KR20180125092A - Method of manufacturing microorganism immobilized high molecule media for wastewater treatment with high strength nitrogen - Google Patents

Method of manufacturing microorganism immobilized high molecule media for wastewater treatment with high strength nitrogen Download PDF

Info

Publication number
KR20180125092A
KR20180125092A KR1020170059008A KR20170059008A KR20180125092A KR 20180125092 A KR20180125092 A KR 20180125092A KR 1020170059008 A KR1020170059008 A KR 1020170059008A KR 20170059008 A KR20170059008 A KR 20170059008A KR 20180125092 A KR20180125092 A KR 20180125092A
Authority
KR
South Korea
Prior art keywords
microorganism
wastewater
polymer carrier
medium
immobilized polymer
Prior art date
Application number
KR1020170059008A
Other languages
Korean (ko)
Inventor
박철휘
국중창
신동철
윤지형
고석원
국영롱
Original Assignee
주식회사 그레넥스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 그레넥스 filed Critical 주식회사 그레넥스
Priority to KR1020170059008A priority Critical patent/KR20180125092A/en
Publication of KR20180125092A publication Critical patent/KR20180125092A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/10Packings; Fillings; Grids
    • C02F3/105Characterized by the chemical composition
    • C02F3/108Immobilising gels, polymers or the like
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F2003/001Biological treatment of water, waste water, or sewage using granular carriers or supports for the microorganisms
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

An objective of the present invention is to provide a method of manufacturing a microorganism immobilized high molecule medium for wastewater treatment of high concentration nitrogen-containing wastewater, which manufactures the medium so that microorganisms can be attached at high concentrations, and thus the microorganism immobilized high molecule medium can treat high-concentration nitrogen even if the high-concentration nitrogen-containing wastewater flows in due to rainfall or inflow of nonpoint pollution sources, it can treat high concentration nitrogen, and can reuse the effluent. Specifically, another objective of the present invention is to provide a method of manufacturing a microorganism immobilized high molecule medium for wastewater treatment of high concentration nitrogen-containing wastewater, which is configured to select and fix at least one among nitrifying bacteria and denitrifying bacteria as a microorganism immobilized on a medium, so that the medium can effectively remove nitrification, denitrification and organic matter according to the condition of the wastewater.

Description

고농도 질소함유 하·폐수처리를 위한 미생물 고정화 고분자 담체의 제조방법{METHOD OF MANUFACTURING MICROORGANISM IMMOBILIZED HIGH MOLECULE MEDIA FOR WASTEWATER TREATMENT WITH HIGH STRENGTH NITROGEN}BACKGROUND OF THE INVENTION 1. Field of the Invention [0001] The present invention relates to a method of manufacturing a microorganism-immobilized polymer carrier for treatment of a high-concentration nitrogen-containing wastewater. BACKGROUND ART < RTI ID = 0.0 >

본 발명은 고농도 질소함유 하·폐수처리를 위한 미생물 고정화 고분자 담체의 제조방법에 관한 것으로, 미생물이 고농도 상태를 유지할 수 있게 담체를 제작하여 강우나 비점오염원의 유입 등으로 발생하는 고농도 질소를 함유한 하·폐수도 처리할 수 있게 한 것이다.The present invention relates to a method for producing a microorganism-immobilized polymer carrier for treatment with a high concentration of nitrogen and wastewater, comprising the steps of preparing a carrier capable of maintaining a high concentration of a microorganism and containing a high concentration of nitrogen generated by influx of rainfall or non- It is also possible to treat wastewater.

우리나라는 생활오수, 농축산폐수 그리고 산업폐수와 같은 점오염원과 비점오염원 등에서 집수한 하·폐수를 화학약품 처리와 물리적인 여과 방법으로 처리하고 있으며, 근래에 와서는 미생물을 증식 배양한 담체를 이용한 미생물을 이용한 하·폐수 처리 기술이 사용되고 있다.In Korea, waste wastewater collected from point sources such as domestic wastewater, agricultural wastewater, industrial wastewater, and non-point pollution sources is treated by chemical treatment and physical filtration method. Recently, microorganisms using microorganism- A wastewater treatment technique using a wastewater treatment method is used.

여기서, 담체는 생물 반응조 내부에서 미생물이 잘 증식·생장할 수 있도록 부착 표면을 제공하기 위한 것으로, 처리하고자 하는 기질과 미생물 사이의 접촉 기회를 늘려 처리 효과를 높이게 하는 목적도 가진다. 이러한 담체는, 아래의 특허문헌 1 내지 특허문헌 3과 같이, 다양하게 제작하여 사용하고 있다.Here, the carrier is intended to provide an attachment surface so that microorganisms can multiply and grow well in the bioreactor, and also has the purpose of increasing the contact effect between the substrate to be treated and the microorganism to increase the treatment effect. These carriers are manufactured and used in various ways as in Patent Documents 1 to 3 described below.

(특허문헌 1) 한국등록특허 제1344801호(Patent Document 1) Korean Patent No. 1344801

미생물을 포괄고정화하는 포괄고정화 담체로서, 상기 포괄고정화 담체가 질화 세균을 함유하는 오니를 포괄고정화한 것이며, 상기 오니가 활성오니에 정수 오니나 무기응집제, 무기물을 첨가한 것이며, 상기 오니의 VSS/SS가 0.1∼0.3의 범위이고, 상기 포괄고정화 담체 중의 상기 오니의 SS 농도가 2질량% 이상, 상기 오니의 평균 입경이 10㎛∼30㎛의 범위, 상기 포괄고정화 담체 중의 상기 오니의 VSS 농도가 0.2질량%∼2질량%의 범위인 것을 특징으로 하는 포괄고정화 담체를 제공한다.Wherein the sludge containing the nitrifying bacteria is immobilized by the inclusion immobilization support, wherein the sludge is added with activated sludge, water sludge, an inorganic flocculating agent and an inorganic substance, and the VSS / SS is in the range of 0.1 to 0.3, the SS concentration of the sludge in the inclusion immobilization support is not less than 2 mass%, the average particle diameter of the sludge is in the range of 10 to 30 m, the VSS concentration of the sludge in the inclusion immobilization support is To 0.2% by mass to 2% by mass.

(특허문헌 2) 한국등록특허 제1492833호(Patent Document 2) Korean Patent No. 1492833

오폐수 정화용 담체 및 이의 제조방법에 관한 것으로 하수 슬러지 30 내지 80 중량%, 글라스 비드 10 내지 60 중량% 및 발포제 0.5 내지 10 중량%를 포함하여 제조된 후 액상 종균제에 침지시킴으로써, 폐기물인 하수 슬러지를 이용하므로 재활용도가 증대되어 환경오염이 줄어들고 미생물의 부착이 증대되어 오폐수의 정화능력이 더욱 향상될 수 있다.The present invention relates to a carrier for purification of wastewater and a method for producing the same, which comprises preparing 30 to 80 wt% of sewage sludge, 10 to 60 wt% of glass beads and 0.5 to 10 wt% of a blowing agent and immersing the waste sludge in a liquid phase, The recyclability is increased, the environmental pollution is reduced, the adhesion of microorganisms is increased, and the purification ability of wastewater can be further improved.

(특허문헌 3) 한국공개특허 제10-2017-0016126호(Patent Document 3) Korean Patent Publication No. 10-2017-0016126

미생물 서식을 위한 비표멱적을 증대시키는 동시에 미생물의 표면부착력을 향상시킬 수 있도록 한 하·폐수 처리용 미생물 담체 및 그 제조방법에 관한 것으로, 길이방향으로 연속해서 성형된 후 "8"자 모양으로 열가압 성형되는 속이 빈 중공체; 중공체의 내외측에 방사형으로 형성되고, 단부에 스크래치가 형성되는 미생물부착리브; 중공체의 내측에서 중심을 향해 형성되는 내부 결합 훅; 중공체의 내측에서 상기 내부 결합 훅과 마주보는 방향으로 형성되어 중공체를 "8"자 모양으로 열가압 성형할 때 상기 내부 결합 훅과 서로 맞물려 결합이 되는 내부 걸림 리브; 중공체의 외측에 형성되는 외부 걸림 리브; 및 외부 걸림 리브와 대칭되는 위치인 중공체의 외측에 형성되어 인접한 다른 중공체에 형성된 외부 걸림 리브와 결합이 되는 외부 결합 훅을 포함한다.The present invention relates to a microorganism carrier for treating wastewater and a method for manufacturing the microorganism, which can increase the specific surface area for microorganisms and improve the surface adhesion of microorganisms, A hollow hollow body which is press-molded; A microbial attached rib formed radially on the inside and outside of the hollow body and having a scratch formed on the end thereof; An inner coupling hook formed toward the center from the inside of the hollow body; An inner engaging rib formed on an inner side of the hollow body in a direction opposite to the inner engaging hook and engaged with the inner engaging hook when the hollow body is thermoformed into an " 8 " An outer engaging rib formed on the outer side of the hollow body; And an outer engaging hook formed on an outer side of the hollow body, which is a position symmetrical to the outer engaging rib, to engage with an outer engaging rib formed in another hollow body adjacent thereto.

하지만, 이런 기존의 담체는 미생물을 고정하는 데 어려움이 있어 고농도 질소 등을 함유한 하·폐수 처리에 한계가 있다. 또한, 국내의 하·폐수 처리장에서 사용하는 기존 생물학적 처리 방법으로는 방류수의 농도를 낮추는 데 한계가 있고, 또한 하·폐수를 처리해서의 유출수를 재사용할 수 있게 하려면 고도처리가 필요하게 된다.However, these conventional carriers have difficulties in fixing microorganisms, and there is a limitation in the treatment of waste water and wastewater containing high concentration of nitrogen and the like. In addition, existing biological treatment methods used in domestic wastewater treatment plants have a limitation in lowering the concentration of effluent, and further treatment is required to treat the effluent of the effluent by treating the wastewater.

한국등록특허 제1344801호 (등록일 : 2013.12.18)Korean Registered Patent No. 1344801 (Registered on Dec. 18, 2013) 한국등록특허 제1492833호 (등록일 : 2015.02.06)Korean Registered Patent No. 1492833 (registered on Feb. 2015) 한국공개특허 제10-2017-0016126호 (공개일 : 2017.02.13)Korean Patent Laid-Open No. 10-2017-0016126 (Publication Date: 2017.02.13)

본 발명은 이러한 점을 고려한 것으로, 미생물이 고농도로 부착될 수 있게 담체를 제작하므로, 강우나 비점오염원의 유입 등으로 고농도로 질소를 함유한 하·폐수가 유입되더라도 고농도 질소를 처리할 수 있을 뿐만 아니라 유출수를 재사용할 수 있게 한 고농도 질소함유 하·폐수처리를 위한 미생물 고정화 고분자 담체의 제조방법을 제공하는 데 그 목적이 있다.The present invention takes this point into consideration and can produce a carrier capable of adhering microorganisms at a high concentration, so that even when a lower concentration of nitrogen-containing wastewater flows into the reactor due to the inflow of rainfall or a non- It is an object of the present invention to provide a method of manufacturing a microorganism-immobilized polymer carrier for treatment of wastewater containing nitrogen at a high concentration so that effluent can be reused.

특히, 본 발명은 담체에 고정하는 미생물로서 질산화 세균과 탈질 세균 중에서 적어도 하나를 선택하여 고정할 수 있게 구성하므로, 하·폐수의 상태에 따라 효과적으로 질산화나 탈질 그리고 유기물을 제거할 수 있게 한 고농도 질소함유 하·폐수처리를 위한 미생물 고정화 고분자 담체의 제조방법을 제공하는 데 다른 목적이 있다.Particularly, the present invention provides a microorganism immobilized on a carrier, which can selectively fix at least one of nitrifying bacteria and denitrifying bacteria, so that it is possible to effectively remove nitrification, denitrification and organic matter according to the condition of the wastewater, It is another object of the present invention to provide a method for producing a microorganism-immobilized polymer carrier for treatment of wastewater containing wastewater.

이러한 목적을 달성하기 위한 본 발명에 따른 고농도 질소함유 하·폐수처리를 위한 미생물 고정화 고분자 담체의 제조방법은, 50~70℃의 증류수 100중량비에 PVA(Polyvinyl Alcohol) 15~20중량비와 PEG(Polyethylene glycol) 5~10중량비의 비율로 혼합하는 제1 단계; 혼합한 혼합물을 고온고압 멸균기로 115~120℃ 온도에서 10~15분 동안 멸균과 가열하는 제2 단계; 멸균 가열한 혼합물을 35~45℃로 냉각한 다음, 질산화 세균과 탈질 세균 중에서 적어도 한 종의 미생물을 투입하여 혼합하는 제3 단계; 상기 제3 단계의 혼합물을 성형 틀에 넣어 미생물 고정화 고분자 담체를 제작하는 제4 단계; 및 상기 미생물 고정화 고분자 담체를 35~45℃ 온도에서 3~4시간 건조한 다음 포화 농도(20℃ 기준)의 붕산(Boric acid)과 농도 1~2g/v%인 염화칼슘(Calcium chloride)에 1~2시간 넣어 가교하는 제5 단계;를 포함하는 것을 특징으로 한다.In order to accomplish the above object, the present invention provides a method for preparing a microorganism-immobilized polymer carrier for treatment of high-concentration nitrogen-containing wastewater by treating polyvinyl alcohol (PVA) at a weight ratio of 100 to 100 wt% glycol in a ratio of 5 to 10 by weight; A second step of sterilizing and heating the mixed mixture with a high-temperature high-pressure sterilizer at a temperature of 115 to 120 DEG C for 10 to 15 minutes; A third step of cooling the mixture which has been sterilized by heating to 35 to 45 DEG C, and then adding and mixing at least one microorganism from among nitrifying bacteria and denitrifying bacteria; A fourth step of preparing the microorganism-immobilized polymer carrier by putting the mixture of the third step into a mold; And the microorganism-immobilized polymer carrier is dried at 35 to 45 ° C. for 3 to 4 hours, then boric acid at a saturation concentration (based on 20 ° C.) and calcium chloride having a concentration of 1 to 2 g / v% And a fifth step of cross-linking with time.

특히, 상기 성형 틀은, 깊이 0.5~1.5㎜이고 지름이 5~15㎜인 것을 특징으로 한다.Particularly, the mold is characterized by a depth of 0.5 to 1.5 mm and a diameter of 5 to 15 mm.

마지막으로, 상기 질산화 세균은 Nitrobacter sp. 및 Nitrosomonas europaea. 중에서 적어도 하나를 이용하고, 상기 탈질 세균은 Bacillus subtilis., Paracoccus denitrificans., 및 Pseudomonas sp. 중에서 적어도 하나를 이용하는 것을 특징으로 한다.Finally, the nitrifying bacteria are Nitrobacter sp. And Nitrosomonas europaea. And the denitrifying bacteria are selected from the group consisting of Bacillus subtilis., Paracoccus denitrificans., And Pseudomonas sp. Or the like.

본 발명에 따른 고농도 질소함유 하·폐수처리를 위한 미생물 고정화 고분자 담체의 제조방법은 다음과 같은 효과가 있다.The method for producing a microorganism-immobilized polymer carrier for treatment of a high concentration nitrogen-containing wastewater according to the present invention has the following effects.

(1) 특정 미생물을 고정화하여 질산화와 탈질 효율을 높일 수 있다.(1) Nitrification and denitrification efficiency can be enhanced by immobilizing specific microorganisms.

(2) 특히, 담체를 성형 틀로 하·폐수를 고도처리 공정에 알맞은 크기로 제작하므로 하·폐수처리 효율을 높일 수 있다.(2) Especially, since the carrier is made into a molding frame and the wastewater is made to a size suitable for the advanced treatment process, the efficiency of the wastewater treatment can be increased.

(3) 또한, 독성이 없거나 생분해성인 PVA(Polyvinyl alcohol)과 PEG(Polyethylene glycol)로 담체를 제작하므로 인체에 유해하지 않으면서도 분해가 잘 되어 친환경적이다.(3) In addition, PVA (Polyvinyl alcohol) and PEG (Polyethylene glycol), which are non-toxic or biodegradable, are produced, and therefore, they are not harmful to the human body and are easily degraded.

(4) 이에, 고농도의 질소를 함유한 하·폐수를 처리할 수 있어 수질 정화를 통한 수계 환경과 일반 생활 환경을 개선할 수 있다.(4) Thus, it is possible to treat waste water and wastewater containing a high concentration of nitrogen, thereby improving water environment and general living environment through purification of water quality.

[도 1]은 본 발명에 따른 미생물 고정화 고분자 담체를 주사전자현미경(Scanning Electron Microscope)으로 관찰한 사진으로, (a)는 실시예 1을, (b)는 실시예 2를, (c)는 실시예 3을 각각 나타낸다.
[도 2]는 본 발명에 따른 미생물 고정화 고분자 담체로 실시한 총질소(T-N) 제거율을 보여주는 그래프로, (a)는 실시예 1을, (b)는 실시예 2를, (c)는 실시예 3을 각각 나타낸다.
[도 3]은 본 발명의 [실시예 2]에 따른 미생물 고정화 고분자 담체로 온도 변화에 따른 T-N 제거율을 보여주는 그래프이다.
FIG. 1 is a photograph of a microorganism-immobilized polymer carrier according to the present invention observed with a scanning electron microscope, wherein (a) shows Example 1, (b) shows Example 2, And Example 3, respectively.
FIG. 2 is a graph showing the total nitrogen (TN) removal rate of a microorganism-immobilized polymer carrier according to the present invention, wherein (a) shows Example 1, (b) shows Example 2, Respectively.
FIG. 3 is a graph showing the TN removal rate according to temperature change with a microorganism-immobilized polymer carrier according to [Example 2] of the present invention.

이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 더욱 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 안 되며, 발명자는 그 자신의 발명을 최고의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 따라 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. Prior to this, terms and words used in the present specification and claims should not be construed as limited to ordinary or dictionary terms, and the inventor should properly define the concept of the term to describe its invention in the best possible way The present invention should be construed in accordance with the spirit and scope of the present invention.

따라서 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 한가지 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원 시점에서 이들을 대체할 수 있는 다양한 균등물과 변형례가 있을 수 있음을 이해하여야 한다.Therefore, the embodiments described in the present specification and the configurations shown in the drawings are merely the most preferred embodiments of the present invention and are not intended to represent all of the technical ideas of the present invention. Thus, various equivalents And variations may be present.

(제조방법)(Manufacturing method)

본 발명에 따른 고농도 질소함유 하·폐수처리를 위한 미생물 고정화 고분자 담체의 제조방법은 다음과 같이 5단계로 이루어지며, 아래에서 각 단계에 관해 상세하게 설명한다.The method for producing a microorganism-immobilized polymer carrier for treatment of waste water with high concentration of nitrogen according to the present invention comprises the following five steps, and each step will be described in detail below.

제1 단계는 증류수에 PVA(Polyvinyl Alcohol)와 PEG(Polyethylene glycol)를 혼합하는 단계이다. 특히, 상기 PVA와 PEG는 오랫동안 매우 안정적이며 생분해성으로 독성이 없는 재질로 알려졌다. 이때, 상기 PVA와 PEG는 50~70℃, 가장 바람직하게는 60℃의 증류수로 혼합하고, 그 비율은 증류수 100중량비에 대하여 PVA 15~20중량비와 PEG 5~10중량비의 비율로 혼합한다. 이러한 혼합 비율은 총질소(T-N) 제거율을 높이기 위한 것이다.The first step is mixing PVA (Polyvinyl Alcohol) and PEG (Polyethylene glycol) in distilled water. In particular, PVA and PEG have long been known to be highly stable and biodegradable and non-toxic. At this time, the PVA and PEG are mixed with distilled water at 50 to 70 ° C, most preferably 60 ° C, and they are mixed at a ratio of PVA 15 to 20 weight ratio and PEG 5 to 10 weight ratio to 100 weight ratio of distilled water. This mixing ratio is intended to increase the total nitrogen (T-N) removal rate.

제2 단계는 제1 단계에서 혼합한 혼합물을 멸균 가열하는 단계이다. 이는, PVA와 PEG 등에 혼합되었을 수 있는 미생물 등을 없애기 위한 것으로, 혼입된 미생물의 종류에 따라 이를 멸균할 수 있는 온도 범위에서 이루어지게 된다. 이에, 본 발명에서는 고온고압 멸균기를 이용하여 115~120℃ 온도에서 10~15분간 멸균 가열한다.The second step is a step of sterilizing and heating the mixture mixed in the first step. This is to remove microorganisms that may have been mixed with PVA, PEG, and the like, and it is performed in a temperature range where sterilization can be performed depending on the type of the microorganism. In the present invention, sterilization is performed using a high-temperature high-pressure sterilizer at 115 to 120 ° C for 10 to 15 minutes.

제3 단계는 제2 단계에서 멸균한 혼합물을 미리 정한 온도로 냉각한 다음 미생물을 투입하는 단계이다. 이때, 멸균한 혼합물은 통상적으로 멸균 온도보다 낮은 온도에서 활성화하므로, 고정할 미생물이 고정화에 적절한 온도로 냉각한 다음 고정할 미생물을 투입하여 혼합한다.The third step is a step of cooling the sterilized mixture to a predetermined temperature in the second step, and then introducing the microorganism. At this time, since the sterilized mixture is usually activated at a temperature lower than the sterilization temperature, the microorganisms to be fixed are cooled to a temperature suitable for immobilization, and then the microorganisms to be fixed are added and mixed.

미생물은 질산화 세균과 탈질 세균 중에서 적어도 한 종을 투입하며, 이때 질산화 세균은 Nitrobacter sp. 및 Nitrosomonas europaea. 중에서 적어도 하나를 이용할 수 있고, 탈질 세균은 Bacillus subtilis., Paracoccus denitrificans., 및 Pseudomonas sp. 중에서 적어도 하나로 이루어진 것을 이용할 수 있다.The microorganisms are fed at least one of nitrifying bacteria and denitrifying bacteria, wherein the nitrifying bacteria are Nitrobacter sp. And Nitrosomonas europaea. , Denitrifying bacteria such as Bacillus subtilis., Paracoccus denitrificans., And Pseudomonas sp. May be used.

이때, Nitrobacter sp.는 R2A 배지를 사용하였으며 배지성분으로는 Yeast Extract 0.5g/L, Casamino Acids 0.5g/L, Proteose Peptone No.3 0.5g/L, Soluble Starch 0.5g/L, Dipotassium Phosphate 0.3g/L, Magnesium sulfate 0.3g/L, Sodium Pyruvate 0.3g/L, Dextrose 0.5 g/L으로 총 3.2 g/L을 넣고 배양했다. Nitrosomonas europaea.는 Medium for Nitrosomonas europaea 배지를 사용하였으며, 배지 성분으로는 (NH4)2SO4 2.5g, KH2PO4 0.5g, HEPES·11.92g, NaHCO3 0.5g, MgSO4 100mg, CaCl25.0mg, Fe-EDTA 75mg, Distilled water 1.0L를 넣고 제조하여 배양했다.In this case, R2A medium was used for Nitrobacter sp. And 0.5g / L of Yeast Extract, 0.5g / L of Casamino Acids, 0.5g / L of Proteose Peptide No. 3, 0.5g / L of Soluble Starch, 0.3g of Dipotassium Phosphate / L, 0.3 g / L of magnesium sulfate, 0.3 g / L of sodium pyruvate and 0.5 g / L of Dextrose. Nitrosomonas europaea medium was used for Medium Nitrosomonas europaea media and 2.5 g of (NH4) 2SO4, 0.5g of KH2PO4, 11.92g of HEPES, 0.5g of NaHCO3, 100mg of MgSO4, 25.0mg of CaCl2, 75mg of Fe-EDTA, Distilled water, and cultured.

그리고, Bacillus subtilis.는 Nutrient 배지를 사용하였으며 배지 성분으로는 Beef extract 3.0g, Peptone 5.0g, Agar 15.0g, Distilled water 1.0L을 넣어 배양을 하였고, Paracoccus denitrificans.는 Complex medium을 사용하였으며 배지 성분으로는 Peptone 4.0g, Yeast extract 2.0g, K2HPO4 10.0g, Distilled water 900.0ml, 10 %(w/v) Dextrose·100.0ml을 넣어 배양했다. 또한, Pseudomonas sp.는 YM Broth 배지를 사용하였으며, 배지 성분으로는 Yeast extract 3.0g, Malt extract 3.0g, Peptone 5.0g, Dextrose 10.0g, Distilled water 1.0L을 넣어 배양했다.Bacillus subtilis was cultured in Nutrient medium, and 3.0 g of Beef extract, 5.0 g of Peptone, 15.0 g of Agar and 1.0 L of distilled water were used as culture medium. The medium was used as a medium for Paracoccus denitrificans. 4.0 g of Peptone, 2.0 g of Yeast extract, 10.0 g of K2HPO4, 900.0 ml of distilled water, and 100.0 ml of 10% (w / v) Dextrose. Pseudomonas sp. Was cultured in YM broth medium. Yeast extract 3.0 g, malt extract 3.0 g, peptone 5.0 g, Dextrose 10.0 g, and distilled water 1.0 L were used as medium components.

특히, 본 발명의 바람직한 실시예에서, 상기 질산화 세균과 탈질 세균은 혼합물에 혼합할 때 사멸되지 않고 고정화가 잘 이루어져야 하므로, 적절한 온도, 바람직하게는 35~45℃에서 혼합물에 투입하는 것이 바람직하다.Particularly, in a preferred embodiment of the present invention, the nitrifying bacteria and denitrifying bacteria should be immobilized without being killed when they are mixed into the mixture, so it is preferable to add the nitrifying bacteria to the mixture at an appropriate temperature, preferably 35 to 45 ° C.

제4 단계는 이처럼 질산화 세균과 탈질 세균을 혼합한 혼합물로 미생물 고정화 고분자 담체를 만드는 단계이다. 이 단계에서는, 상기 혼합물을 성형 틀에 부어서 형성한다.The fourth step is a step of preparing a microorganism-immobilized polymer carrier by mixing nitrifying bacteria and denitrifying bacteria. In this step, the mixture is formed by pouring into a mold.

본 발명의 바람직한 실시예에서, 상기 성형 틀은 미생물 고정화 고분자 담체를 만드는 데 적절한 크기로 이루어진 것이라면 어떠한 것이라도 사용할 수 있으나, 바람직하게는 깊이 0.5~1.5㎜이고 지름이 5~15㎜인 형태로 제작하는 것이 바람직하다. 가장 바람직하게는 지름을 10㎜로 하고 깊이를 1㎜로 제작한다.In a preferred embodiment of the present invention, the mold may be any size suitable for producing a microorganism-immobilized polymeric carrier. Preferably, the mold is formed to have a depth of 0.5 to 1.5 mm and a diameter of 5 to 15 mm . Most preferably, the diameter is 10 mm and the depth is 1 mm.

제5 단계는 미생물 고정화 고분자 담체를 건조한 다음 가교하는 단계이다. 이때의 건조는 35~45℃ 온도에서 3~4시간 건조한다. 그리고, 건조후 가교에 사용하는 가교제로는 포화 농도(20℃ 기준)의 붕산(Boric acid)과 농도 1~2g/v%인 염화칼슘(Calcium chloride)을 이용하여 1~2시간 동안 가교한다.The fifth step is a step of drying and cross-linking the microorganism-immobilized polymer carrier. At this time, the drying is performed at 35 to 45 ° C for 3 to 4 hours. The crosslinking agent used for crosslinking after drying is crosslinked for 1 to 2 hours by using boric acid having a saturation concentration (based on 20 ° C) and calcium chloride having a concentration of 1 to 2 g / v%.

이처럼 이루어진 본 발명에 따른 미생물 고정화 고분자 담체에 대한 실시예는 다음과 같다. An embodiment of the microorganism-immobilized polymer carrier according to the present invention is as follows.

본 발명의 바람직한 실시예에서는, PVA와 PEG를 아래의 [표 1]과 같이 증류수 100g당 혼합률로 혼합한 다음 고정화 담체를 제작하였으며, 기공률, 총질소(T-N) 제거율, 그리고 온도 조건에 대해 실험하였다.In a preferred embodiment of the present invention, PVA and PEG were mixed at a mixing ratio of 100 g per 100 g of distilled water as shown in the following Table 1, and then immobilized carriers were prepared. Experiments were conducted on porosity, total nitrogen (TN) Respectively.


구분

division

실시예 1

Example 1

실시예 2

Example 2

실시예 3

Example 3

PVA(g)

PVA (g)

10

10

15

15

20

20

PEG(g)

PEG (g)

6

6

10

10

10

10

그 결과, 주사전자현미경(Scanning Electron Microscope)으로 관찰한 결과, 각 실시예에 대한 기공률은, [도 1]과 같이, [실시예 2]>[실시예 1]>[실시예 3]의 순서로 나타난 것을 확인할 수 있다.As a result, they were observed with a scanning electron microscope. As a result, the porosity of each Example was found to be as shown in [Fig. 1], in the order of [Example 2]> [Example 1]> [Example 3] As shown in Fig.

또한, 총질소(T-N) 제거율을 보면, [도 2]와 같이, 시간이 지남에 따라 모든 실시예에서 총질소(T-N) 제거율은 떨어지는 현상을 보이나, 특히 [실시예 2]에서 가장 급격하게 떨어지는 것을 알 수 있다. [도 2]에서, 가로축(X)은 실험 시간(Experiment period[hr])를, 세로축(Y)은 총질소 농도(T-N concetration[㎎/L])를, 각 그래프에서 왼쪽 각각 나타낸다.As shown in FIG. 2, the total nitrogen (TN) removal rate is lowered in all the examples as time elapses as shown in FIG. 2, . In FIG. 2, the horizontal axis X represents the experiment time (hr) and the vertical axis Y represents the total nitrogen concentration (T-N concetration [mg / L]) on the left side of each graph.

그리고, PVA와 PEG를 혼합한 혼합물에 미생물을 넣을 때의 온도 조건을 보면, 다음의 [표 2]와 같다. 즉, [실시예 1] 내지 [실시예 3]은 30℃에서는 모든 혼합 용액이 굳는 현상을 보이고, 50℃에서는 혼합 용액이 굳지 않으나 미생물 저해 현상이, 그리고 60℃에서는 혼합 용액이 굳지 않으나 미생물 사멸 현상을 보였으며, 40℃에서는 혼합 용액이 굳지 않고 미생물이 활성 가능한 상태를 보였다.The temperature condition when the microorganism is added to the mixture of PVA and PEG is shown in the following [Table 2]. That is, all of the mixed solutions are hardened at 30 ° C in [Examples 1] to [3], and the mixed solution is not hardened at 50 ° C, but the microorganism inhibition phenomenon occurs at 60 ° C, And the mixed solution was not hardened at 40 < 0 > C, and the microorganisms could be activated.


구분

division

30℃

30 ℃

40℃

40 ℃

50℃

50 ℃

60℃

60 ° C

실시예 1

Example 1

혼합 용액 굳음

Mixed solution stiffness

굳지 않음
미생물 활성 가능

Not hardened
Microbial activity possible

미생물 저해

Microorganism Inhibition

미생물 사멸

Microbial death

실시예 2

Example 2

혼합 용액 굳음

Mixed solution stiffness

굳지 않음
미생물 활성 가능

Not hardened
Microbial activity possible

미생물 저해

Microorganism Inhibition

미생물 사멸

Microbial death

실시예 3

Example 3

혼합 용액 굳음

Mixed solution stiffness

굳지 않음
미생물 활성 가능

Not hardened
Microbial activity possible

미생물 저해

Microorganism Inhibition

미생물 사멸

Microbial death

이에, 혼합 용액이 굳지 않는 40℃, 50℃, 그리고 60℃에서 미생물을 투입하여 제작한 미생물 고정화 담채로 T-N 제거율을 평가한 결과, 40℃에서 가장 좋은 제거효율을 보였다. [도 3]은 본 발명의 [실시예 2]에 따른 미생물 고정화 고분자 담체를 제작할 때 온도 변화에 따른 T-N 제거율을 보여주는 그래프로, 가로축(X)은 실험 시간(Experiment period[hr])를, 세로축(Y)은 총질소 농도(T-N concetration[㎎/L])를 각각 나타낸다.The removal efficiency of T-N was evaluated by the microorganism-immobilized coating prepared by loading the microorganisms at 40 ° C, 50 ° C, and 60 ° C at which the mixed solution did not harden, and showed the best removal efficiency at 40 ° C. FIG. 3 is a graph showing TN removal rates according to temperature changes when preparing a microorganism-immobilized polymer carrier according to [Example 2] of the present invention, wherein a horizontal axis X represents an experiment time [hr] (Y) represents the total nitrogen concentration (TN concetration [mg / L]).

Claims (3)

50~70℃의 증류수 100중량비에 PVA(Polyvinyl Alcohol) 15~20중량비와 PEG(Polyethylene glycol) 5~10중량비의 비율로 혼합하는 제1 단계;
혼합한 혼합물을 고온고압 멸균기로 115~120℃ 온도에서 10~15분 동안 멸균과 가열하는 제2 단계;
멸균 가열한 혼합물을 35~45℃로 냉각한 다음, 질산화 세균과 탈질 세균 중에서 적어도 한 종의 미생물을 투입하여 혼합하는 제3 단계;
상기 제3 단계의 혼합물을 성형 틀에 넣어 미생물 고정화 고분자 담체를 제작하는 제4 단계; 및
상기 미생물 고정화 고분자 담체를 35~45℃ 온도에서 3~4시간 건조한 다음 포화 농도(20℃ 기준)의 붕산(Boric acid)과 농도 1~2g/v%인 염화칼슘(Calcium chloride)에 1~2시간 넣어 가교하는 제5 단계;를 포함하는 것을 특징으로 하는 고농도 질소함유 하·폐수처리를 위한 미생물 고정화 고분자 담체의 제조방법.
A first step of mixing 15 to 20 weight parts of PVA (polyvinyl alcohol) and 5 to 10 weight parts of PEG (polyethylene glycol) in 100 parts by weight of distilled water at 50 to 70 DEG C;
A second step of sterilizing and heating the mixed mixture with a high-temperature high-pressure sterilizer at a temperature of 115 to 120 DEG C for 10 to 15 minutes;
A third step of cooling the mixture which has been sterilized by heating to 35 to 45 DEG C, and then adding and mixing at least one microorganism from among nitrifying bacteria and denitrifying bacteria;
A fourth step of preparing the microorganism-immobilized polymer carrier by putting the mixture of the third step into a mold; And
The microorganism-immobilized polymer carrier is dried at 35 to 45 ° C for 3 to 4 hours, then boric acid (saturated at 20 ° C) and calcium chloride at a concentration of 1 to 2 g / v% Wherein the microorganism-immobilized polymer carrier is prepared by a method comprising the steps of:
제1 항에서,
상기 성형 틀은,
깊이 0.5~1.5㎜이고 지름이 5~15㎜인 것을 특징으로 하는 고농도 질소함유 하·폐수처리를 위한 미생물 고정화 고분자 담체의 제조방법.
The method of claim 1,
Wherein the forming die comprises:
Wherein the microorganism-immobilized polymer carrier has a depth of 0.5 to 1.5 mm and a diameter of 5 to 15 mm.
제1 항에서,
상기 질산화 세균은 Nitrobacter sp. 및 Nitrosomonas europaea. 중에서 적어도 하나를 이용하고,
상기 탈질 세균은 Bacillus subtilis., Paracoccus denitrificans., 및 Pseudomonas sp. 중에서 적어도 하나를 이용하는 것을 특징으로 하는 고농도 질소함유 하·폐수처리를 위한 미생물 고정화 고분자 담체의 제조방법.
The method of claim 1,
The nitrifying bacteria are Nitrobacter sp. And Nitrosomonas europaea. At least one of them is used,
The denitrifying bacteria include Bacillus subtilis., Paracoccus denitrificans., And Pseudomonas sp. Wherein the microorganism-immobilized polymer carrier is treated with at least one selected from the group consisting of high-concentration nitrogen-containing waste wastewater.
KR1020170059008A 2017-05-12 2017-05-12 Method of manufacturing microorganism immobilized high molecule media for wastewater treatment with high strength nitrogen KR20180125092A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170059008A KR20180125092A (en) 2017-05-12 2017-05-12 Method of manufacturing microorganism immobilized high molecule media for wastewater treatment with high strength nitrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170059008A KR20180125092A (en) 2017-05-12 2017-05-12 Method of manufacturing microorganism immobilized high molecule media for wastewater treatment with high strength nitrogen

Publications (1)

Publication Number Publication Date
KR20180125092A true KR20180125092A (en) 2018-11-22

Family

ID=64557874

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170059008A KR20180125092A (en) 2017-05-12 2017-05-12 Method of manufacturing microorganism immobilized high molecule media for wastewater treatment with high strength nitrogen

Country Status (1)

Country Link
KR (1) KR20180125092A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110092529A (en) * 2019-04-03 2019-08-06 卢松 Utilize the technique of bacterial strain glycolysis Amino Acid Fermentation Wastewater
CN110143728A (en) * 2019-06-17 2019-08-20 常州大学 A kind of method that PVA biology film process town sewage subtracts mud denitrogenation
WO2020116700A1 (en) * 2018-12-07 2020-06-11 서울대학교 산학협력단 Nitrifying bio-tablet
KR20220143370A (en) * 2021-04-16 2022-10-25 주식회사 그레넥스 A manufacturing device for microbial carriers for wastewater treatment
KR20220143371A (en) * 2021-04-16 2022-10-25 주식회사 그레넥스 Method for manufacturing of microbial carriers for wastewater treatment and method for wastewater treatment using said carriers

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020116700A1 (en) * 2018-12-07 2020-06-11 서울대학교 산학협력단 Nitrifying bio-tablet
CN110092529A (en) * 2019-04-03 2019-08-06 卢松 Utilize the technique of bacterial strain glycolysis Amino Acid Fermentation Wastewater
CN110143728A (en) * 2019-06-17 2019-08-20 常州大学 A kind of method that PVA biology film process town sewage subtracts mud denitrogenation
KR20220143370A (en) * 2021-04-16 2022-10-25 주식회사 그레넥스 A manufacturing device for microbial carriers for wastewater treatment
KR20220143371A (en) * 2021-04-16 2022-10-25 주식회사 그레넥스 Method for manufacturing of microbial carriers for wastewater treatment and method for wastewater treatment using said carriers

Similar Documents

Publication Publication Date Title
KR20180125092A (en) Method of manufacturing microorganism immobilized high molecule media for wastewater treatment with high strength nitrogen
KR20190075188A (en) Treatment apparatus for wastewater with high strength nitrogen using microorganism immobilized high molecule media
Amor et al. Phenol biodegradation and its effect on the nitrification process
Xiangchun et al. Biodegradation of 2, 4-dichlorophenol in an air-lift honeycomb-like ceramic reactor
CN109943503B (en) Method for improving anaerobic denitrification efficiency by using oneidensis MR-1
KR20180000628A (en) Contaminants Purification Technology Using Selective Microorganism Immobilization Support
WO1996030306B1 (en) Biological method of waste water treatment
KR20140097963A (en) A bioball comprising porous polyurethane foam media and device for wastewater treatment using the same and method for wastewater treatment using the same
CN108101327A (en) A kind of black and odorous water polluted bed mud in-situ remediation method based on pelelith
CN102676434B (en) Strain capable of heterotrophic nitrifying-aerobic denitrifying and dephosphorizing synchronously at low temperature and application
KR20140098012A (en) A bioball comprising porous polyurethane foam media and device for wastewater treatment using the same and method for wastewater treatment using the same
CN105174495A (en) Method for treating chlorinated organic compound wastewater by virtue of biomass carrier immobilized bacteria
KR20180000627A (en) Bacillus endospores immobilized carrier, and a method of manufacturing
EP0696260B1 (en) Microbial degradation of chemical pollutants
CN105417733A (en) Biological agent for treating ammonia-nitrogen wastewater
JP2007000838A (en) Method for treating waste water containing ammonia
CN109368785A (en) A kind of denitrification denitrogenation microbiologic population and its application
Zhang et al. Biological treatment of printing ink wastewater
KR100537890B1 (en) Removal method of phosphorus and nitrogen by loess ball
JP4670425B2 (en) Novel degrading bacteria and method for decomposing organic compounds using the same
CN112960780B (en) Pretreatment method of biomembrane carrier and biological sewage treatment process
KR20200037210A (en) Method for biodegradation of organic compounds
KR100398821B1 (en) Promoter for Flocculation of Activated Sludge and Wastewater Treatment Using It
Khan et al. Biodegradation of phenol by aerobic granulation technology
CN107935193B (en) Petrochemical sewage treatment method

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application