KR20190011132A - Lithium-nikel composite oxide for positive electrode active material of secondary batteries containing residual lithium - Google Patents

Lithium-nikel composite oxide for positive electrode active material of secondary batteries containing residual lithium Download PDF

Info

Publication number
KR20190011132A
KR20190011132A KR1020170093717A KR20170093717A KR20190011132A KR 20190011132 A KR20190011132 A KR 20190011132A KR 1020170093717 A KR1020170093717 A KR 1020170093717A KR 20170093717 A KR20170093717 A KR 20170093717A KR 20190011132 A KR20190011132 A KR 20190011132A
Authority
KR
South Korea
Prior art keywords
lithium
composite oxide
nickel composite
compound
active material
Prior art date
Application number
KR1020170093717A
Other languages
Korean (ko)
Other versions
KR101951699B1 (en
Inventor
김재범
이민형
이승원
김정한
Original Assignee
주식회사 포스코이에스엠
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코이에스엠 filed Critical 주식회사 포스코이에스엠
Priority to KR1020170093717A priority Critical patent/KR101951699B1/en
Publication of KR20190011132A publication Critical patent/KR20190011132A/en
Application granted granted Critical
Publication of KR101951699B1 publication Critical patent/KR101951699B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

The present invention relates to a lithium-nickel composite oxide in which a Li-O-P compound is evenly distributed in an LNO matrix. More specifically, the present invention relates to the lithium-nickel composite oxide in which the Li-O-P compound is evenly distributed in the LNO matrix, wherein the Li-O-P compound is formed in the LNO matrix by using a phosphorus compound, thereby showing an effect of reducing remaining lithium, and a method for manufacturing the same.

Description

LNO 매트릭스 내 Li-O-P 화합물이 고르게 분포된 리튬-니켈 복합 산화물 {LITHIUM-NIKEL COMPOSITE OXIDE FOR POSITIVE ELECTRODE ACTIVE MATERIAL OF SECONDARY BATTERIES CONTAINING RESIDUAL LITHIUM}LITHIUM-NIKE COMPOSITE OXIDE FOR POSITIVE ELECTRODE ACTIVE MATERIAL OF SECONDARY BATTERIES CONTAINING RESIDUAL LITHIUM OF LI-O-P COMPOUNDS IN A LNO MATRIX

본 발명은 LNO 매트릭스 내 Li-O-P 화합물이 고르게 분포된 리튬-니켈 복합 산화물에 관한 것으로서, 더욱 상세하게는 인 화합물을 이용하여 LNO 매트릭스 내 Li-O-P 화합물이 형성되고 이로 인해 잔류리튬이 감소되는 효과를 나타내는 LNO 매트릭스 내 Li-O-P 화합물이 고르게 분포된 리튬-니켈 복합 산화물 및 이의 제조 방법에 관한 것이다.The present invention relates to a lithium-nickel composite oxide in which a Li-OP compound is evenly distributed in an LNO matrix, and more particularly, to a lithium-nickel composite oxide having an effect of forming a Li-OP compound in an LNO matrix using a phosphorus compound, Nickel complex oxide in which the Li-OP compound in the LNO matrix is evenly distributed, and a method for producing the lithium-nickel composite oxide.

리튬이차전지에서 양극활물질은 리튬의 공급원으로서 전치의 충방전 시 양극재료의 결정격자로부터 리튬을 방출 및 흡수하여, 전지 내에 전기에너지를 저장, 방출하는 주원료이다.In the lithium secondary battery, the cathode active material is a main source for discharging and absorbing lithium from the crystal lattice of the cathode material during charging and discharging of the cathode as a source of lithium and storing and discharging electric energy in the battery.

Li-rich metal oxide에는 Li2NiO2, Li2CuO2, Li2Co0 . 4Mn1 . 6O4 등이 있으며, 이들은 Li 2 당량 이상을 가지고 있어 높은 충전용량을 가지고 있으나, 충전 시 Immm 구조에서 R-3m 구조전이가 발생함에 따라 낮은 방전용량을 가지는 특징이 있다. 그러나, 이러한 Li-rich metal oxide는 리튬이차전지 분야에서 음극의 비가역 Li을 보상해주는 희생양극 개념의 용도로 사용되고 있다.The Li-rich metal oxide includes Li 2 NiO 2 , Li 2 CuO 2 , Li 2 Co 0 . 4 Mn 1 . 6 O 4, etc., which have a high charging capacity because they have a Li 2 equivalent or more. However, they have a low discharge capacity due to the R-3m structure transition in the Immm structure upon charging. However, such a Li-rich metal oxide is used as a sacrificial anode concept for compensating irreversible Li of a cathode in a lithium secondary battery field.

한편, Li2NiO2(LNO)는 표면의 미반응 Li2O로 인하여 높은 잔류리튬(LiOH, Li2CO3)을 가지고 있으며, 이에 대하여 다양한 방법으로 개선하고자 하였다.On the other hand, Li 2 NiO 2 (LNO) has a high residual lithium (LiOH, Li 2 CO 3 ) due to the unreacted Li 2 O on the surface.

종래, 잔류리튬을 감소시키기 위하여, Ni 자리에 다른 금속을 도핑하는 방법으로 잔류리튬을 줄이고자 하였다. 대한민국 공개특허공보 제10-2016-002187호의 경우, Al 도핑으로 잔류리튬을 감소시키고자 하였으나, Al의 경우 소성과정에서 LNO 구조에 들어가지 않으며, 리튬소스(Li2O)와 먼저 반응하여 Li-Al-O 형태의 화합물(Li5AlO4)을 생성하고, Li-Al-O 형태의 화합물(Li5AlO4)은 H2O, CO2와의 반응성이 매우 커 LNO의 잔류리튬 증가에 크게 영향을 주어, 오히려 잔류리튬 증가의 요인일 될 수 있다.Conventionally, in order to reduce residual lithium, it was tried to reduce residual lithium by doping Ni sites with other metals. Korean Patent Laid-Open Publication No. 10-2016-002187 attempts to reduce residual lithium by Al doping. However, Al does not enter the LNO structure in the firing process and reacts first with a lithium source (Li 2 O) Al-O type compound (Li 5 AlO 4 ), and the compound of Li-Al-O type (Li 5 AlO 4 ) is highly reactive with H 2 O and CO 2 and greatly influences the residual lithium increase of LNO Rather, it may be a factor of residual lithium increase.

대한민국 공개특허공보 제10-2010-0036896호의 경우, 1차로 LNO를 합성한 후 추가 공정으로 Al source 물질을 사용하여 습식코팅 후 건조하여 표면에 Al을 코팅하는 구성을 개시하고 있으나, 표면에 바람직한 Al oxide 물질을 형성하기 위해서는 600 이상의 온도가 적당하여, 600 정도의 열처리시 Li-Al-O 합성이 먼저 이루어지기 때문에 잔류리튬 저감효과가 크지 않다.Korean Patent Laid-Open Publication No. 10-2010-0036896 discloses a structure in which Al is coated on the surface by wet-coating and then drying by using an Al source material as an additional process after first synthesizing LNO. However, In order to form an oxide material, a temperature of 600 or higher is suitable, and Li-Al-O synthesis is performed first in the heat treatment of about 600, so that the residual lithium reduction effect is not significant.

대한민국 공개특허공보 제10-2015-0049829호의 경우, 리튬전이금속산화물에 Al2O3 및 인산화 리튬을 열처리를 수행하는 구성을 개시하고 있으며, 이때 리튬전이금속 표면에 존재하는 잔류리튬과 코팅소스 물질과의 반응으로 리튬 불순물을 감소시켜, 수분과 전해액의 부반응을 감소시킴으로써 수명특성을 개선하는 구성을 개시하여, 리튬전이금속화합물은 high Ni NCM계열에 인산화 리튬을 코팅함으로써 잔류리튬 감소 및 전기화학적 특성 개선을 이루었음을 기재하고 있으나, Li3PO4 합성을 위해서는 적어도 600℃ 이상의 열처리 온도가 필요하며 NCM의 경우 높은 열처리 온도로 인해 구조가 변경되거나 부반응이 발생할 수 있다.Korean Patent Laid-Open Publication No. 10-2015-0049829 discloses a structure in which Al 2 O 3 and lithium phosphorus are heat-treated to a lithium transition metal oxide, wherein residual lithium and a coating source material And the lithium transition metal compound is coated on the high Ni NCM series with lithium phosphate to reduce residual lithium and improve the electrochemical characteristics However, in order to synthesize Li 3 PO 4 , a heat treatment temperature of at least 600 ° C. is required, and in the case of NCM, the structure may be changed or a side reaction may occur due to a high heat treatment temperature.

본 발명은 상기와 같은 종래 기술의 문제점을 해결하기 위하여 리튬-니켈 복합산화물의 합성과정 또는 건식코팅 공정에 인(P) 소스물질을 이용하여, 충전용량의 감소없이 잔류리튬이 감소된 리튬이차전지용 양극활물질을 제공하는 것을 목적으로 한다.The present invention has been made in order to solve the problems of the prior art as described above, and it is an object of the present invention to provide a lithium secondary battery which uses a phosphorus (P) source material in a process of synthesizing a lithium- It is an object of the present invention to provide a positive electrode active material.

상기 목적을 달성하기 위하여, 본 발명은 LNO 매트릭스 내 Li-O-P 화합물이 고르게 분포된 리튬-니켈 복합 산화물을 제공한다.In order to achieve the above object, the present invention provides a lithium-nickel composite oxide in which Li-O-P compounds in an LNO matrix are evenly distributed.

본 발명에 의한 리튬-니켈 복합 산화물은 상기 P의 함량이 리튬-니켈 복합 산화물 100 중량부당 3 중량부 이하인 것을 특징으로 한다.The lithium-nickel composite oxide according to the present invention is characterized in that the content of P is 3 parts by weight or less per 100 parts by weight of the lithium-nickel composite oxide.

본 발명에 의한 리튬-니켈 복합 산화물은 화학식1로 표시되는 것을 특징으로 한다.The lithium-nickel composite oxide according to the present invention is characterized by being represented by the formula (1).

<화학식1> Li2+aNixO2-bAb &Lt; Formula 1 > Li 2 + a Ni x O 2 -b A b

(상기 화학식 1에서 A는 음이온 상태의 P 로 이루어져 있으며, 0<a≤0.3, 0<b≤0.3, a+x=1 임)(Wherein A is an anionic P and 0 < a? 0.3, 0 < b? 0.3, a + x = 1)

본 발명에 의한 리튬-니켈 복합 산화물에 있어서, 상기 Li-O-P 화합물은 Li3PO4 인 것을 특징으로 한다.In the lithium-nickel composite oxide according to the present invention, the Li-OP compound is Li 3 PO 4 .

본 발명은 또한,The present invention also relates to

(a) 리튬-니켈 복합산화물을 제조하는 단계;(a) preparing a lithium-nickel composite oxide;

(b) 상기 리튬-니켈 복합산화물에 인(P) 화합물을 추가하여 혼합물을 제조하는 단계; 및(b) adding a phosphorus (P) compound to the lithium-nickel composite oxide to prepare a mixture; And

(c) 상기 혼합물을 열처리하는 단계;를 포함하는 잔류리튬이 감소된 이차전지 양극활물질용 리튬-니켈 복합산화물의 제조방법을 제공한다.(c) heat-treating the mixture. The present invention also provides a method for producing a lithium-nickel composite oxide for a lithium secondary battery having a reduced lithium content.

본 발명에 의한 리튬-니켈 복합 산화물의 제조 방법에 있어서, 상기 (b) 단계에서 상기 인(P) 화합물은 (NH4)2HPO4 , Mg3(PO)4, Ba3(PO4)2, (NH4)3PO4, Cu3(PO4)2, Fe3(PO4)2, Ni3(PO4)2, MgNH4PO4.6H2O, K3PO4, CoPO4, NaH2PO4.7H2O, Mg(H2PO4)2, Co3(PO4)2, K2HPO4, Na2HPO4, V3(PO4)5, 및 Ca(H2PO4)2 으로 이루어진 그룹에서 선택되는 것을 특징으로 한다.Li accordance with the present invention a method of manufacturing a nickel complex oxide, the phosphorus (P) compounds in step (b) is (NH 4) 2 HPO 4, Mg 3 (PO) 4, Ba 3 (PO 4) 2 , (NH 4) 3 PO 4 , Cu 3 (PO 4) 2, Fe 3 (PO 4) 2, Ni 3 (PO 4) 2, MgNH 4 PO 4 .6H 2 O, K 3 PO 4, CoPO 4, NaH 2 PO 4 .7H 2 O, Mg (H 2 PO 4) 2, Co 3 (PO 4) 2, K 2 HPO 4, Na 2 HPO 4, V 3 (PO 4) 5, and Ca (H 2 PO 4 ) 2 .

본 발명에 의한 리튬-니켈 복합 산화물의 제조 방법에 있어서, 상기 (a) 단계에서 상기 리튬-니켈 복합산화물은 Li2NiO2 및 LNO의 복합체인 것을 특징으로 한다.In the method for producing a lithium-nickel composite oxide according to the present invention, in the step (a), the lithium-nickel composite oxide is a complex of Li 2 NiO 2 and LNO.

본 발명에 의한 리튬-니켈 복합 산화물의 제조 방법에 있어서, 상기 (a) 리튬-니켈 복합산화물을 제조하는 단계는,In the method for producing a lithium-nickel composite oxide according to the present invention, the step (a) of producing the lithium-

(a-1) 리튬(Li) 화합물, 니켈(Ni) 화합물 및 인(P) 화합물을 혼합하여 혼합물을 제조하는 단계; 및(a-1) mixing a lithium (Li) compound, a nickel (Ni) compound and a phosphorus (P) compound to prepare a mixture; And

(a-2) 상기 혼합물을 불활성 분위기 하에서 소성시키는 단계; 를 포함하는 것을 특징으로 한다.(a-2) firing the mixture under an inert atmosphere; And a control unit.

본 발명에 의한 리튬-니켈 복합 산화물의 제조 방법에 있어서, 상기 (a-1) 단계에서 상기 리튬(Li) 화합물은 Li2O, LiOH, Li2CO3, Li2NO3, Li2MnO3, LiScO2, Li2ZrO3, LiYO2, Li2ZrO3, LiAlO2, LiAl5O8, LiGaO2, LiLaO2, Li2SiO3, Li2GeO3 및 LiCH3CO2 으로 이루어진 군에서 선택된 어느 하나인 것을 특징으로 한다.In the method for producing a lithium-nickel composite oxide according to the present invention, in the step (a-1), the lithium compound is Li 2 O, LiOH, Li 2 CO 3 , Li 2 NO 3 , Li 2 MnO 3 , LiScO 2 , Li 2 ZrO 3 , LiYO 2 , Li 2 ZrO 3 , LiAlO 2 , LiAl 5 O 8 , LiGaO 2 , LiLaO 2 , Li 2 SiO 3 , Li 2 GeO 3 and LiCH 3 CO 2 And is characterized by being either one.

본 발명에 의한 리튬-니켈 복합 산화물의 제조 방법에 있어서, 상기 (a-1) 단계에서 상기 니켈(Ni) 화합물은 NiO, Ni(OH)2, NiOOH, NiCO3 ·2Ni(OH)2 ·4H2O, NiC2O2H2O, Ni(NO3)2 ·6H2O, NiSO4 및 NiSO4 ·6H2O 으로 이루어진 군에서 선택된 어느 하나인 것을 특징으로 한다.Li accordance with the present invention a method of manufacturing a nickel complex oxide, the nickel (Ni) compound in the (a-1) step, NiO, Ni (OH) 2, NiOOH, NiCO 3 · 2Ni (OH) 2 · 4H 2 O, NiC 2 O 4 · and the 2H 2 O, Ni (NO 3 ) 2 · 6H 2 O, NiSO 4 and NiSO 4 · characterized in that any one selected from the group consisting of 6H 2 O.

본 발명에 의한 리튬-니켈 복합 산화물의 제조 방법에 있어서, 상기 (a-1) 단계에서 상기 인(P) 화합물은 (NH4)2HPO4 , Mg3(PO)4, Ba3(PO4)2, (NH4)3PO4, Cu3(PO4)2, Fe3(PO4)2, Ni3(PO4)2, MgNH4PO4.6H2O, K3PO4, CoPO4, NaH2PO4 ·7H2O, Mg(H2PO4)2, Co3(PO4)2, K2HPO4, Na2HPO4, V3(PO4)5, 및 Ca(H2PO4)2 으로 이루어진 그룹에서 선택되는 것을 특징으로 한다.Li accordance with the present invention a method of manufacturing a nickel composite oxide, is the phosphorus (P) compounds in the (a-1) Step (NH 4) 2 HPO 4, Mg 3 (PO) 4, Ba 3 (PO 4 ) 2 , (NH 4 ) 3 PO 4 , Cu 3 (PO 4 ) 2 , Fe 3 (PO 4 ) 2 , Ni 3 (PO 4 ) 2 , MgNH 4 PO 4 .6H 2 O, K 3 PO 4 , 4, NaH 2 PO 4 · 7H 2 O, Mg (H 2 PO 4) 2, Co 3 (PO 4) 2, K 2 HPO 4, Na 2 HPO 4, V 3 (PO 4) 5, and Ca (H 2 PO 4) and being selected from the group consisting of: 2.

본 발명은 또한, 본 발명에 의하여 제조된 리튬-니켈 복합산화물을 양극활물질로 이용한 리튬이차전지를 제공한다.The present invention also provides a lithium secondary battery using the lithium-nickel composite oxide produced by the present invention as a cathode active material.

본 발명은 리튬-니켈 복합산화물의 건식 코팅 또는 인(P) 소스 물질을 리튬-니켈 복합산화물의 제조 시 리튬 화합물, 니켈 화합물과 함께, 인(P) 소스 물질을 소성시킴으로써, 잔류리튬이 감소된 이차전지 양극활물질용 리튬-니켈 복합산화물을 제공하는 효과가 있다.The present invention relates to a method for producing a lithium-nickel composite oxide, which comprises calcining a phosphorus (P) source material together with a lithium compound, a nickel compound and a dry coating of a lithium-nickel composite oxide or a phosphorus (P) source material in the production of a lithium- There is an effect of providing a lithium-nickel composite oxide for a cathode active material for a secondary battery.

도 1은 본 발명의 실시예1 및 비교예1, 비교예2 에 따른 리튬-니켈 복합산화물의 잔류리튬을 측정한 결과이다.
도 2는 본 발명의 실시예1 및 비교예2 에 따른 리튬-니켈 복합산화물의 표면 XPS 분석 결과이다.
도 3은 본 발명의 일 실시예2 및 비교예2 에 따른 리튬-니켈 복합산화물의 잔류리튬을 측정한 결과이다.
도 4는 본 발명의 일 실시예2 및 비교예2 에 따른 리튬-니켈 복합산화물의 XRD 분석 결과이다.
FIG. 1 shows the results of measurement of residual lithium in the lithium-nickel composite oxide according to Example 1 of the present invention and Comparative Example 1 and Comparative Example 2. FIG.
2 is a result of surface XPS analysis of the lithium-nickel composite oxide according to Example 1 and Comparative Example 2 of the present invention.
3 shows the results of measurement of residual lithium of the lithium-nickel composite oxide according to Example 2 and Comparative Example 2 of the present invention.
4 shows the XRD analysis results of the lithium-nickel composite oxide according to Example 2 and Comparative Example 2 of the present invention.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. It is to be understood by those skilled in the art that these examples are for illustrative purposes only and that the scope of the present invention is not construed as being limited by these examples.

실시예 1. 양극활물질의 제조Example 1. Preparation of cathode active material

순도 95%, 평균입경 8~12 ㎛, 수산화 니켈 옥사이드 Ni(OH)2를 산소분위기 하에서 600 ℃ 10시간 소성하여 산화니켈 옥사이드 NiO를 만들었으며, Li과 Ni의 몰비율을 2.03으로 설계한 후, 제조된 산화니켈 옥사이드와 산화리튬을 혼합하여, 질소분위기에서 685 ℃, 18시간 소성하여 리튬-니켈 복합 산화물(Li2NiO2: LNO)을 만들었다.Nickel oxide NiO (OH) 2 was sintered at 600 ° C for 10 hours under an oxygen atmosphere to prepare nickel oxide NiO. The molar ratio of Li and Ni was designed to 2.03, The prepared nickel oxide oxide and lithium oxide were mixed and fired in a nitrogen atmosphere at 685 캜 for 18 hours to prepare a lithium-nickel composite oxide (Li 2 NiO 2 : LNO).

제조된 LNO는 다시 분쇄 및 해쇄를 거쳐 평균입경이 14 ㎛인 LNO를 만든 후 인(P) 소스(source)물질인 인산암모늄 (NH4)2HPO4 1wt%를 혼합을 하였으며, 추가 열처리는 질소분위기하에서 685 ℃, 6시간 소성하여 LNO 매트릭스 내 Li-O-P 화합물이 고르게 분포된 리튬-니켈 복합 산화물을 만들었다.The prepared LNO was pulverized and crushed again to make LNO having an average particle size of 14 μm and then mixed with 1 wt% ammonium phosphate (NH 4 ) 2 HPO 4 as a source material of phosphorus (P) Atmosphere at 685 DEG C for 6 hours to form a lithium-nickel composite oxide in which the Li-OP compound was evenly distributed in the LNO matrix.

비교예 1.Comparative Example 1

순도 95%, 평균입경 8~12 ㎛, 수산화 니켈 옥사이드 Ni(OH)2를 산소분위기 하에서 600 ℃ 10시간 소성하여 산화니켈 옥사이드 NiO를 만들었으며, Li과 Ni, Al의 몰비율을 2.03으로 설계한 후, 제조된 산화니켈 옥사이드와 산화리튬, 수산화 알루미늄 Al(OH)3을 혼합하여, 질소분위기에서 685℃, 18시간 소성하여 리튬-니켈 복합 산화물(LNO)을 만들었다. 제조된 LNO는 다시 분쇄 및 해쇄를 거쳐 평균입경이 14 ㎛인 LNO를 만들었다. 이때 사용된 수산화 알루미늄은 순도 98%, 평균입경 1.5 ~ 3 ㎛의 물질을 사용하였다.Nickel oxide NiO (OH) 2 was sintered at 600 ° C for 10 hours in an oxygen atmosphere to prepare nickel oxide NiO. The molar ratio of Li to Ni and Al was designed to be 2.03 Thereafter, the prepared nickel oxide oxide, lithium oxide and aluminum hydroxide Al (OH) 3 were mixed and fired in a nitrogen atmosphere at 685 DEG C for 18 hours to prepare a lithium-nickel composite oxide (LNO). The prepared LNO was pulverized and pulverized again to prepare LNO having an average particle diameter of 14 탆. The aluminum hydroxide used herein was a material having a purity of 98% and an average particle diameter of 1.5 to 3 탆.

비교예 2.Comparative Example 2

순도 95%, 평균입경 8~12 ㎛, 수산화 니켈 옥사이드 Ni(OH)2를 산소분위기 하에서 600 ℃ 10시간 소성하여 산화니켈 옥사이드 NiO를 만들었으며, Li과 Ni의 몰비율을 2.03으로 설계한 후, 제조된 산화니켈 옥사이드와 산화리튬을 혼합하여, 질소분위기에서 685 ℃, 18시간 소성하여 리튬-니켈 복합 산화물(Li2NiO2: LNO)을 만들었다. 제조된 LNO는 다시 분쇄 및 해쇄를 거쳐 평균입경이 14 ㎛인 LNO를 만들었다.Nickel oxide NiO (OH) 2 was sintered at 600 ° C for 10 hours under an oxygen atmosphere to prepare nickel oxide NiO. The molar ratio of Li and Ni was designed to 2.03, The prepared nickel oxide oxide and lithium oxide were mixed and fired in a nitrogen atmosphere at 685 캜 for 18 hours to prepare a lithium-nickel composite oxide (Li 2 NiO 2 : LNO). The prepared LNO was pulverized and pulverized again to prepare LNO having an average particle diameter of 14 탆.

제조예 1. 전지 제조Production Example 1. Preparation of Cell

상기 생성물의 전기화학 성능을 평가하기 위하여, 최종 생성물, 도전제 (denka black), 바인더(KF1120)의 혼합비를 85:10:5 중량비로 혼합하여 Al포일에 고르게 도포하고, 100 ℃ 오븐에서 건조 후 압연하여 120 ℃ 진공오븐에서 진공 건조하여 Coin half cell(2032)에 사용되는 양극 전극을 만들었다. 상대전극은 Li-metal을 사용하였으며, 전해액으로는 LiPF6 1.0M EC: EMC 1:2(Vol%)를 사용하였으며, 통상의 방법으로 반쪽전지 제조 및 용량(mAh/g) 평가를 진행하였다.In order to evaluate the electrochemical performance of the product, the mixing ratio of the final product, the denka black and the binder (KF1120) was 85: 10: 5 by weight, and the mixture was uniformly coated on the Al foil. Rolled and vacuum-dried in a vacuum oven at 120 ° C to produce a positive electrode for a coin half cell (2032). The counter electrode was made of Li-metal, and LiPF 6 1.0M EC: EMC 1: 2 (Vol%) was used as the electrolyte. The half-cell was manufactured and its capacity (mAh / g) was evaluated by a conventional method.

 LNO 샘플LNO sample 잔류리튬
LiOH
(wt%)
Residual lithium
LiOH
(wt%)
잔류리튬
Li2CO3
(wt%)
Residual lithium
Li 2 CO 3
(wt%)
P함량
(ppm)
P content
(ppm)
충전
(mAh/g)
charge
(mAh / g)
방전
(mAh/g)
Discharge
(mAh / g)
Li3PO4
바인딩
에너지
(Ev)
Li 3 PO 4
Binding
energy
(Home)
실시예1
Al도핑(X)
P코팅 / 1wt%
Example 1
Al doping (X)
P coating / 1 wt%
1.241.24 0.460.46 20272027 397.5397.5 132.7132.7 ~133.6~ 133.6
비교예1
Al 도핑(O)
Comparative Example 1
Al doping (O)
4.634.63 0.500.50 -- 395.3395.3 132.2132.2 N.DN.D.
비교예2
Al도핑(X)
Comparative Example 2
Al doping (X)
4.254.25 0.570.57 -- 390.9390.9 134.4134.4 N.DN.D.
실시예2
Al도핑(X)
P도핑 / 2.5wt%
Example 2
Al doping (X)
P doping / 2.5 wt%
1.801.80 0.350.35 51075107 395.6395.6 137.4137.4 ~133.6~ 133.6
실시예3
Al도핑(X)
P도핑 / 2.5wt%
(소스변경)
Example 3
Al doping (X)
P doping / 2.5 wt%
(Change source)
1.971.97 0.410.41 19771977 393.1 393.1 132.1 132.1 ~133.6~ 133.6
실시예4
Al도핑(X)
P도핑 / 5wt%
Example 4
Al doping (X)
P doping / 5 wt%
1.91 1.91 0.34 0.34 1165211652 398.9398.9 126.3 126.3 ~133.6~ 133.6
실시예5
Al도핑(X)
P도핑 / 14wt%
Example 5
Al doping (X)
P doping / 14 wt%
1.611.61 0.210.21 30002 30002 342.2 342.2 110.8 110.8 ~133.6~ 133.6
실시예6
Al도핑(X)
P도핑 / 2.5wt%
N2+Air flow
Example 6
Al doping (X)
P doping / 2.5 wt%
N2 + Air flow
6.746.74 0.980.98 18941894 326.5326.5 11.2111.21 ~133.6~ 133.6

실험예 1. 잔류리튬 측정Experimental Example 1. Residual lithium measurement

상기 제조된 리튬니켈복합산화물(LNO)의 잔류리튬을 측정하기 위해 pH-T HCl 적정량을 측정하는 시험방법을 사용하였다.A test method for measuring the residual amount of lithium-nickel complex oxide (LNO) in the prepared lithium-nickel composite oxide (LNO) was used.

구체적으로 리튬니켈복합산화물(LNO) 10g을 칭량하여 순수 1000 ml에서 5분간 교반 분산시킨 후, 분산된 용액을 가지고 필터 페이퍼 2장을 이용하여 고형분을 제거하였다. 상기 고형분을 제거한 용액을 분취한 후 Auto-titration 장비에서 0.1N HCl의 농도로 적정조건에 맞추어 측정하여 잔류리튬의 양을 계산하였다.Specifically, 10 g of lithium nickel composite oxide (LNO) was weighed and dispersed in 1000 ml of pure water for 5 minutes with stirring, and then the solids were removed using two filter paper with the dispersed solution. The solution from which the solid content was removed was collected and measured in an auto-titration apparatus at a concentration of 0.1 N HCl in accordance with titration conditions to calculate the amount of residual lithium.

상시 실시예 1, 상기 비교예 1 및 상기 비교예 2에서 제조된 양극활물질에 대하여 잔류리튬양을 측정하고 그 결과를 도 1에 도시하고, 상기 표 1에 정리하였다.The amount of residual lithium was measured for the cathode active material prepared in Example 1, Comparative Example 1 and Comparative Example 2, and the results are shown in FIG. 1 and summarized in Table 1.

상기 표 1을 참조하면, 본 발명의 실시예에 의하여, 리튬-니켈 복합산화물(LNO)의 제조 후, 인(P) 소스 물질과의 건식 혼합 및 열처리를 통하여 양극활물질 표면의 잔류리튬(LiOH)과 인(P) 소스 물질과의 반응으로 Li-O-P를 표면에 생성시키므로 표면에 존재하는 잔류리튬을 감소시킬 수 있었다.(LiOH) on the surface of the cathode active material through dry mixing with the phosphorus (P) source material and heat treatment after the production of the lithium-nickel composite oxide (LNO) according to the embodiment of the present invention, And the phosphorus (P) source material, Li-OP was generated on the surface, thereby reducing residual lithium on the surface.

실험예 2. 전지 특성 측정Experimental Example 2. Measurement of cell characteristics

상기 실시예1, 비교예1, 비교예2의 샘플로 제조된 코인셀의 충방전 특성 및 효율을 측정하였으며, 측정 결과를 상기 표 1에 정리하였다.The charge / discharge characteristics and efficiency of the coin cell fabricated from the samples of Example 1, Comparative Example 1 and Comparative Example 2 were measured, and the measurement results are summarized in Table 1 above.

상기 실시예1 및 상기 실시예2를 참조하면, 인(P) 소스 물질을 건식 혼합 후 열처리를 하거나 또는 본소성 시 인(P)소스 물질을 함께 첨가함으로써 충방전 용량의 감소 없이 잔류리튬이 감소되었음을 확인할 수 있다.Referring to the first embodiment and the second embodiment, after the phosphorus (P) source material is dry-mixed and heat-treated or the phosphorous source material is added together with the phosphorus source material, the residual lithium is reduced .

실험예 3. 표면 XPS 분석Experimental Example 3: Surface XPS analysis

상기 실시예 1 및 상기 비교예2 에서 제조된 양극활물질의 표면 XPS 분석을 통하여 양극활물질 표면에 존재하는 화합물의 바인딩 에너지를 분석하였으며, 분석 결과를 도 2에 도시하였다.The binding energy of the compound present on the surface of the cathode active material was analyzed through surface XPS analysis of the cathode active material prepared in Example 1 and Comparative Example 2, and the analysis result is shown in FIG.

XPS 분석 장비 / 모델XPS Analysis Equipment / Models VG Scientific / ESCALAB-250VG Scientific / ESCALAB-250 분석면적
전압/전류
Analytical area
Voltage / Current
약 Φ1.1mm
15Kv / 10Ma
About Φ1.1mm
15Kv / 10Ma
X-ray 소스X-ray source AlAl

도 2에서 상기 실시예 1에서 제조된 리튬-니켈 복합산화물의 경우 ~133.6 eV에서 피크가 관찰되는 것을 확인할 수 있다.In FIG. 2, it can be seen that a peak was observed at ~ 133.6 eV in the case of the lithium-nickel composite oxide prepared in Example 1 above.

Li3PO4의 바인딩 에너지의 경우 ~133.6 eV에서 피크가 나타나는 것으로 알려져 있는바, 상기 실시예 1에서 제조된 리튬-니켈 복합산화물 표면의 잔류리튬과 P소스와의 반응으로 Li3PO4로 변화된 것을 확인할 수 있다.In the case of the binding energy of Li 3 PO 4 , peaks appear at ~ 133.6 eV. It is known that the reaction between Li 3 PO 4 and Li 3 PO 4 by the reaction of residual lithium and P source on the surface of the lithium- .

실시예 2. 양극활물질의 제조Example 2: Preparation of cathode active material

순도 95%, 평균입경 8~12 ㎛, 수산화 니켈 옥사이드 Ni(OH)2를 산소분위기 하에서 600℃ 10시간 소성하여 산화니켈 옥사이드 NiO를 만들었으며, Li과 Ni의 몰비율을 2.03으로 설계한 후 제조된 산화니켈 옥사이드와 산화리튬을 혼합할때 추가로 산화니켈 옥사이드와 산화리튬 혼합량의 6.8 wt%의 암모늄 포스페이트 (NH4)2HPO4 2.5wt%를 첨가하여 질소분위기에서 685℃, 18시간 소성하여 리튬-니켈 복합 산화물(Li2NiO2: LNO)을 만들었다. 제조된 LNO는 다시 분쇄 및 해쇄를 거쳐 평균입경이 14 ㎛인 LNO를 만들었다.Nickel oxide NiO (OH) 2 was baked at 600 ° C for 10 hours in an oxygen atmosphere to prepare nickel oxide NiO. The molar ratio of Li to Ni was designed to 2.03 (NH 4 ) 2 HPO 4 of 6.8 wt% of a mixed amount of nickel oxide and lithium oxide was added to the mixed oxide of nickel oxide and lithium oxide, followed by baking at 685 ° C. for 18 hours in a nitrogen atmosphere A lithium-nickel composite oxide (Li 2 NiO 2 : LNO) was produced. The prepared LNO was pulverized and pulverized again to prepare LNO having an average particle diameter of 14 탆.

실시예 3. 양극활물질의 제조Example 3: Preparation of cathode active material

순도 95%, 평균입경 8~12 ㎛, 수산화 니켈 옥사이드 Ni(OH)2를 산소분위기 하에서 600 ℃ 10시간 소성하여 산화니켈 옥사이드 NiO를 만들었으며, Li과 Ni의 몰비율을 2.03으로 설계한 후, 제조된 산화니켈 옥사이드와 산화리튬을 혼합할때 추가로 산화니켈 옥사이드와 산화리튬 혼합량의 2.5 wt%의 니켈 포스페이트 (Ni3(PO4)2)를 첨가하여 질소분위기에서 685 ℃, 18시간 소성하여 리튬-니켈 복합 산화물(Li2NiO2: LNO)을 만들었다.Nickel oxide NiO (OH) 2 was sintered at 600 ° C for 10 hours under an oxygen atmosphere to prepare nickel oxide NiO. The molar ratio of Li and Ni was designed to 2.03, Nickel phosphate (Ni 3 (PO 4 ) 2 ) in an amount of 2.5 wt% of a mixed oxide of nickel oxide and lithium oxide was further added and the mixture was calcined at 685 ° C for 18 hours in a nitrogen atmosphere A lithium-nickel composite oxide (Li 2 NiO 2 : LNO) was produced.

실시예 4. 양극활물질의 제조Example 4. Preparation of cathode active material

순도 95%, 평균입경 8~12㎛, 수산화 니켈 옥사이드 Ni(OH)2를 산소분위기 하에서 600 ℃ 10시간 소성하여 산화니켈 옥사이드 NiO를 만들었으며, Li과 Ni의 몰비율을 2.03으로 설계한 후 제조된 산화니켈 옥사이드와 산화리튬을 혼합할때 추가로 산화니켈 옥사이드와 산화리튬 혼합량의 5 wt%의 암모늄 포스페이트 (NH4)2HPO4 5 wt%를 첨가하여 질소분위기에서 685 ℃, 18시간 소성하여 리튬-니켈 복합 산화물(Li2NiO2: LNO)을 만들었다.Nickel oxide NiO (OH) 2 was sintered at 600 ° C for 10 hours in an oxygen atmosphere to prepare nickel oxide NiO. The molar ratio of Li to Ni was designed to 2.03 (NH 4 ) 2 HPO 4 5 wt% of a mixed amount of nickel oxide and lithium oxide was added to the mixed oxide of nickel oxide and lithium oxide, followed by baking at 685 ° C. for 18 hours in a nitrogen atmosphere A lithium-nickel composite oxide (Li 2 NiO 2 : LNO) was produced.

실시예 5. 양극활물질의 제조Example 5. Preparation of cathode active material

순도 95%, 평균입경 8~12 ㎛, 수산화 니켈 옥사이드 Ni(OH)2를 산소분위기 하에서 600 ℃ 10시간 소성하여 산화니켈 옥사이드 NiO를 만들었으며, Li과 Ni의 몰비율을 2.03으로 설계한 후, 제조된 산화니켈 옥사이드와 산화리튬을 혼합할때 추가로 산화니켈 옥사이드와 산화리튬 혼합량의 10 wt%의 암모늄 포스페이트 (NH4)2HPO4 14 wt%를 첨가하여 질소분위기에서 685 ℃, 18시간 소성하여 리튬-니켈 복합 산화물(Li2NiO2: LNO)을 만들었다.Nickel oxide NiO (OH) 2 was sintered at 600 ° C for 10 hours under an oxygen atmosphere to prepare nickel oxide NiO. The molar ratio of Li and Ni was designed to 2.03, When the prepared nickel oxide oxide and lithium oxide were mixed, addition of 14 wt% ammonium phosphate (NH 4 ) 2 HPO 4 of 10 wt% of a mixed amount of nickel oxide and lithium oxide was carried out and the mixture was calcined at 685 ° C. for 18 hours in a nitrogen atmosphere Thereby forming a lithium-nickel composite oxide (Li 2 NiO 2 : LNO).

실시예 6. 양극활물질의 제조Example 6. Preparation of cathode active material

순도 95%, 평균입경 8~12 ㎛, 수산화 니켈 옥사이드 Ni(OH)2를 산소분위기 하에서 600 ℃ 10시간 소성하여 산화니켈 옥사이드 NiO를 만들었으며, Li과 Ni의 몰비율을 2.03으로 설계한 후, 제조된 산화니켈 옥사이드와 산화리튬을 혼합할때 추가로 산화니켈 옥사이드와 산화리튬 혼합량의 1.5 wt%의 암모늄 포스페이트 (NH4)2HPO4 2.5wt%를 첨가하여 질소과 Air가스를 각각 1/2씩 혼합된 분위기에서 685 ℃, 18시간 소성하여 리튬-니켈 복합 산화물(Li2NiO2: LNO)을 만들었다.Nickel oxide NiO (OH) 2 was sintered at 600 ° C for 10 hours under an oxygen atmosphere to prepare nickel oxide NiO. The molar ratio of Li and Ni was designed to 2.03, When the prepared nickel oxide oxide and lithium oxide were mixed, 2.5 wt% of ammonium phosphate (NH 4 ) 2 HPO 4 of 1.5 wt% of the mixed amount of nickel oxide and lithium oxide was added, and nitrogen and air gas were added sintering in a mixed atmosphere of 685 ℃, 18 hours, lithium-nickel composite oxide (Li 2 NiO 2: LNO) made.

제조예 2. 전지 제조Preparation Example 2. Preparation of Cell

상기 실시예 2에서 제조한 양극활물질에 대하여 상기 제조예 1과 동일한 과정으로 코인셀을 제조하였다.A coin cell was prepared in the same manner as in Preparation Example 1 for the positive electrode active material prepared in Example 2.

실험예 4. 잔류리튬 측정Experimental Example 4. Residual lithium measurement

상기 실시예 2에서 제조된 양극활물질에 대하여 잔류리튬을 측정하여, 상기 비교예 2에 제조된 양극활물질의 잔류리튬 측정결과와 함께 도 3 및 상기 표 1에 정리하였다.Residual lithium was measured for the cathode active material prepared in Example 2, and the results are shown in FIG. 3 and Table 1 together with the results of the residual lithium measurement of the cathode active material prepared in Comparative Example 2.

도 3 및 상기 표 1을 참조하면, 인(P) 소스 물질은 리튬-니켈 복합산화물 구조에 도핑되지 않으면서 소성과정에서 미반응된 Li2O와의 반응으로 Li-O-P 화합물을 생성하여 잔류리튬을 감소시켰음을 확인할 수 있다. 또한, 추가 코팅공정이 아닌 리튬-니켈 복합산화물의 소성 시 Li2O, NiO 및 인(P) 소스 물질을 함께 혼합하여 소성하여 잔류리튬이 제거되었음을 확인할 수 있다.Referring to FIG. 3 and Table 1, the phosphorus (P) source material is not doped in the lithium-nickel composite oxide structure, and a Li-OP compound is produced by reaction with unreacted Li 2 O during firing, , Respectively. In addition, Li 2 O, NiO and phosphorus (P) source materials are mixed and fired during the firing of the lithium-nickel composite oxide, not the additional coating process, to confirm that the residual lithium is removed.

실험예 5. 전지 특성 측정Experimental Example 5. Measurement of Battery Characteristics

상기 제조예 2에서 제조된 코인셀에 대하여 충방전 특성 및 효율을 측정하였으며, 측정 결과를 상기 표 1에 정리하였다.The charge / discharge characteristics and efficiency of the coin cell manufactured in Production Example 2 were measured, and the measurement results are summarized in Table 1 above.

상기 실험예 4 및 상기 실험예 5를 참조하면, 인(P) 소스 물질을 혼합하여 리튬-니켈 복합산화물의 제조시 충방전 용량의 감소 없이 잔류리튬이 감소되었음을 확인할 수 있다.Referring to Experimental Example 4 and Experimental Example 5, it can be confirmed that residual lithium was reduced without decreasing the charge-discharge capacity in the production of the lithium-nickel composite oxide by mixing the phosphorus (P) source material.

실험예 6. 구조분석Experimental Example 6. Structural Analysis

상기 실시예 2 및 상기 비교예 2에서 제조된 양극활물질에 대하여, XRD 분석(X-ray Diffraction)을 통하여 구조분석을 실시하였다. 분석에 사용된 XRD 장비는 Rigaku, SmartLab 장비를 사용하였으며, XRD 측정조건은 10~80 (2 Theta), CuK 1, 45 Kv, 200 mA에서 측정하였으며, 그 결과를 도 4에 도시하였다.The structure of the cathode active material prepared in Example 2 and Comparative Example 2 was analyzed by X-ray diffraction (XRD). The XRD equipment used in the analysis was Rigaku and SmartLab equipment. XRD measurement conditions were 10 ~ 80 (2 Theta), CuK 1, 45 Kv, 200 mA, and the results are shown in FIG.

도 4를 참조하면, 강도의 차이는 존재하나 동일한 위치에서 피크가 관찰됨을 확인할 수 있는 바, 상기 실시예 2에서의 인(P) 소스 물질은 리튬-니켈 복합산화물 구조에 영향을 미치지 않음을 확인할 수 있다.Referring to FIG. 4, it can be seen that peaks are observed at the same position although there is a difference in strength, and it is confirmed that the phosphorus (P) source material in Example 2 does not affect the lithium-nickel composite oxide structure .

이상, 본 발명내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적인 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의해 정의된다고 할 것이다.Having described specific portions of the present invention in detail, those skilled in the art will appreciate that these specific embodiments are merely preferred embodiments and that the scope of the present invention is not limited thereby. something to do. Accordingly, the actual scope of the present invention will be defined by the appended claims and their equivalents.

Claims (12)

LNO 매트릭스 내 Li-O-P 화합물이 고르게 분포된 리튬-니켈 복합 산화물.
Lithium-nickel composite oxide in which the Li-OP compound in the LNO matrix is evenly distributed.
제 1 항에 있어서,
상기 Li-O-P 화합물이 고르게 분포된 리튬-니켈 복합 산화물의 P 함량은 리튬-니켈 복합 산화물 100 중량부당 3 중량부 이하인 것인
LNO 매트릭스 내 Li-O-P 화합물이 고르게 분포된 리튬-니켈 복합 산화물.
The method according to claim 1,
The P content of the lithium-nickel composite oxide in which the Li-OP compound is evenly distributed is not more than 3 parts by weight per 100 parts by weight of the lithium-nickel composite oxide
Lithium-nickel composite oxide in which the Li-OP compound in the LNO matrix is evenly distributed.
제 1 항에 있어서,
상기 리튬-니켈 복합산화물은 하기 화학식1로 표시되는 것인
LNO 매트릭스 내 Li-O-P 화합물이 고르게 분포된 리튬-니켈 복합 산화물.
<화학식1> Li2+aNixO2-bAb
(상기 화학식 1에서 A는 음이온 상태의 P 로 이루어져 있으며, 0<a≤0.3, 0<b≤0.3, a+x=1 임)
The method according to claim 1,
Wherein the lithium-nickel composite oxide is represented by the following formula (1)
Lithium-nickel composite oxide in which the Li-OP compound in the LNO matrix is evenly distributed.
&Lt; Formula 1 > Li 2 + a Ni x O 2 -b A b
(Wherein A is an anionic P and 0 < a? 0.3, 0 < b? 0.3, a + x = 1)
제 1 항에 있어서,
상기 Li-O-P 화합물은 Li3PO4 인 것인
LNO 매트릭스 내 Li-O-P 화합물이 고르게 분포된 리튬-니켈 복합 산화물.
The method according to claim 1,
The Li-OP compound is Li 3 PO 4 The
Lithium-nickel composite oxide in which the Li-OP compound in the LNO matrix is evenly distributed.
(a) 리튬-니켈 복합산화물을 제조하는 단계;
(b) 상기 리튬-니켈 복합산화물에 인(P) 화합물을 추가하여 혼합물을 제조하는 단계; 및
(c) 상기 혼합물을 열처리하는 단계;를 포함하는
잔류리튬이 감소된 이차전지 양극활물질용 리튬-니켈 복합산화물의 제조방법.
(a) preparing a lithium-nickel composite oxide;
(b) adding a phosphorus (P) compound to the lithium-nickel composite oxide to prepare a mixture; And
(c) heat treating the mixture; and
A method for producing a lithium-nickel composite oxide for a cathode active material of a secondary battery with reduced residual lithium.
제 5 항에 있어서,
상기 (b) 단계에서 상기 인(P) 화합물은 (NH4)2HPO4 , Mg3(PO)4, Ba3(PO4)2, (NH4)3PO4, Cu3(PO4)2, Fe3(PO4)2, Ni3(PO4)2, MgNH4PO4.6H2O, K3PO4, CoPO4, NaH2PO4.7H2O, Mg(H2PO4)2, Co3(PO4)2, K2HPO4, Na2HPO4, V3(PO4)5, 및 Ca(H2PO4)2 으로 이루어진 군에서 선택되는 것인
잔류리튬이 감소된 이차전지 양극활물질용 리튬-니켈 복합산화물의 제조방법.
6. The method of claim 5,
The phosphorus (P) compounds in step (b) is (NH 4) 2 HPO 4, Mg 3 (PO) 4, Ba 3 (PO 4) 2, (NH 4) 3 PO 4, Cu 3 (PO 4) 2, Fe 3 (PO 4) 2, Ni 3 (PO 4) 2, MgNH 4 PO 4 .6H 2 O, K 3 PO 4, CoPO 4, NaH 2 PO 4 .7H 2 O, Mg (H 2 PO 4 ) 2, would Co 3 (PO 4) 2, K 2 HPO 4, Na 2 HPO 4, V 3 (PO 4) 5, and Ca (H 2 PO 4) is selected from the group consisting of 2
A method for producing a lithium-nickel composite oxide for a cathode active material of a secondary battery with reduced residual lithium.
제 5 항에 있어서,
상기 (a) 단계에서 상기 리튬-니켈 복합산화물은 Li2NiO2 및 LNO의 복합체인 것인
잔류리튬이 감소된 이차전지 양극활물질용 리튬-니켈 복합산화물의 제조방법.
6. The method of claim 5,
In the step (a), the lithium-nickel composite oxide is a complex of Li 2 NiO 2 and LNO
A method for producing a lithium-nickel composite oxide for a cathode active material of a secondary battery with reduced residual lithium.
제 5 항에 있어서,
상기 (a) 리튬-니켈 복합산화물을 제조하는 단계는
(a-1) 리튬(Li) 화합물, 니켈(Ni) 화합물 및 인(P) 화합물을 혼합하여 혼합물을 제조하는 단계; 및
(a-2) 상기 혼합물을 불활성 분위기 하에서 소성시키는 단계; 를 포함하는
잔류리튬이 감소된 이차전지 양극활물질용 리튬-니켈 복합산화물의 제조방법.
6. The method of claim 5,
The step of (a) preparing the lithium-nickel composite oxide comprises
(a-1) mixing a lithium (Li) compound, a nickel (Ni) compound and a phosphorus (P) compound to prepare a mixture; And
(a-2) firing the mixture under an inert atmosphere; Containing
A method for producing a lithium-nickel composite oxide for a cathode active material of a secondary battery with reduced residual lithium.
제 8 항에 있어서,
상기 (a-1) 단계에서 상기 리튬(Li) 화합물은 Li2O, LiOH, Li2CO3, Li2NO3, Li2MnO3, LiScO2, Li2ZrO3, LiYO2, Li2ZrO3, LiAlO2, LiAl5O8, LiGaO2, LiLaO2, Li2SiO3, Li2GeO3 및 LiCH3CO2 으로 이루어진 군에서 선택되는 것인
잔류리튬이 감소된 이차전지 양극활물질용 리튬-니켈 복합산화물의 제조방법.
9. The method of claim 8,
In the step (a-1), the lithium compound may be Li 2 O, LiOH, Li 2 CO 3 , Li 2 NO 3 , Li 2 MnO 3 , LiScO 2 , Li 2 ZrO 3 , LiYO 2 , Li 2 ZrO 3 , LiAlO 2 , LiAl 5 O 8 , LiGaO 2 , LiLaO 2 , Li 2 SiO 3 , Li 2 GeO 3 and LiCH 3 CO 2 .
A method for producing a lithium-nickel composite oxide for a cathode active material of a secondary battery with reduced residual lithium.
제 8 항에 있어서,
상기 (a-1) 단계에서 상기 니켈(Ni) 화합물은 NiO, Ni(OH)2, NiOOH, NiCO3 ·2Ni(OH)4H2O, NiC2O4 ·2H2O, Ni(NO3)2 ·6H2O, NiSO4 및 NiSO4 ·6H2O 으로 이루어진 군에서 선택되는 것인
잔류리튬이 감소된 이차전지 양극활물질용 리튬-니켈 복합산화물의 제조방법.
9. The method of claim 8,
The nickel (Ni) compound in the (a-1) step, NiO, Ni (OH) 2, NiOOH, NiCO 3 · 2Ni (OH) 2 · 4H 2 O, NiC 2 O 4 · 2H 2 O, Ni (NO will 3) 2 · 6H 2 O, NiSO 4 and NiSO 4 · selected from the group consisting of 6H 2 O
A method for producing a lithium-nickel composite oxide for a cathode active material of a secondary battery with reduced residual lithium.
제 8 항에 있어서,
상기 (a-1) 단계에서 상기 인(P) 화합물은 (NH4)2HPO4 , Mg3(PO)4, Ba3(PO4)2, (NH4)3PO4, Cu3(PO4)2, Fe3(PO4)2, Ni3(PO4)2, MgNH4PO4.6H2O, K3PO4, CoPO4, NaH2PO4.7H2O, Mg(H2PO4)2, Co3(PO4)2, K2HPO4, Na2HPO4, V3(PO4)5, 및 Ca(H2PO4)2 으로 이루어진 군에서 선택되는 것인
잔류리튬이 감소된 이차전지 양극활물질용 리튬-니켈 복합산화물의 제조방법.
9. The method of claim 8,
The phosphorus (P) compounds in the (a-1) step, (NH 4) 2 HPO 4, Mg 3 (PO) 4, Ba 3 (PO 4) 2, (NH 4) 3 PO 4, Cu 3 (PO 4) 2, Fe 3 (PO 4) 2, Ni 3 (PO 4) 2, MgNH 4 PO 4 .6H 2 O, K 3 PO 4, CoPO 4, NaH 2 PO 4 .7H 2 O, Mg (H 2 would PO 4) 2, Co 3 ( PO 4) 2, K 2 HPO 4, Na 2 HPO 4, V 3 (PO 4) 5, and Ca (H 2 PO 4) is selected from the group consisting of 2
A method for producing a lithium-nickel composite oxide for a cathode active material of a secondary battery with reduced residual lithium.
제 1 항의 리튬-니켈 복합산화물을 양극활물질로 이용한 리튬이차전지.A lithium secondary battery using the lithium-nickel composite oxide of claim 1 as a cathode active material.
KR1020170093717A 2017-07-24 2017-07-24 Lithium-nikel composite oxide for positive electrode active material of secondary batteries containing residual lithium KR101951699B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170093717A KR101951699B1 (en) 2017-07-24 2017-07-24 Lithium-nikel composite oxide for positive electrode active material of secondary batteries containing residual lithium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170093717A KR101951699B1 (en) 2017-07-24 2017-07-24 Lithium-nikel composite oxide for positive electrode active material of secondary batteries containing residual lithium

Publications (2)

Publication Number Publication Date
KR20190011132A true KR20190011132A (en) 2019-02-01
KR101951699B1 KR101951699B1 (en) 2019-02-25

Family

ID=65368040

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170093717A KR101951699B1 (en) 2017-07-24 2017-07-24 Lithium-nikel composite oxide for positive electrode active material of secondary batteries containing residual lithium

Country Status (1)

Country Link
KR (1) KR101951699B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020241956A1 (en) * 2019-05-31 2020-12-03 (주)포스코케미칼 Method for preparing lithium-nickel composite oxide for secondary battery positive electrode active material
WO2020242021A1 (en) * 2019-05-27 2020-12-03 주식회사 엘지화학 Cathode additive, method of preparing same, cathode comprising same, and lithium secondary battery
KR20220056517A (en) 2020-10-28 2022-05-06 (주)포스코케미칼 Preparation method of lithium-nickel composite oxide for secondary battery positive electrode active material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010055777A (en) * 2008-08-26 2010-03-11 Sony Corp Method for manufacturing positive active material and positive active material
JP2014071968A (en) * 2012-09-28 2014-04-21 Sumitomo Metal Mining Co Ltd Precursor for lithium secondary battery and production method therefor, positive electrode active material for lithium secondary battery using precursor and production method therefor, and lithium secondary battery using positive electrode active material
KR20150018752A (en) * 2013-08-08 2015-02-24 세종대학교산학협력단 Positive Electrode Material for Lithium-Ion Batteries and Lithium-Ion Battery Having the Same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010055777A (en) * 2008-08-26 2010-03-11 Sony Corp Method for manufacturing positive active material and positive active material
JP2014071968A (en) * 2012-09-28 2014-04-21 Sumitomo Metal Mining Co Ltd Precursor for lithium secondary battery and production method therefor, positive electrode active material for lithium secondary battery using precursor and production method therefor, and lithium secondary battery using positive electrode active material
KR20150018752A (en) * 2013-08-08 2015-02-24 세종대학교산학협력단 Positive Electrode Material for Lithium-Ion Batteries and Lithium-Ion Battery Having the Same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020242021A1 (en) * 2019-05-27 2020-12-03 주식회사 엘지화학 Cathode additive, method of preparing same, cathode comprising same, and lithium secondary battery
CN112585786A (en) * 2019-05-27 2021-03-30 株式会社Lg化学 Positive electrode additive, method for producing same, and positive electrode and lithium secondary battery comprising same
CN112585786B (en) * 2019-05-27 2024-06-04 株式会社Lg新能源 Positive electrode additive, method for manufacturing same, positive electrode comprising same, and lithium secondary battery
WO2020241956A1 (en) * 2019-05-31 2020-12-03 (주)포스코케미칼 Method for preparing lithium-nickel composite oxide for secondary battery positive electrode active material
KR20200137670A (en) * 2019-05-31 2020-12-09 (주)포스코케미칼 Preparation method of lithium-nikel composite oxide for secondary battery positive electrode active material
KR20220056517A (en) 2020-10-28 2022-05-06 (주)포스코케미칼 Preparation method of lithium-nickel composite oxide for secondary battery positive electrode active material

Also Published As

Publication number Publication date
KR101951699B1 (en) 2019-02-25

Similar Documents

Publication Publication Date Title
US20200058938A1 (en) Positive electrode active material for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery using said positive electrode active material
KR100428616B1 (en) Positive active material for lithium secondary battery and method of preparing same
KR101977995B1 (en) Positive electrode active material coated with boron compounds for lithium secondary battery and preparation method thereof
KR20180041743A (en) Cation-disordered oxides for rechargeable lithium batteries and other applications
KR101458676B1 (en) Positive active material for lithium secondary battery, method of preparing the same, and lithium secondary battery using the same
CN110679018B (en) Positive electrode active material, method for producing same, positive electrode composite paste, and nonaqueous electrolyte secondary battery
KR20120099375A (en) Metal oxide coated positive electrode materials for lithium-based batteries
KR20080017289A (en) Method for preparing lithium metal phosphate
KR20140084567A (en) Positive active material coated with manganese phosphate for rechargeable lithium battery and process for preparing the same
GB2617726A (en) Lithium transition metal oxide material coated with fast ion conductor and preparation method therefor
KR20140119621A (en) Precusor for lithium rich active material and lithium rich active material made by the same
KR102217593B1 (en) Manufacturing method of surface treated positive active material precusor for lithium rich rechargeable batteries, and positive active material precusor, positive active material made by the same
WO2019039567A1 (en) Positive-electrode active material for non-aqueous-electrolyte secondary cell and method for manufacturing said positive-electrode active material, positive-electrode mixture paste for non-aqueous-electrolyte secondary cell, and non-aqueous-electrolyte secondary cell
KR101951699B1 (en) Lithium-nikel composite oxide for positive electrode active material of secondary batteries containing residual lithium
KR20200085693A (en) Cathode Active Material for Lithium Secondary Battery and Lithium Secondary Battery Comprising the Same
US20120040248A1 (en) Positive active material and nonaqueous secondary battery equipped with positive electrode including same
KR20180111552A (en) Manufacturing method of metal coated cathode active material And cathode active material made by the same
KR20150078672A (en) Complx metal precursor for lithium secondary battery, method for production thereof, cathode active material, lithium secondary battery including the same
EP4033566A1 (en) Positive electrode active material for lithium ion secondary batteries, and lithium ion secondary battery
KR101614015B1 (en) Cathode active material for lithium rechargeable batteries and manufacturing method of the same
KR102353564B1 (en) Nickel composite oxide and lithium nickel composite oxide manufacturing method
CN113966312A (en) Positive electrode active material precursor for lithium ion secondary battery, positive electrode active material for lithium ion secondary battery, method for producing positive electrode active material precursor for lithium ion secondary battery, method for producing positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
KR101681545B1 (en) Positive electrode active material for rechargable lithium battery, method for manufacturing the same, and rechargable lithium battery including the same
KR102214599B1 (en) Preparation method of lithium-nikel composite oxide for secondary battery positive electrode active material
KR20180104838A (en) Precursor for cathode active materials of core-shell structure, method for preparing the same, and cathode active materials using the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant