KR20180133759A - 수소 생산장치 및 수소 생산방법 - Google Patents

수소 생산장치 및 수소 생산방법 Download PDF

Info

Publication number
KR20180133759A
KR20180133759A KR1020170071022A KR20170071022A KR20180133759A KR 20180133759 A KR20180133759 A KR 20180133759A KR 1020170071022 A KR1020170071022 A KR 1020170071022A KR 20170071022 A KR20170071022 A KR 20170071022A KR 20180133759 A KR20180133759 A KR 20180133759A
Authority
KR
South Korea
Prior art keywords
hydrogen
mixer
carbon monoxide
culture
incubator
Prior art date
Application number
KR1020170071022A
Other languages
English (en)
Other versions
KR102381423B1 (ko
Inventor
김해진
배정돈
조강익
강성균
Original Assignee
주식회사 엔솔바이오사이언스
한국해양과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엔솔바이오사이언스, 한국해양과학기술원 filed Critical 주식회사 엔솔바이오사이언스
Priority to KR1020170071022A priority Critical patent/KR102381423B1/ko
Publication of KR20180133759A publication Critical patent/KR20180133759A/ko
Application granted granted Critical
Publication of KR102381423B1 publication Critical patent/KR102381423B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/04Bioreactors or fermenters specially adapted for specific uses for producing gas, e.g. biogas
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M27/00Means for mixing, agitating or circulating fluids in the vessel
    • C12M27/02Stirrer or mobile mixing elements
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P3/00Preparation of elements or inorganic compounds except carbon dioxide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Sustainable Development (AREA)
  • Biomedical Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

본 발명은 일산화탄소를 이용하여 수소를 생산하는 수소생산미생물을 배양하기 위한 배양액이 내부에 수용되는 배양기; 및 상기 배양기 외부에서 상기 배양기와 일측과 타측이 연결되고, 내부에는 고정된 분류부가 형성되는 혼합기를 포함하고, 상기 배양액 중 적어도 일부인 이송배양액이 상기 배양기로부터 상기 혼합기로 이송되어 상기 혼합기의 일측으로 유입되고, 상기 일산화탄소는 상기 분류부 전단으로부터 상기 분류부를 향해 유입되어 상기 이송배양액과 함께 상기 혼합기 타측을 향해 유동하는 기액유체를 형성하고, 상기 기액유체 중 적어도 일부가 상기 분류부에 의해 분류된 후 다시 합류하여 상기 혼합기 타측을 통해 상기 배양기로 이동하며, 상기 분류에 의해 상기 일산화탄소와 상기 이송배양액이 혼합되는 수소 생산장치를 제공한다. 또한, 수소 생산방법을 제공한다. 본 발명은 일산화탄소를 효과적으로 활용하여 수소를 효과적으로 생산할 수 있다는 장점을 갖는다.

Description

수소 생산장치 및 수소 생산방법{An apparatus for producing hydrogen and a method for producing hydrogen}
본 발명은 수소생산미생물을 이용하여, 수소를 생산하는 수소 생산장치 및 수소를 생산하는 수소 생산방법에 관한 것으로, 더욱 상세하게는 스케일-업(scale-up)이 용이하고, 수소생산미생물을 이용하여 효과적으로 수소를 생산할 수 있는 수소 생산장치 및 수소 생산방법에 관한 것이다.
수소에너지가 청정에너지로서 미래 대체에너지로 주목 받고 있다. 현재 수소 생산 기술로는 수소생산미생물을 활용하여 수소를 생산하는 기술 등이 알려져 있다. 구체적으로, 일산화탄소로부터 수소를 생산하는 수소생산미생물에 가스상 일산화탄소를 효과적으로 전달하기 위해 가스버블발생기를 적용한 예가 알려져 있다(대한민국 등록특허공보 제10-1190842호, 및 제10-1401559호 참조).
이러한 가스버블발생기를 이용하여 효과적으로 수소를 생산할 수 있으나, 회전력을 이용하거나 고압분사력을 이용하는 방식이어서, 전체 장치 용량 증가에 맞추어 일산화탄소공급량을 증가시키는 것이 용이하지 않아 스케일-업에 한계가 있다. 또한, 가스버블발생기 자체의 운전에 소모되는 전력량을 저감시킬 필요도 있었다.
대한민국 등록특허공보 제10-1190842호, (2012. 10. 15), 청구범위 대한민국 등록특허공보 제10-1401559호, (2014. 06. 11), 청구범위
본 발명이 해결하고자 하는 하나의 과제는 스케일-업이 용이하고 전력소모량 대비 수소를 효과적으로 생산할 수 있는 수소 생산장치를 제공하는 것이다.
또한, 본 발명이 해결하고자 하는 다른 하나의 과제는 스케일-업에 대응하여 일산화탄소를 용이하게 공급할 수 있고, 전력소모량 대비 수소를 효과적으로 생산할 수 있는 수소 생산방법을 제공하는 것이다.
본 발명이 해결하고자 하는 과제들은 이상에서 언급한 과제들로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본 발명은 일산화탄소를 이용하여 수소를 생산하는 수소생산미생물을 배양하기 위한 배양액이 내부에 수용되는 배양기; 및 상기 배양기 외부에서 상기 배양기와 일측과 타측이 연결되고, 내부에는 고정된 분류(分流)부가 형성되는 혼합기를 포함하고, 상기 배양액 중 적어도 일부인 이송배양액이 상기 배양기로부터 상기 혼합기로 이송되어 상기 혼합기의 일측으로 유입되고, 상기 일산화탄소는 상기 분류부 전단으로부터 상기 분류부를 향해 유입되어 상기 이송배양액과 함께 상기 혼합기 타측을 향해 유동하는 기액유체를 형성하고, 상기 기액유체 중 적어도 일부가 상기 분류부에 의해 분류된 후 다시 합류하여 상기 혼합기 타측을 통해 상기 배양기로 이동하며, 상기 분류에 의해 상기 일산화탄소와 상기 이송배양액이 혼합되는 수소 생산장치를 제공한다.
상기 분류부는 돌기 또는 판 형상 중에서 선택된 하나 이상의 형상으로 이루어진 혼합유닛을 포함하여 이루어질 수 있다.
상기 혼합유닛은 복수개로, 각각의 혼합유닛은 판 형상으로 이루어지고, 하나의 혼합유닛과 연결된 다른 하나의 혼합유닛은 직렬로 연결되되, 서로 비틀린 상태로 결합될 수 있다.
상기 각각의 혼합유닛은 상기 유동방향을 기준축으로 비틀린 형상으로 이루어질 수 있다.
상기 혼합은 상기 기액유체의 흐름의 전환, 또는 뒤바뀜의 과정을 추가로 거치며 일어나는 것일 수 있다.
상기 혼합기는 복수 개로, 하나의 혼합기는 적어도 다른 하나의 혼합기와 병렬로 배치될 수 있다.
상기 하나의 혼합기와 상기 다른 하나의 혼합기는 서로 다른 펌프에 연결될 수 있다.
상기 서로 다른 펌프는 각각 상기 하나의 혼합기와 상기 다른 하나의 혼합기 각각의 전단에 연결될 수 있다.
상기 혼합기 타측은 상기 배양기와 유체토출부연결관에 의해 연결되고, 상기 하나의 혼합기와 상기 다른 하나의 혼합기는 서로 다른 유체토출부연결관에 연결될 수 있다.
상기 수소 생산장치는 상기 수소생산미생물이 생산한 상기 수소를 포집하는 포집부를 더 포함할 수 있다.
상기 수소생산장치는 상기 혼합기의 일측과 상기 배양기를 연결하는 배양액이송부를 더 포함할 수 있다.
상기 배양액이송부는 일측에 일산화탄소공급부가 연결될 수 있다.
상기 배양액이송부는, 펌프, 상기 배양기로부터 상기 펌프로 상기 이송배양액을 이송하는 흡인관, 및 상기 펌프로부터 상기 혼합기로 상기 이송배양액을 이송하는 이송관을 포함하여 이루어질 수 있다.
상기 하나의 혼합기와 상기 다른 하나의 혼합기는 서로 다른 배양액이송부에 연결될 수 있다.
상기 서로 다른 배양액이송부는 상기 흡인관의 적어도 일부를 공유할 수 있다.
상기 혼합기는, 관형의 하우징, 상기 하우징의 일측에 형성되고 상기 일산화탄소와 상기 이송배양액이 유입되는 유체유입부, 및 상기 하우징의 타측에 형성되고 혼합된 상기 일산화탄소와 상기 이송배양액이 토출되는 유체토출부를 포함하여 이루어질 수 있다.
상기 분류부는 고정부에 의해 상기 하우징 내부에 고정되고, 상기 고정부는 상기 분류부의 일측에 형성될 수 있다.
상기 고정부는 상기 유체유입부의 일측에 결합될 수 있다.
상기 유체유입부의 일측에는 단턱이 형성되고, 상기 고정부는 상기 단턱에 끼움결합으로 결합될 수 있다.
상기 고정부는 상기 이송배양액의 압력에 의해 상기 유체유입부에 밀착되어 고정될 수 있다.
상기 유체유입부의 단면적이 상기 유체토출부의 단면적보다 크지 않도록 형성될 수 있다.
상기 수소생산미생물은 서모코커스속 균일 수 있다.
상기 서모코커스속 균은 서모코커스 온뉴리뉴스(Thermococcus onnurineus)일 수 있다.
또한, 본 발명은 (A) 일산화탄소를 이용하여 수소를 생산하는 수소생산미생물을 배양하기 위한 배양액을 내부에 수용하는 배양기에서 상기 배양액 중 적어도 일부를 이송배양액으로 하여 내부에 고정된 분류(分流)부가 형성된 혼합기 일측으로 유입하고, 상기 분류부의 전단으로부터 상기 분류부를 향해 상기 일산화탄소를 유입하는 유입단계; (B) 상기 유입된 이송배양액과 상기 유입된 일산화탄소가 함께 상기 혼합기 타측을 향해 유동하며 기액유체를 형성하고, 상기 분류부에 의해 상기 기액유체 중 적어도 일부가 분류되어 상기 일산화탄소와 상기 이송배양액이 혼합되어 혼합물을 형성하는 혼합단계; (C) 상기 혼합물을 상기 혼합기 타측을 통해 상기 배양기 내부로 이동시켜, 상기 수소생산미생물을 배양하여 수소를 발생시키는 수소발생단계; 및 (D) 상기 수소생산미생물이 상기 일산화탄소를 이용하여 생산한 수소를 포집하는 수소포집단계를 포함하는 수소생산방법을 제공한다.
상기 (C)단계의 상기 배양은 가압 하에서 실시하는 것일 수 있다.
본 발명에 의해 스케일-업이 용이하고, 전력소모량 대비 수소를 효과적으로 생산할 수 있다는 효과가 있다. 또한, 본 발명에 의해 수소 생산을 위한 배양액 부피 증가에 따라 일산화탄소 공급을 안정적으로 증가시킬 수 있어, 스케일-업에 대응하여 일산화탄소를 용이하게 공급할 수 있고, 소모전력 대비 수소생산성이 우수하다는 효과가 있다.
도 1은 본 발명의 수소 생산장치의 일 실시예를 나타낸 개략도이다.
도 2는 도 1의 일 실시예에 포함되는 혼합기의 일 예를 나타낸 분해사시도이다.
도 3은 도 1의 일 실시예에 포함되는 혼합기의 일 예를 나타낸 일부 절단사시도이다.
도 4는 도 3의 혼합기의 연결방식을 도시한 도이다.
도 5는 도 1의 일 실시예에 포함되는 분류부의 혼합방식을 설명하기 위한 도이다.
도 6은 본 발명의 수소 생산장치의 다른 실시예를 나타낸 개략도이다.
도 7은 본 발명의 수소 생산방법의 일 실시예를 설명하기 위한 플로우차트이다.
도 8은 구체예 1의 실험결과를 나타낸 그래프이다.
도 9는 구체예 1의 실험결과를 나타낸 그래프이다.
도 10은 구체예 1의 실험결과를 나타낸 그래프이다.
도 11은 참고예 1의 가스버블발생기가 적용된 수소 생산장치의 개략도이다.
도 12는 도 11의 가스버블발생기의 사시도이다.
도 13은 실험예 2의 실험결과를 나타낸 그래프이다.
이하, 본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.
명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다. 또한, "및/또는"은 언급된 구성요소의 각각 및 하나 이상의 모든 조합을 포함한다.
본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 "포함한다(comprises)" 및/또는 "포함하는(comprising)"은 언급된 구성요소, 단계, 동작 및/또는 소자는 하나 이상의 다른 구성요소, 단계, 동작 및/또는 소자의 존재 또는 추가를 배제하지 않는다.
본 명세서 상에서 '전단' 및 '후단'은 유체(기체, 액체, 또는 기액유체)의 유동방향을 기준으로 구분될 수 있다. '전단'은 유체가 유입되는 측이나 이와 연결된 부분을 말하는 것일 수 있으며, '후단'은 유체가 배출되는 측이나 이와 연결된 부분을 말하는 것일 수 있다. 예를 들어, 유체가 유동하는 장치, 구성부, 관로 등의 입구 측이나 이와 연결된 부분을 상기 장치, 구성부, 관로 등의 전단으로 표현할 수 있고, 출구 측이나 이와 연결된 부분을 상기 장치, 구성부, 관로의 후단으로 표현할 수 있다. 전단에 배치되거나 연결되는 것은 입구 측에 배치되거나 연결되는 것을 의미하고, 후단에 배치되거나 연결되는 것은 출구 측에 배치되거나 연결되는 것을 의미할 수 있다.
수소생산미생물은 수소를 생산할 수 있는 미생물, 바람직하게는 일산화탄소를 탄소원으로 하여 수소를 생산할 수 있는 미생물일 수 있다. 예를 들어, 서모코커스속 균과 같은 수소생산 혐기성 미생물일 수 있다. 서모코커스속 균은 서모코커스속에 속하여 수소생산이 가능한 혐기성 미생물로, 서모코커스속 균주(cell line)를 포함하는 의미이다. 이로써 제한되는 것은 아니나, 서모코커스속 균의 바람직한 예는 서모코커스 온뉴리뉴스(Thernococcus onnurineus)일 수 있으며, 보다 바람직하게는 서모코커스 온뉴리뉴스 NA1 및/또는 서모코커스온뉴리뉴스 NA1 균주의 변형체일 수 있다.
탄소원인 일산화탄소는 일산화탄소 단독 또는 다른 종류의 가스와 혼합된 상태일 수 있다.
배양액은 별도의 언급이 없는 한, 통상의 수소생산미생물을 배양할 수 있는 배양액을 의미하고, 서모코커스속 균을 배양할 수 있는 공지의 배양액일 수 있다. 배양액은 물을 포함하여 일산화탄소와 물을 이용하여 수소생산미생물이 수소를 생산할 수 있도록 한다. 이 때, 배양액은 수소생산미생물을 함유할 수 있다.
이하, 도 1 내지 도 5를 참조하여, 본 발명의 일 실시예인 수소 생산장치에 대해 보다 상세히 설명한다.
도 1은 본 발명의 수소 생산장치의 일 실시예를 나타낸 개략도이고, 도 2는 도 1의 일 실시예에 포함되는 혼합기의 일 예를 나타낸 분해사시도이고, 도 3은 도 1의 일 실시예에 포함되는 혼합기의 일 예를 나타낸 일부 절단사시도이고, 도 4는 도 3의 혼합기의 연결방식을 도시한 도이며, 도 5는 도 1의 일 실시예에 포함되는 분류부의 혼합방식을 설명하기 위한 도이다.
도 1에 도시된 바와 같이, 수소 생산장치(1)는 배양기(100), 및 혼합기(200)를 포함하여 이루어진다. 또한, 수소 생산장치(1)는 포집부(500)를 더 포함하여 이루어질 수 있다.
배양기(100)는 일산화탄소를 이용하여 수소를 생산하는 수소생산미생물을 배양하기 위한 배양액을 내부에 수용한다. 배양기(100)는 수소생산미생물에 의한 수소생산이 주로 일어나는 용기를 의미한다. 배양기는 혐기성 배양기일 수 있으며, 배양기(100)는 배양기 내부를 혐기성으로 유지해줄 수 있는 밀폐된 구조의 공지의 배양기일 수 있다. 배양기(100)는 관측창(도시하지 않음)과 같은 창이 장착되어 외부에서 배양기(100) 내부를 확인할 수 있으며, 이 외에도 도시되지는 않았으나, 온도제어센서, pH제어센서, 전열선 등의 가열수단, 또는 pH조절제 공급관 등을 포함하는 pH조절제 공급수단 등이 장착된 구조의 것으로, 상용화된 것일 수 있다.
또한, 배양기(100)를 지지하기 위한 받침대(도시하지 않음)가 설치될 수 있고, 배양기(100)의 일측에는 배양액이송부(300)가 더 설치될 수 있다. 또한, 배양기에는 배양액을 유입하는 유입부와 배양액을 유출시키는 유출부가 형성될 수도 있다. 이와 같은 유입부와 유출부에 의해 새로운 배양액을 추가하고, 사용된 배양액은 유출시킬 수 있다. 배양액은, 수소생산미생물을 배양할 수 있는 배양액으로, 배양액은 수소생산미생물을 함유할 수 있다.
배양액이송부(300)는 배양액 중 적어도 일부를 이송배양액으로 하여, 이송배양액을 배양기(100)로부터 혼합기(200)로 이송시키는 관로의 역할을 한다. 배양액이송부(300)는 펌프(350), 배양기(100)로부터 펌프(350)로 이송배양액을 이송하는 흡인관(370), 및 펌프(350)로부터 혼합기(200)로 이송배양액을 이송하는 이송관(330)을 포함하여 이루어질 수 있다. 또한, 배양액이송부(300)는 혼합기(200)의 일측과 배양기(100)를 연결하고, 배양액이송부(300)의 일측에는 일산화탄소공급부(400)가 연결될 수 있다. 이와 같은 구성에 의해, 배양기(100) 내부의 배양액 중 적어도 일부를 이송배양액으로 하여 혼합기(200)로 이송시킴과 동시에, 이송 중인 이송배양액으로 일산화탄소를 공급할 수 있고, 일산화탄소가 공급된 이송배양액을 혼합기(200)로 유입시킬 수 있다.
일산화탄소공급부(400)는 일산화탄소공급원(410), 및 가스공급관(430)을 포함하며, MFC(Mass Flow Controller)와 같은 유량조정기(450)에 의해 일산화탄소가스의 유량을 조절할 수 있다.
일산화탄소공급원(410)은 일산화탄소배출원(도시하지 않음)에 말단이 연결된 관 또는 일산화탄소가 충전된 봄베 등일 수 있다.
혼합기(200)는 배양기(100) 외부에서 배양기(100)와 일측과 타측이 연결되고, 내부에는 고정된 분류부(도 2의 240 참조)가 형성된다. 배양액 중 적어도 일부인 이송배양액이 배양기(100)로부터 혼합기(200)로 이송되어 혼합기(200)의 일측으로 유입되고, 일산화탄소는 분류부(240) 전단으로부터 분류부(240)를 향해 유입되어 이송배양액과 함께 혼합기(200) 타측을 향해 유동하는 기액유체를 형성하고, 기액유체 중 적어도 일부가 분류부(240)에 의해 분류된 후 다시 합류하여 혼합기(200) 타측을 통해 배양기(100)로 이동하며, 분류에 의해 일산화탄소와 이송배양액이 혼합된다.
이하에서는 도 2와 도 3을 참조하여, 혼합기에 대하여 보다 상세하게 설명한다.
혼합기(200)는 관형의 하우징(210), 하우징의 일측에 형성되고 일산화탄소와 이송배양액이 유입되는 유체유입부(220), 및 하우징의 타측에 형성되고 혼합된 일산화탄소와 이송배양액이 토출되는 유체토출부(230)를 포함하여 이루어질 수 있다.
혼합기(200)의 내부에는 고정된 분류부(240)가 형성된다. 분류부(240)는 돌기 또는 판 형상 중에서 선택된 하나 이상의 형상으로 이루어진 혼합유닛(241)을 포함하여 이루어질 수 있으며, 혼합유닛(241)은 복수 개로 이루어질 수 있고, 각각의 혼합유닛(241)은 판 형상으로 이루어지고, 하나의 혼합유닛과 연결된 다른 하나의 혼합유닛은 직렬로 연결되되, 서로 비틀린 상태로 결합될 수 있다.
즉, 기액유체의 유동방향을 따라 각각의 혼합유닛이 직렬로 연결되어, 기액유체를 반복적으로 분류할 수 있다. 예를 들어, 도 2의 혼합유닛의 확대부분에 도시된 바와 같이, 각각의 혼합유닛이 서로 비틀린 상태로 결합되어 있어 하나의 혼합유닛을 통과할 때마다 2개의 흐름으로 분류되어, 2n(n은 혼합유닛의 수)개의 흐름으로 분류되는 과정을 거칠 수 있다.
도 2에 도시된 바와 같이, 분류부(240)는 일측에 고정부(250)가 형성될 수 있다. 분류부(240)는 고정부(250)에 의해 하우징(210) 내부에 고정된다. 이 때, 하우징(210)의 일측에 형성된 유체유입부(220)의 일측에는 단턱(221)이 형성되고, 고정부(250)는 단턱(221)에 끼움결합으로 결합될 수 있다. 즉, 도 3과 같이, 분류부(240)가 고정부(250)에 의해 하우징 내부에 고정될 수 있다. 고정부(250)는 이송배양액이 하우징 내부로 유입될 때 발생하는 이송배양액의 압력에 의해 유체유입부(220)에 완전히 밀착 고정될 수 있어, 분류부(240)를 하우징(210) 내부에 견고하게 고정할 수 있다. 이와 같은 구조에 의해, 분류부(240)가 하우징(210) 내부에 견고하게 고정됨과 동시에, 필요 시 분류부(240)를 하우징(210)으로부터 용이하게 분해할 수도 있다. 고정부(250)는 이송배양액 또는 일산화탄소 중에서 선택된 하나 이상이 통과할 수 있는 유동공(252)이 일측에 형성되고, 타측은 단턱에 수용되는 바디부(251)를 포함하여 이루어질 수 있다. 유동공(252)은, 혼합유닛(241)의 일측이 유동공(252) 내부로 연장되어, 혼합유닛(241)에 의해 유동공(252)이 분할되는 형태로 형성될 수도 있어, 이송배양액 또는 일산화탄소 중에서 선택된 하나 이상이 유동공(252)을 통과함과 동시에 분류가 이루어지도록 할 수도 있다.
혼합기(200)는 배양기(100) 외부에 위치하여, 배양기(100)에 수용된 배양액 중 적어도 일부를 이송배양액으로 하여 배양기로부터 이송 받는다. 혼합기(200)를 외부에 위치시킬 수 있어, 혼합기 크기에 제약을 받지 않으며, 혼합기(200) 자체를 병렬로 배치하거나 직렬로 배치하는 등 상황과 조건에 맞춰 연장이 가능하므로 스케일-업이 용이하다. 따라서, 배양액 용량 변화에 대응하여, 안정적이고 충분한 수소 생산이 가능하게 된다.
혼합기는 기체상과 액체상을 혼합할 수 있는 관내 고정 방식의 혼합기로 산업 현장에서 통상적으로 사용되는 것일 수 있으며, 기체상과 액체상의 혼합을 위한 스태틱믹서일 수 있다.
혼합기(200)는 도 4에 도시된 바와 같이, 배양액이송부(300)를 통하여 배양기(도 1의 100 참조)와 연결될 수 있다. 배양액이송부(300)는 혼합기(200)의 일측에 형성된 유체유입부(도 2의 220 참조)와 연결될 수 있다. 이 때, 배양액이송부(300)와 혼합기(200)는 플랜지(flange)결합으로 연결될 수 있다. 즉, 배양액이송부(300)의 후단에 형성된 제1 플랜지(301)는 혼합기(200)의 전단에 형성된 제2 플랜지(201)와 플랜지 결합으로 연결되어, 제1 플랜지(301) 및 제2 플랜지(201)의 원주 위에 형성되어 있는 체결홀(903)에 볼트(901)가 삽입되고, 이 볼트(901)의 너트(902)와의 결합에 의해 관로를 이어줄 수 있다. 배양액이송부(300)와 혼합기(200)가 연결되면, 배양액이송부(300)를 통과한 이송배양액은 혼합기(200) 내부로 유입된다.
일산화탄소공급부(400)는 배양액이송부(300)의 일측에 연결되어, 일산화탄소가 이송배양액과 동일방향으로 혼합기(200)에 유입될 수 있다. 이러한 동일방향 유입에 의해, 이송배양액과 일산화탄소가 일산화탄소와 이송배양액으로 이루어진 흐름인 기액유체를 형성하게 된다.
이와 같이, 이송배양액과 일산화탄소로 이루어진 기액유체는 동일 방향으로 흐름을 형성하게 된다.
동일 방향으로 유입되는 이송배양액과 일산화탄소는 그 흐름을 자연스럽게 유지한 상태로, 혼합기 내부에 고정된 분류부(도 3의 240 참조)를 통과하게 된다. 분류부(240)는 전술한 바와 같이, 돌기 또는 판 형상 중에서 선택된 하나 이상의 형상으로 이루어진 혼합유닛(도 3의 241 참조)을 포함하여 이루어질 수 있다.
혼합유닛(241)은 복수개로 이루어질 수 있고, 각각의 혼합유닛은 판 형상으로 이루어지고 하나의 혼합유닛과 연결된 다른 하나의 혼합유닛은 직렬로 연결되되, 서로 비틀린 상태로 결합될 수 있을 뿐 아니라, 각각의 혼합유닛 역시, 이송배양액과 일산화탄소가 유동하는 유동방향을 기준축으로 비틀린 형상으로 이루어져 있어, 이송배양액과 일산화탄소가 형성하는 기액유체의 혼합을 보다 효과적이고 효율적으로 수행할 수 있다. 도 5를 참조하면, 기액유체의 혼합은 도 5의 (a)에 도시된 바와 같이, 각각의 혼합유닛이 서로 비틀린 상태로 결합되어 있어, 혼합유닛을 통과함에 따라 일차적으로 분류(또는 분할)되며 이루어질 수 있다(화살표 참조). 또한, 도 5의 (b)에 도시된 바와 같이, 비틀린 형상으로 이루어진 혼합유닛의 표면을 따라 기액유체가 이동함에 따라, 그 흐름의 방향이 전환될 수 있다(화살표 참조). 또한, 도 5의 (c)에 도시된 바와 같이, 기액유체는 하우징의 내벽과 혼합유닛 자체에 형성된 비틀린 경사면 사이에서 와류를 일으키며 그 흐름의 뒤바뀜이 유발된다(화살표 참조). 따라서, 기액유체는 분류부에 의해 자연스럽게 혼합될 수 있는 것이다.
이와 같은 혼합을 통해 기체상의 일산화탄소는 액체상의 이송배양액에 고르게 분산하여 미세버블을 형성하게 되고, 일산화탄소의 물질전달효율을 증가시키게 된다. 미세버블은 평균 직경 100~1000 ㎛일 수 있다. 고르게 미세버블이 형성된 상태에서 수소생산미생물이 존재하게 되므로, 환경 변화가 적은 상태를 유지하게 되어, 수소생산미생물은 환경 변화에 따른 스트레스를 덜 받게 되는 것으로 보인다. 또한, 기액유체가 혼합유닛을 통과하면서 가압되어 기체상의 일산화탄소가 액체상의 이송배양액에 보다 효과적으로 용해하게 된다.
결국, 안정적인 환경과 이송배양액에 용해되어 이용하기에 적절한 일산화탄소가 존재하는 상태에서, 수소생산미생물은 안정적인 수소 생산이 가능하다.
이러한 구조에 의해, 혼합을 위한 별도의 회전력이나 고압분사력을 발생시키기 위한 동력을 추가하지 않고도 보다 안정적인 수소 생산이 가능하며, 장치에 고압이 걸리지 않으므로 장치의 내구성을 확보할 수 있고 안정적인 운전 또한 가능해진다.
또한, 혼합된 일산화탄소와 이송배양액은 유체토출부(도 3의 230 참조)로 토출되어 유체토출부연결관(310)을 통과하여 배양기로 이동하게 된다.
유체토출부(도 3의 230 참조)와 유체토출부연결관(310) 역시, 전술한 혼합기(200)와 배양액이송부(300)의 연결방식과 마찬가지로, 유체토출부(도 3의 230 참조)의 후단에 형성된 제3 플랜지(도 4의 202 참조)와 유체토출부연결관(도 4의 310 참조)의 전단에 형성된 제4 플랜지(도 4의 311 참조)가 플랜지의 원주 상에 형성된 체결홀(도 4의 903 참조)을 통해 볼트(도 4의 901 참조)와 너트(도 4의 902 참조)로 플랜지 결합하여 고정될 수 있다.
기액유체가 혼합기(200) 내부에 고정된 분류부(도 3의 240 참조)에 의해 자연스럽게 유동하며 흘러가는 과정 중에 혼합이 이루어짐에 따라, 기액유체를 이루는 이송배양액 내부의 수소생산미생물에 미치는 압력의 급격한 변화를 피할 수 있고, 기액유체 중 발생되는 버블이 균일하게 분산될 수 있어 수소생산미생물이 환경 저항 스트레스에 노출되는 것이 줄어들게 된다. 또한, 소모전력이 상대적으로 적은 상태로도 기액 물질 전달은 효과적으로 이루어진다. 이와 같이, 본 발명의 경우, 압력 변화의 폭을 일정하게 유지하는 것이 가능하므로 수소생산미생물에 미치는 환경 스트레스가 적고, 저전력에서도 기액 물질 전달효율이 우수하므로 효과적으로 수소 생산이 가능한 것으로 보인다. 이에 대하여는 후술할 구체예와 실험예에서 보다 상세히 설명한다.
뿐만 아니라, 계속적으로 혼합기 내부로 유입되는 이송배양액은 배양기 내부에 수용된 배양액 중 일부이므로, 배양액 중 함유되는 수소생산미생물이 희석되는 것을 막아줄 수 있어 안정적인 수소 생산이 가능하다.
이상에서 살펴본 바와 같이, 간이한 구조로, 추가 전력 소모 없이, 수소를 생산할 수 있어, 본 발명에 의해 효과적으로 수소를 생산할 수 있다. 이에 대해서도 후술할 구체예와 실험예를 통하여 보다 상세하게 설명한다.
포집부(500)는 배양기(100)로부터 발생된 가스상 수소를 포집한다. 포집부(500)는 수소 수요처에 그 말단이 연결된 관이거나 가스 저장탱크 등 공지의 수소저장부(510), 및 가스배출관(570)을 포함한다. 포집부(500)는 수소 이외에 배양 과정에서 발생하는 가스를 함께 포집할 수 있으며, 포집부(500)에서 포집된 가스는 정제과정을 거쳐 수소의 순도를 높이는 것이 가능하다.
정제는 포집부(500)에서 일체로 이루어질 수 있다. 수소저장부(510)의 전단에는 필터 등을 배치하여 원하지 않는 물질이 유입되는 것을 막아줄 수 있다. 또한, 가스배출관(570)에 냉각부(550)를 설치하여 배출되는 가스의 온도를 낮춰줌으로써 부피를 감소시켜 수소저장부(510)의 수용능력을 증가시키거나, 고온으로 인한 손상 등을 막아주는 효과를 나타낼 수 있다. 냉각부(550)는 공지의 냉각장치일 수 있으며 냉매를 순환시켜 배출되는 가스를 냉각시킬 수 있다.
이하에서는, 도 6을 참조하여, 본 발명의 다른 실시예인 수소 생산장치에 대해 보다 상세히 설명한다.
본 발명의 수소생산장치의 일 실시예와 중복되는 내용은 중복을 피하기 위해 가능한 생략하고, 차이점에 대해서 주로 설명한다.
도 6은 본 발명의 수소 생산장치의 다른 실시예를 나타낸 개략도로, 복수개의 혼합기가 적용된 예를 나타낸다.
도 6에 도시된 바와 같이, 수소 생산장치(1')는 배양기(100), 및 혼합기(200, 200')를 포함하여 이루어진다. 도시된 바와 같이, 혼합기는 복수 개로 이루어진다. 이와 같이 복수 개의 혼합기를 적용하여, 이송배양액과 일산화탄소 혼합물의 양을 용이하게 증가시킬 수 있다. 이송배양액과 일산화탄소 혼합물의 발생량이 증가되면, 이에 따라 미세버블의 양도 함께 증가되어 보다 효과적으로 물질전달이 일어날 수 있다.
이 때, 하나의 혼합기(200)는 적어도 다른 하나의 혼합기(200')와 병렬로 배치될 수 있다. 하나의 혼합기(200)가 적어도 다른 하나의 혼합기(200')와 병렬로 배치됨으로써, 이송배양액과 일산화탄소 혼합물이 배양기로 공급되는 양을 보다 용이하게 증가시킬 수 있다. 이와 같이 하나의 혼합기(200)가 적어도 다른 하나의 혼합기(200')와 병렬로 배치되도록 함으로써, 이송배양액과 일산화탄소 혼합물의 발생량을 증가시킬 수 있을 뿐만 아니라, 시간당 기액유체의 이송량을 함께 증가시킬 수 있기 때문이다. 혼합기에 이송배양액을 유입시키기 위해, 펌프를 연결할 수 있다. 이로써 제한되는 것은 아니나, 펌프는 혼합기 전단에 연결될 수 있다.
하나의 혼합기(200)와 다른 하나의 혼합기(200')는 서로 다른 펌프에 연결될 수 있다. 일 예로, 하나의 펌프(350)는 하나의 혼합기(200)와 연결되고 다른 하나의 펌프(350')는 다른 하나의 혼합기(200')에 연결될 수 있다. 이와 같은 경우, 상대적으로 저용량의 펌프를 적은 수로 추가하는 방식 만으로도 용이하게 이송배양액의 이송속도를 증가시킬 수 있다. 즉, 각각의 혼합기(200, 200')를 병렬 적용하고, 상대적으로 저용량의 펌프를 각각의 혼합기에 각각 추가하는 방식만으로 이송배양액과 일산화탄소 혼합물의 발생량과, 이송배양액의 이송속도를 용이하게 증가시킬 수 있는 것이다. 이는 실험예의 결과로부터도 확인된다. 또한, 이로써 제한되는 것은 아니나, 서로 다른 펌프는 각각 하나의 혼합기(200)와 다른 하나의 혼합기(200') 각각의 전단에 연결될 수 있다.
병렬 배치된 각각의 혼합기는 다양한 방식으로 배양기에 연결될 수 있다. 도면 상에는 각각의 혼합기(200, 200')가 서로 180도 각도로 대향되도록 연결된 것으로 도시하였으나 이에 한정될 것은 아니며, 병렬 배치가 가능하다면 배양기(100)의 다측면에서 각각의 혼합기가 서로 120도 또는 240도 등의 다양한 각도를 갖도록 연결될 수 있다. 도 6에 도시된 바와 같이, 각각의 혼합기(200, 200')를 대향되도록 연결하면, 배양액이 한 쪽에서만 많은 양이 유입될 때 발생할 수 있는 편류를 효과적으로 방지할 수 도 있다.
배양기와 복수의 혼합기를 연결하기 위해, 수소생산장치(1')는 복수의 유체토출부연결관(310, 310')을 포함할 수 있다. 유체토출부연결관은 혼합기 타측과 배양기를 연결하는 관이다. 하나의 혼합기(200)와 다른 하나의 혼합기(200')는 서로 다른 유체토출부연결관(310, 310')으로 배양기(100)에 연결될 수 있다. 하나의 유체토출부연결관(310)은 일 실시예의 유체토출부연결관(310)과 실질적으로 동일하고, 다른 하나의 유체토출부연결관(310')은 하나의 유체토출부연결관(310)과 실질적으로 동일하다. 이와 같은 각각의 유체토출부연결관(310, 310')을 통해, 각각의 혼합기에서 발생된 혼합물을 다른 혼합기의 영향을 받지 않고 배양기로 유입되도록 할 수 있다.
또한, 수소생산장치(1')는 복수의 배양액이송부(300, 300')를 포함할 수 있으며, 각각의 펌프(350, 350')는 각각의 배양액이송부(300, 300')에 포함될 수 있다. 각각의 배양액이송부는 펌프 외에 이송관, 및 흡인관을 각각 포함할 수 있으며, 하나의 혼합기(200)와 다른 하나의 혼합기(200')는 서로 다른 배양액이송부(300, 300')에 연결될 수 있다. 서로 다른 배양액이송부는 하나의 배양이송부와 다른 하나의 배양액이송부를 포함하여 이루어진다. 이 때, 하나의 배양액 이송부는 하나의 혼합기와 연결되고, 다른 하나의 배양액이송부는 다른 하나의 혼합기와 연결될 수 있다. 하나의 배양액이송부와 다른 하나의 배양액이송부 각각은 일 실시예에서 설명한 배양액이송부와 실질적으로 동일성 범위의 것일 수 있다. 즉, 하나의 배양액이송부(300)는 일 실시예의 배양액이송부와 실질적으로 동일하고, 다른 하나의 배양액이송부(300')는 하나의 배양액이송부(300)와 실질적으로 동일할 수 있다. 따라서. 일 실시예에서 설명된 이송관, 펌프, 흡인관은 하나의 배양액이송부(300)에 포함되는 하나의 이송관(330), 하나의 펌프(350), 하나의 흡인관(370) 각각과 실질적으로 동일하고, 다른 하나의 배양액이송부(300')에 포함되는 다른 하나의 이송관(330'), 다른 하나의 펌프(350'), 다른 하나의 흡인관(370')과도 실질적으로 동일할 수 있다. 이 때, 서로 다른 배양액이송부는 흡인관의 적어도 일부를 공유할 수 도 있다. 예를 들어, 다른 하나의 흡인관(370')은 도 6에 도시된 바와 같이 하나의 흡인관(370)으로부터 분지되어, 그 일부를 공유한 형태일 수도 있는 것이다. 그러나, 흡인관(370, 370')이 배양기(100)와 연결되는 방식이 분지형식으로 제한되는 것은 아니며, 각각의 흡인관(370, 370')이 서로 이격되어 배양기(100)와 직접 연결될 수도 있음은 물론이다.
도면 상에는 하나의 혼합기(200)와 다른 하나의 혼합기(200')가 서로 다른 펌프에 연결되고, 각각의 펌프는 하나의 흡인관(370)과 그로부터 분지된 다른 하나의 흡인관(370')으로부터 이송배양액을 이송받고, 하나의 혼합기(200)와 다른 하나의 혼합기(200')는 각각 서로 다른 유체토출부연결관(310, 310')으로 배양기(100)와 연결되는 것으로 도시하였으나 이에 한정될 것은 아니다.
또한, 수소생산장치(1')는 복수의 일산화탄소공급부(400, 400')를 포함할 수 있다. 각각의 일산화탄소공급부(400, 400')는 각각의 일산화탄소공급원(410, 410'), 가스공급관(430, 430'), 및 유량조절기(450, 450')를 포함할 수 있다. 각각의 일산화탄소공급원, 가스공급관, 및 유량조절기를 포함하는 각각의 일산화탄소공급부 역시 일 실시예에서 설명된 것과 실질적으로 동일할 수 있다. 이와 같은 구성에 의해, 배양기(100) 내부의 배양액 중 적어도 일부를 이송배양액으로 하여 복수의 혼합기(200, 200')로 이송시킴과 동시에, 이송 중인 이송배양액으로 일산화탄소를 공급할 수 있고, 일산화탄소가 공급된 이송배양액을 배양기(100)로 유입시킬 수 있다.
또한, 수소생산장치(1')는 포집부(500)를 더 포함할 수 있다. 포집부(500)는 배양기(100)로부터 발생된 가스상 수소를 포집하는 장치로, 일 실시예의 포집부(500)와 실질적으로 동일할 수 있다. 따라서, 일 실시예에서 설명된 수소저장부, 냉각부, 및 가스배출관은 다른 실시예의 포집부(500)에 포함되는 수소저장부(510), 냉각부(550), 및 가스배출관(570) 각각과 실질적으로 동일할 수 있다.
이외에도, 본 발명의 일 실시예인 수소 생산장치(1)에서 언급된 내용은 서로 모순되지 않는 한, 본 발명의 다른 실시예인 수소 생산장치(1')에 동일성 범위에서 적용될 수 있음은 물론이다.
이하에서는, 도 7을 참고하여, 본 발명의 수소 생산방법의 일 실시예에 대해 보다 상세히 설명한다.
본 발명의 수소 생산장치의 일 실시예와 다른 실시예에서 언급된 내용은 수소 생산방법의 일 실시예에 동일성 범위에서 적용되며, 수소 생산방법의 일 실시예에서 언급될 내용 역시 동일성 범위에서 수소 생산장치의 일 실시예와 다른 실시예에 적용된다.
도 7은 본 발명의 수소 생산방법의 일 실시예를 나타낸 플로우차트이다.
도 7에 도시된 바와 같이, 본 발명의 일 실시예인 수소 생산방법은 (A) 유입단계, (B) 혼합단계, (C) 수소발생단계, 및 (D) 수소포집단계를 포함하여 이루어진다.
(A) 유입단계는, 일산화탄소를 이용하여 수소를 생산하는 수소생산미생물을 배양하기 위한 배양액을 내부에 수용하는 배양기에서 배양액 중 적어도 일부를 이송배양액으로 하여 내부에 고정된 분류부가 형성된 혼합기 일측으로 유입하고, 분류부의 전단으로부터 분류부를 향해 일산화탄소를 유입하는 단계이다. 이송배양액은 배양액 중 일부로, 혼합기(200) 내부로 유입되는 배양액을 의미한다. 혼합기(200)는 본 발명의 일 실시예인 수소 생산장치의 일 실시예에서 언급된 것과 동일성 범위의 것이 적용될 수 있다.
(B) 혼합단계는, 혼합기 내부로 유입된 이송배양액과 유입된 일산화탄소가 함께 혼합기 타측을 향해 유동하며 기액유체를 형성하고, 분류부에 의해 기액유체 중 적어도 일부가 분류되어 일산화탄소와 이송배양액이 혼합되어 혼합물을 형성하는 단계이다. 이송배양액과 일산화탄소는 함께 유동하며 기액유체를 형성하여 분류부를 이루는 혼합유닛을 통과하며 분류되고, 기액유체가 흐름의 전환, 또는 뒤바뀜의 과정을 추가로 거치며 혼합되어 혼합물을 형성하게 된다. 이 과정에서 혼합물에는 균일하고 미세하게 분산된 미세버블이 자연스럽게 형성될 수 있다. 이와 같은 단계를 거치며, 이송배양액 내부의 수소생산미생물은 균일하게 분산된 미세버블에 의해 일산화탄소를 보다 용이하게 공급받을 수 있고, 환경 스트레스를 보다 적게 받을 수 있어 수소 발생을 보다 용이하게 할 수 있다.
(C) 수소발생단계는, 혼합물을 혼합기 타측을 통해 배양기 내부로 이동시켜, 수소생산미생물을 배양하여 수소를 발생시키는 단계이다. 이 때, 배양은 가압 하에서 실시하는 것일 수 있다.
(C) 단계에서, 수소발생은 분당 배양액 대비 일산화탄소 주입량의 부피비(volume of CO added to medium volume per minute; CO volume/medium volume/minute; vvm)를 배양경과시간에 따라 증가 되도록 변경하여 실시할 수 있다. 이와 같이 vvm을 배양경과시간에 따라 변경하여 보다 효과적이며, 안정적으로 수소를 생산할 수 있다. 분당 배양액 대비 일산화탄소주입량의 부피비(vvm)를 배양경과 시간에 따라 증가되도록 변경함으로써, 수소생산미생물이 일산화탄소에 적응하여, 수소 생산에 적절한 상태에서 수소생산이 가능하다.
분당 배양액 대비 일산화탄소주입량의 부피비(vvm)는 다양하게 변경되어 적용될 수 있다.
일 예로, 배양개시시의 vvm인 개시 vvm은 0.10 vvm일 수 있다. 개시 vvm에서 수소생산미생물이 환경에 적응하여 수소생산에 적합한 상태가 되도록 성장시킨 후, 개시 vvm을 유지한 상태에서 배양액의 이송량을 증가시켜 수소생산미생물이 일산화탄소를 이용하여 생산할 수 있는 수소의 양을 보다 효과적으로 증가시킬 수 있다. 또한, vvm을 증가시키면 수소생산미생물이 수소생산에 사용할 수 있는 일산화탄소의 공급속도가 증가하므로 수소 생산속도 역시 증가할 수 있다. 예를 들어, 개시 vvm은 0.10 vvm 이고, 개시 vvm이 변경되어 증가된 vvm인 변경 vvm은 0.20 내지 0.24 vvm 일 수 있다.
또한, 배양기 내부 압력을 증가시켜 기체(예. 일산화탄소)의 용해도가 증가할 수 있고, 결과적으로 효과적인 수소 생산이 가능한 것으로 보인다. 이 때, 배양기 내부 압력은 예를 들어 0.5 ~ 1 bar 가압된 것일 수 있다. 즉, 배양은 배양기 내부압력을 0.5 ~ 1 bar 가압하여 실시하는 것일 수 있다.
이와 같이, 일산화탄소를 공급하는 혼합기를 통해 배양액 내부 일산화탄소 기체의 용해도가 증가할 수 있고, 높은 물질전달효율에 의해 안정적인 수소 생산이 가능한 것으로 보인다. 또한, 전력소모량 대비 수소를 효과적으로 생산할 수 있다. 이러한 효과는 후술할 실험예에서도 확인할 수 있다.
(D)수소포집단계는 수소생산미생물이 일산화탄소를 이용하여 생산한 수소를 포집하는 단계이다. 본 발명의 일 실시예인 수소 생산장치의 설명에서 언급된 것과 동일성 범위의 수소포집부를 적용하여 포집이 가능하다.
포집은, 수소생산미생물이 일산화탄소를 이용하여 생산한 수소를 포집하는 것일 수 있다.
반복을 피하기 위해 중복된 부분은 설명을 생략하나, 본 발명의 일 실시예인 수소 생산방법에서 언급된 내용은 본 발명의 일 실시예와 다른 실시예인 수소 생산장치에 동일성 범위에서 적용됨은 물론이다.
이하에서는 구체예와 실험예를 통해, 본 발명의 일 실시예와 다른 실시예인 수소 생산장치와 이를 이용한 수소 생산방법에 대해 보다 상세하게 설명한다.
< 구체예 1> 혼합기를 포함하는 수소 생산장치
1-1. 수소 생산 장치 준비
도 1에 도시된 형식의 장치를 준비하였다. 배양기는 70L용량으로 하였으며, 스테인레스 재질로 스팀가열방식의 자동 온도조절장치, 시료채취포트, 관측창을 포함하며, 일산화탄소 투입량을 자동 조절할 수 있는 MFC를 구비한 것이다. 혼합기 가동을 위하여 이용한 펌프의 사양은 소비전력 2.2 kW, 양정(揚程, 펌프가 액체를 밀어올릴 수 있는 높이) 54.0m, 유량 6.9 m3/h이다. 혼합기는 도 2에 도시된 형식의 것을 사용하였다. 혼합기에 포함되는 하우징의 내경은 15mm 또는 32mm이었으며, 분류부는 혼합유닛의 개수가 6개, 12개, 24개 또는 30개인 것이었다.
1-2. 혼합기의 혼합유닛 개수 변화에 따른 물질전달계수 변화 확인 실험
구체예 1-1.의 수소생산장치 중 혼합기의 하우징 내경은 15mm이고, 혼합유닛의 개수가 6개, 12개, 24개, 또는 30개인 것과 동일한 것을 준비하였다. 배양기에 3.5%(w/v) NaCl 용액 50 L를 넣고, 산소의 물질전달효율을 비교하기 위해, 반응온도 40에서 배양기에 질소를 주입하여 용존산소량(Dissolved Oxygen, DO)을 0ppm으로 만든 장치를 준비하였다.
이와 같은 장치로, 공기를 이용하여 vvm과 혼합유닛의 개수를 변경하며 물질전달계수를 측정하였다. 즉, 일산화탄소 대신 공기를 분당 NaCl용액 대비 공기주입량의 부피비 (air volume/NaCl medium volume/minute, vvm)를 0.1, 0.2, 0.3, 0.4, 0.5 vvm으로 증가시키면서 물질전달계수를 측정하였다. 물질전달계수(KLa,h- 1)는, 가스상의 기질이 액체상에 전달되는 효율을 의미한다. KL은 액체경막의 산소이동속도계수(cm/hr)를 의미하고, a는 단위체적 당 기액계면적 (cm2/cm3)을 나타낸다. 물질전달계수는, 동력학적 방법(dynamic method)으로 측정하였다. 3.5% NaCl 용액으로 채워진 배양기 내부에 용존산소측정기의 센서를 부착하고, 배양기에 질소를 유입시켜 3.5% NaCl 용액 내의 산소를 질소로 치환한다. NaCl용액의 용존산소가 0ppm이 된 후, 다시 공기를 0.1, 0.2, 0.3, 0.4, 0.5 vvm으로 증가시키면서 시간 별로 NaCl용액 내의 용존산소량을 측정하여 수학식 1을 활용하여 물질전달계수를 계산한다.
수학식 1
Figure pat00001
상기 식에서 KLa(h-1)는 물질전달계수이고,
Figure pat00002
는 용액 중 포화 상태에 도달하였을 때의 산소농도이며, CAL1(mg/L)은 시간 t1에서의 용액 중 산소농도이고, CAL2(mg/L)는 시간 t2에서의 용액 중 산소농도이다.
그 결과를 도 8에 나타내었다.
도 8은 분당 NaCl용액 대비 공기주입량의 부피비에 따른 물질전달계수를 각 혼합유닛 개수별로 나타낸 그래프로, x축은 분당 NaCl용액 대비 공기주입량의 부피비(vvm)를 나타내고 y축은 물질전달계수(KLa,h- 1)를 나타낸다.
도 8에서 확인할 수 있듯이, 물질전달계수는 분당 NaCl용액 대비 공기주입량의 부피비(vvm) 및 혼합유닛의 수가 증가함에 따라 증가하는 경향을 나타내며, 특히, 혼합유닛의 개수가 24개인 경우, 넓은 범위의 분당 NaCl용액 대비 공기주입량의 부피비(vvm)에서 높은 물질전달계수를 나타냄을 알 수 있다. 즉, 혼합유닛의 개수를 30개로 증가시, 물질전달계수는 증가하였으나, 전력소모량을 고려할 때, 혼합유닛의 개수 24개가 보다 바람직한 것으로 보인다. 이와 같이, 혼합유닛의 개수가 24개일 때, 넓은 범위의 분당 NaCl용액 대비 공기주입량의 부피비에서 높은 물질전달계수를 나타내므로, 운전조건(예, vvm)이 변하여도 환경 변화가 크지 않아 안정적으로 일산화탄소를 수소생산미생물이 이용할 수 있을 것으로 보인다.
따라서, 이하의 실험에서는 혼합유닛의 개수는 24개인 경우에 대하여 실시하였다.
또한, 구체예 1-1.의 경우, 혼합유닛의 개수 변경이 용이하고, 그에 따른 운전조건 변경이 용이하였다. 따라서, 본 발명에 의할 경우, 상황 변화에 용이하게 대응하며 수소를 생산할 수 있음을 알 수 있다.
1-3. 혼합기 하우징의 관경에 따른 소비전력당 물질전달계수 변화 확인 실험
구체예 1-1.의 수소생산장치 중 혼합기의 혼합유닛의 개수가 24개이고 하우징 내경이 15mm인 것(15A) 또는 32mm인 것(32A)과 동일한 것을 준비하여, 이송유량 별로 사용된 전력량을 측정하고, 분당 NaCl용액 대비 공기주입량의 부피비(vvm)에 따른 소비전력당 물질전달계수를 계산하였다.
전력값의 측정은 배양액이송부에 포함된 펌프의 소모전력을 측정하였다.
그 결과를 도 9 및 도 10에 나타내었다.
도 9는 구체예 1의 실험결과를 나타낸 그래프로, NaCl용액이송량 당 전력량을 나타낸 것이다. x축은 NaCl용액이송유량(LPM)을 의미하며, y축은 전력량(kW)을 나타낸다.
또한, 도 10은 구체예 1의 실험결과를 나타낸 그래프로, 분당 NaCl용액 대비 공기주입량의 부피비에 따른 소비전력당 물질전달계수를 나타낸 것이다. x축은 분당 NaCl용액 대비 공기주입량의 부피비(vvm)을 의미하고, y축은 소비전력당 물질전달계수(kW-1h-1)를 나타낸다.
도 9에서 확인할 수 있듯이, 소비된 전력값은 15A 혼합기는 유량이 40 LPM일 때 0.55kW, 32A 혼합기는 유량이 80 LPM일 때 0.34kW로 용액이송유량이 커지는 경우, 32A 혼합기가 소비된 전력값이 더 낮은 것을 알 수 있다. 또한, 도 10에 도시된 바와 같이, 분당NaCl용액 대비 공기주입량의 부피비가 커질수록 소비 전력당 물질전달계수가 증가함을 알 수 있다. 또한, 유체가 이송되는 내경이 커질수록 전력량 대비 물질전달계수의 증가폭이 커짐을 확인할 수 있다.
이상의 결과로부터, 이송배양액의 양이 늘어날 경우 관경을 크게 하여, 용이하게 대응할 수 있을 뿐만 아니라, 관경 증가에 따라 전력량 대비 물질전달이 효과적으로 이루어질 수 있음을 알 수 있다. 따라서, 본 발명에 의할 경우, 상황 변화에 용이하게 대응하며 수소 생산이 가능함을 알 수 있다.
이하에서는 전술한 내용을 바탕으로, 참고예 1을 통해, 본 발명의 혼합기가 적용된 수소 생산장치와 가스버블발생기가 적용된 수소 생산장치를 비교하여 본 발명의 수소 생산장치에 대해 보다 상세히 설명한다.
< 참고예 1> 가스버블발생기를 포함하는 수소생산장치
1-1. 수소 생산장치 준비
도 11에 도시된 형식의 장치를 준비하였다.
도 11은 참고예 1의 가스버블발생기가 적용된 수소 생산장치의 개략도이다.
도 11에 도시된 장치는 구체예1-1.과 동일하되, 혼합기 대신 가스버블발생기가 적용된 것이다. 가스버블발생기는 대한민국 특허공보 제10-1190842호에 개시된 장치의 회전력에 의해 가스버블을 발생하는 방식에 비해, 고압분사에 의한 방식이 효율이 높은 점을 고려하여, 대한민국 특허공보 제10-1401559호에 개시된 것과 동일 방식의 것을 사용하였다. 다만, 구체예 1과의 대비를 위해, 가스버블발생기를 배양기 외부에서 하우징(210") 내부에 설치되며, 하우징(210") 내부에서 일산화탄소공급부가 포함하는 가스공급관(430) 및 배양액이송부(300)와 연결되도록 하였다.
가스버블발생기(200")는 고압에 의해 가스버블을 형성시키며, 가스버블발생기(200")외부로 분사된 가스버블은 유출연결관(310")을 통해 하우징 외부로 유출될 수 있다. 도 12는 도 11의 가스버블발생기의 사시도로, 도 12를 참조하면, 가스버블발생기(200")의 일측에 형성되어 배양액이 가스버블발생기 내부로 유입되도록 하는 배양액유입부연결관(331)과 가스버블발생기(200")의 타측에 형성되어 일산화탄소가 가스버블발생기 내부로 유입되도록 하는 일산화탄소공급부연결관(431)이 형성되어, 배양액유입부연결관(331)은 배양액이송부(300)와 연결될 수 있고, 일산화탄소공급부연결관(431)은 가스공급관(430)과 연결될 수 있다. 즉, 배양액이송부(300)로 유입된 배양액과 가스공급관(430)으로 유입된 일산화탄소는 작은 단면적을 갖는 유출부(230")로 배양액과 일산화탄소가 강한 압력에 의해 분사되어 가스버블을 생성하는 방식이다. 분사된 가스버블은 하우징 내부 공간에서 유출연결관(310")을 통하여 배양기(100)로 토출된다.
1-2. 구체예 대비 물질전달계수 및 전력 소모량 측정
참고예 1-1. 의 장치를 가동하여, 구체예 1-2. 및 1-3.에서와 동일한 방식으로 물질전달계수 및 전력 소모량을 측정하였다. 그 결과, 분당 용액 대비 공기주입량의 부피비(vvm)가 0.5 vvm이고, 이송유량이 30 LPM(L/min)일 때, 물질전달계수는 213.7 h-1이고, 전력소모는 0.772 kW이었다.
한편, 구체예 1-1.의 장치 중 혼합기의 하우징 내경이 15mm이고 혼합유닛의 개수 24개인 것에 대하여, 동일 조건(분당 용액 대비 공기주입량의 부피비 0.5 vvm, 이송 유량 30 LPM)에서 가동한 결과, 물질전달계수는 229.3 h-1이고, 전력소모는 0.268 kW이었다.
이와 같은 결과는 참고예 1-1.의 가스버블발생기를 적용한 경우 대비 물질전달계수는 15.6 (h- 1)높은 반면, 전력값은 34% 수준 감소하였음을 나타낸다.
따라서, 구체예 1-1.의 장치가 참고예 1-1.에 비해, 가스상 일산화탄소가 배양액으로 보다 잘 전달되며, 그 결과 수소생산미생물이 일산화탄소를 효과적으로 이용하여 수소를 더욱 효과적으로 생산할 수 있음을 알 수 있다. 특히, 그 이상의 효과를 내면서 전력소모량도 적으므로, 전력소모량 대비 수소생산성이 더욱 우수함을 알 수 있다.
< 구체예 2> 혼합기를 이용한 수소 생산방법
2-1. 수소 생산장치 준비
2-1-1. 배양기 용량 20L인 수소 생산장치 준비
용량 70L 대신 용량 20L 배양기를 사용한 것을 제외하고, 구체예 1-1.의 장치 중 혼합기의 하우징 내경이 15mm이고 혼합유닛의 개수 24개인 것과 동일한 장치를 준비하였다.
2-1-2. 배양기 용량 100L인 수소 생산장치 준비
도 6에 도시된 형식의 장치를 준비하였다. 배양기는 100L 용량으로 하였으며, 스테인레스 재질로 스팀가열방식의 자동 온도조절장치, 시료채취포트, 관측창을 포함하며, 일산화탄소 투입량을 자동 조절할 수 있는 MFC를 구비한 것이다. 2 대의 혼합기 가동을 위하여 각각의 혼합기에 2 대의 펌프를 각각 연결하여 사용하였다. 각 펌프의 사양은 소비전력 2.2 kW, 양정(揚程, 펌프가 액체를 밀어올릴 수 있는 높이) 54.0m, 유량 6.9 m3/h이었다. 혼합기는 도 2에 도시된 형식의 것을 사용하였다. 혼합기에 포함되는 하우징의 내경은 32mm이었으며, 분류부는 혼합유닛의 개수가 24개인 것이었다.
2-2. 수소 생산
2-2-1. 배양기 용량 20L인 수소 생산장치를 이용한 수소 생산
구체예 2-1-1.의 수소 생산장치를 이용하여, 수소를 생산하였다.
우선, 증류수에 초기배지{효모 추출물(yeast extract) 10 g/L; NaCl 35 g/L; KH2O4 1.28 g/L; Cystein-HCl 0.45 g/L; MgSO4·7H2O 1.2 g/L; Vitamin solution 3 ml/L; Trace elemental solution 3 ml/L, FeSO4·7H2O 0.009 g/L, NiCl2 0.003 g/L}를 용해 또는 현탁한 배양액 10L를 혐기성 배양기에 투여하였다. 4N NaOH 용액을 투입하여 현탁한 배양액의 pH를 6.5로 조절하였다. 배양액으로 채워진 혐기성 배양기 내부 온도를 섭씨 85도까지 상승시킨 후 배양기 외부에 위치한 펌프를 작동시켜, 배양기 내부 배양액 중 일부를, 혼합기 내부에 유입 되도록 하고, 일산화탄소도 혼합기 내부로 유입되도록 하여, 배양기 내부 배양액이 일산화탄소 가스버블로 포화되도록 하였다. 일산화탄소 가스 버블이 포화된 배양액에 서모코커스 온뉴리뉴스{한국해양과학기술원에서 입수, 공지의 방법에 의해 분리, 동정함(Journal of Microbiology Biotechnology 2006 vol. 16. No. 11 1826-1831)}를 배양액 부피의 2 부피% 만큼 접종하였다. 서모코커스 온뉴리뉴스 균주는 서모코커스 온뉴리뉴스 NA1이었다.
그 후, 분당 배양액(배양기 내 초기 배양액량) 대비 일산화탄소주입량의 부피비(vvm)는 0.10 vvm(개시 vvm)으로 시작하여, 0.20 vvm(변경 vvm)으로 변경하여 서모코커스 온뉴리뉴스를 배양함으로써, 수소를 생산하였다. 이 때, 배양액이송속도는 30 LPM이었고, 배양기 압력은 상압조건이었다.
2-2-2. 배양기 용량 100L인 수소 생산장치를 이용한 수소 생산
구체예 2-1-1.의 수소 생산장치 대신 구체예 2-1-2.의 수소 생산장치를 이용하고, 배양액 10L 대신 60L를 혐기성 배양기에 투여한 것을 제외하고, 구체예 2-2-1.과 동일한 방식으로 수소를 생산하였다. 다만, vvm, 배양액이송속도, 및 배양기 압력은 구체예 2-2-1.에 기재된 것 대신 도 13에 기재된 조건에서 실시하였다.
< 참고예 2> 가스버블발생기를 이용한 수소 생산방법
2-1. 수소생산장치 준비
용량 70L 대신 용량 20L 배양기를 사용한 것을 제외하고, 참고예 1-1.에서 준비된 장치와 동일한 장치를 준비하였다.
2-2. 수소생산
구체예 2-1-1.의 수소생산장치 대신, 참고예 2-1.의 수소생산장치를 이용한 것을 제외하고, 구체예 2-2-1.과 동일한 배양액 양과 운전조건에서 수소를 생산하였다.
< 실험예 1> 수소생산량 및 전력소모량 대비 수소생산량 확인 실험
구체예 2-2-1.과 참고예 2-2.에서, 생산되는 수소를 측정하였다.
우선, 배출가스 중 수소 함량을 가스크로마토그래피(영인기기, 대한민국)로 측정하였다. 또한, 가스배출관에 총 배출가스 량을 측정할 수 있는 습식 가스메터를 설치하여, 단위시간 당 총 가스 유량을 측정한 후, 배출가스 중 수소함량 측정값을 이용하여 단위시간당 총 가스유량 측정값으로부터 단위시간 당 수소 생산량을 계산하였다.
전력소모량은 배양액이송부에 포함된 펌프의 소모전력을 측정하였다. 분당배양액 대비 일산화탄소 주입량의 부피비(vvm)가 0.10 vvm(개시 vvm), 0.20 vvm(변경 vvm) 일 때의 수소생산량을 전력소모량으로 나누어 전력소모량 대비 수소생산량을 계산하였다. 그 결과를 표 1에 나타내었다.
구체예 2-2-1.
참고예 2-2.
분당배양액 대비 일산화탄소 주입량의 부피비(vvm) 0.10 0.20 0.10 0.20
수소생산량(mmol/L/h) 170.0 332.8 182.5 296.0
전력소모량 대비 수소생산량( mmol /L/h/kW) 570.6 1163.8 132.7 215.3
상기 표 1에서 확인할 수 있듯이, 혼합기가 적용된 경우, 가스버블발생기를 이용한 수소 생산방법의 경우에 비해서 전력소모량 대비 수소생산량이 약 5배 가량 큰 폭으로 증가하였음을 알 수 있다. 즉, 구체예 2-2-1.의 경우, 참고예 2-2.에 비하여 전력소모량 대비 대단히 효과적으로 수소 생산이 가능함을 확인할 수 있다.
< 실험예 2> 스케일- 업된 장치에서 수소생산량 확인 실험
구체예 2-2-2.의 수소생산방법에서, 생산되는 수소를 측정하였다. 생산 수소 측정은 실험예 1과 동일한 방법에 의하였고, 전력량 역시 실험예 1과 동일하게 측정하였다.
그 결과를 표 2 내지 표 4 및 도 13에 나타내었다.
아래 표 2는 배양기 압력은 상압이고, 분당 배양액 대비 일산화탄소주입량의 부피비(vvm)는 0.10 vvm 인 조건에서, 배양액의 이송속도를 변경하여 수소생산량을 측정한 결과이다.
배양액 이송속도 (L/min) 수소생산량 (mmol/L/h)
160 120.5
240 179.5
표 2와 도 13에서 확인할 수 있듯이, 배양 시작 후 분당 배양액 대비 일산화탄소주입량의 부피비(vvm)를 개시 vvm인 0.10을 유지하며 수소생산미생물이 환경에 적응하여 수소생산에 적합한 상태가 되도록 성장시킨 후, 배양액 이송속도를 160 L/min에서 240 L/min로 증가시키는 경우, 수소생산량은 120.5 mmol/L/h에서 179.5 mmol/L/h로 증가하였다.
또한, 배양기 용량 20 L(배양액 10 L)에서 진행된 실험 결과인 표 1과 배양기 용량 100 L(배양액 60 L)에서 진행된 실험 결과인 표 2를 대비하여 볼 때, 스케일-업이 이루어졌음에도 불구하고, 수소생산량은 효율적으로 유지되었음을 알 수 있다. 더욱이, 배양액 이송속도가 240 LPM으로 증가한 경우, 수소생산량은 스케일-업이 이루어지기 전(구체예 2-2-1.)에 비해 보다 증가되었음을 알 수 있다. 따라서, 혼합기가 적용된 본 발명의 경우 스케일-업이 매우 용이함을 알 수 있다.
아래 표 3은 배양기 압력은 상압이고, 배양액의 이송속도는 240 LPM 인 조건에서, 분당 배양액 대비 일산화탄소주입량의 부피비(vvm)를 변경하여 수소생산량을 측정한 결과이다.
분당 배양액 대비 일산화탄소주입량의 부피비 (vvm) 수소생산량 (mmol/L/h)
0.10 179.5
0.20 317.7
상기 표 3과 도 13에서 확인할 수 있듯이, 배양액 이송속도를 240 L/min으로 유지한 상태에서 분당 배양액 대비 일산화탄소주입량의 부피비(vvm)를 0.10에서 0.20으로 변경하여 증가시키는 경우, 변경 vvm인 0.20에서 수소 생산량은 317.7 mmol/L/h로 더욱 증가함을 확인할 수 있다.
또한, 이러한 결과를 통해, 본 발명은 분당이송량을 무리 없이 증가시킬 수 있어, 스케일-업에 효과적으로 대응할 수 있음을 확인할 수 있다. 예를 들어, 구체예 1-1.과 동일한 펌프를 적용한 참고예 1-1.의 가스버블발생기의 경우, 분당이송량이 30 LPM이었고, 그 이상 분당이송량을 증가시키는 것이 어려웠으나, 구체예 1-1.과 동일한 혼합기와 펌프를 각각 2개 병렬 적용한 구체예 2-1-2.의 경우, 구체예 2-2-2.의 수소생산방법에서, 분당이송량을 무리 없이 240 LPM까지 증가시켜, 효과적으로 수소를 생산할 수 있었다.
결국, 240 LPM까지 분당이송량을 증가시키려면, 8 개의 가스버블발생기와 펌프를 병렬 연결하여야 가능하나, 본 발명은 2개의 혼합기와 펌프를 병렬 연결함으로써 가능함을 알 수 있다. 따라서, 본 발명의 경우, 상대적으로 저용량의 펌프를 적은 수 추가하여 혼합기와 함께 병렬 연결하는 방식으로 용이하게 분당이송량을 증가시킬 수 있어, 스케일-업에 용이하게 대응할 수 있다.
아래 표 4는 배양액 이송속도 240 LPM이고, 분당 배양액 대비 일산화탄소주입량의 부피비 (vvm) 0.20 vvm 인 조건에서, 압력을 변경하여 수소생산량을 측정한 결과이다. 이 때, 표 4의 0.5 bar 가압 조건에서 수소생산량은 수소생산량 측정 개시시와 종료시에 측정한 수소생산량의 평균값을 나타낸다.
압력 (bar) 수소생산량 (mmol/L/h)
상압 317.7
0.5 bar 408.6
상기 표 4와 도 13에서 확인할 수 있듯이, 상압에서 분당 배양액 대비 일산화탄소주입량의 부피비(vvm)를 0.20으로 유지한 상태에서, 최종적으로, 배양기의 압력을 0.5 bar 가압하는 경우, 분당 배양액 대비 일산화탄소주입량의 부피비 (vvm)는 0.22 내지 0.24 vvm으로 측정되었으며, 수소생산량은 평균 408.6 mmol/L/h를 나타내었다. 즉, 가압에 의해 기체상의 일산화탄소의 용해도가 증가하여 액체상의 이송배양액에 일산화탄소가 보다 효과적으로 용해될 수 있어, 결과적으로 효과적인 수소 생산이 가능해진 것으로 보인다.
결과적으로, 표 2 내지 표 4 및 도 13에서 확인한 바와 같이, 본 발명에의해, 안정적으로 스케일-업이 가능하여 지속적이고 안정적인 수소 생산이 가능할 뿐 아니라, 수소생산성 역시 보다 높은 것으로 보인다.
이상의 결과로부터, 본 발명의 수소 생산장치 및 수소 생산방법은 스케일-업이 용이하고, 소모전력 대비 수소생산성이 우수함을 알 수 있다. 또한, 일산화탄소가 배양액으로 잘 전달되어 보다 안정적이고 효과적으로 수소 생산이 가능하며, 배양액 부피 증가에 따라 일산화탄소를 용이하게 공급할 수 있어 유량 변화에 용이하게 대응하며 스케일-업할 수 있음을 알 수 있다.
이상 첨부된 도면을 참조하여 본 발명의 실시예들을 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.
1: 수소 생산장치 100: 배양기
200: 혼합기 201: 제2 플랜지
202: 제3 플랜지 210: 하우징
220: 유체유입부 221: 단턱
230: 유체토출부 240: 분류부
241: 혼합유닛 250: 고정부
251: 바디부 252: 유동공
300: 배양액이송부 301: 제1 플랜지
310: 유체토출부연결관 311: 제4 플랜지
330: 이송관 350: 펌프
370: 흡인관 400: 일산화탄소공급부
410: 일산화탄소공급원 430: 가스공급관
450: 유량조정기 500: 포집부
510: 수소저장부 550: 냉각부
570: 가스배출관 901: 볼트
902: 너트 903: 체결홀

Claims (18)

  1. 일산화탄소를 이용하여 수소를 생산하는 수소생산미생물을 배양하기 위한 배양액이 내부에 수용되는 배양기; 및
    상기 배양기 외부에서 상기 배양기와 일측과 타측이 연결되고, 내부에는 고정된 분류(分流)부가 형성되는 혼합기를 포함하고,
    상기 배양액 중 적어도 일부인 이송배양액이 상기 배양기로부터 상기 혼합기로 이송되어 상기 혼합기의 일측으로 유입되고, 상기 일산화탄소는 상기 분류부 전단으로부터 상기 분류부를 향해 유입되어 상기 이송배양액과 함께 상기 혼합기 타측을 향해 유동하는 기액유체를 형성하고,
    상기 기액유체 중 적어도 일부가 상기 분류부에 의해 분류된 후 다시 합류하여 상기 혼합기 타측을 통해 상기 배양기로 이동하며, 상기 분류에 의해 상기 일산화탄소와 상기 이송배양액이 혼합되는 수소 생산장치.
  2. 제1항에 있어서,
    상기 분류부는 돌기 또는 판 형상 중에서 선택된 하나 이상의 형상으로 이루어진 혼합유닛을 포함하여 이루어진 수소 생산장치.
  3. 제2항에 있어서,
    상기 혼합유닛은 복수개로, 각각의 혼합유닛은 판 형상으로 이루어지고, 하나의 혼합유닛과 연결된 다른 하나의 혼합유닛은 직렬로 연결되되, 서로 비틀린 상태로 결합된 수소 생산장치.
  4. 제3항에 있어서,
    상기 각각의 혼합유닛은 상기 유동방향을 기준축으로 비틀린 형상으로 이루어진 수소 생산장치.
  5. 제1항에 있어서,
    상기 혼합은 상기 기액유체의 흐름의 전환, 또는 뒤바뀜의 과정을 추가로 거치며 일어나는 것인 수소 생산장치.
  6. 제1항에 있어서,
    상기 혼합기는 복수개로, 하나의 혼합기는 적어도 다른 하나의 혼합기와 병렬로 배치되는 수소 생산장치.
  7. 제1항에 있어서,
    상기 수소생산미생물이 생산한 상기 수소를 포집하는 포집부를 더 포함하는 수소 생산장치.
  8. 제1항에 있어서,
    상기 혼합기의 일측과 상기 배양기를 연결하는 배양액이송부를 더 포함하는 수소 생산장치.
  9. 제8항에 있어서,
    상기 배양액이송부는 일측에 일산화탄소공급부가 연결되는 수소 생산장치.
  10. 제8항에 있어서,
    상기 배양액이송부는
    펌프, 상기 펌프로 상기 이송배양액을 이송하는 흡인관, 및 상기 펌프로부터 상기 혼합기로 상기 이송배양액을 이송하는 이송관을 포함하여 이루어지는 수소 생산장치.
  11. 제1항에 있어서,
    상기 혼합기는
    관형의 하우징, 상기 하우징의 일측에 형성되고 상기 일산화탄소와 상기 이송배양액이 유입되는 유체유입부, 및 상기 하우징의 타측에 형성되고 혼합된 상기 일산화탄소와 상기 이송배양액이 토출되는 유체토출부를 포함하여 이루어지는 수소 생산장치.
  12. 제11항에 있어서,
    상기 분류부는 고정부에 의해 상기 하우징 내부에 고정되고, 상기 고정부는 상기 분류부의 일측에 형성되는 수소 생산장치.
  13. 제12항에 있어서,
    상기 고정부는 상기 유체유입부의 일측에 결합되는 수소 생산장치.
  14. 제13항에 있어서,
    상기 유체유입부의 일측에는 단턱이 형성되고, 상기 고정부는 상기 단턱에 끼움결합으로 결합되는 수소 생산장치.
  15. 제14항에 있어서,
    상기 고정부는 상기 이송배양액의 압력에 의해 상기 유체유입부에 밀착되어 고정되는 수소 생산장치.
  16. 제1항에 있어서,
    상기 수소생산미생물은 서모코커스속 균인 수소 생산장치.
  17. (A) 일산화탄소를 이용하여 수소를 생산하는 수소생산미생물을 배양하기 위한 배양액을 내부에 수용하는 배양기에서 상기 배양액 중 적어도 일부를 이송배양액으로 하여 내부에 고정된 분류(分流)부가 형성된 혼합기 일측으로 유입하고, 상기 분류부의 전단으로부터 상기 분류부를 향해 상기 일산화탄소를 유입하는 유입단계;
    (B) 상기 유입된 이송배양액과 상기 유입된 일산화탄소가 함께 상기 혼합기 타측을 향해 유동하며 기액유체를 형성하고, 상기 분류부에 의해 상기 기액유체 중 적어도 일부가 분류되어 상기 일산화탄소와 상기 이송배양액이 혼합되어 혼합물을 형성하는 혼합단계;
    (C) 상기 혼합물을 상기 혼합기 타측을 통해 상기 배양기 내부로 이동시켜, 상기 수소생산미생물을 배양하여 수소를 발생시키는 수소발생단계; 및
    (D) 상기 수소생산미생물이 상기 일산화탄소를 이용하여 생산한 수소를 포집하는 수소포집단계를 포함하는 수소 생산방법.
  18. 제17항에 있어서,
    상기 (C)단계의 상기 배양은 가압 하에서 실시하는 것인 수소 생산방법.
KR1020170071022A 2017-06-07 2017-06-07 수소 생산장치 및 수소 생산방법 KR102381423B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170071022A KR102381423B1 (ko) 2017-06-07 2017-06-07 수소 생산장치 및 수소 생산방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170071022A KR102381423B1 (ko) 2017-06-07 2017-06-07 수소 생산장치 및 수소 생산방법

Publications (2)

Publication Number Publication Date
KR20180133759A true KR20180133759A (ko) 2018-12-17
KR102381423B1 KR102381423B1 (ko) 2022-04-01

Family

ID=65007489

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170071022A KR102381423B1 (ko) 2017-06-07 2017-06-07 수소 생산장치 및 수소 생산방법

Country Status (1)

Country Link
KR (1) KR102381423B1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200126490A (ko) 2019-04-30 2020-11-09 주식회사 메타팩 공동주택을 이용한 수소 생산 시스템

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980702748A (ko) * 1996-01-24 1998-08-05 듀앙 듀참 물을 산소화시키는 방법과 산소화장치 및 산소화된 물의 용도
JP2006205077A (ja) * 2005-01-28 2006-08-10 Tadamitsu Mokuo 螺旋構造体とそれを用いた気体内からの混合物分離装置及び熱交換装置
KR101190842B1 (ko) 2012-02-13 2012-10-15 한국해양연구원 혐기성 미생물을 이용한 수소 생산방법
KR101401559B1 (ko) 2013-04-29 2014-06-11 한국해양과학기술원 써모코커스속 균을 이용한 수소생산장치 및 수소생산방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980702748A (ko) * 1996-01-24 1998-08-05 듀앙 듀참 물을 산소화시키는 방법과 산소화장치 및 산소화된 물의 용도
JP2006205077A (ja) * 2005-01-28 2006-08-10 Tadamitsu Mokuo 螺旋構造体とそれを用いた気体内からの混合物分離装置及び熱交換装置
KR101190842B1 (ko) 2012-02-13 2012-10-15 한국해양연구원 혐기성 미생물을 이용한 수소 생산방법
KR101401559B1 (ko) 2013-04-29 2014-06-11 한국해양과학기술원 써모코커스속 균을 이용한 수소생산장치 및 수소생산방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Taweel 등. Effect of mixing on microorganism growth in loop bioreactors. International Journal of Chemical Engineering., 2012, article ID 984827, 12 pages 1부.* *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200126490A (ko) 2019-04-30 2020-11-09 주식회사 메타팩 공동주택을 이용한 수소 생산 시스템

Also Published As

Publication number Publication date
KR102381423B1 (ko) 2022-04-01

Similar Documents

Publication Publication Date Title
AU2016213919B2 (en) Method for injecting a feed gas stream into a vertically extended column of liquid
RU2607782C1 (ru) Биореактор для выращивания метанутилизирующих микроорганизмов
RU2580646C1 (ru) Ферментационная установка для метанассимилирующих микроорганизмов
WO2006122498A1 (fr) Réacteur à agitation par circulation tournante d’air n’exigeant pas de source d’air externe
CN101343108A (zh) 水力空化与臭氧耦合处理污水的方法
US11078097B2 (en) Process for a fixed film reactor and apparatus related thereto
US8409439B1 (en) Pressurized digester vessel
CN102286356B (zh) 层板式成膜连续好氧发酵罐及其发酵方法
RU2728193C1 (ru) Ферментер и ферментационная установка для непрерывного культивирования микроорганизмов
KR20180133759A (ko) 수소 생산장치 및 수소 생산방법
KR101401559B1 (ko) 써모코커스속 균을 이용한 수소생산장치 및 수소생산방법
CN210394377U (zh) 一种厌氧菌培养系统
RU2762273C2 (ru) Установка для получения биомассы аэробных микроорганизмов
US9732312B2 (en) Method and device for feeding gases or gas mixtures into a liquid, suspension or emulsion in a reactor in a specific manner
KR101401563B1 (ko) 수소생산장치 및 수소생산방법
WO2018165411A1 (en) Aerobic fermentation systems and methods
RU2585666C1 (ru) Аппарат для культивирования метанокисляющих микроорганизмов
RU2596396C1 (ru) Биореактор с мембранным устройством газового питания микроорганизмов
RU2644344C1 (ru) Биологический реактор для превращения газообразных углеводородов в биологически активные соединения
CN113302274A (zh) 改进的环流发酵器
CN110195013A (zh) 一种厌氧菌培养系统
RU193750U1 (ru) Усовершенствованный петельный ферментер
CN211169980U (zh) 水处理装置
TWI508925B (zh) 曝氣設備、曝氣方法及該設備的清潔方法
JP2018166482A (ja) 流体混合装置、ガス処理装置および廃棄物処理システム

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant