KR20180126322A - Escherichia coli producing glycolate from xylose, method for preparing the same and method for producing glycolate using the same - Google Patents

Escherichia coli producing glycolate from xylose, method for preparing the same and method for producing glycolate using the same Download PDF

Info

Publication number
KR20180126322A
KR20180126322A KR1020170061244A KR20170061244A KR20180126322A KR 20180126322 A KR20180126322 A KR 20180126322A KR 1020170061244 A KR1020170061244 A KR 1020170061244A KR 20170061244 A KR20170061244 A KR 20170061244A KR 20180126322 A KR20180126322 A KR 20180126322A
Authority
KR
South Korea
Prior art keywords
gene
acid
glycolic acid
coli
xylose
Prior art date
Application number
KR1020170061244A
Other languages
Korean (ko)
Other versions
KR102003374B1 (en
Inventor
정욱진
카부롱 루디스
발데후에사 크리스
라모스 크리스틴
마자 페리
바네레스 안젤로
니소라 그레이스
이원근
Original Assignee
명지대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 명지대학교 산학협력단 filed Critical 명지대학교 산학협력단
Priority to KR1020170061244A priority Critical patent/KR102003374B1/en
Publication of KR20180126322A publication Critical patent/KR20180126322A/en
Application granted granted Critical
Publication of KR102003374B1 publication Critical patent/KR102003374B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1205Phosphotransferases with an alcohol group as acceptor (2.7.1), e.g. protein kinases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)
    • C12N9/92Glucose isomerase (5.3.1.5; 5.3.1.9; 5.3.1.18)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/42Hydroxy-carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01179D-Xylose 1-dehydrogenase (NADP+) (1.1.1.179)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/03Oxidoreductases acting on the CH-OH group of donors (1.1) with a oxygen as acceptor (1.1.3)
    • C12Y101/03015(S)-2-Hydroxy-acid oxidase (1.1.3.15)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/01Phosphotransferases with an alcohol group as acceptor (2.7.1)
    • C12Y207/01017Xylulokinase (2.7.1.17)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y503/00Intramolecular oxidoreductases (5.3)
    • C12Y503/01Intramolecular oxidoreductases (5.3) interconverting aldoses and ketoses (5.3.1)
    • C12Y503/01005Xylose isomerase (5.3.1.5)

Abstract

The present invention relates to Escherichia coli having the ability to produce glycolic acid from xylose, a method for preparing the same, and a method for producing glycolic acid using the same. More specifically, the present invention relates to transformed Escherichia coli which can mass-produce glycolic acid from xylose, a method for preparing the same, and a method for producing glycolic acid from xylose using the transformed Escherichia coli. According to the present invention, transformed Escherichia coli which can mass-produce glycolic acid from xylose can be provided. Also, according to the present invention, a by-product generated in the process of producing glycolic acid from xylose can be introduced to the glycolic acid biosynthesis pathway, and thus the yield of by-products can be significantly reduced while producing glycolic acid in high yields.

Description

자일로스로부터 글리콜산의 생산능을 갖는 대장균, 이의 제조방법 및 이를 이용하여 글리콜산을 생산하는 방법{ESCHERICHIA COLI PRODUCING GLYCOLATE FROM XYLOSE, METHOD FOR PREPARING THE SAME AND METHOD FOR PRODUCING GLYCOLATE USING THE SAME}TECHNICAL FIELD [0001] The present invention relates to an Escherichia coli having the ability to produce glycolic acid from xylose, a process for producing the same, and a process for producing glycolic acid using the same. BACKGROUND ART [0002]

본 발명은 자일로스로부터 글리콜산의 생산능을 갖는 대장균, 이의 제조방법 및 이를 이용하여 글리콜산을 생산하는 방법에 관한 것으로, 더욱 상세하게는 자일로스로부터 글리콜산을 대량 생산할 수 있는 형질전환 대장균, 이의 제조방법과 상기 형질전환 대장균을 이용하여 자일로스로부터 글리콜산을 생산하는 방법에 관한 것이다.The present invention relates to a method for producing glycolic acid from xylose, a process for producing the same, and a process for producing glycolic acid using the same, and more particularly, to a process for producing glycolic acid from xylose, And a method for producing glycolic acid from xylose using the above-mentioned transformed E. coli.

글리콜산(glycolic acid, GA)은 가장 단순한 알파 하이드록시산(α hydroxy acid)이다. 글리콜산은 일차 알코올과 적당히 강력한 카복실산 작용기로 인해 광범위하게 응용이 가능하다. 일례로, 글리콜산은 박리효과와 보습효과로 인해 화장품과 피부과에서 널리 사용되고 있다. 글리콜산의 중합체 형태인 폴리글리콜산(polyglycolic acid, PGA)은 우수한 가스 차단성으로 인해 좋은 포장재료로 사용되고 있다. 또한 글리콜산은 의학분야에서 약물 전달에 사용되는 폴리락틱코글리콜산(poly(lactic-co-glycolic acid))의 공중합체 기질로서 필수적으로 사용된다. 아울러, PET병과 의료 봉합사(medical sutures)에서 글리콜산에 대한 수요가 매우 높다. 이 밖에도 가죽 공정, 오일 및 가스 공정, 세탁 및 섬유 공정에서 글리콜산의 적용이 가능하다.Glycolic acid (GA) is the simplest alpha hydroxy acid. Glycolic acid is widely applicable because of its primary alcohol and moderately strong carboxylic acid functional groups. For example, glycolic acid is widely used in cosmetics and dermatology due to its peeling effect and moisturizing effect. Polyglycolic acid (PGA), a polymeric form of glycolic acid, has been used as a good packaging material due to its excellent gas barrier properties. Glycolic acid is also used in the medical field as a copolymeric substrate for poly (lactic-co-glycolic acid) (poly (lactic-co-glycolic acid)). In addition, the demand for glycolic acid in PET bottles and medical sutures is very high. In addition, it is possible to apply glycolic acid in leather processes, oil and gas processes, laundry and textile processes.

Du Pont Company에서 통상적으로 생산되는 글리콜산은 고온 및 고압 조건에서 화석 연료원으로부터 물과 산 촉매가 존재할 때 포름알데하이드와 일산화탄소의 반응을 통해 생산된다. 다른 제조사에서는 클로로아세트산과 소듐 하이드록시드의 직접 반응과 재산성화(reacidification)를 통해 글리콜산을 제조한다. 그 외, 글리콜산을 합성하는 다른 화학적인 방법으로는 (1) 에틸렌 글리콜을 글리콜알데하이드로 산화한 후 글리콜산으로 산화하는 방법 및 (2) 포름알데하이드 시아노하이드린을 제조한 후 이를 수화하는 방법이 있다.Glycolic acid, which is commonly produced by Du Pont Company, is produced through the reaction of formaldehyde and carbon monoxide when water and acid catalysts are present from a fossil fuel source at high and high pressure conditions. Other manufacturers produce glycolic acid through direct reaction and reacidification of chloroacetic acid and sodium hydroxide. Other chemical methods for synthesizing glycolic acid include (1) a method in which ethylene glycol is oxidized with glycolaldehyde and then oxidized with glycolic acid, and (2) a method in which formaldehyde cyanohydrin is prepared and then hydrated have.

최근 화석 연료의 고갈로 인한 우려가 증가함에 따라, 글리옥실산 션트(glyoxylate shunt) 경로에 관여하는 유전자를 과발현하여 이를 담지한 형질전환된 미생물에서 글리콜산을 생산하는 방법이 개발되어 왔다. 반면에, 글리콜산은 종래 연구에서 E. coli의 Dahms 경로를 이용하여 에틸렌 글리콜을 생산하기 위해 자일로스를 발효하는 과정에서 생성되는 부산물로 알려져 있었다. 아울러, 글리옥실산 션트 경로를 역으로 적용하는 방법을 통해 탄소를 보존하면서 순차적으로 글리콜산의 생산을 증가시킬 수 있는 방법이 보고되어 있다. 그러나, 지금까지 Dahms 경로와 글리옥실산 션트 경로를 결합하여 글리콜산을 생합성하는 방법에 대한 연구는 보고된 바 없다.Recently, as concerns over depletion of fossil fuels have increased, methods have been developed for over-expressing genes involved in the glyoxylate shunt pathway and producing glycolic acid from the transformed microorganisms carrying them. On the other hand, glycolic acid has been known as a byproduct produced during the fermentation of xylose to produce ethylene glycol using the Dahms pathway of E. coli in the prior art. In addition, there has been reported a method of sequentially increasing the production of glycolic acid while preserving carbon through a reverse application of the glyoxylic acid shunt pathway. However, no studies on the biosynthesis of glycolic acid by combining the Dahms pathway and the glyoxylic acid shunt pathway have been reported so far.

Mainguet, S. E., L. S. Gronenberg, S. S. Wong, and J. C. Liao (2013) A reverse glyocylate shunt to build a non-native route from C4 to C2 in Escherichia coli. Metab. Eng. 19: 116-127.Mainguet, S. E., L. S. Gronenberg, S. S. Wong, and J. C. Liao (2013) A reverse glycylate shunt to build a non-native route from C4 to C2 in Escherichia coli. Metab. Eng. 19: 116-127.

본 발명은 자일로스로부터 글리콜산을 효율적으로 생산할 수 있는 형질 전환된 대장균(재조합 대장균)과 이를 제조하는 방법을 제공한다. 또한 상기 형질 전환된 대장균을 이용하여 글리콜산을 생산하는 방법을 제공한다.The present invention provides a transformed Escherichia coli (recombinant Escherichia coli) capable of efficiently producing glycolic acid from xylose and a process for producing the same. Also provided is a method for producing glycolic acid using the transformed Escherichia coli.

상기 목적을 달성하기 위하여, 본 발명은 대장균에서 자일로스 이소머라제(xylose isomerase) 유전자 xylA 및 자일루로키나아제(xylulokinase) 유전자 xylB 녹아웃 시키는 단계(단계 a); 단계 a의 대장균에서 글리콜산 옥시다아제(glycolate oxidase) 유전자 glcD를 녹아웃시키는 단계(단계 b); 및 자일로스 디하이드로게나아제(xylose dehydrogenase) 유전자 xdh를 포함하는 발현벡터를 이용하여 단계 b의 대장균을 형질전환시키는 단계(단계 c)를 포함하는, 글리콜산 생산능을 갖는 형질전환 대장균의 제조방법을 제공한다.In order to achieve the above object, the present invention provides a method for producing xylose isomerase gene xylA And knocking out the xylulokinase gene xylB (step a); Knocking out the glycolic acid oxidase gene glcD in E. coli of step a (step b); And a step (c) of transforming Escherichia coli of step (b) using an expression vector comprising xylose dehydrogenase gene xdh , wherein the step (c) comprises the step of transforming Escherichia coli .

상기 자일로스 이소머라제 유전자 xylA는 서열번호 1로 기재되는 염기서열로 구성될 수 있다.The xylose isomerase gene xylA may be composed of the nucleotide sequence shown in SEQ ID NO: 1.

상기 자일루로키나아제 유전자 xylB는 서열번호 2로 기재되는 염기서열로 구성될 수 있다.The xylurokinase gene xylB may be composed of the nucleotide sequence shown in SEQ ID NO: 2.

상기 글리콜산 옥시다아제 유전자 glcD는 서열번호 3으로 기재되는 염기서열로 구성될 수 있다.The glycolic acid oxidase gene glcD may be composed of the nucleotide sequence shown in SEQ ID NO: 3.

상기 자일로스 디하이드로게나아제 유전자 xdh는 카우로박터 크리센투스(Caulobacter crescentus)로부터 유래된 것으로서 서열번호 4로 기재되는 염기서열로 구성될 수 있다.The xylose dehydrogenase gene xdh is expressed by Caulobacter < RTI ID = 0.0 > crescentus ) and may be composed of the nucleotide sequence shown in SEQ ID NO: 4.

상기 단계 c의 발현벡터는 자일론산 디하이드라타제(xylonic acid dehydratase) 유전자 yjhG, 자일론산 디하이드라타제(xylonic acid dehydratase) 유전자 yagF, 자일론산 디하이드라타제(xylonic acid dehydratase) 유전자 xylD, 2,3-케토 자일론산 알돌라아제(2,3-keto xylonate aldolase) 유전자 yjhH, 2,3-케토 자일론산 알돌라아제(2,3-keto xylonate aldolase) 유전자 yagE, 락트알데하이드 디하이드로게나아제(lactaldehyde dehydrogenase) 유전자 aldA, 글리옥실산 환원효소(glyoxylate reductase) 유전자 ycdW, 이소시트르산 리아제(isocitrate lyase) 유전자 aceA, 이소시트르산 디하이드로게나아제 키나아제/포스파타제(isocitrate dehydrogenase kinase/phosphatase) 유전자 aceK, 말산 티오키나아제(malate thiokinase) 유전자 sucC -2, 말산 티오키나아제(malate thiokinase) 유전자 sucD -2 및 말릴-CoA 리아제(malyl-CoA lyase) 유전자 mcl - 1으로 이루어진 군 중 하나 이상을 더 포함할 수 있으며, 상기 유전자들은 각각 기재된 순서대로 서열번호 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 및 16으로 기재되는 염기서열로 구성될 수 있다.The expression vector of step c is selected from the group consisting of xylonic acid dehydratase gene yjhG , xylonic acid dehydratase gene yagF , xylonic acid dehydratase gene xylD , 2 , The 2,3-keto xylonate aldolase gene yjhH , the 2,3-keto xylonate aldolase gene yagE , the lactaldehyde dehydrogenase ( lactaldehyde dehydrogenase gene aldA , glyoxylate reductase gene ycdW , isocitrate lyase gene aceA , isocitrate dehydrogenase kinase / phosphatase gene aceK , malic acid thiokinase (malate thiokinase) -2 sucC gene, thio malic acid kinase (malate thiokinase) -2 sucD gene and dry -CoA lyase (malyl-CoA lyase) gene mcl - 1 And the nucleotide sequence of SEQ ID NOS: 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 and 16 ≪ / RTI >

상기 단계 c의 발현벡터는, 자일론산 디하이드라타제 유전자 yagF, 2,3-케토 자일론산 알돌라아제 유전자 yagE, 락트알데하이드 디하이드로게나아제 유전자 aldA, 글리옥실산 환원효소 유전자 ycdW, 이소시트르산 리아제 유전자 aceA 및 이소시트르산 디하이드로게나아제 키나아제/포스파타제 유전자 aceK의 조합을 포함하는 것이 바람직할 수 있다. Wherein the expression vector of step c is selected from the group consisting of xylonic acid dihydratase gene yagF , 2,3- ketojylonic acid aldolase gene yagE , lactaldehyde dehydrogenase gene aldA , glyoxylic acid reductase gene ycdW , isocitrate lyase it may be desirable to include a combination of the gene aceA and iso-citric acid dehydrogenase kinase / phosphatase gene aceK.

상기 대장균은 E. coli W3110(DE3)일 수 있다.The E. coli may be E. coli W3110 (DE3).

또한 본 발명은, 자일로스 이소머라제 유전자 xylA, 자일루로키나아제(xylulokinase) 유전자 xylB 및 글리콜산 옥시다아제 유전자 glcD가 녹아웃된 대장균을, 자일로스 디하이드로게나아제 유전자 xdh를 포함하는 발현벡터로 형질전환시킨, 글리콜산 생산능을 갖는 형질전환 대장균을 제공한다.The present invention also provides a method for producing a recombinant vector comprising the step of transforming Escherichia coli knocked out with xylose isomerase gene xylA , xylulokinase gene xylB and glycolic acid oxidase gene glcD with an expression vector containing xylose dehydrogenase gene xdh , And a transformed E. coli having a glycolic acid producing ability.

상기 발현벡터는 자일론산 디하이드라타제 유전자 yjhG, 자일론산 디하이드라타제 유전자 yagF, 자일론산 디하이드라타제 유전자 xylD, 2,3-케토 자일론산 알돌라아제 유전자 yjhH, 2,3-케토 자일론산 알돌라아제 유전자 yagE, 락트알데하이드 디하이드로게나아제 유전자 aldA, 글리옥실산 환원효소 유전자 ycdW, 이소시트르산 리아제 유전자 aceA, 이소시트르산 디하이드로게나아제 키나아제/포스파타제 유전자 aceK, 말산 티오키나아제 유전자 sucC -2, 말산 티오키나아제 유전자 sucD -2 및 말릴-CoA 리아제 유전자 mcl - 1으로 이루어진 군 중 하나 이상을 더 포함할 수 있다.The expression vector may be selected from the group consisting of a xylon dehydratase gene yjhG , a xylonic acid dihydratase gene yagF , a xylonic acid dihydratase gene xylD , a 2,3-keto xylonic acid aldolase gene yjhH , A lactic acid aldolase gene yagE , a lactaldehyde dehydrogenase gene aldA , a glyoxylic acid reductase gene ycdW , an isocitrate lyase gene aceA , an isocitrate dihydrogenase kinase / phosphatase gene aceK , a malonic acid thiokinase gene sucC -2 , Malate thiokinase gene sucD- 2 and malyl - CoA lyase gene mcl - 1 .

또한 본 발명은, 자일로스 이소머라제 유전자 xylA, 자일루로키나아제 유전자 xylB 및 글리콜산 옥시다아제 유전자 glcD를 녹아웃시킨 대장균을, 자일로스 디하이드로게나아제 유전자 xdh, 자일론산 디하이드라타제 유전자 yagF, 2,3-케토 자일론산 알돌라아제 유전자 yagE, 락트알데하이드 디하이드로게나아제 유전자 aldA, 글리옥실산 환원효소 유전자 ycdW, 이소시트르산 분해효소 유전자 aceA 및 이소시트르산 디하이드로게나아제 키나아제/포스파타제 유전자 aceK를 포함하는 발현벡터로 형질전환시킨, 글리콜산의 생산능을 갖는 형질전환 대장균을 제공한다.In another aspect, the present invention, xylose isomerase gene xylA, xylene ruro kinase gene xylB and glycolic acid oxidase gene of E. coli which knock out glcD, xylose dehydrogenase gene xdh, xylene acid di-hydrazide hydratase gene yagF, 2, Expression comprising the 3-keto- xylonic acid aldolase gene yagE , the lactaldehyde dehydrogenase gene aldA , the glyoxylic acid reductase gene ycdW , the isocitrate degrading enzyme gene aceA and the isocitrate dihydrogenase / kinase / phosphatase gene aceK Transformed E. coli having the ability to produce glycolic acid.

또한 본 발명은, 자일로스 이소머라제 유전자 xylA, 자일루로키나아제 유전자 xylB 및 글리콜산 옥시다아제 유전자 glcD를 녹아웃시킨 대장균을, 자일로스 디하이드로게나아제 유전자 xdh, 자일론산 디하이드라타제 유전자 yagF, 2,3-케토 자일론산 알돌라아제 유전자 yagE, 락트알데하이드 디하이드로게나아제 유전자 aldA 및 글리옥실산 환원효소 유전자 ycdW를 포함하는 제1 발현벡터와 이소시트르산 분해효소 유전자 aceA 및 이소시트르산 디하이드로게나아제 키나아제/포스파타제 유전자 aceK를 포함하는 제2 발현벡터로 형질전환시킨, 글리콜산의 생산능을 갖는 형질전환 대장균을 제공한다.In another aspect, the present invention, xylose isomerase gene xylA, xylene ruro kinase gene xylB and glycolic acid oxidase gene of E. coli which knock out glcD, xylose dehydrogenase gene xdh, xylene acid di-hydrazide hydratase gene yagF, 2, A first expression vector comprising the 3-keto- xylonic acid aldolase gene yagE , the lactaldehyde dehydrogenase gene aldA and the glyoxylic acid reductase gene ycdW , the isocitrate synthase gene aceA and the isocitrate dihydrogenase kinase / And a second expression vector comprising a phosphatase gene aceK , wherein the transformed E. coli is capable of producing glycolic acid.

상기 제1 발현벡터는 pACM4이고, 제2 발현벡터는 pETM6일 수 있다.The first expression vector may be pACM4 and the second expression vector may be pETM6.

또한 본 발명은, 자일로스 이소머라제 유전자 xylA, 자일루로키나아제 유전자 xylB 및 글리콜산 옥시다아제 유전자 glcD가 녹아웃되고, 자일로스 디하이드로게나아제 유전자 xdh를 포함하는 발현벡터로 형질전환된 대장균을, 자일로스를 포함하는 배지에 배양시키는 단계(단계 1); 및 단계 1에서 배양된 배양물로부터 글리콜산을 수득하는 단계(단계 2)를 포함하는, 글리콜산의 생산 방법을 제공한다.In another aspect, the present invention, xylose isomerase gene xylA, xylene ruro kinase gene and the xylB and glycolic acid oxidase gene glcD knockout, xylose dehydrogenase of E. coli transformed with Kinase expression vector containing the gene xdh, xylose (Step 1); And a step (step 2) of obtaining a glycolic acid from the culture cultured in step 1.

상기 단계 1의 배양은 진탕 플라스크 발효(shake flask fermentation) 방법을 사용할 수 있다.The culture of step 1 may be performed by a shake flask fermentation method.

본 발명에 따르면 자일로스로부터 글리콜산을 대량 생산할 수 있는 형질전환 대장균을 제공할 수 있다. 또한 본원 발명에 따르면, 자일로스로부터 글리콜산을 생산하는 과정에서 발생하는 부산물을 글리콜산 생합성경로로 도입시킬 수 있는 바, 부산물의 생산은 현저히 낮추면서 동시에 높은 수율로 글리콜산을 생산할 수 있다.According to the present invention, it is possible to provide a transformed E. coli which can mass-produce glycolic acid from xylose. Also, according to the present invention, by-products generated in the course of producing glycolic acid from xylose can be introduced into the glycolic acid biosynthesis pathway, glycolic acid can be produced at a high yield while significantly reducing the production of by-products.

도 1은 본 발명의 일 실시예에 따른 형질전환 미생물을 이용하여, Dahms 경로와 변형된 글리옥실산 션트 경로를 통해 글리콜산을 생합성하는 과정을 나타내는 것이다.
도 2는 4 g/L 자일로스를 사용하여 37℃에서 72시간 동안 진탕 플라스크 발효하고 250 rpm에서 교반한 후에 GA1 균주를 초기에 배양하는 과정에서 생성되는 대사산물의 농도를 나타낸 그래프이다.
도 3은 10 g/L 자일로스를 사용하여 72시간 동안 진탕 플라스크 발효한 후에 대조군인 GA0과 GA1 균주에서 생산되는 글리콜산 및 자일론산의 농도를 나타낸 그래프이다.
도 4는 10 g/L 자일로스를 사용하여 37℃에서 72시간동 안 진탕 플라스크 발효하고 250 rpm에서 교반한 후에, 자일론산 디하이드라타제인 xdh가 모두 과발현되어 있고, C. crescentus 유래 xylD, E. coli 유래 yjhG yagF 가 각각 과발현되어 있는 GA2, GA3 및 GA4 균주에서 생산되는 글리콜산 및 자일론산의 농도를 나타낸 그래프이다.
도 5는 10 g/L 자일로스를 사용하여 37℃에서 72시간 동안 진탕 플라스크 발효하고 250 rpm에서 교반한 후에 GA5와 GA6 균주에서 생산되는 글리콜산 및 자일론산의 농도를 나타낸 그래프이다.
도 6은 서로 다른 자일론산 디하이드라타제가 과발현되어 있는 균주에서의 락트알데하이드 디하이드로게나아제(aldA)의 과발현이 글리콜산 생산에 미치는 영향을 분석한 그래프이다.
도 7은 96시간 동안 진탕 플라스크 발효한 후에 모듈 Ⅰ 플라스미드와 모듈 Ⅱ의 플라스미드의 유전자를 각자 또는 모두 갖고 있는 균주들로부터 생산되는 글리콜산의 농도를 비교한 결과이다.
도 8은 96시간 동안 진탕 플라스크 발효한 후에 모듈 Ⅰ 플라스미드와 모듈 Ⅱ의 플라스미드의 유전자를 모두 갖고 있으나 서로 다른 유전자가 결실된 균주인 GA14와 GA21로부터 생산되는 글리콜산의 농도 및 수율을 비교한 결과이다.
FIG. 1 shows a process of biosynthesizing glycolic acid through a Dahms pathway and a modified glyoxylic acid shunt pathway using a transforming microorganism according to an embodiment of the present invention.
FIG. 2 is a graph showing the concentration of metabolites produced during the initial culture of strain GA1 after fermentation in a shaking flask for 72 hours at 37.degree. C. using 4 g / L xylose and stirring at 250 rpm.
FIG. 3 is a graph showing the concentrations of glycolic acid and xylonic acid produced in the control strains GA0 and GA1 after fermentation in a shaking flask for 72 hours using 10 g / L xylose.
Figure 4 shows that xdh , a xylonic acid dihydratase, was overexpressed after fermentation in a shaking flask for 72 hours at 37 ° C using 10 g / L xylose and stirring at 250 rpm, and xylD derived from C. crescentus , YjhG from E. coli And yagF were overexpressed, respectively, as shown in FIG.
5 is a graph showing the concentrations of glycolic acid and xylonic acid produced in strain GA5 and GA6 after fermentation in a shaking flask for 72 hours at 37 DEG C using 10 g / L xylose and stirring at 250 rpm.
6 is a graph showing the effect of overexpression of lactaldehyde dehydrogenase ( aldA ) on the production of glycolic acid in strains overexpressing different xylonic acid dihydratases .
Figure 7 shows the results of comparing the concentrations of glycolic acid produced from strains harboring either or both of the genes of the plasmids of module I and module II after fermentation in a shaking flask for 96 hours.
FIG. 8 shows the results of comparing the concentrations and yields of glycolic acid produced from the GA14 and GA21 strains having both the module I plasmid and the plasmid gene of the module II after the fermentation for 96 hours in the shaking flask .

이하, 실시예를 통하여 본 발명을 보다 상세하게 설명한다. 본 발명의 목적, 특징, 장점은 이하의 실시예를 통하여 쉽게 이해될 것이다. 본 발명은 여기서 설명하는 실시예에 한정되지 않고, 다른 형태로 구체화될 수도 있다. 여기서 소개되는 실시예는 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 제공되는 것이다. 따라서 이하의 실시예에 의해 본 발명이 제한되어서는 안 된다.Hereinafter, the present invention will be described in more detail with reference to Examples. The objects, features and advantages of the present invention will be readily understood through the following examples. The present invention is not limited to the embodiments described herein, but may be embodied in other forms. The embodiments described herein are provided to enable those skilled in the art to fully understand the spirit of the present invention. Therefore, the present invention should not be limited by the following examples.

<< 실시예Example > >

글리콜산Glycolic acid 생산능을Production capacity 갖는 형질전환 미생물의 제조 Preparation of transgenic microorganisms having

본 발명에서 사용한 모든 균주와 플라스미드는 하기 표 1과 같다.All strains and plasmids used in the present invention are shown in Table 1 below.

본 발명에서 사용한 플라스미드 및 균주The plasmid and strain used in the present invention 플라스미드/균주Plasmid / strain 상대적 특징Relative feature 참조Reference pACM4pACM4 pACYC-Duet derivative; with ePathBrick feature; T7 promoter; CmrpACYC-Duet derivative; with ePathBrick feature; T7 promoter; Cmr Xu et al.,
2012
Xu et al.,
2012
pETM6pETM6 pET-Duet derivative; with ePathBrick feature; T7 promoter; AmprpET-Duet derivative; with ePathBrick feature; T7 promoter; Ampr Xu et al., 2012Xu et al., 2012 pTrcHis2ApTrcHis2A pBR322 derivative; Trc promoter; rrnB anti-terminator; lacIq;AmprpBR322 derivative; Trc promoter; rRnB anti-terminator; Amp InvitrogenInvitrogen pXpX Caulobacter crescentus 유래 코돈-최적화된 xdh를 담지한 pACM4 Caulobacter pCM4 carrying crescentus- derived codon-optimized xdh 본 발명Invention pXDpXD C. crescentus 유래 코돈-최적화된 xdhxylD를 담지한 pACM4PACM4 carrying the optimized xdh and xylD - C. crescentus derived codon 본 발명Invention pXGpXG C. crescentus 유래 코돈-최적화된 xdhE. coli 유래 yjhG를 담지한 pACM4PACM4 carrying the E. coli-derived and optimized xdh yjhG - C. crescentus derived codon 본 발명Invention pXFpXF C. crescentus 유래 코돈-최적화된 xdhE. coli 유래 yagF를 담지한 pACM4 PCM4 carrying cadons -optimized xdh from C. crescentus and yagF from E. coli 본 발명Invention pXEpXE C. crescentus 유래 코돈-최적화된 xdhE. coli 유래 yagE를 담지한 pACM4 PACM4 carrying cadons -optimized xdh from C. crescentus and yagE from E. coli 본 발명Invention pXHpXH C. crescentus 유래 코돈-최적화된 xdhE. coli 유래 yjhH를 담지한 pACM4 PCM4 carrying cadons -optimized xdh from C. crescentus and yjhH from E. coli 본 발명Invention pEFXpEFX E. coli 유래 yagE yagF; C. crescentus 유래 코돈-최적화된 xdh를 담지한 pACM4 YagE from E. coli And yagF ; PCM4 carrying the codon-optimized xdh from C. crescentus 본 발명Invention pEAGXpEAGX E. coli 유래 yagE, aldA yjhG; C. crescentus 유래 코돈-최적화된 xdh를 담지한 pACM4 E. coli derived yagE , alda And yjHG ; PCM4 carrying the codon-optimized xdh from C. crescentus 본 발명Invention pEADXpEADX E. coli 유래 yagE aldA; C. crescentus 유래 코돈-최적화된 xylDxdh를 담지한 pACM4 YagE from E. coli and alda ; PACM4 carrying the optimized xylD and xdh - C. crescentus derived codon 본 발명Invention pEAFXpEAFX E. coli 유래 yagE, aldA yagF; C. crescentus 유래 코돈-최적화된 xdh를 담지한 pACM4 E. coli derived yagE , alda And yagF ; PCM4 carrying the codon-optimized xdh from C. crescentus 본 발명Invention pEAXpEAX E. coli 유래 yagE aldA; C. crescentus 유래 코돈-최적화된 xdh를 담지한 pACM4 YagE from E. coli and alda ; PCM4 carrying the codon-optimized xdh from C. crescentus 본 발명Invention pEAFXY(Module I)pEAFXY (Module I) E. coli 유래 yagE, aldA, yagF ycdW; C. crescentus 유래 코돈-최적화된 xdh를 담지한 pACM4 E. coli derived yagE , alda , yagF And ycdW ; PCM4 carrying the codon-optimized xdh from C. crescentus 본 발명Invention pCDpCD Methylococcus capsulatus 유래 코돈-최적화된 sucC -2sucD -2를 담지한 pETM6 Methylococcus capsulatus- derived codon-optimized sucC- 2 and sucD- 2- bearing pETM6 본 발명Invention pKpK E. coli 유래 aceK를 담지한 pETM6PETM6 carrying the E. coli-derived aceK 본 발명Invention pMpM Rhodobacter sphaeroides 유래 코돈-최적화된 mcl1을 담지한 pETM6 Rhodobacter pETM6 carrying sphaeroides- derived codon-optimized mcl1 본 발명Invention pApA E. coli 유래 aceA를 담지한 pETM6PETM6 carrying the E. coli-derived aceA 본 발명Invention pCDMpCDM M. capsulatus 유래 코돈-최적화된 sucC -2sucD -2; R. sphaeroides 유래 코돈-최적화된 mcl1을 담지한 pETM6 M. capsulatus- derived codon-optimized sucC- 2 and sucD- 2 ; PETM6 carrying R. sphaeroides- derived codon-optimized mcl1 본 발명Invention pKApKA E. coli 유래 aceK ceA를 담지한 pETM6 AceK from E. coli And pETM6 carrying ceA 본 발명Invention pCDKMA(Module II)pCDKMA (Module II) M. capsulatus 유래 코돈-최적화된 sucC -2sucD -2; R. sphaeroides 유래 코돈-최적화된 mcl1; E. coli 유래 aceKaceA를 담지한 pETM6 M. capsulatus- derived codon-optimized sucC- 2 and sucD- 2 ; R. sphaeroides derived codon-optimized mcl1 ; E. coli-derived pETM6 carrying aceK and aceA 본 발명Invention E. coli DH5αE. coli DH5α F’ Φ80lacZ ΔM15 (lacZYA-argF)U169 deoR recA1 endA1 hsdR17(rk-,mk+)phoAsupE44thi-1gyrA96relA1F 'Φ80lacZ ΔM15 (lacZYA-argF) U169 deoR recA1 endA1 hsdR17 (rk-, mk +) phoAsupE44thi-1gyrA96relA1 EnzynomicsEnzynomics E. coli W3110 (DE3) xylABE. coli W3110 (DE3) xylAB FmcrA mcrB IN(rrnDrrnE)1λ(DE3); ATCC No.27325; with deletion in xylAB genesFmcrA mcrB IN (rrnDrrnE) 1? (DE3); ATCC No. 27325; with deletion in xylAB genes Liu et al., 2012Liu et al., 2012 GA0-1GA0-1 E. coli W3110 (DE3) ΔxylAB ΔglcD pACM4E. coli W3110 (DE3) ΔxylAB ΔglcD pACM4 본 발명Invention GA0-2GA0-2 E. coli W3110 (DE3) ΔxylAB ΔglcD pACM4 and pETM6E. coli W3110 (DE3) ΔxylAB ΔglcD pACM4 and pETM6 본 발명Invention GA1GA1 E. coli W3110 (DE3) ΔxylAB ΔglcD pXE. coli W3110 (DE3) ΔxylAB ΔglcD pX 본 발명Invention GA2GA2 E. coli W3110 (DE3) ΔxylAB ΔglcD pXDE. coli W3110 (DE3) ΔxylAB ΔglcD pXD 본 발명Invention GA3GA3 E. coli W3110 (DE3) ΔxylAB ΔglcD pXGE. coli W3110 (DE3) ΔxylAB ΔglcD pXG 본 발명Invention GA4GA4 E. coli W3110 (DE3) ΔxylAB ΔglcD pXFE. coli W3110 (DE3) ΔxylAB ΔglcD pXF 본 발명Invention GA5GA5 E. coli W3110 (DE3) ΔxylAB ΔglcD pXEE. coli W3110 (DE3) ΔxylAB ΔglcD pXE 본 발명Invention GA6GA6 E. coli W3110 (DE3) ΔxylAB ΔglcD pXHE. coli W3110 (DE3) ΔxylAB ΔglcD pXH 본 발명Invention GA7GA7 E. coli W3110 (DE3) ΔxylAB ΔglcD pEFXE. coli W3110 (DE3) ΔxylAB ΔglcD pEFX 본 발명Invention GA8GA8 E. coli W3110 (DE3) ΔxylAB ΔglcD pEAGXE. coli W3110 (DE3) ΔxylAB ΔglcD pEAGX 본 발명Invention GA9GA9 E. coli W3110 (DE3) ΔxylAB ΔglcD pEADXE. coli W3110 (DE3) ΔxylAB ΔglcD pEADX 본 발명Invention GA10GA10 E. coli W3110 (DE3) ΔxylAB ΔglcD pEAFXE. coli W3110 (DE3) ΔxylAB ΔglcD pEAFX 본 발명Invention GA11GA11 E. coli W3110 (DE3) ΔxylAB ΔglcD pEAXE. coli W3110 (DE3)? XylAB? GlcD pEAX 본 발명Invention GA12GA12 E. coli W3110 (DE3) ΔxylAB ΔglcD pEAFXYE. coli W3110 (DE3) ΔxylAB ΔglcD pEAFXY 본 발명Invention GA13GA13 E. coli W3110 (DE3) ΔxylAB ΔglcD pEAFX and pCDKMAE. coli W3110 (DE3) ΔxylAB ΔglcD pEAFX and pCDKMA 본 발명Invention GA14GA14 E. coli W3110 (DE3) ΔxylAB ΔglcD pEAFXY and pCDKMAE. coli W3110 (DE3) [Delta] xylAB [Delta] glcD pEAFXY and pCDKMA 본 발명Invention GA15GA15 E. coli W3110 (DE3) ΔxylAB ΔglcD pEAFXY and pAE. coli W3110 (DE3) ΔxylAB ΔglcD pEAFXY and pA 본 발명Invention GA16GA16 E. coli W3110 (DE3) ΔxylAB ΔglcD pEAFXY and pCDE. coli W3110 (DE3) ΔxylAB ΔglcD pEAFXY and pCD 본 발명Invention GA17GA17 E. coli W3110 (DE3) ΔxylAB ΔglcD pEAFXY and pKE. coli W3110 (DE3) ΔxylAB ΔglcD pEAFXY and pK 본 발명Invention GA18GA18 E. coli W3110 (DE3) ΔxylAB ΔglcD pEAFXY and pME. coli W3110 (DE3) ΔxylAB ΔglcD pEAFXY and pM 본 발명Invention GA19GA19 E. coli W3110 (DE3) ΔxylAB ΔglcD pEAFXY and pKAE. coli W3110 (DE3) ΔxylAB ΔglcD pEAFXY and pKA 본 발명Invention GA20GA20 E. coli W3110 (DE3) ΔxylAB ΔglcD pEAFXY and pCDME. coli W3110 (DE3) ΔxylAB ΔglcD pEAFXY and pCDM 본 발명Invention GA21GA21 E. coli W3110 (DE3) ΔxylAB ΔglcDEFGB ΔaceB pEAFXY and pCDKMAE. coli W3110 (DE3) ΔxylAB ΔglcDEFGB ΔaceB pEAFXY and pCDKMA 본 발명Invention

하기 표 2의 프라이머를 사용하여 E. coli 유래 유전자를 복제하기 위해 중합효소 연쇄반응(PCR)하는 과정에서 E. coli W3110의 DNA를 주형으로 사용할 동안, 카우로박터 크레센투스(Caulobacter crescentus) 유래 xdh, 로도박터 스패로이드(Rhodobacter sphaeroides) 유래 mcl 및 메틸로코커스 캡슐라투스(Methylococcus capsulatus) 유래 sucC -2sucD -2를 코돈-최적화하였다.While using E. coli W3110 DNA as a template during the PCR for the purpose of cloning E. coli- derived genes using the primers shown in Table 2 below, xdh from Caulobacter crescentus , Rhodobacter sphaeroides- derived mcl and Methylococcus capsulatus- derived sucC -2 and sucD -2 were codon-optimized.


본 발명에서 사용한 프라이머 서열The primer sequence used in the present invention 프라이머primer 서열 5’→ 3’/ 제한효소Sequence 5 '→ 3' / restriction enzyme 기능function cc-xdh-Fcc-xdh-F CGGTCATATGTCTTCTGCGATCTACCCG [NdeI](서열번호 17)CGGT CATATG TCTTCTGCGATCTACCCG [NdeI] (SEQ ID NO: 17) xdh 유전자의 증폭amplification of xdh gene cc-xdh-Rcc-xdH-R CTTTCTCGAGTCAACGCCAACCCGC [XhoI](서열번호 18)CTTT CTCGAG TCAACGCCAACCCGC [XhoI] (SEQ ID NO: 18) cc-xylD-Fcc-xylD-F CTGTCATATGCGTTCTGCGCTGTCTAAC [NdeI](서열번호 19)CTGT CATATG CGTTCTGCGCTGTCTAAC [NdeI] (SEQ ID NO: 19) xylD 유전자의 증폭amplification of the xylD gene cc-xylD-Rcc-xylD-R CGTTCTCGAGTCAGTGGTTGTGACGC [XhoI](서열번호 20)CGTT CTCGAG TCAGTGGTTGTGACGC [XhoI] (SEQ ID NO: 20) yjhG-FyjhG-F GGGGCATATGTCTGTTCGCAATATTTTTG [NdeI](서열번호 21)GGGG CATATG TCTGTTCGCAATATTTTG [NdeI] (SEQ ID NO: 21) yjhG 유전자의 증폭amplification of the yjhG gene yjhG-RyjHG-R CGCCCTCGAGTCAGTTTTTATTCATAAAATCGC [XhoI](서열번호 22)CGCC CTCGAG TCAGTTTTTATTCATAAAATCGC [XhoI] (SEQ ID NO: 22) yagF-FyagF-F CCCGCATATGACCATTGAGAAAATT [NdeI](서열번호 23)CCCG CATATG ACCATTGAGAAAATT [NdeI] (SEQ ID NO: 23) yagF 유전자의 증폭amplification of yagF gene yagF-RyagF-R CTCTCTCGAGTTAAATTCCGAGCGC [XhoI](서열번호 24)CTCT CTCGAG TTAAATTCCGAGCGC [XhoI] (SEQ ID NO: 24) yjhH-FyjHH-F CCCGCATATGAAAAAATTCAGCGGCATTA [NdeI](서열번호 25)CCCG CATATG AAAAAATTCAGCGGCATTA [NdeI] (SEQ ID NO: 25) yjhH 유전자의 증폭 Amplification of the yjhH gene yjhH-RyjHH-R CTCTCTCGAGTTCTCCTCAGACTGGTAA [XhoI](서열번호 26)CTCT CTCGAG TTCTCCTCAGACTGGTAA [XhoI] (SEQ ID NO: 26) yagE-FyagE-F CTCGCATATGATTCAGCAAGGAGATC [NdeI](서열번호 27)CTCG CATATG ATTCAGCAAGGAGATC [NdeI] (SEQ ID NO: 27) yagE 유전자의 증폭amplification of yagE gene yagE-RyagE-R CTCTCTCGAGTCAGCAAAGCTTGAGCTG [XhoI](서열번호 28)CTCT CTCGAG TCAGCAAAGCTTGAGCTG [XhoI] (SEQ ID NO: 28) ycdW-FycdW-F CCCGCATATGGATATCATCTTTTATCACCC [NdeI](서열번호 29)CCCG CATATG GATATCATCTTTTATCACCC [NdeI] (SEQ ID NO: 29) ycdW 유전자의 증폭amplification of the ycdW gene ycdW-RycdW-R CTTTCTCGAGTTAGTAGCCGCGTGCGC [XhoI](서열번호 30)CTTT CTCGAG TTAGTAGCCGCGTGCGC [XhoI] (SEQ ID NO: 30) aceA-FaceA-F CCAACAATTGGATGAAAACCCGTACACAAC [MunI](서열번호 31)CCAA CAATTG GATGAAAACCCGTACACAAC [MunI] (SEQ ID NO: 31) aceA 유전자의 증폭amplification of the aceA gene aceA-RaceA-R CTTTCTCGAGTTAGAACTGCGATTCTTCAG [XhoI](서열번호 32)CTTT CTCGAG TTAGAACTGCGATTCTTCAG [XhoI] (SEQ ID NO: 32) aceK-FAceK-F AAAACATATGCCGCGTGGCCTGGAAT [NdeI](서열번호 33)AAAA CATATG CCGCGTGGCCTGGAAT [NdeI] (SEQ ID NO: 33) aceK 유전자의 증폭amplification of aceK gene aceK-RAceK-R AAAACTCGAGTCAAAAAAGCATCTCCCCATAC [XhoI](서열번호 34)AAAA CTCGAG TCAAAAAAGCATCTCCCCATAC [XhoI] (SEQ ID NO: 34) aldA-FaldA-F CCACCATATGTCAGTACCCGTTCAACATC [NdeI](서열번호 35)CCAC CATATG TCAGTACCCGTTCAACATC [NdeI] (SEQ ID NO: 35) aldA 유전자의 증폭amplification of the aldA gene aldA-RALdA-R CCCCCTCGAGTTAAGACTGTAAATAAACCAC [XhoI](서열번호 36)CCCC CTCGAG TTAAGACTGTAAATAAACCAC [XhoI] (SEQ ID NO: 36) mcl-Fmcl-F CCAACATATGTCTTTCCGTCTGCA [NdeI](서열번호 37)CCAA CATATG TCTTTCCGTCTGCA [NdeI] (SEQ ID NO: 37) mcl1 유전자의 증폭amplification of the mcl1 gene mcl-RmCl-R CAACCTCGAGTCACGCAGAGATCATTT [XhoI](서열번호 38)CAAC CTCGAG TCACGCAGAGATCATTT [XhoI] (SEQ ID NO: 38) sucC-2-FsucC-2-F CCAACATATGAACATCCACGAATACCAGG [NdeI](서열번호 39)CCAA CATATG AACATCCACGAATACCAGG [NdeI] (SEQ ID NO: 39) sucC -2 유전자의 증폭amplification of sucC -2 gene sucC-2-RsucC-2-R CAACCTCGAGTTAACCTTTAACGATCGCAAC [XhoI](서열번호 40)CAAC CTCGAG TTAACCTTTAACGATCGCAAC [XhoI] (SEQ ID NO: 40) sucD-2-FsucD-2-F CCCCCATATGTCTGTTTTCGTTAA [NdeI](서열번호 41)CCCC CATATG TCTGTTTTCGTTAA [NdeI] (SEQ ID NO: 41) sucD -2 유전자의 증폭amplification of sucD -2 gene sucD-2-RsucD-2-R CAAACTCGAGTCAGAAACGGATACC [XhoI](서열번호 42)CAAA CTCGAG TCAGAAACGGATACC [XhoI] (SEQ ID NO: 42) glcD-KO-FglcD-KO-F gctggaaaaaggtgtgttgttggtgatggcgcgctttaaaCATATGAATATCCTCCTTAGT(서열번호 43)gctggaaaaaggtgtgttgttggtgatggcgcgctttaaaCATATGAATATCCTCCTTAGT (SEQ ID NO: 43) glcD 파열 카세트(disruption cassette)의 증폭 amplification of the glcD disruption cassette glcD-KO-RglcD-KO-R AAATCATATTGCTGCGATAAACGGGCAATGCCTTCCAGTAGTGTAGGCTGGAGCTGCTTCG(서열번호 44)AAATCATATTGCTGCGATAAACGGGCAATGCCTTCCAGTAGTGTAGGCTGGAGCTGCTTCG (SEQ ID NO: 44) glcD-Ver-FglcD-Ver-F ATGAGCATCTTGTACGAAGA(서열번호 45)ATGAGCATCTTGTACGAAGA (SEQ ID NO: 45) glcD 파열 확인 glcD burst check glcD-Ver-RglcD-Ver-R TTCAGGGAAAGGTAAATGAC(서열번호 46)TTCAGGGAAAGGTAAATGAC (SEQ ID NO: 46) glcB-KO-FglcB-KO-F ttctctgcacggacgctcgctgctgtttatccgcaacgtgCATATGAATATCCTCCTTAGT(서열번호 47)ttctctgcacggacgctcgctgctgtttatccgcaacgtgCATATGAATATCCTCCTTAGT (SEQ ID NO: 47) glcB 파열 카세트(disruption cassette)의 증폭 amplification of the glcB disruption cassette glcB-KO-RglcB-KO-R TTCAAATTCAGCATTGAACTCGGTCTGGGCAATGTTGGCTGTGTAGGCTGGAGCTGCTTCG(서열번호 48)TTCAAATTCAGCATTGAACTCGGTCTGGGCAATGTTGGCTGTGTAGGCTGGAGCTGCTTCG (SEQ ID NO: 48) glcB-Ver-FglcB-Ver-F cgcacatcaacgatgttatc(서열번호 49)cgcacatcaacgatgttatc (SEQ ID NO: 49) glcB 파열 확인Check glcB rupture glcB-Ver-RglcB-Ver-R GCCACATTGTGAATATCCGG(서열번호 50)GCCACATTGTGAATATCCGG (SEQ ID NO: 50) aceB-KO-FaceB-KO-F tcactggcaccagactggaacaaagtgatcgacgggcaaa CATATGAATATCCTCCTTAGT(서열번호 51)tcactggcaccagactggaacaaagtgatcgacgggcaaa CATATGAATATCCTCCTTAGT (SEQ ID NO: 51) aceB 파열 카세트(disruption cassette)의 증폭 Amplification of the aceB disruption cassette aceB-KO-RaceB-KO-R ACCGTTATTGGCTTCCAGCGATTTATCCGCTTTTACTTTGGTGTAGGCTGGAGCTGCTTCG(서열번호 52)ACCGTTATTGGCTTCCAGCGATTTATCCGCTTTTACTTTGGTGTAGGCTGGAGCTGCTTCG (SEQ ID NO: 52) aceB-Ver-FaceB-Ver-F gaaacagcttccattcgcg(서열번호 53)gaaacagcttccattcgcg (SEQ ID NO: 53) aceB 파열 확인 aceB Confirmation of rupture aceB-Ver-RaceB-Ver-R GTAATCGGCGCGTCTTGTTC(서열번호 54)GTAATCGGCGCGTCTTGTTC (SEQ ID NO: 54) yagF-His-FYAG F-His-F CCCCTCGAGAACCATTGAGAAAATT [XhoI](서열번호 55)CCC CTCGAG AACCATTGAGAAAATT [XhoI] (SEQ ID NO: 55) His tag이 부착된 yagF 유전자의 증폭 Amplification of His tagged yagF gene yagF-His-RYAG F-His-R CCCAAGCTTAATTCCGAGCGCTTTTTT [HindIII](서열번호 56)CCC AAGCTT AATTCCGAGCGCTTTTTT [HindIII] (SEQ ID NO: 56)

PCR 산물은 NdeI/XhoI 또는 MunI/XhoI으로 처리하였고, Mattheos Koffas에서 제공하고 동일한 효소로 처리된 pACM4(Addgene plasmid # 49797) 또는 pETM6(Addgene plasmid # 49795)로 복제하였다. The PCR product was treated with NdeI / XhoI or MunI / XhoI and cloned into pACM4 (Addgene plasmid # 49797) or pETM6 (Addgene plasmid # 49795) provided by Mattheos Koffas and treated with the same enzyme.

첫 번째 모듈 플라스미드는 각각의 유전자가 독립적인 프로모터(promoter) 하에서 하나의 종결자(terminator)를 공유하는 슈도-오페론 배열(pseudo-operon configuration)로 제작하였다. 공여자 벡터는 AvrⅡ/SalⅠ으로 처리한 후 SpeⅠ/SalⅠ으로 처리한 목적 벡터와 연결하였다. 열린 해독 틀(open reading frame)이 있는 SalⅠ 자리를 포함하는 yagFycdW 유전자를 제작하기 위해, AvrⅡ/NheⅠ로 공여자 벡터를 처리한 후, SpeⅠ/NheⅠ으로 처리되고 탈인산화된 목적 벡터와 연결하였다. The first module plasmid was constructed in a pseudo-operon configuration in which each gene shares a terminator under an independent promoter. The donor vector was treated with Avr II / Sal I and then ligated with the target vector treated with Spe I / Sal I. To construct yagF and ycdW genes containing Sal I sites with an open reading frame, the donor vector was treated with Avr II / Nhe I and then ligated with the Spe I / Nhe I treated and dephosphorylated target vector.

두 번째 모듈 플라스미드에서, sucC -2sucD -2 유전자를 오페론 배열로 제작하였고 다른 유전자들은 슈도-오페론 배열로 제작하였다. 재조합 플라스미드는 화학적 또는 전기적으로 활성화된 E. coli 세포로 형질전환시켰다. 화학적으로 활성화된 E. coli 세포는 형질전환 및 보관 용액(storage solution)을 사용한 원-스텝 방법(one-step method)으로 제작하였다. 다른 DNA 조작, 전기천공법을 통한 형질전환 및 단백질 수준 발현 분석은 표준 절차(Sambrook and Russell, 2001)에 따라 수행하였다. 유전자가 제거된 균주는 원-스텝 유전자 비활성화 방법(Cherepanov and Wackernagel, 1995; Cabulong et al., 2017)을 사용하여 제작하였다. In the second module plasmid, the sucC -2 and sucD -2 genes were constructed as operon sequences and the other genes were constructed as pseudo-operon sequences. Recombinant plasmids were transformed into chemically or electrically activated E. coli cells. Chemically-activated E. coli cells were prepared by a one-step method using a transformation and storage solution. Other DNA manipulations, electroporation and protein level expression assays were performed according to standard procedures (Sambrook and Russell, 2001). Gene-free strains were constructed using the one-step gene inactivation method (Cherepanov and Wackernagel, 1995; Cabulong et al., 2017).

<실험예> <Experimental Example>

진탕-플라스크 발효를 통한 글리콜산의 생산Production of glycolic acid by shaking-flask fermentation

진탕-플라스크 발효는 1 g/L 펩톤이 추가된 M9 배지 100 mL, 효모 추출물 0.5 g/L, 자일로스 10 g/L, MgSO4 1 mM, MOPS 20 g/L, 클로람페니콜 35 ㎍/mL 및 암피실린 100 ㎍/mL를 사용하여 수행하였다. 하룻밤동안 배양시킨 배양액 2 mL를 각각의 플라스크에 접종한 후 37℃에서 72 ~ 96시간동안 발효시킨 후 250 rpm으로 교반하여 배양하였다. 배양액의 OD600이 0.3 AU에 도달했을 때 IPTG 0.5 mM을 추가하여 유도를 수행하였다. 특정 시간 간격에서, 바이오매스의 OD600을 측정하고 시료 1 ml는 HPLC를 사용하여 기질과 대사산물을 정량화하기 위해 수집하였다. 발효는 최소 두 번에 걸쳐 수행하였다.The shake-flask fermentation was performed by adding 100 mL of M9 medium supplemented with 1 g / L of peptone, 0.5 g / L of yeast extract, 10 g / L of xylose, 1 mM of MgSO 4 , 20 g / L of MOPS, 35 ㎍ / mL of chloramphenicol, 100 [mu] g / mL. 2 mL of the cultured medium overnight was inoculated into each flask, followed by fermentation at 37 DEG C for 72 to 96 hours, followed by agitation at 250 rpm. Induction was performed by adding 0.5 mM IPTG when the OD 600 of the culture reached 0.3 AU. At specific time intervals, the OD 600 of the biomass was measured and 1 ml of sample was collected to quantify substrate and metabolites using HPLC. Fermentation was carried out at least twice.

효소 정제Enzyme purification

효소를 정제하기 위해 플라스미드 pTrcHis2A에서 히스티딘이 태그된 yjhG 또는 yagF 유전자가 과발현된 E. coli W3110(DE3) xylAB glcD를 사용하였다. 여기서, xylAB는 자일로스 이소머라제(xylose isomerase) 유전자인 xylA와 자일루로키나아제(xylulokinase) 유전자인 xylB를 결실시켰다는 것을 의미하며, glcD는 글리콜산 옥시다아제(glycolate oxidase) 유전자인 glcD를 결실시켰다는 것을 의미한다. 간략하게, 재조합된 균주는 LB 브로쓰 배지에서 배양하고 배양액의 OD600이 0.3 AU에 도달했을 때 IPTG 0.5 mM을 추가하였다. 5시간동안 유도 후, 4℃에서 15분동안 4,000xg로 원심분리하여 세포를 수집하였다. Macherey-Nagel의 Protino Ni-TED 2000 packed columns 프로토콜에 따라, Lysis-Cquilibration-Wash(LEW) 버퍼(50 mM NaH2PO4, 300 mM NaCl, pH 8.0) 2-5 mL에서 펠렛된 세포를 재현탁시켰다. 그 후 세포를 파괴하기 위해 리소자임(lysozyme)을 첨가하여 최종 농도를 1 mg/mL로 만들었고, 얼음에서 30분 동안 용액을 저었다. 이후에 얼음에서 5분 동안 15초의 냉각 시간과 15초의 세포 파열 간격을 두면서 초음파처리를 하였다. 그 후 4℃에서 30분 동안 10,000xg로 시료를 원심분리한 후 상청액으로 세포 용해물을 수득하였다. 1x LEW 버퍼로 Protino Ni-TED column을 평형상태로 만든 후에, 세포 용해물은 중력에 의해 컬럼을 통과하였다. 1x LEW 버퍼로 컬럼을 세척한 후 용출 버퍼를 사용하여 폴리히스티딘이 태그된 단백질을 용출시켰다. 하룻밤동안 1x LEW 버퍼를 사용하여 투석을 수행하였다. 정제된 단백질은 폴리아크릴아마이드 겔에서 시각화시키고, Bradford assay 방법을 기반으로 한 Bio-Rad 단백질 키트를 사용하여 농도를 측정하였다. To purify the enzyme, E. coli W3110 (DE3) xylAB glcD, in which yjhG or yagF gene was overexpressed with histidine in the plasmid pTrcHis2A, was used. Here, xylAB is xylose isomerase means sikyeotdaneun deleting the (xylose isomerase) gene xylA and xylene ruro kinase (xylulokinase) gene xylB and, glcD means sikyeotdaneun deletion of the glycolic acid oxidase (glycolate oxidase) gene glcD do. Briefly, the recombinant strains were cultured in LB broth medium and IPTG 0.5 mM was added when the OD 600 of the culture reached 0.3 AU. After induction for 5 hours, cells were collected by centrifugation at 4,000xg for 15 minutes at 4 &lt; 0 &gt; C. Macherey-Nagel of Protino Ni-TED 2000 in accordance with the packed columns protocol, Lysis-Cquilibration-Wash (LEW ) buffer reproduce (50 mM NaH 2 PO 4, 300 mM NaCl, pH 8.0) the cell pellet suspended in 2-5 mL . Lysosyme was then added to destroy the cells to a final concentration of 1 mg / mL, and the solution was shaken on ice for 30 minutes. After that, ultrasonic treatment was performed on ice for 15 minutes with a cooling time of 15 seconds and a cell rupture interval of 15 seconds. The samples were then centrifuged at 10,000xg for 30 minutes at 4 DEG C and cell lysates were obtained as supernatants. After equilibrating the Protino Ni-TED column with 1x LEW buffer, the cell lysate passed through the column by gravity. After washing the column with 1x LEW buffer, polyhistidine-tagged proteins were eluted using elution buffer. Dialysis was performed overnight using 1x LEW buffer. The purified protein was visualized on a polyacrylamide gel and its concentration was measured using a Bio-Rad protein kit based on the Bradford assay method.

효소 분석Enzyme analysis

yagFyjhG 디하이드라타제의 효소 활성은 세미카바자이드 어세이(semicarbazide assay)를 사용하여 측정하였다. Tris-HCl 50 mM(pH 8.0), MgCl2 100 mM, 자일론산 10 mM, 적정 양의 디하이드라타제 및 물을 포함하여 0.15 mL 부피로 반응 혼합물을 만들었다. 30℃에서 30분동안 혼합물을 배양한 후, 세미카바자이드 시약 1 mL를 첨가하여 냉각시켰다. 30℃에서 15분동안 혼합물을 다시 배양한 후, UV-Vis spectrophotometer Agilent 8453을 사용하여 250 nm에서 흡광도를 측정하였다. 디하이드라타제의 활성은 분당 1 μmol의 2-케토-3-디옥시-D-자일론산(KDX)의 형성을 촉매하는 효소의 양으로 정의하였고, 10,200 M-1 cm-1의 몰 흡광 계수를 기반으로 측정하였다. The enzyme activity of yagF and yjhG dihydratase was measured using a semicarbazide assay. The reaction mixture was made up to volume of 0.15 mL containing 50 mM Tris-HCl (pH 8.0), 100 mM MgCl 2 , 10 mM xylonic acid, a suitable amount of dihydratase and water. The mixture was incubated at 30 DEG C for 30 minutes, followed by addition of 1 mL of semicarbazide reagent and cooling. After the mixture was incubated again at 30 ° C for 15 minutes, the absorbance was measured at 250 nm using a UV-Vis spectrophotometer Agilent 8453. The activity of dihydratase was defined as the amount of enzyme catalyzing the formation of 1 μmol of 2-keto-3-deoxy-D-xylon acid (KDX) per minute and a molar extinction coefficient of 10,200 M -1 cm -1 .

실험예 1: 자일로스 디하이드로게나아제가 과발현된 균주의 글리콜산 생산량 분석Experimental Example 1: Analysis of glycolic acid production of strain overexpressing xylose dehydrogenase

종래 연구에서, 글리콜산은 Dahms 경로를 통해 에틸렌 글리콜이 발효되는 과정에서 생성되는 부산물이라고 알려져 있었다. 글리콜산은 xdh가 높은 수준으로 발현되어 있을 때 생성되지만 바이오매스를 형성하기 위해 세포에서 리-어시밀레이션(re-assimilation)된다. 따라서, 본 발명에서는 글리콜산이 리-어시밀레이션(re-assimilation)되는 것을 막기 위해 글리콜산 옥시다아제를 코딩하는 glcD 유전자를 제거하였다(도 1). 그 후 자일론산 축적을 감소시키기 위해 카피수가 적은 플라스미드 벡터(low copy plasmid vector)인 pACM4로 xdh를 복제하였다. 자일로스가 처음 12시간 동안 소비되는 과정에서 당 소비가 관찰되었고 이는 자일론산의 축적으로 이어졌다; 자일론산이 리-어시밀레이션(re-assimilation)됨에 따라 바이오매스와 글리콜산의 생산량이 증가하였다(도 2). xdh 유전자가 단독으로 과발현된 GA1 균주는 초기 발효과정에서 4 g/L 자일로스로부터 0.30 g/g 수율로 글리콜산 1.21 g/L를 생산한 것을 확인할 수 있었다.In a previous study, glycolic acid was known to be a byproduct produced during the fermentation of ethylene glycol through the Dahms pathway. Glycolic acid is produced when xdh is expressed at high levels, but is re-assimilated in cells to form biomass. Therefore, in the present invention, the glcD gene encoding glycolic acid oxidase was removed to prevent re-assimilation of glycolic acid (Fig. 1). Subsequently, xdh was replicated in pACM4 , a low copy plasmid vector with a low copy number, to reduce xylonic acid accumulation. During consumption of xylose for the first 12 hours, sugar consumption was observed, leading to the accumulation of xylonic acid; The production of biomass and glycolic acid increased with the re-assimilation of xylonic acid (Fig. 2). The strain GA1 with overexpression of xdh gene was found to produce 1.21 g / L of glycolic acid at a yield of 0.30 g / g from 4 g / L xylose in the initial fermentation process.

생산되는 글리콜산의 역가(titer)를 향상시키기 위해, 초기 자일로스 농도를 4 g/L에서 10 g/L로 증가시켰다. 실험 결과, 공플라스미드를 담지하는 대조군 균주인 GA0에서는 자일로스 농도가 증가한 경우에도, 72시간 발효 후에 자일론산과 글리콜산이 축적되지 않았다. 반면에 GA1 균주는 글리콜산 역가의 예상 증가량보다 낮은 0.20 g/g의 수율로 1.96 g/L의 글리콜산을 생산하였다. 이는 발효가 끝난 후에도 3.21 g/L의 자일론산이 배지에 남아 심각한 자일론산의 축적으로 이어졌기 때문에 글리콜산의 생산량이 감소한 것으로 보여진다(도 3). 자일론산의 축적은 xdh의 높은 발현과 낮은 경로 활성 때문인 것으로 보인다. 자일론산의 축적은 (a) xdh 발현을 낮추고(또는 낮추거나) (b) Dahms 경로에서 생성되는 산물들을 다른 중간체로 빠르게 전환시키기 위해 다운스트림 효소를 과발현함으로서 경감시킬 수 있을 것으로 판단된다. To improve the titer of the glycolic acid produced, the initial xylose concentration was increased from 4 g / L to 10 g / L. As a result, in the GA0 control strain carrying the plasmid, xylose and glycolic acid were not accumulated after fermentation for 72 hours, even when the concentration of xylose was increased. On the other hand, strain GA1 produced 1.96 g / L of glycolic acid at a yield of 0.20 g / g, which is lower than the expected increase in glycolic acid activity. It is believed that after fermentation, the production of glycolic acid was decreased because 3.21 g / L of xylonic acid remained in the medium and led to the accumulation of serious xylonic acid (Fig. 3). The accumulation of xylonic acid appears to be due to the high expression of xdh and low pathway activity. Accumulation of xylonic acid may be alleviated by overexpressing downstream enzymes to (a) lower (or lower) xdh expression (b) and rapidly convert the products generated in the Dahms pathway to other intermediates.

실험예 2: 자일론산 디하이드라타제가 과발현된 균주의 글리콜산 생산량 분석Experimental Example 2: Analysis of glycolic acid production of strain overexpressing xylonic acid dihydratase

글리콜산의 생산량을 증가시키기 위하여, 자일론산 디하이드라타제의 과발현 및 효소 선별을 수행하였다. 자일론산 디하이드라타제는 자일론산에서 2,3-케토 자일론산으로의 전환을 촉매하고, 효율적인 자일론산 디하이드라타제는 배지에서 자일론산의 축적을 낮추거나 제거함으로써 자일로스를 글리콜산으로 빠르게 전환시키는 것으로 예상된다. 72시간 동안 발효 후 축적되는 자일론산과 글리콜산을 기반으로 C. crescentus 유래 xylDE. coli 유래 yagFyjhG로 코딩되는 자일론산 디하이드라타제를 비교하기 위해 GA2, GA3 및 GA4 균주를 각각 제작하여 비교하였다. 실험 결과, 도 4와 같이 발효 후 배지에 GA2, GA3 및 GA4로부터 각각 3.55, 1.96 및 0.64 g/L의 자일론산이 남아 축적되었고, 글리콜산은 1.43, 1.55 및 1.64 g/L만큼 생산된 것을 확인할 수 있었다. 세 균주 중 과발현된 yagF을 포함하는 GA4 균주에서 자일론산이 가장 적게 축적되었고 글리콜산이 가장 많이 생산되었다. 이는 yagF 유전자가 글리콜산 생산에 적합한 자일론산 디하이드라타제라는 것을 의미한다. 이를 추가로 확인하기 위해, E. coli에서 유래한 잠정적인 두 가지의 자일론산 디하이드라타제인 yagFyjhG의 활성을 비교하고자 효소 분석을 수행하였다. 분석 결과, yagFyjhG의 효소 활성은 각각 34.5 및 13.5 nmol/min/mg으로 나타났다(표 3).In order to increase the production amount of glycolic acid, overexpression of xylonic acid dihydratase and enzyme screening were performed. The xylonic acid dihydratase catalyzes the conversion of xylonic acid to 2,3-keto xylonic acid, and the efficient xylonic acid dihydratratase speeds up the xylose to glycolic acid by lowering or eliminating the accumulation of xylonic acid in the medium It is expected to convert. GA2, GA3 and GA4 strains were prepared to compare xylD from C. crescentus and xylon dehydratase encoded by yagF and yjhG from E. coli based on xylonic acid and glycolic acid accumulated after fermentation for 72 hours respectively Respectively. As a result, as shown in Fig. 4, it was found that the zyhlonic acid was accumulated in the medium after fermentation at 3.55, 1.96 and 0.64 g / L from GA2, GA3 and GA4, respectively, and the glycolic acid was produced at 1.43, 1.55 and 1.64 g / L there was. Among the three strains, GA4 strain containing overexpressed yagF accumulated the least amount of xylonic acid and produced the most glycolic acid. This means that the yagF gene is a xylonic acid dihydratase suitable for producing glycolic acid. To further confirm this, an enzyme assay was performed to compare the activity of two potential xylonic acid dihydratases , yagF and yjhG , derived from E. coli . The enzyme activities of yagF and yjhG were 34.5 and 13.5 nmol / min / mg, respectively (Table 3).

정제된 자일론산 디하이드라타제의 효소 활성Enzyme activity of purified xylonic acid dihydratase 자일론산 디하이드라타제Xylonic acid dihydratase 효소 활성(nmol/min/mg)Enzyme activity (nmol / min / mg) YagFYagF 34.5 ± 6.3634.5 ± 6.36 YjhGYjhG 13.5 ± 0.7113.5 ± 0.71

이를 통해 yagFyjhG보다 더 높은 효소 활성을 갖고 있으며, 발효과정에서 yagFyjhG에 비해 글리콜산 생산에 좋은 자일론산 디하이드라타제인 것을 확인할 수 있었다. It was confirmed that yagF has higher enzyme activity than yjhG and that yagF is a xylonic acid dihydratratase which is good for glycolic acid production compared to yjhG in fermentation process.

실험예 3: 2,3-케토 자일론산 알돌라아제가 과발현된 균주의 글리콜산 생산량 분석Experimental Example 3: Analysis of glycolic acid production of a strain overexpressing 2,3-keto-xylonic acid aldolase

이어서, E. coli에서 유래한 2,3-케토 자일론산 알돌라아제의 선별을 수행하였다. 2,3-케토 자일론산 알돌라아제는 성장에 필요한 피루브산과, 글리콜산 또는 에틸렌 글리콜로 전환되는 글리콜알데하이드를 형성하기 위해 2,3-케토 자일론산을 절단한다. 자일론산 디하이드라타제를 선별한 실험과 유사하게, E. coli에서 유래한 yagEyjhH를 과발현시켰고, 72시간 동안 발효 후 축적되는 자일론산과 글리콜산을 기반으로 yagE yjhH로 코딩되는 2,3-케토 자일론산 알돌라아제를 비교하기 위해 GA5 및 GA6 균주를 각각 제작하여 비교하였다. 도 5에서 나타내는 바와 같이, GA5와 GA6 균주를 적용한 경우, 배지에 남은 자일론산은 각각 3.24 및 3.30 g/L이었고, 글리콜산은 각각 1.59 및 1.34 g/L만큼 생산되는 것으로 확인되었다. yagE가 과발현된 GA5 균주는 GA6 균주보다 높은 글리콜산 생산량을 보였으나 자일론산 축적에서는 현저한 차이가 나타나지 않았다. 이를 통해 yagE 유전자가 글리콜산 생산에 적합한 2,3-케토 자일론산 알돌라아제라는 것을 확인할 수 있었다. 그러나 GA2, GA3, GA4, GA5 및 GA6 균주는 GA1 균주에 비해 상당히 낮은 양의 글리콜산을 생산하는 것으로 나타났다. 이는 자일론산 디하이드라타제와 2,3-케토 자일론산 알돌라아제의 과발현에 관여하는 대사 부담과/또는 알려지지 않은 조절 때문인 것으로 보여진다.Next, screening of 2,3-keto xylonic acid aldolase derived from E. coli was performed. 2,3-keto-xylonic acid aldolase cleaves 2,3-keto-xylonic acid to form pyruvic acid for growth and glycolaldehyde which is converted to glycolic acid or ethylene glycol. Similar to the experiment in which xylonic acid dihydratase was screened , yagE and yjhH derived from E. coli were overexpressed. Based on the xylonic and glycolic acid accumulated after fermentation for 72 hours, yagE And yjhH , GA5 and GA6 strains were respectively prepared and compared. As shown in Fig. 5, when GA5 and GA6 strains were used, the amounts of xylonic acid remaining in the medium were 3.24 and 3.30 g / L, respectively, and glycolic acid was found to be produced by 1.59 and 1.34 g / L, respectively. GA5 strain overexpressed yagE showed higher glycolic acid production than GA6 strain, but no significant difference in xylon accumulation. As a result, it was confirmed that the yagE gene is 2,3-keto xylonic acid aldolase suitable for producing glycolic acid. However, GA2, GA3, GA4, GA5 and GA6 strains produced significantly lower amounts of glycolic acid than strain GA1. It is believed that this is due to the metabolic burden and / or unknown regulation involved in the overexpression of xylonic acid dihydratase and 2,3-keto xylonic acid aldolase.

실험예 4: 형질전환 균주를 통한 락트알데하이드 디하이드로게나아제의 효과 분석Experimental Example 4: Analysis of the effect of lactaldehyde dehydrogenase through a transformant strain

Dahms 경로에 관여하는 모든 효소들의 효율적인 작용은 중간체의 효율적인 전환과 중간체의 독성 축적을 방지하는 과정으로 이어지며, 이는 대사 공학에서 최종 역가를 증가시키는 주요 요소 중 하나이다. 본 실험에서는, Dahms 경로에 관여하는 xdh, yagFyagE 세 가지 유전자를 포함하는 플라스미드를 재조합하고 E. coli 숙주로 형질전환시켜 GA7 균주를 제작하고 글리콜산 생산을 시험하였다. 실험 결과 글리콜산의 생산이 증가할 것이라는 예상과는 달리, GA7 균주는 1.43 g/L의 글리콜산을 생산하는 것으로 확인되었다(도 6). 이는 글리콜산을 합성시키기 위한 탄소 풀(pull of carbon)이 상기 세 가지 유전자들을 과발현시키는 것만으로는 충분하지 않다는 것을 의미한다. 이후, 자일로스 디하이드로게나아제, 자일론산 디하이드라타제, 2,3-케토 자일론산 알돌라아제 및 락토알데하이드 디하이드로게나아제가 과발현된 플라스미드에서 자일론산 디하이드라타제 유전자만 변화시켜 재조합한 균주들을 이용하여 추가로 발효 실험을 진행하였다. 실험 결과, 상기 네 가지 유전자가 모두 과발현됨에 따라 글리콜산의 생산량이 현저히 증가하는 것을 확인할 수 있었다(도 6). yjhG가 과발현된 GA8 균주는 2.74 g/L, xylD가 과발현된 GA9 균주는 3.28 g/L, yagF가 과발현된 GA10 균주는 3.96 g/L의 글리콜산을 생산하였다. 테스트에 사용한 균주 중 GA10 균주가 0.40 g/g의 수율로 가장 높은 글리콜산 역가를 보였다. 이는 yagF의 과발현이 높은 글리콜산의 생산량을 부여하는 것을 의미한다. 아울러 xdh, yagEaldA만 과발현시킨 GA11 균주를 제작하여 실험한 결과, 심각한 자일론산의 축적을 확인할 수 있었다. 이는 E. coli 내 자일론산 디하이드라타제의 낮은 활성이 Dahms 경로에 병목 현상을 일으켜서 자일론산을 축적시키고, 동시에 글리콜산의 역가와 생산성을 감소시킨다는 것을 의미한다.The efficient action of all enzymes involved in the Dahms pathway leads to a process that prevents efficient conversion of intermediates and toxic accumulation of intermediates, which is one of the key factors in increasing the final potency in metabolic engineering. In this experiment, plasmids containing three genes xdh , yagF, and yagE involved in the Dahms pathway were recombined and transformed with an E. coli host to produce strain GA7 and tested for glycolic acid production. As a result of the experiment, it was confirmed that the strain GA7 produced 1.43 g / L of glycolic acid, unlike the expectation that the production of glycolic acid would increase (FIG. 6). This means that a pull of carbon to synthesize glycolic acid is not sufficient to overexpress the three genes. Thereafter, recombinant DNA was prepared by changing only the xylon dehydratase gene in xylose dehydrogenase, xylonic acid dihydratase, 2,3-keto-xylon acid aldolase and over-expressed plasmid of lactaldehyde dehydrogenase The fermentation experiments were further conducted using strains. As a result of the experiment, it was confirmed that the production amount of glycolic acid was markedly increased as the four genes were over-expressed (FIG. 6). GA8 strains overexpressing yjhG is 2.74 g / L, GA9 strains overexpressing xylD is 3.28 g / L, GA10 strain overexpressing the yagF was producing the glycolic acid of 3.96 g / L. Among the strains used in the test, strain GA10 showed the highest glycolic acid activity with a yield of 0.40 g / g. This means that overexpression of yagF imparts a high production of glycolic acid. In addition, the strain GA11 , which overexpresses only xdh , yagE and aldA , was tested to confirm the accumulation of serious xylonic acid. This means that the low activity of the xylonic acid dihydratase in E. coli causes bottlenecks in the Dahms pathway to accumulate xylonic acid and at the same time diminish the potency and productivity of the glycolic acid.

실험예 5: 글리콜산 생산에 대한 글리옥실산 환원효소의 효과 확인Experimental Example 5: Confirmation of effect of glyoxylic acid reductase on glycolic acid production

모듈 Ⅰ 플라스미드를 완성하기 위해, 글리옥실산 환원효소를 코딩하는 ycdW 를 네 개의 유전자를 포함하는 플라스미드(pEAFX)에 연결시켜, Dahms 경로를 통해 글리콜산을 생산하는 GA12 균주를 제작하고 발효 실험을 진행하였다. ycdW는 글리옥실산을 글리콜산으로 전환하는 과정을 촉매한다. 실험 결과 글리콜산의 역가는 ycdW가 과발현됨에 따라 증가할 것으로 예상되었으나, GA10이 생산한 글리콜산과 비교한 결과 GA10은 3.96 g/L를 생산한 반면에 GA12는 3.72 g/L를 생산하는 것으로 확인되었다. 96시간 발효 후 두 균주 사이에서 생산되는 글리콜산의 생산량이 유의한 차이를 보이지는 않았다. In order to complete the module I plasmid, ycdW encoding the glyoxylic acid reductase Was linked to a plasmid (pEAFX) containing four genes, and GA12 strain producing glycolic acid was constructed through the Dahms pathway and the fermentation experiment was carried out. ycdW catalyzes the conversion of glyoxylic acid to glycolic acid. As a result, the conversion of glycolic acid was expected to increase with overexpression of ycdW. However, GA10 produced 3.96 g / L compared to glycolic acid produced by GA10, while GA12 produced 3.72 g / L . After 96 hours fermentation, there was no significant difference in the production of glycolic acid produced between the two strains.

이후, 플라스미드 pEAFX 및 모듈 Ⅱ 플라스미드로 형질전환시켜 제조한 GA13 균주를 이용하여 실험하였다. 두 번째 모듈 플라스미드는 sucC -2sucD -2로 코딩되는 메틸로코커스 캡슐라투스 유래 말산 티오키나아제; mcl1으로 코딩되는 로도박터 스패로이드 유래 말릴-CoA 리아제; 및 E. coli 유래 aceAaceK를 포함한다. 상기 유전자들은 글리옥실산에 대한 탄소 플럭스를 증가시키기 위해 높은 카피수의 플라스미드(high copy plasmid)로 포함시켰다.Then, the strain GA13 was prepared by transforming plasmid pEAFX and the module II plasmid. A second module plasmid is methyl carboxy capsulartus-derived malt thiokinase encoded by sucC- 2 and sucD- 2 ; Rhodobacter sprooid- derived Malyl-CoA lyase coded by mcl1 ; And aceA and aceK from E. coli . These genes were included as high copy plasmids to increase carbon flux to glyoxylic acid.

모듈 Ⅱ 플라스미드를 포함하는 균주를 제작하여 발효를 진행한 결과, 글리콜산의 생산량이 현저히 증가하였다(도 7). GA13 균주는 4.18 g/L의 글리콜산을 생산하였고, GA10 및 GA12 균주에 비해 글리콜산을 더 많이 생산한 것으로 나타났다. ycdW가 글리콜산 생산에 중요한 역할을 하는지 확인하기 위해 GA14 균주를 제조하여 실험을 진행한 결과, 4.51 g/L의 글리콜산을 생산하는 것으로 확인되었다. 매우 글리콜산 역가에 도달한 것을 확인하였는 바, 이는 ycdW가 Dahms 경로 내 중간체 중 하나에 작용하더라도 글리옥실산 션트 경로에 관여하는 글리콜산의 생합성에 중요한 효소라는 것과, 글리옥실산에 대해 높은 친화성을 갖는다는 것을 의미한다.A strain containing the module II plasmid was prepared and fermentation was carried out. As a result, the production amount of glycolic acid was remarkably increased (FIG. 7). The strain GA13 produced 4.18 g / L of glycolic acid and produced more glycolic acid than the strains GA10 and GA12. To confirm whether ycdW plays an important role in glycolic acid production, strain GA14 was prepared and it was confirmed that it produced 4.51 g / L of glycolic acid. It was confirmed that ycdW is an enzyme important for the biosynthesis of glycolic acid involved in the glyoxylic acid shunt pathway even though it acts on one of the intermediates in the Dahms pathway and that it has high affinity for glyoxylic acid . &Lt; / RTI &gt;

실험예 6: 글리콜산 생산에 대한 모듈 Ⅱ 플라스미드 유전자의 효과 확인 1Experimental Example 6: Confirmation of Effect of Module II Plasmid Gene on Production of Glycolic Acid 1

모듈 Ⅱ 플라스미드 유래 유전자 중 GA14 균주의 글리콜산의 생산량을 증가시키는 데 관여하는 유전자를 확인하기 위해, 모듈 Ⅰ 플라스미드와 함께, 모듈 Ⅱ 플라스미드의 유전자를 개별적으로 발현시켜 GA15(aceA 과발현), GA16(sucC -2sucD -2 과발현), GA17(aceK 과발현) 및 GA18(mcl1 과발현) 균주를 제작하여 실험을 진행하였다. 실험 결과, 상기 균주들은 각각 4.07, 3.36, 3.00 및 3.39 g/L의 글리콜산을 생산하였다. GA15 균주는 GA13 균주와 글리콜산 생산량에 큰 차이가 없었으나 GA14 균주에 비해 상당히 낮은 글리콜산 생산량을 보였다. 아울러, GA16, GA17 및 GA18 균주도 GA14 균주에 비해 훨씬 낮은 글리콜산 생산량을 보였다. 이는 글리콜산의 생산량을 증가시키는 과정에서 모듈 Ⅱ 플라스미드의 유전자를 하나만 과발현시키는 것은 유전자들을 조합하는 것에 비해 충분하지 않다는 것을 의미한다.GA15 ( aceA overexpression) and GA16 ( sucC ) were separately expressed by expressing the gene of the module II plasmid together with the module I plasmid in order to identify a gene involved in increasing the production amount of glycolic acid of the GA14 strain among the genes derived from the module II plasmid -2 and sucD- 2 overexpression), GA17 (overexpression of aceK ) and GA18 (overexpression of mcl1 ). As a result of the experiment, the strains produced 4.07, 3.36, 3.00 and 3.39 g / L of glycolic acid, respectively. The strain GA15 showed no significant difference in the production of glycolic acid with that of strain GA13 but showed a considerably lower production of glycolic acid than the strain GA14. In addition, GA16, GA17 and GA18 strains showed much lower glycolic acid production than GA14 strains. This means that overexpressing only one gene of the module II plasmid in the process of increasing the production of glycolic acid is not enough compared with the combination of genes.

실험예 7: 글리콜산 생산에 대한 모듈 Ⅱ 플라스미드 유전자의 효과 확인 2Experimental Example 7: Confirmation of Effect of Module II Plasmid Gene on Production of Glycolic Acid 2

글리옥실산 션트 경로는 aceK에 의해 조절되며, 이소시트르산을 -케토글루타르산으로 전환하는 과정을 촉매하는 효소인 이소시트르산 디하이드로게나아제의 인산화 상태에 따라 조절된다. 상기 효소가 인산화될 경우 효소의 활성이 감소하게 되어 글리옥실산 션트가 활성화된다. aceK의 발현 수준이 낮을 경우, aceA를 단독 과발현시키는 것만으로는 글리콜산 생산량을 증가시키기에 충분하지 않을 수 있다. 본 실험에서는, aceAaceK를 함께 과발현시켜 제조한 GA19 균주를 이용하여 글리콜산 생산량을 분석하였다. 상기 균주는 4.57 g/L의 글리콜산을 생산하였는 바, 글리콜산 생산에 매우 유리하다는 것을 알 수 있다.(표 4).The glyoxylate shunt pathway is regulated by aceK and is regulated by the phosphorylation status of isocitrate dehydrogenase, an enzyme that catalyzes the conversion of isocitric acid to -ketoglutaric acid. When the enzyme is phosphorylated, the activity of the enzyme is decreased and the glyoxylate shunt is activated. If the level of aceK expression is low, overexpressing aceA alone may not be sufficient to increase glycolic acid production. In this experiment, the production of glycolic acid was analyzed using strain GA19 produced by overexpressing aceA and aceK . The strain produced 4.57 g / L of glycolic acid, which is very advantageous for glycolic acid production (Table 4).

모듈 I 플라스미드와 모듈 Ⅱ 플라스미드의 유전자 조합을 담지하는 균주의 글리콜산 역가 및 수율The titer of the glycolic acid and the yield of the strain carrying the combination of the module I plasmid and the module II plasmid 균주Strain 플라스미드Plasmid 글리콜산 (g/L)Glycolic acid (g / L) 수율 (g/g)Yield (g / g) GA14GA14 첫 번째, 두 번째 모듈First, second module 4.51 ± 0.184.51 ± 0.18 0.450.45 GA19GA19 첫 번째 모듈 및 pKAThe first module and pKA 4.57 ± 0.244.57 ± 0.24 0.460.46 GA20GA20 첫 번째 모듈 및 pCDMThe first module and pCDM 2.96 ± 0.402.96 ± 0.40 0.350.35

이후, 모듈 Ⅰ과 sucC -2sucD -2가 과발현된 GA20 균주로 실험을 진행한 결과, 2.96 g/L의 글리콜산을 생산하는 것을 확인할 수 있었다. 상기 결과에서 aceKaceA가 글리옥실산 형성에 관여하여 글리콜산을 생산하는 중요한 유전자라는 것을 알 수 있다.As a result of the experiment with GA20 strain overexpressing the module I, sucC -2 and sucD -2 , it was confirmed that glycolic acid was produced at 2.96 g / L. From these results, it can be seen that aceK and aceA are involved in glyoxylic acid formation and are important genes for producing glycolic acid.

실험예 8: 글리콜산 생산에 대한 말산 합성효소 유전자의 효과 확인Experimental Example 8: Effect of malic acid synthase gene on glycolic acid production

GA14 균주를 통해 글리콜산의 생산량을 더 증가시킬 수 있는지 확인하기 위해, 말산 합성효소 G와 말산 합성효소 A를 코딩하는 glcBaceB 유전자를 추가로 결실시킨 균주 GA21을 제작하고 실험을 진행하였다. 참고로, GA21 균주 제작과정에서 glcDglcB 유전자를 결실시킬 때 glcDglcB 사이에 있는 glcE(서열번호 57), glcF(서열번호 58) 및 glcG(서열번호 59) 유전자도 함께 결실되는데, 이는 glcD 자리에 남아있는 플립파제 인식 타겟(flippase recognition target, FRT)이 glcBglcD 유전자의 FRT 자리를 모두 인식하기 때문이다. 따라서 플립파제 활성과정에서 glcDglcB 사이에 있는 glcE, glcFglcG 유전자도 함께 결실된다. GA21 균주는 글리옥실산이 말산으로 전환되는 과정이 차단되어 글리콜산 생산 수율이 증가될 것으로 예상되었다. 그러나 예상과 달리, 96시간 발효 후 GA21 균주가 매우 낮은 생산성으로 인해 0.41 g/g의 수율로 2.49 g/L의 글리콜산을 생산하는 것으로 확인되었다(도 8). 이는 세포가 갖는 유전자의 추가적인 제거가 대사에 부담이 된 것으로 보인다. 균주의 글리콜산 생산성, 역가 및 수율을 더욱 향상시키기 위해서는 추가적인 공학 기술이 더 필요할 것으로 사료된다.In order to confirm that the production of glycolic acid can be further increased through the strain GA14, a strain GA21 in which glcB and aceB genes coding for malic acid synthase G and malic acid synthase A were additionally deleted was prepared and the experiment was conducted. For reference, there is deleted with FIG glcE (SEQ ID NO: 57), glcF (SEQ ID NO: 58) and glcG (SEQ ID NO: 59) gene in between glcD and glcB when deleting a glcD and glcB gene in GA21 strain production process, which glcD Because the remaining flippase recognition target (FRT) recognizes both the FRT locus of the glcB and glcD genes. Thus glcE, glcF and glcG gene between glcD and glcB flip Paget active process is also deleted together. The strain GA21 was expected to block the conversion of glyoxylic acid to malic acid, thereby increasing the yield of glycolic acid production. Unexpectedly, however, it was confirmed that the strain GA21 after 96 hours of fermentation produced 2.49 g / L of glycolic acid at a yield of 0.41 g / L due to very low productivity (FIG. 8). This seems to be a burden to the metabolism by the additional removal of the genes of the cells. Additional engineering skills will be needed to further improve the glycolic acid productivity, potency and yield of the strain.

이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.While the present invention has been particularly shown and described with reference to specific embodiments thereof, those skilled in the art will appreciate that such specific embodiments are merely preferred embodiments and that the scope of the present invention is not limited thereto will be. Accordingly, the actual scope of the present invention will be defined by the appended claims and their equivalents.

<110> MYONGJI UNIVERSITY INDUSTRY AND ACADEMIA COOPERATION FOUNDATION <120> ESCHERICHIA COLI PRODUCING GLYCOLATE FROM XYLOSE, METHOD FOR PREPARING THE SAME AND METHOD FOR PRODUCING GLYCOLATE USING THE SAME <130> P17-0067 <160> 59 <170> KoPatentIn 3.0 <210> 1 <211> 1323 <212> DNA <213> Artificial Sequence <220> <223> Escherichia coli W3110 xylose isomerase xylA gene <400> 1 atgcaagcct attttgacca gctcgatcgc gttcgttatg aaggctcaaa atcctcaaac 60 ccgttagcat tccgtcacta caatcccgac gaactggtgt tgggtaagcg tatggaagag 120 cacttgcgtt ttgccgcctg ctactggcac accttctgct ggaacggggc ggatatgttt 180 ggtgtggggg cgtttaatcg tccgtggcag cagcctggtg aggcactggc gttggcgaag 240 cgtaaagcag atgtcgcatt tgagtttttc cacaagttac atgtgccatt ttattgcttc 300 cacgatgtgg atgtttcccc tgagggcgcg tcgttaaaag agtacatcaa taattttgcg 360 caaatggttg atgtcctggc aggcaagcaa gaagagagcg gcgtgaagct gctgtgggga 420 acggccaact gctttacaaa ccctcgctac ggcgcgggtg cggcgacgaa cccagatcct 480 gaagtcttca gctgggcggc aacgcaagtt gttacagcga tggaagcaac ccataaattg 540 ggcggtgaaa actatgtcct gtggggcggt cgtgaaggtt acgaaacgct gttaaatacc 600 gacttgcgtc aggagcgtga acaactgggc cgctttatgc agatggtggt tgagcataaa 660 cataaaatcg gtttccaggg cacgttgctt atcgaaccga aaccgcaaga accgaccaaa 720 catcaatatg attacgatgc cgcgacggtc tatggcttcc tgaaacagtt tggtctggaa 780 aaagagatta aactgaacat tgaagctaac cacgcgacgc tggcaggtca ctctttccat 840 catgaaatag ccaccgccat tgcgcttggc ctgttcggtt ctgtcgacgc caaccgtggc 900 gatgcgcaac tgggctggga caccgaccag ttcccgaaca gtgtggaaga gaatgcgctg 960 gtgatgtatg aaattctcaa agcaggcggt ttcaccaccg gtggtctgaa cttcgatgcc 1020 aaagtacgtc gtcaaagtac tgataaatat gatctgtttt acggtcatat cggcgcgatg 1080 gatacgatgg cactggcgct gaaaattgca gcgcgcatga ttgaagatgg cgagctggat 1140 aaacgcatcg cgcagcgtta ttccggctgg aatagcgaat tgggccagca aatcctgaaa 1200 ggccaaatgt cactggcaga tttagccaaa tatgctcagg aacatcattt gtctccggtg 1260 catcagagtg gtcgccagga acaactggaa aatctggtaa accattatct gttcgacaaa 1320 taa 1323 <210> 2 <211> 1455 <212> DNA <213> Artificial Sequence <220> <223> Escherichia coli W3110 xylulose kinase xylB gene <400> 2 atgtatatcg ggatagatct tggcacctcg ggcgtaaaag ttattttgct caacgagcag 60 ggtgaggtgg ttgctgcgca aacggaaaag ctgaccgttt cgcgcccgca tccactctgg 120 tcggaacaag acccggaaca gtggtggcag gcaactgatc gcgcaatgaa agctctgggc 180 gatcagcatt ctctgcagga cgttaaagca ttgggtattg ccggccagat gcacggagca 240 accttgctgg atgctcagca acgggtgtta cgccctgcca ttttgtggaa cgacgggcgc 300 tgtgcgcaag agtgcacttt gctggaagcg cgagttccgc aatcgcgggt gattaccggc 360 aacctgatga tgcccggatt tactgcgcct aaattgctat gggttcagcg gcatgagccg 420 gagatattcc gtcaaatcga caaagtatta ttaccgaaag attacttgcg tctgcgtatg 480 acgggggagt ttgccagcga tatgtctgac gcagctggca ccatgtggct ggatgtcgca 540 aagcgtgact ggagtgacgt catgctgcag gcttgcgact tatctcgtga ccagatgccc 600 gcattatacg aaggcagcga aattactggt gctttgttac ctgaagttgc gaaagcgtgg 660 ggtatggcga cggtgccagt tgtcgcaggc ggtggcgaca atgcagctgg tgcagttggt 720 gtgggaatgg ttgatgctaa tcaggcaatg ttatcgctgg ggacgtcggg ggtctatttt 780 gctgtcagcg aagggttctt aagcaagcca gaaagcgccg tacatagctt ttgccatgcg 840 ctaccgcaac gttggcattt aatgtctgtg atgctgagtg cagcgtcgtg tctggattgg 900 gccgcgaaat taaccggcct gagcaatgtc ccagctttaa tcgctgcagc tcaacaggct 960 gatgaaagtg ccgagccagt ttggtttctg ccttatcttt ccggcgagcg tacgccacac 1020 aataatcccc aggcgaaggg ggttttcttt ggtttgactc atcaacatgg ccccaatgaa 1080 ctggcgcgag cagtgctgga aggcgtgggt tatgcgctgg cagatggcat ggatgtcgtg 1140 catgcctgcg gtattaaacc gcaaagtgtt acgttgattg ggggcggggc gcgtagtgag 1200 tactggcgtc agatgctggc ggatatcagc ggtcagcagc tcgattaccg tacggggggg 1260 gatgtggggc cagcactggg cgcagcaagg ctggcgcaga tcgcggcgaa tccagagaaa 1320 tcgctcattg aattgttgcc gcaactaccg ttagaacagt cgcatctacc agatgcgcag 1380 cgttatgccg cttatcagcc acgacgagaa acgttccgtc gcctctatca gcaacttctg 1440 ccattaatgg cgtaa 1455 <210> 3 <211> 1500 <212> DNA <213> Artificial Sequence <220> <223> Escherichia coli W3110 glycolate oxidase glcD gene <400> 3 atgagcatct tgtacgaaga gcgtcttgat ggcgctttac ccgatgtcga ccgcacatcg 60 gtactgatgg cactgcgtga gcatgtccct ggacttgaga tcctgcatac cgatgaggag 120 atcattcctt acgagtgtga cgggttgagc gcgtatcgca cgcgtccatt actggttgtt 180 ctgcctaagc aaatggaaca ggtgacagcg attctggctg tctgccatcg cctgcgtgta 240 ccggtggtga cccgtggtgc aggcaccggg ctttctggtg gcgcgctgcc gctggaaaaa 300 ggtgtgttgt tggtgatggc gcgctttaaa gagatcctcg acattaaccc cgttggtcgc 360 cgcgcgcgcg tgcagccagg cgtgcgtaac ctggcgatct cccaggccgt tgcaccgcat 420 aatctctact acgcaccgga cccttcctca caaatcgcct gttccattgg cggcaatgtg 480 gctgaaaatg ccggcggcgt ccactgcctg aaatatggtc tgaccgtaca taacctgctg 540 aaaattgaag tgcaaacgct ggacggcgag gcactgacgc ttggatcgga cgcgctggat 600 tcacctggtt ttgacctgct ggcgctgttc accggatcgg aaggtatgct cggcgtgacc 660 accgaagtga cggtaaaact gctgccgaag ccgcccgtgg cgcgggttct gttagccagc 720 tttgactcgg tagaaaaagc cggacttgcg gttggtgaca tcatcgccaa tggcattatc 780 cccggcgggc tggagatgat ggataacctg tcgatccgcg cggcggaaga ttttattcat 840 gccggttatc ccgtcgacgc cgaagcgatt ttgttatgcg agctggacgg cgtggagtct 900 gacgtacagg aagactgcga gcgggttaac gacatcttgt tgaaagcggg cgcgactgac 960 gtccgtctgg cacaggacga agcagagcgc gtacgtttct gggccggtcg caaaaatgcg 1020 ttcccggcgg taggacgtat ctccccggat tactactgca tggatggcac catcccgcgt 1080 cgcgccctgc ctggcgtact ggaaggcatt gcccgtttat cgcagcaata tgatttacgt 1140 gttgccaacg tctttcatgc cggagatggc aacatgcacc cgttaatcct tttcgatgcc 1200 aacgaacccg gtgaatttgc ccgcgcggaa gagctgggcg ggaagatcct cgaactctgc 1260 gttgaagttg gcggcagcat cagtggcgaa catggcatcg ggcgagaaaa aatcaatcaa 1320 atgtgcgccc agttcaacag cgatgaaatc acgaccttcc atgcggtcaa ggcggcgttt 1380 gaccccgatg gtttgctgaa ccctgggaaa aacattccca cgctacaccg ctgtgctgaa 1440 tttggtgcca tgcatgtgca tcacggtcat ttacctttcc ctgaactgga gcgtttctga 1500 1500 <210> 4 <211> 747 <212> DNA <213> Artificial Sequence <220> <223> Caulobacter crescentus NA1000_codon optimized Xdh gene <400> 4 atgtcttctg cgatctaccc gtctctgaaa ggtaaacgtg ttgttatcac cggtggtggt 60 tctggtatcg gtgcgggtct gaccgcgggt ttcgcgcgtc agggtgcgga agttatcttc 120 ctggacatcg cggacgaaga ctctcgtgcg ctggaagcgg aactggcggg ttctccgatc 180 ccgccggttt acaaacgttg cgacctgatg aacctggaag cgatcaaagc ggttttcgcg 240 gaaatcggtg acgttgacgt tctggttaac aacgcgggta acgacgaccg tcacaaactg 300 gcggacgtta ccggtgcgta ctgggacgaa cgtatcaacg ttaacctgcg tcacatgctg 360 ttctgcaccc aggcggttgc gccgggtatg aaaaaacgtg gtggtggtgc ggttatcaac 420 ttcggttcta tctcttggca cctgggtctg gaagacctgg ttctgtacga aaccgcgaaa 480 gcgggtatcg aaggtatgac ccgtgcgctg gcgcgtgaac tgggtccgga cgacatccgt 540 gttacctgcg ttgttccggg taacgttaaa accaaacgtc aggaaaaatg gtacaccccg 600 gaaggtgaag cgcagatcgt tgcggcgcag tgcctgaaag gtcgtatcgt tccggaaaac 660 gttgcggcgc tggttctgtt cctggcgtct gacgacgcgt ctctgtgcac cggtcacgaa 720 tactggatcg acgcgggttg gcgttga 747 <210> 5 <211> 1968 <212> DNA <213> Artificial Sequence <220> <223> Escherichia coli W3110 dehydratase gene YjhG <400> 5 atgtctgttc gcaatatttt tgctgacgag agccacgata tttacaccgt cagaacgcac 60 gccgatggcc cggacggcga actcccatta accgcagaga tgcttatcaa ccgcccgagc 120 ggggatctgt tcggtatgac catgaatgcc ggaatgggtt ggtctccgga cgagctggat 180 cgggacggta ttttactgct cagtacactc ggtggcttac gcggcgcaga cggtaaaccc 240 gtggcgctgg cgttgcacca ggggcattac gaactggaca tccagatgaa agcggcggcc 300 gaggttatta aagccaacca tgccctgccc tatgccgtgt acgtctccga tccttgtgac 360 gggcgtactc agggtacaac ggggatgttt gattcgctac cataccgaaa tgacgcatcg 420 atggtaatgc gccgccttat tcgctctctg cccgacgcga aagcagttat tggtgtggcg 480 agttgcgata aggggcttcc ggccaccatg atggcactcg ccgcgcagca caacatcgca 540 accgtgctgg tccccggcgg cgcgacgctg cccgcaaagg atggagaaga caacggcaag 600 gtgcaaacca ttggcgcacg cttcgccaat ggcgaattat ctctacagga cgcacgccgt 660 gcgggctgta aagcctgtgc ctcttccggc ggcggctgtc aatttttggg cactgccggg 720 acatctcagg tggtggccga aggattggga ctggcaatcc cacattcagc cctggcccct 780 tccggtgagc ctgtgtggcg ggagatcgcc agagcttccg cgcgagctgc gctgaacctg 840 agtcaaaaag gcatcaccac ccgggaaatt ctcaccgata aagcgataga gaatgcgatg 900 acggtccatg ccgcgttcgg tggttcaaca aacctgctgt tacacatccc ggcaattgct 960 caccaggcag gttgccatat cccgaccgtt gatgactgga tccgcatcaa caagcgcgtg 1020 ccccgactgg tgagcgtact gcctaatggc ccggtttatc atccaacggt caatgccttt 1080 atggcaggtg gtgtgccgga agtcatgttg catctgcgca gcctcggatt gttgcatgaa 1140 gacgttatga cggttaccgg cagcacgctg aaagaaaacc tcgactggtg ggagcactcc 1200 gaacggcgtc agcggttcaa gcaactcctg ctcgatcagg aacaaatcaa cgctgacgaa 1260 gtgatcatgt ctccgcagca agcaaaagcg cgcggattaa cctcaactat caccttcccg 1320 gtgggcaata ttgcgccaga aggttcggtg atcaaatcca ccgccattga cccctcgatg 1380 attgatgagc aaggtatcta ttaccataaa ggtgtggcga aggtttatct gtccgagaaa 1440 agtgcgattt acgatatcaa acatgacaag atcaaggcgg gcgatattct ggtcattatt 1500 ggcgttggac cttcaggtac agggatggaa gaaacctacc aggttaccag tgccctgaag 1560 catctgtcat acggtaagca tgtttcgtta atcaccgatg cacgtttctc gggcgtttct 1620 actggcgcgt gcatcggcca tgtggggcca gaagcgctgg ccggaggccc catcggtaaa 1680 ttacgcaccg gggatttaat tgaaattaaa attgattgtc gcgagcttca cggcgaagtc 1740 aatttcctcg gaacccgtag cgatgaacaa ttaccttcac aggaggaggc aactgcaata 1800 ttaaatgcca gacccagcca tcaggattta cttcccgatc ctgaattgcc agatgatacc 1860 cggctatggg caatgcttca ggccgtgagt ggtgggacat ggaccggttg tatttatgat 1920 gtaaacaaaa ttggcgcggc tttgcgcgat tttatgaata aaaactga 1968 <210> 6 <211> 1968 <212> DNA <213> Artificial Sequence <220> <223> Escherichia coli W3110 dehydratase gene YagF <400> 6 atgaccattg agaaaatttt caccccgcag gacgacgcgt tttatgcggt gatcacccac 60 gcggcggggc cgcagggcgc tctgccgctg accccgcaga tgctgatgga atctcccagc 120 ggcaacctgt tcggcatgac gcagaacgcc gggatgggct gggacgccaa caagctcacc 180 ggcaaagagg tgctgattat cggcactcag ggcggcatcc gcgccggaga cggacgccca 240 atcgcgctgg gctaccacac cgggcattgg gagatcggca tgcagatgca ggcggcggcg 300 aaggagatca cccgcaatgg cgggatcccg ttcgcggcct tcgtcagcga tccgtgcgac 360 gggcgctcgc agggcacgca cggtatgttc gattccctgc cgtaccgcaa cgacgcggcg 420 atcgtgtttc gccgcctgat ccgctccctg ccgacgcggc gggcggtgat cggcgtagcg 480 acctgcgata aagggctgcc cgccaccatg attgcgctgg ccgcgatgca cgacctgccg 540 actattctgg tgccgggcgg ggcgacgctg ccgccgaccg tcggggaaga cgcgggcaag 600 gtgcagacca tcggcgcgcg tttcgccaac cacgaactct ccctgcagga ggccgccgaa 660 ctgggctgtc gcgcctgcgc ctcgccgggc ggcgggtgtc agttcctcgg cacggcgggc 720 acctcgcagg tggtcgcgga ggcgctgggt ctggcgctgc cgcactccgc gctggcgccg 780 tccgggcagg cggtgtggct ggagatcgcc cgccagtcgg cgcgcgcggt cagcgagctg 840 gatagccgcg gcatcaccac gcgggatatc ctctccgata aagccatcga aaacgcgatg 900 gtgatccacg cggcgttcgg cggctccacc aatttactgc tgcacattcc ggccatcgcc 960 cacgcggcgg gctgcacgat cccggacgtt gagcactgga cgcgcatcaa ccgtaaagtg 1020 ccgcgtctgg tgagcgtgct gcccaacggc ccggactatc acccgaccgt gcgcgccttc 1080 ctcgcgggcg gcgtgccgga ggtgatgctc cacctgcgcg acctcggcct gctgcatctg 1140 gacgccatga ccgtgaccgg ccagacggtg ggcgagaacc ttgaatggtg gcaggcgtcc 1200 gagcgccggg cgcgcttccg ccagtgcctg cgcgagcagg acggcgtaga gccggatgac 1260 gtgatcctgc cgccggagaa ggcaaaagcg aaagggctga cctcgacggt ctgcttcccg 1320 acgggcaaca tcgctccgga aggttcggtg atcaaggcca cggcgatcga cccgtcggtg 1380 gtgggcgaag atggcgtata ccaccacacc ggccgggtgc gggtgtttgt ctcggaagcg 1440 caggcgatca aggcgatcaa gcgggaagag attgtgcagg gcgatatcat ggtggtgatc 1500 ggcggcgggc cgtccggcac cggcatggaa gagacctacc agctcacctc cgcgctaaag 1560 catatctcgt ggggcaagac ggtgtcgctc atcaccgatg cgcgcttctc gggcgtgtcg 1620 acgggcgcct gcttcggcca cgtgtcgccg gaggcgctgg cgggcgggcc gattggcaag 1680 ctgcgcgata acgacatcat cgagattgcc gtggatcgtc tgacgttaac tggcagcgtg 1740 aacttcatcg gcaccgcgga caacccgctg acgccggaag agggcgcgcg cgagctggcg 1800 cggcggcaga cgcacccgga cctgcacgcc cacgactttt tgccggacga cacccggctg 1860 tgggcggcac tgcagtcggt gagcggcggc acctggaaag gctgtattta tgacaccgat 1920 aaaattatcg aggtaattaa cgccggtaaa aaagcgctcg gaatttaa 1968 <210> 7 <211> 1788 <212> DNA <213> Artificial Sequence <220> <223> Caulobacter crescentus CB15_codon optimized XylD dehydratase gene <400> 7 atgcgttctg cgctgtctaa ccgtaccccg cgtcgtttcc gttctcgtga ctggttcgac 60 aacccggacc acatcgacat gaccgcgctg tacctggaac gtttcatgaa ctacggtatc 120 accccggaag aactgcgttc tggtaaaccg atcatcggta tcgcgcagac cggttctgac 180 atctctccgt gcaaccgtat ccacctggac ctggttcagc gtgttcgtga cggtatccgt 240 gacgcgggtg gtatcccgat ggaattcccg gttcacccga tcttcgaaaa ctgccgtcgt 300 ccgaccgcgg cgctggaccg taacctgtct tacctgggtc tggttgaaac cctgcacggt 360 tacccgatcg acgcggttgt tctgaccacc ggttgcgaca aaaccacccc ggcgggtatc 420 atggcggcga ccaccgttaa catcccggcg atcgttctgt ctggtggtcc gatgctggac 480 ggttggcacg aaaacgaact ggttggttct ggtaccgtta tctggcgttc tcgtcgtaaa 540 ctggcggcgg gtgaaatcac cgaagaagaa ttcatcgacc gtgcggcgtc ttctgcgccg 600 tctgcgggtc actgcaacac catgggtacc gcgtctacca tgaacgcggt tgcggaagcg 660 ctgggtctgt ctctgaccgg ttgcgcggcg atcccggcgc cgtaccgtga acgtggtcag 720 atggcgtaca aaaccggtca gcgtatcgtt gacctggcgt acgacgacgt taaaccgctg 780 gacatcctga ccaaacaggc gttcgaaaac gcgatcgcgc tggttgcggc ggcgggtggt 840 tctaccaacg cgcagccgca catcgttgcg atggcgcgtc acgcgggtgt tgaaatcacc 900 gcggacgact ggcgtgcggc gtacgacatc ccgctgatcg ttaacatgca gccggcgggt 960 aaatacctgg gtgaacgttt ccaccgtgcg ggtggtgcgc cggcggttct gtgggaactg 1020 ctgcagcagg gtcgtctgca cggtgacgtt ctgaccgtta ccggtaaaac catgtctgaa 1080 aacctgcagg gtcgtgaaac ctctgaccgt gaagttatct tcccgtacca cgaaccgctg 1140 gcggaaaaag cgggtttcct ggttctgaaa ggtaacctgt tcgacttcgc gatcatgaaa 1200 tcttctgtta tcggtgaaga attccgtaaa cgttacctgt ctcagccggg tcaggaaggt 1260 gttttcgaag cgcgtgcgat cgttttcgac ggttctgacg actaccacaa acgtatcaac 1320 gacccggcgc tggaaatcga cgaacgttgc atcctggtta tccgtggtgc gggtccgatc 1380 ggttggccgg gttctgcgga agttgttaac atgcagccgc cggaccacct gctgaaaaaa 1440 ggtatcatgt ctctgccgac cctgggtgac ggtcgtcagt ctggtaccgc ggactctccg 1500 tctatcctga acgcgtctcc ggaatctgcg atcggtggtg gtctgtcttg gctgcgtacc 1560 ggtgacacca tccgtatcga cctgaacacc ggtcgttgcg acgcgctggt tgacgaagcg 1620 accatcgcgg cgcgtaaaca ggacggtatc ccggcggttc cggcgaccat gaccccgtgg 1680 caggaaatct accgtgcgca cgcgtctcag ctggacaccg gtggtgttct ggaattcgcg 1740 gttaaatacc aggacctggc ggcgaaactg ccgcgtcaca accactga 1788 <210> 8 <211> 906 <212> DNA <213> Artificial Sequence <220> <223> Escherichia coli W3110 aldolase gene YjhH <400> 8 atgaaaaaat tcagcggcat tattccaccg gtatccagca cgtttcatcg tgacggaacc 60 cttgataaaa aggcaatgcg cgaagttgcc gacttcctga ttaataaagg ggtcgacggg 120 ctgttttatc tgggtaccgg tggtgaattt agccaaatga atacagccca gcgcatggca 180 ctcgccgaag aagctgtaac cattgtcgac gggcgagtgc cggtattgat tggcgtcggt 240 tccccttcca ctgacgaagc ggtcaaactg gcgcagcatg cgcaagccta cggcgctgat 300 ggtatcgtcg ccatcaaccc ctactactgg aaagtcgcac cacgaaatct tgacgactat 360 taccagcaga tcgcccgtag cgtcacccta ccggtgatcc tgtacaactt tccggatctg 420 acgggtcagg acttaacccc ggaaaccgtg acgcgtctgg ctctgcaaaa cgagaatatc 480 gttggcatca aagacaccat cgacagcgtt ggtcacttgc gtacgatgat caacacagtt 540 aagtcggtac gcccgtcgtt ttcggtattc tgcggttacg atgatcattt gctgaatacg 600 atgctgctgg gcggcgacgg tgcgataacc gccagcgcta actttgctcc ggaactctcc 660 gtcggcatct accgcgcctg gcgtgaaggc gatctggcga ccgctgcgac gctgaataaa 720 aaactactac aactgcccgc tatttacgcc ctcgaaacac cgtttgtctc actgatcaaa 780 tacagcatgc agtgtgtcgg gctgcctgta gagacatatt gcttaccacc gattcttgaa 840 gcatctgaag aagcaaaaga taaagtccac gtgctgctta ccgcgcaggg cattttacca 900 gtctga 906 <210> 9 <211> 930 <212> DNA <213> Artificial Sequence <220> <223> Escherichia coli W3110 aldolase gene YagE <400> 9 atgattcagc aaggagatct catgccgcag tccgcgttgt tcacgggaat cattccccct 60 gtctccacca tttttaccgc cgacggccag ctcgataagc cgggcaccgc cgcgctgatc 120 gacgatctga tcaaagcagg cgttgacggc ctgttcttcc tgggcagcgg tggcgagttc 180 tcccagctcg gcgccgaaga gcgtaaagcc attgcccgct ttgctatcga tcatgtcgat 240 cgtcgcgtgc cggtgctgat cggcaccggc ggcaccaacg cccgggaaac catcgaactc 300 agccagcacg cgcagcaggc gggcgcggac ggcatcgtgg tgatcaaccc ctactactgg 360 aaagtgtcgg aagcgaacct gatccgctat ttcgagcagg tggccgacag cgtcacgctg 420 ccggtgatgc tctataactt cccggcgctg accgggcagg atctgactcc ggcgctggtg 480 aaaaccctcg ccgactcgcg cagcaatatt atcggcatca aagacaccat cgactccgtc 540 gcccacctgc gcagcatgat ccataccgtc aaaggtgccc atccgcactt caccgtgctc 600 tgcggctacg acgatcatct gttcaatacc ctgctgctcg gcggcgacgg ggcgatatcg 660 gcgagcggca actttgcccc gcaggtgtcg gtgaatcttc tgaaagcctg gcgcgacggg 720 gacgtggcga aagcggccgg gtatcatcag accttgctgc aaattccgca gatgtatcag 780 ctggatacgc cgtttgtgaa cgtgattaaa gaggcgatcg tgctctgcgg tcgtcctgtc 840 tccacgcacg tgctgccgcc cgcctcgccg ctggacgagc cgcgcaaggc gcagctgaaa 900 accctgctgc aacagctcaa gctttgctga 930 <210> 10 <211> 1440 <212> DNA <213> Artificial Sequence <220> <223> Escherichia coli W3110 aldehyde dehydrogenase A gene AldA <400> 10 atgtcagtac ccgttcaaca tcctatgtat atcgatggac agtttgttac ctggcgtgga 60 gacgcatgga ttgatgtggt aaaccctgct acagaggctg tcatttcccg catacccgat 120 ggtcaggccg aggatgcccg taaggcaatc gatgcagcag aacgtgcaca accagaatgg 180 gaagcgttgc ctgctattga acgcgccagt tggttgcgca aaatctccgc cgggatccgc 240 gaacgcgcca gtgaaatcag tgcgctgatt gttgaagaag ggggcaagat ccagcagctg 300 gctgaagtcg aagtggcttt tactgccgac tatatcgatt acatggcgga gtgggcacgg 360 cgttacgagg gcgagattat tcaaagcgat cgtccaggag aaaatattct tttgtttaaa 420 cgtgcgcttg gtgtgactac cggcattctg ccgtggaact tcccgttctt cctcattgcc 480 cgcaaaatgg ctcccgctct tttgaccggt aataccatcg tcattaaacc tagtgaattt 540 acgccaaaca atgcgattgc attcgccaaa atcgtcgatg aaataggcct tccgcgcggc 600 gtgtttaacc ttgtactggg gcgtggtgaa accgttgggc aagaactggc gggtaaccca 660 aaggtcgcaa tggtcagtat gacaggcagc gtctctgcag gtgagaagat catggcgact 720 gcggcgaaaa acatcaccaa agtgtgtctg gaattggggg gtaaagcacc agctatcgta 780 atggacgatg ccgatcttga actggcagtc aaagccatcg ttgattcacg cgtcattaat 840 agtgggcaag tgtgtaactg tgcagaacgt gtttatgtac agaaaggcat ttatgatcag 900 ttcgtcaatc ggctgggtga agcgatgcag gcggttcaat ttggtaaccc cgctgaacgc 960 aacgacattg cgatggggcc gttgattaac gccgcggcgc tggaaagggt cgagcaaaaa 1020 gtggcgcgcg cagtagaaga aggggcgaga gtggcgttcg gtggcaaagc ggtagagggg 1080 aaaggatatt attatccgcc gacattgctg ctggatgttc gccaggaaat gtcgattatg 1140 catgaggaaa cctttggccc ggtgctgcca gttgtcgcat ttgacacgct ggaagatgct 1200 atctcaatgg ctaatgacag tgattacggc ctgacctcat caatctatac ccaaaatctg 1260 aacgtcgcga tgaaagccat taaagggctg aagtttggtg aaacttacat caaccgtgaa 1320 aacttcgaag ctatgcaagg cttccacgcc ggatggcgta aatccggtat tggcggcgca 1380 gatggtaaac atggcttgca tgaatatctg cagacccagg tggtttattt acagtcttaa 1440 1440 <210> 11 <211> 939 <212> DNA <213> Artificial Sequence <220> <223> Escherichia coli W3110 glyoxylate reductase gene YcdW <400> 11 atggatatca tcttttatca cccaacgttc gatacccaat ggtggattga ggcactgcgc 60 aaagctattc ctcaggcaag agtcagagca tggaaaagcg gagataatga ctctgctgat 120 tatgctttag tctggcatcc tcctgttgaa atgctggcag ggcgcgatct taaagcggtg 180 ttcgcactcg gggccggtgt tgattctatt ttgagcaagc tacaggcaca ccctgaaatg 240 ctgaaccctt ctgttccact ttttcgcctg gaagataccg gtatgggcga gcaaatgcag 300 gaatatgctg tcagtcaggt gctgcattgg tttcgacgtt ttgacgatta tcgcatccag 360 caaaatagtt cgcattggca accgctgcct gaatatcatc gggaagattt taccatcggc 420 attttgggcg caggcgtact gggcagtaaa gttgctcaga gtctgcaaac ctggcgcttt 480 ccgctgcgtt gctggagtcg aacccgtaaa tcgtggcctg gcgtgcaaag ctttgccgga 540 cgggaagaac tgtctgcatt tctgagccaa tgtcgggtat tgattaattt gttaccgaat 600 acccctgaaa ccgtcggcat tattaatcaa caattactcg aaaaattacc ggatggcgcg 660 tatctcctca acctggcgcg tggtgttcat gttgtggaag atgacctgct cgcggcgctg 720 gatagcggca aagttaaagg cgcaatgttg gatgttttta atcgtgaacc cttaccgcct 780 gaaagtccgc tctggcaaca tccacgcgtg acgataacac cacatgtcgc cgcgattacc 840 cgtcccgctg aagctgtgga gtacatttct cgcaccattg cccagctcga aaaaggggag 900 agggtctgcg ggcaagtcga ccgcgcacgc ggctactaa 939 <210> 12 <211> 1305 <212> DNA <213> Artificial Sequence <220> <223> Escherichia coli W3110 isocitrate lyase gene AceA <400> 12 atgaaaaccc gtacacaaca aattgaagaa ttacagaaag agtggactca accgcgttgg 60 gaaggcatta ctcgcccata cagtgcggaa gatgtggtga aattacgcgg ttcagtcaat 120 cctgaatgca cgctggcgca actgggcgca gcgaaaatgt ggcgtctgct gcacggtgag 180 tcgaaaaaag gctacatcaa cagcctcggc gcactgactg gcggtcaggc gctgcaacag 240 gcgaaagcgg gtattgaagc agtctatctg tcgggatggc aggtagcggc ggacgctaac 300 ctggcggcca gcatgtatcc ggatcagtcg ctctatccgg caaactcggt gccagctgtg 360 gtggagcgga tcaacaacac cttccgtcgt gccgatcaga tccaatggtc cgcgggcatt 420 gagccgggcg atccgcgcta tgtcgattac ttcctgccga tcgttgccga tgcggaagcc 480 ggttttggcg gtgtcctgaa tgcctttgaa ctgatgaaag cgatgattga agccggtgca 540 gcggcagttc acttcgaaga tcagctggcg tcagtgaaga aatgcggtca catgggcggc 600 aaagttttag tgccaactca ggaagctatt cagaaactgg tcgcggcgcg tctggcagct 660 gacgtgacgg gcgttccaac cctgctggtt gcccgtaccg atgctgatgc ggcggatctg 720 atcacctccg attgcgaccc gtatgacagc gaatttatta ccggcgagcg taccagtgaa 780 ggcttcttcc gtactcatgc gggcattgag caagcgatca gccgtggcct ggcgtatgcg 840 ccatatgctg acctggtctg gtgtgaaacc tccacgccgg atctggaact ggcgcgtcgc 900 tttgcacaag ctatccacgc gaaatatccg ggcaaactgc tggcttataa ctgctcgccg 960 tcgttcaact ggcagaaaaa cctcgacgac aaaactattg ccagcttcca gcagcagctg 1020 tcggatatgg gctacaagtt ccagttcatc accctggcag gtatccacag catgtggttc 1080 aacatgtttg acctggcaaa cgcctatgcc cagggcgagg gtatgaagca ctacgttgag 1140 aaagtgcagc agccggaatt tgccgccgcg aaagatggct ataccttcgt atctcaccag 1200 caggaagtgg gtacaggtta cttcgataaa gtgacgacta ttattcaggg cggcacgtct 1260 tcagtcaccg cgctgaccgg ctccactgaa gaatcgcagt tctaa 1305 <210> 13 <211> 1737 <212> DNA <213> Artificial Sequence <220> <223> Escherichia coli W3110 isocitrate dehydrogenase kinase/phosphatase gene AceK <400> 13 atgccgcgtg gcctggaatt attgattgct caaaccattt tgcaaggctt cgatgctcag 60 tatggtcgat tcctcgaagt gacctccggt gcgcagcagc gtttcgaaca ggccgactgg 120 catgctgtcc agcaggcgat gaaaaaccgt atccatcttt acgatcatca cgttggtctg 180 gtcgtggagc aactgcgctg cattactaac ggccaaagta cggacgcggc atttttacta 240 cgtgttaaag agcattacac ccggctgttg ccggattacc cgcgcttcga gattgcggag 300 agctttttta actccgtgta ctgtcggtta tttgaccacc gctcgcttac tcccgagcgg 360 ctttttatct ttagctctca gccagagcgc cgctttcgta ccattccccg cccgctggcg 420 aaagactttc accccgatca cggctgggaa tctctactga tgcgcgttat cagcgaccta 480 ccgctgcgcc tgcgctggca gaataaaagc cgtgacatcc attacattat tcgccatctg 540 acggaaacgc tggggacaga caacctcgcg gaaagtcatt tacaggtggc gaacgaactg 600 ttttaccgca ataaagccgc ctggctggta ggcaaactga tcacaccttc cggcacattg 660 ccatttttgc tgccgatcca ccagacggac gacggcgagt tatttattga tacctgcctg 720 acgacgaccg ccgaagcgag cattgttttt ggctttgcgc gttcttattt tatggtttat 780 gcgccgctgc ccgcagcgct ggtcgagtgg ctacgggaaa ttctgccagg taaaaccacc 840 gctgaattgt atatggctat cggctgccag aagcacgcca aaaccgaaag ctaccgcgaa 900 tatctcgttt atctacaggg ctgtaatgag cagttcattg aagcgccggg tattcgtgga 960 atggtgatgt tggtgtttac gctgccgggc tttgatcggg tattcaaagt catcaaagac 1020 aggttcgcgc cgcagaaaga gatgtctgcc gctcacgttc gtgcctgcta tcaactggtg 1080 aaagagcacg atcgcgtggg ccgaatggcg gacacccagg agtttgaaaa ctttgtgctg 1140 gagaagcggc atatttcccc ggcattaatg gaattactgc ttcaggaagc agcggaaaaa 1200 atcaccgatc tcggcgaaca aattgtgatt cgccatcttt atattgagcg gcggatggtg 1260 ccgctcaata tctggctgga acaagtggaa ggtcagcagt tgcgcgacgc cattgaagaa 1320 tacggtaacg ctattcgcca gcttgccgct gctaacattt tccctggcga catgctgttt 1380 aaaaacttcg gtgtcacccg tcacgggcgt gtggtttttt atgattacga tgaaatttgc 1440 tacatgacgg aagtgaattt ccgcgacatc ccgccgccgc gctatccgga agacgaactt 1500 gccagcgaac cgtggtacag cgtctcgccg ggcgatgttt tcccggaaga gtttcgccac 1560 tggctatgcg ccgacccgcg tattggtccg ctgtttgaag agatgcacgc cgacctgttc 1620 cgcgctgatt actggcgcgc actacaaaac cgcatacgtg aagggcatgt ggaagatgtt 1680 tatgcgtatc ggcgcaggca aagatttagc gtacggtatg gggagatgct tttttga 1737 <210> 14 <211> 1170 <212> DNA <213> Artificial Sequence <220> <223> Methylococcus capsulatus codon optimized sucC-2 (Succinyl-CoA ligase beta-subunit) gene <400> 14 atgaacatcc acgaatacca ggcgaaagaa ctgctgaaaa cctacggtgt tccggttccg 60 gacggtgcgg ttgcgtactc tgacgcgcag gcggcgtctg ttgcggaaga aatcggtggt 120 tctcgttggg ttgttaaagc gcagatccac gcgggtggtc gtggtaaagc gggtggtgtt 180 aaagttgcgc actctatcga agaagttcgt cagtacgcgg acgcgatgct gggttctcac 240 ctggttaccc accagaccgg tccgggtggt tctctggttc agcgtctgtg ggttgaacag 300 gcgtctcaca tcaaaaaaga atactacctg ggtttcgtta tcgaccgtgg taaccagcgt 360 atcaccctga tcgcgtcttc tgaaggtggt atggaaatcg aagaagttgc gaaagaaacc 420 ccggaaaaaa tcgttaaaga agttgttgac ccggcgatcg gtctgctgga cttccagtgc 480 cgtaaagttg cgaccgcgat cggtctgaaa ggtaaactga tgccgcaggc ggttcgtctg 540 atgaaagcga tctaccgttg catgcgtgac aaagacgcgc tgcaggcgga aatcaacccg 600 ctggcgatcg ttggtgaatc tgacgaatct ctgatggttc tggacgcgaa attcaacttc 660 gacgacaacg cgctgtaccg tcagcgtacc atcaccgaaa tgcgtgacct ggcggaagaa 720 gacccgaaag aagttgaagc gtctggtcac ggtctgaact acatcgcgct ggacggtaac 780 atcggttgca tcgttaacgg tgcgggtctg gcgatggcgt ctctggacgc gatcaccctg 840 cacggtggtc gtccggcgaa cttcctggac gttggtggtg gtgcgtctcc ggaaaaagtt 900 accaacgcgt gccgtatcgt tctggaagac ccgaacgttc gttgcatcct ggttaacatc 960 ttcgcgggta tcaaccgttg cgactggatc gcgaaaggtc tgatccaggc gtgcgactct 1020 ctgcagatca aagttccgct gatcgttcgt ctggcgggta ccaacgttga cgaaggtcgt 1080 aaaatcctgg cggaatctgg tctgtctttc atcaccgcgg aaaacctgga cgacgcggcg 1140 gcgaaagcgg ttgcgatcgt taaaggttaa 1170 <210> 15 <211> 903 <212> DNA <213> Artificial Sequence <220> <223> Methylococcus capsulatus codon optimized sucD-2 (Succinyl-CoA ligase alpha-subunit) gene <400> 15 atgtctgttt tcgttaacaa acactctaaa gttatcttcc agggtttcac cggtgaacac 60 gcgaccttcc acgcgaaaga cgcgatgcgt atgggtaccc gtgttgttgg tggtgttacc 120 ccgggtaaag gtggtacccg tcacccggac ccggaactgg cgcacctgcc ggttttcgac 180 accgttgcgg aagcggttgc ggcgaccggt gcggacgttt ctgcggtttt cgttccgccg 240 ccgttcaacg cggacgcgct gatggaagcg atcgacgcgg gtatccgtgt tgcggttacc 300 atcgcggacg gtatcccggt tcacgacatg atccgtctgc agcgttaccg tgttggtaaa 360 gactctatcg ttatcggtcc gaacaccccg ggtatcatca ccccgggtga atgcaaagtt 420 ggtatcatgc cgtctcacat ctacaaaaaa ggtaacgttg gtatcgtttc tcgttctggt 480 accctgaact acgaagcgac cgaacagatg gcggcgctgg gtctgggtat caccacctct 540 gttggtatcg gtggtgaccc gatcaacggt accgacttcg ttaccgttct gcgtgcgttc 600 gaagcggacc cggaaaccga aatcgttgtt atgatcggtg aaatcggtgg tccgcaggaa 660 gttgcggcgg cgcgttgggc gaaagaaaac atgaccaaac cggttatcgg tttcgttgcg 720 ggtctggcgg cgccgaccgg tcgtcgtatg ggtcacgcgg gtgcgatcat ctcttctgaa 780 gcggacaccg cgggtgcgaa aatggacgcg atggaagcgc tgggtctgta cgttgcgcgt 840 aacccggcgc agatcggtca gaccgttctg cgtgcggcgc aggaacacgg tatccgtttc 900 tga 903 <210> 16 <211> 957 <212> DNA <213> Artificial Sequence <220> <223> Rhodobacter spaeroides codon optimized mcl-1(malyl-CoA lyase) gene <400> 16 atgtctttcc gtctgcagcc ggcgccgccg gcgcgtccga accgttgcca gctgttcggt 60 ccgggttctc gtccggcgct gttcgaaaaa atggcggcgt ctgcggcgga cgttatcaac 120 ctggacctgg aagactctgt tgcgccggac gacaaagcgc aggcgcgtgc gaacatcatc 180 gaagcgatca acggtctgga ctggggtcgt aaatacctgt ctgttcgtat caacggtctg 240 gacaccccgt tctggtaccg tgacgttgtt gacctgctgg aacaggcggg tgaccgtctg 300 gaccagatca tgatcccgaa agttggttgc gcggcggacg tttacgcggt tgacgcgctg 360 gttaccgcga tcgaacgtgc gaaaggtcgt accaaaccgc tgtctttcga agttatcatc 420 gaatctgcgg cgggtatcgc gcacgttgaa gaaatcgcgg cgtcttctcc gcgtctgcag 480 gcgatgtctc tgggtgcggc ggacttcgcg gcgtctatgg gtatgcagac caccggtatc 540 ggtggtaccc aggaaaacta ctacatgctg cacgacggtc agaaacactg gtctgacccg 600 tggcactggg cgcaggcggc gatcgttgcg gcgtgccgta cccacggtat cctgccggtt 660 gacggtccgt tcggtgactt ctctgacgac gaaggtttcc gtgcgcaggc gcgtcgttct 720 gcgaccctgg gtatggttgg taaatgggcg atccacccga aacaggttgc gctggcgaac 780 gaagttttca ccccgtctga aaccgcggtt accgaagcgc gtgaaatcct ggcggcgatg 840 gacgcggcga aagcgcgtgg tgaaggtgcg accgtttaca aaggtcgtct ggttgacatc 900 gcgtctatca aacaggcgga agttatcgtt cgtcaggcgg aaatgatctc tgcgtga 957 <210> 17 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> cc-xdh-F <400> 17 cggtcatatg tcttctgcga tctacccg 28 <210> 18 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> cc-xdh-R <400> 18 ctttctcgag tcaacgccaa cccgc 25 <210> 19 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> cc-xylD-F <400> 19 ctgtcatatg cgttctgcgc tgtctaac 28 <210> 20 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> cc-xylD-R <400> 20 cgttctcgag tcagtggttg tgacgc 26 <210> 21 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> yjhG-F <400> 21 ggggcatatg tctgttcgca atatttttg 29 <210> 22 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> yjhG-R <400> 22 cgccctcgag tcagttttta ttcataaaat cgc 33 <210> 23 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> yagF-F <400> 23 cccgcatatg accattgaga aaatt 25 <210> 24 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> yagF-R <400> 24 ctctctcgag ttaaattccg agcgc 25 <210> 25 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> yjhH-F <400> 25 cccgcatatg aaaaaattca gcggcatta 29 <210> 26 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> yjhH-R <400> 26 ctctctcgag ttctcctcag actggtaa 28 <210> 27 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> yagE-F <400> 27 ctcgcatatg attcagcaag gagatc 26 <210> 28 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> yagE-R <400> 28 ctctctcgag tcagcaaagc ttgagctg 28 <210> 29 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> ycdW-F <400> 29 cccgcatatg gatatcatct tttatcaccc 30 <210> 30 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> ycdW-R <400> 30 ctttctcgag ttagtagccg cgtgcgc 27 <210> 31 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> aceA-F <400> 31 ccaacaattg gatgaaaacc cgtacacaac 30 <210> 32 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> aceA-R <400> 32 ctttctcgag ttagaactgc gattcttcag 30 <210> 33 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> aceK-F <400> 33 aaaacatatg ccgcgtggcc tggaat 26 <210> 34 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> aceK-R <400> 34 aaaactcgag tcaaaaaagc atctccccat ac 32 <210> 35 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> aldA-F <400> 35 ccaccatatg tcagtacccg ttcaacatc 29 <210> 36 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> aldA-R <400> 36 ccccctcgag ttaagactgt aaataaacca c 31 <210> 37 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> mcl-F <400> 37 ccaacatatg tctttccgtc tgca 24 <210> 38 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> mcl-R <400> 38 caacctcgag tcacgcagag atcattt 27 <210> 39 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> sucC-2-F <400> 39 ccaacatatg aacatccacg aataccagg 29 <210> 40 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> sucC-2-R <400> 40 caacctcgag ttaaccttta acgatcgcaa c 31 <210> 41 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> sucD-2-F <400> 41 cccccatatg tctgttttcg ttaa 24 <210> 42 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> sucD-2-R <400> 42 caaactcgag tcagaaacgg atacc 25 <210> 43 <211> 61 <212> DNA <213> Artificial Sequence <220> <223> glcD-KO-F <400> 43 gctggaaaaa ggtgtgttgt tggtgatggc gcgctttaaa catatgaata tcctccttag 60 t 61 <210> 44 <211> 61 <212> DNA <213> Artificial Sequence <220> <223> glcD-KO-R <400> 44 aaatcatatt gctgcgataa acgggcaatg ccttccagta gtgtaggctg gagctgcttc 60 g 61 <210> 45 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> glcD-Ver-F <400> 45 atgagcatct tgtacgaaga 20 <210> 46 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> glcD-Ver-R <400> 46 ttcagggaaa ggtaaatgac 20 <210> 47 <211> 61 <212> DNA <213> Artificial Sequence <220> <223> glcB-KO-F <400> 47 ttctctgcac ggacgctcgc tgctgtttat ccgcaacgtg catatgaata tcctccttag 60 t 61 <210> 48 <211> 61 <212> DNA <213> Artificial Sequence <220> <223> glcB-KO-R <400> 48 ttcaaattca gcattgaact cggtctgggc aatgttggct gtgtaggctg gagctgcttc 60 g 61 <210> 49 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> glcB-Ver-F <400> 49 cgcacatcaa cgatgttatc 20 <210> 50 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> glcB-Ver-R <400> 50 gccacattgt gaatatccgg 20 <210> 51 <211> 61 <212> DNA <213> Artificial Sequence <220> <223> aceB-KO-F <400> 51 tcactggcac cagactggaa caaagtgatc gacgggcaaa catatgaata tcctccttag 60 t 61 <210> 52 <211> 61 <212> DNA <213> Artificial Sequence <220> <223> aceB-KO-R <400> 52 accgttattg gcttccagcg atttatccgc ttttactttg gtgtaggctg gagctgcttc 60 g 61 <210> 53 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> aceB-Ver-F <400> 53 gaaacagctt ccattcgcg 19 <210> 54 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> aceB-Ver-R <400> 54 gtaatcggcg cgtcttgttc 20 <210> 55 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> yagF-His-F <400> 55 cccctcgaga accattgaga aaatt 25 <210> 56 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> yagF-His-R <400> 56 cccaagctta attccgagcg ctttttt 27 <210> 57 <211> 1053 <212> DNA <213> Artificial Sequence <220> <223> glycolate oxidase glcE gene <400> 57 atgctacgcg agtgtgatta cagccaggcg ctgctggagc aggtgaatca ggcgattagc 60 gataaaacgc cgctggtgat tcagggcagc aatagcaaag cctttttagg tcgccctgtc 120 accgggcaaa cgctggatgt tcgttgtcat cgcggcattg ttaattacga cccgaccgag 180 ctggtgataa ccgcgcgtgt cggaacgccg ctggtgacaa ttgaagcggc gctggaaagc 240 gcggggcaaa tgctcccctg tgagccgccg cattatggtg aagaagccac ctggggcggg 300 atggtcgcct gcgggctggc ggggccgcgt cgcccgtgga gcggttcggt ccgcgatttt 360 gtcctcggca cgcgcatcat taccggcgct ggaaaacatc tgcgttttgg tggcgaagtg 420 atgaaaaacg ttgccggata cgatctctca cggttaatgg tcggaagcta cggttgtctt 480 ggcgtgctca ctgaaatctc aatgaaagtg ttaccgcgac cgcgcgcctc cctgagcctg 540 cgtcgggaaa tcagcctgca agaagccatg agtgaaatcg ccgagtggca actccagcca 600 ttacccatta gtggcttatg ttacttcgac aatgcgttgt ggatccgcct tgagggcggc 660 gaaggatcgg taaaagcagc gcgtgaactg ctgggtggcg aagaggttgc cggtcagttc 720 tggcagcaat tgcgtgaaca acaactgccg ttcttctcgt taccaggtac cttatggcgc 780 atttcattac ccagtgatgc gccgatgatg gatttacccg gcgagcaact gatcgactgg 840 ggcggggcgt tacgctggct gaaatcgaca gccgaggaca atcaaatcca tcgcatcgcc 900 cgcaacgctg gcggtcatgc gacccgcttt agtgccggag atggtggctt tgccccgcta 960 tcggctcctt tattccgcta tcaccagcag cttaaacagc agctcgaccc ttgcggcgtg 1020 tttaaccccg gtcgcatgta cgcggaactt tga 1053 <210> 58 <211> 1224 <212> DNA <213> Artificial Sequence <220> <223> glycolate oxidase glcF gene <400> 58 atgcaaaccc aattaactga agagatgcgg cagaacgcgc gcgcgctgga agccgacagc 60 atcctgcgcg cctgtgttca ctgcggattt tgtaccgcaa cctgcccaac ctatcagctt 120 ctgggcgatg aactggacgg gccgcgcggg cgcatctatc tgattaaaca ggtgctggaa 180 ggcaacgaag tcacgcttaa aacacaggag catctcgatc gctgcctcac ttgccgtaat 240 tgtgaaacca cctgtccttc tggtgtgcgc tatcacaatt tgctggatat cgggcgtgat 300 attgtcgagc agaaagtgaa acgcccactg ccggagcgaa tactgcgcga aggattgcgc 360 caggtagtgc cgcgtccggc ggtcttccgt gcgctgacgc aggtagggct ggtgctgcga 420 ccgtttttac cggaacaggt cagagcaaaa ctgcctgctg aaacggtgaa agctaaaccg 480 cgtccgccgc tgcgccataa gcgtcgggtt ttaatgttgg aaggctgcgc ccagcctacg 540 ctttcgccca acaccaacgc ggcaactgcg cgagtgctgg atcgtctggg gatcagcgtc 600 atgccagcta acgaagcagg ctgttgtggc gcggtggact atcatcttaa tgcgcaggag 660 aaagggctgg cacgggcgcg caataatatt gatgcctggt ggcccgcgat tgaagcaggt 720 gccgaggcaa ttttgcaaac cgccagcggc tgcggcgcgt ttgtcaaaga gtatgggcag 780 atgctgaaaa acgatgcgtt atatgccgat aaagcacgtc aggtcagtga actggcggtc 840 gatttagtcg aacttctgcg cgaggaaccg ctggaaaaac tggcaattcg cggcgataaa 900 aagctggcct tccactgtcc gtgtacccta caacatgcgc aaaagctgaa cggcgaagtg 960 gaaaaagtgt tgcttcgtct tggatttacc ttaacggacg ttcccgacag ccatctgtgc 1020 tgcggttcag cgggaacata tgcgttaacg catcccgatc tggcacgcca gctgcgggat 1080 aacaaaatga atgcgctgga aagcggcaaa ccggaaatga tcgtcaccgc caacattggt 1140 tgccagacgc atctggcgag cgccggtcgt acctctgtgc gtcactggat tgaaattgta 1200 gaacaagccc ttgaaaagga ataa 1224 <210> 59 <211> 405 <212> DNA <213> Artificial Sequence <220> <223> glycolate oxidase glcG gene <400> 59 atgaaaacta aagtcattct tagccagcaa atggcgagtg caattattgc cgcaggtcag 60 gaagaggcgc agaaaaataa ctggtctgtt tccattgctg ttgccgatga cggcggtcat 120 ctgctggcgt taagtcgcat ggacgattgc gcgccgattg cggcttatat ctcccaggag 180 aaagcgcgta ccgccgcgct ggggcgtcgt gaaactaagg gctatgaaga gatggtgaac 240 aacggacgta ccgcgttcgt gactgcgccg ttattaacgt cgctggaagg cggcgtaccg 300 gttgttgtgg atgggcaaat tattggtgcc gtgggcgttt ctggtttaac cggagcacag 360 gatgcgcagg tcgcgaaagc ggcagcagcg gtgttggcga aataa 405 <110> MYONGJI UNIVERSITY INDUSTRY AND ACADEMIA COOPERATION FOUNDATION <120> ESCHERICHIA COLI PRODUCING GLYCOLATE FROM XYLOSE, METHOD FOR          PREPARING THE SAME AND METHOD FOR PRODUCING GLYCOLATE USING THE          SAME <130> P17-0067 <160> 59 <170> KoPatentin 3.0 <210> 1 <211> 1323 <212> DNA <213> Artificial Sequence <220> <223> Escherichia coli W3110 xylose isomerase xylA gene <400> 1 atgcaagcct attttgacca gctcgatcgc gttcgttatg aaggctcaaa atcctcaaac 60 ccgttagcat tccgtcacta caatcccgac gaactggtgt tgggtaagcg tatggaagag 120 cacttgcgtt ttgccgcctg ctactggcac accttctgct ggaacggggc ggatatgttt 180 ggtgtggggg cgtttaatcg tccgtggcag cagcctggtg aggcactggc gttggcgaag 240 cgtaaagcag atgtcgcatt tgagtttttc cacaagttac atgtgccatt ttattgcttc 300 cacgatgtgg atgtttcccc tgagggcgcg tcgttaaaag agtacatcaa taattttgcg 360 caaatggttg atgtcctggc aggcaagcaa gaagagagcg gcgtgaagct gctgtgggga 420 acggccaact gctttacaaa ccctcgctac ggcgcgggtg cggcgacgaa cccagatcct 480 gaagtcttca gctgggcggc aacgcaagtt gttacagcga tggaagcaac ccataaattg 540 ggcggtgaaa actatgtcct gtggggcggt cgtgaaggtt acgaaacgct gttaaatacc 600 gacttgcgtc aggagcgtga acaactgggc cgctttatgc agatggtggt tgagcataaa 660 cataaaatcg gtttccaggg cacgttgctt atcgaaccga aaccgcaaga accgaccaaa 720 catcaatatg attacgatgc cgcgacggtc tatggcttcc tgaaacagtt tggtctggaa 780 aaagagatta aactgaacat tgaagctaac cacgcgacgc tggcaggtca ctctttccat 840 catgaaatag ccaccgccat tgcgcttggc ctgttcggtt ctgtcgacgc caaccgtggc 900 gatgcgcaac tgggctggga caccgaccag ttcccgaaca gtgtggaaga gaatgcgctg 960 gtgatgtatg aaattctcaa agcaggcggt ttcaccaccg gtggtctgaa cttcgatgcc 1020 aaagtacgtc gtcaaagtac tgataaatat gatctgtttt acggtcatat cggcgcgatg 1080 gatacgatgg cactggcgct gaaaattgca gcgcgcatga ttgaagatgg cgagctggat 1140 aaacgcatcg cgcagcgtta ttccggctgg aatagcgaat tgggccagca aatcctgaaa 1200 ggccaaatgt cactggcaga tttagccaaa tatgctcagg aacatcattt gtctccggtg 1260 catcagagtg gtcgccagga acaactggaa aatctggtaa accattatct gttcgacaaa 1320 taa 1323 <210> 2 <211> 1455 <212> DNA <213> Artificial Sequence <220> <223> Escherichia coli W3110 xylulose kinase xylB gene <400> 2 atgtatatcg ggatagatct tggcacctcg ggcgtaaaag ttattttgct caacgagcag 60 ggtgaggtgg ttgctgcgca aacggaaaag ctgaccgttt cgcgcccgca tccactctgg 120 tcggaacaag acccggaaca gtggtggcag gcaactgatc gcgcaatgaa agctctgggc 180 gatcagcatt ctctgcagga cgttaaagca ttgggtattg ccggccagat gcacggagca 240 accttgctgg atgctcagca acgggtgtta cgccctgcca ttttgtggaa cgacgggcgc 300 tgtgcgcaag agtgcacttt gctggaagcg cgagttccgc aatcgcgggt gattaccggc 360 aacctgatga tgcccggatt tactgcgcct aaattgctat gggttcagcg gcatgagccg 420 gagatattcc gtcaaatcga caaagtatta ttaccgaaag attacttgcg tctgcgtatg 480 acgggggagt ttgccagcga tatgtctgac gcagctggca ccatgtggct ggatgtcgca 540 aagcgtgact ggagtgacgt catgctgcag gcttgcgact tatctcgtga ccagatgccc 600 gcattatacg aaggcagcga aattactggt gctttgttac ctgaagttgc gaaagcgtgg 660 ggtatggcga cggtgccagt tgtcgcaggc ggtggcgaca atgcagctgg tgcagttggt 720 gtgggaatgg ttgatgctaa tcaggcaatg ttatcgctgg ggacgtcggg ggtctatttt 780 gctgtcagcg aagggttctt aagcaagcca gaaagcgccg tacatagctt ttgccatgcg 840 ctaccgcaac gttggcattt aatgtctgtg atgctgagtg cagcgtcgtg tctggattgg 900 gccgcgaaat taaccggcct gagcaatgtc ccagctttaa tcgctgcagc tcaacaggct 960 gatgaaagtg ccgagccagt ttggtttctg ccttatcttt ccggcgagcg tacgccacac 1020 aataatcccc aggcgaaggg ggttttcttt ggtttgactc atcaacatgg ccccaatgaa 1080 ctggcgcgag cagtgctgga aggcgtgggt tatgcgctgg cagatggcat ggatgtcgtg 1140 gcgtagtgag 1200 tactggcgtc agatgctggc ggatatcagc ggtcagcagc tcgattaccg tacggggggg 1260 gatgtggggc cagcactggg cgcagcaagg ctggcgcaga tcgcggcgaa tccagagaaa 1320 tcgctcattg aattgttgcc gcaactaccg ttagaacagt cgcatctacc agatgcgcag 1380 cgttatgccg cttatcagcc acgacgagaa acgttccgtc gcctctatca gcaacttctg 1440 ccattaatgg cgtaa 1455 <210> 3 <211> 1500 <212> DNA <213> Artificial Sequence <220> <223> Escherichia coli W3110 glycolate oxidase glcD gene <400> 3 atgagcatct tgtacgaaga gcgtcttgat ggcgctttac ccgatgtcga ccgcacatcg 60 gtactgatgg cactgcgtga gcatgtccct ggacttgaga tcctgcatac cgatgaggag 120 atcattcctt acgagtgtga cgggttgagc gcgtatcgca cgcgtccatt actggttgtt 180 ctgcctaagc aaatggaaca ggtgacagcg attctggctg tctgccatcg cctgcgtgta 240 ccggtggtga cccgtggtgc aggcaccggg ctttctggtg gcgcgctgcc gctggaaaaa 300 ggtgtgttgt tggtgatggc gcgctttaaa gagatcctcg acattaaccc cgttggtcgc 360 cgcgcgcgcg tgcagccagg cgtgcgtaac ctggcgatct cccaggccgt tgcaccgcat 420 aatctctact acgcaccgga cccttcctca caaatcgcct gttccattgg cggcaatgtg 480 gctgaaaatg ccggcggcgt ccactgcctg aaatatggtc tgaccgtaca taacctgctg 540 aaaattgaag tgcaaacgct ggacggcgag gcactgacgc ttggatcgga cgcgctggat 600 tcacctggtt ttgacctgct ggcgctgttc accggatcgg aaggtatgct cggcgtgacc 660 accgaagtga cggtaaaact gctgccgaag ccgcccgtgg cgcgggttct gttagccagc 720 tttgactcgg tagaaaaagc cggacttgcg gttggtgaca tcatcgccaa tggcattatc 780 cccggcgggc tggagatgat ggataacctg tcgatccgcg cggcggaaga ttttattcat 840 gccggttatc ccgtcgacgc cgaagcgatt ttgttatgcg agctggacgg cgtggagtct 900 gacgtacagg aagactgcga gcgggttaac gacatcttgt tgaaagcggg cgcgactgac 960 gtccgtctgg cacaggacga agcagagcgc gtacgtttct gggccggtcg caaaaatgcg 1020 ttcccggcgg taggacgtat ctccccggat tactactgca tggatggcac catcccgcgt 1080 cgcgccctgc ctggcgtact ggaaggcatt gcccgtttat cgcagcaata tgatttacgt 1140 gttgccaacg tctttcatgc cggagatggc aacatgcacc cgttaatcct tttcgatgcc 1200 aacgaacccg gtgaatttgc ccgcgcggaa gagctgggcg ggaagatcct cgaactctgc 1260 gttgaagttg gcggcagcat cagtggcgaa catggcatcg ggcgagaaaa aatcaatcaa 1320 atgtgcgccc agttcaacag cgatgaaatc acgaccttcc atgcggtcaa ggcggcgttt 1380 gaccccgatg gtttgctgaa ccctgggaaa aacattccca cgctacaccg ctgtgctgaa 1440 tttggtgcca tgcatgtgca tcacggtcat ttacctttcc ctgaactgga gcgtttctga 1500                                                                         1500 <210> 4 <211> 747 <212> DNA <213> Artificial Sequence <220> <223> Caulobacter crescentus NA1000_codon optimized Xdh gene <400> 4 atgtcttctg cgatctaccc gtctctgaaa ggtaaacgtg ttgttatcac cggtggtggt 60 tctggtatcg gtgcgggtct gaccgcgggt ttcgcgcgtc agggtgcgga agttatcttc 120 ctggacatcg cggacgaaga ctctcgtgcg ctggaagcgg aactggcggg ttctccgatc 180 ccgccggttt acaaacgttg cgacctgatg aacctggaag cgatcaaagc ggttttcgcg 240 gaaatcggtg acgttgacgt tctggttaac aacgcgggta acgacgaccg tcacaaactg 300 gcggacgtta ccggtgcgta ctgggacgaa cgtatcaacg ttaacctgcg tcacatgctg 360 ttctgcaccc aggcggttgc gccgggtatg aaaaaacgtg gtggtggtgc ggttatcaac 420 ttcggttcta tctcttggca cctgggtctg gaagacctgg ttctgtacga aaccgcgaaa 480 gcgggtatcg aaggtatgac ccgtgcgctg gcgcgtgaac tgggtccgga cgacatccgt 540 gttacctgcg ttgttccggg taacgttaaa accaaacgtc aggaaaaatg gtacaccccg 600 gaaggtgaag cgcagatcgt tgcggcgcag tgcctgaaag gtcgtatcgt tccggaaaac 660 gttgcggcgc tggttctgtt cctggcgtct gacgacgcgt ctctgtgcac cggtcacgaa 720 tactggatcg acgcgggttg gcgttga 747 <210> 5 <211> 1968 <212> DNA <213> Artificial Sequence <220> <223> Escherichia coli W3110 dehydratase gene YjhG <400> 5 atgtctgttc gcaatatttt tgctgacgag agccacgata tttacaccgt cagaacgcac 60 gccgatggcc cggacggcga actcccatta accgcagaga tgcttatcaa ccgcccgagc 120 ggggatctgt tcggtatgac catgaatgcc ggaatgggtt ggtctccgga cgagctggat 180 cgggacggta ttttactgct cagtacactc ggtggcttac gcggcgcaga cggtaaaccc 240 gtggcgctgg cgttgcacca ggggcattac gaactggaca tccagatgaa agcggcggcc 300 gaggttatta aagccaacca tgccctgccc tatgccgtgt acgtctccga tccttgtgac 360 gggcgtactc agggtacaac ggggatgttt gattcgctac cataccgaaa tgacgcatcg 420 atggtaatgc gccgccttat tcgctctctg cccgacgcga aagcagttat tggtgtggcg 480 agttgcgata aggggcttcc ggccaccatg atggcactcg ccgcgcagca caacatcgca 540 accgtgctgg tccccggcgg cgcgacgctg cccgcaaagg atggagaaga caacggcaag 600 gtgcaaacca ttggcgcacg cttcgccaat ggcgaattat ctctacagga cgcacgccgt 660 gcgggctgta aagcctgtgc ctcttccggc ggcggctgtc aatttttggg cactgccggg 720 acatctcagg tggtggccga aggattggga ctggcaatcc cacattcagc cctggcccct 780 tccggtgagc ctgtgtggcg ggagatcgcc agagcttccg cgcgagctgc gctgaacctg 840 agtcaaaaag gcatcaccac ccgggaaatt ctcaccgata aagcgataga gaatgcgatg 900 acggtccatg ccgcgttcgg tggttcaaca aacctgctgt tacacatccc ggcaattgct 960 caccaggcag gttgccatat cccgaccgtt gatgactgga tccgcatcaa caagcgcgtg 1020 ccccgactgg tgagcgtact gcctaatggc ccggtttatc atccaacggt caatgccttt 1080 atggcaggtg gtgtgccgga agtcatgttg catctgcgca gcctcggatt gttgcatgaa 1140 gacgttatga cggttaccgg cagcacgctg aaagaaaacc tcgactggtg ggagcactcc 1200 gaacggcgtc agcggttcaa gcaactcctg ctcgatcagg aacaaatcaa cgctgacgaa 1260 gtgatcatgt ctccgcagca agcaaaagcg cgcggattaa cctcaactat caccttcccg 1320 gtgggcaata ttgcgccaga aggttcggtg atcaaatcca ccgccattga cccctcgatg 1380 attgatgagc aaggtatcta ttaccataaa ggtgtggcga aggtttatct gtccgagaaa 1440 agtgcgattt acgatatcaa acatgacaag atcaaggcgg gcgatattct ggtcattatt 1500 ggcgttggac cttcaggtac agggatggaa gaaacctacc aggttaccag tgccctgaag 1560 catctgtcat acggtaagca tgtttcgtta atcaccgatg cacgtttctc gggcgtttct 1620 actggcgcgt gcatcggcca tgtggggcca gaagcgctgg ccggaggccc catcggtaaa 1680 ttacgcaccg gggatttaat tgaaattaaa attgattgtc gcgagcttca cggcgaagtc 1740 aatttcctcg gaacccgtag cgatgaacaa ttaccttcac aggaggaggc aactgcaata 1800 ttaaatgcca gacccagcca tcaggattta cttcccgatc ctgaattgcc agatgatacc 1860 cggctatggg caatgcttca ggccgtgagt ggtgggacat ggaccggttg tatttatgat 1920 gtaaacaaaa ttggcgcggc tttgcgcgat tttatgaata aaaactga 1968 <210> 6 <211> 1968 <212> DNA <213> Artificial Sequence <220> <223> Escherichia coli W3110 dehydratase gene YagF <400> 6 atgaccattg agaaaatttt caccccgcag gacgacgcgt tttatgcggt gatcacccac 60 gcggcggggc cgcagggcgc tctgccgctg accccgcaga tgctgatgga atctcccagc 120 ggcaacctgt tcggcatgac gcagaacgcc gggatgggct gggacgccaa caagctcacc 180 ggcaaagagg tgctgattat cggcactcag ggcggcatcc gcgccggaga cggacgccca 240 atcgcgctgg gctaccacac cgggcattgg gagatcggca tgcagatgca ggcggcggcg 300 aaggagatca cccgcaatgg cgggatcccg ttcgcggcct tcgtcagcga tccgtgcgac 360 gt; atcgtgtttc gccgcctgat ccgctccctg ccgacgcggc gggcggtgat cggcgtagcg 480 acctgcgata aagggctgcc cgccaccatg attgcgctgg ccgcgatgca cgacctgccg 540 actattctgg tgccgggcgg ggcgacgctg ccgccgaccg tcggggaaga cgcgggcaag 600 gtgcagacca tcggcgcgcg tttcgccaac cacgaactct ccctgcagga ggccgccgaa 660 ctgggctgtc gcgcctgcgc ctcgccgggc ggcgggtgtc agttcctcgg cacggcgggc 720 acctcgcagg tggtcgcgga ggcgctgggt ctggcgctgc cgcactccgc gctggcgccg 780 tccgggcagg cggtgtggct ggagatcgcc cgccagtcgg cgcgcgcggt cagcgagctg 840 gatagccgcg gcatcaccac gcgggatatc ctctccgata aagccatcga aaacgcgatg 900 gtgatccacg cggcgttcgg cggctccacc aatttactgc tgcacattcc ggccatcgcc 960 ccgcggcgg gctgcacgat cccggacgtt gagcactgga cgcgcatcaa ccgtaaagtg 1020 ccgcgtctgg tgagcgtgct gcccaacggc ccggactatc acccgaccgt gcgcgccttc 1080 ctcgcgggcg gcgtgccgga ggtgatgctc cacctgcgcg acctcggcct gctgcatctg 1140 gcgccatga ccgtgaccgg ccagacggtg ggcgagaacc ttgaatggtg gcaggcgtcc 1200 gagcgccggg cgcgcttccg ccagtgcctg cgcgagcagg acggcgtaga gccggatgac 1260 gtgatcctgc cgccggagaa ggcaaaagcg aaagggctga cctcgacggt ctgcttcccg 1320 acgggcaaca tcgctccgga aggttcggtg atcaaggcca cggcgatcga cccgtcggtg 1380 gtgggcgaag atggcgtata ccaccacacc ggccgggtgc gggtgtttgt ctcggaagcg 1440 caggcgatca aggcgatcaa gcgggaagag attgtgcagg gcgatatcat ggtggtgatc 1500 ggcggcgggc cgtccggcac cggcatggaa gagacctacc agctcacctc cgcgctaaag 1560 catatctcgt ggggcaagac ggtgtcgctc atcaccgatg cgcgcttctc gggcgtgtcg 1620 acgggcgcct gcttcggcca cgtgtcgccg gaggcgctgg cgggcgggcc gattggcaag 1680 ctgcgcgata acgacatcat cgagattgcc gtggatcgtc tgacgttaac tggcagcgtg 1740 aacttcatcg gcaccgcgga caacccgctg acgccggaag agggcgcgcg cgagctggcg 1800 cggcggcaga cgcacccgga cctgcacgcc cacgactttt tgccggacga cacccggctg 1860 tgggcggcac tgcagtcggt gagcggcggc acctggaaag gctgtattta tgacaccgat 1920 aaaattatcg aggtaattaa cgccggtaaa aaagcgctcg gaatttaa 1968 <210> 7 <211> 1788 <212> DNA <213> Artificial Sequence <220> <223> Caulobacter crescentus CB15_codon optimized XylD dehydratase gene <400> 7 atgcgttctg cgctgtctaa ccgtaccccg cgtcgtttcc gttctcgtga ctggttcgac 60 aacccggacc acatcgacat gaccgcgctg tacctggaac gtttcatgaa ctacggtatc 120 accccggaag aactgcgttc tggtaaaccg atcatcggta tcgcgcagac cggttctgac 180 atctctccgt gcaaccgtat ccacctggac ctggttcagc gtgttcgtga cggtatccgt 240 gacgcgggtg gtatcccgat ggaattcccg gttcacccga tcttcgaaaa ctgccgtcgt 300 ccgaccgcgg cgctggaccg taacctgtct tacctgggtc tggttgaaac cctgcacggt 360 tacccgatcg acgcggttgt tctgaccacc ggttgcgaca aaaccacccc ggcgggtatc 420 atggcggcga ccaccgttaa catcccggcg atcgttctgt ctggtggtcc gatgctggac 480 ggttggcacg aaaacgaact ggttggttct ggtaccgtta tctggcgttc tcgtcgtaaa 540 ctggcggcgg gtgaaatcac cgaagaagaa ttcatcgacc gtgcggcgtc ttctgcgccg 600 tctgcgggtc actgcaacac catgggtacc gcgtctacca tgaacgcggt tgcggaagcg 660 ctgggtctgt ctctgaccgg ttgcgcggcg atcccggcgc cgtaccgtga acgtggtcag 720 atggcgtaca aaaccggtca gcgtatcgtt gacctggcgt acgacgacgt taaaccgctg 780 gacatcctga ccaaacaggc gttcgaaaac gcgatcgcgc tggttgcggc ggcgggtggt 840 tctaccaacg cgcagccgca catcgttgcg atggcgcgtc acgcgggtgt tgaaatcacc 900 gcggacgact ggcgtgcggc gtacgacatc ccgctgatcg ttaacatgca gccggcgggt 960 aaatacctgg gtgaacgttt ccaccgtgcg ggtggtgcgc cggcggttct gtgggaactg 1020 ctgcagcagg gtcgtctgca cggtgacgtt ctgaccgtta ccggtaaaac catgtctgaa 1080 aacctgcagg gtcgtgaaac ctctgaccgt gaagttatct tcccgtacca cgaaccgctg 1140 gcggaaaaag cgggtttcct ggttctgaaa ggtaacctgt tcgacttcgc gatcatgaaa 1200 tcttctgtta tcggtgaaga attccgtaaa cgttacctgt ctcagccggg tcaggaaggt 1260 gttttcgaag cgcgtgcgat cgttttcgac ggttctgacg actaccacaa acgtatcaac 1320 gacccggcgc tggaaatcga cgaacgttgc atcctggtta tccgtggtgc gggtccgatc 1380 ggttggccgg gttctgcgga agttgttaac atgcagccgc cggaccacct gctgaaaaaa 1440 ggtatcatgt ctctgccgac cctgggtgac ggtcgtcagt ctggtaccgc ggactctccg 1500 tctatcctga acgcgtctcc ggaatctgcg atcggtggtg gtctgtcttg gctgcgtacc 1560 ggtgacacca tccgtatcga cctgaacacc ggtcgttgcg acgcgctggt tgacgaagcg 1620 accatcgcgg cgcgtaaaca ggacggtatc ccggcggttc cggcgaccat gaccccgtgg 1680 cggaaatct accgtgcgca cgcgtctcag ctggacaccg gtggtgttct ggaattcgcg 1740 gttaaatacc aggacctggc ggcgaaactg ccgcgtcaca accactga 1788 <210> 8 <211> 906 <212> DNA <213> Artificial Sequence <220> <223> Escherichia coli W3110 aldolase gene YjhH <400> 8 tgacggaacc 60 cttgataaaa aggcaatgcg cgaagttgcc gacttcctga ttaataaagg ggtcgacggg 120 ctgttttatc tgggtaccgg tggtgaattt agccaaatga atacagccca gcgcatggca 180 ctcgccgaag aagctgtaac cattgtcgac gggcgagtgc cggtattgat tggcgtcggt 240 tccccttcca ctgacgaagc ggtcaaactg gcgcagcatg cgcaagccta cggcgctgat 300 ggtatcgtcg ccatcaaccc ctactactgg aaagtcgcac cacgaaatct tgacgactat 360 taccagcaga tcgcccgtag cgtcacccta ccggtgatcc tgtacaactt tccggatctg 420 acgggtcagg acttaacccc ggaaaccgtg acgcgtctgg ctctgcaaaa cgagaatatc 480 gttggcatca aagacaccat cgacagcgtt ggtcacttgc gtacgatgat caacacagtt 540 aagtcggtac gcccgtcgtt ttcggtattc tgcggttacg atgatcattt gctgaatacg 600 atgctgctgg gcggcgacgg tgcgataacc gccagcgcta actttgctcc ggaactctcc 660 gtcggcatct accgcgcctg gcgtgaaggc gatctggcga ccgctgcgac gctgaataaa 720 aaactactac aactgcccgc tatttacgcc ctcgaaacac cgtttgtctc actgatcaaa 780 tacagcatgc agtgtgtcgg gctgcctgta gagacatatt gcttaccacc gattcttgaa 840 gcatctgaag aagcaaaaga taaagtccac gtgctgctta ccgcgcaggg cattttacca 900 gtctga 906 <210> 9 <211> 930 <212> DNA <213> Artificial Sequence <220> <223> Escherichia coli W3110 aldolase gene YagE <400> 9 atgattcagc aaggagatct catgccgcag tccgcgttgt tcacgggaat cattccccct 60 gtctccacca tttttaccgc cgacggccag ctcgataagc cgggcaccgc cgcgctgatc 120 gacgatctga tcaaagcagg cgttgacggc ctgttcttcc tgggcagcgg tggcgagttc 180 tcccagctcg gcgccgaaga gcgtaaagcc attgcccgct ttgctatcga tcatgtcgat 240 cgtcgcgtgc cggtgctgat cggcaccggc ggcaccaacg cccgggaaac catcgaactc 300 agccagcacg cgcagcaggc gggcgcggac ggcatcgtgg tgatcaaccc ctactactgg 360 aaagtgtcgg aagcgaacct gatccgctat ttcgagcagg tggccgacag cgtcacgctg 420 ccggtgatgc tctataactt cccggcgctg accgggcagg atctgactcc ggcgctggtg 480 aaaaccctcg ccgactcgcg cagcaatatt atcggcatca aagacaccat cgactccgtc 540 gcccacctgc gcagcatgat ccataccgtc aaaggtgccc atccgcactt caccgtgctc 600 tgcggctacg acgatcatct gttcaatacc ctgctgctcg gcggcgacgg ggcgatatcg 660 gcgagcggca actttgcccc gcaggtgtcg gtgaatcttc tgaaagcctg gcgcgacggg 720 gacgtggcga aagcggccgg gtatcatcag accttgctgc aaattccgca gatgtatcag 780 ctggatacgc cgtttgtgaa cgtgattaaa gaggcgatcg tgctctgcgg tcgtcctgtc 840 tccacgcacg tgctgccgcc cgcctcgccg ctggacgagc cgcgcaaggc gcagctgaaa 900 accctgctgc aacagctcaa gctttgctga 930 <210> 10 <211> 1440 <212> DNA <213> Artificial Sequence <220> <223> Escherichia coli W3110 aldehyde dehydrogenase A gene AldA <400> 10 atgtcagtac ccgttcaaca tcctatgtat atcgatggac agtttgttac ctggcgtgga 60 gacgcatgga ttgatgtggt aaaccctgct acagaggctg tcatttcccg catacccgat 120 ggtcaggccg aggatgcccg taaggcaatc gatgcagcag aacgtgcaca accagaatgg 180 gaagcgttgc ctgctattga acgcgccagt tggttgcgca aaatctccgc cgggatccgc 240 gaacgcgcca gtgaaatcag tgcgctgatt gttgaagaag ggggcaagat ccagcagctg 300 gctgaagtcg aagtggcttt tactgccgac tatatcgatt acatggcgga gtgggcacgg 360 cgttacgagg gcgagattat tcaaagcgat cgtccaggag aaaatattct tttgtttaaa 420 cgtgcgcttg gtgtgactac cggcattctg ccgtggaact tcccgttctt cctcattgcc 480 cgcaaaatgg ctcccgctct tttgaccggt aataccatcg tcattaaacc tagtgaattt 540 acgccaaaca atgcgattgc attcgccaaa atcgtcgatg aaataggcct tccgcgcggc 600 gtgtttaacc ttgtactggg gcgtggtgaa accgttgggc aagaactggc gggtaaccca 660 aaggtcgcaa tggtcagtat gacaggcagc gtctctgcag gtgagaagat catggcgact 720 gcggcgaaaa acatcaccaa agtgtgtctg gaattggggg gtaaagcacc agctatcgta 780 atggacgatg ccgatcttga actggcagtc aaagccatcg ttgattcacg cgtcattaat 840 agtgggcaag tgtgtaactg tgcagaacgt gtttatgtac agaaaggcat ttatgatcag 900 ttcgtcaatc ggctgggtga agcgatgcag gcggttcaat ttggtaaccc cgctgaacgc 960 aacgacattg cgatggggcc gttgattaac gccgcggcgc tggaaagggt cgagcaaaaa 1020 gtggcgcgcg cagtagaaga aggggcgaga gtggcgttcg gtggcaaagc ggtagagggg 1080 aaaggatatt attatccgcc gacattgctg ctggatgttc gccaggaaat gtcgattatg 1140 catgaggaaa cctttggccc ggtgctgcca gttgtcgcat ttgacacgct ggaagatgct 1200 atctcaatgg ctaatgacag tgattacggc ctgacctcat caatctatac ccaaaatctg 1260 aacgtcgcga tgaaagccat taaagggctg aagtttggtg aaacttacat caaccgtgaa 1320 aacttcgaag ctatgcaagg cttccacgcc ggatggcgta aatccggtat tggcggcgca 1380 gatggtaaac atggcttgca tgaatatctg cagacccagg tggtttattt acagtcttaa 1440                                                                         1440 <210> 11 <211> 939 <212> DNA <213> Artificial Sequence <220> <223> Escherichia coli W3110 glyoxylate reductase gene YcdW <400> 11 atggatatca tcttttatca cccaacgttc gatacccaat ggtggattga ggcactgcgc 60 aaagctattc ctcaggcaag agtcagagca tggaaaagcg gagataatga ctctgctgat 120 tatgctttag tctggcatcc tcctgttgaa atgctggcag ggcgcgatct taaagcggtg 180 ttcgcactcg gggccggtgt tgattctatt ttgagcaagc tacaggcaca ccctgaaatg 240 ctgaaccctt ctgttccact ttttcgcctg gaagataccg gtatgggcga gcaaatgcag 300 gaatatgctg tcagtcaggt gctgcattgg tttcgacgtt ttgacgatta tcgcatccag 360 caaaatagtt cgcattggca accgctgcct gaatatcatc gggaagattt taccatcggc 420 attttgggcg caggcgtact gggcagtaaa gttgctcaga gtctgcaaac ctggcgcttt 480 ccgctgcgtt gctggagtcg aacccgtaaa tcgtggcctg gcgtgcaaag ctttgccgga 540 cgggaagaac tgtctgcatt tctgagccaa tgtcgggtat tgattaattt gttaccgaat 600 acccctgaaa ccgtcggcat tattaatcaa caattactcg aaaaattacc ggatggcgcg 660 tatctcctca acctggcgcg tggtgttcat gttgtggaag atgacctgct cgcggcgctg 720 gatagcggca aagttaaagg cgcaatgttg gatgttttta atcgtgaacc cttaccgcct 780 gaaagtccgc tctggcaaca tccacgcgtg acgataacac cacatgtcgc cgcgattacc 840 cgtcccgctg aagctgtgga gtacatttct cgcaccattg cccagctcga aaaaggggag 900 agggtctgcg ggcaagtcga ccgcgcacgc ggctactaa 939 <210> 12 <211> 1305 <212> DNA <213> Artificial Sequence <220> <223> Escherichia coli W3110 isocitrate lyase gene AceA <400> 12 atgaaaaccc gtacacaaca aattgaagaa ttacagaaag agtggactca accgcgttgg 60 gaaggcatta ctcgcccata cagtgcggaa gatgtggtga aattacgcgg ttcagtcaat 120 cctgaatgca cgctggcgca actgggcgca gcgaaaatgt ggcgtctgct gcacggtgag 180 tcgaaaaaag gctacatcaa cagcctcggc gcactgactg gcggtcaggc gctgcaacag 240 gcgaaagcgg gtattgaagc agtctatctg tcgggatggc aggtagcggc ggacgctaac 300 ctggcggcca gcatgtatcc ggatcagtcg ctctatccgg caaactcggt gccagctgtg 360 gtggagcgga tcaacaacac cttccgtcgt gccgatcaga tccaatggtc cgcgggcatt 420 gagccgggcg atccgcgcta tgtcgattac ttcctgccga tcgttgccga tgcggaagcc 480 gt; gcggcagttc acttcgaaga tcagctggcg tcagtgaaga aatgcggtca catgggcggc 600 aaagttttag tgccaactca ggaagctatt cagaaactgg tcgcggcgcg tctggcagct 660 gcgtgacgg gcgttccaac cctgctggtt gcccgtaccg atgctgatgc ggcggatctg 720 atcacctccg attgcgaccc gtatgacagc gaatttatta ccggcgagcg taccagtgaa 780 ggcttcttcc gtactcatgc gggcattgag caagcgatca gccgtggcct ggcgtatgcg 840 ccatatgctg acctggtctg gtgtgaaacc tccacgccgg atctggaact ggcgcgtcgc 900 tttgcacaag ctatccacgc gaaatatccg ggcaaactgc tggcttataa ctgctcgccg 960 tcgttcaact ggcagaaaaa cctcgacgac aaaactattg ccagcttcca gcagcagctg 1020 tcggatatgg gctacaagtt ccagttcatc accctggcag gtatccacag catgtggttc 1080 aacatgtttg acctggcaaa cgcctatgcc cagggcgagg gtatgaagca ctacgttgag 1140 aaagtgcagc agccggaatt tgccgccgcg aaagatggct ataccttcgt atctcaccag 1200 caggaagtgg gtacaggtta cttcgataaa gtgacgacta ttattcaggg cggcacgtct 1260 tcagtcaccg cgctgaccgg ctccactgaa gaatcgcagt tctaa 1305 <210> 13 <211> 1737 <212> DNA <213> Artificial Sequence <220> <223> Escherichia coli W3110 isocitrate dehydrogenase          kinase / phosphatase gene AceK <400> 13 atgccgcgtg gcctggaatt attgattgct caaaccattt tgcaaggctt cgatgctcag 60 tatggtcgat tcctcgaagt gacctccggt gcgcagcagc gtttcgaaca ggccgactgg 120 catgctgtcc agcaggcgat gaaaaaccgt atccatcttt acgatcatca cgttggtctg 180 gtcgtggagc aactgcgctg cattactaac ggccaaagta cggacgcggc atttttacta 240 cgtgttaaag agcattacac ccggctgttg ccggattacc cgcgcttcga gattgcggag 300 agctttttta actccgtgta ctgtcggtta tttgaccacc gctcgcttac tcccgagcgg 360 ctttttatct ttagctctca gccagagcgc cgctttcgta ccattccccg cccgctggcg 420 aaagactttc accccgatca cggctgggaa tctctactga tgcgcgttat cagcgaccta 480 ccgctgcgcc tgcgctggca gaataaaagc cgtgacatcc attacattat tcgccatctg 540 acggaaacgc tggggacaga caacctcgcg gaaagtcatt tacaggtggc gaacgaactg 600 ttttaccgca ataaagccgc ctggctggta ggcaaactga tcacaccttc cggcacattg 660 ccatttttgc tgccgatcca ccagacggac gacggcgagt tatttattga tacctgcctg 720 acgacgaccg ccgaagcgag cattgttttt ggctttgcgc gttcttattt tatggtttat 780 gcgccgctgc ccgcagcgct ggtcgagtgg ctacgggaaa ttctgccagg taaaaccacc 840 gctgaattgt atatggctat cggctgccag aagcacgcca aaaccgaaag ctaccgcgaa 900 tatctcgttt atctacaggg ctgtaatgag cagttcattg aagcgccggg tattcgtgga 960 atggtgatgt tggtgtttac gctgccgggc tttgatcggg tattcaaagt catcaaagac 1020 aggttcgcgc cgcagaaaga gatgtctgcc gctcacgttc gtgcctgcta tcaactggtg 1080 aaagagcacg atcgcgtggg ccgaatggcg gacacccagg agtttgaaaa ctttgtgctg 1140 gagaagcggc atatttcccc ggcattaatg gaattactgc ttcaggaagc agcggaaaaa 1200 atcaccgatc tcggcgaaca aattgtgatt cgccatcttt atattgagcg gcggatggtg 1260 ccgctcaata tctggctgga acaagtggaa ggtcagcagt tgcgcgacgc cattgaagaa 1320 tacggtaacg ctattcgcca gcttgccgct gctaacattt tccctggcga catgctgttt 1380 aaaaacttcg gtgtcacccg tcacgggcgt gtggtttttt atgattacga tgaaatttgc 1440 tacatgacgg aagtgaattt ccgcgacatc ccgccgccgc gctatccgga agacgaactt 1500 gccagcgaac cgtggtacag cgtctcgccg ggcgatgttt tcccggaaga gtttcgccac 1560 tggctatgcg ccgacccgcg tattggtccg ctgtttgaag agatgcacgc cgacctgttc 1620 cgcgctgatt actggcgcgc actacaaaac cgcatacgtg aagggcatgt ggaagatgtt 1680 tatgcgtatc ggcgcaggca aagatttagc gtacggtatg gggagatgct tttttga 1737 <210> 14 <211> 1170 <212> DNA <213> Artificial Sequence <220> <223> Methylococcus capsulatus codon optimized sucC-2 (Succinyl-CoA          ligase beta-subunit) gene <400> 14 atgaacatcc acgaatacca ggcgaaagaa ctgctgaaaa cctacggtgt tccggttccg 60 gacggtgcgg ttgcgtactc tgacgcgcag gcggcgtctg ttgcggaaga aatcggtggt 120 tctcgttggg ttgttaaagc gcagatccac gcgggtggtc gtggtaaagc gggtggtgtt 180 aaagttgcgc actctatcga agaagttcgt cagtacgcgg acgcgatgct gggttctcac 240 ctggttaccc accagaccgg tccgggtggt tctctggttc agcgtctgtg ggttgaacag 300 gcgtctcaca tcaaaaaaga atactacctg ggtttcgtta tcgaccgtgg taaccagcgt 360 atcaccctga tcgcgtcttc tgaaggtggt atggaaatcg aagaagttgc gaaagaaacc 420 ccggaaaaaa tcgttaaaga agttgttgac ccggcgatcg gtctgctgga cttccagtgc 480 cgtaaagttg cgaccgcgat cggtctgaaa ggtaaactga tgccgcaggc ggttcgtctg 540 atgaaagcga tctaccgttg catgcgtgac aaagacgcgc tgcaggcgga aatcaacccg 600 ctggcgatcg ttggtgaatc tgacgaatct ctgatggttc tggacgcgaa attcaacttc 660 gcgacaacg cgctgtaccg tcagcgtacc atcaccgaaa tgcgtgacct ggcggaagaa 720 gacccgaaag aagttgaagc gtctggtcac ggtctgaact acatcgcgct ggacggtaac 780 atcggttgca tcgttaacgg tgcgggtctg gcgatggcgt ctctggacgc gatcaccctg 840 cacggtggtc gtccggcgaa cttcctggac gttggtggtg gtgcgtctcc ggaaaaagtt 900 accaacgcgt gccgtatcgt tctggaagac ccgaacgttc gttgcatcct ggttaacatc 960 ttcgcgggta tcaaccgttg cgactggatc gcgaaaggtc tgatccaggc gtgcgactct 1020 ctgcagatca aagttccgct gatcgttcgt ctggcgggta ccaacgttga cgaaggtcgt 1080 aaaatcctgg cggaatctgg tctgtctttc atcaccgcgg aaaacctgga cgacgcggcg 1140 gcgaaagcgg ttgcgatcgt taaaggttaa 1170 <210> 15 <211> 903 <212> DNA <213> Artificial Sequence <220> <223> Methylococcus capsulatus codon optimized sucD-2 (Succinyl-CoA          ligase alpha-subunit) gene <400> 15 atgtctgttt tcgttaacaa acactctaaa gttatcttcc agggtttcac cggtgaacac 60 gcgaccttcc acgcgaaaga cgcgatgcgt atgggtaccc gtgttgttgg tggtgttacc 120 ccgggtaaag gtggtacccg tcacccggac ccggaactgg cgcacctgcc ggttttcgac 180 accgttgcgg aagcggttgc ggcgaccggt gcggacgttt ctgcggtttt cgttccgccg 240 ccgttcaacg cggacgcgct gatggaagcg atcgacgcgg gtatccgtgt tgcggttacc 300 atcgcggacg gtatcccggt tcacgacatg atccgtctgc agcgttaccg tgttggtaaa 360 gactctatcg ttatcggtcc gaacaccccg ggtatcatca ccccgggtga atgcaaagtt 420 ggtatcatgc cgtctcacat ctacaaaaaa ggtaacgttg gtatcgtttc tcgttctggt 480 accctgaact acgaagcgac cgaacagatg gcggcgctgg gtctgggtat caccacctct 540 gttggtatcg gtggtgaccc gatcaacggt accgacttcg ttaccgttct gcgtgcgttc 600 gaagcggacc cggaaaccga aatcgttgtt atgatcggtg aaatcggtgg tccgcaggaa 660 gttgcggcgg cgcgttgggc gaaagaaaac atgaccaaac cggttatcgg tttcgttgcg 720 ggtctggcgg cgccgaccgg tcgtcgtatg ggtcacgcgg gtgcgatcat ctcttctgaa 780 gcggacaccg cgggtgcgaa aatggacgcg atggaagcgc tgggtctgta cgttgcgcgt 840 aacccggcgc agatcggtca gaccgttctg cgtgcggcgc aggaacacgg tatccgtttc 900 tga 903 <210> 16 <211> 957 <212> DNA <213> Artificial Sequence <220> <223> Rhodobacter spaeroides codon optimized mcl-1 (malyl-CoA lyase)          gene <400> 16 atgtctttcc gtctgcagcc ggcgccgccg gcgcgtccga accgttgcca gctgttcggt 60 ccgggttctc gtccggcgct gttcgaaaaa atggcggcgt ctgcggcgga cgttatcaac 120 ctggacctgg aagactctgt tgcgccggac gacaaagcgc aggcgcgtgc gaacatcatc 180 gaagcgatca acggtctgga ctggggtcgt aaatacctgt ctgttcgtat caacggtctg 240 gacaccccgt tctggtaccg tgacgttgtt gacctgctgg aacaggcggg tgaccgtctg 300 tgacgcggg gttaccgcga tcgaacgtgc gaaaggtcgt accaaaccgc tgtctttcga agttatcatc 420 gaatctgcgg cgggtatcgc gcacgttgaa gaaatcgcgg cgtcttctcc gcgtctgcag 480 gcgatgtctc tgggtgcggc ggacttcgcg gcgtctatgg gtatgcagac caccggtatc 540 ggtggtaccc aggaaaacta ctacatgctg cacgacggtc agaaacactg gtctgacccg 600 tggcactggg cgcaggcggc gatcgttgcg gcgtgccgta cccacggtat cctgccggtt 660 gcggtccgt tcggtgactt ctctgacgac gaaggtttcc gtgcgcaggc gcgtcgttct 720 gcgaccctgg gtatggttgg taaatgggcg atccacccga aacaggttgc gctggcgaac 780 gaagttttca ccccgtctga aaccgcggtt accgaagcgc gtgaaatcct ggcggcgatg 840 gacgcggcga aagcgcgtgg tgaaggtgcg accgtttaca aaggtcgtct ggttgacatc 900 gcgtctatca aacaggcgga agttatcgtt cgtcaggcgg aaatgatctc tgcgtga 957 <210> 17 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> cc-xdh-F <400> 17 cggtcatatg tcttctgcga tctacccg 28 <210> 18 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> cc-xdH-R <400> 18 ctttctcgag tcaacgccaa cccgc 25 <210> 19 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> cc-xylD-F <400> 19 ctgtcatatg cgttctgcgc tgtctaac 28 <210> 20 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> cc-xylD-R <400> 20 cgttctcgag tcagtggttg tgacgc 26 <210> 21 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> yjHG-F <400> 21 ggggcatatg tctgttcgca atatttttg 29 <210> 22 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> yjHG-R <400> 22 cgccctcgag tcagttttta ttcataaaat cgc 33 <210> 23 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> yagF-F <400> 23 cccgcatatg accattgaga aaatt 25 <210> 24 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> YAGF-R <400> 24 ctctctcgag ttaaattccg agcgc 25 <210> 25 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> yjHH-F <400> 25 cccgcatatg aaaaaattca gcggcatta 29 <210> 26 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> yjHH-R <400> 26 ctctctcgag ttctcctcag actggtaa 28 <210> 27 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> yagE-F <400> 27 ctcgcatatg attcagcaag gagatc 26 <210> 28 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> yagE-R <400> 28 ctctctcgag tcagcaaagc ttgagctg 28 <210> 29 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> ycdW-F <400> 29 cccgcatatg gatatcatct tttatcaccc 30 <210> 30 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> ycdW-R <400> 30 ctttctcgag ttagtagccg cgtgcgc 27 <210> 31 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> aceA-F <400> 31 ccaacaattg gatgaaaacc cgtacacaac 30 <210> 32 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> aceA-R <400> 32 ctttctcgag ttagaactgc gattcttcag 30 <210> 33 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> AceK-F <400> 33 aaaacatatg ccgcgtggcc tggaat 26 <210> 34 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> AceK-R <400> 34 aaaactcgag tcaaaaaagc atctccccat ac 32 <210> 35 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> aldA-F <400> 35 ccaccatatg tcagtacccg ttcaacatc 29 <210> 36 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> aldA-R <400> 36 ccccctcgag ttaagactgt aaataaacca c 31 <210> 37 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> mCl-F <400> 37 ccaacatatg tctttccgtc tgca 24 <210> 38 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> μC1-R <400> 38 caacctcgag tcacgcagag atcattt 27 <210> 39 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> sucC-2-F <400> 39 ccaacatatg aacatccacg aataccagg 29 <210> 40 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> sucC-2-R <400> 40 caacctcgag ttaaccttta acgatcgcaa c 31 <210> 41 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> sucD-2-F <400> 41 cccccatatg tctgttttcg ttaa 24 <210> 42 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> sucD-2-R <400> 42 caaactcgag tcagaaacgg atacc 25 <210> 43 <211> 61 <212> DNA <213> Artificial Sequence <220> <223> GlcD-KO-F <400> 43 gctggaaaaa ggtgtgttgt tggtgatggc gcgctttaaa catatgaata tcctccttag 60 t 61 <210> 44 <211> 61 <212> DNA <213> Artificial Sequence <220> <223> GlcD-KO-R <400> 44 aaatcatatt gctgcgataa acgggcaatg ccttccagta gtgtaggctg gagctgcttc 60 g 61 <210> 45 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> GlcD-Ver-F <400> 45 atgagcatct tgtacgaaga 20 <210> 46 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> GlcD-Ver-R <400> 46 ttcagggaaa ggtaaatgac 20 <210> 47 <211> 61 <212> DNA <213> Artificial Sequence <220> <223> glcB-KO-F <400> 47 ttctctgcac ggacgctcgc tgctgtttat ccgcaacgtg catatgaata tcctccttag 60 t 61 <210> 48 <211> 61 <212> DNA <213> Artificial Sequence <220> <223> GlcB-KO-R <400> 48 ttcaaattca gcattgaact cggtctgggc aatgttggct gtgtaggctg gagctgcttc 60 g 61 <210> 49 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> GlcB-Ver-F <400> 49 cgcacatcaa cgatgttatc 20 <210> 50 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> GlcB-Ver-R <400> 50 gccacattgt gaatatccgg 20 <210> 51 <211> 61 <212> DNA <213> Artificial Sequence <220> <223> aceB-KO-F <400> 51 tcactggcac cagactggaa caaagtgatc gacgggcaaa catatgaata tcctccttag 60 t 61 <210> 52 <211> 61 <212> DNA <213> Artificial Sequence <220> <223> aceB-KO-R <400> 52 accgttattg gcttccagcg atttatccgc ttttactttg gtgtaggctg gagctgcttc 60 g 61 <210> 53 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> aceB-Ver-F <400> 53 gaaacagctt ccattcgcg 19 <210> 54 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> aceB-Ver-R <400> 54 gtaatcggcg cgtcttgttc 20 <210> 55 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> YAG F-His-F <400> 55 cccctcgaga accattgaga aaatt 25 <210> 56 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> YAG F-His-R <400> 56 cccaagctta attccgagcg ctttttt 27 <210> 57 <211> 1053 <212> DNA <213> Artificial Sequence <220> <223> glycolate oxidase glcE gene <400> 57 atgctacgcg agtgtgatta cagccaggcg ctgctggagc aggtgaatca ggcgattagc 60 gataaaacgc cgctggtgat tcagggcagc aatagcaaag cctttttagg tcgccctgtc 120 accgggcaaa cgctggatgt tcgttgtcat cgcggcattg ttaattacga cccgaccgag 180 ctggtgataa ccgcgcgtgt cggaacgccg ctggtgacaa ttgaagcggc gctggaaagc 240 gcggggcaaa tgctcccctg tgagccgccg cattatggtg aagaagccac ctggggcggg 300 atggtcgcct gcgggctggc ggggccgcgt cgcccgtgga gcggttcggt ccgcgatttt 360 gtcctcggca cgcgcatcat taccggcgct ggaaaacatc tgcgttttgg tggcgaagtg 420 atgaaaaacg ttgccggata cgatctctca cggttaatgg tcggaagcta cggttgtctt 480 ggcgtgctca ctgaaatctc aatgaaagtg ttaccgcgac cgcgcgcctc cctgagcctg 540 cgtcgggaaa tcagcctgca agaagccatg agtgaaatcg ccgagtggca actccagcca 600 ttacccatta gtggcttatg ttacttcgac aatgcgttgt ggatccgcct tgagggcggc 660 gaaggatcgg taaaagcagc gcgtgaactg ctgggtggcg aagaggttgc cggtcagttc 720 tggcagcaat tgcgtgaaca acaactgccg ttcttctcgt taccaggtac cttatggcgc 780 atttcattac ccagtgatgc gccgatgatg gatttacccg gcgagcaact gatcgactgg 840 ggcggggcgt tacgctggct gaaatcgaca gccgaggaca atcaaatcca tcgcatcgcc 900 cgcaacgctg gcggtcatgc gacccgcttt agtgccggag atggtggctt tgccccgcta 960 tcggctcctt tattccgcta tcaccagcag cttaaacagc agctcgaccc ttgcggcgtg 1020 tttaaccccg gtcgcatgta cgcggaactt tga 1053 <210> 58 <211> 1224 <212> DNA <213> Artificial Sequence <220> <223> glycolate oxidase glcF gene <400> 58 atgcaaaccc aattaactga agagatgcgg cagaacgcgc gcgcgctgga agccgacagc 60 atcctgcgcg cctgtgttca ctgcggattt tgtaccgcaa cctgcccaac ctatcagctt 120 ctgggcgatg aactggacgg gccgcgcggg cgcatctatc tgattaaaca ggtgctggaa 180 ggcaacgaag tcacgcttaa aacacaggag catctcgatc gctgcctcac ttgccgtaat 240 tgtgaaacca cctgtccttc tggtgtgcgc tatcacaatt tgctggatat cgggcgtgat 300 attgtcgagc agaaagtgaa acgcccactg ccggagcgaa tactgcgcga aggattgcgc 360 caggtagtgc cgcgtccggc ggtcttccgt gcgctgacgc aggtagggct ggtgctgcga 420 ccgtttttac cggaacaggt cagagcaaaa ctgcctgctg aaacggtgaa agctaaaccg 480 cgtccgccgc tgcgccataa gcgtcgggtt ttaatgttgg aaggctgcgc ccagcctacg 540 ctttcgccca acaccaacgc ggcaactgcg cgagtgctgg atcgtctggg gatcagcgtc 600 atgccagcta acgaagcagg ctgttgtggc gcggtggact atcatcttaa tgcgcaggag 660 aaagggctgg cacgggcgcg caataatatt gatgcctggt ggcccgcgat tgaagcaggt 720 gccgaggcaa ttttgcaaac cgccagcggc tgcggcgcgt ttgtcaaaga gtatgggcag 780 atgggggg atatgccgat aaagcacgtc aggtcagtga actggcggtc 840 gatttagtcg aacttctgcg cgaggaaccg ctggaaaaac tggcaattcg cggcgataaa 900 aagctggcct tccactgtcc gtgtacccta caacatgcgc aaaagctgaa cggcgaagtg 960 gaaaaagtgt tgcttcgtct tggatttacc ttaacggacg ttcccgacag ccatctgtgc 1020 tgcggttcag cgggaacata tgcgttaacg catcccgatc tggcacgcca gctgcgggat 1080 aacaaaatga atgcgctgga aagcggcaaa ccggaaatga tcgtcaccgc caacattggt 1140 tgccagacgc atctggcgag cgccggtcgt acctctgtgc gtcactggat tgaaattgta 1200 gaacaagccc ttgaaaagga ataa 1224 <210> 59 <211> 405 <212> DNA <213> Artificial Sequence <220> <223> glycolate oxidase glcG gene <400> 59 atgaaaacta aagtcattct tagccagcaa atggcgagtg caattattgc cgcaggtcag 60 gaagaggcgc agaaaaataa ctggtctgtt tccattgctg ttgccgatga cggcggtcat 120 ctgctggcgt taagtcgcat ggacgattgc gcgccgattg cggcttatat ctcccaggag 180 aaagcgcgta ccgccgcgct ggggcgtcgt gaaactaagg gctatgaaga gatggtgaac 240 aacggacgta ccgcgttcgt gactgcgccg ttattaacgt cgctggaagg cggcgtaccg 300 gttgttgtgg atgggcaaat tattggtgcc gtgggcgttt ctggtttaac cggagcacag 360 gatgcgcagg tcgcgaaagc ggcagcagcg gtgttggcga aataa 405

Claims (14)

대장균에서 자일로스 이소머라제(xylose isomerase) 유전자 xylA 및 자일루로키나아제(xylulokinase) 유전자 xylB 녹아웃 시키는 단계(단계 a);
단계 a의 대장균에서 글리콜산 옥시다아제(glycolate oxidase) 유전자 glcD를 녹아웃시키는 단계(단계 b); 및
자일로스 디하이드로게나아제(xylose dehydrogenase) 유전자 xdh를 포함하는 발현벡터를 이용하여 단계 b의 대장균을 형질전환시키는 단계(단계 c)를 포함하는, 글리콜산 생산능을 갖는 형질전환 대장균의 제조방법.
Knocking out the xylose isomerase gene xylA and the xylulokinase gene xylB in E. coli (step a);
Knocking out the glycolic acid oxidase gene glcD in E. coli of step a (step b); And
A method for producing a transformed Escherichia coli having a glycolic acid producing ability, comprising the step of transforming Escherichia coli of step (b) using an expression vector containing xylose dehydrogenase gene xdh .
청구항 1에 있어서,
상기 자일로스 이소머라제 유전자 xylA는 서열번호 1의 염기서열로 구성되는 것을 특징으로 하는, 글리콜산 생산능을 갖는 형질전환 대장균의 제조방법.
The method according to claim 1,
Wherein the xylose isomerase gene xylA comprises the nucleotide sequence of SEQ ID NO: 1. 2. A method for producing a transformed E. coli having a glycolic acid-producing ability.
청구항 1에 있어서,
상기 자일루로키나아제 유전자 xylB는 서열번호 2의 염기서열로 구성되는 것 특징으로 하는, 글리콜산 생산능을 갖는 형질전환 대장균의 제조방법.
The method according to claim 1,
Wherein the xylulokinase gene xylB is a nucleotide sequence of SEQ ID NO: 2.
청구항 1에 있어서,
상기 글리콜산 옥시다아제 유전자 glcD는 서열번호 3의 염기서열로 구성되는 것을 특징으로 하는, 글리콜산 생산능을 갖는 형질전환 대장균의 제조방법.
The method according to claim 1,
Wherein the glycolic acid oxidase gene glcD is composed of the nucleotide sequence of SEQ ID NO: 3.
청구항 1에 있어서,
상기 자일로스 디하이드로게나아제 유전자 xdh는 카우로박터 크리센투스(Caulobacter crescentus)로부터 유래된 것으로서 서열번호 4의 염기서열로 구성되는 것을 특징으로 하는, 글리콜산 생산능을 갖는 형질전환 대장균의 제조방법.
The method according to claim 1,
The xylose dehydrogenase gene xdh is expressed by Caulobacter &lt; RTI ID = 0.0 &gt; wherein the nucleotide sequence of SEQ ID NO: 4 is derived from crescentus , and the nucleotide sequence is SEQ ID NO: 4.
청구항 1에 있어서,
상기 단계 c의 발현벡터는,
자일론산 디하이드라타제(xylonic acid dehydratase) 유전자 yjhG, 자일론산 디하이드라타제(xylonic acid dehydratase) 유전자 yagF , 자일론산 디하이드라타제(xylonic acid dehydratase) 유전자 xylD, 2,3-케토 자일론산 알돌라아제(2,3-keto xylonate aldolase) 유전자 yjhH , 2,3-케토 자일론산 알돌라아제(2,3-keto xylonate aldolase) 유전자 yagE, 락트알데하이드 디하이드로게나아제(lactaldehyde dehydrogenase) 유전자 aldA, 글리옥실산 환원효소(glyoxylate reductase) 유전자 ycdW, 이소시트르산 리아제(isocitrate lyase) 유전자 aceA, 이소시트르산 디하이드로게나아제 키나아제/포스파타제(isocitrate dehydrogenase kinase/phosphatase) 유전자 aceK, 말산 티오키나아제(malate thiokinase) 유전자 sucC -2, 말산 티오키나아제(malate thiokinase) 유전자 sucD -2 및 말릴-CoA 리아제(malyl-CoA lyase) 유전자 mcl -1으로 이루어진 군에서 선택되는 하나 이상을 더 포함하는 것을 특징으로 하는, 글리콜산 생산능을 갖는 형질전환 대장균의 제조방법.
The method according to claim 1,
The expression vector of step c)
Xylonic acid dehydratase gene yjhG , xylonic acid dehydratase gene yagF , xylonic acid dehydratase gene xylD , 2,3-keto- xylonic acid aldolase dehydratase (2,3-keto xylonate aldolase) gene yjhH, 2,3- xylylene keto acid aldolase (2,3-keto xylonate aldolase) gene yagE, lactic aldehyde dehydrogenase (lactaldehyde dehydrogenase) gene aldA, glycidyl Glyoxylate reductase gene ycdW , isocitrate lyase gene aceA , isocitrate dehydrogenase kinase / phosphatase gene aceK , malate thiokinase gene sucC - 2, thio malic acid kinase (malate thiokinase) -2 sucD gene and dry -CoA lyase (malyl-CoA lyase) is selected from the group consisting of gene mcl -1 Method of producing a transformed E. coli having a glycolic acid-producing ability, which is characterized in that it further comprises or more.
청구항 6에 있어서,
상기 발현벡터에 포함된 유전자들은 각각 기재된 순서대로 서열번호 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 및 16으로 기재되는 염기서열로 구성되는 것을 특징으로 하는, 글리콜산 생산능을 갖는 형질전환 대장균의 제조방법.
The method of claim 6,
Wherein the genes contained in the expression vector are each composed of a nucleotide sequence represented by SEQ ID NOS: 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, A method for producing a transformed Escherichia coli having a glycolic acid producing ability.
청구항 1에 있어서,
상기 단계 c의 발현벡터는,
자일론산 디하이드라타제 유전자 yagF , 2,3-케토 자일론산 알돌라아제 유전자 yagE, 락트알데하이드 디하이드로게나아제 유전자 aldA, 글리옥실산 환원효소 유전자 ycdW, 이소시트르산 리아제 유전자 aceA 및 이소시트르산 디하이드로게나아제 키나아제/포스파타제 유전자 aceK의 조합을 포함하는 것을 특징으로 하는, 글리콜산 생산능을 갖는 형질전환 대장균의 제조방법.
The method according to claim 1,
The expression vector of step c)
The xylose dehydratase gene yagF , the 2,3-keto xylonic acid aldolase gene yagE , the lactaldehyde dehydrogenase gene aldA , the glyoxylic acid reductase gene ycdW , the isocitrate lyase gene aceA and the isocitrate dihydrogenase A method for producing a transformed Escherichia coli having a glycolic acid producing ability, characterized by comprising a combination of an azekinase / phosphatase gene aceK .
청구항 1에 있어서,
상기 대장균은 E. coli W3110(DE3)인 것을 특징으로 하는, 글리콜산 생산능을 갖는 형질전환 대장균.
The method according to claim 1,
Wherein the Escherichia coli is E. coli W3110 (DE3).
자일로스 이소머라제 유전자 xylA, 자일루로키나아제 유전자 xylB 글리콜산 옥시다아제 유전자 glcD가 녹아웃된 대장균을, 자일로스 디하이드로게나아제 유전자 xdh를 포함하는 발현벡터로 형질전환시킨, 글리콜산 생산능을 갖는 형질전환 대장균.
A xylose isomerase gene xylA , a xylulose kinase gene xylB And A transformed Escherichia coli having a glycolic acid producing ability, wherein Escherichia coli knocked out with the glycolic acid oxidase gene glcD is transformed with an expression vector containing xylose dehydrogenase gene xdh .
청구항 10에 있어서,
상기 발현벡터는,
자일론산 디하이드라타제 유전자 yjhG, 자일론산 디하이드라타제 유전자 yagF , 자일론산 디하이드라타제 유전자 xylD, 2,3-케토 자일론산 알돌라아제 유전자 yjhH , 2,3-케토 자일론산 알돌라아제 유전자 yagE, 락트알데하이드 디하이드로게나아제 유전자 aldA, 글리옥실산 환원효소 유전자 ycdW, 이소시트르산 리아제 유전자 aceA, 이소시트르산 디하이드로게나아제 키나아제/포스파타제 유전자 aceK, 말산 티오키나아제 유전자 sucC -2, 말산 티오키나아제 유전자 sucD -2 및 말릴-CoA 리아제 유전자 mcl - 1으로 이루어진 군에서 선택되는 하나 이상을 더 포함하는 것을 특징으로 하는, 글리콜산의 생산능을 갖는 형질전환 대장균.
The method of claim 10,
The expression vector may include,
The xylonic acid dihydratase gene yjhG , the xylonic acid dihydratase gene yagF , the xylonic acid dihydratase gene xylD , the 2,3- ketojylonic acid aldolase gene yjhH , the 2,3-keto xylonic acid aldolase Gene yagE , a lactaldehyde dehydrogenase gene aldA , a glyoxylic acid reductase gene ycdW , an isocitrate lyase gene aceA , an isocitrate dihydrogenase / kinase / phosphatase gene aceK , a malonic acid thiokinase gene sucC -2 , a malonic acid thiokinase gene sucD- 2 and a malic - CoA lyase gene mcl - 1 , which is capable of producing a glycolic acid-producing E. coli.
자일로스 이소머라제 유전자 xylA, 자일루로키나아제 유전자 xylB 및 글리콜산 옥시다아제 유전자 glcD를 녹아웃시킨 대장균을,
자일로스 디하이드로게나아제 유전자 xdh, 자일론산 디하이드라타제 유전자 yagF, 2,3-케토 자일론산 알돌라아제 유전자 yagE, 락트알데하이드 디하이드로게나아제 유전자 aldA , 글리옥실산 환원효소 유전자 ycdW, 이소시트르산 분해효소 유전자 aceA 및 이소시트르산 디하이드로게나아제 키나아제/포스파타제 유전자 aceK를 포함하는 발현벡터로 형질전환시킨, 글리콜산의 생산능을 갖는 형질전환 대장균.
A xylose isomerase gene xylA , a xylulose kinase gene xylB And E. coli knocking out the glycolic acid oxidase gene glcD ,
The xylose dehydrogenase gene xdh , the xylonic acid dihydratase gene yagF , the 2,3-keto- xylonic acid aldolase gene yagE , the lactaldehyde dehydrogenase gene aldA , the glyoxylic acid reductase gene ycdW , the isocitric acid Transformed Escherichia coli having the ability to produce glycolic acid, which is transformed with an expression vector comprising the degrading enzyme gene aceA and the isocitrate dihydrogenase kinase / phosphatase gene aceK .
자일로스 이소머라제 유전자 xylA, 자일루로키나아제 유전자 xylB 및 글리콜산 옥시다아제 유전자 glcD를 녹아웃시킨 대장균을,
자일로스 디하이드로게나아제 유전자 xdh, 자일론산 디하이드라타제 유전자 yagF, 2,3-케토 자일론산 알돌라아제 유전자 yagE, 락트알데하이드 디하이드로게나아제 유전자 aldA 및 글리옥실산 환원효소 유전자 ycdW를 포함하는 제1 발현벡터와 이소시트르산 분해효소 유전자 aceA 및 이소시트르산 디하이드로게나아제 키나아제/포스파타제 유전자 aceK를 포함하는 제2 발현벡터로 형질전환시킨, 글리콜산의 생산능을 갖는 형질전환 대장균.
A xylose isomerase gene xylA , a xylulose kinase gene xylB And E. coli knocking out the glycolic acid oxidase gene glcD ,
A gene including xylose dehydrogenase gene xdh , xylonic acid dihydratase gene yagF , 2,3-keto- xylonic acid aldolase gene yagE , lactaldehyde dehydrogenase gene aldA, and glyoxylic acid reductase gene ycdW A transformed E. coli having the ability to produce a glycolic acid, which is transformed with a second expression vector comprising a first expression vector, an isocitrate synthase gene aceA and an isocitrate dihydrogenase / kinase / phosphatase gene aceK .
자일로스 이소머라제 유전자 xylA, 자일루로키나아제 유전자 xylB 글리콜산 옥시다아제 유전자 glcD가 녹아웃되고, 자일로스 디하이드로게나아제 유전자 xdh를 포함하는 발현벡터로 형질전환된 대장균을, 자일로스를 포함하는 배지에 배양시키는 단계(단계 1); 및
단계 1에서 배양된 배양물로부터 글리콜산을 수득하는 단계(단계 2)를 포함하는, 글리콜산의 생산 방법.
A xylose isomerase gene xylA , a xylulose kinase gene xylB And Culturing the Escherichia coli transformed with the expression vector containing the xylose dehydrogenase gene xdh in a culture medium containing xylose (step 1), wherein the glycolic acid oxidase gene glcD is knocked out and cultured; And
(Step 2) of obtaining a glycolic acid from the culture cultured in step 1.
KR1020170061244A 2017-05-17 2017-05-17 Escherichia coli producing glycolate from xylose, method for preparing the same and method for producing glycolate using the same KR102003374B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170061244A KR102003374B1 (en) 2017-05-17 2017-05-17 Escherichia coli producing glycolate from xylose, method for preparing the same and method for producing glycolate using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170061244A KR102003374B1 (en) 2017-05-17 2017-05-17 Escherichia coli producing glycolate from xylose, method for preparing the same and method for producing glycolate using the same

Publications (2)

Publication Number Publication Date
KR20180126322A true KR20180126322A (en) 2018-11-27
KR102003374B1 KR102003374B1 (en) 2019-07-24

Family

ID=64603485

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170061244A KR102003374B1 (en) 2017-05-17 2017-05-17 Escherichia coli producing glycolate from xylose, method for preparing the same and method for producing glycolate using the same

Country Status (1)

Country Link
KR (1) KR102003374B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109554386A (en) * 2018-12-17 2019-04-02 山东大学 A kind of utilizing works Escherichia coli are using Corncob hydrolysate as the method for substrate high yield D- xylonic
KR102349819B1 (en) 2020-08-26 2022-01-10 전남대학교산학협력단 Method for production of glycolic acid or ethylene glycol from formaldehyde by the glycolaldehyde converted from formaldehyde using glyoxylate carboligase and its derivatives
CN116355821A (en) * 2023-03-10 2023-06-30 湖北大学 Recombinant strain of zymomonas mobilis for producing ethylene glycol, construction method and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160043498A (en) * 2014-10-13 2016-04-21 명지대학교 산학협력단 Engineered escherichia coli producing 1, 2, 4-butanetriol from d-xylose, method for manufacturing the same and method for 1, 2, 4-butanetriol production using the same
US20170121717A1 (en) * 2015-10-02 2017-05-04 Massachusetts Institute Of Technology Microbial production of renewable glycolate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160043498A (en) * 2014-10-13 2016-04-21 명지대학교 산학협력단 Engineered escherichia coli producing 1, 2, 4-butanetriol from d-xylose, method for manufacturing the same and method for 1, 2, 4-butanetriol production using the same
US20170121717A1 (en) * 2015-10-02 2017-05-04 Massachusetts Institute Of Technology Microbial production of renewable glycolate

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GenBank Accession Number CP013952 (2017.04.28.) 1부.* *
Mainguet, S. E., L. S. Gronenberg, S. S. Wong, and J. C. Liao (2013) A reverse glyocylate shunt to build a non-native route from C4 to C2 in Escherichia coli. Metab. Eng. 19: 116-127.
Zheng-Jun Li 등. Metabolic Engineering. Vol.35, No.1, 페이지 1-8 (2016.01.14.) 1부.* *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109554386A (en) * 2018-12-17 2019-04-02 山东大学 A kind of utilizing works Escherichia coli are using Corncob hydrolysate as the method for substrate high yield D- xylonic
KR102349819B1 (en) 2020-08-26 2022-01-10 전남대학교산학협력단 Method for production of glycolic acid or ethylene glycol from formaldehyde by the glycolaldehyde converted from formaldehyde using glyoxylate carboligase and its derivatives
CN116355821A (en) * 2023-03-10 2023-06-30 湖北大学 Recombinant strain of zymomonas mobilis for producing ethylene glycol, construction method and application thereof
CN116355821B (en) * 2023-03-10 2023-09-29 湖北大学 Recombinant strain of zymomonas mobilis for producing ethylene glycol, construction method and application thereof

Also Published As

Publication number Publication date
KR102003374B1 (en) 2019-07-24

Similar Documents

Publication Publication Date Title
CN107690482B (en) Modified microorganism for optimized production of 2,4-dihydroxybutyric acid
US11505811B2 (en) Method for the preparation of 2,4-dihydroxybutyrate
AU760575C (en) Pyruvate carboxylase overexpression for enhanced production of oxaloacetate-derived biochemicals in microbial cells
US20110151530A1 (en) Enzymatic production of 2-hydroxy-isobutyrate (2-hiba)
CN107771214B (en) Modified microorganisms for optimized 2,4-dihydroxybutyric acid production with increased 2,4-dihydroxybutyric acid excrements
KR102493197B1 (en) Recombinant microorganisms exhibiting increased flux through a fermentation pathway
CN101720356A (en) Enzyme for the production of methylmalonyl coenzyme a or ethylmalonyl coenzyme a, and use thereof
CN107406821B (en) Mutant host cells for the production of 3-hydroxypropionic acid
KR102003374B1 (en) Escherichia coli producing glycolate from xylose, method for preparing the same and method for producing glycolate using the same
KR20220021465A (en) Methanol utilization
JP2024026211A (en) Degradation pathways for pentose and hexose sugars
CN113710807A (en) Microorganisms and methods for producing oxygenates from hexoses
CN110551771A (en) Synthesis method of chiral 3-amino-1-butanol
KR20220023757A (en) Engineered microorganisms and methods to improve aldehyde dehydrogenase activity
JP2003511067A (en) High yield protein expression systems and methods
US9534240B2 (en) Recombinant microorganism producing quinolinic acid and a method for producing quinolinic acid using the same
CN113785069A (en) Genetically modified microorganisms for the production of 3-hydroxyadipic acid, alpha-hydrogenated adipic acid and/or adipic acid and methods for the production of such chemicals
CN113795589A (en) Genetically modified microorganisms for the production of 3-hydroxyadipic acid, alpha-hydrogenated adipic acid and/or adipic acid and methods for the production of such chemicals
KR102149044B1 (en) Method of producing 2-hydroxy gamma butyrolactone or 2,4-dihydroxybutanoic acid
JP2017534268A (en) Modified microorganisms and methods for the production of useful products
US9611490B2 (en) Biological method for producing cis-5-hydroxy-L-pipecolic acid
CN110607335B (en) Biosynthesis method of nicotinamide adenine dinucleotide compound
US20050089974A1 (en) Fermentative production of d-hydroxyphenylglycine and d-phenylglycine
KR20190097250A (en) Conversion of methylglyoxal to hydroxyacetone using a novel enzyme and its application
JP2023528727A (en) Methods and compositions for producing xylitol from xylose using dynamic metabolic control

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant