KR102367848B1 - A Manufacturing Method of Tungsten Film with Low Fluorine Concentration - Google Patents

A Manufacturing Method of Tungsten Film with Low Fluorine Concentration Download PDF

Info

Publication number
KR102367848B1
KR102367848B1 KR1020170054421A KR20170054421A KR102367848B1 KR 102367848 B1 KR102367848 B1 KR 102367848B1 KR 1020170054421 A KR1020170054421 A KR 1020170054421A KR 20170054421 A KR20170054421 A KR 20170054421A KR 102367848 B1 KR102367848 B1 KR 102367848B1
Authority
KR
South Korea
Prior art keywords
tungsten
thin film
reducing agent
tungsten thin
formula
Prior art date
Application number
KR1020170054421A
Other languages
Korean (ko)
Other versions
KR20180120853A (en
Inventor
최정식
임진묵
조익행
박세희
임명용
Original Assignee
주식회사 레이크머티리얼즈
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 레이크머티리얼즈 filed Critical 주식회사 레이크머티리얼즈
Priority to KR1020170054421A priority Critical patent/KR102367848B1/en
Publication of KR20180120853A publication Critical patent/KR20180120853A/en
Application granted granted Critical
Publication of KR102367848B1 publication Critical patent/KR102367848B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4488Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by in situ generation of reactive gas by chemical or electrochemical reaction
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/08Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metal halides
    • C23C16/14Deposition of only one other metal element
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4408Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber by purging residual gases from the reaction chamber or gas lines
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45534Use of auxiliary reactants other than used for contributing to the composition of the main film, e.g. catalysts, activators or scavengers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02043Cleaning before device manufacture, i.e. Begin-Of-Line process
    • H01L21/02046Dry cleaning only
    • H01L21/02049Dry cleaning only with gaseous HF
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

본 발명은 WF6를 이용한 텅스텐 (W, tungsten) 박막의 제조 과정 중에서, 박막 내에 Fluorine의 함량이 낮게 유지될 수 있도록 할 수 있는 텅스텐 박막의 제조 방법에 관한 것으로, 더욱 상세하게는 반응 챔버 내에 텅스텐 원료물질과 함께 공급되는 제1 환원제와 제2 환원제를 차례로 혹은 교번적으로 공급함으로써 낮은 Fluorine 함유하는 텅스텐 박막을 형성할 수 있으며, 이러한 방법을 통해 잔류 불소(F)의 농도가 현저히 낮은 텅스텐 박막을 제조할 수 있다.The present invention relates to a method for manufacturing a tungsten thin film capable of maintaining a low content of fluorine in the thin film during the manufacturing process of a tungsten (W, tungsten) thin film using WF6, and more particularly, to a tungsten raw material in a reaction chamber A tungsten thin film containing low fluorine can be formed by sequentially or alternately supplying the first reducing agent and the second reducing agent supplied together with the material, and through this method, a tungsten thin film with a remarkably low concentration of residual fluorine (F) is manufactured can do.

Description

저 불소 함량을 갖는 텅스텐 박막의 제조 방법{A Manufacturing Method of Tungsten Film with Low Fluorine Concentration}A manufacturing method of a tungsten thin film having a low fluorine content {A Manufacturing Method of Tungsten Film with Low Fluorine Concentration}

본 발명은 불소계 텅스텐 원료 물질을 사용한 텅스텐 (W, tungsten) 박막의 제조 과정 중에서, 박막 내에 불소(Fluorine)의 함량을 낮게 할 수 있는 텅스텐 박막의 제조 방법에 관한 것으로, 더욱 상세하게는 반응 챔버 내에 불소계 텅스텐 원료 물질과 환원제를 차례로 주입함으로써 낮은 불소(Fluorine) 함유 텅스텐 박막을 형성할 수 있는 텅스텐 박막 제조 방법 및 이때 사용되는 환원제에 관한 것이다The present invention relates to a method for manufacturing a tungsten thin film capable of lowering the content of fluorine in the thin film during the manufacturing process of a tungsten (W, tungsten) thin film using a fluorine-based tungsten raw material, and more particularly, to a It relates to a method for manufacturing a tungsten thin film capable of forming a low fluorine-containing tungsten thin film by sequentially injecting a fluorine-based tungsten raw material and a reducing agent, and a reducing agent used at this time

텅스텐 함유 재료들은 CVD(chemical vapor deposition), ALD(Atomic Layer Deposition) 등의 방법을 통해 기판 혹은 반도체층에 증착되고 있으며, 반도체 제조 공정 중에서 매우 중요한 위치를 차지하고 있다. Tungsten-containing materials are deposited on a substrate or semiconductor layer through methods such as chemical vapor deposition (CVD) and atomic layer deposition (ALD), and occupy a very important position in a semiconductor manufacturing process.

이러한 텅스텐 함유 재료들은, 수평형 상호 접속부들, 인접하는 금속 층들 사이의 비아(Via)들, 제1 금속 층들과 실리콘 기판 상에 형성된 디바이스들 사이의 콘택(Contact)들 혹은 고 종횡비(high aspect ratio)를 갖는 feature들에 널리 사용되고 있다.These tungsten-containing materials may include horizontal interconnects, vias between adjacent metal layers, contacts between first metal layers and devices formed on a silicon substrate, or high aspect ratios. ) is widely used for features with

통상적인 반도체 제조 과정 중의 증착 공정은, 기판이 증착 반응 챔버 내에서 미리 결정된 프로세스 온도로 가열된 후, 씨드(seed) 또는 핵 생성(nucleation) 층의 역할을 하는 텅스텐-함유 재료의 박막이 증착된 이후, 나머지 텅스텐 막이 벌크(bulk) 층으로서 상기 씨드(seed) 또는 핵 생성(nucleation) 층 위로 증착된다. 기존의 이러한 텅스텐 벌크 층은 CVD(Chemical Vapor Deposition) 공정을 통해 수소를 환원제로 사용하여 불소계 텅스텐 원료물질인 WF6를 환원시켜 제조되는 것이 일반적이다.A deposition process during a typical semiconductor manufacturing process involves a substrate being heated to a predetermined process temperature in a deposition reaction chamber, followed by a deposition of a thin film of tungsten-containing material serving as a seed or nucleation layer. The remaining tungsten film is then deposited over the seed or nucleation layer as a bulk layer. The conventional tungsten bulk layer is generally manufactured by reducing WF 6 , a fluorine-based tungsten raw material, using hydrogen as a reducing agent through a chemical vapor deposition (CVD) process.

상기 핵 생성층은 그 위에 후속 벌크 물질의 형성이 촉진되도록 기능하는 얇은 컨포멀(conformal) 층으로 형성되는데, 이때 텅스텐 핵 생성층은 피처의 측벽들 및 하단부를 컨포멀하게 코팅할 수 있도록 증착되는 것이 바람직하며, 이러한 핵생성층들은 ALD (atomic layer deposition) 또는 PNL (pulsed nucleation layer) 방법 등을 통해 형성된다,The nucleation layer is formed thereon as a thin conformal layer that functions to facilitate the formation of subsequent bulk material, wherein the tungsten nucleation layer is deposited to conformally coat the sidewalls and bottom of the feature. Preferably, these nucleation layers are formed through ALD (atomic layer deposition) or PNL (pulsed nucleation layer) methods, etc.

상기 PNL 기법에서, 반응물질의 펄스들은 순차적으로 주입되고, 통상적으로 반응물질들 간의 퍼지 가스의 펄스에 의해 반응 챔버로부터 퍼지된다. 제1 반응물질은 기판상에 흡착되어, 다음 반응물질과 반응하게 되는데, 목표로 하는 두께가 달성될 때까지 순환적인 방식으로 반복된다. In the PNL technique, pulses of reactants are sequentially injected and purged from the reaction chamber, typically by pulses of a purge gas between the reactants. The first reactant is adsorbed onto the substrate and reacted with the next reactant, which is repeated in a cyclical manner until the desired thickness is achieved.

이러한 PNL 기법은 ALD 기법들과 유사하지만, PNL은 일반적으로 (1 Torr보다 큰) 보다 높은 동작 압력 범위 및 (사이클 당 1 모노레이어 막 성장보다 큰) 보다 높은 성장 속도로 인해 ALD와 구별된다. PNL 디포지션 동안 챔버 압력은 약 1 Torr 내지 약 400 Torr의 범위일 수 있다. This PNL technique is similar to ALD techniques, but PNL is generally distinguished from ALD by a higher operating pressure range (greater than 1 Torr) and a higher growth rate (greater than 1 monolayer film growth per cycle). The chamber pressure during PNL deposition may range from about 1 Torr to about 400 Torr.

앞서 살펴본 바와 같이, 텅스텐 핵 생성층이 형성된 후, 벌크 텅스텐은 통상적으로 수소(H2)와 같은 환원제를 사용하여 텅스텐 헥사플루오라이드(WF6)를 환원시킴으로써 증착되는데, 이러한 WF6의 사용은 형성된 텅스텐 막의 표면과 내부에 일부 불소가 잔류되는 현상을 야기한다. 반도체 소자의 집적도가 증가하고, 반도체 디바이스의 축소가 가속화됨에 따라, 피처들이 보다 작아지게 되고 상기 불소의 일렉트로마이그레이션(electromigration) 및 이온 확산과 같은 현상으로 인해, 디바이스의 불량을 유발한다. As previously noted, after the tungsten nucleation layer is formed, bulk tungsten is typically deposited by reducing tungsten hexafluoride (WF 6 ) using a reducing agent such as hydrogen (H 2 ), which use of WF 6 is used to form It causes a phenomenon in which some fluorine remains on the surface and inside of the tungsten film. As the degree of integration of semiconductor devices increases and the shrinkage of semiconductor devices is accelerated, features become smaller and the phenomenon such as electromigration and ion diffusion of fluorine causes device failure.

따라서 이러한 불소의 존재는 인접한 컴포넌트들로의 일렉트로마이그레이션 및/또는 불소 확산을 유발할 수 있으며, 컨택트들에 손상을 주어 반도체 디바이스의 성능을 감소시키게 되므로, 불소를 함유하는 텅스텐 막들은 집적 소자의 신뢰성 문제들뿐만 아니라 하부에 형성되는 막, 비아들 혹은 게이트들과 같은 디바이스 구조체들과 관련된 디바이스 성능 문제들의 원인으로 작용하게 된다.Therefore, the presence of fluorine can cause electromigration and/or fluorine diffusion into adjacent components, and damage the contacts and reduce the performance of the semiconductor device, so tungsten films containing fluorine are a reliability problem for integrated devices. as well as device performance issues related to device structures such as films, vias or gates formed underneath.

이러한 문제를 해결하기 위해 공개특허 제2015-0138116호에는 텅스텐 클로라이드(WClx)를 전구체로 사용하는 방법을 제시되어 있고, 일본 공개특허 제1990-225670호에는 텅스텐 카르보닐(W(CO)6)를 사용하는 예가 제시되어 있으나, 이렇게 불소가 포함되지 않은 텅스텐 전구체를 사용하여 형성된 텅스텐 막의 물성은 기존의 WF6를 사용한 경우에 비해 떨어지는 문제점이 여전히 존재한다.To solve this problem, Patent Publication No. 2015-0138116 discloses a method using tungsten chloride (WCl x ) as a precursor, and Japanese Patent Application Publication No. 1990-225670 discloses tungsten carbonyl (W(CO) 6 ) Although an example of using WF 6 is presented, the physical properties of a tungsten film formed using a tungsten precursor not containing fluorine as described above still have a problem that is inferior to that of using WF 6 .

공개특허 제2015-0138116호Patent Publication No. 2015-0138116 일본 공개특허 제1990-225670호Japanese Patent Laid-Open No. 1990-225670

본 발명이 이루고자 하는 기술적 과제는, 반도체 소자의 제조 과정 중에서 텅스텐 박막을 형성할 때, 텅스텐 원료물질인 WF6와 제1 환원제를 투입하여 텅스텐 박막을 형성한 후, 제2 환원제를 추가로 투입함으로써 증착된 W 표면에 잔류하는 F를 제거함으로써, 텅스텐 박막이 형성되는 반응기의 반응 공간 또는 흡착, 증착 된 텅스텐 박막의 표면 혹은 내부에 잔존하는 F를 보다 손쉽고 간단하게 제거하기 위한 것이다.The technical problem to be achieved by the present invention is, when forming a tungsten thin film during the manufacturing process of a semiconductor device, by adding WF 6 and a first reducing agent as a tungsten raw material to form a tungsten thin film, and then adding a second reducing agent By removing the F remaining on the surface of the deposited W, the reaction space or adsorption of the reactor where the tungsten thin film is formed, the F remaining on the surface or inside of the deposited tungsten thin film is more easily and simply removed.

본 발명의 일 실시 형태에 따른 저 불소 함량을 갖는 텅스텐 박막의 제조 방법은, 반응기 내에 피처리 기판을 도입하는 단계(S100); 상기 반응기에 텅스텐 원료 물질 및 제1 환원제를 투입하는 단계(S200); 상기 피처리 기판을 가열하는 단계(S300); 가열된 피처리 기판 상에 상기 텅스텐 원료 물질과 제1 환원제를 반응시켜 텅스텐 박막을 형성하는 단계(S400); 및 제2 환원제를 공급하여, 반응기 내부 혹은 텅스텐 박막에 흡착 혹은 증착되어 잔존하는 불소(F)와 반응시킨 후, 반응 생성물을 퍼지시키는 단계(S500);를 포함한다.A method for manufacturing a tungsten thin film having a low fluorine content according to an embodiment of the present invention includes the steps of introducing a target substrate into a reactor (S100); adding a tungsten raw material and a first reducing agent to the reactor (S200); heating the target substrate (S300); forming a tungsten thin film by reacting the tungsten raw material and a first reducing agent on the heated target substrate (S400); and supplying a second reducing agent, reacting with the fluorine (F) remaining in the reactor or adsorbed or deposited on the tungsten thin film, and then purging the reaction product (S500).

본 발명에서 사용되는 텅스텐 원료 물질은 WF6인 것이 바람직하고, 상기 환원제는 제1 환원제 및 제2 환원제를 포함한다.The tungsten raw material used in the present invention is preferably WF6, and the reducing agent includes a first reducing agent and a second reducing agent.

본 발명에서 사용되는 제1 환원제는, 수소(H2), 실란(SiH4), 디실란(Si2H6), 보란(BH3), 디보란(B2H6), 게르만(GeH4), 디게르만(Ge2H6) 또는 하이드라진 중에서 선택되는 적어도 하나 이상인 것이 바람직하고, 상기 제2 환원제는, 황(sulfur)을 포함하는 가스 혹은 황(sulfur)을 포함하는 실리콘 전구체(silicon precursor)인 것을 특징으로 한다. The first reducing agent used in the present invention is hydrogen (H 2 ), silane (SiH 4 ), disilane (Si 2 H 6 ), borane (BH 3 ), diborane (B 2 H 6 ), germane (GeH 4 ) ), digerman (Ge 2 H 6 ), and preferably at least one selected from hydrazine, and the second reducing agent is a gas containing sulfur or a silicon precursor containing sulfur. characterized by being.

상기 제2 환원제는 불소(F)와의 반응성이 매우 높아, 반응기 내부 혹은 텅스텐 박막에 흡착 혹은 증착되어 잔존하는 F와 상기 환원제를 쉽게 반응시키고, 이를 퍼지시킴으로써, 텅스텐 박막이 형성되는 반응기의 반응 공간 또는 흡착, 증착 된 텅스텐 박막의 표면 혹은 내부에 잔존하는 불소(F)를 퍼징 가스에 의한 degassing 등의 방법을 통해 손쉽고 간단하게 제거될 수 있다.The second reducing agent has a very high reactivity with fluorine (F), and the reaction space of the reactor in which the tungsten thin film is formed or Fluorine (F) remaining on the surface or inside of the adsorbed, deposited tungsten thin film can be easily and simply removed through a method such as degassing with a purging gas.

상기 제2 환원제로 사용되는 황(sulfur)을 포함하는 가스는, 하기 화학식 (1)로 표시될 수 있으며, 이때 R1, R2는 각각 독립적으로 수소 또는 C1 내지 C10의 유기 라디칼이며, 상기 유기 라디칼은 산소(O), 질소(N), 황(S) 또는 인(P)을 포함한다.The gas containing sulfur used as the second reducing agent may be represented by the following formula (1), wherein R 1 , R 2 are each independently hydrogen or a C 1 to C 10 organic radical, The organic radicals include oxygen (O), nitrogen (N), sulfur (S) or phosphorus (P).

R1-S-R2 (화학식 1)R 1 -SR 2 (Formula 1)

제2 환원제의 다른 예로 황(sulfur)을 포함하는 실리콘 전구체(silicon precursor)를 들 수 있는데, 하기 화학식 (2)로 표시될 수 있으며, R1, R2는 각각 독립적으로 수소, 할로겐 원소 또는 C1 내지 C10의 유기 라디칼이고, 상기 유기 라디칼은 산소(O), 질소(N), 황(S) 또는 인(P)을 포함하며, x는 0 내지 3의 정수이다.Another example of the second reducing agent may be a silicon precursor containing sulfur, and may be represented by the following Chemical Formula (2), wherein R 1 , R 2 are each independently hydrogen, a halogen element, or C 1 to C 10 An organic radical, wherein the organic radical includes oxygen (O), nitrogen (N), sulfur (S) or phosphorus (P), and x is an integer of 0 to 3.

Si(S-R1)4 - xR2x (화학식 2)Si(SR 1 ) 4 - x R 2x (Formula 2)

황(sulfur)을 포함하는 실리콘 전구체(silicon precursor)의 다른 예로 하기 화학식 (3)으로 표시되는 화합물을 들 수 있는데, R1, R2, R3, R4는 각각 독립적으로 수소, 할로겐 원소 또는 C1 내지 C10의 유기 라디칼이고, 상기 유기 라디칼은 산소(O), 질소(N), 황(S) 또는 인(P)을 포함하며, x, y는 각각 독립적으로 0 내지 3의 정수이다.Another example of a silicon precursor containing sulfur may include a compound represented by the following formula (3), wherein R 1 , R 2 , R 3 , R 4 are each independently hydrogen, a halogen element or C 1 to C 10 An organic radical, wherein the organic radical includes oxygen (O), nitrogen (N), sulfur (S), or phosphorus (P), and x and y are each independently an integer of 0 to 3 .

R4y(R3-S)3 - ySi-Si(S-R1)3 - xR2x (화학식 3)R 4y (R 3 -S) 3 - y Si-Si(SR 1 ) 3 - x R 2x (Formula 3)

상기 텅스텐 박막을 형성하는 단계(S400);와 반응기 내부 혹은 텅스텐 박막에 흡착 혹은 증착되어 잔존하는 불소(F)와 상기 환원제가 반응하여 형성된 반응 생성물을 퍼지시키는 단계(S500);는 적어도 2회 이상 반복 수행되는 것이 바람직하다.Forming the tungsten thin film (S400); and purging the reaction product formed by the reaction of the fluorine (F) and the reducing agent remaining in the reactor or adsorbed or deposited on the tungsten thin film (S500); is performed at least twice or more It is preferably repeated.

본 발명에서 제시하는 텅스텐 박막의 제조 방법에 따르면, 텅스텐 환원제로 수소 등의 제1 환원제와 황(Sulfur)가 포함된 제2 환원제를 순차적으로 공급하거나 교번적으로 공급함으로써, 상기 제2 환원제가 잔존하는 F와 쉽게 반응하여 반응 생성물을 형성하도록 유도함으로써, 반응기 퍼징 공정에 의해 쉽게 제거될 수 있고, 이로 인해 잔류 F의 농도가 현저히 낮은 텅스텐 박막을 제조할 수 있는 효과가 있으며, 이러한 방법으로 제조된 텅스텐 박막은 기존의 염소계 텅스텐 원료물질을 사용한 경우에 비해 훨씬 우수하고 안정적인 물성을 유지하는 장점이 있다.According to the method for manufacturing a tungsten thin film presented in the present invention, by sequentially or alternately supplying a first reducing agent such as hydrogen and a second reducing agent containing sulfur as a tungsten reducing agent, the second reducing agent remains By inducing it to easily react with F to form a reaction product, it can be easily removed by the reactor purging process, which has the effect of producing a tungsten thin film having a remarkably low concentration of residual F. The tungsten thin film has the advantage of maintaining much superior and stable physical properties compared to the case of using the existing chlorine-based tungsten raw material.

도 1은 본 발명의 일 실시예에 따른 텅스텐 박막의 형성 과정 중에서 반응기에 공급되는 물질의 종류를 도식적으로 나타낸 것이다.
도 2는 본 발명의 다른 실시예에 따른 텅스텐 박막의 형성 과정 중에서 반응기에 공급되는 물질의 종류를 도식적으로 나타낸 것이다.
1 schematically shows the type of material supplied to a reactor during the formation of a tungsten thin film according to an embodiment of the present invention.
Figure 2 schematically shows the type of material supplied to the reactor during the formation of a tungsten thin film according to another embodiment of the present invention.

이하에서는 본 발명의 실시예와 도면을 참조하여 본 발명을 좀 더 상세히 설명한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위해 예시적으로 제시한 것일 뿐, 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 이 기술분야에서 통상의 지식으로 자명할것이다.Hereinafter, the present invention will be described in more detail with reference to embodiments and drawings of the present invention. It will be apparent to those of ordinary skill in the art that these examples are merely presented by way of example to explain the present invention in more detail, and that the scope of the present invention is not limited by these examples.

또한, 달리 정의하지 않는 한, 본 명세서에서 사용되는 모든 기술적 및 과학적 용어는 본 발명이 속하는 기술 분야에서 통상적으로 이해되는 바와 동일한 의미를 가지며, 상충되는 경우에는, 정의를 포함하는 본 명세서의 기재가 우선한다.In addition, unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood in the technical field to which this invention belongs, and in case of conflict, the description of this specification including definitions take precedence

도면에서는 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 사용하였다. 그리고 어떤 부분이 어떤 구성 요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다. In the drawings, in order to clearly explain the present invention, parts irrelevant to the description are omitted, and similar reference numerals are used for similar parts throughout the specification. And, when a part "includes" a component, it means that other components may be further included, rather than excluding other components, unless otherwise stated.

앞서 배경이 되는 기술에서 살펴본 것처럼, 텅스텐 헥사플루오라이드(WF6) 와 같은 플루오르화 전구체들을 사용하여 텅스텐 핵 생성 층들을 증착하는 종래의 방법들은, 핵생성 층들 내에 일부 양의 불소를 발생시킨다. 이렇게 텅스텐 전구체들 및 증착된 텅스텐 막들 내의 불소(F)는 매우 높은 반응성 물질인 불산(HF)을 형성할 수 있는데, 이러한 HF는 예를 들어, 옥사이드 스택들 내의 옥사이드를 부식시키거나 디바이스의 신뢰성에 부정적으로 영향을 미치게 되며, 이러한 텅스텐 박막 내의 불소(F)의 농도를 낮추거나 불소가 제거된 텅스텐 박막이 요구된다. As previously noted in the Background Art, conventional methods of depositing tungsten nucleation layers using fluorinated precursors such as tungsten hexafluoride (WF 6 ) generate some amount of fluorine in the nucleation layers. Fluorine (F) in these tungsten precursors and deposited tungsten films can form hydrofluoric acid (HF), a very highly reactive material, which can corrode, for example, oxides in oxide stacks or affect the reliability of the device. A tungsten thin film from which the concentration of fluorine (F) in the tungsten thin film is lowered or fluorine is removed is required.

따라서, 본 발명에서는 텅스텐 박막을 형성하는 과정 중에서, 텅스텐 원료물질인 WF6와 제1 환원제와 투입하여 텅스텐 박막을 형성한 후, 추가로 제2 환원제를 투입함으로써, 반응기 내부 혹은 텅스텐 박막에 흡착 혹은 증착되어 잔존하는 F와 제2 환원제를 반응시켜 반응 생성물을 형성시키고 이를 퍼지시킴으로써, 텅스텐 박막이 형성되는 반응기의 반응 공간 또는 흡착, 증착된 텅스텐 박막의 표면 혹은 내부에 잔존하는 불소(F)를 보다 손쉽고 간단하게 제거하고자 한다.Therefore, in the present invention, in the process of forming a tungsten thin film, WF 6 as a tungsten raw material and a first reducing agent are added to form a tungsten thin film, and then a second reducing agent is additionally added to adsorb or By reacting the deposited and remaining F with the second reducing agent to form a reaction product and purging it, the reaction space or adsorption of the reactor in which the tungsten thin film is formed, or the fluorine (F) remaining on the surface or inside of the deposited tungsten thin film We want to remove it easily and simply.

본 발명의 텅스텐 박막의 제조 방법에 사용되는 텅스텐의 환원제로 수소 등의 제1 환원제와 황(Sulfur)이 포함된 제2 환원제를 차례로 공급하거나(필요에 따라 상기 제1 환원제를 공급하여 텅스텐 박막을 형성한 후, 제2 환원제를 공급 전에 별도의 퍼징 단계를 포함하는 것도 가능하다), 제1 환원제와 제2 환원제를 각각 번갈아 교번적으로 공급함으로써, 상기 제2 환원제가 반응기 내부 혹은 (텅스텐 원료물질과 제1 환원제의 반응에 의해 형성된) 텅스텐 박막에 잔존하는 F와 쉽게 반응하여 제거될 수 있으며, 이로 인해 잔류 F의 농도가 현저히 낮은 텅스텐 박막을 제조할 수 있다.As a reducing agent for tungsten used in the method for manufacturing a tungsten thin film of the present invention, a first reducing agent such as hydrogen and a second reducing agent containing sulfur are sequentially supplied (if necessary, the tungsten thin film is prepared by supplying the first reducing agent) After formation, it is also possible to include a separate purging step before supplying the second reducing agent), by alternately supplying the first reducing agent and the second reducing agent, respectively, the second reducing agent is introduced into the reactor or (tungsten raw material) It can be easily removed by reacting with the F remaining in the tungsten thin film (formed by the reaction of the tungsten thin film and the first reducing agent), thereby manufacturing a tungsten thin film having a remarkably low concentration of the residual F.

텅스텐 박막을 형성하기 위한 원료물질인 WF6가 제1 환원제와 반응하여 텅스텐 박막을 형성하는 과정 중에서 잔존하는 불소(F)는, 황(Sulfur)이 포함된 가스 혹은 황(Sulfur)이 포함된 Si 전구체인 제2 환원제와 반응하여 반응 생성물인 황화 불소 화합물을 형성하게 되고, 상기 반응 생성물은 이어지는 퍼징 과정을 통해 반응기 밖으로 쉽게 배출될 수 있다.Fluorine (F) remaining in the process of forming the tungsten thin film by reacting WF 6 , a raw material for forming the tungsten thin film, with the first reducing agent, is a gas containing sulfur or Si containing sulfur It reacts with the second reducing agent as a precursor to form a fluorine sulfide compound as a reaction product, and the reaction product can be easily discharged out of the reactor through a subsequent purging process.

이러한 제2 환원제는 단독으로 사용될 수 있으며, 수소(H2), 실란(SiH4), 디실란(Si2H6), 보란(BH3), 디보란(B2H6), 게르만(GeH4), 디게르만(Ge2H6) 및 하이드라진으로 이루어진 군에서 선택되는 제1 환원제와 혼합되어 반응기에 공급되어 사용되는 것도 가능하다.This second reducing agent may be used alone, hydrogen (H 2 ), silane (SiH 4 ), disilane (Si 2 H 6 ), borane (BH 3 ), diborane (B 2 H 6 ), germane (GeH) 4 ), digermane (Ge 2 H 6 ), and a first reducing agent selected from the group consisting of hydrazine is mixed and supplied to the reactor It is also possible to be used.

본 발명에서 사용되는 제2 환원제인 S(황)를 포함하는 가스는 아래의 화학식 (1)로 표현될 수 있는데, 이때 R1, R2는 각각 독립적으로 수소 또는 C1 내지 C10의 유기 라디칼이며, 상기 유기 라디칼은 산소(O), 질소(N), 황(S) 또는 인(P)을 포함할 수 있다.The gas containing S (sulfur) as the second reducing agent used in the present invention may be represented by the following Chemical Formula (1), wherein R 1 , R 2 are each independently hydrogen or an organic radical of C 1 to C 10 and the organic radical may include oxygen (O), nitrogen (N), sulfur (S), or phosphorus (P).

R1-S-R2 (화학식 1)R 1 -SR 2 (Formula 1)

좀 더 구체적으로, 상기 화학식 1로 표현되는 황을 포함하는 가스의 예로, 황화 수소(SH2)를 들 수 있으며, C1 내지 C10의 유기라디칼의 예로 알킬라디칼, 시클로알킬라디칼, 알릴라디칼, 알콕시라디칼, 알킬술파닐기, 알케닐기 등을 들 수 있다.More specifically, examples of the sulfur-containing gas represented by Formula 1 may include hydrogen sulfide (SH 2 ), and examples of C 1 to C 10 organic radicals include alkyl radicals, cycloalkyl radicals, allyl radicals, An alkoxy radical, an alkylsulfanyl group, an alkenyl group, etc. are mentioned.

상기 알킬라디칼의 예로, 메틸, 에틸, n-프로필, 이소프로필, n-부틸, 이소부틸, tert-부틸, n-펜틸, 이소펜틸, 네오펜틸, tert-펜틸 라디칼, n-헥실 라디칼, n-헵틸 라디칼, n-옥틸 라디칼,  2,2,4-트리메틸펜틸, 2-에틸헥실 라디칼, n-노닐 라디칼 또는  n-데실 라디칼 등이 있으며, 시클로알킬라디칼의 예로는 시클로펜틸, 시클로헥실, 4-에틸시클로헥실 라디칼 시클로헵틸 라디칼, 노르보닐 라디칼 또는 메틸시클로헥실 라디칼 등이 있다.Examples of the alkyl radical include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, isopentyl, neopentyl, tert-pentyl radical, n-hexyl radical, n- Heptyl radical, n-octyl radical,  2,2,4-trimethylpentyl, 2-ethylhexyl radical, n-nonyl radical or n-decyl radical, etc. Examples of cycloalkyl radicals include cyclopentyl 4-, cyclohexyl, ethylcyclohexyl radical, cycloheptyl radical, norbornyl radical, or methylcyclohexyl radical.

알릴라디칼의 예로는 페닐, 비페닐, 나프틸, 안트릴 또는 페난트릴 라디칼 등이 있으며, 알콕시라디칼로는 메톡시, 에톡시, 프로폭시, 이소프로폭시, n-부틸옥시, sec-부틸옥시, 이소-부틸옥시, tert-부틸옥시, 펜틸옥시, 헥실옥시, 헵틸옥시, 2,4,4-트리메틸펜틸옥시, 2-에틸헥실옥시, 옥틸옥시, 노닐옥시, 데실옥시 또는 도데실옥시 기(group) 등이 있다.Examples of allyl radicals include phenyl, biphenyl, naphthyl, anthryl or phenanthryl radicals, and alkoxy radicals include methoxy, ethoxy, propoxy, isopropoxy, n-butyloxy, sec-butyloxy, Iso-butyloxy, tert-butyloxy, pentyloxy, hexyloxy, heptyloxy, 2,4,4-trimethylpentyloxy, 2-ethylhexyloxy, octyloxy, nonyloxy, decyloxy or dodecyloxy groups, etc.

또한, 알킬술파닐기로는 메틸술파닐, 에틸술파닐, 프로필술파닐, 이소프로필술파닐, n-부틸술파닐, sec-부틸술파닐, 이소부틸술파닐 또는 tert-부틸술파닐 기(group) 등이 있으며, 알케닐기로는 에테닐, 1-프로페닐, 2-프로페닐, 1-메틸에테닐, 1-부테닐, 2-부테닐, 3-부테닐, 1-메틸-1-프로페닐, 2-메틸-1-프로페닐, 1-메틸-2-프로페닐 또는 2-메틸-2-프로페닐 기(group) 등을 들 수 있다.In addition, as the alkylsulfanyl group, methylsulfanyl, ethylsulfanyl, propylsulfanyl, isopropylsulfanyl, n-butylsulfanyl, sec-butylsulfanyl, isobutylsulfanyl or tert-butylsulfanyl group (group) and the like, and alkenyl groups include ethenyl, 1-propenyl, 2-propenyl, 1-methylethenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-methyl-1-propenyl , 2-methyl-1-propenyl, 1-methyl-2-propenyl, or 2-methyl-2-propenyl group.

본 발명에서 사용될 수 있는 다른 종류의 제2 환원제로 S(황)이 포함된 실리콘(Si) 전구체를 들 수 있는데, 상기 S(황)이 포함된 실리콘(Si) 전구체는 아래 화학식 (2) 또는 (3)으로 표시될 수 있다.Another type of second reducing agent that can be used in the present invention is a silicon (Si) precursor containing S (sulfur), wherein the silicon (Si) precursor containing S (sulfur) is the following formula (2) or (3) can be represented.

Si(S-R1)4-xR2x (화학식 2)Si(SR 1 ) 4-x R 2x (Formula 2)

(화학식 2에서 R1, R2는 독립적으로 수소, 할로겐 원소 또는 C1 내지 C10의 유기 라디칼이고, 상기 유기 라디칼은 산소(O), 질소(N), 황(S), 인(P)을 포함할 수 있으며, x = 0 내지 3의 정수임)(In Formula 2, R 1 , R 2 are independently hydrogen, a halogen element, or an organic radical of C 1 to C 10 , and the organic radical is oxygen (O), nitrogen (N), sulfur (S), phosphorus (P) may include, and x = an integer from 0 to 3)

이러한 화학식 2의 S(황)이 포함된 실리콘(Si) 전구체의 예로는, SiH4(silane), Si(SH)H3(Silanethiol), Si(SH)2H2(Silanedithiol), Si(SH)3H(silanetrithiol), Si(SH)4(orthosilicotetrathioic acid), Si(SF)H3(silyl hypofluorothioite), Si(SF)2H2(silanediyl dihypofluorothioite), Si(SF)3H(silanetriyl trihypofluorothioite), Si(SCl)H3silyl hypochlorothioite), Si(SBr)H3(silyl hypobromothioite), Si(SI)H3(silyl hypoiodothioite), Si(SH)F3(trifluorosilanethiol), Si(SH)2F2(difluorosilanedithiol) 혹은 Si(SH)3F(fluorosilanetrithiol) 등을 들 수 있다.Examples of the silicon (Si) precursor containing S (sulfur) of Formula 2 include SiH 4 (silane), Si(SH)H 3 (Silanethiol), Si(SH) 2 H 2 (Silanedithiol), Si(SH) ) 3 H(silanetrithiol), Si(SH) 4 (orthosilicotetrathioic acid), Si(SF)H 3 (silyl hypofluorothioite), Si(SF) 2 H 2 (silanediyl dihypofluorothioite), Si(SF) 3 H(silanetriyl trihypofluorothioite) , Si(SCl)H 3 silyl hypochlorothioite), Si(SBr)H 3 (silyl hypobromothioite), Si(SI)H 3 (silyl hypoiodothioite), Si(SH)F 3 (trifluorosilanethiol), Si(SH) 2 F 2 (difluorosilanedithiol) or Si(SH) 3 F (fluorosilanetrithiol).

R4y(R3-S)3 - ySi-Si(S-R1)3 - xR2x (화학식 3)R4y(R3-S)3 - ySi-Si(S-ROne)3 - xR2x (Formula 3)

(화학식 3에서 R1, R2, R3, R4는 독립적으로 수소, 할로겐 원소 또는 C1 내지 C10의 유기 라디칼이고, 상기 유기 라디칼은 산소(O), 질소(N), 황(S), 인(P)을 포함할 수 있으며 x, y는 각각 독립적으로 0 내지 3의 정수임).(In Formula 3, R 1 , R 2 , R 3 , and R 4 are independently hydrogen, a halogen element, or an organic radical of C 1 to C 10 , and the organic radical is oxygen (O), nitrogen (N), sulfur (S ), phosphorus (P), and x and y are each independently an integer of 0 to 3).

이러한 화학식 3의 S(황)이 포함된 실리콘(Si) 전구체의 예로는, H3-Si-Si-H3(disilane), H2(SH)-Si-Si-(SH)H2(disilane-1,2-dithiol), H(SH)2-Si-Si-(SH)2H(disilane-1,1,2,2-tetrathiol), (SH)3-Si-Si-(SH)3(disilane-1,1,1,2,2,2-hexathiol), H2(SF)Si-SiH3(disilyl hypofluorothioite), H2(SF)Si-Si(SH)H2(2-mercaptodisilyl hypofluorothioite), H2(SF)Si-Si(SH)2H(2,2-dimercaptodisilyl hypofluorothioite), H2(SF)Si-Si(SH)3(2,2,2-trimercaptodisilyl hypofluorothioite), H(SF)2Si-Si(SH)3(2,2,2-trimercaptodisilane-1,1-diyl dihypofluorothioite), (SF)3Si-Si(SH)3(2,2,2-trimercaptodisilane-1,1,1-triyl trihypofluorothioite), H2(SF)Si-Si(SF)H2(disilane-1,2-diyl dihypofluorothioite), H2(SF)Si-Si(SF)2H(disilane-1,1,2-triyl trihypofluorothioite), H2(SF)Si-Si(SF)3(disilane-1,1,1,2-tetrayl tetrahypofluorothioite), H(SF)2Si-Si(SF)3(disilane-1,1,1,2,2-pentayl pentahypofluorothioite), H(SF)2Si-Si(SF)2H(disilane-1,1,2,2-tetrayl tetrahypofluorothioite), (SF)3Si-Si(SF)3(disilane-1,1,1,2,2,2-hexayl hexahypofluorothioite), H2(SF)Si-Si(SCl)H2(2-(chlorothio)disilyl hypofluorothioite), H2(SF)Si-Si(SCl)2H(2,2-bis(chlorothio)disilyl hypofluorothioite), H2(SF)Si-Si(SCl)3(2,2,2-tris(chlorothio)disilyl hypofluorothioite), H(SF)2Si-Si(SCl)3(2,2,2-tris(chlorothio)disilane-1,1-diyl dihypofluorothioite), (SF)3Si-Si(SCl)3(2,2,2-tris(chlorothio)disilane-1,1,1-triyl trihypofluorothioite), F3Si-SiH3(1,1,1-trifluorodisilane), F2(SH)Si-SiH3(1,1-difluorodisilanethiol), F(SH)2Si-SiH3(1-fluorodisilane-1,1-dithiol), F3Si-Si(SH)H2(2,2,2-trifluorodisilanethiol), F3Si-Si(SH)2H(2,2,2-trifluorodisilane-1,1-dithiol), F3Si-Si(SH)3(2,2,2-trifluorodisilane-1,1,1-trithiol), F3Si-SiF3(perfluorodisilane), F3Si-SiCl3(1,1,1-trichloro-2,2,2-trifluorodisilane), F3Si-SiBr3(1,1,1-tribromo-2,2,2-trifluorodisilane), F3Si-SiI3(1,1,1-trifluoro-2,2,2-triiododisilane), Cl3Si-SiCl3(perchlorodisilane), Cl3Si-Si(SH)Cl2(1,1,2,2,2-pentachlorodisilanethiol), Cl3Si-Si(SH)2Cl(1,2,2,2-tetrachlorodisilane-1,1-dithiol), Cl3Si-Si(SH)3(2,2,2-trichlorodisilane-1,1,1-trithiol) 또는 F3Si- Si(SH)3(2,2,2-trifluorodisilane-1,1,1-trithiol) 등을 들 수 있다.Examples of the silicon (Si) precursor containing S (sulfur) of Formula 3 include H 3 -Si-Si-H 3 (disilane), H 2 (SH)-Si-Si-(SH)H 2 (disilane) -1,2-dithiol), H(SH) 2 -Si-Si-(SH) 2 H(disilane-1,1,2,2-tetrathiol), (SH) 3 -Si-Si-(SH) 3 (disilane-1,1,1,2,2,2-hexathiol), H 2 (SF)Si-SiH 3 (disilyl hypofluorothioite), H 2 (SF)Si-Si(SH)H 2 (2-mercaptodisilyl hypofluorothioite) ), H 2 (SF)Si-Si(SH) 2 H(2,2-dimercaptodisilyl hypofluorothioite), H 2 (SF)Si-Si(SH) 3 (2,2,2-trimercaptodisilyl hypofluorothioite), H(SF ) 2 Si-Si(SH) 3 (2,2,2-trimercaptodisilane-1,1-diyl dihypofluorothioite), (SF) 3 Si-Si(SH) 3 (2,2,2-trimercaptodisilane-1,1, 1-triyl trihypofluorothioite), H 2 (SF)Si-Si(SF)H 2 (disilane-1,2-diyl dihypofluorothioite), H 2 (SF)Si-Si(SF) 2 H(disilane-1,1, 2-triyl trihypofluorothioite), H 2 (SF)Si-Si(SF) 3 (disilane-1,1,1,2-tetrayl tetrahypofluorothioite), H(SF) 2 Si-Si(SF) 3 (disilane-1, 1,1,2,2-pentayl pentahypofluorothioite), H(SF) 2 Si-Si(SF) 2 H(disilane-1,1,2,2-tetrayl tetrahypofluorothioite), (SF) 3 Si-Si(SF) 3 (disilane-1,1,1,2,2, 2-hexayl hexahypofluorothioite), H 2 (SF)Si-Si(SCl)H 2 (2-(chlorothio)disilyl hypofluorothioite), H 2 (SF)Si-Si(SCl) 2 H(2,2-bis(chlorothio) )disilyl hypofluorothioite), H 2 (SF)Si-Si(SCl) 3 (2,2,2-tris(chlorothio)disilyl hypofluorothioite), H(SF) 2 Si-Si(SCl) 3 (2,2,2 -tris(chlorothio)disilane-1,1-diyl dihypofluorothioite), (SF) 3 Si-Si(SCl) 3 (2,2,2-tris(chlorothio)disilane-1,1,1-triyl trihypofluorothioite), F 3 Si-SiH 3 (1,1,1-trifluorodisilane), F 2 (SH)Si-SiH 3 (1,1-difluorodisilanethiol), F(SH) 2 Si-SiH 3 (1-fluorodisilane-1,1- dithiol), F 3 Si-Si(SH)H 2 (2,2,2-trifluorodisilanethiol), F 3 Si-Si(SH) 2 H(2,2,2-trifluorodisilane-1,1-dithiol), F 3 Si-Si(SH) 3 (2,2,2-trifluorodisilane-1,1,1-trithiol), F 3 Si-SiF 3 (perfluorodisilane), F 3 Si-SiCl 3 (1,1,1-trichloro) -2,2,2-trifluorodisilane), F 3 Si-SiBr 3 (1,1,1-tribromo-2,2,2-trifluorodisilane), F 3 Si-SiI 3 (1,1,1-trifluoro-2 ,2,2-triiododisilane), Cl 3 Si-SiCl 3 (perchlorodisilane), Cl 3 Si-Si(SH)Cl 2 (1,1,2,2,2-pentachlorodisilanethiol ), Cl 3 Si-Si(SH) 2 Cl(1,2,2,2-tetrachlorodisilane-1,1-dithiol), Cl 3 Si-Si(SH) 3 (2,2,2-trichlorodisilane-1, 1,1-trithiol) or F 3 Si-Si(SH) 3 (2,2,2-trifluorodisilane-1,1,1-trithiol).

본 발명의 일 실시예에 따른 저 불소 함량을 갖는 텅스텐 박막의 제조 방법은, 도 1에 제시된 것처럼 피처리 기판이 도입된 반응기 내에 텅스텐 원료물질과 제1 환원제를 먼저 공급하여 텅스텐 박막을 형성한 후, 제2 환원제를 이후에 반응기에 도입함으로써, 생성된 텅스텐 박막의 표면에 잔류하는 불소(F)의 농도를 효과적으로 낮출 수 있다.In the method for manufacturing a tungsten thin film having a low fluorine content according to an embodiment of the present invention, as shown in FIG. 1 , a tungsten raw material and a first reducing agent are first supplied into a reactor to which a target substrate is introduced to form a tungsten thin film. , by introducing the second reducing agent to the reactor thereafter, it is possible to effectively lower the concentration of fluorine (F) remaining on the surface of the produced tungsten thin film.

도 1에서는 퍼지 가스를 상기 단계 전체에 걸쳐서 지속적으로 공급되도록 하였지만 필요에 따라 퍼지 가스를 각 단계 별로, 혹은 각 단계들의 사이에 공급하는 것도 가능하다.Although the purge gas is continuously supplied throughout the steps in FIG. 1 , it is also possible to supply the purge gas for each step or between each step, if necessary.

또한, 도 2에 제시된 것처럼, 텅스텐 박막이 형성되는 과정 중에서, 텅스텐 원료물질 및 제1 환원제 공급 단계와 제2 환원제 공급단계를 교번적으로 수행하여텅스텐 박막을 형성시키는 것도 가능하다. 특히, 도 2에 제시된 교번 공급의 경우에는 텅스텐 박막을 형성하는 단계와 제2 환원제 공급단계가 적어도 2회 이상 반복되어 실시될 수 있으며, 각각의 반복단계 사이 혹은 제2 환원제 공급 단계에서 퍼징 가스를 공급하는 것도 가능하다.In addition, as shown in Figure 2, during the process of forming the tungsten thin film, it is also possible to form a tungsten thin film by alternately performing the tungsten raw material and the first reducing agent supply step and the second reducing agent supply step. In particular, in the case of the alternating supply shown in FIG. 2, the step of forming a tungsten thin film and the second reducing agent supply step may be repeated at least twice or more, and the purging gas is used between each repeating step or in the second reducing agent supply step. It is also possible to supply.

이러한 텅스텐 박막의 형성 방법은, 각각 CVD(화학기상증착) 혹은 ALD(원자층증착) 공정에 적용될 수 있으며, 반응기에 도입되는 피처리 기판에는 상기 텅스텐 박막이 효과적으로 형성될 수 있도록, 라이너 층인 TiN막 또는 TiSiN막이 미리 형성되는 것이 바람직하다.This method of forming the tungsten thin film can be applied to a CVD (chemical vapor deposition) or ALD (atomic layer deposition) process, respectively, and a TiN film as a liner layer so that the tungsten thin film can be effectively formed on the target substrate introduced into the reactor. Alternatively, the TiSiN film is preferably formed in advance.

본 발명에서 사용되는 H2S와 같은 제2 환원제가 증착된 W 막의 표면에 공급되면, W 막 표면에서 황(Sulfur)이 전자를 텅스텐(W)에 주고, 텅스텐 막에 잔류하는 불소(F)와 반응해 Gas형태인 H2SF2를 생성하여 purge out됨으로써 잔류 F가 효과적으로 제거된다. When a second reducing agent such as H 2 S used in the present invention is supplied to the surface of the deposited W film, sulfur (Sulfur) gives electrons to tungsten (W) on the W film surface, and fluorine (F) remaining in the tungsten film Residual F is effectively removed by purging out by reacting with H 2 SF 2 in the form of gas.

본 명세서에서는 본 발명자들이 수행한 다양한 실시예 가운데 몇 개의 예만을 들어 설명하는 것이므로, 본 발명의 기술적 사상은 이에 한정하거나 제한되지 않고, 이 기술분야에서 통상의 지식을 가진 자에 의해 변형되어 다양하게 실시될 수 있음은 물론이다.In this specification, since only a few examples among the various embodiments performed by the present inventors are described, the technical spirit of the present invention is not limited or limited thereto, and may be variously modified by those of ordinary skill in the art. Of course, it can be implemented.

Claims (8)

반응기 내에 피처리 기판을 도입하는 단계(S100);
상기 반응기에 텅스텐 원료 물질 및 제1 환원제를 투입하는 단계(S200);
상기 피처리 기판을 가열하는 단계(S300);
가열된 피처리 기판 상에 상기 텅스텐 원료 물질과 제1 환원제를 반응시켜 텅스텐 박막을 형성하는 단계(S400); 및
제2 환원제를 공급하여, 반응기 내부 혹은 텅스텐 박막에 흡착 혹은 증착되어 잔존하는 불소(F)와 반응시킨 후, 반응 생성물을 퍼지시키는 단계(S500);를 포함하고,
상기 제2 환원제는, 화학식 1 내지 3 중에서 선택되는 황(sulfur)을 포함하는 가스 혹은 황(sulfur)을 포함하는 실리콘 전구체(silicon precursor)인 것을 특징으로 하는, 저 불소 함량을 갖는 텅스텐 박막의 제조 방법
R1-S-R2 (화학식 1)
Si(S-R1)4-xR2x (화학식 2)
R4y(R3-S)3-ySi-Si(S-R1)3-xR2x (화학식 3)
(화학식 1에서 R1, R2는 각각 독립적으로 수소 또는 C1 내지 C10의 유기 라디칼이며, 상기 유기 라디칼은 산소(O), 질소(N), 황(S) 또는 인(P)을 포함하고,
화학식 2에서 R1, R2는 독립적으로 수소, 할로겐 원소 또는 C1 내지 C10의 유기 라디칼이고, 상기 유기 라디칼은 산소(O), 질소(N), 황(S) 또는 인(P)을 포함하며, x는 0 내지 3의 정수이며,
화학식 3에서 R1, R2, R3, R4는 독립적으로 수소, 할로겐 원소 또는 C1 내지 C10의 유기 라디칼이고, 상기 유기 라디칼은 산소(O), 질소(N), 황(S) 또는 인(P)을 포하며, x, y는 각각 독립적으로 0 내지 3의 정수임).
introducing the target substrate into the reactor (S100);
adding a tungsten raw material and a first reducing agent to the reactor (S200);
heating the target substrate (S300);
forming a tungsten thin film by reacting the tungsten raw material and a first reducing agent on the heated target substrate (S400); and
A second reducing agent is supplied, adsorbed or deposited on the tungsten thin film inside the reactor or reacted with the remaining fluorine (F), and then purging the reaction product (S500); includes;
The second reducing agent is a gas containing sulfur selected from Chemical Formulas 1 to 3 or a silicon precursor containing sulfur, for manufacturing a tungsten thin film having a low fluorine content method
R 1 -SR 2 (Formula 1)
Si(SR 1 ) 4-x R 2x (Formula 2)
R 4y (R 3 -S) 3-y Si-Si(SR 1 ) 3-x R 2x (Formula 3)
(In Formula 1, R 1 , R 2 are each independently hydrogen or an organic radical of C 1 to C 10 , wherein the organic radical includes oxygen (O), nitrogen (N), sulfur (S) or phosphorus (P). and,
In Formula 2, R 1 , R 2 are independently hydrogen, a halogen element, or an organic radical of C 1 to C 10 , wherein the organic radical is oxygen (O), nitrogen (N), sulfur (S), or phosphorus (P). Including, x is an integer from 0 to 3,
In Formula 3, R 1 , R 2 , R 3 , and R 4 are independently hydrogen, a halogen element, or an organic radical of C 1 to C 10 , and the organic radical is oxygen (O), nitrogen (N), sulfur (S) or phosphorus (P), wherein x and y are each independently an integer of 0 to 3).
제1항에 있어서,
상기 텅스텐 원료 물질은 WF6인 것을 특징으로 하는, 저 불소 함량을 갖는 텅스텐 박막의 제조 방법
The method of claim 1,
The tungsten raw material is WF 6 , characterized in that, method for producing a tungsten thin film having a low fluorine content
제1항에 있어서,
상기 제1 환원제는, 수소(H2), 실란(SiH4), 디실란(Si2H6), 보란(BH3), 디보란(B2H6), 게르만(GeH4), 디게르만(Ge2H6) 또는 하이드라진 중에서 선택되는 적어도 하나 이상인 것을 특징으로 하는, 저 불소 함량을 갖는 텅스텐 박막의 제조 방법
The method of claim 1,
The first reducing agent is hydrogen (H 2 ), silane (SiH 4 ), disilane (Si 2 H 6 ), borane (BH 3 ), diborane (B 2 H 6 ), germane (GeH 4 ), digermane (Ge 2 H 6 ) Method for producing a tungsten thin film having a low fluorine content, characterized in that at least one selected from or hydrazine
삭제delete 삭제delete 삭제delete 삭제delete 제1항 내지 제3항 중 어느 한 항에 있어서,
상기 텅스텐 박막을 형성하는 단계(S400);와 반응 생성물을 퍼지시키는 단계(S500);는 적어도 2회 이상 반복 수행되는 것을 특징으로 하는, 저 불소 함량을 갖는 텅스텐 박막의 제조 방법

4. The method according to any one of claims 1 to 3,
Forming the tungsten thin film (S400); and purging the reaction product (S500); is a method of manufacturing a tungsten thin film having a low fluorine content, characterized in that the repeated at least two times

KR1020170054421A 2017-04-27 2017-04-27 A Manufacturing Method of Tungsten Film with Low Fluorine Concentration KR102367848B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170054421A KR102367848B1 (en) 2017-04-27 2017-04-27 A Manufacturing Method of Tungsten Film with Low Fluorine Concentration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170054421A KR102367848B1 (en) 2017-04-27 2017-04-27 A Manufacturing Method of Tungsten Film with Low Fluorine Concentration

Publications (2)

Publication Number Publication Date
KR20180120853A KR20180120853A (en) 2018-11-07
KR102367848B1 true KR102367848B1 (en) 2022-02-25

Family

ID=64362905

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170054421A KR102367848B1 (en) 2017-04-27 2017-04-27 A Manufacturing Method of Tungsten Film with Low Fluorine Concentration

Country Status (1)

Country Link
KR (1) KR102367848B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102453132B1 (en) 2020-07-17 2022-10-11 (주)바질컴퍼니 Apparatus and method for providing optimun photographing range using result of quality analyzation

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006066642A (en) * 2004-08-26 2006-03-09 Elpida Memory Inc Manufacturing method of semiconductor device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02225670A (en) 1989-02-23 1990-09-07 Toyota Motor Corp Formation of thin metallic film by cvd method
JP5959991B2 (en) * 2011-11-25 2016-08-02 東京エレクトロン株式会社 Method for forming tungsten film
US20150348840A1 (en) 2014-05-31 2015-12-03 Lam Research Corporation Methods of filling high aspect ratio features with fluorine free tungsten

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006066642A (en) * 2004-08-26 2006-03-09 Elpida Memory Inc Manufacturing method of semiconductor device

Also Published As

Publication number Publication date
KR20180120853A (en) 2018-11-07

Similar Documents

Publication Publication Date Title
US20180291505A1 (en) Atomic Layer Deposition Of Films Comprising Silicon, Carbon And Nitrogen Using Halogenated Silicon Precursors
KR102374140B1 (en) Method of manufacturing a ruthenium-containing thin film and ruthenium-containing thin film manufactured thereby
KR20090016403A (en) Method of depositing silicon oxidation film
US11530477B2 (en) Cycloheptatriene molybdenum (0) precursors for deposition of molybdenum films
JP5639055B2 (en) Method for forming a tantalum-containing layer on a substrate
US20220220139A1 (en) Molybdenum (0) precursors for deposition of molybdenum films
US11434254B2 (en) Dinuclear molybdenum precursors for deposition of molybdenum-containing films
US7271112B1 (en) Methods for forming high density, conformal, silica nanolaminate films via pulsed deposition layer in structures of confined geometry
KR102367848B1 (en) A Manufacturing Method of Tungsten Film with Low Fluorine Concentration
US20230151038A1 (en) Arene molybdenum (0) precursors for deposition of molybdenum films
US11390638B1 (en) Molybdenum(VI) precursors for deposition of molybdenum films
KR20220024309A (en) A Manufacturing Method of Carbon Thin Film on Dielectric Substrate for Semiconductor Manufacturing
US20220306662A1 (en) Molybdenum(IV) And Molybdenum(III) Precursors For Deposition Of Molybdenum Films
US11760768B2 (en) Molybdenum(0) precursors for deposition of molybdenum films
US20220380897A1 (en) Methods of Lowering Deposition Rate
KR20050015442A (en) Method for the Deposition of Thin Layers by Metal Organic Chemical Vapor Deposition

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant