KR20180117233A - A Manufacturing Method of Carbon Thin Film on SiO2 and SiN substrate - Google Patents

A Manufacturing Method of Carbon Thin Film on SiO2 and SiN substrate Download PDF

Info

Publication number
KR20180117233A
KR20180117233A KR1020170049490A KR20170049490A KR20180117233A KR 20180117233 A KR20180117233 A KR 20180117233A KR 1020170049490 A KR1020170049490 A KR 1020170049490A KR 20170049490 A KR20170049490 A KR 20170049490A KR 20180117233 A KR20180117233 A KR 20180117233A
Authority
KR
South Korea
Prior art keywords
thin film
sulfur
substrate
carbon thin
carbon
Prior art date
Application number
KR1020170049490A
Other languages
Korean (ko)
Inventor
최정식
임진묵
조익행
박세희
임명용
Original Assignee
주식회사 레이크머티리얼즈
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 레이크머티리얼즈 filed Critical 주식회사 레이크머티리얼즈
Priority to KR1020170049490A priority Critical patent/KR20180117233A/en
Publication of KR20180117233A publication Critical patent/KR20180117233A/en
Priority to KR1020220016371A priority patent/KR20220024309A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02312Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a gas or vapour

Abstract

The present invention relates to a method for forming a carbon thin film on a silicon oxide layer or a silicon nitride layer, comprising: a step of preparing a base material; a step of reforming the surface of the base material; and a step of depositing gas on the carbon thin film. By reforming features of the surface of the base material such as SiO_2 or SiN by using gas including sulfur (S) or a silicon (Si) precursor including sulfur (S), an adsorption feature of carbon atom formed on the SiO_2 or SiN base material can be improved. The method for forming the carbon thin film is able to linearly increase the thickness of the carbon thin film deposited in a following process by atom layer. By using the present invention, a carbon thin film device used in a semiconductor process can be manufactured at a lower temperature and a lower cost.

Description

실리콘 산화막 또는 실리콘 질화막 위에 탄소 박막을 형성하는 방법{A Manufacturing Method of Carbon Thin Film on SiO2 and SiN substrate}BACKGROUND OF THE INVENTION 1. Field of the Invention [0001] The present invention relates to a method of forming a carbon thin film on a silicon oxide film or a silicon nitride film,

본 발명은 반도체 공정에 사용되는 박막을 제조하기 위한 전구체 및 박막의 제조 방법에 관한 것으로, 더욱 상세하게는 반응기 챔버에 카본 전구체를 주입하기 전에 Seed 전구체를 실리콘 산화막 또는 실리콘 질화막 등의 하부 (절연)막에 흡착시킨 후에, 탄소 전구체를 주입하여 탄소 박막을 형성하는 단계를 포함하는 Seed 전구체를 사용한 탄소 박막을 제조하는 방법에 관한 것이다The present invention relates to a precursor for producing a thin film for use in a semiconductor process and a method for producing the same. More particularly, the present invention relates to a method for manufacturing a precursor and a thin film, And adsorbing the carbon precursor to the carbon precursor, followed by injecting a carbon precursor to form a carbon thin film.

탄소 박막은 우수한 전기적, 기계적 특성으로 인해 다양한 기술적, 산업적 응용 분야에서 많은 주목을 받고 있는데, 이러한 탄소 박막의 우수한 물성으로 높은 경도와 우수한 내구성, 높은 전도도 등을 들 수 있다. 종래에는 화학기상증착법(chemical vapor deposition, CVD), 물리기상증착(physical vapor deposition, PVD)에 의하여 기재에 탄소 박막을 증착하는 기술이 알려져 있으나, 상기 화학기상증착법의 경우 고온 공정 및 고진공이 요구되어 공정 비용이 높아지는 단점이 있으며, 화학기상증착법 및 물리기상증착법은 기재 위에 대면적으로 균일하게 탄소 박막을 형성하기 어려운 단점이 있다. Carbon thin films have attracted much attention in various technical and industrial applications due to their excellent electrical and mechanical properties. These carbon thin films have high physical properties such as high hardness, excellent durability and high conductivity. Conventionally, there has been known a technique of depositing a carbon thin film on a substrate by chemical vapor deposition (CVD) or physical vapor deposition (PVD). However, in the case of the chemical vapor deposition method, a high temperature process and a high vacuum are required There is a disadvantage in that the process cost is increased. In the chemical vapor deposition method and the physical vapor deposition method, it is difficult to uniformly form a carbon thin film on the substrate in a large area.

또한, 기존의 화학기상증착법 및 물리기상증착법의 경우, 실리콘 나노홀과 같은 고단차를 가지는 나노 구조 상에 탄소 박막이 균일하게 형성되지 않는 문제점이 존재한다. 원자층 증착법(atomic layer deposition, ALD)은 화학기상증착법 및 물리기상증착법의 단점을 보완할 수 있는 기술로서, 대면적으로 균일한 박막을 형성할 수 있고, 원자층 단위로 박막의 두께를 제어할 수 있는 이점을 갖는다. In addition, in the case of the conventional chemical vapor deposition method and physical vapor deposition method, there is a problem that the carbon thin film is not uniformly formed on a nanostructure having a high-stage difference such as a silicon nanohole. Atomic layer deposition (ALD) is a technology that can compensate for the disadvantages of chemical vapor deposition and physical vapor deposition. It can form a uniform thin film over a large area and control the thickness of the thin film in atomic layer units .

하지만, 이러한 원자층 증착법으로는 안정화된 기재 상에 탄소 박막을 대면적으로 균일하게 형성하기 어려운 문제가 존재한다. 즉, 종래의 화학기상증착법의 경우, 탄소의 전구체와 반응 물질의 반응에 의해 생성된 물질이 고온의 기재 위에 증착되는데 반해, 원자층 증착법의 경우에는 반응 물질과 반응하기 전에 탄소 전구체를 기재 위에 형성하기 때문에, 탄소 전구체가 안정화된 기재 상에 잘 붙지 않아 기재 상에 탄소 박막을 증착할 수 없는 문제를 갖는다.However, such an atomic layer deposition method has a problem that it is difficult to uniformly form a carbon thin film on a stabilized substrate over a large area. That is, in the case of the conventional chemical vapor deposition method, the material generated by the reaction of the precursor of carbon with the reactant is deposited on the high temperature substrate, whereas in the case of the atomic layer deposition method, the carbon precursor is formed on the substrate There is a problem that the carbon precursor does not adhere well to the stabilized substrate and the carbon thin film can not be deposited on the substrate.

즉, 기존의 플라즈마 CVD 법을 통한 탄소 박막의 제조 방법은, SiO2 혹은 Si3N4 기재 상에 플라즈마를 이용하여 탄화수소 가스(탄소원)를 탄소 원자 입자로 분해하여 증착하게 된다. 하지만, 원자층 증착법을 사용할 경우에는 SiO2 혹은 Si3N4 기재 상에 형성되는 탄소 원자의 흡착 특성이 우수하지 않기 때문에 원하는 수준의 두께를 갖는 탄소 박막의 형성을 위해서는 매우 긴 유도 시간(Incubation time)이 필수적으로 요구된다는 문제점이 존재한다.That is, in the conventional method of manufacturing a carbon thin film through plasma CVD, a hydrocarbon gas (carbon source) is decomposed into carbon atom particles by using plasma on a SiO 2 or Si 3 N 4 substrate to be deposited. However, when the atomic layer deposition method is employed, the adsorption characteristics of carbon atoms formed on the SiO 2 or Si 3 N 4 substrate are not excellent. Therefore, in order to form a carbon thin film having a desired thickness, a very long induction time ) Is necessarily required.

공개특허 제2006-0054387호Published Patent No. 2006-0054387

본 발명에서는 황(S)이 포함된 가스 혹은 황(S)이 포함된 실리콘(Si) 전구체(Precursor)를 사용하여 SiO2 혹은 SiN 등의 기재의 표면 특성을 개질함으로써, SiO2 혹은 Si3N4 기재 상에 형성되는 탄소 원자의 흡착 특성을 향상시켜, 이후 후속 공정에서 증착되는 탄소 박막의 두께를 원자층 단위로 선형적으로 증가시킬 수 있는 탄소 박막의 제조 방법을 제공하고자 한다.In the present invention, a silicon (Si) precursor containing sulfur (S) or sulfur (S) is used to modify the surface properties of a substrate such as SiO 2 or SiN to form SiO 2 or Si 3 N 4 is to improve the adsorption characteristics of carbon atoms formed on a substrate and to provide a method of manufacturing a carbon thin film which can linearly increase the thickness of a carbon thin film deposited in a subsequent step on an atomic layer basis.

또한, 본 발명은 반도체 공정에 사용되는 탄소 박막을 저온, 저비용으로 제조하는 방법을 제공하고, 이러한 제조 방법을 통해 물성이 우수한 탄소 박막을 SiO2 혹은 SiN 등의 기재 상에 보다 신속하게 형성하는 것을 또 다른 목적으로 하고 있다.It is another object of the present invention to provide a method of manufacturing a carbon thin film for use in a semiconductor process at a low temperature and a low cost and to rapidly form a carbon thin film having excellent physical properties on a substrate such as SiO 2 or SiN It has another purpose.

본 발명의 일 실시 형태에 따른 탄소 박막의 제조 방법은, 기재을 준비하는 단계; 상기 기재의 표면을 개질 화합물을 사용하여 개질하는 단계; 및 원자층 증착법을 사용하여 개질된 기재 상에 탄소 박막을 증착하는 단계;를 포함하고, 상기 개질 화합물은 황(sulfur)를 포함하는 것을 특징으로 한다.A method of manufacturing a carbon thin film according to an embodiment of the present invention includes: preparing a substrate; Modifying the surface of the substrate with a modifying compound; And depositing a carbon thin film on the modified substrate using atomic layer deposition, wherein the modifying compound comprises sulfur.

이때 사용되는 기재로는 특별히 제한되지는 않지만, 실리콘 산화막(SiO2) 혹은 실리콘 질화막(Si3N4)인 것이 바람직하고, 개질 화합물은 황(sulfur)을 포함하는 가스 혹은 황(sulfur)을 포함하는 실리콘 전구체(silicon precursor)인 것이 바람직하다.The substrate to be used in this case is not particularly limited but is preferably a silicon oxide film (SiO2) or a silicon nitride film (Si3N4), and the modifying compound is preferably a silicon precursor including a gas containing sulfur or sulfur silicon precursor.

황(sulfur)을 포함하는 가스로는, 하기 화학식 (1)로 표시되는 물질이 바람직한데, 이때 R1, R2는 각각 독립적으로 수소 또는 C1 내지 C10의 유기 라디칼이며, 상기 유기 라디칼은 산소(O), 질소(N), 황(S) 또는 인(P)을 포함한다.As the gas containing sulfur, a substance represented by the following chemical formula (1) is preferable, wherein R1 and R2 are each independently hydrogen or C1 to C10 organic radicals, and the organic radicals are oxygen (O), Nitrogen (N), sulfur (S) or phosphorus (P).

R1-S-R2 (화학식 1)R1-S-R2 (Formula 1)

또한, 황(sulfur)을 포함하는 실리콘 전구체(silicon precursor)는, 하기 화학식 (2)로 표시되는 것이 사용될 수 있는데, 하기 화학식 2에서 R1, R2는 독립적으로 수소, 할로겐 원소 또는 C1 내지 C10의 유기 라디칼이고, 상기 유기 라디칼은 산소(O), 질소(N), 황(S) 또는 인(P)을 포함하며, x는 0 내지 3의 정수이다.The silicon precursor containing sulfur may be represented by the following formula (2), wherein R 1 and R 2 are independently hydrogen, a halogen atom, or a C1 to C10 organic Wherein the organic radical comprises oxygen (O), nitrogen (N), sulfur (S) or phosphorus (P)

Si(S-R1)4-xR2x (화학식 2)Si (S-R1) 4-xR2x (2)

아울러 황(sulfur)를 포함하는 실리콘 전구체(silicon precursor)의 또 다른 형태로는 하기 화학식 (3)으로 표시되는 것을 사용하는 것도 가능한데, 하기 화학식3에서 R1, R2, R3, R4는 독립적으로 수소, 할로겐 원소 또는 C1 내지 C10의 유기 라디칼이고, 상기 유기 라디칼은 산소(O), 질소(N), 황(S) 또는 인(P)을 포하며, x, y는 각각 독립적으로 0 내지 3의 정수이다.Another example of a silicon precursor containing sulfur may be one represented by the following formula (3), wherein R1, R2, R3 and R4 are independently hydrogen, (O), nitrogen (N), sulfur (S) or phosphorus (P), and x and y each independently represent an integer of 0 to 3 to be.

R4y(R3-S)3-ySi-Si(S-R1)3-xR2x (화학식 3)R4y (R3-S) 3-ySi-Si (S-R1) 3-xR2x (Formula 3)

상기 탄소 박막을 증착하는 단계는, 개질된 기재 상에 탄소 전구체를 공급하는 단계; 개질된 기재 상에 퍼지 가스를 공급하여 퍼징하는 단계; 개질된 기재 상에 반응 가스를 공급하는 단계; 및 개질된 기재 상에 퍼지 가스를 공급하여 퍼징하는 단계;를 포함하는 단위 사이클을 기 결정된 횟수만큼 반복되는 것이 바람직하다.The step of depositing the carbon thin film comprises: supplying a carbon precursor on the modified substrate; Supplying and purifying a purge gas onto the modified substrate; Supplying a reaction gas onto the modified substrate; And purging the purifying gas by supplying a purge gas onto the modified substrate, wherein the unit cycle is repeated a predetermined number of times.

앞서 살펴본 종래 기술의 문제점을 해결하고, 본 발명의 목적을 달성하기 위하여, 본 발명에서는 원자층 증착(Atomic Layer Deposition) 공정을 통해 탄소 박막을 제조하는 과정 중에서, 탄소 박막을 형성하는 탄소원을 공급하기 전에 기재의 표면에 Seed layer를 형성하는 개질 반응물을 미리 공급함으로써, SiO2, Si3N4 등과 같은 기재의 표면을 개질하는 것을 기슬적 특징으로 하고 있다.In order to solve the above-mentioned problems of the prior art and to achieve the object of the present invention, in the process of manufacturing a carbon thin film through an atomic layer deposition process, a carbon source for forming a carbon thin film is supplied The surface of the base material such as SiO 2 , Si 3 N 4 and the like is modified by previously supplying a reforming reagent for forming a Seed layer on the surface of the substrate beforehand.

이렇게 기재의 표면이 개질 반응물에 의해 개질 됨으로써, 후속 단계에서 공급되는 탄소 박막을 형성하는 탄소원의 흡착이 용이 해지고, 이로 인해 기존 종래의 기술에서 필수적으로 요구되었던 긴 유도 시간을 획기적으로 감소시길 수 있는 효과가 있다.Since the surface of the base material is modified by the reforming reactant, the carbon source forming the carbon thin film to be supplied in the subsequent step is easily adsorbed, and thus the long induction time, which has been essentially required in the conventional art, can be remarkably reduced It is effective.

도 1은 본 발명의 일 실시 형태에 따른 탄소 박막을 제조하는 과정을 도식적으로 나타낸 것이다.
도 2는 탄소 박막을 증착하는 단계를 도식적으로 나타낸 것이다.
1 is a schematic view illustrating a process of manufacturing a carbon thin film according to an embodiment of the present invention.
FIG. 2 schematically shows a step of depositing a carbon thin film. FIG.

이하에서는 본 발명의 실시예와 도면을 참조하여 본 발명을 좀 더 상세히 설명한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위해 예시적으로 제시한 것일 뿐, 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 이 기술분야에서 통상의 지식으로 자명한 것이다.Hereinafter, the present invention will be described in more detail with reference to embodiments of the present invention and drawings. It is to be understood that these embodiments are merely exemplary of the present invention in order to more particularly illustrate the present invention and that the scope of the present invention is not limited by these embodiments.

또한, 달리 정의하지 않는 한, 본 명세서에서 사용되는 모든 기술적 및 과학적 용어는 본 발명이 속하는 기술 분야에서 통상적으로 이해되는 바와 동일한 의미를 가지며, 상충되는 경우에는, 정의를 포함하는 본 명세서의 기재가 우선할 것이다.Also, unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood in the art to which this invention pertains and, where contradictory, I will give priority.

도면에서는 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 사용하였다. 그리고 어떤 부분이 어떤 구성 요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다. In the drawings, parts not related to the description are omitted for clarifying the present invention, and similar reference numerals are used for similar parts throughout the specification. And when an element is referred to as " including " an element, it is meant to include not only another element but also other elements, unless specifically stated otherwise.

앞서 살펴본 종래 기술의 문제점을 해결하고, 본 발명의 목적을 달성하기 위하여, 본 발명에서는 원자층 증착(Atomic Layer Deposition) 공정을 통해 탄소 박막을 제조하는 과정 중에서, 탄소 박막을 형성하는 탄소원을 공급하기 전에 기재의 표면에 Seed layer를 형성하는 개질 반응물을 미리 공급함으로써, SiO2, SiN 등과 같은 기재의 표면을 개질하는 것을 특징으로 한다.In order to solve the above-mentioned problems of the prior art and to achieve the object of the present invention, in the process of manufacturing a carbon thin film through an atomic layer deposition process, a carbon source for forming a carbon thin film is supplied The surface of the substrate such as SiO2, SiN, or the like is modified by previously supplying a reforming reactant for forming a Seed layer on the surface of the substrate beforehand.

이렇게 기재의 표면이 개질 반응물에 의해 개질 됨으로써, 후속 단계에서 공급되는 탄소 박막을 형성하는 탄소원의 흡착이 용이 해지고, 이로 인해 기존 종래의 기술에서 필수적으로 요구되었던 긴 유도 시간을 획기적으로 감소시길 수 있는 장점이 있다.Since the surface of the base material is modified by the reforming reactant, the carbon source forming the carbon thin film to be supplied in the subsequent step is easily adsorbed, and thus the long induction time, which has been essentially required in the conventional art, can be remarkably reduced There are advantages.

상기 기재 표면을 개질하는 개질 반응물은 황(Sulfur)이 포함된 가스 혹은 황(Sulfur)이 포함된 Si 전구체를 사용하는 것이 바람직하다.As the reforming reagent for modifying the substrate surface, it is preferable to use a Si precursor containing a sulfur-containing gas or sulfur.

본 발명에서 사용되는 개질 반응물인 S(황)를 포함하는 가스는 아래의 화학식 (1)로 표현될 수 있는데, 이때 R1, R2는 각각 독립적으로 수소 또는 C1 내지 C10의 유기 라디칼이며, 상기 유기 라디칼은 산소(O), 질소(N), 황(S) 또는 인(P)을 포함할 수 있다.The gas containing S (sulfur), which is a reforming reactant used in the present invention, can be represented by the following formula (1), wherein R1 and R2 are each independently hydrogen or C1 to C10 organic radicals, (O), nitrogen (N), sulfur (S) or phosphorus (P).

R1-S-R2 (화학식 1)R1-S-R2 (Formula 1)

좀 더 구체적으로, 상기 화학식 1로 표현되는 황을 포함하는 가스의 예로, 황화 수소(SH2)를 들 수 있으며, C1 내지 C10의 유기라디칼의 예로 알킬라디칼, 시클로알킬라디칼, 알릴라디칼, 알콕시라디칼, 알킬술파닐기, 알케닐기 등을 들 수 있다.More specifically, examples of the sulfur-containing gas represented by Formula 1 include hydrogen sulfide (SH2), examples of C1 to C10 organic radicals include alkyl radicals, cycloalkyl radicals, allyl radicals, alkoxy radicals, An alkylsulfanyl group, an alkenyl group, and the like.

상기 알킬라디칼의 예로, 메틸, 에틸, n-프로필, 이소프로필, n-부틸, 이소부틸, tert-부틸, n-펜틸, 이소펜틸, 네오펜틸, tert-펜틸 라디칼, n-헥실 라디칼, n-헵틸 라디칼, n-옥틸 라디칼,  2,2,4-트리메틸펜틸, 2-에틸헥실 라디칼, n-노닐 라디칼 또는  n-데실 라디칼 등이 있으며, 시클로알킬라디칼의 예로는 시클로펜틸, 시클로헥실, 4-에틸시클로헥실 라디칼 시클로헵틸 라디칼, 노르보닐 라디칼 또는 메틸시클로헥실 라디칼 등이 있다.Examples of such alkyl radicals include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert- butyl, n- pentyl, isopentyl, neopentyl, tert- pentyl radical, n- N-heptyl radical, n-octyl radical, 2,2,4-trimethylpentyl, 2-ethylhexyl radical, n-nonyl radical or n-decyl radical. Examples of cycloalkyl radicals include cyclopentyl, cyclohexyl, 4- An ethylcyclohexyl radical cycloheptyl radical, a norbonyl radical or a methylcyclohexyl radical.

알릴라디칼의 예로는 페닐, 비페닐, 나프틸, 안트릴 또는 페난트릴 라디칼 등이 있으며, 알콕시라디칼로는 메톡시, 에톡시, 프로폭시, 이소프로폭시, n-부틸옥시, sec-부틸옥시, 이소-부틸옥시, tert-부틸옥시, 펜틸옥시, 헥실옥시, 헵틸옥시, 2,4,4-트리메틸펜틸옥시, 2-에틸헥실옥시, 옥틸옥시, 노닐옥시, 데실옥시 또는 도데실옥시 기(group) 등이 있다.Examples of the allyl radical include phenyl, biphenyl, naphthyl, anthryl or phenanthryl radicals, and examples of the alkoxy radical include methoxy, ethoxy, propoxy, isopropoxy, n-butyloxy, sec- Butyloxy, tert-butyloxy, pentyloxy, hexyloxy, heptyloxy, 2,4,4-trimethylpentyloxy, 2-ethylhexyloxy, octyloxy, nonyloxy, decyloxy or dodecyloxy Group and so on.

또한, 알킬술파닐기로는 메틸술파닐, 에틸술파닐, 프로필술파닐, 이소프로필술파닐, n-부틸술파닐, sec-부틸술파닐, 이소부틸술파닐 또는 tert-부틸술파닐 기(group) 등이 있으며, 알케닐기로는 에테닐, 1-프로페닐, 2-프로페닐, 1-메틸에테닐, 1-부테닐, 2-부테닐, 3-부테닐, 1-메틸-1-프로페닐, 2-메틸-1-프로페닐, 1-메틸-2-프로페닐 또는 2-메틸-2-프로페닐 기(group) 등을 들 수 있다.Examples of the alkylsulfanyl group include methylsulfanyl, ethylsulfanyl, propylsulfanyl, isopropylsulfanyl, n-butylsulfanyl, sec-butylsulfanyl, isobutylsulfanyl or tert- And the like. Examples of the alkenyl groups include ethenyl, 1-propenyl, 2-propenyl, 1-methylethenyl, , 2-methyl-1-propenyl, 1-methyl-2-propenyl or 2-methyl-2-propenyl group.

본 발명에서 사용될 수 있는 다른 종류의 개질 반응물로 S(황)이 포함된 실리콘(Si) 전구체를 들 수 있는데, 상기 S(황)이 포함된 실리콘(Si) 전구체는 아래 화학식 (2) 또는 (3)으로 표시될 수 있다.Another type of reforming reactant that can be used in the present invention is a silicon (Si) precursor including S (sulfur), wherein the silicon (Si) precursor containing S (sulfur) 3).

Si(S-R1)4-xR2x (화학식 2) Si (S-R1) 4- x R2 x ( II)

(화학식 2에서 R1, R2는 독립적으로 수소, 할로겐 원소 또는 C1 내지 C10의 유기 라디칼이고, 상기 유기 라디칼은 산소(O), 질소(N), 황(S), 인(P)을 포함할 수 있으며, x = 0 내지 3의 정수임)Wherein R 1 and R 2 are independently hydrogen, a halogen element or a C1 to C10 organic radical and the organic radical may include oxygen (O), nitrogen (N), sulfur (S), phosphorus (P) And x is an integer of 0 to 3)

이러한 화학식 2의 S(황)이 포함된 실리콘(Si) 전구체의 예로는, SiH4(silane), Si(SH)H3(Silanethiol), Si(SH)2H2(Silanedithiol), Si(SH)3H(silanetrithiol), Si(SH)4(orthosilicotetrathioic acid), Si(SF)H3(silyl hypofluorothioite), Si(SF)2H2(silanediyl dihypofluorothioite), Si(SF)3H(silanetriyl trihypofluorothioite), Si(SCl)H3silyl hypochlorothioite), Si(SBr)H3(silyl hypobromothioite), Si(SI)H3(silyl hypoiodothioite), Si(SH)F3(trifluorosilanethiol), Si(SH)2F2(difluorosilanedithiol) 혹은 Si(SH)3F(fluorosilanetrithiol) 등을 들 수 있다.Examples of the silicon (Si) precursor containing S (sulfur) of formula 2 include SiH 4 , Si (SH) H 3 (Silanethiol), Si (SH) 2 H 2 (Silanedithiol) ) 3 H (silanetrithiol), Si (SH) 4 (orthosilicotetrathioic acid), Si (SF) H 3 (silyl hypofluorothioite), Si (SF) 2 H 2 (silanediyl dihypofluorothioite), Si (SF) 3 H (silanetriyl trihypofluorothioite) , Si (SCl) H 3 silyl hypochlorothioite), Si (SBr) H 3 (silyl hypobromothioite), Si (SI) H 3 (silyl hypoiodothioite), Si (SH) F 3 (trifluorosilanethiol), Si (SH) 2 F 2 (difluorosilanedithiol) or Si (SH) 3 F (fluorosilanetrithiol).

R4y(R3-S)3-ySi-Si(S-R1)3-xR2x (화학식 3)R4y(R3-S)3-ySi-Si (S-R1)3-xR2x (Formula 3)

(화학식3에서 R1, R2, R3, R4는 독립적으로 수소, 할로겐 원소 또는 C1 내지 C10의 유기 라디칼이고, 상기 유기 라디칼은 산소(O), 질소(N), 황(S), 인(P)을 포함할 수 있으며 x, y는 각각 독립적으로 0 내지 3의 정수임).(O), nitrogen (N), sulfur (S), phosphorus (P), or the like, wherein the organic radicals are independently selected from the group consisting of hydrogen, halogen, And x and y are each independently an integer of 0 to 3).

이러한 화학식 3의 S(황)이 포함된 실리콘(Si) 전구체의 예로는, H3-Si-Si-H3(disilane), H2(SH)-Si-Si-(SH)H2(disilane-1,2-dithiol), H(SH)2-Si-Si-(SH)2H(disilane-1,1,2,2-tetrathiol), (SH)3-Si-Si-(SH)3(disilane-1,1,1,2,2,2-hexathiol), H2(SF)Si-SiH3(disilyl hypofluorothioite), H2(SF)Si-Si(SH)H2(2-mercaptodisilyl hypofluorothioite), H2(SF)Si-Si(SH)2H(2,2-dimercaptodisilyl hypofluorothioite), H2(SF)Si-Si(SH)3(2,2,2-trimercaptodisilyl hypofluorothioite), H(SF)2Si-Si(SH)3(2,2,2-trimercaptodisilane-1,1-diyl dihypofluorothioite), (SF)3Si-Si(SH)3(2,2,2-trimercaptodisilane-1,1,1-triyl trihypofluorothioite), H2(SF)Si-Si(SF)H2(disilane-1,2-diyl dihypofluorothioite), H2(SF)Si-Si(SF)2H(disilane-1,1,2-triyl trihypofluorothioite), H2(SF)Si-Si(SF)3(disilane-1,1,1,2-tetrayl tetrahypofluorothioite), H(SF)2Si-Si(SF)3(disilane-1,1,1,2,2-pentayl pentahypofluorothioite), H(SF)2Si-Si(SF)2H(disilane-1,1,2,2-tetrayl tetrahypofluorothioite), (SF)3Si-Si(SF)3(disilane-1,1,1,2,2,2-hexayl hexahypofluorothioite), H2(SF)Si-Si(SCl)H2(2-(chlorothio)disilyl hypofluorothioite), H2(SF)Si-Si(SCl)2H(2,2-bis(chlorothio)disilyl hypofluorothioite), H2(SF)Si-Si(SCl)3(2,2,2-tris(chlorothio)disilyl hypofluorothioite), H(SF)2Si-Si(SCl)3(2,2,2-tris(chlorothio)disilane-1,1-diyl dihypofluorothioite), (SF)3Si-Si(SCl)3(2,2,2-tris(chlorothio)disilane-1,1,1-triyl trihypofluorothioite), F3Si-SiH3(1,1,1-trifluorodisilane), F2(SH)Si-SiH3(1,1-difluorodisilanethiol), F(SH)2Si-SiH3(1-fluorodisilane-1,1-dithiol), F3Si-Si(SH)H2(2,2,2-trifluorodisilanethiol), F3Si-Si(SH)2H(2,2,2-trifluorodisilane-1,1-dithiol), F3Si-Si(SH)3(2,2,2-trifluorodisilane-1,1,1-trithiol), F3Si-SiF3(perfluorodisilane), F3Si-SiCl3(1,1,1-trichloro-2,2,2-trifluorodisilane), F3Si-SiBr3(1,1,1-tribromo-2,2,2-trifluorodisilane), F3Si-SiI3(1,1,1-trifluoro-2,2,2-triiododisilane), Cl3Si-SiCl3(perchlorodisilane), Cl3Si-Si(SH)Cl2(1,1,2,2,2-pentachlorodisilanethiol), Cl3Si-Si(SH)2Cl(1,2,2,2-tetrachlorodisilane-1,1-dithiol), Cl3Si-Si(SH)3(2,2,2-trichlorodisilane-1,1,1-trithiol) 또는 F3Si- Si(SH)3(2,2,2-trifluorodisilane-1,1,1-trithiol) 등을 들 수 있다.An example of such a formula 3 S (sulfur), silicon (Si) contained in the precursor is, H 3 -Si-Si-H 3 (disilane), H 2 (SH) -Si-Si- (SH) H 2 (disilane -1,2-dithiol), H (SH ) 2 -Si-Si- (SH) 2 H (disilane-1,1,2,2-tetrathiol), (SH) 3 -Si-Si- (SH) 3 (disilane-1,1,1,2,2,2-hexathiol), H 2 (SF) Si-SiH 3 (disilyl hypofluorothioite), H 2 (SF) Si-Si (SH) H 2 (2-mercaptodisilyl hypofluorothioite ), H 2 (SF) Si -Si (SH) 2 H (2,2-dimercaptodisilyl hypofluorothioite), H 2 (SF) Si-Si (SH) 3 (2,2,2-trimercaptodisilyl hypofluorothioite), H (SF ) 2 Si-Si (SH) 3 (2,2,2-trimercaptodisilane-1,1-diyl dihypofluorothioite), (SF) 3 Si-Si (SH) 3 (2,2,2-trimercaptodisilane-1,1, 1-triyl trihypofluorothioite), H 2 (SF) Si-Si (SF) H 2 (disilane-1,2-diyl dihypofluorothioite), H 2 (SF) Si-Si (SF) 2 H (disilane-1,1, 2-triyl trihypofluorothioite), H 2 (SF) Si-Si (SF) 3 (disilane-1,1,1,2-tetrayl tetrahypofluorothioite), H (SF) 2 Si-Si (SF) 3 (disilane-1, 1,1,2,2-pentayl pentahypofluorothioite), H ( SF) 2 Si-Si (SF) 2 H (disilane-1,1,2,2-tetrayl tetrahypofluorothioi te), (SF) 3 Si -Si (SF) 3 (disilane-1,1,1,2,2,2-hexayl hexahypofluorothioite), H 2 (SF) Si-Si (SCl) H 2 (2- ( chlorothio) disilyl hypofluorothioite), H 2 (SF) Si-Si (SCl) 2 H (2,2-bis (chlorothio) disilyl hypofluorothioite), H 2 (SF) Si-Si (SCl) 3 (2,2,2 -tris (chlorothio) disilyl hypofluorothioite), H (SF) 2 Si-Si (SCl) 3 (2,2,2-tris (chlorothio) disilane-1,1-diyl dihypofluorothioite), (SF) 3 Si-Si ( SCl) 3 (2,2,2-tris ( chlorothio) disilane-1,1,1-triyl trihypofluorothioite), F 3 Si-SiH 3 (1,1,1-trifluorodisilane), F 2 (SH) Si-SiH 3 (1,1-difluorodisilanethiol), F (SH) 2 Si-SiH 3 (1-fluorodisilane-1,1-dithiol), F 3 Si-Si (SH) H 2 (2,2,2-trifluorodisilanethiol), F 3 Si-Si (SH) 2 H (2,2,2-trifluorodisilane-1,1-dithiol), F 3 Si-Si (SH) 3 (2,2,2- trifluorodisilane- trithiol), F 3 Si-SiF 3 (perfluorodisilane), F 3 Si-SiCl 3 (1,1,1-trichloro-2,2,2-trifluorodisilane), F 3 Si-SiBr 3 (1,1,1- tribromo-2,2,2-trifluorodisilane), F 3 Si-SiI 3 (1,1,1-trifluoro-2,2,2-triiododisilane), Cl 3 Si-SiCl 3 (perchlorodisilane), Cl 3 Si-Si (SH) Cl 2 (1,1,2,2,2- pentachlorodisilanethiol), Cl 3 Si-Si (SH) 2 Cl (1,2,2,2-tetrachlorodisilane-1,1-dithiol), Cl 3 Si (SH) 3 (2,2,2-trichlorodisilane-1,1,1-trithiol) or F 3 Si-Si (SH) 3 (2,2,2-trifluorodisilane-1,1,1- And the like.

본 발명의 일 실시예에 따른 탄소 박막 소자 제조 방법은, 탄소 박막을 원자층 증착하기 전에 기재 상에 개질 반응물을 선공급하거나, 탄소 박막의 원자층 증착 공정 중 첫 번째 공정 사이클에서 상기 개질 반응물을 탄소원 물질의 공급 전에 미리 공급함으로써, 기재의 표면 특성을 개질 함으로써, 후속 원자층 증착 공정에서 탄소 박막이 보다 효과적으로 증착될 수 있도록 한다.The method of manufacturing a carbon thin film device according to an embodiment of the present invention may include a step of supplying a reforming reaction material onto a substrate before atomic layer deposition of a carbon thin film or supplying the reforming reaction material in a first process cycle of a carbon thin film atomic layer deposition process By preliminarily feeding the carbon source material prior to the supply of the carbon source material, the carbon film can be more effectively deposited in the subsequent atomic layer deposition process by modifying the surface properties of the substrate.

본 발명의 일 실시예에 의하면, Si, SiO2, Si3N4, Al2O3 기판과 같이 안정화된 반도체 기재 상에 다른 금속층을 증착하지 않고도 원자층 증착법(ALD)에 의해 탄소 박막을 기판의 제한성 없이 대면적으로 균일하고 신속하게 증착할 수 있다. According to one embodiment of the present invention, Si, SiO 2, Si 3 N 4, the substrate for the carbon thin film by the Al 2 O 3 substrate having a semiconductor substrate the atomic layer deposition (ALD) without depositing another metal layer on stabilization as shown in It is possible to uniformly and rapidly deposit on a large area without limitations.

또한, 원자층 증착법(ALD)에 의한 탄소 박막 증착시 ALD 챔버 내의 온도를 200 내지 450℃ 범위로 하여 저온 공정으로 탄소 박막을 증착할 수 있다.In addition, when the carbon film is deposited by ALD, the carbon film can be deposited by a low-temperature process in a temperature range of 200 to 450 ° C in the ALD chamber.

또한, 본 실시예에 의하면, 나노홀과 같은 고단차를 갖는 나노 구조 또는 나노선과 같은 입체 구조에 균일하게 증착된 탄소층을 갖는 탄소 박막 소자 또는 탄소 나노선을 제공할 수 있다.In addition, according to this embodiment, a carbon thin film device or a carbon nanowire having a carbon layer uniformly deposited on a three-dimensional structure such as a nanostructure or a nanowire having a high stage difference such as a nanohole can be provided.

이하에서는, 본 명세서에 첨부된 도면을 참조하여 본 발명에 대해 상세히 설명하고자 한다.Hereinafter, the present invention will be described in detail with reference to the drawings attached hereto.

도 1은 본 발명의 실시예에 따른 탄소 박막의 제조 과정을 보여주는 공정 흐름도를 도식적으로 나타낸 것이다.FIG. 1 schematically shows a process flow chart illustrating a process of manufacturing a carbon thin film according to an embodiment of the present invention.

상기 도 1을 참조하면, 본 발명의 일 실시예에 따른 탄소 박막의 제조 방법은 먼저 기재를 준비하고(S100), 상기 기재의 표면을 개질하기 위해 개질 화합물을 공급하는 단계(S200) 및 개질된 기재 위로 원자층 증착법(ALD)에 의해 탄소 박막을 증착하는 단계(S300)를 포함한다.Referring to FIG. 1, a method of manufacturing a carbon thin film according to an embodiment of the present invention includes preparing a substrate (S100), supplying a modified compound to modify the surface of the substrate (S200) Depositing a carbon thin film on the substrate by atomic layer deposition (ALD) (S300).

상기 기재는 특별히 제한되는 것은 아니고, 반도체 공정에서 통상적으로 사용되는 Si, SiO2, Si3N4, Al2O3 기판과 같이 안정화된 반도체 기재가 사용될 수 있으며, 더욱 바람직하게는 실리콘 산화막(SiO2) 혹은 실리콘 질화막(Si3N4)이 사용될 수 있다.The substrate is not particularly limited, and a stabilized semiconductor substrate such as a Si, SiO 2 , Si 3 N 4 , or Al 2 O 3 substrate commonly used in a semiconductor process can be used. More preferably, 2 ) or a silicon nitride film (Si 3 N 4 ) may be used.

또한, 본 발명에서 사용되는 개질 화합물은 황(sulfur)을 포함하는 가스 혹은 황(sulfur)을 포함하는 실리콘 전구체(silicon precursor)인 것이 바람직한데, 상기 황을 포함하는 가스로는 황화수소를 들 수 있으며, 황(sulfur)을 포함하는 실리콘 전구체(silicon precursor)로는 기존의 다양한 실리콘 전구체 중에서 적어도 황 원소를 포함하는 전구체라면 특별한 제한 없이 사용될 수 있다.The reforming compound used in the present invention is preferably a silicon precursor including a sulfur-containing gas or sulfur. Examples of the gas containing sulfur include hydrogen sulfide, As the silicon precursor containing sulfur, any precursor containing at least a sulfur element among various silicon precursors can be used without any particular limitation.

이때 상기 탄소 박막을 증착하는 단계는, 도 2에 제시된 바와 같이, 개질된 기재 상에 탄소 전구체를 공급하는 단계(S310); 개질된 기재 상에 퍼지 가스를 공급하여 퍼징하는 단계(S320); 개질된 기재 상에 반응 가스를 공급하는 단계(S330); 및 개질된 기재 상에 퍼지 가스를 공급하여 퍼징하는 단계(S340);를 포함하는 단위 사이클을 기 결정된 횟수만큼 반복되는 것이 바람직하다.The step of depositing the carbon thin film may include: supplying a carbon precursor on the modified substrate (S310) as shown in FIG. 2; Supplying and purifying the purge gas onto the modified substrate (S320); Supplying a reaction gas onto the modified substrate (S330); And purge the purge gas on the reformed substrate (S340). Preferably, the unit cycle is repeated a predetermined number of times.

이때 사용되는 탄소 전구체 물질로는 특별히 제한되지는 않지만, 할로겐화 탄소를 사용하는 것이 바람직하고, 더욱 바람직하게는 사브롬화탄소(CBr4)를 사용할 수 있으며, 반응 가스로는 수소 가스 또는 수소 플라즈마를 사용하는 것이 바람직하다.The carbon precursor material to be used at this time is not particularly limited, but it is preferable to use halogenated carbon, more preferably carbon tetrabromide (CBr 4 ), and hydrogen gas or hydrogen plasma is used as the reaction gas .

상기 기재(SiO2 혹은 S3iN4 기판 등의 표면에는 박막 제조 중에 사용된 수분이나 암모니아 가스로 인해 Si-OH(silanol)이나 Si-NH group이 존재하며, 이러한 작용기로 인해 기재의 표면은 탄소 전구체 물질인 CBr4과 느리게 반응하게 된다.Si-OH (silanol) or Si-NH group exists due to moisture or ammonia gas used in the production of the thin film on the surface of the substrate (such as SiO2 or S3iN4). Due to such functional groups, the surface of the substrate is made of CBr 4 .

하지만, 본 발명과 같이 이러한 기재의 표면에 황을 포함하는 가스(H2S 가스등) 혹은 황을 포함하는 실리콘 전구체를 공급하여 개질함으로써, 상기 Si-OH는 Si-SH로, Si-NH는 Si-N-SH로 표면이 개질되어, Si-OH나 Si-NH 보다 Si-SH나 Si-N-SH의 S-H의 산도가 훨씬 높아지게 되며(OH pKa=16, SH pKa=10~11), 후속 공정에서 공급되는 탄소 전구체 물질인 CBr4과 빠르게 반응하게 되어, 기재의 표면에 Si-S-CBr3 혹은 Si-N-S-CBr3 층을 보다 쉽게 형성하여 incubation time이 줄어들게 되어, 신속한 탄소 박막을 형성하게 된다. However, by supplying and reforming a silicon precursor containing sulfur (such as H 2 S gas) or sulfur to the surface of such a substrate as in the present invention, the Si-OH is converted to Si-SH and the Si- The surface is modified with Si-N-SH, resulting in a much higher acidity of SH of Si-SH or Si-N-SH (OH pKa = 16, SH pKa = 10-11) than Si-OH or Si- It is accelerated reaction with the carbon precursor material is supplied in a subsequent process CBr 4, to more readily form a Si-S-CBr 3 or Si-NS-CBr 3 layer on the surface of the base material is reduced the incubation time, the rapid carbon film Respectively.

본 명세서에서는 본 발명자들이 수행한 다양한 실시예 가운데 몇 개의 예만을 들어 설명하는 것이므로, 본 발명의 기술적 사상은 이에 한정하거나 제한되지 않고, 이 기술분야에서 통상의 지식을 가진 자에 의해 변형되어 다양하게 실시될 수 있음은 물론이다.The technical idea of the present invention is not limited to the above, and various changes and modifications may be made by those skilled in the art. Of course.

Claims (7)

기재을 준비하는 단계(S100);
상기 기재의 표면을 개질 화합물을 사용하여 개질하는 단계(S200); 및
원자층 증착법을 사용하여 개질된 기재 상에 탄소 박막을 증착하는 단계(S300);를 포함하고,
상기 개질 화합물은 황(slufur)를 포함하는 것을 특징으로 하는, 탄소 박막의 제조 방법.
Preparing a substrate (S100);
Modifying the surface of the substrate with a modifying compound (S200); And
(S300) depositing a carbon thin film on a modified substrate using atomic layer deposition,
Wherein the modifying compound comprises sulfur (slufur).
제1항에 있어서,
상기 기재는 실리콘 산화막(SiO2) 혹은 실리콘 질화막(Si3N4)인 것을 특징으로 하는, 탄소 박막의 제조 방법.
The method according to claim 1,
Wherein the substrate is a silicon oxide film (SiO 2 ) or a silicon nitride film (Si 3 N 4 ).
제1항에 있어서,
상기 개질 화합물은 황(sulfur)을 포함하는 가스 혹은 황(sulfur)을 포함하는 실리콘 전구체(silicon precursor)인 것을 특징으로 하는, 탄소 박막의 제조 방법.
The method according to claim 1,
Wherein the modifying compound is a silicon precursor containing a sulfur-containing gas or sulfur.
제3항에 있어서,
상기 황(sulfur)을 포함하는 가스는, 하기 화학식 (1)로 표시되는 것을 특징으로 하는, 탄소 박막의 제조 방법.
R1-S-R2 (화학식 1)
(이때 R1, R2는 각각 독립적으로 수소 또는 C1 내지 C10의 유기 라디칼이며, 상기 유기 라디칼은 산소(O), 질소(N), 황(S) 또는 인(P)을 포함)
The method of claim 3,
The method for producing a carbon thin film according to claim 1, wherein the sulfur-containing gas is represented by the following chemical formula (1).
R1-S-R2 (Chemical Formula 1)
Wherein R 1 and R 2 are each independently hydrogen or a C1 to C10 organic radical and the organic radical comprises oxygen (O), nitrogen (N), sulfur (S), or phosphorus (P)
제3항에 있어서,
상기 황(sulfur)을 포함하는 실리콘 전구체(silicon precursor)는, 하기 화학식 (2)로 표시되는 것을 특징으로 하는, 탄소 박막의 제조 방법.
Si(S-R1)4-xR2x (화학식 2)
(화학식 2에서 R1, R2는 독립적으로 수소, 할로겐 원소 또는 C1 내지 C10의 유기 라디칼이고, 상기 유기 라디칼은 산소(O), 질소(N), 황(S) 또는 인(P)을 포함하며, x는 0 내지 3의 정수임)
The method of claim 3,
Wherein the silicon precursor containing sulfur is represented by the following chemical formula (2).
Si (S-R1) 4-xR2x (Formula 2)
Wherein R 1 and R 2 are independently hydrogen, a halogen element or a C1 to C10 organic radical and the organic radical comprises oxygen (O), nitrogen (N), sulfur (S) or phosphorus (P) and x is an integer of 0 to 3)
제3항에 있어서,
상기 황(sulfur)을 포함하는 실리콘 전구체(silicon precursor)는, 하기 화학식 (3)으로 표시되는 것을 특징으로 하는, 탄소 박막의 제조 방법.
R4y(R3-S)3-ySi-Si(S-R1)3-xR2x (화학식 3)
(화학식3에서 R1, R2, R3, R4는 독립적으로 수소, 할로겐 원소 또는 C1 내지 C10의 유기 라디칼이고, 상기 유기 라디칼은 산소(O), 질소(N), 황(S) 또는 인(P)을 포하며, x, y는 각각 독립적으로 0 내지 3의 정수임).
The method of claim 3,
Wherein the silicon precursor containing sulfur is represented by the following chemical formula (3).
(R3-S) 3-ySi-Si (S-R1) 3-xR2x (Formula 3)
(O), nitrogen (N), sulfur (S), or phosphorus (P), wherein the organic radicals are independently selected from the group consisting of hydrogen, halogen, And x and y are each independently an integer of 0 to 3).
제1항에 있어서,
상기 탄소 박막을 증착하는 단계(S300)는,
개질된 기재 상에 탄소 전구체를 공급하는 단계(S310);
개질된 기재 상에 퍼지 가스를 공급하여 퍼징하는 단계(S320);
개질된 기재 상에 반응 가스를 공급하는 단계(S330); 및
개질된 기재 상에 퍼지 가스를 공급하여 퍼징하는 단계(S340);를 포함하는 단위 사이클을 기 결정된 횟수만큼 반복하는 것을 특징으로 하는, 탄소 박막의 제조 방법.
The method according to claim 1,
The step of depositing the carbon thin film (S300)
Supplying a carbon precursor on the modified substrate (S310);
Supplying and purifying the purge gas onto the modified substrate (S320);
Supplying a reaction gas onto the modified substrate (S330); And
(S340) of supplying a purge gas onto the modified substrate and purging the purge gas (S340), is repeated a predetermined number of times.
KR1020170049490A 2017-04-18 2017-04-18 A Manufacturing Method of Carbon Thin Film on SiO2 and SiN substrate KR20180117233A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020170049490A KR20180117233A (en) 2017-04-18 2017-04-18 A Manufacturing Method of Carbon Thin Film on SiO2 and SiN substrate
KR1020220016371A KR20220024309A (en) 2017-04-18 2022-02-08 A Manufacturing Method of Carbon Thin Film on Dielectric Substrate for Semiconductor Manufacturing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170049490A KR20180117233A (en) 2017-04-18 2017-04-18 A Manufacturing Method of Carbon Thin Film on SiO2 and SiN substrate

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020220016371A Division KR20220024309A (en) 2017-04-18 2022-02-08 A Manufacturing Method of Carbon Thin Film on Dielectric Substrate for Semiconductor Manufacturing

Publications (1)

Publication Number Publication Date
KR20180117233A true KR20180117233A (en) 2018-10-29

Family

ID=64101178

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020170049490A KR20180117233A (en) 2017-04-18 2017-04-18 A Manufacturing Method of Carbon Thin Film on SiO2 and SiN substrate
KR1020220016371A KR20220024309A (en) 2017-04-18 2022-02-08 A Manufacturing Method of Carbon Thin Film on Dielectric Substrate for Semiconductor Manufacturing

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020220016371A KR20220024309A (en) 2017-04-18 2022-02-08 A Manufacturing Method of Carbon Thin Film on Dielectric Substrate for Semiconductor Manufacturing

Country Status (1)

Country Link
KR (2) KR20180117233A (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7202166B2 (en) 2003-08-04 2007-04-10 Asm America, Inc. Surface preparation prior to deposition on germanium

Also Published As

Publication number Publication date
KR20220024309A (en) 2022-03-03

Similar Documents

Publication Publication Date Title
EP2174942B1 (en) Niobium and vanadium organometallic precursors for thin film deposition
US20110275215A1 (en) Method for forming a titanium-containing layer on a substrate using an atomic layer deposition (ald) process
KR101787204B1 (en) Organic metal precursor compound for atomic layer deposition and ald deposition using the same
KR20100083145A (en) Methods of preparing titanium containing thin films by atomic layer deposition using monocyclopentadienyl titanium-based precursors
KR20030038775A (en) Vapor deposition of oxides, silicates, and phosphates
KR20070051331A (en) Atomic layer deposition of copper using surface-activating agents
CN111655702B (en) Organometallic compound and thin film using the same
CN103898601A (en) Method of forming seed layer, method of forming silicon film, and film forming apparatus
JP2021502492A (en) A method for producing a ruthenium-containing thin film and a ruthenium-containing thin film produced thereby.
KR20210046566A (en) Atomic layer deposition of indium gallium zinc oxide
US9085823B2 (en) Method of forming a tantalum-containing layer on a substrate
KR102366555B1 (en) Method of selective formation of thin film
KR20180056949A (en) Group 13 metal precursor, composition for depositing thin film comprising the same, and a process for producing the thin film using the composition
KR20180117233A (en) A Manufacturing Method of Carbon Thin Film on SiO2 and SiN substrate
KR20210156444A (en) Molybdenum precursors, thin films using the same and deposition method of the same
US11208723B2 (en) Organometallic precursor compound for vapor deposition for forming oxide thin film and method for manufacturing same
KR20130133996A (en) Silicon carbide epi wafer and method of fabricating the same
EP2492273A1 (en) Deposition of gallium containing thin films using gallium alkylamide precursor
KR102367848B1 (en) A Manufacturing Method of Tungsten Film with Low Fluorine Concentration
KR102491073B1 (en) Silicon precursor compound, composition for forming a silicon-containing film comprising the same, and method for forming a film using the composition
KR20130134938A (en) Silicon carbide epi wafer and method of fabricating the same
KR20220033590A (en) Group 4 metal element-containing compound, precursor composition containing same, and method for forming thin film using same
US20210024550A1 (en) SiC PRECURSOR COMPOUND AND THIN FILM FORMING METHOD USING THE SAME
EP2540733A1 (en) Deposition of indium containing thin films using new indium precursors
KR20240059546A (en) Gallium compound, composition for depositing thin film comprising the same, and a process for producing the thin film using the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X601 Decision of rejection after re-examination
J201 Request for trial against refusal decision
J301 Trial decision

Free format text: TRIAL NUMBER: 2022101000256; TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20220208

Effective date: 20230216