KR20190010309A - Method of expectating n2o generation accordign to oxidation of nh3 in sdpf - Google Patents

Method of expectating n2o generation accordign to oxidation of nh3 in sdpf Download PDF

Info

Publication number
KR20190010309A
KR20190010309A KR1020170092922A KR20170092922A KR20190010309A KR 20190010309 A KR20190010309 A KR 20190010309A KR 1020170092922 A KR1020170092922 A KR 1020170092922A KR 20170092922 A KR20170092922 A KR 20170092922A KR 20190010309 A KR20190010309 A KR 20190010309A
Authority
KR
South Korea
Prior art keywords
amount
sdpf
oxidation
calculating
value
Prior art date
Application number
KR1020170092922A
Other languages
Korean (ko)
Other versions
KR102383235B1 (en
Inventor
주기형
Original Assignee
현대자동차주식회사
기아자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사, 기아자동차주식회사 filed Critical 현대자동차주식회사
Priority to KR1020170092922A priority Critical patent/KR102383235B1/en
Priority to US15/837,660 priority patent/US20190024567A1/en
Priority to DE102017222885.7A priority patent/DE102017222885A1/en
Publication of KR20190010309A publication Critical patent/KR20190010309A/en
Application granted granted Critical
Publication of KR102383235B1 publication Critical patent/KR102383235B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N7/00Analysing materials by measuring the pressure or volume of a gas or vapour
    • G01N7/02Analysing materials by measuring the pressure or volume of a gas or vapour by absorption, adsorption, or combustion of components and measurement of the change in pressure or volume of the remainder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/007Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring oxygen or air concentration downstream of the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/002Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring or estimating temperature or pressure in, or downstream of the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/04Testing internal-combustion engines
    • G01M15/10Testing internal-combustion engines by monitoring exhaust gases or combustion flame
    • G01M15/102Testing internal-combustion engines by monitoring exhaust gases or combustion flame by monitoring exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/04Filtering activity of particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/14Nitrogen oxides
    • F01N2570/145Dinitrogen oxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/04Methods of control or diagnosing
    • F01N2900/0412Methods of control or diagnosing using pre-calibrated maps, tables or charts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1602Temperature of exhaust gas apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1616NH3-slip from catalyst
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1622Catalyst reducing agent absorption capacity or consumption amount
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

The present invention relates to a method to predict N_2O in accordance with oxidation of NH_3 in a selective catalytic reduction on diesel particulate filter (SDPF), capable of improving correctness of a model for an oxidation by-product of the SDPF. According to one embodiment of the present invention, the method comprises: a step of measuring an initial NH_3 absorption amount in an SDPF; a step of subtracting an NH_3 slipped in the SDPF from the initial NH_3 absorption amount in the SDPF to calculate a first intermediate NH_3 absorption amount; a step of subtracting the amount of NH_3 oxidized into NO_x and N_2 from the first intermediate NH_3 absorption amount to calculate a second intermediate NH_3 absorption amount; a step of calculating an N_2O generation amount in the SDPF; and a step of subtracting the N_2O generation amount from the second intermediate NH_3 absorption amount to calculate the final NH_3 absorption amount in the SDPF.

Description

SDPF 내 NH3 산화에 따른 N2O 생성 예측 방법{METHOD OF EXPECTATING N2O GENERATION ACCORDIGN TO OXIDATION OF NH3 IN SDPF}METHOD OF EXPECTATING N2O GENERATION ACCORDING TO OXIDATION OF NH3 IN SDPF BACKGROUND OF THE INVENTION [0001]

본 발명은 N2O 발생 팩터를 이용하여 SDPF 내 NH3 산화에 따른 N2O 생성을 예측하는 방법에 관한 것이다.The present invention relates to a method for predicting N 2 O production due to NH 3 oxidation in SDPF using an N 2 O generating factor.

일반적으로, 엔진에서 배기 매니폴드를 통해 배출되는 배기가스는 배기 파이프의 도중에 형성된 촉매 컨버터(Catalytic converter)로 유도되어 정화되고, 머플러를 통과하면서 소음이 감쇄된 후 테일 파이프를 통해 대기 중으로 방출된다. Generally, the exhaust gas discharged from the engine through the exhaust manifold is guided to a catalytic converter formed in the middle of the exhaust pipe, purified, passed through the muffler to attenuate the noise, and then discharged to the atmosphere through the tail pipe.

상기 촉매 컨버터는 배기가스에 포함되어 있는 오염 물질을 처리한다. 그리고, 배기 파이프 상에는 배기가스에 포함된 입자상 물질(Particulate Matters; PM)을 포집하기 위한 매연 필터가 장착된다. The catalytic converter treats contaminants contained in the exhaust gas. A soot filter for collecting particulate matter (PM) contained in the exhaust gas is mounted on the exhaust pipe.

선택적환원촉매(Selective Catalytic Reduction; SCR) 장치는 이러한 촉매 컨버터의 한 형식이다. 선택적환원촉매 장치는 우레아(Urea), 암모니아(NH3), 일산화탄소와 탄화수소(Hydrocarbon; HC) 등과 같은 환원제가 산소와 질소산화물(NOx) 중에서 질소산화물과 더 잘 반응하도록 한다는 의미에서 선택적환원촉매라고 명명된다. Selective Catalytic Reduction (SCR) devices are a form of this catalytic converter. The selective reduction catalyst system is a selective reduction catalyst in the sense that the reducing agent such as urea, ammonia (NH 3 ), carbon monoxide and hydrocarbon (HC) reacts better with nitrogen oxides among oxygen and nitrogen oxides (NO x ) .

매연 필터(Diesel Particulate Filter)는 배기 파이프에 장착되어 있으며, 배기가스에 포함된 입자상 물질을 포집하고, 분사 모듈에서 분사된 환원제를 이용하여 배기가스에 포함된 질소산화물을 환원한다. 이러한 목적을 위하여, 매연 필터는 선택적환원촉매가 코팅된 디젤 매연 필터(Selective Catalytic Reduction on Diesel Particulate Filter; SDPF)와 추가적인 선택적 환원 촉매를 포함할 수 있다.A diesel particulate filter (DPF) is mounted on an exhaust pipe, and collects the particulate matter contained in the exhaust gas and reduces the nitrogen oxide contained in the exhaust gas using a reducing agent injected from the injection module. For this purpose, the soot filter may include a selective catalytic reduction catalyst (SDPF) coated with a selective reduction catalyst and an optional selective reduction catalyst.

이러한 선택적환원촉매 장치가 장착된 내연기관의 경우, 산소가 많은 디젤 엔진의 일반 주행 모드에서 엔진에서 배출되는 질소산화물과 배기 파이프에 직접 분사되어 공급되는 우레아에 의해 발생되는 암모니아가 선택적으로 반응하여 질소산화물을 무해한 질소(N2)로 변환하여 제거하게 된다. In the case of an internal combustion engine equipped with such a selective reduction catalyst device, in the general running mode of an oxygen-rich diesel engine, the nitrogen oxide discharged from the engine and the ammonia generated by the urea supplied directly to the exhaust pipe are selectively reacted, The oxide is converted into harmless nitrogen (N 2 ) and removed.

그런데, 선택적환원촉매가 코팅된 디젤 매연 필터 내 흡착되어 있던 암모니아(NH3)가 고온에 노출되면, 암모니아의 산화반응을 통해 N2O 가 생성된다. However, when ammonia (NH 3 ) adsorbed in the selective reduction catalyst coated diesel particulate filter is exposed to high temperature, N 2 O is produced through the oxidation reaction of ammonia.

생성된 N2O 는 이산화탄소가 지구 온난화에 미치는 수준의 약 300배 수준이므로, N2O 의 생성을 줄이려는 노력이 진행되고 있다.The resulting N 2 O because it is the carbon dioxide level of about 300 times that of on the global warming, there is an effort to reduce the generation of N 2 O in progress.

본 발명은 선택적환원촉매가 코팅된 디젤 매연 필터 내 NH3 산화에 따른 N2O 생성을 예측하고, SDPF 후단의 질소산화물(NOx), NH3 슬립의 예측을 개선하는 제어 로직을 제공하고자 한다.The present invention provides a control logic for predicting N 2 O production due to NH 3 oxidation in a diesel particulate filter coated with a selective reduction catalyst and improving the prediction of nitrogen oxide (NO x ) and NH 3 slip at the end of SDPF .

본 발명의 일 실시예에 따른 SDPF 내 NH3 산화에 따른 N2O 발생량 예측 방법은, SDPF내 최초 NH3 흡착량을 측정하는 단계와, 상기 SDPF내 최초 NH3 흡착량에서 상기 SDPF 내에서 슬립되는 NH3 양을 차감하여 제1 중간 NH3 흡착량을 산출하는 단계와, 상기 제1 중간 NH3 흡착량에서 NOx 와 N2로 산화되는 NH3 양을 차감하여 제2 중간 NH3 흡착량을 산출하는 단계와, 상기 SDPF내 N2O 발생량을 산출하는 단계, 및 상기 제2 중간 NH3 흡착량에서 상기 N2O 발생량을 차감하여 SDPF내 최종 NH3 흡착량을 산출하는 단계를 포함한다. N 2 O emissions prediction method according to the SDPF within the NH 3 oxidation in accordance with one embodiment of the present invention, SDPF and within the first NH measuring a third absorption amount, the slip in the SDPF amount within the first NH 3 adsorbed in the SDPF second intermediate NH 3 adsorption amount by subtracting the amount of NH 3 is oxidized into NO x and N 2 in step and, the amount of the first intermediate NH 3 adsorbed to calculate a first intermediate NH 3 adsorption amount by subtracting the NH 3 amount a comprises the steps of calculating the SDPF within the N 2 O emission, and by subtracting the N 2 O emissions from the second intermediate NH 3 adsorbed amount calculating a third amount of adsorption in the final NH SDPF for calculating .

상기 제1 중간 NH3 흡착량을 산출하는 단계에서, 상기 SDPF 내에서 슬립되는 NH3 양은 상기 SDPF내 최초 NH3 흡착량에 NH3 슬립 팩터를 곱한 값일 수 있다.In the first intermediate step of calculating the amount of adsorption of NH 3, the NH 3 amount SDPF may be a value that is multiplied by the slip in the NH 3 slip factor in the SDPF amount within the first NH 3 adsorption.

상기 제2 중간 NH3 흡착량을 산출하는 단계에서, 상기 NOx 와 N2로 산화되는 NH3 양은 상기 제1 중간 NH3 흡착량에 NOx 와 N2로 산화되는 산화 팩터를 곱한 값일 수 있다. The second may be a value 2 from the step of calculating the intermediate NH 3 adsorption amount, NH 3 amount is oxidized by the NO x and N 2 times the oxidation factor which is oxidized to NO x and N 2 in the first intermediate NH 3 adsorption amount .

상기 SDPF내 N2O 발생량을 산출하는 단계에서, 상기 N2O 발생량은 상기 제2 중간 NH3 흡착량에 N2O 발생 팩터를 곱하여 산출되는 값일 수 있다.In the step of calculating the N 2 O generation amount in the SDPF, the N 2 O generation amount may be a value calculated by multiplying the second intermediate NH 3 adsorption amount by a N 2 O generation factor.

상기 N2O 발생 팩터는, SCR 촉매 온도와, SDPF 내 NH3 흡착율과, 배기가스 유량과, 일산화질소 농도, 및 촉매 열화 정도를 고려하여 결정될 수 있다.The N 2 O generation factor may be determined in consideration of the SCR catalyst temperature, the NH 3 adsorption rate in the SDPF, the exhaust gas flow rate, the nitrogen monoxide concentration, and the degree of catalyst deterioration.

상기 SCR 촉매 온도는 배기가스 온도를 측정하여 산출될 수 있다.The SCR catalyst temperature can be calculated by measuring the exhaust gas temperature.

상기 일산화질소 가스량은 일산화질소 농도를 측정하여 산출될 수 있다.The nitrogen monoxide gas amount can be calculated by measuring the nitrogen monoxide concentration.

상기 촉매 열화 정도는 촉매 열화 팩터를 대입한 촉매 열화 맵을 이용하여 산출되는 값일 수 있다. The degree of deterioration of the catalyst may be a value calculated using a catalyst deterioration map in which a catalyst deterioration factor is substituted.

상기 N2O 발생 팩터는, 상기 SCR 촉매 온도와 상기 SDPF 내 NH3 흡착율을 제1 맵에 대입하여 제1 값을 산출하는 단계와, 상기 배기가스 유량과 상기 일산화질소 농도를 제2 맵에 대입하여 제2 값을 산출하는 단계와, 상기 촉매 열화 팩터를 제3 맵에 대입하여 제3 값을 산출하는 단계, 및 상기 제1 값, 제2 값 및 제3 값을 곱하는 단계를 포함하여 산출될 수 있다.Wherein the N 2 O generating factor includes a step of calculating a first value by substituting the SCR catalyst temperature and the NH 3 adsorption ratio in the SDPF into a first map and calculating a first value by substituting the exhaust gas flow rate and the nitrogen monoxide concentration into a second map Calculating a third value by substituting the catalyst deterioration factor into a third map, and multiplying the first value, the second value and the third value to calculate a second value .

본 발명의 일 실시예에 따른 SDPF 내 NH3 산화에 따른 N2O 발생량 예측 방법은, 상기 N2O 발생량에서 맵을 이용한 변환상수를 대입하여 N2O 슬립량을 산출하는 단계, 및 상기 SDPF내 최초 NH3 흡착량에서 상기 N2O 발생량을 차감하여 NH3 슬립량을 산출하는 단계를 더 포함할 수 있다.The method of predicting the amount of N 2 O generated by NH 3 oxidation in SDPF according to an embodiment of the present invention includes calculating a N 2 O slip amount by substituting a conversion constant using a map in the N 2 O generation amount, And calculating the NH 3 slip amount by subtracting the N 2 O generation amount from the initial NH 3 adsorption amount.

본 발명의 실시예에 따르면, SDPF의 산화 부산물의 모델 정확도가 개선될 수 있다.According to an embodiment of the present invention, the model accuracy of oxidation by-products of SDPF can be improved.

또한, SDPF 후단의 NOx, NH3 슬립의 예측이 개선될 수 있다.Further, the prediction of the NO x and NH 3 slip at the end of the SDPF can be improved.

또한, SDPF 모델 정확도 개선을 통해, 촉매 용량을 축소할 수 있어 원가 절감 효과가 있다.In addition, by improving the accuracy of the SDPF model, the catalyst capacity can be reduced, resulting in cost savings.

도 1은 본 발명의 일 실시예에 따른 SDPF 내 NH3 산화에 따른 N2O 발생량 예측 방법을 개략적으로 나타내는 순서도이다.
도 2는 본 발명의 일 실시예에 따른 SDPF 내 NH3 산화에 따른 N2O 발생량 예측 방법에서, N2O 발생 팩터를 산출하는 방법을 개략적으로 나타내는 순서도이다.
도 3은 도 1에 도시한 본 발명의 일 실시예에 따른 SDPF 내 NH3 산화에 따른 N2O 발생량 예측 방법을 개략적으로 나타내는 흐름도이다.
도 4는 도 2에 도시한 N2O 발생 팩터를 산출하는 방법을 개략적으로 나타내는 흐름도이다.
도 5는 본 발명의 일 실시예에 따른 SDPF 내 NH3 산화에 따른 N2O 발생량 예측 방법을 반영 여부에 따른 SDPF 내 최종 NH3 흡착량과 실측값과의 차이를 나타내는 그래프이다.
FIG. 1 is a flowchart schematically illustrating a method for predicting N 2 O generation according to NH 3 oxidation in SDPF according to an embodiment of the present invention. Referring to FIG.
FIG. 2 is a flowchart schematically illustrating a method of calculating an N 2 O generation factor in a method for predicting the amount of N 2 O generated by NH 3 oxidation in SDPF according to an embodiment of the present invention.
FIG. 3 is a flowchart schematically illustrating a method for predicting N 2 O generation according to NH 3 oxidation in SDPF according to an embodiment of the present invention shown in FIG.
4 is a flow chart schematically showing a method of calculating the N 2 O generation factor shown in FIG.
FIG. 5 is a graph showing the difference between the final NH 3 adsorption amount and the measured value in the SDPF according to whether the method of predicting the amount of N 2 O generation according to NH 3 oxidation in SDPF is reflected according to an embodiment of the present invention.

이하, 첨부한 도면을 참고로 하여 본 발명의 실시예들에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예들에 한정되지 않는다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings, which will be readily apparent to those skilled in the art to which the present invention pertains. The present invention may be embodied in many different forms and is not limited to the embodiments described herein.

또한, 여러 실시예들에 있어서, 동일한 구성을 가지는 구성요소에 대해서는 동일한 부호를 사용하여 대표적으로 일 실시예에서 설명하고, 그 외의 실시예들에서는 일 실시예와 다른 구성에 대해서만 설명하기로 한다.In addition, in the various embodiments, elements having the same configuration are denoted by the same reference numerals, and only other configurations will be described in the other embodiments.

도면들은 개략적이고 축적에 맞게 도시되지 않았다는 것을 일러둔다. 도면에 있는 부분들의 상대적인 치수 및 비율은 도면에서의 명확성 및 편의를 위해 그 크기에 있어 과장되거나 감소되어 도시되었으며, 임의의 치수는 단지 예시적인 것이지 한정적인 것은 아니다. 그리고, 둘 이상의 도면에 나타나는 동일한 구조물, 요소 또는 부품에는 동일한 참조 부호가 유사한 특징을 나타내기 위해 사용된다. 어느 부분이 다른 부분의 "위에" 또는 "상에" 있다고 언급하는 경우, 이는 바로 다른 부분의 위에 있을 수 있거나 그 사이에 다른 부분이 수반될 수도 있다.The drawings are schematic and illustrate that they are not drawn to scale. The relative dimensions and ratios of the parts in the figures are shown exaggerated or reduced in size for clarity and convenience in the figures, and any dimensions are merely illustrative and not restrictive. Also, to the same structure, element, or component appearing in more than one of the figures, the same reference numerals are used to denote similar features. When referring to a portion as being "on" or "on" another portion, it may be directly on the other portion or may be accompanied by another portion therebetween.

본 발명의 실시예는 본 발명의 한 실시예를 구체적으로 나타낸다. 그 결과, 도해의 다양한 변형이 예상된다. 따라서 실시예는 도시한 영역의 특정 형태에 국한되지 않으며, 예를 들면 제조에 의한 형태의 변형도 포함한다.The embodiments of the present invention specifically illustrate one embodiment of the present invention. As a result, various variations of the illustration are expected. Thus, the embodiment is not limited to any particular form of the depicted area, but includes modifications of the form, for example, by manufacture.

이하, 도 1 및 도 3을 참조하여, 본 발명의 일 실시예에 따른 SDPF 내 NH3 산화에 따른 N2O 발생량 예측 방법에 관하여 설명한다. Hereinafter, a method for estimating the amount of N 2 O generated by NH 3 oxidation in SDPF according to an embodiment of the present invention will be described with reference to FIGS. 1 and 3.

도 1은 본 발명의 일 실시예에 따른 SDPF 내 NH3 산화에 따른 N2O 발생량 예측 방법을 개략적으로 나타내는 순서도이고, 도 3은 도 1에 도시한 본 발명의 일 실시예에 따른 SDPF 내 NH3 산화에 따른 N2O 발생량 예측 방법을 개략적으로 나타내는 흐름도이다.FIG. 1 is a flowchart schematically illustrating a method for predicting N 2 O generation according to NH 3 oxidation in SDPF according to an embodiment of the present invention. FIG. 3 is a flow chart schematically showing a method of predicting the amount of N 2 O generated by oxidation.

도 1 및 도 3을 참조하면, 우선 SDPF 내 최초 NH3 흡착량(A, 100)을 측정한다(S101).Referring to FIGS. 1 and 3, the initial NH 3 adsorption amount (A, 100) in SDPF is measured (S101).

그 후, SDPF내 최초 NH3 흡착량(A, 100)에서 SDPF 내에서 슬립되는 NH3 양을 차감하여 제1 중간 NH3 흡착량(B, 200)을 산출한다(S102). 이 때, SDPF 내에서 슬립되는 NH3 양은 SDPF내 최초 NH3 흡착량(A, 100)에 NH3 슬립 팩터를 곱한 값일 수 있다. Thereafter, the first intermediate NH 3 adsorption amount (B, 200) is calculated by subtracting the amount of NH 3 slip in the SDPF from the initial NH 3 adsorption amount (A, 100) in the SDPF (S 102). At this time, the amount of NH 3 slip in the SDPF may be a value obtained by multiplying the initial NH 3 adsorption amount (A, 100) in the SDPF by the NH 3 slip factor.

그 후, 제1 중간 NH3 흡착량(B, 200)에서 NOx 와 N2로 산화되는 NH3 양을 차감하여 제2 중간 NH3 흡착량(C, 300)을 산출한다(S103). 이 때, NOx 와 N2로 산화되는 NH3 양은 제1 중간 NH3 흡착량(B, 200)에 NOx 와 N2로 산화되는 산화 팩터를 곱한 값일 수 있다. Thereafter, the second intermediate NH 3 adsorption amount (C, 300) is calculated by subtracting the amount of NH 3 oxidized by NO x and N 2 in the first intermediate NH 3 adsorption amount (B, 200) (S 103). At this time, it may be a value obtained by multiplying the oxidation factor which is oxidized to NO x and N 2 to the NH 3 amount adsorbed NH 3 amount of the first intermediate (B, 200) which is oxidized to NO x and N 2.

그 후, SDPF내 N2O 발생량을 산출하고(S104), 제2 중간 NH3 흡착량(C, 300)에서 N2O 발생량을 차감하여 SDPF내 최종 NH3 흡착량(final, 400)을 산출한다(S105). 이 때, N2O 발생량은 제2 중간 NH3 흡착량(C, 300)에 N2O 발생 팩터를 곱하여 산출되는 값일 수 있다.Then, SDPF calculated in N 2 O emissions, and (S104), the second intermediate NH 3 adsorption amount (C, 300) SDPF in the final NH 3 adsorption amount by subtracting the N 2 O emissions from the (final, 400) for calculating (S105). In this case, the N 2 O generation amount may be a value calculated by multiplying the second intermediate NH 3 adsorption amount (C, 300) by the N 2 O generation factor.

한편, 본 발명의 일 실시예에 따른 SDPF 내 NH3 산화에 따른 N2O 발생량 예측 방법은, N2O 발생량에서 맵을 이용한 변환상수를 대입하여 N2O 슬립량을 산출하는 단계(S106), 및 SDPF내 최초 NH3 흡착량(A, 100)에서 N2O 발생량을 차감하여 NH3 슬립량을 산출하는 단계(S107)를 더 포함할 수 있다. On the other hand, in step (S106) of N 2 O emissions prediction method according to the SDPF within the NH 3 oxidation in accordance with one embodiment of the invention, it is substituted to calculate the amount of slip N 2 O conversion constant using the map in the N 2 O emissions , And calculating a NH 3 slip amount by subtracting the N 2 O generation amount from the initial NH 3 adsorption amount (A, 100) in SDPF (S 107).

예를 들어, 본 발명의 일 실시예에 따른 SDPF 내 NH3 산화에 따른 N2O 발생량 예측 방법을 적용하여 최종 NH3 흡착량(final)이 100이라 할 때, 본 발명에 따른 예측 방법을 적용하지 않은 경우, 최종 NH3 흡착량(final)이 98이 될 수 있다. 98인 최종 NH3 흡착량(final)이 현재 흡착량이 되고, 우레아가 분사될 때, 분사되어 SDPF에 흡착되는 NH3 양이 2라면, 총 흡착되는 NH3 양은 100이 된다. 그러나, 본 발명에 따른 예측 방법을 적용하지 않은 경우 102가 된다.For example, when the final NH 3 adsorption amount (final) is 100 by applying the N 2 O generation prediction method according to the NH 3 oxidation in SDPF according to an embodiment of the present invention, the prediction method according to the present invention is applied , The final NH 3 adsorption amount (final) can be 98. [ The final NH 3 adsorption amount (final) of 98 becomes the present adsorption amount, and when the urea is injected, the NH 3 amount adsorbed to the SDPF is 2, the total adsorbed NH 3 amount becomes 100. However, when the prediction method according to the present invention is not applied,

흡착량이 100일 때 보다, 102일 때 산화량이나 N2O 슬립량이 더 많아지게 된다. 흡착량은 계속 누적되기 때문에, 그 오차 값은 계속 커지게 된다.The oxidation amount or N 2 O slip amount becomes larger at 102 days than when the adsorption amount is 100. Since the adsorption amount continues to accumulate, the error value continues to increase.

도 2는 본 발명의 일 실시예에 따른 SDPF 내 NH3 산화에 따른 N2O 발생량 예측 방법에서, N2O 발생 팩터를 산출하는 방법을 개략적으로 나타내는 순서도이고, 도 4는 도 2에 도시한 N2O 발생 팩터를 산출하는 방법을 개략적으로 나타내는 흐름도이다.FIG. 2 is a flowchart schematically illustrating a method for calculating an N 2 O generation factor in a method for predicting the amount of N 2 O generated according to NH 3 oxidation in SDPF according to an embodiment of the present invention. FIG. Fig. 2 is a flowchart schematically showing a method of calculating an N 2 O generation factor. Fig.

도 2 및 도 4를 참조하면, 상기 SDPF내 N2O 발생량을 산출하는 단계(S104)에서, N2O 발생 팩터는, SCR 촉매 온도와, SDPF 내 NH3 흡착율과, 배기가스 유량과, 일산화질소 농도, 및 촉매 열화 정도를 고려하여 결정될 수 있다.2 and 4, in step S104 of calculating the N 2 O generation amount in the SDPF, the N 2 O generation factor may be determined based on the SCR catalyst temperature, the NH 3 adsorption rate in the SDPF, the exhaust gas flow rate, Nitrogen concentration, and degree of deterioration of the catalyst.

SCR 촉매 온도는 배기가스 온도를 측정하여 산출될 수 있고, 일산화질소 가스량은 일산화질소 농도를 측정하여 산출될 수 있으며, 촉매 열화 정도는 촉매 열화 팩터를 대입한 촉매 열화 맵을 이용하여 산출되는 값일 수 있다.The SCR catalyst temperature can be calculated by measuring exhaust gas temperature, the amount of nitrogen monoxide gas can be calculated by measuring the nitrogen monoxide concentration, and the degree of catalyst deterioration can be a value calculated using a catalyst deterioration map in which a catalyst deterioration factor is substituted have.

한편, N2O 발생 팩터는, SCR 촉매 온도와 SDPF 내 NH3 흡착율을 제1 맵(10)에 대입하여 제1 값을 산출하는 단계(S201)와, 배기가스 유량과 일산화질소 농도를 제2 맵(20)에 대입하여 제2 값을 산출하는 단계(S202)와, 촉매 열화 팩터를 제3 맵(30)에 대입하여 제3 값을 산출하는 단계(S203), 및 제1 값, 제2 값 및 제3 값을 곱하는 단계(S204)를 포함하여 산출될 수 있다. 제1 맵(10)은 SCR 촉매 온도 대비 SDPF 내 NH3 흡착율 실험에 의해 미리 정해져 수치를 제시하고 있는 맵일 수 있고, 제2 맵(20)은 배기가스 유량 대비 일산화질소 농도를 실험에 의해 미리 정해져 수치를 제시하고 있는 맵일 수 있으며, 제3 맵(30)은 시간에 따른 촉매 열화 정도를 실험에 의해 미리 정해져 수치를 제시하고 있는 맵일 수 있다.On the other hand, the N 2 O generation factor includes a step (S201) of calculating a first value by substituting the SCR catalyst temperature and the NH 3 adsorption rate in the SDPF into the first map 10, (S203) of calculating a third value by substituting the catalyst deterioration factor into the third map (30), and calculating a second value by substituting the first value and the second value Value and a third value (S204). The first map 10 may be a map which is determined in advance by the NH 3 adsorption test in the SDPF versus the SCR catalyst temperature, and the second map 20 may have a predetermined concentration of nitrogen monoxide relative to the exhaust gas flow rate And the third map 30 may be a map in which the degree of deterioration of the catalyst over time is determined in advance by experiment and the numerical value is presented.

도 5는 본 발명의 일 실시예에 따른 SDPF 내 NH3 산화에 따른 N2O 발생량 예측 방법을 반영 여부에 따른 SDPF 내 최종 NH3 흡착량과 실측값과의 차이를 나타내는 그래프이다.FIG. 5 is a graph showing the difference between the final NH 3 adsorption amount and the measured value in the SDPF according to whether the method of predicting the amount of N 2 O generation according to NH 3 oxidation in SDPF is reflected according to an embodiment of the present invention.

도 5를 참조하면, 트렌지언트 운전 모드에서, 시간이 경과함에 따라, SDPF 내 최종 NH3 흡착량은 증가된다. 본 발명의 일 실시예에 따른 SDPF 내 NH3 산화에 따른 N2O 발생량 예측 방법을 반영하지 않은 경우의 NH3 흡착량(NH3 누적량)과 실측값의 차이는 반영한 경우의 NH3 흡착량(NH3 누적량)과 실측값의 차이보다 더 크다. 본 발명의 일 실시예에 따른 SDPF 내 NH3 산화에 따른 N2O 발생량 예측 방법을 반영함으로써, NH3 흡착량의 실측값과의 오차를 줄일 수 있다.Referring to FIG. 5, in the transient mode of operation, as time elapses, the amount of final NH 3 adsorption in the SDPF is increased. The difference between the NH 3 adsorption amount (NH 3 accumulation amount) and the actual measurement value in the case where the method of predicting the N 2 O generation amount due to the NH 3 oxidation in the SDPF according to the embodiment of the present invention is not reflected is the NH 3 adsorption amount NH 3 accumulation) and the measured value. By reflecting the method of predicting the amount of N 2 O generated according to the NH 3 oxidation in the SDPF according to an embodiment of the present invention, the error with the measured value of the NH 3 adsorption amount can be reduced.

이와 같이, 본 발명의 일 실시예에 따르면, SDPF의 산화 부산물의 모델 정확도가 개선될 수 있다.Thus, according to one embodiment of the present invention, the model accuracy of oxidation by-products of SDPF can be improved.

또한, SDPF 후단의 NOx, NH3 슬립의 예측이 개선될 수 있다.Further, the prediction of the NO x and NH 3 slip at the end of the SDPF can be improved.

또한, SDPF 모델 정확도 개선을 통해, 촉매 용량을 축소할 수 있어 원가 절감 효과가 있다. In addition, by improving the accuracy of the SDPF model, the catalyst capacity can be reduced, resulting in cost savings.

이상으로 본 발명에 관한 바람직한 실시예를 설명하였으나, 본 발명은 상기 실시예에 한정되지 아니하며, 본 발명의 실시예로부터 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의한 용이하게 변경되어 균등하다고 인정되는 범위의 모든 변경을 포함한다.While the present invention has been described in connection with what is presently considered to be practical exemplary embodiments, it is to be understood that the invention is not limited to the disclosed embodiments, but, on the contrary, And all changes to the scope that are deemed to be valid.

10: 제1 맵 20: 제2 맵
30: 제3 맵 100: SDPF 내 최초 NH3 흡착량
200: 제1 중간 NH3 흡착량 300: 제2 중간 NH3 흡착량
400: 최종 NH3 흡착량
10: first map 20: second map
30: Third map 100: Initial adsorption amount of NH 3 in SDPF
200: first intermediate NH 3 adsorption amount 300: second intermediate NH 3 adsorption amount
400: Final NH 3 adsorption amount

Claims (10)

SDPF내 최초 NH3 흡착량을 측정하는 단계;
상기 SDPF내 최초 NH3 흡착량에서 상기 SDPF 내에서 슬립되는 NH3 양을 차감하여 제1 중간 NH3 흡착량을 산출하는 단계;
상기 제1 중간 NH3 흡착량에서 NOx 와 N2로 산화되는 NH3 양을 차감하여 제2 중간 NH3 흡착량을 산출하는 단계;
상기 SDPF내 N2O 발생량을 산출하는 단계: 및
상기 제2 중간 NH3 흡착량에서 상기 N2O 발생량을 차감하여 SDPF내 최종 NH3 흡착량(final)을 산출하는 단계를 포함하는 SDPF 내 NH3 산화에 따른 N2O 발생량 예측 방법.
Measuring an initial adsorption amount of NH 3 in SDPF;
Calculating a first intermediate NH 3 adsorption amount by subtracting an amount of NH 3 slipped in the SDPF from an initial NH 3 adsorption amount in the SDPF;
Calculating a second intermediate NH 3 adsorption amount by subtracting the amount of NH 3 is oxidized into NO x and N 2 in the first intermediate NH 3 adsorption amount;
Calculating the amount of N 2 O in the SDPF; and
The second intermediate NH 3 adsorbed by subtracting the N 2 O emissions from the amount in the final SDPF NH 3 adsorption amount (final) SDPF NH 3 in N 2 O emissions prediction method according to the oxidation comprising the step of calculating.
제 1 항에서,
상기 제1 중간 NH3 흡착량을 산출하는 단계에서,
상기 SDPF 내에서 슬립되는 NH3 양은 상기 SDPF내 최초 NH3 흡착량에 NH3 슬립 팩터를 곱한 값인 SDPF 내 NH3 산화에 따른 N2O 발생량 예측 방법.
The method of claim 1,
In the step of calculating the first intermediate NH 3 adsorption amount,
The amount of NH 3 N 2 O emissions prediction method according to the value within SDPF NH 3 oxidation product of the NH 3 slip factor in the SDPF amount within the first NH 3 slip is adsorbed within the SDPF.
제 1 항에서,
상기 제2 중간 NH3 흡착량을 산출하는 단계에서,
상기 NOx 와 N2로 산화되는 NH3 양은 상기 제1 중간 NH3 흡착량에 NOx 와 N2로 산화되는 산화 팩터를 곱한 값인 SDPF 내 NH3 산화에 따른 N2O 발생량 예측 방법.
The method of claim 1,
In the step of calculating the second intermediate NH 3 adsorption amount,
NH 3 amount of the first intermediate value multiplied by the NH 3 oxidation factor which is oxidized to NO x and N 2 in the amount of adsorption of N 2 O emissions SDPF prediction method according to my NH 3 oxidation is oxidized by the NO x and N 2.
제 1 항에서,
상기 SDPF내 N2O 발생량을 산출하는 단계에서,
상기 N2O 발생량은 상기 제2 중간 NH3 흡착량에 N2O 발생 팩터를 곱하여 산출되는 값인 SDPF 내 NH3 산화에 따른 N2O 발생량 예측 방법.
The method of claim 1,
In the step of calculating the amount of N 2 O in the SDPF,
The N 2 O emission is N 2 O emissions prediction method according to the value within SDPF NH 3 oxidation is calculated by multiplying the factor N 2 O generated in the second intermediate adsorbed NH 3 amount.
제 4 항에서,
상기 N2O 발생 팩터는,
SCR 촉매 온도와, SDPF 내 NH3 흡착율과, 배기가스 유량과, 일산화질소 농도, 및 촉매 열화 정도를 고려하여 결정되는 SDPF 내 NH3 산화에 따른 N2O 발생량 예측 방법.
5. The method of claim 4,
Wherein the N 2 O generating factor comprises:
A method for predicting the amount of N 2 O generation according to NH 3 oxidation in SDPF, which is determined in consideration of SCR catalyst temperature, NH 3 adsorption rate in SDPF, exhaust gas flow rate, nitrogen monoxide concentration, and catalyst deterioration degree.
제 5 항에서,
상기 SCR 촉매 온도는 배기가스 온도를 측정하여 산출되는 SDPF 내 NH3 산화에 따른 N2O 발생량 예측 방법.
The method of claim 5,
Wherein the SCR catalyst temperature is calculated by measuring an exhaust gas temperature and estimating an N 2 O generation amount according to NH 3 oxidation in SDPF.
제 5 항에서,
상기 일산화질소 가스량은 일산화질소 농도를 측정하여 산출되는 SDPF 내 NH3 산화에 따른 N2O 발생량 예측 방법.
The method of claim 5,
Wherein the amount of the nitrogen monoxide gas is calculated by measuring a concentration of nitrogen monoxide and estimating an amount of N 2 O generated by oxidation of NH 3 in SDPF.
제 5 항에서,
상기 촉매 열화 정도는 촉매 열화 팩터를 대입한 촉매 열화 맵을 이용하여 산출되는 값인 SDPF 내 NH3 산화에 따른 N2O 발생량 예측 방법.
The method of claim 5,
The catalyst deterioration degree of N 2 O emissions prediction method according to the value within SDPF NH 3 oxidation is calculated by using a catalyst deterioration map by substituting the catalyst degradation factor.
제 8 항에서,
상기 N2O 발생 팩터는,
상기 SCR 촉매 온도와 상기 SDPF 내 NH3 흡착율을 제1 맵에 대입하여 제1 값을 산출하는 단계;
상기 배기가스 유량과 상기 일산화질소 농도를 제2 맵에 대입하여 제2 값을 산출하는 단계;
상기 촉매 열화 팩터를 제3 맵에 대입하여 제3 값을 산출하는 단계; 및
상기 제1 값, 제2 값 및 제3 값을 곱하는 단계를 포함하여 산출되는 SDPF 내 NH3 산화에 따른 N2O 발생량 예측 방법.
9. The method of claim 8,
Wherein the N 2 O generating factor comprises:
Calculating a first value by substituting the SCR catalyst temperature and NH 3 adsorption rate in the SDPF into a first map;
Calculating a second value by substituting the exhaust gas flow rate and the nitrogen monoxide concentration into a second map;
Calculating a third value by substituting the catalyst deterioration factor into the third map; And
The first value, the second value and the N 2 O emission prediction method according to the SDPF within the NH 3 oxidation is calculated, including the step of multiplying the third value.
제 1 항에서,
상기 N2O 발생량에서 맵을 이용한 변환상수를 대입하여 N2O 슬립량을 산출하는 단계; 및
상기 SDPF내 최초 NH3 흡착량에서 상기 N2O 발생량을 차감하여 NH3 슬립량을 산출하는 단계를 더 포함하는 SDPF 내 NH3 산화에 따른 N2O 발생량 예측 방법.
The method of claim 1,
Calculating a N 2 O slip amount by substituting a conversion constant using a map from the N 2 O generation amount; And
Further comprising the step of calculating an NH 3 slip amount by subtracting the N 2 O generation amount from the initial NH 3 adsorption amount in the SDPF, and estimating an N 2 O generation amount by NH 3 oxidation in SDPF.
KR1020170092922A 2017-07-21 2017-07-21 Method of expectating n2o generation accordign to oxidation of nh3 in sdpf KR102383235B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020170092922A KR102383235B1 (en) 2017-07-21 2017-07-21 Method of expectating n2o generation accordign to oxidation of nh3 in sdpf
US15/837,660 US20190024567A1 (en) 2017-07-21 2017-12-11 Method of expecting n20 generation according to oxidation of nh3 in sdpf
DE102017222885.7A DE102017222885A1 (en) 2017-07-21 2017-12-15 Expected N2O formation after oxidation of NH3 in SDPF

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170092922A KR102383235B1 (en) 2017-07-21 2017-07-21 Method of expectating n2o generation accordign to oxidation of nh3 in sdpf

Publications (2)

Publication Number Publication Date
KR20190010309A true KR20190010309A (en) 2019-01-30
KR102383235B1 KR102383235B1 (en) 2022-04-05

Family

ID=64952030

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170092922A KR102383235B1 (en) 2017-07-21 2017-07-21 Method of expectating n2o generation accordign to oxidation of nh3 in sdpf

Country Status (3)

Country Link
US (1) US20190024567A1 (en)
KR (1) KR102383235B1 (en)
DE (1) DE102017222885A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10669908B1 (en) 2018-12-03 2020-06-02 Wellhead Power Solutions, Llc Power generating systems and methods for reducing startup NOx emissions in fossile fueled power generation system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100028228A1 (en) * 2008-07-30 2010-02-04 Gm Global Technology Operations, Inc. Current storage estimation for selective catalytic reduction catalysts
KR20100042496A (en) * 2008-10-16 2010-04-26 현대자동차주식회사 System and method for estimation a selective catalytic reduction catalyst aging
JP2011102573A (en) * 2009-11-12 2011-05-26 Ud Trucks Corp Exhaust emission control device
JP2016109026A (en) * 2014-12-05 2016-06-20 トヨタ自動車株式会社 Exhaust emission control device for internal combustion engine

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8181450B2 (en) * 2008-04-30 2012-05-22 Cummins IP. Inc. Apparatus, system, and method for reducing NOx emissions on an SCR catalyst using ammonia storage and slip control
US8225595B2 (en) * 2008-12-05 2012-07-24 Cummins Ip, Inc. Apparatus, system, and method for estimating an NOx conversion efficiency of a selective catalytic reduction catalyst
US9109488B2 (en) * 2013-03-15 2015-08-18 Cummins Ip, Inc. Method, system, and apparatus for diagnosing an exhaust aftertreatment component
KR102313719B1 (en) 2016-02-04 2021-10-18 효성티앤씨 주식회사 Method of manufacturing copolymerized polyamide having good hygroscopic property
US9790835B1 (en) * 2016-04-25 2017-10-17 Cummins Emission Solutions Inc. Catalyst failure detection based combined ammonia to NOx ratios, conversion inefficiency values and ammonia slip values

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100028228A1 (en) * 2008-07-30 2010-02-04 Gm Global Technology Operations, Inc. Current storage estimation for selective catalytic reduction catalysts
KR20100042496A (en) * 2008-10-16 2010-04-26 현대자동차주식회사 System and method for estimation a selective catalytic reduction catalyst aging
JP2011102573A (en) * 2009-11-12 2011-05-26 Ud Trucks Corp Exhaust emission control device
JP2016109026A (en) * 2014-12-05 2016-06-20 トヨタ自動車株式会社 Exhaust emission control device for internal combustion engine

Also Published As

Publication number Publication date
KR102383235B1 (en) 2022-04-05
US20190024567A1 (en) 2019-01-24
DE102017222885A1 (en) 2019-01-24

Similar Documents

Publication Publication Date Title
US7736595B2 (en) Dosing agent injection control for selective catalytic reduction catalysts
US8061126B2 (en) Nitrogen oxide estimation downstream of a selective catalytic reduction catalyst
US7858060B2 (en) Current storage estimation for selective catalytic reduction catalysts
US10480375B2 (en) SCR conversion efficiency diagnostics
EP2126306B1 (en) On-board-diagnosis method for an exhaust aftertreatment system and on-board-diagnosis system for an exhaust aftertreatment system
RU2443873C2 (en) Method of controlling reducing agent batching during selective catalytic reduction
US8635030B2 (en) Method for the determination of a NOx concentration value upstream of a SCR catalyst in a diesel engine
EP2376750B1 (en) Scr closed loop control system
US20100154386A1 (en) DIAGNOSTIC SYSTEMS AND METHODS FOR SELECTIVE CATALYTIC REDUCTION (SCR) SYSTEMS BASED ON NOx SENSOR FEEDBACK
US10436089B2 (en) Radio frequency sensor in an exhaust aftertreatment system
CN110821621B (en) Method for monitoring an SCR catalyst
US8549836B2 (en) Method for operating an exhaust system, exhaust system and vehicle having an exhaust system
US8682595B2 (en) Method to estimate NO2 concentration in an exhaust gas of an internal combustion engine
KR102383235B1 (en) Method of expectating n2o generation accordign to oxidation of nh3 in sdpf
CN114033538B (en) Double DPF regeneration control method and device and engine
US20190390589A1 (en) Passive nitric oxide storage catalyst management
EP3653853B1 (en) Nox slip detection
US10526947B2 (en) Exhaust aftertreatment system
KR101189247B1 (en) NOx SEONSOR COMPENSATION METHOD FOR EXHAUST GAS
KR101509750B1 (en) Determining Apparatus of Selective Catalytic Reduction Catalyst Aging and Method thereof
KR100820395B1 (en) Nox reduction method and apparatus of exhaust gas
Hsieh et al. Observer-based estimation of Diesel engine aftertreatment system NO and NO2 concentrations
EP3536921A1 (en) A system and method for accurately measuring nox and nh3 contents in exhaust fumes
CN115419841A (en) Ammonia leakage detection method and device, readable storage medium and ammonia leakage detection system
KR20190068971A (en) Exhaust gas post processing system and control method thereof

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant