KR20180129585A - MAGE-1 specific aptamer and use thereof - Google Patents

MAGE-1 specific aptamer and use thereof Download PDF

Info

Publication number
KR20180129585A
KR20180129585A KR1020170097764A KR20170097764A KR20180129585A KR 20180129585 A KR20180129585 A KR 20180129585A KR 1020170097764 A KR1020170097764 A KR 1020170097764A KR 20170097764 A KR20170097764 A KR 20170097764A KR 20180129585 A KR20180129585 A KR 20180129585A
Authority
KR
South Korea
Prior art keywords
misc
feature
mage
liver cancer
deoxyuridine
Prior art date
Application number
KR1020170097764A
Other languages
Korean (ko)
Inventor
오은주
진성희
이윤빈
임종훈
윤정환
이정훈
류성호
이중환
Original Assignee
포항공과대학교 산학협력단
서울대학교병원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포항공과대학교 산학협력단, 서울대학교병원 filed Critical 포항공과대학교 산학협력단
Publication of KR20180129585A publication Critical patent/KR20180129585A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/115Aptamers, i.e. nucleic acids binding a target molecule specifically and with high affinity without hybridising therewith ; Nucleic acids binding to non-nucleic acids, e.g. aptamers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/16Aptamers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/705Assays involving receptors, cell surface antigens or cell surface determinants

Abstract

The present invention relates to an aptamer specifically binding to liver cancer-associated MAGE-1, cancer treatment related to a MAGE-1 protein using the same, and to a composition for inhibiting cancer or a composition for diagnosing cancer comprising the same as an effective ingredient. The MAGE-1 specific aptamer contains a deoxyuridin1e (dU), which specifically binds to MAGE-1 and is modified by substitution of a 5^th position with a hydrophobic functional group.

Description

MAGE-1에 특이적으로 결합하는 압타머 및 이의 용도 {MAGE-1 specific aptamer and use thereof}An abtamer specifically binding to MAGE-1 and its use {MAGE-1 specific aptamer and use thereof}

본 발명은 간암 관련 멜라노마 관련 항원-1(Melanoma associated antigen-1, MAGE-1)에 특이적으로 결합하는 DNA 압타머, 이를 이용하여 MAGE-1과 관련된 암의 치료, 이를 유효성분으로 함유하는 암 억제용 조성물 및 암 진단용 조성물에 관한 것이다.The present invention relates to a DNA tamtamer specifically binding to liver cancer-associated melanoma-associated antigen-1 (MAGE-1), and a method for treating cancer associated with MAGE-1 using the same, A composition for inhibiting cancer and a composition for diagnosing cancer.

간암 (hepatocellular carcinoma, HCC; 간세포암종)은 전 세계적으로 일곱 번째로 흔한 암으로서 연간 약 1백만 명 이상이 간암으로 사망하는 것으로 알려져 있다. 특히 우리나라는 B형간염 유병률이 높아 간암 발생률이 높으며, 국내 간암사망률은 10만 명당 22.5명으로 전체 암 가운데 2위이다. 특히 경제 활동이 왕성한 30-50대에 간암 사망률이 높아 손실소득액은 2조 531억 원으로 암 중에서 1위이며 이는 위암 (1조 5760억 원)이나 폐암 (1조 1320억 원)에 비해 월등하게 높은 손실이다. 국내 간암 5년 생존률은 23.3%로 췌장암, 폐암에 이어 세 번째로 불량하다.Hepatocellular carcinoma (HCC) is the seventh most common cancer worldwide, with more than one million deaths annually from liver cancer. In Korea, the incidence of hepatitis B is high due to the high prevalence of hepatitis B, and the death rate of hepatocellular carcinoma in Korea is 22.5 per 100,000, the second highest among all cancers. In particular, the death rate of liver cancer is high in the 30-50s whose economic activity is intense, and the loss income is 2, 531.1 billion won, which is the first among the cancer, which is superior to gastric cancer (1.257 trillion won) or lung cancer (1.132 trillion won) It is a high loss. The 5-year survival rate of domestic liver cancer is 23.3%, which is the third worst after pancreatic cancer and lung cancer.

3cm 이하의 조기 간세포 암의 경우 수술적 절제뿐 아니라 경피적 알코올 주입술, 고주파 열치료 등으로 비교적 안전하게 치료할 수 있으며 장기적인 생존률도 양호하나, 병기가 진행한 상태에서는 성공적인 치료를 기대하기 어렵다. 따라서 간세포 암 환자의 예후를 개선하기 위해서는 조기 진단이 필수적이다. 그러나 현재 CT/MRI 등 영상학적 검사로는 비전형적 간암의 조기 진단이 어려워 한계가 있다. 비전형적 간암을 포함하여 간암의 진단 정확도 및 민감도/특이도를 증가시키기 위하여 간암 표면에 특징적으로 발현되는 단백질에 부착하여 CT나 MRI 등 영상학적 검사에서 표시될 수 있는 간암세포 특이적 조영제의 필요성이 대두되었다.In patients with early-stage HCC less than 3 cm, surgical resection, as well as percutaneous alcohol injection and radiofrequency ablation, can safely be performed safely and have a long-term survival rate. Therefore, early diagnosis is essential to improve the prognosis of patients with HCC. However, current CT / MRI imaging studies are limited by the difficulty of early diagnosis of atypical liver cancer. In order to increase the diagnostic accuracy and sensitivity / specificity of hepatocellular carcinoma including atypical hepatocellular carcinoma, the necessity of hepatocarcinoma-specific contrast agent which can be displayed on CT or MRI radiographic examinations by attaching to proteins that are characteristically expressed on liver cancer surface .

현재 진행성 간암(advanced HCC)의 표준 치료법은 경구용 항암 표적치료제인 소라페닙 (sorafenib)이지만, 생존기간의 증가가 약 2-3개월에 불과하여 기대에 미치지 못한다는 한계가 있다. 아울러 간암의 표적치료제라고 하더라도 피부세포, 위장관의 점막세포에 작용하여 손, 발의 피부가 벗겨지고 통증을 유발하는 수족증후군(hand-foot syndrome), 수양성 설사, 복통 등의 여러 심한 부작용을 유발하여 약제 내약성이 높지 않은 것이 대표적인 한계점이다. 이는 소라페닙이 타겟으로 하는 단백질이 다른 정상적인 세포에도 존재하여 생기는 문제라 해석된다. 따라서 간암세포에만 특이하게 존재하는 단백질에 작용할 수 있는 보다 정교하고 특이적이며 안정적인 표적치료제의 필요성이 대두되고 있으나 현재까지도 소라페닙보다 우수한 표적치료제는 개발되지 못하고 있다.Currently, the standard treatment for advanced HCC is sorafenib, an oral anticancer drug, but the increase in survival time is only about 2-3 months, which is not enough. In addition, even if it is a target treatment for liver cancer, it acts on mucous membrane cells of skin cells and gastrointestinal tract and causes various serious side effects such as hand-foot syndrome, painful diarrhea, abdominal pain and the like, Typical limitations are not high drug tolerance. It is interpreted that the protein targeted by sorafenib exists in other normal cells. Therefore, there is a need for a more elaborate, specific and stable target therapeutic agent capable of acting on a protein specifically present in liver cancer cells, but a target therapeutic agent superior to sorapenib has not been developed until now.

본 발명에서는 간암 관련 Melanoma associated antigen-1 (MAGE-1)에 특이적으로 결합하는 압타머를 개발하고자 하였다. 이전에 발표된 문헌의 연구결과에 따르면 MAGE-1은 간암 환자에서 고농도, 고빈도로 발현하는 단백질로 알려져 있으나, 생물학적 기전에 대하여 정확히 알려져 있지는 않다. 최근 말초 혈액에서 MAGE-1의 검출로 간암의 혈행성 전이나 조기 재발을 예측할 수 있다는 보고가 많이 되어있으며, 이에 MAGE-1에 대한 단클론항체의 개발이 이루어지고 있다. 본 발명을 통하여 개발한 MAGE-1에 선택적으로 결합하는 압타머는 간암 치료 및 진단에 보다 효과적으로 사용될 수 있을 것으로 기대된다.In the present invention, a platamer specifically binding to liver cancer-associated melanoma associated antigen-1 (MAGE-1) was developed. Previous studies have shown that MAGE-1 is a highly expressed protein with high frequency in liver cancer patients, but it is not known precisely about the biological mechanism. Recently, it has been reported that the detection of MAGE-1 in peripheral blood can predispose to hematogenous or early recurrence of liver cancer. Therefore, a monoclonal antibody against MAGE-1 has been developed. The aptamer selectively binding to MAGE-1 developed through the present invention is expected to be more effectively used for the treatment and diagnosis of liver cancer.

본 발명은 MAGE-1 에 특이적으로 결합하는 압타머, 이를 포함하는 약학 조성물 및 진단용 조성물, 그리고 이를 이용하여 간암 또는 간암 전이 진단에 정보를 제공하는 방법을 제공하는 것을 목적으로 한다.The present invention aims to provide an abatumer that specifically binds to MAGE-1, a pharmaceutical composition containing the same, and a diagnostic composition, and a method of using the same to provide information on the diagnosis of liver cancer or liver cancer metastasis.

이에 본 발명자들은 상기 목적을 달성하기 위하여, MAGE-1에 특이적으로 결합하는 MAGE-1 특이 결합 압타머를 개발하였다.Accordingly, the inventors of the present invention have developed a MAGE-1 specific binding capacity tamer that specifically binds to MAGE-1.

본 발명의 MAGE-1에 특이적으로 결합하는 압타머에 의하여 간암 치료 및 진단에 보다 효과적으로 적용될 수 있다.Can be more effectively applied to the treatment and diagnosis of liver cancer by the papillomas specifically binding to MAGE-1 of the present invention.

이하, 본 발명을 더욱 자세히 설명하고자 한다.Hereinafter, the present invention will be described in more detail.

본 발명의 일 예는 MAGE-1에 특이적으로 결합하고, 5-위치가 소수성 작용기로 치환되어 변형된 디옥시유리딘(deoxyuridine, dU)을 포함하는, MAGE-1 특이적 압타머에 관한 것이다. 상기 변형은 디옥시유리딘의 피리미딘기의 5번 위치에 소수성 작용기가 도입된 것일 수 있으며, 바람직하게는 상기 소수성 작용기는 벤질 또는 나프틸기 일 수 있다.One example of the present invention is directed to a MAGE-1 specific tyramarin that specifically binds to MAGE-1 and includes a modified deoxyuridine (dU) wherein the 5-position is substituted with a hydrophobic functional group . The modification may be that a hydrophobic functional group is introduced at the 5-position of the pyrimidine group of the dioxyindoline, and preferably the hydrophobic functional group may be a benzyl group or a naphthyl group.

본 발명의 또 다른 일 예는 아래 표 1의 서열번호 11 내지 서열번호 20로 이루어진 군에서 선택된 1 이상의 핵산 서열의 코어 서열을 포함하는, MAGE-1 특이적 압타머에 관한 것이다.Another example of the present invention relates to a MAGE-1-specific platemer comprising a core sequence of at least one nucleic acid sequence selected from the group consisting of SEQ ID NO: 11 to SEQ ID NO: 20 in Table 1 below.

서열번호SEQ ID NO: 명칭designation 서열order 1111 Bz #1 core sequenceBz # 1 core sequence Gn1Gn1AGn1An1GAn1n1n1n1An1n1CGn1CAAAn1CGGCn1AGn1n1Gn1GACGt; 1212 Bz #2 core sequenceBz # 2 core sequence Gn1CCn1GCn1AAAn1AAn1n1AGn1n1AGGGAGn1An1GCCCn1GGACn1Gt; 1313 Bz #3 core sequenceBz # 3 core sequence n1GGCn1Gn1n1AAn1An1CGn1Gn1n1AAACCGGCn1n1n1AGGGCn1GACn1lt; 1414 Bz #4 core sequenceBz # 4 core sequence AAn1GGGGCn1AAGGGAn1n1GCn1n1AAAAn1GCn1GGn1GAGACn1An1Lt; 1515 Bz #5 core sequenceBz # 5 core sequence n1n1An1n1AGn1GAAn1GGGAn1n1AGn1An1GAn1n1n1n1An1n1GGn1CAGCCCn1gt; 1616 Nap #1 core sequenceNap # 1 core sequence AGAAGGn2GAGGAn2n2GGGn2ACn2AACGGn2n2GGACn2n2GGn2AACGt 1717 Nap #2 core sequenceNap # 2 core sequence An2ACGGCAn2AAn2n2GGGn2ACn2ACGAn2n2GGCAn2n2GGn2CAAn2n2An2ACGGCAn2AAn2n2GGGn2ACn2ACGAn2n2GGCAn2n2GGn2CAAn2n2 1818 Nap #3 core sequenceNap # 3 core sequence Cn2GCCGn2GGCGAACn2GGn2GAGAn2GGGn2ACn2GCGGn2n2GGGCGt; 1919 Nap #4 core sequenceNap # 4 core sequence n2GACn2GCn2CCAGGACn2ACCACCCCAACCGn2GAGn2ACCCAAgt; 2020 Nap #5 core sequenceNap # 5 core sequence An2GCGAn2n2GGGn2ACn2ACCGGn2n2GGAGn2GGn2AAAACGn2GGGAn2GCGAn2n2GGGn2ACn2ACCGGn2n2GGAGn2GGn2AAAACGn2GGG

상기 표 1에서 n1로 표시되는 염기는 디옥시유리딘의 피리미딘 기의 5번 위치에 벤질기가 도입된 염기(BzdU)로서 화학식 1로 표시되며, 상기 n2로 표시되는 염기는 디옥시유리딘의 피리미딘 기의 5번 위치에 나프틸기가 도입된 염기(NapdU)로서 하기 화학식 2로 표시된다.In Table 1, the base represented by n1 is represented by Formula (1) as a base (BzdU) into which a benzyl group is introduced at the 5-position of the pyrimidine group of the dioxyuridine, and the base represented by the n2 is a deoxyuridine (NapdU) in which a naphthyl group is introduced at the 5-position of the pyrimidine group, and is represented by the following formula (2).

Figure pat00001
Figure pat00001

Figure pat00002
Figure pat00002

상기 압타머는 코어 서열의 5' 말단, 3' 말단 또는 양 말단에 프라이머 서열을 추가로 포함할 수 있다. 상기 프라이머 서열은 서열번호 21 및 서열번호 22로 이루어진 군에서 선택된 1 이상일 수 있다. 바람직하게는 상기 압타머는 5' 말단에 서열번호 21의 핵산서열을 포함하는 프라이머를 포함할 수 있고, 및/또는 3' 말단에 서열번호 22의 핵산 서열을 포함하는 프라이머를 포함할 수 있다.The aptamer may further comprise a primer sequence at the 5 'end, the 3' end, or both ends of the core sequence. The primer sequence may be at least one selected from the group consisting of SEQ ID NO: 21 and SEQ ID NO: 22. Preferably, the aptamer may comprise a primer comprising the nucleic acid sequence of SEQ ID NO: 21 at the 5 'end and / or a primer comprising the nucleic acid sequence of SEQ ID NO: 22 at the 3' end.

본 발명의 일 예로서 상기 압타머는 아래 표 2의 서열번호 1 내지 서열번호 10로 이루어진 군에서 선택된 1 이상의 핵산 서열을 갖는 압타머일 수 있다.As an example of the present invention, the aptamer may be an aptamer having at least one nucleic acid sequence selected from the group consisting of SEQ ID NO: 1 to SEQ ID NO: 10 in Table 2 below.

서열번호SEQ ID NO: 압타머 명칭Abtamer name 서열order 1One Bz #1(S035-A1-12-M13-20R_D02)Bz # 1 (S035-A1-12-M13-20R_D02) CGAGCGTCCTGCCTTTGGn1Gn1AGn1An1GAn1n1n1n1An1n1CGn1CAAAn1CGGCn1AGn1n1Gn1GACCACCGACAGCCACCCAGCACCGACAGCCACCCAG≪ RTI ID = 0.0 > 22 Bz #2(S035-A1-13-M13-20R_E02)Bz # 2 (S035-A1-13-M13-20R_E02) CGAGCGTCCTGCCTTTGGn1CCn1GCn1AAAn1AAn1n1AGn1n1AGGGAGn1An1GCCCn1GGACn1CACCGACAGCCACCCAG≪ RTI ID = 0.0 > 33 Bz #3(S035-A1-15-M13-20R_G02)Bz # 3 (S035-A1-15-M13-20R_G02) CGAGCGTCCTGCCTTTGn1GGCn1Gn1n1AAn1An1CGn1Gn1n1AAACCGGCn1n1n1AGGGCn1GACn1CACCGACAGCCACCCAGCGAGCGTCCTGCCTTTGn1GGCn1Gn1n1AAn1An1CGn1Gn1n1AAACCGGCn1n1n1AGGGCn1GACn1CACCGACAGCCACCCAG 44 Bz #4(S035-A1-18-M13-20R_B03)Bz # 4 (S035-A1-18-M13-20R_B03) CGAGCGTCCTGCCTTTGAAn1GGGGCn1AAGGGAn1n1GCn1n1AAAAn1GCn1GGn1GAGACn1An1CACCGACAGCCACCCAG≪ 55 Bz #5(S035-A1-20-M13-20R_D03)Bz # 5 (S035-A1-20-M13-20R_D03) CGAGCGTCCTGCCTTTGn1n1An1n1AGn1GAAn1GGGAn1n1AGn1An1GAn1n1n1n1An1n1GGn1CAGCCCn1CACCGACAGCCACCCAG≪ RTI ID = 0.0 > 66 Nap #1(S035-B1-03-M13-20R_C08)Nap # 1 (S035-B1-03-M13-20R_C08) CGAGCGTCCTGCCTTTGAGAAGGn2GAGGAn2n2GGGn2ACn2AACGGn2n2GGACn2n2GGn2AACCACCGACAGCCACCCAG≪ 77 Nap #2(S035-B1-06-M13-20R_F08)Nap # 2 (S035-B1-06-M13-20R_F08) CGAGCGTCCTGCCTTTGAn2ACGGCAn2AAn2n2GGGn2ACn2ACGAn2n2GGCAn2n2GGn2CAAn2n2CACCGACAGCCACCCAG≪ RTI ID = 0.0 > 88 Nap #3(S035-B1-13-M13-20R_E09)Nap # 3 (S035-B1-13-M13-20R_E09) CGAGCGTCCTGCCTTTGCn2GCCGn2GGCGAACn2GGn2GAGAn2GGGn2ACn2GCGGn2n2GGGCCACCGACAGCCACCCAGCGAGCGTCCTGCCTTTGCn2GCCGn2GGCGAACn2GGn2GAGAn2GGGn2ACn2GCGGn2n2GGGCCACCGACAGCCACCCAG 99 Nap #4(S035-B1-05-M13-20R_E08)Nap # 4 (S035-B1-05-M13-20R_E08) CGAGCGTCCTGCCTTTGn2GACn2GCn2CCAGGACn2ACCACCCCAACCGn2GAGn2ACCCAACACCGACAGCCACCCAGCGAGCGTCCTGCCTTTGn2GACn2GCn2CCAGGACn2ACCACCCCAACCGn2GAGn2ACCCAACACCGACAGCCACCCAG 1010 Nap #5(S035-B1-22-M13-20R_F10)Nap # 5 (S035-B1-22-M13-20R_F10) CGAGCGTCCTGCCTTTGAn2GCGAn2n2GGGn2ACn2ACCGGn2n2GGAGn2GGn2AAAACGn2GGGCACCGACAGCCACCCAG≪

MAGE-1은 간암 세포의 세포막에 고농도 및 고빈도로 발현되는 단백질로서,)본 발명의 압타머는 MAGE-1에 선택적이며 높은 결합력을 가져 간암 세포의 증식을 억제하는 것을 특징으로 한다. 따라서 본 발명의 압타머는 MAGE-1이 높은 수준으로 분포된 간암의 증식 억제에 효과적이며, 예를 들어 간암에, 더욱 바람직하게는 저혈관성 간암에 대한 예방 또는 치료 효과가 우수하다. MAGE-1 is a protein that is expressed at high concentration and high frequency in the cell membrane of liver cancer cells.) The aptamer of the present invention is selective for MAGE-1 and has a high binding capacity to inhibit proliferation of liver cancer cells. Therefore, the aptamer of the present invention is effective for inhibiting the proliferation of hepatocellular carcinoma distributed at a high level, for example, hepatocellular carcinoma, and more preferably for preventing or treating hepatocellular carcinoma.

본 발명에서 사용되는 용어 "저혈관성 간암”이란, 종양 조직에 산소와 영양분을 전달하는 혈관이 발달되어 과혈관성(hypervascularity)을 나타내는 전형적인 간암과 달리, 혈관 발달이 상대적으로 적은 간암을 의미하는 것으로서, 임상적으로 암 진행이 빠르고 침윤성 형태를 보이는 것을 특징으로 한다. 저혈관성 간암의 경우 기존에 알려진 간암 치료법으로는 반응성이 좋지 않아 임상 경과가 좋지 않다.As used herein, the term " hypovascular liver cancer " refers to hepatocellular carcinoma in which blood vessels are relatively less developed, unlike typical hepatocellular carcinomas, which have hypervascularity due to the development of blood vessels that deliver oxygen and nutrients to tumor tissues. In the case of low-grade vascular hepatocellular carcinoma, the known clinical course of hepatocellular carcinoma is poor and the clinical course is not good.

본 발명의 압타머가 MAGE-1 단백질과 결합 시 해리상수(Kd) 값이 0.1 내지 20nM, 바람직하게는 0.1 내지 5nM, 더욱 바람직하게는 0.1 내지 1nM의 범위일 수 있다.The aptamer of the present invention may have a dissociation constant (Kd) value in the range of 0.1 to 20 nM, preferably 0.1 to 5 nM, more preferably 0.1 to 1 nM when bound to the MAGE-1 protein.

또한 상기 압타머는 PFKFB4 유전자의 발현을 감소시키는 것을 특징으로 한다. PFKFB4 유전자는 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 4 효소를 코딩하는 유전자로서, 최근 연구를 통해 PFKFB4 유전자가 encoding하는 PFKFB4 효소는 세포가 포도당을 에너지로 변환시키는 과정을 미세 조정하는 역할을 하며, 이를 차단시켰을 때 전립선 암세포의 성장이 지연되고 free radical이 급격히 축적되어 세포사멸을 일으킨다고 알려져 있다. 예를 들어, Real-time PCR 분석법으로 측정한 본 발명의 압타머의 PFKFB4 유전자 발현율은 무작위 서열을 갖는 대조군(control) 압타머의 PFKFB4 유전자의 발현 100%를 기준으로 50 내지 80%, 바람직하게는 60 내지 75%일 수 있다.Further, the aptamer is characterized by decreasing the expression of the PFKFB4 gene. The PFKFB4 gene encodes a 6-phosphofructo-2-kinase / fructose-2,6-biphosphatase 4 enzyme. Recent studies have shown that the PFKFB4 enzyme encoded by the PFKFB4 gene can be used to fine- And it is known that when it is blocked, the growth of prostate cancer cells is delayed and that free radicals accumulate rapidly to cause cell death. For example, the expression rate of PFKFB4 gene of uterus of the present invention, as measured by real-time PCR analysis, is 50 to 80% based on 100% expression of the PFKFB4 gene of a control platamer having a random sequence, 60 to 75%.

상기 압타머는, 혈청 내 안정성을 증진시키거나 신장 클리어런스(renal clearance)를 조절하기 위하여, 5' 말단, 3' 말단, 중간 또는 양 말단 모두를 변형시킬 수 있다. 상기 변형은 5' 말단, 3' 말단, 그 중간 또는 양 말단에 PEG(polyethylene glycol), idT(inverted deoxythymidine), LNA(Locked Nucleic Acid), 2'-메톡시 뉴클레오사이드, 2'-아미노 뉴클레오사이드, 2'F-뉴클레오사이드, 아민 링커, 티올 링커, 및 콜레스테롤 등으로 이루어진 군에서 선택된 1종 이상이 결합되어 변형된 것일 수 있다. 상기 'idT(inverted deoxythymidine)'는 일반적으로 뉴클레아제에 대한 내성이 약한 압타머의 뉴클레아제에 의한 분해를 막기 위하여 사용되는 분자 중 하나로서, 핵산단위체는 앞 단위체의 3'-OH와 다음 단위체의 5'-0H와 결합하여 사슬을 이루지만 idT는 앞 단위체의 3'-OH에 다음 단위체의 3'-OH를 결합하여 3'-OH가 아닌 5'-OH가 노출이 되도록 인위적인 변화를 가함으로써 뉴클레아제의 일종인 3' 엑소뉴클레아제(3' exonuclease)에 의한 분해를 억제하는 효과를 일으키는 분자이다.The aptamer can modify both the 5 'end, the 3' end, the middle or both ends to enhance serum stability or control renal clearance. Such modifications include, but are not limited to, PEG (polyethylene glycol), inverted deoxythymidine (idT), LNA (Locked Nucleic Acid), 2'-methoxy nucleoside, 2'- A linker, a thiol linker, a cholesterol, and the like may be combined and modified. The 'idT (inverted deoxythymidine)' is one of the molecules used to prevent degradation by a neclease of uterus, which is generally resistant to nuclease. The nucleic acid unit has 3'-OH of the former unit and the following OHT binds 3'-OH of the following unit to the 3'-OH of the former unit to form an artificial change so that 5'-OH other than 3'-OH is exposed. (3 'exonuclease), which is a kind of nuclease.

본 발명에 따른 압타머는 형광 분자, 독소 또는 대조 시약을 추가로 포함할 수 있다. 바람직한 구체예에서, 상기 압타머는 방사성 동위원소로서 F18 또는 P32로 표지된 것일 수 있다.The aptamer according to the present invention may further comprise a fluorescent molecule, a toxin or a control reagent. In a preferred embodiment, the aptamer may be one labeled with F18 or P32 as a radioactive isotope.

DNA 압타머는 짧은 핵산으로 구성되어 항체 약물에 비하여 분자 크기가 작아 화학적으로 합성 가능하고 생체 내 적용을 위한 변형이 용이하고 종양조직으로의 침투능이 우수하기 때문에 항암 분자로서 다양한 이점을 갖는다. DNA aptamers are composed of short nucleic acids and have a molecular size smaller than that of antibody drugs and can be chemically synthesized. They are easy to transform for in vivo application and have excellent ability to penetrate into tumor tissues and thus have various advantages as anticancer molecules.

천연 올리고뉴클레오타이드는 뉴클리에이즈에 의한 가수분해에 민감하기 때문에, DNA 압타머를 바이오 의약 적용하는데 있어서 포스페이트 백본을 안정화시키는 것이 주된 중점사항이 된다. DNA 압타머를 메틸 포스포네이트와 포스포라미데이트와 같은 중성기를 사용하여 변형시키면 뉴클리에이즈에 대한 저항성이 증가되지만, 이러한 DNA 압타머 유사체들은 비변형 올리고뉴클레오타이드와 비교하여 낮은 결합 친화도를 나타낸다. 결합 친화도를 높이고 slow off-rate 감소시키기 위하여, 다양한 작용기를 사용한 변형 뉴클레오타이드를 사용하여 SELEX를 수행하였다. 그 결과 얻어진 데이터는 벤질기로 변형된 DNA 압타머가 MAGE-1과 높은 친화도를 나타내고 교차반응성이 최소화됨을 보여준다. 정제된 단백질과 생체 내에 존재하는(endogenous) 단백질의 잠재적인 형태학적 차이 때문에, 정제된 단백질에 대하여 분리된 압타머들은 생체 내에 적용 시에 그 표적 단백질에 항상 결합할 수 있는 것은 아니다. 따라서, 생체 내에서 활성을 나타낼 수 있는 압타머의 동정을 위하여 생체 내 관련 조건을 스크리닝 과정에 통합시키는 것이 필요하다.Since natural oligonucleotides are sensitive to hydrolysis by Nucleic acid, stabilization of the phosphate backbone in biomedicine applications is the main focus. Modification of DNA plasmids with neutral groups such as methylphosphonate and phosphoramidate increases resistance to nucleoli, but these DNA platemeric analogues exhibit lower binding affinities as compared to unmodified oligonucleotides . To increase binding affinity and reduce slow off-rate, SELEX was performed using modified nucleotides with various functional groups. The resulting data show that the DNA aptamer modified with the benzyl group exhibits high affinity with MAGE-1 and minimizes cross-reactivity. Because of the potential morphological differences between the purified protein and the endogenous protein, the separated extramammers for the purified protein are not always able to bind to the target protein when applied in vivo. Therefore, it is necessary to integrate in vivo related conditions into the screening process in order to identify the tympanic membrane that can exhibit activity in vivo.

본 발명의 DNA 압타머는 보다 신속한 종양 흡수(uptake), 보다 신속한 혈액 제거 및 보다 지속적인 종양 정체 (tumor retention)을 나타냄으로써, 보다 높은 혈액에 대한 종양 비율로 현저한 이미지화가 가능하게 한다. 또한, 압타머는 항체로 만들기 어려운 독소, 복잡한 단백질 복합체 또는 당-단백질 복합체에 대한 압타머를 만들 수 있다는 장점이 있다.The DNA aptamers of the present invention exhibit faster tumor uptake, faster blood removal and more sustained tumor retention, thereby enabling significant imaging with higher tumor to tumor ratios. In addition, aptamers have the advantage of being able to make aptamers for toxins, complex protein complexes or sugar-protein complexes that are difficult to make with antibodies.

특히 압타머는 안정성이 높아 실온에서 보관 또는 운반이 가능할 뿐 아니라 멸균 후에도 기능을 유지할 수 있고 변성이 되더라도 짧은 시간 내에 재생이 가능하다. 따라서 압타머를 장시간 또는 반복적 사용이 요구되는 진단용 마커 또는 약물로 사용하는 경우 항체 대비 이용 가능성이 높다. 또한, 균질성이 높아 배치간 변형(batch-to-batch variation)이 거의 없고 고순도로의 정제가 용이하여 생산이 용이하며, 생체 내 면역 거부반응이 거의 일어나지 않는다. In particular, aptamers are highly stable and can be stored or transported at room temperature. They can maintain their function even after sterilization and can be regenerated within a short time even if they are denatured. Therefore, if the platemer is used as a diagnostic marker or a drug for which prolonged or repeated use is required, the platemaker is more likely to be used as an antibody. In addition, there is almost no batch-to-batch variation due to high homogeneity, and purification with high purity is easy, so that production is easy, and in vivo immune rejection hardly occurs.

본 발명의 또 다른 일 예는 MAGE-1 단백질에 특이적으로 결합하고, 5-위치가 소수성 작용기로 치환되어 변형된 디옥시유리딘(deoxyuridine, dU)을 포함하는, MAGE-1 특이적 압타머를 유효성분으로 함유하는 간암의 치료, 간암의 예방 및/또는 간암 전이 억제용 약학 조성물 또는 상기 MAGE-1 특이적 압타머를 사용하여 간암의 치료, 간암의 예방 및/또는 간암의 전이 억제에 사용하는 방법을 제공한다. Another example of the present invention is directed to a MAGE-1 specific < RTI ID = 0.0 > amtamer < / RTI > (SEQ ID NO: 1), which specifically binds to a MAGE-1 protein and contains a modified deoxyuridine For the treatment of liver cancer, the prevention of liver cancer and / or the inhibition of hepatoma metastasis, or the use of said MAGE-1-specific hydromorphone for the treatment of liver cancer, prevention of liver cancer and / . ≪ / RTI >

상기 압타머에 대한 사항은 상기 조성물 또는 간암의 치료, 예방, 및/또는 전이 억제에 동일하게 적용될 수 있다.The indications for the platemaster can equally be applied to the treatment, prophylaxis and / or inhibition of metastasis of the composition or liver cancer.

본 발명에 따른 압타머는 간암 세포막에 과발현되는 MAGE-1 단백질에 특이적으로 결합하여, 압타머가 정상 세포에 작용함에 따라 발생하는 부작용 없이 특이적 또는 선택적으로 간암의 치료, 예방 및/또는 전이 억제에 사용될 수 있다.The aptamer according to the present invention specifically binds to the MAGE-1 protein overexpressed in the liver cancer cell membrane and specifically or selectively inhibits the treatment, prevention and / or metastasis of liver cancer without adverse effect caused by the action of aptamer on normal cells Can be used.

본 발명에 따른 압타머는 간암세포의 성장, 부착, 이동 및 침습을 억제하는 것을 특징으로 하며, 바람직하게는 간암세포의 성장을 억제하는 데 현저한 효과를 나타낸다.The aptamer according to the present invention is characterized by inhibiting the growth, adhesion, migration and invasion of liver cancer cells, and preferably exhibits a remarkable effect in inhibiting the growth of liver cancer cells.

상기 약학 조성물은 약학적으로 허용 가능한 담체를 추가로 포함할 수 있다. The pharmaceutical composition may further comprise a pharmaceutically acceptable carrier.

상기 MAGE-1 특이적 압타머 또는 이를 포함하는 약학 조성물은 다양한 경구 투여 형태 또는 비경구 투여 형태로 제형화될 수 있다. 예를 들어, 정제, 환제, 경.연질 캅셀제, 액제, 현탁제, 유화제, 시럽제, 과립제, 엘릭서제(elixirs) 등의 임의의 경구 투여용 제형으로 될 수 있다. 이러한 경구 투여용 제형은 각 제형의 통상적인 구성에 따라 상기 유효 성분 외에, 예를 들어, 락토즈, 덱스트로즈, 수크로즈, 만니톨, 솔비톨, 셀룰로즈 및/또는 글리신 등의 희석제나, 실리카, 탈크, 스테아르산 및 그의 마그네슘 또는 칼슘염 및/또는 폴리에틸렌 글리콜 등의 활택제 등의 제약상 허용 가능한 담체를 포함할 수 있다. The MAGE-1-specific platemater or the pharmaceutical composition containing the same may be formulated into various oral administration forms or parenteral administration forms. For example, it can be any oral dosage form such as tablets, pills, soft and soft capsules, liquids, suspensions, emulsions, syrups, granules, elixirs and the like. Such formulations for oral administration may contain, in addition to the above-mentioned active ingredients, diluents such as lactose, dextrose, sucrose, mannitol, sorbitol, cellulose and / or glycine, , Stearic acid and its magnesium or calcium salt and / or lubricants such as polyethylene glycol, and the like.

또한, 상기 경구 투여용 제형이 정제인 경우, 마그네슘 알루미늄 실리케이트, 전분 페이스트, 젤라틴, 트라가칸스, 메틸셀룰로즈, 나트륨 카복시메틸셀룰로즈 및/또는 폴리비닐피롤리딘 등의 결합제를 포함할 수 있고, 경우에 따라, 전분, 한천, 알긴산 또는 그의 나트륨 염과 같은 붕해제나, 비등 혼합물 및/또는 흡수제, 착색제, 향미제 또는 감미제 등을 포함할 수도 있다. In addition, when the formulation for oral administration is a tablet, it may include a binder such as magnesium aluminum silicate, starch paste, gelatin, tragacanth, methyl cellulose, sodium carboxymethyl cellulose and / or polyvinyl pyrrolidine, A disintegrating agent such as starch, agar, alginic acid or a sodium salt thereof, a boiling mixture and / or an absorbent, a coloring agent, a flavoring agent or a sweetening agent and the like.

그리고, 상기 MAGE-1 특이적 압타머 또는 이를 포함하는 약학 조성물이 비경구 투여 형태로 제형화되는 경우, 피하주사, 정맥주사, 근육 내 주사 또는 흉부 내 주사 등의 비경구 투여 경로에 의해 투여될 수 있다. 이 때, 상기 비경구 투여용 제형으로 제제화하기 위하여, 상기 약학 조성물은 유효 성분, 즉, 상기 압타머가 안정제 또는 완충제와 함께 물에서 혼합되어 용액 또는 현탁액으로 제조되고, 이러한 용액 또는 현탁액이 앰플 또는 바이알의 단위 투여형으로 제조될 수 있다.When the MAGE-1-specific platemer or a pharmaceutical composition containing the same is formulated into a parenteral administration form, it is administered by a parenteral administration route such as subcutaneous injection, intravenous injection, intramuscular injection, or intrathoracic injection . In order to formulate the pharmaceutical composition for parenteral administration, the pharmaceutical composition is prepared by mixing the active ingredient, that is, the aptamer together with a stabilizer or a buffer in water to prepare a solution or suspension, and the solution or suspension is mixed with an ampule or vial ≪ / RTI >

또한, 상기 약학 조성물은 멸균되거나, 방부제, 안정화제, 수화제 또는 유화 촉진제, 삼투압 조절을 위한 염 및/또는 완충제 등의 보조제를 더 포함할 수도 있고, 기타 치료적으로 유용한 물질을 더 포함할 수도 있으며, 혼합, 과립화 또는 코팅의 통상적인 방법에 따라 제제화될 수 있다.In addition, the pharmaceutical composition may be sterilized or may further contain adjuvants such as preservatives, stabilizers, wettable or emulsifying accelerators, salts for controlling osmotic pressure and / or buffers, and may further comprise other therapeutically useful substances , Mixing, granulating, or coating.

그리고, 용어 "약학적 유효량"은 소망하는 효과, 즉 간암의 예방 및/또는 치료, 또는 간암 전이 억제 효과를 나타낼 수 있는 유효 성분의 양을 의미한다. 상기 유효 성분, 즉, MAGE-1 특이적 압타머는 하루에 0.1 내지 500 ㎎/㎏(체중), 바람직하게는 0.5 내지 100 ㎎/㎏(체중)의 유효량으로 상기 약학 조성물에 포함될 수 있고, 이러한 약학 조성물이 1 일 1 회 또는 2 회 이상 분할되어 경구 또는 비경구적 경로를 통해 투여될 수 있다.The term "pharmaceutically effective amount" as used herein means the amount of active ingredient capable of exhibiting a desired effect, that is, prevention and / or treatment of liver cancer, or hepatocarcinoma transfer inhibiting effect. The active ingredient, i.e., MAGE-1 specific aptamer, may be included in the pharmaceutical composition in an effective amount of 0.1 to 500 mg / kg body weight per day, preferably 0.5 to 100 mg / kg body weight, The composition may be administered via the oral or parenteral route once or twice a day divided.

본 발명의 MAGE-1 특이적 압타머 또는 이를 포함하는 약학 조성물의 투여 대상은 인간을 포함하는 포유류일 수 있으며, 바람직하게는 설치류, 또는 인간일 수 있다.The subject to be administered with the MAGE-1-specific platemer of the present invention or the pharmaceutical composition containing the same may be a mammal including a human, preferably a rodent or a human.

본 발명의 또 다른 일 예로서, MAGE-1(멜라노마 관련 항원-1)에 특이적으로 결합하고, 5번 위치가 소수성 작용기로 치환되어 변형된 디옥시유리딘(deoxyuridin1e, dU)을 포함하는 MAGE-1 특이적 압타머를 포함하는 MAGE-1 단백질 발현 저해제 또는 PFKFB4 유전자 발현 저해제를 제공한다. 상기 압타머에 대한 사항은 MAGE-1 단백질 또는 PFKFB4 유전자 발현 저해제에 동일하게 적용될 수 있다.As another example of the present invention, there is provided a pharmaceutical composition comprising a deoxyuridine derivative (deU) bound specifically to MAGE-1 (melanoma-associated antigen-1) and modified at position 5 by a hydrophobic functional group A MAGE-1 protein expression inhibitor or a PFKFB4 gene expression inhibitor comprising a MAGE-1-specific tympanic membrane. The above-mentioned abatumer can be equally applied to MAGE-1 protein or PFKFB4 gene expression inhibitor.

또한, 본 발명의 또 다른 예로서 MAGE-1 단백질은 간암 및 암 전이 환자에게서 과발현이 관찰되므로, 상기 MAGE-1 특이적 압타머는 간암 및/또는 간암 전이 진단용 조성물로서 사용 가능하다. As another example of the present invention, MAGE-1 protein is overexpressed in liver cancer and cancer metastasis, so that MAGE-1 specific aptamer can be used as a composition for diagnosing liver cancer and / or liver cancer metastasis.

또 다른 예는 상기 MAGE-1 특이적 압타머의 약학적 유효량을 암 치료 및/또는 암 전이 억제를 필요로 하는 환자에게 투여하는 단계를 포함하는 암 치료 및/또는 암 전이 억제 방법을 제공한다. 상기 방법은 상기 투여 단계 이전에 암 치료 및/또는 암 전이 억제를 필요로 하는 환자를 확인하는 단계를 추가로 포함할 수 있다. Another example provides a method of inhibiting cancer therapy and / or cancer metastasis comprising administering a pharmaceutically effective amount of the MAGE-1 specific inhibitor to a patient in need thereof and / or inhibiting cancer metastasis. The method may further comprise identifying a patient in need of cancer treatment and / or cancer metastasis inhibition prior to the administering step.

상기 압타머에 대한 사항은 간암 및/또는 간암 전이 진단용 조성물 또는 암 치료 및/또는 암 전이 억제 방법에 동일하게 적용될 수 있다.The above-mentioned abatumer can be equally applied to a composition for diagnosing liver cancer and / or liver cancer metastasis or a method for inhibiting cancer treatment and / or cancer metastasis.

또 다른 측에서, 본 발명은 환자의 생물학적 시료에 상기 MAGE-1 특이적 압타머를 반응시키는 단계; 상기 시료에서 압타머 및 MAGE-1 단백질의 결합 정도를 측정하는 단계; 및 상기 시료에서 압타머 및 MAGE-1 단백질의 결합 정도가 정상 시료보다 높은 경우, 상기 환자를 간암 환자로 판단하는 단계를 포함하는 간암 또는 간암 전이 진단에 정보를 제공하는 방법을 포함한다.In another aspect, the present invention provides a method of treating a patient, comprising: reacting a biological sample of a patient with the MAGE-1 specific tympanic membrane; Measuring the degree of binding of the platemaker and the MAGE-1 protein in the sample; And determining that the patient is a liver cancer patient when the degree of binding of the squamatum and MAGE-1 protein in the sample is higher than that of the normal sample.

상기 방법은 상기 압타머에 대한 사항이 동일하게 적용될 수 있다.The above-described method can be equally applied to the plummeter.

또한, 추가적으로 상기 방법은 정상 시료에서의 MAGE-1 특이적 압타머의 결합 정도를 측정하는 단계를 추가로 포함할 수 있다In addition, the method may further comprise the step of measuring the degree of binding of the MAGE-1 specific platemaker in a normal sample

상기 환자는 인간을 포함하는 포유류일 수 있으며, 바람직하게는 설치류, 또는 인간으로서, 암의 발생 또는 암의 전이 여부를 판단할 대상을 의미한다.The patient may be a mammal including a human, preferably a rodent or a human, and refers to an object to judge whether cancer has developed or cancer has metastasized.

상기 정상 시료는 인간을 포함하는 포유류일 수 있으며, 바람직하게는 설치류, 또는 인간으로부터 얻어진 것으로, 진단에 정보를 제공할 대상 간암 또는 간암의 전이가 없는 개체로부터 얻어진 생물학적 시료를 의미한다.The normal sample may be a mammal including a human, preferably a rodent, or a biological sample obtained from a human, which is obtained from a subject who does not have a liver cancer or liver cancer metastasis to be informed of diagnosis.

상기 생물학적 시료는 인간을 제외한 포유류 생체, 인간을 포함한 포유류로부터 분리된 세포, 조직, 혈액, 체액, 타액 등일 수 있다. The biological sample may be a mammalian organism other than a human, a cell, tissue, blood, body fluids, saliva, etc. isolated from a mammal including a human.

상기 생물학적 시료에서의 MAGE-1 특이적 압타머의 결합 정도를 측정하는 단계는 관련 기술분야에서 통상적으로 사용되는 DNA 압타머 결합 측정 기술을 이용하여 수행될 수 있으며, 예컨대, 상기 압타머 말단에 형광 또는 방사성 물질 표지 하거나 비오틴을 결합시켜 형광 또는 방사성 세기를 측정하거나, 이미지화하여 관찰하는 방법 등을 이용할 수 있으나, 이에 제한되는 것은 아니다.The step of measuring the degree of binding of the MAGE-1 specific platemer in the biological sample can be carried out using a DNA platamer binding assay technique commonly used in the related art. For example, Or a method of labeling a radioactive material or binding biotin to measure fluorescence or radioactive intensity, or imaging and observing the fluorescence or radioactive intensity, but the present invention is not limited thereto.

이와 같이, 압타머를 사용하여 시료 내 MAGE-1 단백질의 존재 여부 또는 과발현 여부를 확인하는 경우, 기존의 단클론항체를 이용한 검출보다 현저하게 우수한 민감도를 보인다.As described above, when the presence or overexpression of MAGE-1 protein in the sample is confirmed using the platemer, the sensitivity is significantly superior to that of the conventional monoclonal antibody.

따라서, 본 발명의 일 예는 MAGE-1(멜라노마 관련 항원-1)에 특이적으로 결합하고, 5번 위치가 소수성 작용기로 치환되어 변형된 디옥시유리딘(deoxyuridin1e, dU)을 포함하는 MAGE-1 특이적 압타머를 제공한다. 상기 소수성 작용기는 벤질 또는 나프틸기일 수 있다.Accordingly, one example of the present invention is a fusion protein comprising MAGE-1 (melanoma-associated antigen-1) specifically bound to MAGE-1 (melanoma-associated antigen-1) and modified at position 5 by a hydrophobic functional group to include deoxyuridine -1 specific < / RTI > The hydrophobic functional group may be a benzyl or naphthyl group.

상기 압타머는 서열번호 11 내지 서열번호 20로 이루어진 군에서 선택된 1 이상의 핵산 서열의 코어 서열을 포함할 수 있으며, 상기 코어 서열의 5' 말단, 3' 말단 또는 양 말단에 서열번호 21 및 22로 이루어진 군에서 선택된 1 이상의 프라이머 서열을 추가로 포함할 수 있다. 예를 들어 상기 압타머는 서열번호 1 내지 서열번호 10으로 이루어진 군에서 선택된 1 이상의 핵산 서열을 가질 수 있다.The aptamer may comprise a core sequence of at least one nucleotide sequence selected from the group consisting of SEQ ID NOs: 11 to 20, and the nucleotide sequences of SEQ ID NOs: 21 and 22 at the 5'-end, the 3'- Lt; RTI ID = 0.0 > 1, < / RTI > For example, the aptamer may have at least one nucleic acid sequence selected from the group consisting of SEQ ID NO: 1 to SEQ ID NO: 10.

상기 압타머는 멜라노마 관련 항원-1과 결합 시 해리상수(Kd) 값이 0.1 내지 20 nM범위일 수 있으며, PFKFB4 유전자의 발현을 감소시키는 것을 특징으로 할 수 있다.The aptamer may have a dissociation constant (Kd) value in the range of 0.1 to 20 nM when bound to melanoma-associated antigen-1, and may be characterized by decreasing the expression of the PFKFB4 gene.

또한, 상기 압타머는 5' 말단, 3' 말단, 또는 양 말단에 PEG(polyethylene glycol), idT(inverted deoxythymidine), LNA(Locked Nucleic Acid), 2'-메톡시 뉴클레오사이드, 2'-아미노 뉴클레오사이드, 2'F-뉴클레오사이드, 아민 링커, 티올 링커, 및 콜레스테롤로 이루어진 군에서 선택된 1종 이상이 추가로 결합되어 변형된 것을 특징으로 할 수 있다.In addition, the aptamer may further comprise at least one selected from the group consisting of PEG (polyethylene glycol), inverted deoxythymidine (idT), LNA (Locked Nucleic Acid), 2'-methoxy nucleoside, At least one member selected from the group consisting of a nucleoside, a nucleoside, a cleavage site, a cleavage site, a cleavage site, a cleavage site, a cleavage site, a cleavage site, a cleavage site, a cleavage site,

상기 압타머는 방사성 동위원소, 형광 분자, 독소 또는 대조 시약을 추가로 포함하는 것을 특징으로 할 수 있다.The aptamer may further comprise a radioactive isotope, a fluorescent molecule, a toxin or a control reagent.

본 발명의 또 다른 일 예로서, 상기 압타머를 유효성분으로 포함하는, 간암 치료, 간암 예방 또는 간암 전이 억제용 약학 조성물을 제공한다.As another example of the present invention, there is provided a pharmaceutical composition for treating liver cancer, preventing hepatoma, or inhibiting hepatoma metastasis, comprising the hepatoma as an active ingredient.

상기 간암은 저혈관성 간암일 수 있다.The liver cancer may be hypovascular liver cancer.

본 발명의 또 다른 일 예로서, 상기 압타머를 유효성분으로 포함하는, 간암 또는 간암 전이 진단용 조성물을 제공한다.As another example of the present invention, there is provided a composition for diagnosing liver cancer or liver cancer metastasis, which comprises the above-mentioned platemaster as an active ingredient.

본 발명의 또 다른 일 예로서, 환자의 생물학적 시료에 상기 MAGE-1 특이적 압타머를 반응시키는 단계; 상기 시료에서 압타머 및 MAGE-1의 결합 정도를 측정하는 단계; 및 상기 시료에서 압타머 및 MAGE-1의 결합 정도가 정상 시료보다 높은 경우, 상기 환자를 간암 환자로 판단하는 단계를 포함하는 간암 또는 간암 전이 진단에 정보를 제공하는 방법을 제공한다.As another example of the present invention, there is provided a method of treating a patient, comprising: reacting a biological sample of a patient with the MAGE-1 specific platemer; Measuring the degree of binding between the platemaker and MAGE-1 in the sample; And determining that the patient is a liver cancer patient when the degree of binding of the squamatum and MAGE-1 in the sample is higher than that of the normal sample, to provide a method for diagnosing liver cancer or liver cancer metastasis.

본 명세서 사용되는 압타머, 압타머 코어 서열 및 프라이머 서열은 아래 표와 같다.The platemater, platemaker core sequence and primer sequence used herein are shown in the following table.

서열
번호
order
number
명칭designation 서열order
1One Bz #1(S035-A1-12-M13-20R_D02)Bz # 1 (S035-A1-12-M13-20R_D02) CGAGCGTCCTGCCTTTGGn1Gn1AGn1An1GAn1n1n1n1An1n1CGn1CAAAn1CGGCn1AGn1n1Gn1GACCACCGACAGCCACCCAGCACCGACAGCCACCCAG≪ RTI ID = 0.0 > 22 Bz #2(S035-A1-13-M13-20R_E02)Bz # 2 (S035-A1-13-M13-20R_E02) CGAGCGTCCTGCCTTTGGn1CCn1GCn1AAAn1AAn1n1AGn1n1AGGGAGn1An1GCCCn1GGACn1CACCGACAGCCACCCAG≪ RTI ID = 0.0 > 33 Bz #3(S035-A1-15-M13-20R_G02)Bz # 3 (S035-A1-15-M13-20R_G02) CGAGCGTCCTGCCTTTGn1GGCn1Gn1n1AAn1An1CGn1Gn1n1AAACCGGCn1n1n1AGGGCn1GACn1CACCGACAGCCACCCAGCGAGCGTCCTGCCTTTGn1GGCn1Gn1n1AAn1An1CGn1Gn1n1AAACCGGCn1n1n1AGGGCn1GACn1CACCGACAGCCACCCAG 44 Bz #4(S035-A1-18-M13-20R_B03)Bz # 4 (S035-A1-18-M13-20R_B03) CGAGCGTCCTGCCTTTGAAn1GGGGCn1AAGGGAn1n1GCn1n1AAAAn1GCn1GGn1GAGACn1An1CACCGACAGCCACCCAG≪ 55 Bz #5(S035-A1-20-M13-20R_D03)Bz # 5 (S035-A1-20-M13-20R_D03) CGAGCGTCCTGCCTTTGn1n1An1n1AGn1GAAn1GGGAn1n1AGn1An1GAn1n1n1n1An1n1GGn1CAGCCCn1CACCGACAGCCACCCAG≪ RTI ID = 0.0 > 66 Nap #1(S035-B1-03-M13-20R_C08)Nap # 1 (S035-B1-03-M13-20R_C08) CGAGCGTCCTGCCTTTGAGAAGGn2GAGGAn2n2GGGn2ACn2AACGGn2n2GGACn2n2GGn2AACCACCGACAGCCACCCAG≪ 77 Nap #2(S035-B1-06-M13-20R_F08)Nap # 2 (S035-B1-06-M13-20R_F08) CGAGCGTCCTGCCTTTGAn2ACGGCAn2AAn2n2GGGn2ACn2ACGAn2n2GGCAn2n2GGn2CAAn2n2CACCGACAGCCACCCAG≪ RTI ID = 0.0 > 88 Nap #3(S035-B1-13-M13-20R_E09)Nap # 3 (S035-B1-13-M13-20R_E09) CGAGCGTCCTGCCTTTGCn2GCCGn2GGCGAACn2GGn2GAGAn2GGGn2ACn2GCGGn2n2GGGCCACCGACAGCCACCCAGCGAGCGTCCTGCCTTTGCn2GCCGn2GGCGAACn2GGn2GAGAn2GGGn2ACn2GCGGn2n2GGGCCACCGACAGCCACCCAG 99 Nap #4(S035-B1-05-M13-20R_E08)Nap # 4 (S035-B1-05-M13-20R_E08) CGAGCGTCCTGCCTTTGn2GACn2GCn2CCAGGACn2ACCACCCCAACCGn2GAGn2ACCCAACACCGACAGCCACCCAGCGAGCGTCCTGCCTTTGn2GACn2GCn2CCAGGACn2ACCACCCCAACCGn2GAGn2ACCCAACACCGACAGCCACCCAG 1010 Nap #5(S035-B1-22-M13-20R_F10)Nap # 5 (S035-B1-22-M13-20R_F10) CGAGCGTCCTGCCTTTGAn2GCGAn2n2GGGn2ACn2ACCGGn2n2GGAGn2GGn2AAAACGn2GGGCACCGACAGCCACCCAG≪ 1111 Bz #1 core sequenceBz # 1 core sequence Gn1Gn1AGn1An1GAn1n1n1n1An1n1CGn1CAAAn1CGGCn1AGn1n1Gn1GACGt; 1212 Bz #2 core sequenceBz # 2 core sequence Gn1CCn1GCn1AAAn1AAn1n1AGn1n1AGGGAGn1An1GCCCn1GGACn1Gt; 1313 Bz #3 core sequenceBz # 3 core sequence n1GGCn1Gn1n1AAn1An1CGn1Gn1n1AAACCGGCn1n1n1AGGGCn1GACn1lt; 1414 Bz #4 core sequenceBz # 4 core sequence AAn1GGGGCn1AAGGGAn1n1GCn1n1AAAAn1GCn1GGn1GAGACn1An1Lt; 1515 Bz #5 core sequenceBz # 5 core sequence n1n1An1n1AGn1GAAn1GGGAn1n1AGn1An1GAn1n1n1n1An1n1GGn1CAGCCCn1gt; 1616 Nap #1 core sequenceNap # 1 core sequence AGAAGGn2GAGGAn2n2GGGn2ACn2AACGGn2n2GGACn2n2GGn2AACGt 1717 Nap #2 core sequenceNap # 2 core sequence An2ACGGCAn2AAn2n2GGGn2ACn2ACGAn2n2GGCAn2n2GGn2CAAn2n2An2ACGGCAn2AAn2n2GGGn2ACn2ACGAn2n2GGCAn2n2GGn2CAAn2n2 1818 Nap #3 core sequenceNap # 3 core sequence Cn2GCCGn2GGCGAACn2GGn2GAGAn2GGGn2ACn2GCGGn2n2GGGCGt; 1919 Nap #4 core sequenceNap # 4 core sequence n2GACn2GCn2CCAGGACn2ACCACCCCAACCGn2GAGn2ACCCAAgt; 2020 Nap #5 core sequenceNap # 5 core sequence An2GCGAn2n2GGGn2ACn2ACCGGn2n2GGAGn2GGn2AAAACGn2GGGAn2GCGAn2n2GGGn2ACn2ACCGGn2n2GGAGn2GGn2AAAACGn2GGG 2121 PrimerPrimer CGAGCGTCCTGCCTTTGCGAGCGTCCTGCCTTTG 2222 primerprimer CACCGACAGCCACCCAGCACCGACAGCCACCCAG

본 발명의 MAGE-1 특이적 압타머는 간암 세포의 부착, 증식, 이동, 침습을 억제함으로써 항암제 및/또는 암진단 용도로서 유용하게 사용될 수 있다.The MAGE-1 specific aptamer of the present invention can be usefully used as an anticancer agent and / or cancer diagnosis by inhibiting adhesion, proliferation, migration, and invasion of liver cancer cells.

도 1은 SELEX를 이용한 MAGE-1 단백질에 특이적으로 결합하는 압타머 발굴과정을 도식화한 것이다.
도 2은 SELEX 후 발굴된 MAGE-1 aptamer의 해리상수(Kd) 값을 나타낸 것이다.
도 3는 4종의 간암 세포주에서 간암 세포 표면 MAGE-1 발현 정도 분석한 결과이다.
도 4는 MAGE-1 aptamer 10종의 간암세포주에 대한 결합력 및 선택성을 검증한 결과이다.
도 5a는 MAGE-1 aptamer Bz #1, Bz #5의 SNU-3058, SNU-761 세포에의 결합력을 분석한 결과이다.
도 5b는 MAGE-1 aptamer Bz #1, Bz #5의 Huh7, SNU-475 세포에의 결합력을 분석한 결과이다.
도 6a는 MAGE-1 aptamer Bz #1, Bz #5의 NU-3058, SNU-761 간암 세포 증식 억제 효능을 검증한 결과이다.
도 6b는 MAGE-1 aptamer Bz #1, Bz #5의 Huh7, SNU-475 간암 세포 증식 억제 효능을 검증한 결과이다.
도 7a는 SNU-3058 세포주에서 MAGE-1 aptamer 처리 후 신호전달물질 발현 변화를 분석한 결과이다.
도 7b는 SNU-475 세포주에서 MAGE-1 aptamer 처리 후 신호전달물질 발현 변화를 분석한 결과이다.
도 8는 MAGE-1 aptamer 처리 후 cDNA microarray 분석 결과를 나타낸 것이다.
도 9은 MAGE-1 aptamer #1 처리 시 SNU-3058, SNU-475 세포주에서 PFKFB4 유전자의 발현 감소를 검증한 결과이다.
FIG. 1 is a schematic illustration of an extracellular digestion process that specifically binds to MAGE-1 protein using SELEX.
2 shows the dissociation constant (Kd) value of the MAGE-1 aptamer discovered after SELEX.
FIG. 3 shows the results of analysis of MAGE-1 expression on liver cell surface in 4 kinds of liver cancer cell lines.
FIG. 4 shows the results of verifying the binding force and selectivity of 10 kinds of MAGE-1 aptamers to liver cancer cell lines.
FIG. 5A is a result of analyzing the binding ability of MAGE-1 aptamer Bz # 1 and Bz # 5 to SNU-3058 and SNU-761 cells.
5B shows the results of analysis of the binding ability of MAGE-1 aptamer Bz # 1 and Bz # 5 to Huh7 and SNU-475 cells.
FIG. 6A shows the results of verifying the inhibitory effect of MAGE-1 aptamer Bz # 1 and Bz # 5 on NU-3058 and SNU-761 liver cancer cell proliferation.
FIG. 6B shows the results of verifying the inhibitory effect of MAGE-1 aptamer Bz # 1 and Bz # 5 on Huh7 and SNU-475 liver cancer cell proliferation.
FIG. 7A shows the results of analysis of signal transduction expression after treatment with MAGE-1 aptamer in SNU-3058 cell line.
FIG. 7B shows the results of analysis of signal transduction expression after treatment with MAGE-1 aptamer in SNU-475 cell line.
Figure 8 shows the result of cDNA microarray analysis after treatment with MAGE-1 aptamer.
FIG. 9 shows the results of verifying the decrease of expression of PFKFB4 gene in SNU-3058 and SNU-475 cell lines when treated with MAGE-1 aptamer # 1.

이하, 본 발명을 실시예에 의해 상세히 설명한다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명이 하기 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail by way of examples. However, the following examples are illustrative of the present invention, and the present invention is not limited by the following examples.

실시예 1. SELEX를 통한 Melanoma associated antigen-1 (MAGE-1) 특이 결합 압타머 발굴Example 1. Detection of melanoma associated antigen-1 (MAGE-1) specific binding potamer through SELEX

1014개의 BzdU library와 NapdU library를 합성한 후 SELEX (시험관증폭선택법) 기술을 이용하여 MAGE-1 단백질에 선택적으로 높은 결합력을 가지는 새로운 MAGE-1 특이 압타머를 발굴하였다(도 1). Selection을 통하여 찾아낸 후보 압타머들의 핵산 서열을 분석하고 multi-copy, family 별로 분류하여 MAGE-1에 높은 결합력을 가지는 압타머 10종을 선별하였다. 선별된 압타머의 서열을 아래 표에 나타내었다.10 14 new BzdU library and NapdU library were synthesized and a new MAGE-1-specific Aptamer with selective binding capacity to MAGE-1 protein was identified using SELEX (Tube Amplification Selection) technique (Fig. 1). The nucleotide sequences of the candidate typing tumors were analyzed by selection and classified into multi-copy, family, and 10 kinds of tympanomas with high binding ability to MAGE-1 were selected. The sequences of the selected platamers are shown in the table below.

서열번호SEQ ID NO: 압타머 명칭Abtamer name 서열order 1One Bz #1(S035-A1-12-M13-20R_D02)Bz # 1 (S035-A1-12-M13-20R_D02) CGAGCGTCCTGCCTTTGGn1Gn1AGn1An1GAn1n1n1n1An1n1CGn1CAAAn1CGGCn1AGn1n1Gn1GACCACCGACAGCCACCCAGCACCGACAGCCACCCAG≪ RTI ID = 0.0 > 33 Bz #2(S035-A1-13-M13-20R_E02)Bz # 2 (S035-A1-13-M13-20R_E02) CGAGCGTCCTGCCTTTGGn1CCn1GCn1AAAn1AAn1n1AGn1n1AGGGAGn1An1GCCCn1GGACn1CACCGACAGCCACCCAG≪ RTI ID = 0.0 > 44 Bz #3(S035-A1-15-M13-20R_G02)Bz # 3 (S035-A1-15-M13-20R_G02) CGAGCGTCCTGCCTTTGn1GGCn1Gn1n1AAn1An1CGn1Gn1n1AAACCGGCn1n1n1AGGGCn1GACn1CACCGACAGCCACCCAGCGAGCGTCCTGCCTTTGn1GGCn1Gn1n1AAn1An1CGn1Gn1n1AAACCGGCn1n1n1AGGGCn1GACn1CACCGACAGCCACCCAG 22 Bz #4(S035-A1-18-M13-20R_B03)Bz # 4 (S035-A1-18-M13-20R_B03) CGAGCGTCCTGCCTTTGAAn1GGGGCn1AAGGGAn1n1GCn1n1AAAAn1GCn1GGn1GAGACn1An1CACCGACAGCCACCCAG≪ 55 Bz #5(S035-A1-20-M13-20R_D03)Bz # 5 (S035-A1-20-M13-20R_D03) CGAGCGTCCTGCCTTTGn1n1An1n1AGn1GAAn1GGGAn1n1AGn1An1GAn1n1n1n1An1n1GGn1CAGCCCn1CACCGACAGCCACCCAG≪ RTI ID = 0.0 > 66 Nap #1(S035-B1-03-M13-20R_C08)Nap # 1 (S035-B1-03-M13-20R_C08) CGAGCGTCCTGCCTTTGAGAAGGn2GAGGAn2n2GGGn2ACn2AACGGn2n2GGACn2n2GGn2AACCACCGACAGCCACCCAG≪ 77 Nap #2(S035-B1-06-M13-20R_F08)Nap # 2 (S035-B1-06-M13-20R_F08) CGAGCGTCCTGCCTTTGAn2ACGGCAn2AAn2n2GGGn2ACn2ACGAn2n2GGCAn2n2GGn2CAAn2n2CACCGACAGCCACCCAG≪ RTI ID = 0.0 > 88 Nap #3(S035-B1-13-M13-20R_E09)Nap # 3 (S035-B1-13-M13-20R_E09) CGAGCGTCCTGCCTTTGCn2GCCGn2GGCGAACn2GGn2GAGAn2GGGn2ACn2GCGGn2n2GGGCCACCGACAGCCACCCAGCGAGCGTCCTGCCTTTGCn2GCCGn2GGCGAACn2GGn2GAGAn2GGGn2ACn2GCGGn2n2GGGCCACCGACAGCCACCCAG 99 Nap #4(S035-B1-05-M13-20R_E08)Nap # 4 (S035-B1-05-M13-20R_E08) CGAGCGTCCTGCCTTTGn2GACn2GCn2CCAGGACn2ACCACCCCAACCGn2GAGn2ACCCAACACCGACAGCCACCCAGCGAGCGTCCTGCCTTTGn2GACn2GCn2CCAGGACn2ACCACCCCAACCGn2GAGn2ACCCAACACCGACAGCCACCCAG 1010 Nap #5(S035-B1-22-M13-20R_F10)Nap # 5 (S035-B1-22-M13-20R_F10) CGAGCGTCCTGCCTTTGAn2GCGAn2n2GGGn2ACn2ACCGGn2n2GGAGn2GGn2AAAACGn2GGGCACCGACAGCCACCCAG≪

상기 표 1에서 n1로 표시되는 염기는 디옥시유리딘의 피리미딘 기의 5번 위치에 벤질기가 도입된 염기(BzdU)로서 화학식 1로 표시되며, 상기 n2로 표시되는 염기는 디옥시유리딘의 피리미딘 기의 5번 위치에 나프틸기가 도입된 염기(NapdU)로서 하기 화학식 2로 표시된다.In Table 1, the base represented by n1 is represented by Formula (1) as a base (BzdU) into which a benzyl group is introduced at the 5-position of the pyrimidine group of the dioxyuridine, and the base represented by the n2 is a deoxyuridine (NapdU) in which a naphthyl group is introduced at the 5-position of the pyrimidine group, and is represented by the following formula (2).

[화학식 1][Chemical Formula 1]

Figure pat00003
Figure pat00003

[화학식 2](2)

Figure pat00004
Figure pat00004

실시예 2. Melanoma associated antigen-1 (MAGE-1) 특이 결합 압타머의 결합력 평가Example 2 Evaluation of Binding Capacity of Melanoma Associated Antigen-1 (MAGE-1)

압타머와 타겟 단백질인 MAGE-1 단백질과의 결합력을 측정하였다. MAGE-1 단백질을 여러 농도별 (100, 21,54, 4.64, 0.999, 0.2154, 0.0464, 0.00999 nM)로 만들고 방사성 동위원소 (P32)로 표지한 압타머를 섞어서 단백질에 결합한 MAGE-1 aptamer의 양을 방사선도를 이용하여 측정하고 또한 표적단백질(MAGE-1)의 농도와 결합한 압타머의 방사선 세기를 분석하여 압타머 해리상수(Kd) 값을 도출하여 아래 표와 도 2에 나타내었다.The binding force between the squid and the target protein MAGE-1 protein was measured. The amount of MAGE-1 aptamer conjugated to protein by mixing MAGE-1 protein with various concentrations (100, 21, 54, 4.64, 0.999, 0.2154, 0.0464, 0.00999 nM) and mixing radioactivity labeled with radioactive isotope (P32) (MAGE-1), and the radiation intensity of the tympanic membrane combined with the concentration of the target protein (MAGE-1) was analyzed to determine the platelet dissociation constant (Kd).

서열번호SEQ ID NO: 압타머 명칭Abtamer name Bmax(%)Bmax (%) Kd(nM)Kd (nM) 66 Nap #1Nap # 1 0.240.24 0.460.46 77 Nap #2Nap # 2 0.400.40 16.1516.15 88 Nap #3Nap # 3 0.240.24 1.481.48 99 Nap #4Nap # 4 0.170.17 0.880.88 1010 Nap #5Nap # 5 0.280.28 0.190.19 1One Bz #1Bz # 1 0.450.45 0.700.70 22 Bz #2Bz # 2 0.590.59 17.3117.31 33 Bz #3Bz # 3 0.540.54 3.143.14 44 Bz #4Bz # 4 0.420.42 5.625.62 55 Bz #5Bz # 5 0.230.23 3.673.67

상기 결과에서 확인할 수 있듯, SELEX로 선정된 압타머는 모두 MAGE-1 단백질에 대한 우수한 결합력을 보였으며, 그 중 가장 높은 결합력을 보이는 MAGE-1 압타머는 Nap #5로서 0.19nM (Bmax = 0.2809)의 Kd 값을 나타냈다.As shown in the above results, all of the aptamers selected by SELEX showed excellent binding ability to MAGE-1 protein, and the highest binding MAGE-1 aptamer was Nap # 5 with 0.19 nM (Bmax = 0.2809) Kd values.

실시예 3. Melanoma associated antigen-1 (MAGE-1) 특이 결합 압타머의 in vitro 효능평가Example 3. Evaluation of in vitro potency of melanoma associated antigen-1 (MAGE-1) specific binding platamer

3.1 간암 세포주 표면에서의 Melanoma associated antigen-1 (MAGE-1) 발현 검증3.1 Expression of melanoma associated antigen-1 (MAGE-1) expression on the surface of liver cancer cell line

서울대학교병원 간연구소에서 간암 환자에서 간생검을 통해 얻은 간암 조직으로부터 수립한 세포주 SNU-761, SNU-475, SNU-3058 및 Huh7 에서 간암 세포 표면 MAGE-1 발현 정도를 면역형광염색법을 이용하여 확인하였다. 구체적으로 배양한 간암 세포주를 고정시킨 후 MAGE-1 특이결합 항체를 처리하고, 항체를 형광표지하여 confocal microscope로 관찰하였다.SNU-765, SNU-475, SNU-3058, and Huh7, which were established from hepatocarcinoma tissues obtained from hepatocellular carcinoma tissues in liver cancer patients at Seoul National University Hospital, were investigated using immunofluorescence staining Respectively. Specifically, the cultured liver cancer cell line was fixed, treated with MAGE-1 specific binding antibody, and the antibody was fluorescently labeled and observed with a confocal microscope.

그 결과를 도 3에 나타내었으며, SNU-3058 세포주 표면에 MAGE-1이 과발현 되어있음을 확인하였으며, Huh7, SNU-761 세포주에서도 MAGE-1 발현이 확인되었다. 이 중 SNU-3058 세포주는 간암의 고유한 특성인 과혈관성과는 달리 저혈관성 특징을 보이는 간암 환자에서 간생검을 통해 얻은 간암 조직으로부터 수집한 한국세포주은행에 등록된 세포주로서, MAGE-1 발현량이 특히 높아, MAGE-1 단백질에 대한 우수한 결합력을 갖는 본 발명의 압타머가 저혈관성 간암에 특히 효과적임을 예측할 수 있었다.The results are shown in FIG. 3. The MAGE-1 overexpression was observed on the surface of the SNU-3058 cell line, and MAGE-1 expression was also observed in the Huh7 and SNU-761 cell lines. The SNU-3058 cell line is a cell line registered in the Korean Cell Line Bank collected from liver cancer tissues obtained from hepatocellular carcinoma in patients with hepatocellular carcinoma, which is different from hypervascularity, which is a characteristic of liver cancer, and MAGE-1 expression level It was predicted that the aptamers of the present invention having particularly high binding affinity for the MAGE-1 protein would be particularly effective for low-vessel liver cancer.

3.2 FACS 법을 이용한 간암세포주의 MAGE-1에의 선택적 결합력 확인3.2 Determination of the Selective Binding Capacity of Liver Cancer Cells to MAGE-1 by FACS Method

FACS 법을 이용하여 실시예 1 MAGE-1 압타머 (10종) 및 대조군으로서 무작위 서열(scrambled sequence)을 갖는 서열번호 23의 핵산 서열을 갖는 압타머에 FITC를 표지하여 실시예 3.1에서 MAGE-1 발현이 일어나는 것으로 확인된 간암 세포주 Huh7, SNU-761, SNU-475, SNU-3058의 MAGE-1에의 결합력을 확인하고, 그 결과를 도 4에 나타내었다. 또한, Bz #1, Bz #5 및 대조군 압타머의 각 세포주에 대한 FACS 결과를 도 5a 및 도 5b에 나타내었다. FITC was labeled on the squamometer having the nucleic acid sequence of SEQ ID NO: 23 having the MAGE-1 platamer (10 species) and the scrambled sequence as the control group in Example 1 using the FACS method, and MAGE-1 The binding ability of Huh7, SNU-761, SNU-475, and SNU-3058 of the hepatocellular carcinoma cells confirmed to be expressed to MAGE-1 was confirmed, and the results are shown in Fig. The FACS results for each cell line of Bz # 1, Bz # 5 and control platemer are shown in FIGS. 5A and 5B.

대조군 압타머The control pad tamer Bz #1Bz # 1 Bz #5Bz # 5 SNU-3058SNU-3058 4.04.0 34.634.6 5.05.0 SNU-761SNU-761 20.120.1 88.388.3 89.589.5 Huh7Huh7 16.516.5 87.687.6 87.187.1 SNU-475SNU-475 8.38.3 30.030.0 14.714.7

간암 세포 표면 MAGE-1 발현이 낮은 세포주에 대해서는 상대적으로 낮은 결합력을 보이나, 간암 세포 표면 MAGE-1 과발현이 확인된 SNU-3058를 비롯한 SNU-761 세포에서도 Bz #1이 특히 우수한 결합력을 보이는 것이 확인되어, 본 발명의 압타머가 MAGE-1 단백질에 대한 우수한 선택적 결합력을 가짐을 확인하였다.It was confirmed that Bz # 1 exhibited particularly good binding ability even in SNU-761 cells including SNU-3058, which showed relatively low binding capacity for cell lines with low MAGE-1 expression on liver cancer cell surface, but overexpression of MAGE-1 on liver cancer cell surface Thus, it was confirmed that the aptamer of the present invention had an excellent selective binding ability to the MAGE-1 protein.

3.3 MTS assay를 이용한 MAGE-1 aptamer의 간암 증식 억제 효능평가3.3 Evaluation of inhibitory effect of MAGE-1 aptamer on liver cancer proliferation using MTS assay

Cell viability assay인 MTS assay를 이용하여 MAGE-1 aptamer #1, #5의 간암 세포 증식 억제 효능을 검증하고 그 결과를 도 6a 및 도 6b에 나타내었다. 구체적으로 normoxia(37°C 의 온도에서 20% O2 및 5% CO2) 및 hypoxia (37°C 의 온도에서 1% O2, 5% CO2, 및 94% N2)조건 하에서 96-well plate에 간암세포주를 배양하고 각 압타머 시료를 처리하였다. MTS 시약을 첨가한 후 ELISA plate reader로 흡광도를 측정하여 생존 세포를 정량적으로 측정하였다. The cell viability assay, MTS assay, was used to examine the inhibitory effect of MAGE-1 aptamer # 1, # 5 on liver cancer cell proliferation and the results are shown in FIGS. 6A and 6B. Specifically, in a 96-well plate under normoxia (20% O 2 and 5% CO 2 at 37 ° C) and hypoxia (1% O 2 , 5% CO2, and 94% N 2 at 37 ° C) Were cultured in a liver cancer cell line, and each platelet sample was treated. After addition of MTS reagent, the absorbance was measured with an ELISA plate reader and the viable cells were quantitatively measured.

MAGE-1 단백질이 발현되는 세포주에서 간암 세포 증식 억제 효능이 있는 것을 확인하였으며, 특히 SNU-3058 세포주에서 MAGE-1 aptamer Bz #1을 처리했을 때 normoxia 조건 및 hypoxia 조건에서 간암 세포 증식을 억제하는 효능이 매우 우수한 것을 확인하였다. The inhibitory effect of MAGE-1 aptamer Bz # 1 on SNU-3058 cell line inhibited hepatoma cell proliferation in normoxia and hypoxia conditions. Were found to be very excellent.

실시예 4. Melanoma associated antigen-1 (MAGE-1) 특이적 결합 압타머에 의한 유전자 발현Example 4 Gene Expression by Melanoma Associated Antigen-1 (MAGE-1) Specific Binding Pressure Tumor

4.1 신호전달물질 의 발현 여부 확인4.1 Identification of expression of signaling substance

MAGE-1 aptamer의 간암 세포 증식 억제 효능의 매커니즘을 탐색하기 위해 western blotting법을 이용하여 MAGE-1 aptamer Bz #1 및 MAGE-1 aptamer Bz #5 처리 후 기존에 알려진 간암 세포 내 신호전달물질로서, p21, puma, P'Akt, P'erk1/2, Casp9, Casp7 및 actin의 발현 정도를 확인하였다.To investigate the mechanism of inhibition of liver cancer cell proliferation by MAGE-1 aptamer, Western blotting was performed to investigate the effect of MAGE-1 aptamer Bz # 1 and MAGE-1 aptamer Bz # p21, puma, P'Akt, P'erk1 / 2, Casp9, Casp7, and actin.

구체적으로, SNU-3058 및 SNU-475 세포주를 normoxic 조건 (20% O2 및 5% CO2 37°C의 온도) 하에서 배양한 후 압타머 처리 전 FBS를 제외한 세포배양액으로 교체하여 overnight serum starvation을 시행하였다. 대조군 압타머, MAGE-1 aptamer Bz #1 및 Bz #5 40 nM을 5분간 히팅 한 후 간암세포에 처리하고 0, 24, 48시간 째 세포를 harvest하여 lysis 시행하였다. Cell lysate 샘플을 immunoblotting법을 이용하여 p21, puma 등과 같은 cancer cell survival에 관여하는 신호전달물질의 단백 발현 정도를 분석하고 그 결과를 도 7a 및 도 7b에 나타내었다. 결과에서 확인할 수 있듯 기존에 알려진 간암 세포 증식에 관여하는 신호전달물질 중에서는 MAGE-1 aptamer 처리 후 뚜렷하게 발현이 변화하는 물질을 확인하지 못하였다. Specifically, SNU-3058 and SNU-475 cells were cultured under normoxic conditions (20% O 2 and 5% CO 2 at 37 ° C), and then replaced with cell culture medium except for FBS before treatment with an overnight serum starvation Respectively. Cells were harvested and lysed at 0, 24, and 48 hours after treatment with hepatocarcinoma cells after heating for 5 minutes with control platamater, MAGE-1 aptamer Bz # 1 and 40 nM Bz # 5. Cell lysate samples were analyzed by immunoblotting for the expression level of signal transduction materials involved in cancer cell survival such as p21 and puma, and the results are shown in FIGS. 7a and 7b. As can be seen from the results, among the signal transduction substances involved in the known hepatocarcinoma cell proliferation, no substance that clearly changed expression after treatment with MAGE-1 aptamer was found.

4.2 cDNA microarray 분석에 의한 PFKFB4 유전자 발현 확인4.2 Expression of PFKFB4 gene by cDNA microarray analysis

MAGE-1 aptamer의 작용 기전을 확인하기 위하여 MAGE-1 aptamer Bz #1 및 MAGE-1 aptamer Bz #5 cDNA microarray 분석을 시행하였다. 구체적으로, SNU-3058 및 SNU-475 세포주를 normoxic 조건 (20% O2 및 5% CO2, 37°C 온도) 하에서 배양한 후 압타머 처리 전 FBS를 제외한 세포배양액으로 교체하여 overnight serum starvation을 시행하였다. Control aptamer, MAGE-1 aptamer Bz #1 및 Bz #5 40 nM을 5분간 heating 한 후 간암세포에 처리 후 48시간 동안 배양하였다. Total RNA를 추출하여 정제하였다. Illumina RatRef-12 Expression Bead Chip (Illumina, Inc., San Diego, CA, USA)을 이용하여 마이크로어레이 분석을 하였다. Illumina Total Prep RNA Amplification Kit (Ambion, Austin, TX, USA)를 이용하여 total RNA로부터 biotin-conjugated cRNA를 얻은 후 Illumina RatRef-12 Expression Bead Chip에 hybridization 시킨 후 array를 Illumina Bead Array Reader Confocal Scanner로 스캔하고 그 결과를 도 8에 나타내었다.MAGE-1 aptamer Bz # 1 and MAGE-1 aptamer Bz # 5 cDNA microarray analyzes were performed to confirm the mechanism of action of MAGE-1 aptamer. Specifically, SNU-3058 and SNU-475 cell lines were cultured under normoxic conditions (20% O 2 and 5% CO 2 , 37 ° C temperature) and replaced with cell culture medium except FBS before treatment with overnight serum starvation Respectively. Control aptamer, MAGE-1 aptamer Bz # 1 and Bz # 5 40 nM were heated for 5 minutes and then hepatocarcinoma cells were cultured for 48 hours. Total RNA was extracted and purified. Microarray analysis was performed using the Illumina RatRef-12 Expression Bead Chip (Illumina, Inc., San Diego, Calif., USA). Biotin-conjugated cRNA was obtained from total RNA using the Illumina Total Prep RNA Amplification Kit (Ambion, Austin, TX, USA), hybridized to the Illumina RatRef-12 Expression Bead Chip, and then the array was scanned with the Illumina Bead Array Reader Confocal Scanner The results are shown in Fig.

cDNA microarray 분석 결과 SNU-3058 세포주에 MAGE-1 aptamer Bz #1를 처리하였을 때, control aptamer를 처리하였을 때와 비교하여 PFKFB4 유전자의 발현이 유의하게 감소하는 것을 확인하였다. 구체적으로, SNU-3058 세포주에 MAGE-1 aptamer #1을 처리했을 때 대조군 압타머를 처리했을 때와 비교하여 PFKFB4 유전자의 발현정도는 -1.77 fold change로 감소함을 확인하였다.cDNA microarray analysis revealed that the expression of PFKFB4 gene was significantly reduced in the SNU-3058 cell line treated with MAGE-1 aptamer Bz # 1 compared to control aptamer. Specifically, the expression level of PFKFB4 gene in SNU-3058 cell line was decreased to -1.77 fold change when MAGE-1 aptamer # 1 was treated, compared with the control group.

4.3 Real-time PCR법에 의한 PFKFB4 유전자 발현 확인4.3 Expression of PFKFB4 gene by Real-time PCR

Real-time PCR법을 이용하여 SNU-3058 세포주에 MAGE-1 aptamer Bz #1 및 대조군으로서 무작위 서열(scrambled sequence)을 갖는 서열번호 23의 아미노산 서열을 갖는 압타머를 처리하고 PFKFB4 유전자의 발현정도를 검증하였다. 구체적으로, SNU-3058 및 SNU-475 세포주를 normoxic 조건 (20% O2 and 5% CO2 at 37°C) 하에서 배양한 후 압타머 처리 전 FBS를 제외한 세포배양액으로 교체하여 overnight serum starvation을 시행하였다. 대조군 압타머, MAGE-1 aptamer Bz #1 및 Bz #5 40 nM을 5분간 가열 한 후 간암세포에 처리 후 48시간 동안 배양(incubation) 하였다. Trizol Reagent (Invitrogen, Carlsbad, CA, USA)을 이용하여 총(total) RNA를 추출하여 정제한 cDNA 템플렛를 합성하였다. Taq polymerase (Invitrogen, Carlsbad, CA, USA)를 이용한 PCR법을 통해 합성된 cDNA 템플렛을 증폭하였다. Real-time PCR (LightCycler; Roche Molecular Biochemicals, Mannheim, Germany)을 통해 PFKB4 유전자 발현을 정량 분석하여 그 결과를 도 9에 나타내었다. The SNT-3058 cell line was treated with the MAGE-1 aptamer Bz # 1 and the scrambled sequence as the control, with the amino acid sequence of SEQ ID NO: 23 using real-time PCR, and the expression level of the PFKFB4 gene was determined Respectively. Specifically, SNU-3058 and SNU-475 cell lines were cultured under normoxic conditions (20% O2 and 5% CO 2 at 37 ° C), and then replaced with cell culture medium except for FBS before the platemaster treatment and overnight serum starvation was performed. Control aptamer, MAGE-1 aptamer Bz # 1 and 40 nM Bz # 5 were heated for 5 minutes and then incubated for 48 hours in liver cancer cells. Total RNA was extracted and purified using Trizol Reagent (Invitrogen, Carlsbad, CA, USA). The cDNA template synthesized by PCR using Taq polymerase (Invitrogen, Carlsbad, Calif., USA) was amplified. PFKB4 gene expression was quantitatively analyzed by real-time PCR (LightCycler; Roche Molecular Biochemicals, Mannheim, Germany). The results are shown in FIG.

상기 결과에서 확인할 수 있는 것과 같이, PFKFB4 유전자의 발현이 감소함을 확인하여, 본 발명의 MAGE-1 특이 결합 압타머가 간암 세포 증식을 억제하는 작용 기전에 PFKFB4 유전자가 관여한다는 점을 예측할 수 있다. 구체적으로 SNU-3058 세포주에서 MAGE-1 압타머 Bz #1를 처리하였을 때 PFKB4 유전자의 발현은 약 33% 감소(0.67)하였고, SNU-475 세포주에서는 약 41% 감소(0.59)한 것으로 확인되었다.As can be seen from the above results, it is confirmed that the expression of PFKFB4 gene is decreased, and it can be predicted that the MAGE-1 specific binding aptamer of the present invention is involved in the action mechanism of PFKFB4 gene to inhibit liver cancer cell proliferation. Specifically, the expression of PFKB4 gene was decreased by about 33% (0.67) in SNU-3058 cell line and decreased by about 41% (0.59) in SNU-475 cell line when MAGE-1 plastomer Bz # 1 was treated.

<110> POSTECH ACADEMY-INDUSTRY FOUNDATION SEOUL NATIONAL UNIVERSITY HOSPITAL <120> MAGE-1 specific aptamer and use thereof <130> DPP20172992KR <150> KR 10-2017-0065470 <151> 2017-05-26 <160> 23 <170> KoPatentIn 3.0 <210> 1 <211> 91 <212> DNA <213> Artificial Sequence <220> <223> Bz #1(S035-A1-12-M13-20R_D02) <220> <221> misc_feature <222> (19) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <220> <221> misc_feature <222> (21) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <220> <221> misc_feature <222> (24) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <220> <221> misc_feature <222> (26) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <220> <221> misc_feature <222> (29)..(32) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <220> <221> misc_feature <222> (34)..(35) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <220> <221> misc_feature <222> (38) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <220> <221> misc_feature <222> (43) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <220> <221> misc_feature <222> (48) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <220> <221> misc_feature <222> (51)..(52) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <220> <221> misc_feature <222> (54) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <400> 1 cgagcgtcct gcctttggng nagnangann nnanncgnca aancggcnag nngngaccac 60 cgacagccac ccagcaccga cagccaccca g 91 <210> 2 <211> 73 <212> DNA <213> Artificial Sequence <220> <223> Bz #2(S035-A1-13-M13-20R_E02) <220> <221> misc_feature <222> (19) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <220> <221> misc_feature <222> (22) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <220> <221> misc_feature <222> (25) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <220> <221> misc_feature <222> (29) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <220> <221> misc_feature <222> (32)..(33) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <220> <221> misc_feature <222> (36)..(37) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <220> <221> misc_feature <222> (44) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <220> <221> misc_feature <222> (46) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <220> <221> misc_feature <222> (51) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <220> <221> misc_feature <222> (56) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <400> 2 cgagcgtcct gcctttggnc cngcnaaana annagnnagg gagnangccc nggacncacc 60 gacagccacc cag 73 <210> 3 <211> 74 <212> DNA <213> Artificial Sequence <220> <223> Bz #3(S035-A1-15-M13-20R_G02) <220> <221> misc_feature <222> (18) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <220> <221> misc_feature <222> (22) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <220> <221> misc_feature <222> (24)..(25) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <220> <221> misc_feature <222> (28) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <220> <221> misc_feature <222> (30) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <220> <221> misc_feature <222> (33) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <220> <221> misc_feature <222> (35)..(36) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <220> <221> misc_feature <222> (45)..(47) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <220> <221> misc_feature <222> (53) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <220> <221> misc_feature <222> (57) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <400> 3 cgagcgtcct gcctttgngg cngnnaanan cgngnnaaac cggcnnnagg gcngacncac 60 cgacagccac ccag 74 <210> 4 <211> 74 <212> DNA <213> Artificial Sequence <220> <223> Bz #4(S035-A1-18-M13-20R_B03) <220> <221> misc_feature <222> (20) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <220> <221> misc_feature <222> (26) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <220> <221> misc_feature <222> (33)..(34) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <220> <221> misc_feature <222> (37)..(38) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <220> <221> misc_feature <222> (43) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <220> <221> misc_feature <222> (46) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <220> <221> misc_feature <222> (49) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <220> <221> misc_feature <222> (55) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <220> <221> misc_feature <222> (57) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <400> 4 cgagcgtcct gcctttgaan ggggcnaagg ganngcnnaa aangcnggng agacnancac 60 cgacagccac ccag 74 <210> 5 <211> 76 <212> DNA <213> Artificial Sequence <220> <223> Bz #5(S035-A1-20-M13-20R_D03) <220> <221> misc_feature <222> (18)..(19) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <220> <221> misc_feature <222> (21)..(22) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <220> <221> misc_feature <222> (25) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <220> <221> misc_feature <222> (29) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <220> <221> misc_feature <222> (34)..(35) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <220> <221> misc_feature <222> (38) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <220> <221> misc_feature <222> (40) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <220> <221> misc_feature <222> (43)..(46) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <220> <221> misc_feature <222> (48)..(49) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <220> <221> misc_feature <222> (52) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <220> <221> misc_feature <222> (59) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <400> 5 cgagcgtcct gcctttgnna nnagngaang ggannagnan gannnnanng gncagcccnc 60 accgacagcc acccag 76 <210> 6 <211> 74 <212> DNA <213> Artificial Sequence <220> <223> Nap #1(S035-B1-03-M13-20R_C08) <220> <221> misc_feature <222> (24) <223> NapU, 5-(N-naphthylcarboxyamide)-2'- uridine <220> <221> misc_feature <222> (30)..(31) <223> NapU, 5-(N-naphthylcarboxyamide)-2'- uridine <220> <221> misc_feature <222> (35) <223> NapU, 5-(N-naphthylcarboxyamide)-2'- uridine <220> <221> misc_feature <222> (38) <223> NapU, 5-(N-naphthylcarboxyamide)-2'- uridine <220> <221> misc_feature <222> (44)..(45) <223> NapU, 5-(N-naphthylcarboxyamide)-2'- uridine <220> <221> misc_feature <222> (50)..(51) <223> NapU, 5-(N-naphthylcarboxyamide)-2'- uridine <220> <221> misc_feature <222> (54) <223> NapU, 5-(N-naphthylcarboxyamide)-2'- uridine <400> 6 cgagcgtcct gcctttgaga aggngaggan ngggnacnaa cggnnggacn nggnaaccac 60 cgacagccac ccag 74 <210> 7 <211> 74 <212> DNA <213> Artificial Sequence <220> <223> Nap #2(S035-B1-06-M13-20R_F08) <220> <221> misc_feature <222> (19) <223> NapU, 5-(N-naphthylcarboxyamide)-2'- uridine <220> <221> misc_feature <222> (26) <223> NapU, 5-(N-naphthylcarboxyamide)-2'- uridine <220> <221> misc_feature <222> (29)..(30) <223> NapU, 5-(N-naphthylcarboxyamide)-2'- uridine <220> <221> misc_feature <222> (34) <223> NapU, 5-(N-naphthylcarboxyamide)-2'- uridine <220> <221> misc_feature <222> (37) <223> NapU, 5-(N-naphthylcarboxyamide)-2'- uridine <220> <221> misc_feature <222> (42)..(43) <223> NapU, 5-(N-naphthylcarboxyamide)-2'- uridine <220> <221> misc_feature <222> (48)..(49) <223> NapU, 5-(N-naphthylcarboxyamide)-2'- uridine <220> <221> misc_feature <222> (52) <223> NapU, 5-(N-naphthylcarboxyamide)-2'- uridine <220> <221> misc_feature <222> (56)..(57) <223> NapU, 5-(N-naphthylcarboxyamide)-2'- uridine <400> 7 cgagcgtcct gcctttgana cggcanaann gggnacnacg annggcanng gncaanncac 60 cgacagccac ccag 74 <210> 8 <211> 74 <212> DNA <213> Artificial Sequence <220> <223> Nap #3(S035-B1-13-M13-20R_E09) <220> <221> misc_feature <222> (19) <223> NapU, 5-(N-naphthylcarboxyamide)-2'- uridine <220> <221> misc_feature <222> (24) <223> NapU, 5-(N-naphthylcarboxyamide)-2'- uridine <220> <221> misc_feature <222> (32) <223> NapU, 5-(N-naphthylcarboxyamide)-2'- uridine <220> <221> misc_feature <222> (35) <223> NapU, 5-(N-naphthylcarboxyamide)-2'- uridine <220> <221> misc_feature <222> (40) <223> NapU, 5-(N-naphthylcarboxyamide)-2'- uridine <220> <221> misc_feature <222> (44) <223> NapU, 5-(N-naphthylcarboxyamide)-2'- uridine <220> <221> misc_feature <222> (47) <223> NapU, 5-(N-naphthylcarboxyamide)-2'- uridine <220> <221> misc_feature <222> (52)..(53) <223> NapU, 5-(N-naphthylcarboxyamide)-2'- uridine <400> 8 cgagcgtcct gcctttgcng ccgnggcgaa cnggngagan gggnacngcg gnngggccac 60 cgacagccac ccag 74 <210> 9 <211> 74 <212> DNA <213> Artificial Sequence <220> <223> Nap #4(S035-B1-05-M13-20R_E08) <220> <221> misc_feature <222> (18) <223> NapU, 5-(N-naphthylcarboxyamide)-2'- uridine <220> <221> misc_feature <222> (22) <223> NapU, 5-(N-naphthylcarboxyamide)-2'- uridine <220> <221> misc_feature <222> (25) <223> NapU, 5-(N-naphthylcarboxyamide)-2'- uridine <220> <221> misc_feature <222> (33) <223> NapU, 5-(N-naphthylcarboxyamide)-2'- uridine <220> <221> misc_feature <222> (47) <223> NapU, 5-(N-naphthylcarboxyamide)-2'- uridine <220> <221> misc_feature <222> (51) <223> NapU, 5-(N-naphthylcarboxyamide)-2'- uridine <400> 9 cgagcgtcct gcctttgnga cngcnccagg acnaccaccc caaccgngag nacccaacac 60 cgacagccac ccag 74 <210> 10 <211> 74 <212> DNA <213> Artificial Sequence <220> <223> Nap #5(S035-B1-22-M13-20R_F10) <220> <221> misc_feature <222> (19) <223> NapU, 5-(N-naphthylcarboxyamide)-2'- uridine <220> <221> misc_feature <222> (24)..(25) <223> NapU, 5-(N-naphthylcarboxyamide)-2'- uridine <220> <221> misc_feature <222> (29) <223> NapU, 5-(N-naphthylcarboxyamide)-2'- uridine <220> <221> misc_feature <222> (32) <223> NapU, 5-(N-naphthylcarboxyamide)-2'- uridine <220> <221> misc_feature <222> (38)..(39) <223> NapU, 5-(N-naphthylcarboxyamide)-2'- uridine <220> <221> misc_feature <222> (44) <223> NapU, 5-(N-naphthylcarboxyamide)-2'- uridine <220> <221> misc_feature <222> (47) <223> NapU, 5-(N-naphthylcarboxyamide)-2'- uridine <220> <221> misc_feature <222> (54) <223> NapU, 5-(N-naphthylcarboxyamide)-2'- uridine <400> 10 cgagcgtcct gcctttgang cganngggna cnaccggnng gagnggnaaa acgngggcac 60 cgacagccac ccag 74 <210> 11 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Bz #1 core sequence <220> <221> misc_feature <222> (2) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <220> <221> misc_feature <222> (4) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <220> <221> misc_feature <222> (7) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <220> <221> misc_feature <222> (9) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <220> <221> misc_feature <222> (12)..(15) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <220> <221> misc_feature <222> (17)..(18) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <220> <221> misc_feature <222> (21) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <220> <221> misc_feature <222> (26) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <220> <221> misc_feature <222> (31) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <220> <221> misc_feature <222> (34)..(35) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <220> <221> misc_feature <222> (37) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <400> 11 gngnagnang annnnanncg ncaaancggc nagnngngac 40 <210> 12 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> Bz #2 core sequence <220> <221> misc_feature <222> (2) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <220> <221> misc_feature <222> (5) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <220> <221> misc_feature <222> (8) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <220> <221> misc_feature <222> (12) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <220> <221> misc_feature <222> (15)..(16) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <220> <221> misc_feature <222> (19)..(20) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <220> <221> misc_feature <222> (27) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <220> <221> misc_feature <222> (29) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <220> <221> misc_feature <222> (34) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <220> <221> misc_feature <222> (39) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <400> 12 gnccngcnaa anaannagnn agggagnang cccnggacn 39 <210> 13 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Bz #3 core sequence <220> <221> misc_feature <222> (1) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <220> <221> misc_feature <222> (5) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <220> <221> misc_feature <222> (7)..(8) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <220> <221> misc_feature <222> (11) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <220> <221> misc_feature <222> (13) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <220> <221> misc_feature <222> (16) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <220> <221> misc_feature <222> (18)..(19) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <220> <221> misc_feature <222> (28)..(30) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <220> <221> misc_feature <222> (36) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <220> <221> misc_feature <222> (40) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <400> 13 nggcngnnaa nancgngnna aaccggcnnn agggcngacn 40 <210> 14 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Bz #4 core sequence <220> <221> misc_feature <222> (3) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <220> <221> misc_feature <222> (9) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <220> <221> misc_feature <222> (16)..(17) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <220> <221> misc_feature <222> (20)..(21) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <220> <221> misc_feature <222> (26) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <220> <221> misc_feature <222> (29) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <220> <221> misc_feature <222> (32) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <220> <221> misc_feature <222> (38) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <220> <221> misc_feature <222> (40) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <400> 14 aanggggcna aggganngcn naaaangcng gngagacnan 40 <210> 15 <211> 42 <212> DNA <213> Artificial Sequence <220> <223> Bz #5 core sequence <220> <221> misc_feature <222> (1)..(2) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <220> <221> misc_feature <222> (4)..(5) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <220> <221> misc_feature <222> (8) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <220> <221> misc_feature <222> (12) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <220> <221> misc_feature <222> (17)..(18) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <220> <221> misc_feature <222> (21) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <220> <221> misc_feature <222> (23) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <220> <221> misc_feature <222> (26)..(29) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <220> <221> misc_feature <222> (31)..(32) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <220> <221> misc_feature <222> (35) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <220> <221> misc_feature <222> (42) <223> BzdU, 5-(N-Benzylaminocarbonylamide)-2'-deoxyuridine <400> 15 nnannagnga angggannag nangannnna nnggncagcc cn 42 <210> 16 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Nap #1 core sequence <220> <221> misc_feature <222> (7) <223> NapU, 5-(N-naphthylcarboxyamide)-2'- uridine <220> <221> misc_feature <222> (13)..(14) <223> NapU, 5-(N-naphthylcarboxyamide)-2'- uridine <220> <221> misc_feature <222> (18) <223> NapU, 5-(N-naphthylcarboxyamide)-2'- uridine <220> <221> misc_feature <222> (21) <223> NapU, 5-(N-naphthylcarboxyamide)-2'- uridine <220> <221> misc_feature <222> (27)..(28) <223> NapU, 5-(N-naphthylcarboxyamide)-2'- uridine <220> <221> misc_feature <222> (33)..(34) <223> NapU, 5-(N-naphthylcarboxyamide)-2'- uridine <220> <221> misc_feature <222> (37) <223> NapU, 5-(N-naphthylcarboxyamide)-2'- uridine <400> 16 agaaggngag ganngggnac naacggnngg acnnggnaac 40 <210> 17 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Nap #2 core sequence <220> <221> misc_feature <222> (2) <223> NapU, 5-(N-naphthylcarboxyamide)-2'- uridine <220> <221> misc_feature <222> (9) <223> NapU, 5-(N-naphthylcarboxyamide)-2'- uridine <220> <221> misc_feature <222> (12)..(13) <223> NapU, 5-(N-naphthylcarboxyamide)-2'- uridine <220> <221> misc_feature <222> (17) <223> NapU, 5-(N-naphthylcarboxyamide)-2'- uridine <220> <221> misc_feature <222> (20) <223> NapU, 5-(N-naphthylcarboxyamide)-2'- uridine <220> <221> misc_feature <222> (25)..(26) <223> NapU, 5-(N-naphthylcarboxyamide)-2'- uridine <220> <221> misc_feature <222> (31)..(32) <223> NapU, 5-(N-naphthylcarboxyamide)-2'- uridine <220> <221> misc_feature <222> (35) <223> NapU, 5-(N-naphthylcarboxyamide)-2'- uridine <220> <221> misc_feature <222> (39)..(40) <223> NapU, 5-(N-naphthylcarboxyamide)-2'- uridine <400> 17 anacggcana anngggnacn acgannggca nnggncaann 40 <210> 18 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Nap #3 core sequence <220> <221> misc_feature <222> (2) <223> NapU, 5-(N-naphthylcarboxyamide)-2'- uridine <220> <221> misc_feature <222> (7) <223> NapU, 5-(N-naphthylcarboxyamide)-2'- uridine <220> <221> misc_feature <222> (15) <223> NapU, 5-(N-naphthylcarboxyamide)-2'- uridine <220> <221> misc_feature <222> (18) <223> NapU, 5-(N-naphthylcarboxyamide)-2'- uridine <220> <221> misc_feature <222> (23) <223> NapU, 5-(N-naphthylcarboxyamide)-2'- uridine <220> <221> misc_feature <222> (27) <223> NapU, 5-(N-naphthylcarboxyamide)-2'- uridine <220> <221> misc_feature <222> (30) <223> NapU, 5-(N-naphthylcarboxyamide)-2'- uridine <220> <221> misc_feature <222> (35)..(36) <223> NapU, 5-(N-naphthylcarboxyamide)-2'- uridine <400> 18 cngccgnggc gaacnggnga gangggnacn gcggnngggc 40 <210> 19 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Nap #4 core sequence <220> <221> misc_feature <222> (1) <223> NapU, 5-(N-naphthylcarboxyamide)-2'- uridine <220> <221> misc_feature <222> (5) <223> NapU, 5-(N-naphthylcarboxyamide)-2'- uridine <220> <221> misc_feature <222> (8) <223> NapU, 5-(N-naphthylcarboxyamide)-2'- uridine <220> <221> misc_feature <222> (16) <223> NapU, 5-(N-naphthylcarboxyamide)-2'- uridine <220> <221> misc_feature <222> (30) <223> NapU, 5-(N-naphthylcarboxyamide)-2'- uridine <220> <221> misc_feature <222> (34) <223> NapU, 5-(N-naphthylcarboxyamide)-2'- uridine <400> 19 ngacngcncc aggacnacca ccccaaccgn gagnacccaa 40 <210> 20 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Nap #5 core sequence <220> <221> misc_feature <222> (2) <223> NapU, 5-(N-naphthylcarboxyamide)-2'- uridine <220> <221> misc_feature <222> (7)..(8) <223> NapU, 5-(N-naphthylcarboxyamide)-2'- uridine <220> <221> misc_feature <222> (12) <223> NapU, 5-(N-naphthylcarboxyamide)-2'- uridine <220> <221> misc_feature <222> (15) <223> NapU, 5-(N-naphthylcarboxyamide)-2'- uridine <220> <221> misc_feature <222> (21)..(22) <223> NapU, 5-(N-naphthylcarboxyamide)-2'- uridine <220> <221> misc_feature <222> (27) <223> NapU, 5-(N-naphthylcarboxyamide)-2'- uridine <220> <221> misc_feature <222> (30) <223> NapU, 5-(N-naphthylcarboxyamide)-2'- uridine <220> <221> misc_feature <222> (37) <223> NapU, 5-(N-naphthylcarboxyamide)-2'- uridine <400> 20 angcganngg gnacnaccgg nnggagnggn aaaacgnggg 40 <210> 21 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> 5' primer <400> 21 cgagcgtcct gcctttg 17 <210> 22 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> 3' primer <400> 22 caccgacagc cacccag 17 <210> 23 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> scrambled aptamer <400> 23 agttcaaact ggacgccctc gactcaccca tgctaggatt gaacggacca 50 <110> POSTECH ACADEMY-INDUSTRY FOUNDATION          SEOUL NATIONAL UNIVERSITY HOSPITAL <120> MAGE-1 specific aptamer and use thereof <130> DPP20172992KR <150> KR 10-2017-0065470 <151> 2017-05-26 <160> 23 <170> KoPatentin 3.0 <210> 1 <211> 91 <212> DNA <213> Artificial Sequence <220> &Lt; 223 > Bz # 1 (S035-A1-12-M13-20R_D02) <220> <221> misc_feature <222> (19) <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <220> <221> misc_feature <222> (21) <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <220> <221> misc_feature <222> (24) <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <220> <221> misc_feature (26) <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <220> <221> misc_feature &Lt; 222 > (29) <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <220> <221> misc_feature &Lt; 222 > (34) <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <220> <221> misc_feature <222> (38) <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <220> <221> misc_feature <43> <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <220> <221> misc_feature <222> <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <220> <221> misc_feature &Lt; 222 > (51) <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <220> <221> misc_feature <54> <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <400> 1 cgagcgtcct gcctttggng nagnangann nnanncgnca aancggcnag nngngaccac 60 cgacagccac ccagcaccga cagccaccca g 91 <210> 2 <211> 73 <212> DNA <213> Artificial Sequence <220> &Lt; 223 > Bz # 2 (S035-A1-13-M13-20R_E02) <220> <221> misc_feature <222> (19) <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <220> <221> misc_feature (22) <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <220> <221> misc_feature <222> (25) <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <220> <221> misc_feature (29) <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <220> <221> misc_feature &Lt; 222 &gt; (32) <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <220> <221> misc_feature &Lt; 222 &gt; (36) <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <220> <221> misc_feature <222> (44) <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <220> <221> misc_feature <222> (46) <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <220> <221> misc_feature <51> <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <220> <221> misc_feature <222> (56) <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <400> 2 cgagcgtcct gcctttggnc cngcnaaana annagnnagg gagnangccc nggacncacc 60 gacagccacc cag 73 <210> 3 <211> 74 <212> DNA <213> Artificial Sequence <220> &Lt; 223 > Bz # 3 (S035-A1-15-M13-20R_G02) <220> <221> misc_feature <222> (18) <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <220> <221> misc_feature (22) <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <220> <221> misc_feature <222> (24) <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <220> <221> misc_feature <222> <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <220> <221> misc_feature <30> <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <220> <221> misc_feature <33> <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <220> <221> misc_feature &Lt; 222 &gt; (35) <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <220> <221> misc_feature &Lt; 222 &gt; (45) .. (47) <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <220> <221> misc_feature <53> <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <220> <221> misc_feature <57> <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <400> 3 cgagcgtcct gcctttgngg cngnnaanan cgngnnaaac cggcnnnagg gcngacncac 60 cgacagccac ccag 74 <210> 4 <211> 74 <212> DNA <213> Artificial Sequence <220> &Lt; 223 > Bz # 4 (S035-A1-18-M13-20R_B03) <220> <221> misc_feature <20> <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <220> <221> misc_feature (26) <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <220> <221> misc_feature &Lt; 222 &gt; (33) <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <220> <221> misc_feature <222> (37). (38) <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <220> <221> misc_feature <43> <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <220> <221> misc_feature <222> (46) <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <220> <221> misc_feature <222> (49) <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <220> <221> misc_feature <222> <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <220> <221> misc_feature <57> <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <400> 4 cgagcgtcct gcctttgaan ggggcnaagg ganngcnnaa aangcnggng agacnancac 60 cgacagccac ccag 74 <210> 5 <211> 76 <212> DNA <213> Artificial Sequence <220> &Lt; 223 > Bz # 5 (S035-A1-20-M13-20R_D03) <220> <221> misc_feature <222> (18). (19) <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <220> <221> misc_feature &Lt; 222 &gt; (21) <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <220> <221> misc_feature <222> (25) <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <220> <221> misc_feature (29) <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <220> <221> misc_feature &Lt; 222 &gt; (34) <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <220> <221> misc_feature <222> (38) <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <220> <221> misc_feature <40> <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <220> <221> misc_feature &Lt; 222 &gt; (43) .. (46) <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <220> <221> misc_feature <222> (48). (49) <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <220> <221> misc_feature <52> <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <220> <221> misc_feature <59> <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <400> 5 gncgcccnc accgacagcc acccag 76 <210> 6 <211> 74 <212> DNA <213> Artificial Sequence <220> <223> Nap # 1 (S035-B1-03-M13-20R_C08) <220> <221> misc_feature <222> (24) <223> NapU, 5- (N-naphthylcarboxyamide) -2'-uridine <220> <221> misc_feature &Lt; 222 &gt; (30) <223> NapU, 5- (N-naphthylcarboxyamide) -2'-uridine <220> <221> misc_feature <35> <223> NapU, 5- (N-naphthylcarboxyamide) -2'-uridine <220> <221> misc_feature <222> (38) <223> NapU, 5- (N-naphthylcarboxyamide) -2'-uridine <220> <221> misc_feature &Lt; 222 &gt; (44) .. (45) <223> NapU, 5- (N-naphthylcarboxyamide) -2'-uridine <220> <221> misc_feature &Lt; 222 &gt; (50) <223> NapU, 5- (N-naphthylcarboxyamide) -2'-uridine <220> <221> misc_feature <54> <223> NapU, 5- (N-naphthylcarboxyamide) -2'-uridine <400> 6 cgagcgtcct gcctttgaga aggngaggan ngggnacnaa cggnnggacn nggnaaccac 60 cgacagccac ccag 74 <210> 7 <211> 74 <212> DNA <213> Artificial Sequence <220> <223> Nap # 2 (S035-B1-06-M13-20R_F08) <220> <221> misc_feature <222> (19) <223> NapU, 5- (N-naphthylcarboxyamide) -2'-uridine <220> <221> misc_feature (26) <223> NapU, 5- (N-naphthylcarboxyamide) -2'-uridine <220> <221> misc_feature &Lt; 222 &gt; (29) <223> NapU, 5- (N-naphthylcarboxyamide) -2'-uridine <220> <221> misc_feature <34> <223> NapU, 5- (N-naphthylcarboxyamide) -2'-uridine <220> <221> misc_feature <222> (37) <223> NapU, 5- (N-naphthylcarboxyamide) -2'-uridine <220> <221> misc_feature &Lt; 222 &gt; (42) <223> NapU, 5- (N-naphthylcarboxyamide) -2'-uridine <220> <221> misc_feature <222> (48). (49) <223> NapU, 5- (N-naphthylcarboxyamide) -2'-uridine <220> <221> misc_feature <52> <223> NapU, 5- (N-naphthylcarboxyamide) -2'-uridine <220> <221> misc_feature &Lt; 222 &gt; (56) <223> NapU, 5- (N-naphthylcarboxyamide) -2'-uridine <400> 7 cgagcgtcct gcctttgana cggcanaann gggnacnacg annggcanng gncaanncac 60 cgacagccac ccag 74 <210> 8 <211> 74 <212> DNA <213> Artificial Sequence <220> &Lt; 223 &gt; Nap # 3 (S035-B1-13-M13-20R_E09) <220> <221> misc_feature <222> (19) <223> NapU, 5- (N-naphthylcarboxyamide) -2'-uridine <220> <221> misc_feature <222> (24) <223> NapU, 5- (N-naphthylcarboxyamide) -2'-uridine <220> <221> misc_feature <32> <223> NapU, 5- (N-naphthylcarboxyamide) -2'-uridine <220> <221> misc_feature <35> <223> NapU, 5- (N-naphthylcarboxyamide) -2'-uridine <220> <221> misc_feature <40> <223> NapU, 5- (N-naphthylcarboxyamide) -2'-uridine <220> <221> misc_feature <222> (44) <223> NapU, 5- (N-naphthylcarboxyamide) -2'-uridine <220> <221> misc_feature <47> <223> NapU, 5- (N-naphthylcarboxyamide) -2'-uridine <220> <221> misc_feature &Lt; 222 &gt; (52) <223> NapU, 5- (N-naphthylcarboxyamide) -2'-uridine <400> 8 cgagcgtcct gcctttgcng ccgnggcgaa cnggngagan gggnacngcg gnngggccac 60 cgacagccac ccag 74 <210> 9 <211> 74 <212> DNA <213> Artificial Sequence <220> <223> Nap # 4 (S035-B1-05-M13-20R_E08) <220> <221> misc_feature <222> (18) <223> NapU, 5- (N-naphthylcarboxyamide) -2'-uridine <220> <221> misc_feature (22) <223> NapU, 5- (N-naphthylcarboxyamide) -2'-uridine <220> <221> misc_feature <222> (25) <223> NapU, 5- (N-naphthylcarboxyamide) -2'-uridine <220> <221> misc_feature <33> <223> NapU, 5- (N-naphthylcarboxyamide) -2'-uridine <220> <221> misc_feature <47> <223> NapU, 5- (N-naphthylcarboxyamide) -2'-uridine <220> <221> misc_feature <51> <223> NapU, 5- (N-naphthylcarboxyamide) -2'-uridine <400> 9 cgagcgtcct gcctttgnga cngcnccagg acnaccaccc caaccgngag nacccaacac 60 cgacagccac ccag 74 <210> 10 <211> 74 <212> DNA <213> Artificial Sequence <220> &Lt; 223 &gt; Nap # 5 (S035-B1-22-M13-20R_F10) <220> <221> misc_feature <222> (19) <223> NapU, 5- (N-naphthylcarboxyamide) -2'-uridine <220> <221> misc_feature <222> (24) <223> NapU, 5- (N-naphthylcarboxyamide) -2'-uridine <220> <221> misc_feature (29) <223> NapU, 5- (N-naphthylcarboxyamide) -2'-uridine <220> <221> misc_feature <32> <223> NapU, 5- (N-naphthylcarboxyamide) -2'-uridine <220> <221> misc_feature <222> (38). (39) <223> NapU, 5- (N-naphthylcarboxyamide) -2'-uridine <220> <221> misc_feature <222> (44) <223> NapU, 5- (N-naphthylcarboxyamide) -2'-uridine <220> <221> misc_feature <47> <223> NapU, 5- (N-naphthylcarboxyamide) -2'-uridine <220> <221> misc_feature <54> <223> NapU, 5- (N-naphthylcarboxyamide) -2'-uridine <400> 10 cgagcgtcct gcctttgang cganngggna cnaccggnng gagnggnaaa acgngggcac 60 cgacagccac ccag 74 <210> 11 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Bz # 1 core sequence <220> <221> misc_feature <222> (2) <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <220> <221> misc_feature <222> (4) <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <220> <221> misc_feature <222> (7) <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <220> <221> misc_feature <222> (9) <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <220> <221> misc_feature &Lt; 222 > (12) <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <220> <221> misc_feature <222> (17). (18) <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <220> <221> misc_feature <222> (21) <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <220> <221> misc_feature (26) <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <220> <221> misc_feature <31> <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <220> <221> misc_feature &Lt; 222 > (34) <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <220> <221> misc_feature <222> (37) <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <400> 11 gngnagnang annnnanncg ncaaancggc nagnngngac 40 <210> 12 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> Bz # 2 core sequence <220> <221> misc_feature <222> (2) <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <220> <221> misc_feature <222> (5) <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <220> <221> misc_feature <222> (8) <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <220> <221> misc_feature <12> <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <220> <221> misc_feature &Lt; 222 > (15) <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <220> <221> misc_feature <222> (19) <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <220> <221> misc_feature <222> (27) <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <220> <221> misc_feature (29) <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <220> <221> misc_feature <34> <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <220> <221> misc_feature <39> <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <400> 12 gnccngcnaa anaannagnn agggagnang cccnggacn 39 <210> 13 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Bz # 3 core sequence <220> <221> misc_feature <222> (1) <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <220> <221> misc_feature <222> (5) <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <220> <221> misc_feature <222> (7) (8) <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <220> <221> misc_feature <222> (11) <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <220> <221> misc_feature <222> (13) <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <220> <221> misc_feature <222> (16) <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <220> <221> misc_feature <222> (18). (19) <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <220> <221> misc_feature &Lt; 222 > (28) <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <220> <221> misc_feature <222> <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <220> <221> misc_feature <40> <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <400> 13 nggcngnnaa nancgngnna aaccggcnnn agggcngacn 40 <210> 14 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Bz # 4 core sequence <220> <221> misc_feature <222> (3) <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <220> <221> misc_feature <222> (9) <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <220> <221> misc_feature <222> (16). (17) <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <220> <221> misc_feature &Lt; 222 > (20) <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <220> <221> misc_feature (26) <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <220> <221> misc_feature (29) <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <220> <221> misc_feature <32> <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <220> <221> misc_feature <222> (38) <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <220> <221> misc_feature <40> <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <400> 14 aanggggcna aggganngcn naaaangcng gngagacnan 40 <210> 15 <211> 42 <212> DNA <213> Artificial Sequence <220> <223> Bz # 5 core sequence <220> <221> misc_feature <222> (1) (2) <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <220> <221> misc_feature <222> (4) <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <220> <221> misc_feature <222> (8) <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <220> <221> misc_feature <12> <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <220> <221> misc_feature <222> (17). (18) <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <220> <221> misc_feature <222> (21) <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <220> <221> misc_feature <222> (23) <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <220> <221> misc_feature <222> (26). (29) <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <220> <221> misc_feature &Lt; 222 &gt; (31) <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <220> <221> misc_feature <35> <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <220> <221> misc_feature <222> (42) <223> BzdU, 5- (N-Benzylaminocarbonylamide) -2'-deoxyuridine <400> 15 nnannagnga angggannag nangannnna nnggncagcc cn 42 <210> 16 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Nap # 1 core sequence <220> <221> misc_feature <222> (7) <223> NapU, 5- (N-naphthylcarboxyamide) -2'-uridine <220> <221> misc_feature &Lt; 222 &gt; (13) <223> NapU, 5- (N-naphthylcarboxyamide) -2'-uridine <220> <221> misc_feature <222> (18) <223> NapU, 5- (N-naphthylcarboxyamide) -2'-uridine <220> <221> misc_feature <222> (21) <223> NapU, 5- (N-naphthylcarboxyamide) -2'-uridine <220> <221> misc_feature &Lt; 222 &gt; (27) <223> NapU, 5- (N-naphthylcarboxyamide) -2'-uridine <220> <221> misc_feature &Lt; 222 &gt; (33) <223> NapU, 5- (N-naphthylcarboxyamide) -2'-uridine <220> <221> misc_feature <222> (37) <223> NapU, 5- (N-naphthylcarboxyamide) -2'-uridine <400> 16 agaaggngag ganngggnac naacggnngg acnnggnaac 40 <210> 17 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Nap # 2 core sequence <220> <221> misc_feature <222> (2) <223> NapU, 5- (N-naphthylcarboxyamide) -2'-uridine <220> <221> misc_feature <222> (9) <223> NapU, 5- (N-naphthylcarboxyamide) -2'-uridine <220> <221> misc_feature &Lt; 222 > (12) <223> NapU, 5- (N-naphthylcarboxyamide) -2'-uridine <220> <221> misc_feature <222> (17) <223> NapU, 5- (N-naphthylcarboxyamide) -2'-uridine <220> <221> misc_feature <20> <223> NapU, 5- (N-naphthylcarboxyamide) -2'-uridine <220> <221> misc_feature &Lt; 222 &gt; (25) <223> NapU, 5- (N-naphthylcarboxyamide) -2'-uridine <220> <221> misc_feature &Lt; 222 &gt; (31) <223> NapU, 5- (N-naphthylcarboxyamide) -2'-uridine <220> <221> misc_feature <35> <223> NapU, 5- (N-naphthylcarboxyamide) -2'-uridine <220> <221> misc_feature &Lt; 222 &gt; (39) <223> NapU, 5- (N-naphthylcarboxyamide) -2'-uridine <400> 17 anacggcana anngggnacn acgannggca nnggncaann 40 <210> 18 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Nap # 3 core sequence <220> <221> misc_feature <222> (2) <223> NapU, 5- (N-naphthylcarboxyamide) -2'-uridine <220> <221> misc_feature <222> (7) <223> NapU, 5- (N-naphthylcarboxyamide) -2'-uridine <220> <221> misc_feature &Lt; 222 > (15) <223> NapU, 5- (N-naphthylcarboxyamide) -2'-uridine <220> <221> misc_feature <222> (18) <223> NapU, 5- (N-naphthylcarboxyamide) -2'-uridine <220> <221> misc_feature <222> (23) <223> NapU, 5- (N-naphthylcarboxyamide) -2'-uridine <220> <221> misc_feature <222> (27) <223> NapU, 5- (N-naphthylcarboxyamide) -2'-uridine <220> <221> misc_feature <30> <223> NapU, 5- (N-naphthylcarboxyamide) -2'-uridine <220> <221> misc_feature &Lt; 222 &gt; (35) <223> NapU, 5- (N-naphthylcarboxyamide) -2'-uridine <400> 18 cngccgnggc gaacnggnga gangggnacn gcggnngggc 40 <210> 19 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Nap # 4 core sequence <220> <221> misc_feature <222> (1) <223> NapU, 5- (N-naphthylcarboxyamide) -2'-uridine <220> <221> misc_feature <222> (5) <223> NapU, 5- (N-naphthylcarboxyamide) -2'-uridine <220> <221> misc_feature <222> (8) <223> NapU, 5- (N-naphthylcarboxyamide) -2'-uridine <220> <221> misc_feature <222> (16) <223> NapU, 5- (N-naphthylcarboxyamide) -2'-uridine <220> <221> misc_feature <30> <223> NapU, 5- (N-naphthylcarboxyamide) -2'-uridine <220> <221> misc_feature <34> <223> NapU, 5- (N-naphthylcarboxyamide) -2'-uridine <400> 19 ngacngcncc aggacnacca ccccaaccgn gagnacccaa 40 <210> 20 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Nap # 5 core sequence <220> <221> misc_feature <222> (2) <223> NapU, 5- (N-naphthylcarboxyamide) -2'-uridine <220> <221> misc_feature <222> (7) (8) <223> NapU, 5- (N-naphthylcarboxyamide) -2'-uridine <220> <221> misc_feature <12> <223> NapU, 5- (N-naphthylcarboxyamide) -2'-uridine <220> <221> misc_feature &Lt; 222 &gt; (15) <223> NapU, 5- (N-naphthylcarboxyamide) -2'-uridine <220> <221> misc_feature &Lt; 222 &gt; (21) <223> NapU, 5- (N-naphthylcarboxyamide) -2'-uridine <220> <221> misc_feature <222> (27) <223> NapU, 5- (N-naphthylcarboxyamide) -2'-uridine <220> <221> misc_feature <30> <223> NapU, 5- (N-naphthylcarboxyamide) -2'-uridine <220> <221> misc_feature <222> (37) <223> NapU, 5- (N-naphthylcarboxyamide) -2'-uridine <400> 20 angcganngg gnacnaccgg nnggagnggn aaaacgnggg 40 <210> 21 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> 5 'primer <400> 21 cgagcgtcct gcctttg 17 <210> 22 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> 3 'primer <400> 22 caccgacagc cacccag 17 <210> 23 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> scrambled aptamer <400> 23 agttcaaact ggacgccctc gactcaccca tgctaggatt gaacggacca 50

Claims (13)

MAGE-1(멜라노마 관련 항원-1)에 특이적으로 결합하고, 5번 위치가 소수성 작용기로 치환되어 변형된 디옥시유리딘(deoxyuridin1e, dU)을 포함하는, MAGE-1 특이적 압타머.MAGE-1-specific tympanic membrane, which specifically binds to MAGE-1 (melanoma-associated antigen-1), and which is substituted with a hydrophobic functional group at position 5 and contains a modified deoxyuridine1e (dU). 제1항에 있어서, 상기 소수성 작용기는 벤질 또는 나프틸기인, 압타머.The abatumer of claim 1, wherein the hydrophobic functional group is a benzyl or naphthyl group. 제2항에 있어서, 상기 압타머는 서열번호 11 내지 서열번호 20로 이루어진 군에서 선택된 1 이상의 핵산 서열의 코어 서열을 포함하는 것인, 압타머.3. The platemaker according to claim 2, wherein the aptamer comprises a core sequence of at least one nucleic acid sequence selected from the group consisting of SEQ ID NO: 11 to SEQ ID NO: 20. 제1항에 있어서, 상기 코어 서열의 5' 말단, 3' 말단 또는 양 말단에 서열번호 21 및 22로 이루어진 군에서 선택된 1 이상의 핵산 서열을 추가로 포함하는, 압타머.3. The plasmid according to claim 1, further comprising at least one nucleic acid sequence selected from the group consisting of SEQ ID NOs: 21 and 22 at the 5'-end, the 3'-end or both ends of the core sequence. 제1항에 있어서, 상기 압타머는 서열번호 1 내지 서열번호 10으로 이루어진 군에서 선택된 1 이상의 핵산 서열을 갖는 것인, 압타머.2. The platemaker according to claim 1, wherein the aptamer has at least one nucleic acid sequence selected from the group consisting of SEQ ID NO: 1 to SEQ ID NO: 10. 제1항에 있어서, 상기 멜라노마 관련 항원-1과 결합 시 해리상수(Kd) 값이 0.1 내지 20 nM범위인 것인, 압타머.2. The platemaker according to claim 1, wherein the dissociation constant (Kd) value when bound to the melanoma-associated antigen-1 is in the range of 0.1 to 20 nM. 제1항에 있어서, 상기 압타머는 PFKFB4 유전자의 발현을 감소시키는 것을 특징으로 하는, 압타머.3. The platemaker according to claim 1, wherein the aptamer reduces the expression of the PFKFB4 gene. 제1항에 있어서, 상기 압타머는 5' 말단, 3' 말단, 또는 양 말단에 PEG(polyethylene glycol), idT(inverted deoxythymidine), LNA(Locked Nucleic Acid), 2'-메톡시 뉴클레오사이드, 2'-아미노 뉴클레오사이드, 2'F-뉴클레오사이드, 아민 링커, 티올 링커, 및 콜레스테롤로 이루어진 군에서 선택된 1종 이상이 추가로 결합되어 변형된 것을 특징으로 하는, 압타머.2. The composition of claim 1, wherein the aptamer is selected from the group consisting of PEG (polyethylene glycol), inverted deoxythymidine (ipt), LNA (Locked Nucleic Acid), 2'-methoxy nucleoside, Wherein at least one member selected from the group consisting of '-aminonucleoside, 2'F-nucleoside, amine linker, thiol linker, and cholesterol is further combined and modified. 제1항에 있어서, 상기 압타머는 방사성 동위원소, 형광 분자, 독소 또는 대조 시약을 추가로 포함하는 것을 특징으로 하는, 압타머.2. The platemaker of claim 1, wherein the aptamer further comprises a radioactive isotope, a fluorescent molecule, a toxin or a control reagent. 제1항 내지 제9항 중 어느 한 항의 압타머를 유효성분으로 포함하는, 간암 치료, 간암 예방 또는 간암 전이 억제용 약학 조성물.9. A pharmaceutical composition for inhibiting liver cancer, preventing liver cancer or inhibiting liver metastasis, comprising the depressant according to any one of claims 1 to 9 as an active ingredient. 제10항에 있어서, 상기 간암은 저혈관성 간암인, 약학 조성물.11. The pharmaceutical composition according to claim 10, wherein the liver cancer is hypovascular liver cancer. 제1항 내지 제9항 중 어느 한 항의 압타머를 유효성분으로 포함하는, 간암 또는 간암 전이 진단용 조성물.A composition for diagnosing liver cancer or metastasis of liver cancer, which comprises the platemer according to any one of claims 1 to 9 as an active ingredient. 환자의 생물학적 시료에 제1항 내지 제5항 중 어느 한 항의 MAGE-1 특이적 압타머를 반응시키는 단계;
상기 시료에서 압타머 및 MAGE-1의 결합 정도를 측정하는 단계; 및
상기 시료에서 압타머 및 MAGE-1의 결합 정도가 정상 시료보다 높은 경우, 상기 환자를 간암 환자로 판단하는 단계를 포함하는
간암 또는 간암 전이 진단에 정보를 제공하는 방법.
Reacting a biological sample of a patient with a MAGE-1 specific platemer of any one of claims 1 to 5;
Measuring the degree of binding between the platemaker and MAGE-1 in the sample; And
And judging the patient as a liver cancer patient if the degree of binding of the platemaker and MAGE-1 in the sample is higher than that of the normal sample
A method for providing information to a liver cancer or liver cancer metastasis diagnosis.
KR1020170097764A 2017-05-26 2017-08-01 MAGE-1 specific aptamer and use thereof KR20180129585A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20170065470 2017-05-26
KR1020170065470 2017-05-26

Publications (1)

Publication Number Publication Date
KR20180129585A true KR20180129585A (en) 2018-12-05

Family

ID=64743717

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170097764A KR20180129585A (en) 2017-05-26 2017-08-01 MAGE-1 specific aptamer and use thereof

Country Status (1)

Country Link
KR (1) KR20180129585A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111257562A (en) * 2019-09-03 2020-06-09 中南大学 Method for identifying target protein CD63 by using aptamer and application of method in overcoming drug resistance of melanoma vemurafenib

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111257562A (en) * 2019-09-03 2020-06-09 中南大学 Method for identifying target protein CD63 by using aptamer and application of method in overcoming drug resistance of melanoma vemurafenib
CN111257562B (en) * 2019-09-03 2021-09-28 中南大学 Method for identifying target protein CD63 by using aptamer and application of method in overcoming drug resistance of melanoma vemurafenib

Similar Documents

Publication Publication Date Title
Kfoury et al. Human prostate cancer bone metastases have an actionable immunosuppressive microenvironment
JP7219791B2 (en) Compositions and methods for treating patients with RTK mutated cells
Gerber et al. ALK inhibition for non-small cell lung cancer: from discovery to therapy in record time
Lee et al. An RNA aptamer that binds carcinoembryonic antigen inhibits hepatic metastasis of colon cancer cells in mice
Lai et al. Intratumoral epidermal growth factor receptor antisense DNA therapy in head and neck cancer: first human application and potential antitumor mechanisms
EP2868747B1 (en) Aptamer for periostin and anti-cancer composition including same
JP2024023480A (en) Biomarkers for cancer treatment
Li et al. Effect of overexpression of PTEN on apoptosis of liver cancer cells
KR102324242B1 (en) Novel aptamer and its uses
US10577609B2 (en) Glypican-3 specific aptamer and use thereof
CN108410878B (en) LRPRC (LRPRC-like repeat coding sequence) specific aptamer and application thereof
Jiang et al. Identification of tumorigenicity-associated genes in osteosarcoma cell lines based on bioinformatic analysis and experimental validation
Zabriskie et al. A novel AGGF1-PDGFRb fusion in pediatric T-cell acute lymphoblastic leukemia
US10683553B2 (en) Method for determining sensitivity to simultaneous inhibitor against PARP and Tankyrase
KR20180129585A (en) MAGE-1 specific aptamer and use thereof
US20200009177A1 (en) Methods of inhibiting cancer stem cells with hmga1 inhibitors
EP3969000B1 (en) Bcl-2 inhibitors for use in the treatment of a bcl-2 mediated cancer carrying the gly101val mutation
US20230121867A1 (en) Compositions and methods for treating diseases and conditions by depletion of mitochondrial or genomic dna from circulation
US20220363767A1 (en) Hla-h, hla-j, hla-l, hla-v and hla-y as therapeutic and diagnostic targets
CN111139299B (en) Application of JOSD2 protein in preparing medicine for treating malignant tumor
WO2023002983A1 (en) Method for determining sensitivity to fgfr inhibitor
KR20200022187A (en) Composition for enhancing radiation sensitivity comprising expression or activity inhibitor of NONO
TWI402265B (en) A Method for Predicting the Therapeutic Effect of Chemotherapy for Patients with Hepatocellular Carcinoma
CN107604064B (en) Application of CCL20 in tumor chemotherapy curative effect evaluation and tumor treatment
KR20230022812A (en) A pharmaceutical composition for treating triple negative breast cancer comprising a synthetic nucleic acid ligand as an active ingredient

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application