KR20180115974A - COPPER DOPED CARBON-SILICON OXIDE(C-SiOx) ANODE MATERIAL FOR LI-ION BATTERIES, AND METHOD FOR PREPARING THE SAME - Google Patents

COPPER DOPED CARBON-SILICON OXIDE(C-SiOx) ANODE MATERIAL FOR LI-ION BATTERIES, AND METHOD FOR PREPARING THE SAME Download PDF

Info

Publication number
KR20180115974A
KR20180115974A KR1020170048557A KR20170048557A KR20180115974A KR 20180115974 A KR20180115974 A KR 20180115974A KR 1020170048557 A KR1020170048557 A KR 1020170048557A KR 20170048557 A KR20170048557 A KR 20170048557A KR 20180115974 A KR20180115974 A KR 20180115974A
Authority
KR
South Korea
Prior art keywords
silicon oxide
carbon
copper
oxide composite
sio
Prior art date
Application number
KR1020170048557A
Other languages
Korean (ko)
Other versions
KR101981242B1 (en
Inventor
백창근
Original Assignee
백창근
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 백창근 filed Critical 백창근
Priority to KR1020170048557A priority Critical patent/KR101981242B1/en
Publication of KR20180115974A publication Critical patent/KR20180115974A/en
Application granted granted Critical
Publication of KR101981242B1 publication Critical patent/KR101981242B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • Y02E60/122

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

The present invention relates to a copper-doped carbon-silicon oxide (C-SiO_x) composite, and a production method thereof. More specifically, the present invention relates to a copper-doped carbon-silicon oxide (C-SiO_x) composite for second batteries with enhanced output properties by doping, with copper, a carbon-silicon oxide (C-SiO_x) composite in which carbon nanofibers are dispersed on the inside used as a negative electrode for amorphous lithium secondary batteries. The present invention further relates to a production method thereof. By doping the carbon-silicon oxide (C-SiO_x) composite having a carbon core layer with copper, mass-production becomes possible while securing economic feasibility, and also to increase electrical conductivity in silicon particles. In addition, it is also possible to produce lithium secondary batteries with enhanced output properties when used as the negative electrode.

Description

구리 도핑된 탄소-실리콘 산화물(C-SiOx) 복합체 및 이의 제조 방법{COPPER DOPED CARBON-SILICON OXIDE(C-SiOx) ANODE MATERIAL FOR LI-ION BATTERIES, AND METHOD FOR PREPARING THE SAME}TECHNICAL FIELD The present invention relates to a copper-doped carbon-silicon oxide (C-SiOx) composite and a method for manufacturing the same. BACKGROUND ART [0002]

본 발명은 구리 도핑된 탄소-실리콘 산화물 복합체 및 이의 제조 방법에 관한 것으로, 보다 상세하게는 탄소 나노 섬유가 실리콘 산화물 입자 내부에 분산되어 있는 비정질형의 리튬 이차전지 음극재용 복합체를 구리로 도핑시킴으로써, 탄소-실리콘 산화물 복합체 자체의 전기 전도도를 향상시켜 출력 특성이 개선된 구리 도핑된 탄소-실리콘 산화물 복합체 및 이의 제조 방법에 관한 것이다.The present invention relates to a copper-doped carbon-silicon oxide composite and a method of manufacturing the same, and more particularly, to a copper-doped carbon-silicon oxide composite which is doped with an amorphous lithium secondary battery anode material composite in which carbon nanofibers are dispersed in silicon oxide particles, To a copper-doped carbon-silicon oxide composite having improved output characteristics by improving the electrical conductivity of the carbon-silicon oxide composite itself, and a method of manufacturing the same.

휴대 기기의 소형화 및 고성능화, 전기자동차 및 대용량 에너지 저장 산업에서도 이차 전지의 필요성이 부각되면서 리튬 이차전지 성능 향상에 대한 요구가 증대되고 있다.In order to miniaturize and improve the performance of portable devices, and the need for secondary batteries in electric vehicles and large-capacity energy storage industries, the demand for improvement in performance of lithium secondary batteries is increasing.

음극재는 리튬 이차전지의 용량 특성을 결정하는 중요한 요소이므로, 현재 상용화되어 있는 음극 물질의 용량 한계를 뛰어넘는 고용량 음극재를 개발하기 위한 연구가 한창이다.Since the negative electrode material is an important factor for determining the capacity characteristics of the lithium secondary battery, studies for developing a high capacity negative electrode material exceeding the capacity limit of the currently available negative electrode materials are in full swing.

상기 리튬 이차 전지의 음극 활물질로는 탄소계, 고용량 실리콘계 전이금속 산화물, 주석계 전이금속 산화물 등이 주로 사용되어 왔다. 그런데 현재까지 개발된 음극 활물질은 용량, 고율 방전 특성 및 수명 특성이 만족할만한 수준에 도달하지 못하여 개선의 여지가 많다.As the anode active material of the lithium secondary battery, a carbon-based, high-capacity silicon-based transition metal oxide, a tin-based transition metal oxide, etc. have been mainly used. However, the negative electrode active material developed so far has a lot of room for improvement because the capacity, the high rate discharge characteristic and the life characteristic have not reached satisfactory level.

일반적으로 음극재는 리튬의 삽입 및 탈리가 가능한 인조 흑연, 천연 흑연 및 하드 카본을 포함한 다양한 형태의 탄소계 소재이다. 그러나 흑연 활물질은 극판 제조시 흑연의 밀도(이론 밀도 2.2 g/cc)가 낮아 극판의 단위 부피당 에너지 밀도 측면에서는 371 mAh/g이라는 이론 용량 한계가 있고, 높은 방전 전압에서는 사용되는 유기 전해액과의 부반응이 일어나기 쉬워, 전지의 오동작 및 과충전 등에 의해 발화 혹은 폭발의 위험성이 있다. 이러한 용량 한계를 극복하고 고에너지 밀도화 하기 위한 대체 소재가 필요하다.In general, an anode material is various types of carbon-based materials including artificial graphite, natural graphite, and hard carbon, which are capable of inserting and desorbing lithium. However, the graphite active material has a theoretical capacity limit of 371 mAh / g in terms of the energy density per unit volume of the electrode plate due to the low density (theoretical density 2.2 g / cc) of graphite in the production of the electrode plate, and the side reaction with the organic electrolyte used at a high discharge voltage Is liable to occur, and there is a risk of ignition or explosion due to malfunction or overcharge of the battery. Alternative materials are needed to overcome this capacity limit and to make high energy density.

이에 새로운 음극재로서 Si과 같은 금속계 활물질이 연구되고 있다. 특히 4족 반도체 물질에 해당하는 Si, Ge, Sn 과 같은 물질은 높은 이론용량을 가지기 때문에 새로운 음극재로 주목받고 있으며, 특히 실리콘은 이론용량이 4,200 mAh/g에 달하는 고용량 성능을 보이며 탄소계열의 음극 물질을 대체할 차세대 물질로 주목되고 있다.Thus, a metal-based active material such as Si has been studied as a new negative electrode material. In particular, materials such as Si, Ge, and Sn, which correspond to quaternary semiconductor materials, are attracting attention as new anode materials because they have a high theoretical capacity. Silicon has a high capacity of 4,200 mAh / g, It is attracting attention as a next-generation material to replace cathode materials.

그러나, 실리콘의 경우, 실리콘 하나당 리튬이 4.4개까지 들어가 합금(alloy)를 이루면서 높은 용량을 보이나, 이 때문에 약 300% 이상의 부피변화를 야기한다. 이러한 부피 변화는 충방전이 계속됨에 따라서 음극 활물질의 미분화(pulverization)가 발생하고, 미분화된 입자가 응집되는 현상이 발생하여, 음극 활물질이 전류 집전체로부터 전기적 탈리되는 현상을 야기한다. 이러한 전기적 탈락은 전지의 용량 유지율을 현저하게 감소시킨다.However, in the case of silicon, the amount of lithium per silicon is 4.4 up to a high capacity as an alloy, which causes a volume change of about 300% or more. Such volume change causes pulverization of the negative electrode active material as the charge and discharge continues and coagulation of the undifferentiated particles occurs, resulting in a phenomenon that the negative active material is electrically disconnected from the current collector. Such electrical decoupling remarkably reduces the capacity retention rate of the battery.

따라서, 금속계 음극 활물질의 부피 변화를 억제하기 위하여, 탄소 및 Si 나노입자 복합체를 제조하여 음극 활물질로 사용하기 위한 많은 연구가 있었고, 상기와 같은 문제점을 해결하기 위해서 특허문헌 1에는 실리콘 입자 내부에 탄소 나노 섬유가 분산되어 있는 탄소 코어층을 포함하는 실리콘 산화물 복합체를 개시하고 있다.Therefore, in order to suppress the volume change of the metal-based negative electrode active material, there have been many studies for preparing a carbon and Si nanoparticle composite and using it as a negative electrode active material. In order to solve the above problems, Discloses a silicon oxide composite comprising a carbon core layer in which nanofibers are dispersed.

상기 탄소 나노 섬유가 분산되어 있는 비정질형 실리콘 산화물 음극재는 종래의 탄소가 코팅된 실리콘 산화물 음극재 대비 출력특성 및 수명특성이 우수한 장점을 지닌다. 그러나, 실리콘 산화물 입자 자체의 전기 전도성이 낮은 단점이 있다. 전지의 출력특성을 보다 향상시키기 위하여, 실리콘 산화물 입자의 전기적 특성을 개선시키는 방안이 필요하다. The amorphous silicon oxide in which the carbon nanofibers are dispersed The anode material has an advantage of excellent output characteristics and life characteristics compared with the conventional carbon-coated silicon oxide anode material. However, there is a disadvantage that the electric conductivity of the silicon oxide particles themselves is low. In order to further improve the output characteristics of the battery, it is necessary to improve the electrical characteristics of the silicon oxide particles.

한국특허출원 10-1511694호Korean Patent Application No. 10-1511694

J. Mater. Chem. A, 2014, 2, 13648J. Mater. Chem. A, 2014, 2, 13648 Journal of Power Sources 299 (2015) 25-31Journal of Power Sources 299 (2015) 25-31

본 발명은 상기와 같은 종래 실리콘 산화물 음극재의 문제점을 해결하기 위하여, 탄소 코어층을 포함하는 실리콘 산화물 복합체(C-SiOx)를 구리로 도핑하여, 출력 특성이 개선된 새로운 리튬 이차 전지용 음극활물질로서 구리 도핑된 탄소-실리콘 산화물 복합체를 제공하는 것을 목적으로 한다. Disclosed is a novel anode active material for a lithium secondary battery improved in output characteristics by doping a silicon oxide composite (C-SiO x ) containing a carbon core layer with copper And a copper-doped carbon-silicon oxide composite.

본 발명은 또한, 본 발명에 의한 구리 도핑된 탄소-실리콘 산화물 복합체의 제조 방법을 제공하는 것을 목적으로 한다.The present invention also aims to provide a process for producing a copper-doped carbon-silicon oxide composite according to the present invention.

본 발명은 상기와 같은 과제를 해결하기 위하여, 구리(Copper) 도핑된 탄소-실리콘 산화물 복합체를 제공한다. In order to solve the above-described problems, the present invention provides a copper-doped carbon-silicon oxide composite.

본 발명에 의한 구리 도핑된 탄소-실리콘 산화물 복합체는 내부에 탄소 나노섬유가 분산된 탄소층을 포함하는 탄소-실리콘 산화물 복합체(C-SiOx)에 이종 금속인 구리를 도핑함으로써, 입자 자체의 전기 전도성이 향상된다. The copper-doped carbon-silicon oxide composite according to the present invention can be obtained by doping copper, which is a dissimilar metal, into a carbon-silicon oxide composite (C-SiO x ) including a carbon layer in which carbon nanofibers are dispersed, Conductivity is improved.

본 발명에 의한 구리 도핑된 탄소-실리콘 산화물 복합체에 있어서, 상기 실리콘 내로 침투한 구리는 실리콘의 전기 전도성을 향상시켜 음극 활물질의 표면으로부터 내부까지 전위 크기의 감소를 최소화하여 리튬의 환원 또는 산화를 위한 충분한 전위를 활물질층 전체에 유지시킬 수 있다. 이로써 전지의 초기 충전 용량과 충방전 효율을 개선하는 것이 가능하다. 본 발명에 의한 구리 도핑된 탄소-실리콘 산화물 복합체에 있어서, 상기 구리 도핑(Cu-doping)은 실리콘 산화물 입자 내로 붕소가 침투하여 도핑되거나 실리콘 산화물과 결합되어 구리화 실리콘 산화물을 형성할 수 있다.In the copper-doped carbon-silicon oxide composite according to the present invention, the copper penetrated into the silicon improves the electrical conductivity of the silicon to minimize the reduction of the dislocation size from the surface to the interior of the negative electrode active material, Sufficient electric potential can be maintained throughout the active material layer. This makes it possible to improve the initial charge capacity and charge / discharge efficiency of the battery. In the copper-doped carbon-silicon oxide composite according to the present invention, the copper doping may be doped with boron into silicon oxide particles, or may be doped with silicon oxide to form copper silicon oxide.

본 발명에 의한 구리 도핑된 탄소-실리콘 산화물 복합체는 내부에 탄소 나노섬유가 분산된 탄소층을 포함하는 것을 특징으로 할 수 있다. The copper-doped carbon-silicon oxide composite according to the present invention may include a carbon layer in which carbon nanofibers are dispersed.

본 발명에 의한 구리 도핑된 탄소-실리콘 산화물 복합체에 있어서, 상기 구리 도핑 함량은 탄소-실리콘 산화물 복합체 전체 100 중량부당 0.01 내지 10 중량부인 것을 특징으로 할 수 있다. In the copper-doped carbon-silicon oxide composite according to the present invention, the copper doping amount may be 0.01 to 10 parts by weight per 100 parts by weight of the entire carbon-silicon oxide composite.

본 발명은 또한, The present invention also relates to

탄소 코어층을 포함하는 탄소-실리콘 산화물 복합체를 제조하는 단계;Preparing a carbon-silicon oxide composite comprising a carbon core layer;

상기 제조된 복합체와 구리 전구체를 혼합하여 혼합물을 제조하는 단계; 및Mixing the prepared composite with a copper precursor to prepare a mixture; And

상기 혼합물을 소결하는 단계;를 포함하는 본 발명에 의한 구리 도핑된 탄소-실리콘 산화물 복합체의 제조 방법을 제공한다. And sintering the mixture to form a copper-doped carbon-silicon oxide composite according to the present invention.

본 발명에 의한 구리 도핑된 탄소-실리콘 산화물 복합체의 제조 방법에 있어서, 상기 탄소 코어층을 포함하는 탄소-실리콘 산화물 복합체는 SiOx (0<x≤2)으로 표시되는 성분을 포함하는 것을 특징으로 할 수 있다. In the method for manufacturing a copper-doped carbon-silicon oxide composite according to the present invention, the carbon-silicon oxide composite including the carbon core layer includes a component represented by SiO x (0 <x? 2) can do.

본 발명에 의한 구리 도핑된 탄소-실리콘 산화물 복합체의 제조 방법에 있어서, 상기 혼합물을 제조하는 단계에서 상기 혼합물은 복합체 전체 100 중량부당 구리 전구체를 0.01 내지 10 중량부의 비율로 혼합하는 것을 특징으로 할 수 있다. In the process for producing a copper-doped carbon-silicon oxide composite according to the present invention, in the step of preparing the mixture, the mixture may be prepared by mixing the copper precursor in an amount of 0.01 to 10 parts by weight per 100 parts by weight of the whole composite have.

본 발명에 의한 구리 도핑된 탄소-실리콘 산화물 복합체의 제조 방법에 있어서, 상기 구리 전구체는 CuCl2, CuSO4, Cu(NO3)23H2O, Cu(NO3)22.5H2O 및 이들의 조합에서 선택되어질 수 있다 In the process for preparing a copper-doped carbon-silicon oxide composite according to the present invention, the copper precursor may be CuCl 2 , CuSO 4 , Cu (NO 3 ) 2 3H 2 O, Cu (NO 3 ) 2 2.5H 2 O, &Lt; / RTI &gt;

본 발명에 의한 구리 도핑된 탄소-실리콘 산화물 복합체의 제조 방법에 있어서, 상기 혼합물을 소결하는 단계는 900 내지 1300 ℃ 의 온도에서 수행되어질 수 있다.In the method for producing a copper-doped carbon-silicon oxide composite according to the present invention, the step of sintering the mixture may be performed at a temperature of 900 to 1300 ° C.

본 발명은 또한, 본 발명에 의한 구리 도핑된 탄소-실리콘 산화물 복합체를 구비한 리튬 이차전지용 음극을 제공한다. The present invention also provides an anode for a lithium secondary battery having a copper-doped carbon-silicon oxide composite according to the present invention.

본 발명은 또한, 본 발명에 의한 구리 도핑된 탄소-실리콘 산화물 복합체를 구비한 음극을 포함하여 전기화학 특성이 개선된 리튬 이차전지를 제공한다.The present invention also provides a lithium secondary battery having improved electrochemical characteristics including a cathode having a copper-doped carbon-silicon oxide composite according to the present invention.

본 발명은 탄소 코어층을 포함하는 실리콘 산화물(C-SiOx) 복합체를 구리로 도핑함으로써, 저렴한 가격의 경제성과 대량생산이 가능하며 실리콘 입자 자체의 전기전도도를 향상시키고, 음극으로 이용시 출력 특성이 향상된 리튬 이차 전지를 제조할 수 있다.The present invention relates to a process for producing a silicon oxide (C-SiO x ) composite material, which comprises doping a silicon oxide (C-SiO x ) composite containing a carbon core layer with copper to achieve economical cost and mass production at low cost and improve electric conductivity of the silicon particle itself, An improved lithium secondary battery can be manufactured.

도 1은 본 발명의 일 실시예에 따른 구리 도핑된 탄소-실리콘 산화물(C- SiOx) 복합체를 음극재로 적용한 이차전지의 전기화학 특성 평가 그래프이다. 1 is an electrochemical characteristic evaluation graph of a secondary battery in which a copper-doped carbon-silicon oxide (C-SiO x ) composite according to an embodiment of the present invention is applied to an anode material.

이하, 본 발명을 실시예에 의하여 상세히 설명하지만, 본 발명이 이들에 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail by way of examples, but the present invention is not limited thereto.

<제조예> 분산된 탄소를 포함하는 탄소-실리콘 산화물 복합체(C-SiO<Production Example> A carbon-silicon oxide composite (C-SiO xx ) 제조) Produce

섬유상 나노 기공을 지닌 다공성 무기금속 산화물인 세피올라이트(sepiolite) 기공 내에 탄소 나노 코어를 형성시키고, 산처리 및 고온 환원 소성을 거쳐 탄소 코어층을 포함하는 실리콘 산화물 복합체(C-SiOx)를 제조하였다.A carbon nano-core is formed in sepiolite pores, which are porous inorganic metal oxides having fibrous nanopores, and subjected to acid treatment and high-temperature reduction calcination to produce a silicon oxide composite (C-SiO x ) containing a carbon core layer Respectively.

먼저, 세피올라이트(sepiolite)를 물에 분산시키고 유기 작용기인 수크로오스(Sucrose)를 혼합하였다. 상기 세피올라이트(sepiolite) 조성은 Mg4Si6O15(OH)2ㆍ6H2O을 지니며 오르쏘옴빅(Orthorhombic) 2/m2/m2/m 구조를 지닌다. First, sepiolite was dispersed in water and sucrose, an organic functional group, was mixed. The sepiolite composition has Mg 4 Si 6 O 15 (OH) 2 .6H 2 O and Orthorhombic 2 / m 2 / m 2 / m structure.

상기 세피올라이트는 막대형 형상을 지니며, 입자 내부에 섬유상 나노 기공이 입자 축을 따라 형성되어 있으며, 기공크기는 대략 3.6 Å × 10.6 Å, 입자 크기는 평균직경 20 내지 40 nm, 길이 3 내지 8 ㎛를 지닌 것이었다. The sepiolite has a rod-like shape, and fibrous nanopores are formed along the particle axis within the particle. The pore size is about 3.6 A 占 10.6 占 and the particle size is 20 to 40 nm in average diameter and 3 to 8 Mu m.

여기서, 상기 수크로오스(Sucrose) 무게 함량은 세피올라이트 무게 대비 60 wt%으로 혼합하였다. 혼합된 세피올라이트/수크로오스 혼합 용액을 오븐에서 건조하고, 질소 분위기에서 700 에서 5 시간 동안 1차 열처리 공정을 통해 환원 소결하였다. Here, the weight of the sucrose was 60 wt% based on the weight of the sepiolite. The mixed sepiolite / sucrose mixed solution was dried in an oven and reduced and sintered in a nitrogen atmosphere at 700 for 5 hours through a first heat treatment process.

소결된 탄소/세피올라이트 복합체를 산 용액에 함침하여 Mg, Al 성분을 제거한 후, 900℃에서 5시간 동안 2차 열처리 공정으로 소결하였다.The sintered carbon / sepiolite composite was impregnated with acid solution to remove Mg and Al components and then sintered at 900 ° C for 5 hours in a secondary heat treatment process.

<실시예1> 구리 도핑된 &Lt; Example 1 > Copper-doped 탄소-실리콘 산화물 복합체(C-SiOThe carbon-silicon oxide composite (C-SiO xx ) ) 의 제조Manufacturing

상기 제조예에서 제조된 탄소나노섬유가 실리콘 산화물 내부에 분산된 탄소-실리콘 산화물 복합체(C-SiOx)와 구리 전구체로서 황산구리를 혼합하였고, 이 때 구리의 도핑 함량은 탄소-실리콘 산화물 복합체(C-SiOx) 대비 1wt% 가 되도록 하였다. 상기 혼합물을 900℃ 이상의 온도에서 소성하였다. The carbon-silicon oxide composite (C-SiO x ) in which the carbon nanofibers prepared in the Preparation Example were dispersed in silicon oxide was mixed with copper sulfate as a copper precursor, and the doping amount of copper in the carbon-silicon oxide composite (C -SiO x ) was 1 wt%. The mixture was calcined at a temperature of 900 DEG C or higher.

<실시예2> 구리 도핑된 Example 2 Copper-doped 탄소-실리콘 산화물 복합체(C-SiOThe carbon-silicon oxide composite (C-SiO xx ) ) 의 제조Manufacturing

구리의 도핑 함량을 5wt%로 바꾸는 것을 제외하고는, 실시예 1과 동일한 방법으로 구리 도핑된 탄소-실리콘 산화물 복합체(C-SiOx)를 제조하였다. Copper-doped carbon-silicon oxide composite (C-SiO x ) was prepared in the same manner as in Example 1, except that the doping amount of copper was changed to 5 wt%.

<실시예3> 구리 도핑된 Example 3 Copper-doped 탄소-실리콘 산화물 복합체(C-SiOThe carbon-silicon oxide composite (C-SiO xx ) ) 의 제조Manufacturing

구리의 도핑 함량을 10wt%로 바꾸는 것을 제외하고는, 실시예 1과 동일한 방법으로 구리 도핑된 탄소-실리콘 산화물 복합체(C-SiOx)를 제조하였다. A copper-doped carbon-silicon oxide composite (C-SiOx) was prepared in the same manner as in Example 1, except that the doping amount of copper was changed to 10 wt%.

<비교예1> 도핑 처리하지 않은 &Lt; Comparative Example 1 > 탄소-실리콘 산화물 복합체(C-SiOThe carbon-silicon oxide composite (C-SiO xx )) 의 제조Manufacturing

구리 도핑 재료를 첨가하지 않은 제조예에서 제조된 탄소-실리콘 산화물 복합체(C-SiOx)를 비교예 1로서 사용하였다. The carbon-silicon oxide composite (C-SiOx) prepared in the production example without adding the copper doping material was used as Comparative Example 1.

<실험예1> 구리 도핑된 EXPERIMENTAL EXAMPLE 1 Copper-doped 탄소-실리콘 산화물 복합체(C-SiOThe carbon-silicon oxide composite (C-SiO xx )) 의 TEM-EDX 분석Of TEM-EDX analysis

상기 일 실시예에 따라 제조된 구리 도핑된 탄소-실리콘 산화물 복합체(C-SiOx)를 Transmission electron microscopy Energy dispersive X-ray spectroscopy (TEM-EDX)성분 분석을 통하여 상기 C-SiOx 내 구리 함량을 분석하였고, 그 결과를 하기의 표 1 에 나타내었다.The copper content in the C-SiO x was analyzed through transmission electron microscopy (TEM) analysis of the copper-doped carbon-silicon oxide composite (C-SiOx) And the results are shown in Table 1 below.

함량 분석Content analysis 비교예1Comparative Example 1 실시예1Example 1 실시예2Example 2 실시예3Example 3 Copper (wt%)Copper (wt%) 00 0.95 0.95 4.874.87 9.89.8

표 1에서 보는 바와 같이, 본 발명의 일 실시예에서 제조된 구리 도핑된 탄소-실리콘 산화물 복합체(C-SiOx) 내 구리의 함량 분석 결과, 초기 구리 도핑을 위해 첨가한 함량의 90% 이상이 탄소-실리콘 산화물 복합체(C-SiOx)에 도핑되었다는 것을 확인할 수 있다. As shown in Table 1, the content of copper in the copper-doped carbon-silicon oxide composite (C-SiO x ) produced in one embodiment of the present invention was 90% or more of the content added for the initial copper doping Carbon-silicon oxide composite (C-SiO x ).

<제조예> 전지 제작&Lt; Preparation Example >

상기 실시예에 따라 제조된 카본 도핑된 티탄 산화물 복합체의 최종 분말을 전극 활물질로서 사용하여 리튬 이차전지용 전극과 코인형 반쪽 전지(coin half cell)를 제작하였다. Using the final powder of the carbon-doped titanium oxide composite prepared according to the above example as an electrode active material, an electrode for a lithium secondary battery and a coin half cell were fabricated.

상기 구리 도핑된 탄소-실리콘 산화물 복합체(C-SiOx)와 탄소 도전제 및 바인더를 80 :10 : 10 (wt%)의 조성으로 혼합하고, 이를 N-메틸피롤리돈(N-methyl pyrrolidone, NMP)에 첨가하여 믹서에서 혼합하여 슬러리를 제조하였다. 상기 혼합된 슬러리를 Cu 집전체에 코팅한 후 건조하여 음극 전극을 제조하였다. The copper-doped carbon-silicon oxide composite (C-SiO x ), the carbon conductive agent and the binder were mixed in a composition of 80:10:10 (wt%) and mixed with N-methyl pyrrolidone, NMP) and mixed in a mixer to prepare a slurry. The mixed slurry was coated on a Cu current collector and dried to prepare a cathode electrode.

리튬 메탈을 대극으로 사용하고, 1.2 M의 LiPF6을 EC/EMC (3/7 by volume%)에 용해시켜 전해질로 사용하였으며, W-scope C500 필름을 분리막으로 이용하여 리튬 이차전지를 제작하였다.Lithium metal was used as a counter electrode, and 1.2 M of LiPF 6 was dissolved in EC / EMC (3/7 by volume%) to be used as an electrolyte, and a lithium secondary battery was manufactured using W-scope C500 film as a separator.

<실험예2> 전기화학 특성 평가<Experimental Example 2> Evaluation of electrochemical characteristics

상기 제조된 전지의 전기화학적 특성을 평가하기 위하여 0.05 C 에서 10 C 까지 방전속도를 증가시키며 율별 특성을 평가하였고, 그 결과를 도 1에 도시하였다.In order to evaluate the electrochemical characteristics of the prepared battery, the discharge rate was increased from 0.05 C to 10 C and the characteristics were evaluated according to the rate. The results are shown in FIG.

도 1에서 보는 바와 같이, 상기 비교예 1에서 제조된 구리 도핑하지 않은 탄소-실리콘 산화물 복합체(C-SiOx)의 용량 대비 상기 일 실시예에서 제조된 구리 도핑된 탄소-실리콘 산화물 복합체(C-SiOx)의 용량이 크게 증가하는 것을 나타내었다.As shown in FIG. 1, the copper-doped carbon-silicon oxide composite (C-SiO x ) prepared in Example 1, which was prepared in Comparative Example 1, SiO x ) was greatly increased.

0.05 C에서 초기 용량은 구리 도핑을 통한 용량적 차이를 보이지 않았으나, 점차 방전 속도를 증가시키면서 구리가 도핑된 탄소-실리콘 산화물 복합체(C-SiOx)의 방전용량이 증가하는 것을 확인하였다.At 0.05 C, the initial capacity showed no capacitive difference through copper doping, but the discharge capacity of the copper-doped carbon-silicon oxide complex (C-SiO x ) was increased with increasing discharge rate.

결과적으로, 구리 도핑에 따른 탄소-실리콘 산화물 복합체(C-SiOx) 자체의 전기적 특성이 향상되고, 이에 따라 전지의 율특성이 증가하는 효과를 입증하였다.As a result, the electrical characteristics of the carbon-silicon oxide composite (C-SiO x ) itself by copper doping are improved, thereby proving the effect of increasing the rate characteristics of the battery.

Claims (10)

구리 도핑된 탄소-실리콘 산화물 복합체.
Copper doped carbon - silicon oxide complexes.
제 1 항에 있어서,
상기 구리 도핑된 탄소-실리콘 산화물 복합체는 내부에 탄소나노섬유가 분산된 탄소층을 포함하는 것인 구리 도핑된 탄소-실리콘 산화물 복합체.
The method according to claim 1,
Wherein the copper-doped carbon-silicon oxide composite comprises a carbon layer in which carbon nanofibers are dispersed.
제 1 항에 있어서,
상기 구리 도핑된 탄소-실리콘 산화물 복합체는 전체 100 중량부당 도핑된 구리의 함량이 0.01 내지 10 중량부인 구리 도핑된 탄소-실리콘 산화물 복합체.
The method according to claim 1,
Wherein the copper-doped carbon-silicon oxide composite has a doped copper content of from 0.01 to 10 parts by weight per 100 parts by weight of the total.
내부에 탄소나노섬유가 분산된 탄소층을 포함하는 탄소-실리콘 산화물 복합체를 제조하는 단계;
상기 탄소-실리콘 산화물 복합체와 구리 전구체를 혼합하여 혼합물을 제조하는 단계; 및
상기 혼합물을 소결하는 단계;를 포함하는
구리 도핑된 탄소-실리콘 산화물 복합체의 제조 방법.
Preparing a carbon-silicon oxide composite including a carbon layer in which carbon nanofibers are dispersed;
Preparing a mixture by mixing the carbon-silicon oxide complex and the copper precursor; And
And sintering the mixture.
A method for manufacturing a copper doped carbon - silicon oxide composite.
제 4 항에 있어서,
상기 탄소-실리콘 산화물 복합체는 SiOx(0<x≤2)으로 표시되는 성분을 포함하는 것인 구리 도핑된 탄소-실리콘 산화물 복합체의 제조 방법.
5. The method of claim 4,
Wherein the carbon-silicon oxide composite comprises a component represented by SiO x (0 < x? 2).
제 4 항에 있어서,
상기 혼합물을 제조하는 단계에서 상기 탄소-실리콘 산화물 복합체 전체 100 중량부당 구리 전구체를 0.01 내지 10 중량부의 비율로 혼합하는 것을 특징으로 하는 구리 도핑된 탄소-실리콘 산화물 복합체의 제조 방법.
5. The method of claim 4,
Wherein the copper precursor is mixed in an amount of 0.01 to 10 parts by weight per 100 parts by weight of the carbon-silicon oxide composite in the step of preparing the mixture.
제 4 항에 있어서,
상기 구리 전구체는 CuCl2, CuSO4, Cu(NO3)23H2O, Cu(NO3)22.5H2O 및 이들의 조합에서 선택되어지는 것인
구리 도핑된 탄소-실리콘 산화물 복합체의 제조 방법.
5. The method of claim 4,
Wherein the copper precursor is selected from CuCl 2 , CuSO 4 , Cu (NO 3 ) 2 3H 2 O, Cu (NO 3 ) 2 2.5H 2 O,
A method for manufacturing a copper doped carbon - silicon oxide composite.
제 4 항에 있어서,
상기 혼합물을 소결하는 단계는 900 내지 1300 ℃의 온도에서 수행되는 것인 구리 도핑된 탄소-실리콘 산화물 복합체의 제조 방법.
5. The method of claim 4,
Wherein the step of sintering the mixture is carried out at a temperature of 900 to 1300 &lt; RTI ID = 0.0 &gt; C. &Lt; / RTI &gt;
제 4 항 내지 제 8 항 중 어느 한 항의 제조 방법에 의하여 제조된 구리 도핑된 탄소-실리콘 산화물 복합체를 구비한 리튬 이차전지용 음극.
An anode for a lithium secondary battery comprising a copper-doped carbon-silicon oxide composite produced by the method of any one of claims 4 to 8.
제 9 항의 리튬 이차전지용 음극을 포함하는 리튬 이차전지.10. A lithium secondary battery comprising the negative electrode for a lithium secondary battery according to claim 9.
KR1020170048557A 2017-04-14 2017-04-14 COPPER DOPED CARBON-SILICON OXIDE(C-SiOx) ANODE MATERIAL FOR LI-ION BATTERIES, AND METHOD FOR PREPARING THE SAME KR101981242B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170048557A KR101981242B1 (en) 2017-04-14 2017-04-14 COPPER DOPED CARBON-SILICON OXIDE(C-SiOx) ANODE MATERIAL FOR LI-ION BATTERIES, AND METHOD FOR PREPARING THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170048557A KR101981242B1 (en) 2017-04-14 2017-04-14 COPPER DOPED CARBON-SILICON OXIDE(C-SiOx) ANODE MATERIAL FOR LI-ION BATTERIES, AND METHOD FOR PREPARING THE SAME

Publications (2)

Publication Number Publication Date
KR20180115974A true KR20180115974A (en) 2018-10-24
KR101981242B1 KR101981242B1 (en) 2019-05-22

Family

ID=64132297

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170048557A KR101981242B1 (en) 2017-04-14 2017-04-14 COPPER DOPED CARBON-SILICON OXIDE(C-SiOx) ANODE MATERIAL FOR LI-ION BATTERIES, AND METHOD FOR PREPARING THE SAME

Country Status (1)

Country Link
KR (1) KR101981242B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110534715A (en) * 2019-08-27 2019-12-03 东莞东阳光科研发有限公司 A kind of SiOxThe preparation method of/Cu/C composite negative pole material
WO2022205100A1 (en) * 2021-03-31 2022-10-06 宁德新能源科技有限公司 Negative electrode active material, and electrochemical device and electronic device having same
CN115676837A (en) * 2022-10-09 2023-02-03 胜华新材料集团股份有限公司 Preparation method of copper-doped porous carbon silica composite material, composite material and application

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130135071A (en) * 2012-05-31 2013-12-10 주식회사 엘지화학 Anode comprising silicon based material and carbon material, and lithium secondary battery comprising the same
KR20140026855A (en) * 2012-08-23 2014-03-06 삼성에스디아이 주식회사 Silicone based negative active material, preparing method of the same and lithium secondary battery including the same
KR20140073426A (en) * 2012-12-06 2014-06-16 주식회사 엘지화학 Anode active material for lithium secondary battery with high capacity, a manufacturing method of the same and Lithium secondary battery comprising the same
KR101511694B1 (en) 2013-11-29 2015-04-24 한화케미칼 주식회사 Anode active material of lithium rechargeable battery and process for preparing the same
KR20150062815A (en) * 2013-11-29 2015-06-08 한화케미칼 주식회사 Anode active material of lithium rechargeable battery and process for preparing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130135071A (en) * 2012-05-31 2013-12-10 주식회사 엘지화학 Anode comprising silicon based material and carbon material, and lithium secondary battery comprising the same
KR20140026855A (en) * 2012-08-23 2014-03-06 삼성에스디아이 주식회사 Silicone based negative active material, preparing method of the same and lithium secondary battery including the same
KR20140073426A (en) * 2012-12-06 2014-06-16 주식회사 엘지화학 Anode active material for lithium secondary battery with high capacity, a manufacturing method of the same and Lithium secondary battery comprising the same
KR101511694B1 (en) 2013-11-29 2015-04-24 한화케미칼 주식회사 Anode active material of lithium rechargeable battery and process for preparing the same
KR20150062815A (en) * 2013-11-29 2015-06-08 한화케미칼 주식회사 Anode active material of lithium rechargeable battery and process for preparing the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
J. Mater. Chem. A, 2014, 2, 13648
Journal of Power Sources 299 (2015) 25-31

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110534715A (en) * 2019-08-27 2019-12-03 东莞东阳光科研发有限公司 A kind of SiOxThe preparation method of/Cu/C composite negative pole material
WO2022205100A1 (en) * 2021-03-31 2022-10-06 宁德新能源科技有限公司 Negative electrode active material, and electrochemical device and electronic device having same
CN115676837A (en) * 2022-10-09 2023-02-03 胜华新材料集团股份有限公司 Preparation method of copper-doped porous carbon silica composite material, composite material and application
CN115676837B (en) * 2022-10-09 2024-01-09 胜华新材料集团股份有限公司 Preparation method of copper-doped porous carbon silica composite material, composite material and application

Also Published As

Publication number Publication date
KR101981242B1 (en) 2019-05-22

Similar Documents

Publication Publication Date Title
KR101787066B1 (en) Negative electrode active material for rechargable lithium battery, method for manufacturing the same, and rechargable lithium battery including the same
Wu et al. Nanoporous Li 2 S and MWCNT-linked Li 2 S powder cathodes for lithium-sulfur and lithium-ion battery chemistries
US11335900B2 (en) Nanosheet composite for cathode of lithium-sulfur battery, preparation method thereof and electrode and battery comprising the same
Zhou et al. Synthesis and electrochemical performance of ZnSe electrospinning nanofibers as an anode material for lithium ion and sodium ion batteries
KR101137375B1 (en) Secondary particle and lithium battery comprising the same
JP5749339B2 (en) Lithium ion secondary battery
KR101892177B1 (en) Additive material for high power energy storage device, and high power energy storage device comprising the same
KR20110063634A (en) Composite electrode material, battery electrode consisting of said material, and lithium battery including such an electrode
WO2016176928A1 (en) Negative electrode material, preparation method therefor, and lithium-ion secondary battery using the negative electrode material
KR20180070302A (en) Negative electrode active material for rechargeable lithium battery, method for manufacturing the same, and rechargeable lithium battery including the same
JP2018518798A (en) Doped conductive oxide and improved electrode for electrochemical energy storage devices based on this material
KR101981242B1 (en) COPPER DOPED CARBON-SILICON OXIDE(C-SiOx) ANODE MATERIAL FOR LI-ION BATTERIES, AND METHOD FOR PREPARING THE SAME
KR20180092532A (en) BORON DOPED CARBON-SILICON OXIDE(C-SiOx) ANODE MATERIAL FOR LI-ION BATTERIES, AND METHOD FOR PREPARING THE SAME
CN108899499B (en) Sb/Sn phosphate-based negative electrode material, preparation method thereof and application thereof in sodium ion battery
JP2011519143A (en) Negative electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery including the same as a negative electrode
KR20160078720A (en) Negative electrode active material for rechargeable lithium battery, method for manufacturing the same, and rechargeable lithium battery including the same
Sui et al. Highly dispersive CoSe 2 nanoparticles encapsulated in carbon nanotube-grafted multichannel carbon fibers as advanced anodes for sodium-ion half/full batteries
KR101795778B1 (en) Silicon carbon composite for anode active material, method for preparing the same and lithium secondary battery the same
JPWO2015182123A1 (en) Silicon material and negative electrode of secondary battery
Sajjad et al. Long‐life lead‐carbon batteries for stationary energy storage applications
KR101814063B1 (en) Carbon composite production method for a lithium-ion battery anode using tofu
KR20150007104A (en) The preparing method of lithium iron phosphate cathode active materials, the lithium iron phosphate cathod acive materials thereby and the secondary battery using the same
JP2014029842A (en) Electrode material and secondary battery using the same
KR20190028951A (en) COPPER DOPED CARBON-SILICON OXIDE(C-SiOx) ANODE MATERIAL FOR LI-ION BATTERIES AND METHOD FOR PREPARING THE SAME
KR101213483B1 (en) Anode active material, anode and lithium battery containing the same, and preparation method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant