사용되는 주행경로 설정부(120)의 프로세서는 가용 리소스가 제한되어 있기 때문에 수학함수를 사용할 수 있는 보조프로세서를 가지고 있지 않은 경우도 있을 수 있다. 이러한 경우에는 삼각함수의 테일러 급수를 활용하여 대수학적 연산을 이용하여 자율주행차량의 선속도 V(t)의 Y성분인 Vy 및 V(t)의 방향 θ(t)를 아래의 수학식 4 및 5와 같이 근사적으로 값을 구할 수 있다.
[수학식 4]
sinT=T-(1/3!)*T^3+(1/5!)*T^5-(1/7!)*T^7+(1/9!)*T^9-(1/11!)*T^11-(H.O.T)
Vy = -(AD(Vx)/π)sinT
= -(AD(Vx)/π)(T-1/3!*T^3+1/5!*T^5-1/7!*T^7+1/9!*T^9)-H.O.T)
여기서, T=D(Vx)/πt-D이며, H.O.T(High Order Term) 값은 매우 작으므로 생략할 수 있다.
[수학식 5]
θ(t) = arctanV = V-V^3/3+V^5/5-V^7/7+V^9/9-(H.O.T)
여기서, V = Vy/Vx이며, H.O.T는 값이 매우 작으므로 생략 가능하다.
본 발명은 자율주행차량의 주행 시 전방의 이동 대상물을 회피하기 위한 경로를 간단하게 생성할 수 있으며, 좌표축을 기준으로 X, Y 값의 위치를 시간에 대한 매개변수 함수로 지정하여 X축 및 Y축에 대한 방정식을 1계도 미분하여 경로 주행을 위한 자율주행차량의 선속도 및 조향각을 간단하게 설정할 수 있다.
또한, 본 발명은 보조프로세서를 지원하지 않는 저성능의 프로세서를 위해 삼각함수를 테일러 급수로 변환하여 대수학적 연산을 이용하여 삼각함수의 경로를 유사하게 계산할 수 있다.
이상에서 본 발명에 대한 기술 사상을 첨부 도면과 함께 서술하였지만, 이는 본 발명의 바람직한 실시예를 예시적으로 설명한 것이지 본 발명을 한정하는 것은 아니다. 또한, 이 기술 분야의 통상의 지식을 가진 자라면 누구나 본 발명의 기술 사상의 범주를 이탈하지 않는 범위 내에서 다양한 변형 및 모방이 가능함은 명백한 사실이다.
100: 자율주행차량
110: 주변 감시부
120: 주행경로 설정부
130: 차량 구동부
200: 도로
210: 차로
220: 가상 차로 중심선
250: 이동 대상물
260: 충돌 영역
280: 경로점
310: 회피 경로
320: 복귀 경로

Claims (6)

  1. 도로 상에 있는 임의의 차로를 따라 주행 중 장애물을 회피하거나 주행경로를 변경하기 위한 자율주행차량의 회피 경로 및 복귀 경로를 코사인 함수의 반주기를 이용하여 설정하는, 자율주행차량의 경로회피방법.
  2. 제1항에 있어서,
    상기 자율주행차량은,
    주행경로 주변의 상황을 감시하는 주변 감시부;
    주행경로를 설정하는 주행경로 설정부; 및
    설정된 주행 경로를 따라 상기 자율주행차량을 구동하는 차량 구동부를 포함하는, 자율주행차량의 경로회피방법.
  3. 제2항에 있어서,
    상기 주행경로 설정부는, 상기 자율주행차량과 이동 대상물 간의 X축 성분의 길이 및 차로 중심에서 충돌 영역의 가장자리 간의 Y축 성분의 길이를 고려하여 코사인 함수의 각가속도 및 진폭을 결정하여 상기 회피 경로의 이동길이 및 편차를 결정하는, 자율주행차량의 경로회피방법.
  4. 제3항에 있어서,
    상기 주행경로 설정부는, 시간의 함수에서 X성분의 위치 X(t) 및 Y성분의 위치 Y(t)를 미리 설정된 횟수만큼 미분하여 임의의 위치에 대한 X축의 속도 Vx(t) 및 Y축의 속도 Vy(t)를 정의하는, 자율주행차량의 경로회피방법.
  5. 제4항에 있어서,
    상기 주행경로 설정부는, 상기 Vx(t) 및 Vy(t)의 값을 속도벡터 V(t)의 X성분과 Y성분으로 각각 정의하고, 속도 벡터 V(t)의 크기값을 상기 자율주행차량의 선속도로 설정하고, 아크탄젠트값을 조향각으로 설정하는, 자율주행차량의 경로회피방법.
  6. 제2항에 있어서,
    상기 주행경로 설정부는, 테일러 급수를 이용하여 대수학적 연산으로 근사값을 구하여 주행경로를 설정하는, 자율주행차량의 경로회피방법.

KR1020170115715A 2017-09-11 2017-09-11 자율주행차량의 경로회피방법 KR20190028883A (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170115715A KR20190028883A (ko) 2017-09-11 2017-09-11 자율주행차량의 경로회피방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170115715A KR20190028883A (ko) 2017-09-11 2017-09-11 자율주행차량의 경로회피방법

Publications (1)

Publication Number Publication Date
KR20190028883A true KR20190028883A (ko) 2019-03-20

Family

ID=66036075

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170115715A KR20190028883A (ko) 2017-09-11 2017-09-11 자율주행차량의 경로회피방법

Country Status (1)

Country Link
KR (1) KR20190028883A (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108791288A (zh) * 2018-05-31 2018-11-13 惠州华阳通用电子有限公司 一种基于信息融合的防碰撞装置及方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101371930B1 (ko) 2012-11-08 2014-03-07 현대자동차주식회사 자율주행차량의 주행제어 장치 및 그 방법

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101371930B1 (ko) 2012-11-08 2014-03-07 현대자동차주식회사 자율주행차량의 주행제어 장치 및 그 방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108791288A (zh) * 2018-05-31 2018-11-13 惠州华阳通用电子有限公司 一种基于信息融合的防碰撞装置及方法

Similar Documents

Publication Publication Date Title
Wang et al. Vision-based flexible leader–follower formation tracking of multiple nonholonomic mobile robots in unknown obstacle environments
Pradhan et al. Robot crowd navigation using predictive position fields in the potential function framework
JP7315039B2 (ja) 自動車の回避経路を求める方法
Prasad et al. A new stabilizing solution for motion planning and control of multiple robots
Tang et al. Teleoperated Road Vehicles–The" Free Corridor" as a Safety Strategy Approach
Dai et al. Formation control of mobile robots with obstacle avoidance based on GOACM using onboard sensors
Rupp et al. Fast and low-cost testing of advanced driver assistance systems using small-scale vehicles
JP2020004342A (ja) 移動体制御装置
Zhuang et al. Mobile robot hybrid path planning in an obstacle-cluttered environment based on steering control and improved distance propagating
JP2019008531A (ja) 移動車両
Seng et al. Distributed formation control of networked mobile robots in environments with obstacles
Semakova et al. Self-deployment of mobile robotic networks: an algorithm for decentralized sweep boundary coverage
KR20190028883A (ko) 자율주행차량의 경로회피방법
KR101140984B1 (ko) 가시적으로 차단된 동적 장애물의 출현을 고려한 안전 경로 생성 방법 및 이를 이용한 이동 로봇
Smith et al. Echoic flow for cognitive radar guidance
Soloviev et al. Planning of the mobile robot motion in non-deterministic environments with potential fields method
Kumagai et al. Achievement of recognition guided teleoperation driving system for humanoid robots with vehicle path estimation
Thontepu et al. Control barrier functions in ugvs for kinematic obstacle avoidance: A collision cone approach
Aissa et al. Data fusion strategy for the navigation of a mobile robot in an unknown environment using fuzzy logic control
Dang et al. Dynamic virtual target guidance algorithm for path following control of a 4WD4WS mobile robot
Salaris et al. The geometry of confocal curves for passing through a door
Lee et al. Mobile robot navigation with reactive free space estimation
Saska et al. Trajectory planning and stabilization for formations acting in dynamic environments
Nagata et al. Model predictive obstacle avoidance control for omni-directional mobile robots based on fuzzy potential method
Seng et al. Distributed formation control in cluttered environments

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application