KR20180115599A - 발화 개선을 위한 두경부 물리 특성 기반의 가이드 및 피드백 시스템 - Google Patents

발화 개선을 위한 두경부 물리 특성 기반의 가이드 및 피드백 시스템 Download PDF

Info

Publication number
KR20180115599A
KR20180115599A KR1020170125765A KR20170125765A KR20180115599A KR 20180115599 A KR20180115599 A KR 20180115599A KR 1020170125765 A KR1020170125765 A KR 1020170125765A KR 20170125765 A KR20170125765 A KR 20170125765A KR 20180115599 A KR20180115599 A KR 20180115599A
Authority
KR
South Korea
Prior art keywords
sensor
unit
head
utterance
neck
Prior art date
Application number
KR1020170125765A
Other languages
English (en)
Inventor
이우기
심봉섭
권헌도
김덕환
신진호
Original Assignee
인하대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인하대학교 산학협력단 filed Critical 인하대학교 산학협력단
Priority to US16/605,361 priority Critical patent/US20200126557A1/en
Priority to PCT/KR2018/004325 priority patent/WO2018190668A1/ko
Priority to KR1020180115927A priority patent/KR102174188B1/ko
Publication of KR20180115599A publication Critical patent/KR20180115599A/ko
Priority to KR1020200141995A priority patent/KR102251505B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L15/00Speech recognition
    • G10L15/24Speech recognition using non-acoustical features
    • G10L15/25Speech recognition using non-acoustical features using position of the lips, movement of the lips or face analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • G06F3/015Input arrangements based on nervous system activity detection, e.g. brain waves [EEG] detection, electromyograms [EMG] detection, electrodermal response detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L15/00Speech recognition
    • G10L15/02Feature extraction for speech recognition; Selection of recognition unit
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L15/00Speech recognition
    • G10L15/04Segmentation; Word boundary detection
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L15/00Speech recognition
    • G10L15/22Procedures used during a speech recognition process, e.g. man-machine dialogue
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L15/00Speech recognition
    • G10L15/24Speech recognition using non-acoustical features
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/06Transformation of speech into a non-audible representation, e.g. speech visualisation or speech processing for tactile aids
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L15/00Speech recognition
    • G10L15/22Procedures used during a speech recognition process, e.g. man-machine dialogue
    • G10L2015/226Procedures used during a speech recognition process, e.g. man-machine dialogue using non-speech characteristics
    • G10L2015/227Procedures used during a speech recognition process, e.g. man-machine dialogue using non-speech characteristics of the speaker; Human-factor methodology

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Computational Linguistics (AREA)
  • Multimedia (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Data Mining & Analysis (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Neurosurgery (AREA)
  • Neurology (AREA)
  • General Health & Medical Sciences (AREA)
  • Dermatology (AREA)
  • Biomedical Technology (AREA)
  • Electrically Operated Instructional Devices (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Toys (AREA)

Abstract

본 발명은 센서를 통해 조음기관의 물리적 특성을 인지하고, 이를 통해 말하기 의도를 파악하는 시스템 및 그 방법에 관한 것이다.
본 발명의 일실시예에 따른 화자의 발화의도를 파악하고 이를 기반으로 발화 활동을 지원하는 촬상센서를 포함한 두경부 조음기관의 물리특성과 기반의 발화 의도 측정 및 발화 구현 시스템은
두경부의 일면에 인접하여 조음기관의 물리특성을 측정하는 센서부(100);와
상기 센서부에 의해 측정된 조음 기관의 물리특성을 기반으로 화자의 발화 특징(220)을 파악하고 이를 언어 데이터(310)로 처리하는 데이터해석부(200);를 포함하는 것을 특징으로 하는 두경부 조음기관의 물리특성 기반의 발화 의도 측정 및 발화 구현 장치에 있어서,
상기 센서부는 구강설의 일면에 인접하거나, 그 내부에 삽입되는 구강설 센서(110);와
상기 언어 데이터에 기반하여 화자의 발화에 대한 가이딩 신호(610)를 제공하는 피드백부(600)를 포함하는 것을 특징으로 한다.

Description

발화 개선을 위한 두경부 물리 특성 기반의 가이드 및 피드백 시스템{The Guidance and Feedback System for the Improvement of Speech Production and Recognition of its Intention Using Derencephalus Action}
본 발명은 조음 센서와 촬상 센서를 통해 구강설을 포함한 두경부의 조음기관의 물리 특성을 인지하여 두경부 전반의 발화에 따른 변화를 측정하고 이를 통해 발화 의도를 파악하여, 시각, 청각, 촉각화를 통해 발화 의도를 화자 본인 내지 외부로 제공하며, 화자에게 즉각적은 발화 피드백을 제공하는 시스템 및 그 방법에 관한 것이다.
조음기관에서 생성되는 문자가 언어학적 정보전달인 의사소통을 위한 경우에는 발화 혹은 언어음으로 불리며 비언어학적인 경우에는 발성으로 불린다. 문자의 생성에 관여하는 인체의 주요한 구조물을 신경계통과 호흡기계통이다.
신경계통은 중추신경계와 말초신경계가 관여하는데 중추신경 중 뇌간에는 언어의 생성에 필요한 두개골 혹은 뇌신경 세포핵이 위치하며 소뇌는 동작에 대한 근육의 제어를 정밀하게 조율하는 기능이 있으며, 대뇌의 반구는 언어기능에 지배적인 역할을 한다. 언어음 생성을 위해 관여하는 두개골 신경에는 턱의 움직임을 관여하는 제 5 뇌신경, 입술운동에 관여하는 제 7 뇌신경, 인두 및 후두의 운동에 관여하는 제 10 뇌신경, 인두의 운동에 관여하는 제 11 뇌신경, 그리고 혀의 운동에 관여하는 제 12 신경 등이 있다. 말초신경 중에는 특히 미주신경에서 분지되는 상후두신경과 반회후두신경이 후두운동에 직접 관여하게 된다.
또한 언어음은 하부 호흡기계, 후두와 성도가 상호 밀접하게 작용하여 생성된다. 성대는 문자의 근원으로, 폐로부터 송출되는 호기의 흐름이 성대를 진동시키고 발성 시 호기조절은 소리 에너지를 적절히 능률적으로 공급한다. 성대가 적당히 긴장하여 폐쇄되면 호기에 의해 성대가 진동하고 성문을 일정한 주기로 개폐시켜 성문을 통과하는 호기류를 단속하는데 이 호기의 단속류가 문자의 음원이다.
사람이 의사소통을 목적으로 말을 사용하기 위해서는 여러 가지 생리적인 과정을 거쳐야 한다. 조음과정은 발성된 소리가 공명과정을 거쳐 증폭 및 보완된 후, 말소리의 단위인 음소를 형성해 가는 과정을 의미한다. 조음기관으로는 혀가 가장 중요하게 생각하지만, 실제로 음소를 만드는 데는 혀뿐 아니라 구강 및 안면의 여러 가지 구조들이 관여한다. 이러한 조음기관에는 혀, 입술, 여린입천장(연구개, soft palate), 턱 등과 같이 움직일 수 있는 구조와 치아나 굳은 입천장(경구개, hard palate)과 같이 움직일 수 없는 구조들이 포함된다. 이러한 조음기관들이 공기의 흐름을 막거나 제약하여 자음과 모음을 형성하게 되는 것이다.
첫 번째 조음기관으로 혀는 그 부위들이 뚜렷한 경계선을 나타내지 않기 때문에 구별하는 것이 쉽지는 않으나 기능적인 측면에서 혀의 외부구조를 구별하는 것은 정상적인 조음뿐 아니라 병리적인 조음을 이해하는데 도움이 된다. 혀는 앞에서부터 혀끝(apex, tip), 혀날(blade), 혀등(dorsum), 혀몸통(body), 그리고 혀뿌리(root)로 나눌 수 있다. 혀끝을 우리가 혀를 뾰족하게 내밀거나 음절의 첫소리로 오는 /ㄹ/(예: “라라라”)를 조음할 때 사용되는 부위이고, 혀날은 잇몸소리(치조음 alveolar sounds)와 같은 입의 앞쪽에서 만드는 음소들을 조음할 때 주로 사용되며, 혀등은 여린입천장소리(연구개음 velar sounds)와 같은 뒷소리 음소들을 조음할 때 주로 사용되는 혀의 부분이다.
두 번째로 조음기관으로 입술은 입의 입구를 이루는 부분으로 두경부 표정이나 조음에 중요한 기능을 한다. 특히 여러 가지 모음들은 혀의 움직임뿐만 아니라 입술의 모양에 의하여 음소가 구별되며, 두입술자음(양순자음 bilabial sound)들은 입술이 닫혀져야만 발음될 수 있다. 입술의 모양은 주변의 근육들에 의하여 변형된다. 예를 들어, 입술 주변을 둘러싸고 있는 입둘레근(구륜근 orbicularis oris muscle)은 입술을 다물거나 오므라들게 하여 두입술자음이나 /우/와 같은 원순모음들 발음하는 데 중요한 역할을 하며, 윗입술올림근(quadratus labii superior muscle)과 아랫입술내림근(quadrates labii inferior muscle)은 입술을 열게 한다. 또한, 입꼬리당김근(소근 risorius muscle)은 입술의 모서리를 잡아당겨 미소를 짓거나 입술을 수축시켜서 발음해야 하는 /이/와 같은 소리를 낼 때 중요한 역할을 한다.)
세 번째 조음기관은 턱과 치아로 턱은 움직이지 않는 위턱(상악 maxilla)과 상하 및 좌우 운동을 하는 아래턱(하악 mandible)으로 구분된다. 이들 턱은 얼굴 뼈 중에서 가장 튼튼하고 큰 뼈로서 4쌍의 근육들에 의해서 움직인다. 아래턱의 움직임은 입안의 크기를 변화시키기 때문에 씹기뿐 아니라 모음산출에 있어서도 중요하다.
네 번째 조음기관은 잇몸 및 굳은입천장으로 잇몸은 /ㄷ/나 /ㅅ/계열의 말소리들이 조음되는 부위이며 굳은 입천장은 잇몸 뒤의 단단하고 다소 편편한 부분으로 /ㅈ/계열의 소리들이 조음되는 부위이다.
마지막 조음기관은 여린입천장으로 움직이는 조음기관으로 분류되는데, 이는 여린입천장의 근육들이 수축함으로써 연인두폐쇄를 이루고 그에 따라 입소리들(oral sounds)을 조음하기 때문이다.
<조음과정>
소리들 중에는 성대를 거친 기류가 성도를 통과하는 과정에서 구강에서, 더 정확히 말하며 구강 통로의 중앙부에서 어떠한 방해(장애)를 받으면서 생성되는 것과 이와는 달리 아무런 방해를 받지 않고 생성되는 것이 있다. 보통 전자를 자음(consonant) 후자를 모음(vowel)이라고 한다.
1) 자음의 조음
자음은 발성되는 방법과 위치에 따라 살펴보아야 하는데 국제문자기호표상에서 각 칸은 조음위치를, 각 줄은 조음방법을 각각 나타내고 있다. 우선 조음방법에 따라 분류해 본다면, 기류가 중앙부에서 어떤 종류의 방해를 받아서 조음되는가에 따라서 다막음 소리와 덜막음 소리로 크게 나누어 볼 수 있다. 다막음 소리는 구강에서 기류를 완전히 막았다가 터트리면서 내는 소리이고, 덜막음 소리는 성도의 한 부분을 좁혀서 그 좁아진 통로로 기류를 통과시켜 내는 소리이다. 다막음 소리는 다시 비강의 공명을 동반하고 나는 소리와 동반하지 않고 나는 소리로 나눌 수 있다. 성도의 일부를 완전히 막음과 동시에 연구개를 내려 비강 통로를 열고 비강의 공명을 동반하면서 내는 비강 다막음 소리(비강 폐쇄음, nasal stop)들이 전자에 속하며, 연구개를 올려 인두벽에 대고 비강 통로를 차단하여, 기류가 비강으로 통하는 것을 막은 상태로 내는 구강 다막음 소리(구강 폐쇄음, oral stop)들이 후자에 속한다. 구강 다막음 소리는 폐쇄의 길이와 방법에 따라서 폐쇄음(막음소리, stop) 혹은 파열음(터짐소리, plosive), 전동음(떨소리, trill), 탄설음(혹을 설탄음, flap/tap)으로 생각해 볼 수 있다. 그리고 덜막음 소리는 마찰음(갈이소리, fricative)과 접근음(approximant)으로 나누는데, 기류의 통로가 혀의 측면에 만들어지는 경우 이를 통틀어 설측음(lateral)이라고 한다. 또한 다막음과 덜막음의 조음방법을 복합적으로 사용하는 파찰음(터짐갈이, affricate)이 있으며, 마지막으로 알파벳으로는 ‘r’이나 ‘l’로 표현되나 국어의 경우 /ㄹ/로 표현되는 유음(liquid)과 국어에는 없지만 조음기관을 진동시켜서 소리를 말하는 전동음이 있다.
조음위치에 따라 분류해보면, 양순음(bilabial)이란, 두 입술이 그 조음에 관계하는 소리를 지칭하는 것으로, 한국어의 /ㅂ ,ㅃ ,ㅍ, ㅁ/등이 이에 속한다. 현대 한국어(표준어)에 존재하는 양순음들은 모두 두 입술을 막아서 내는 소리들이지만, 두 입술의 간격을 좁혀서 그 사이로 기류를 마찰시켜 낼 수도 있으며(양순 마찰음) 두 입술을 떨어서 낼 수도 있다(양순 전동음). 순치음(labiodentals)이란 아랫입술과 윗니가 조음에 관계하는 소리를 지칭하는 것으로 한국어에는 존재하지 않는다. 한국어에는 순치음이 없지만, 영어에 있는[f, v]가 바로 이 순치음(순치 마찰음)에 속한다. 치음(dental)은 기류의 협착이나 폐쇄가 윗니의 뒷부분에서 일어나는 소리를 말하는데 이 사이에서 마찰이 이루어지기도 해서 치간음(interdental)이라고도 한다. 치경음(alveolar)은 윗잇몸 부근에서 기류의 협착이나 폐쇄가 일어나면서 나는 소리로 한국어의 /ㄷ, ㄸ, ㅌ, ㄴ, ㅆ, ㅅ/등이 이에 속한다. 한국어의 /ㅅ,ㅆ/는 치경 부분에서 기류의 협착이 이루어져 나는 소리로 영어의 /s, z/와 기류의 협착이 이루어지는 장소가 거의 비슷하다. 경구개치경음(palatoalveolar)은 후치경음(postalveolar)이라고도 불리는데, 혀끝이나 혓날이 후치경부에 닿아서 나는 소리로 국어에는 존재하지 않지만, 영어나 불어에는 존재한다. 치경경구개음(alveolopalatal)은 전경구개음(prepalatal)이라고도 불리는데, 이 소리가 경구개의 앞쪽 즉 치경과 가까운 쪽에서 조음되기 때문이다. 국어의 세 파찰음 /ㅈ, ㅊ, ㅉ/가 이에 속한다. 권설음(retroflex)은 혀끝이나 혀의 위 표면이 입천장에 닿거나 접근하여서 조음되는 여타의 설음들과는 달리 혀의 아래 표면이 입천장에 닿거나 접근하여서 조음된다는 점에서 뚜렷한 차이가 있다. 경구개음(palatal)은 혓몸이 경구개부에 닿거나 접근하여 조음되는 소리를 말한다. 연구개음(velar)은 혓몸이 연구개부에 닿거나 접근하여 조음되는 소리를 말한다. 국어의 폐쇄음/ㄱ, ㅋ, ㄲ/와 비음 /ㅇ/이 이에 속한다. 구개수음(uvular)은 혓몸이 연구개의 끝부분인 구개수에 닿거나 접근하여 조음되는 소리를 말한다. 인두음(pharyngeal)은 그 조음이 인두강에서 이루어지는 음을 지칭한다. 마지막으로 성문음(glottal)은 성대가 조음기관으로 사용되어 조음되는 소리를 지칭하며 우리말에는 음소로서 성문 무성 마찰음 /ㅎ/만이 존재한다.
2) 모음의 조음: 모음의 조음은 혀의 고저와 전후 위치, 그리고 입술의 모양 등 세가지가 가장 중요한 변수로 작용한다. 첫 번째 변수로, 혀의 고저에 의하여 모음의 개구도, 즉 입을 벌린 정도가 결정되는데, 입을 적게 벌리고 내는 소리를 폐모음(close vowel), 혹은 고모음(high vowel)이라고 하며, 입을 크게 버리고 내는 소리를 개모음(open vowel), 혹은 저모음(low vowel)이라고 한다. 그리고 고모음과 저모음의 사이에서 나는 소리를 중모음(mid vewel)이라고 하는데, 이중모음은 다시 입을 벌린 정도가 더 작은 중고모음(close-mid vowel), 혹은 반폐모음(half-close vewel)과 입을 벌린 정도가 더 큰 중저모음(open-mid vewel), 혹은 반개모음(half-open vewel)으로 세분할 수 있다. 두 번째 변수인 혀의 전후 위치란 사실 혀의 어느 부분이 가장 좁혀졌는가, 다시 말해서 혀의 어느 부분이 입천장과 가장 가까운가를 기준으로 앞뒤를 따지는 것이다. 그 좁아진 부분이 혀의 앞쪽에 있는 모음을 전설모음(front vowel), 뒤쪽에 있는 모음을 후설모음(back vowel)이라고 하며, 그 중간쯤에 있는 모음을 중설모음(central vowel)이라고 한다. 마지막으로 모음의 조음에서 중요한 변수가 되는 것은 입술의 모양이다. 조음 시 입술이 동그랗게 모아져 앞으로 튀어나오는 모음을 원순모음(rounded vowel)이라고 하고, 그렇지 않은 모음을 평순모음(unrounded vowel)이라고 한다.
발화 장애란 음도, 강도, 음질, 유동성이 성별, 연령, 체구, 사회적 환경, 지리적 위치에 적합하지 않은 것을 이야기 한다. 이는 선천적으로 혹은 후천적으로 만들어 질 수 있으며, 수술을 통해 후두의 일부분인 성대를 늘이거나 줄여 어느 정도 치료하는 것이 가능하다. 하지만 완벽한 치료는 되지 않으며, 그 효과 또한 정확하다고 할 수 없다.
이러한 후두의 기능으로는 삼킴, 기침, 폐색, 호흡, 발성 등의 기능을 가지고 있으며, 이를 위한 다양한 평가 방식(ex. 발화 내역 검사, 발화패턴, 음향학적 검사, 공기역학적 검사...)이 있다. 이러한 평가를 통해 발화 장애의 여부를 어느 정도 판단할 수 있다.
발화 장애의 유형도 다양하며 크게 기능적 발화장애와 기질적 발화장애로 나뉘게 된다. 이러한 유형의 대부분은 후두의 일부분인 성대에 이상이 생기는 경우가 많으며, 이러한 성대가 외부의 환경적 요인으로 인해 부어오름, 찢어짐, 이상 물질의 발생 등에 의해 장애가 오는 경우가 많다.
이러한 성대의 기능을 대신하기 위해 인위적으로 진동을 발생시킬 수 있는 진동발생기를 이용할 수 있다. 진동발생기의 방법은 스피커의 원리를 사용할 수 있는데 스피커의 구조를 보면, 자석과 코일로 이루어져 있으며, 이러한 코일에 전류를 흘려주는 상태에서 전류의 방향을 반대로 하면 자석의 극이 반대로 바뀌게 된다. 따라서 자석과 코일의 전류의 방향에 따라 인력과 척력이 작용하게 되고, 이는 코일의 왕복운동을 발생시킨다. 이러한 코일의 왕복운동이 공기를 진동하여 진동을 발생시킨다.
다른 방식으로 압전 현상을 이용한 방식이 있는데 압전 결정 유닛이 저주파 신호 전압을 받아서 일그러짐을 발생하고, 그에 의해서 진동판이 진동하여 음향을 발행하도록 만들 수 있다. 따라서 이러한 원리들을 이용한 진동발생기를 이용하여 성대의 기능을 수행하도록 할 수 있다.
하지만 이러한 방법의 경우 외부의 위치하여 단순히 성대를 진동시켜 주는 기능에 불과하기 때문에 나타나는 음이 매우 부정확할 뿐 아니라 화자의 말하기 의도를 파악하는 것이 쉽지 않다. 또한 진동 발생기를 가지고 성대에 위치하여 항상 소지해야 되며 말할 때는 한 손을 이용하기 때문에 일상생활에 어려움을 준다. 전술한 발화 장애와 이러한 발화 이상에 대해서는 후두나 성대의 일부를 수술하는 등의 치료적 방법을 모색할 수 있으나, 이러한 수술 방법이나 치료가 불가능한 경우가 있어서 완전한 해결책이 되지 못하고 있다.
특히 관련 업계에 있어서는 유럽 및 홍콩을 구심점으로 WinEPG, Articulate Instruments Ltd 등의 회사에서 사용 중인 University of Reading, 일본의 Fujimura, Tatsumi가 1973년에 개발하여 Rion 이라는 회사 이름으로 널리 상용화 시킨 The Rion EPG, Flecher이 출원하여 UCLA Phonetics Lab이 연구목적으로 개발하여 사용하는 Kay Palatometer, Schmidt가 개발하여 Complete Speech(Logomertix) 등이 있다.
그러나 상기 종래의 기술들은 수동적 조음기관을 기반으로 발화하는 것에 한계가 있으며, 능동적 조음기관 자체인 구강설을 이용하거나, 구강설과 다른 조음기관과의 연계성에 의한 실제 조음 방식에 따른 발화를 구현하는 데 명확한 한계가 있었다.
기존에 상태 변화나 움직임을 파악하기 위한 다양한 센서가 개발되어 있으며, 센서를 바탕으로 압력, 온도, 거리, 마찰 등의 변화를 파악하는 것이 가능하다.
본 발명은 전술한 문제점을 해결하기 위하여 제안된 것으로, 본 발명의 목적은 사용자의 발화 의도에 따른 사용자의 조음 방식을 구강설을 포함한 두경부의 센서를 통해 파악하고, 이를 청각, 시각, 촉각의 형태로 나타내어 양호한 품질의 음성 형성, 즉 발성이 표출될 수 있는 발화 보완용 기기 및 그 방법을 제공하고자 하는 것이다.
본 발명의 목적은 발화에 있어서 정상적인 기능을 수행하지 못하고 교정이나 치료가 불가능한 경우에 양질의 적절한 발화를 구현하고자 하는 것이다.
본 발명의 다른 목적은 발화를 위한 조음 의도에 따라 사용자가 원하는 정도의 정확한 발화가 외부로 표출될 수 있는 내/외부에 위치한 발화 보완용 기기 및 그 제어 방법을 제공하고자 하는 것이다.
본 발명의 일실시예에 따른 화자의 발음과 강세의 정오도 및 유사근접도 중 하나이상을 기반으로 하여 화자의 발음과 강세의 정오도 및 유사근접도, 발화 의도를 파악하고 발화 활동을 지원하는 구강설을 포함한 촬상센서를 포함한 두경부 조음기관의 물리특성과 기반의 발화 의도 측정 및 발화 구현 시스템에 있어서,
두경부의 일면에 인접하여 조음기관의 물리특성을 측정하는 센서부와 ;
상기 센서부에 의해 측정된 조음 기관의 물리특성을 기반으로 화자의 발화 특징을 파악하는 데이터해석부;를 포함하는 것을 특징으로 하는 두경부 조음기관의 물리특성 기반의 발화 의도 측정 및 발화 구현 장치에 있어서,
상기 센서부는 구강설의 일면에 인접하거나, 그 내부에 삽입되는 구강설 센서를 포함하고
상기 언어 데이터에 기반하여 화자의 발화에 대한 가이딩 신호를 제공하는 피드백부를 포함하는 것을 더욱 포함하는 것을 특징으로 하는 촬상센서를 포함한 두경부 조음기관의 물리특성과 기반의 발화 의도 측정 및 발화 구현 시스템으로 상기 문제점들을 해결하고자 한다.
본 발명의 구강설을 포함한 조음기관의 물리 특성과 문자 간 매칭을 통한 발화 의도 측정 및 발화 구현 시스템에 따르면, 화자의 구강설을 중심으로 한 두경부 조음기관 활용에 발화 의도를 파악하고 청각, 시각, 촉각의 형태로 나타내어 양호한 품질의 발화 형성, 즉 발성이 표출될 수 있는 발화 보완용 기기 및 그 방법을 제공하고자 한다.
본 발명에서는 말하기 의도를 파악하기 위해 구강설을 포함한 두경부 내외의 조음기관을 이용하게 되며, 이러한 움직임의 예를 들면, 구강설의 독립적 물리 특성이나 수동적 조음기관과 입술, 성문, 성대, 인두, 후두개 중 하나이상으로 구성된 능동적 조음기관 중 하나이상의 조음기관과의 상호 작용에 의해 생기는 폐쇄도, 파열도, 마찰도, 공명도. 접근도 중 하나이상의 특성을 파악해야 하며, 이러한 특성을 파악하기 위하여 방위각, 앙각, 회전각, 압력, 마찰, 거리, 온도, 소리 등을 파악할 수 있는 다양한 센서를 이용하게 된다.
기존에 제안된 인공 성대의 경우 외부에서 진동을 통해 소리를 내는 정도로, 한 손의 움직임이 부자연스럽고 발화의 질이 매우 낮다는 단점이 있었고, 상기 언급한 인공 구개의 경우에는 수동적 조음기관인 경구개에 의존한다는 단점이 있었다.
더불어, 음성학적으로는 인공구개를 활용하여 화자의 발화를 측정하고자하는 조음음성학(Articulatory Phonetics)이 지금껏 주류로서 인정 되어 왔으나, 발화 측정에 있어서 특정 자모음의 조음에 따른 발화의 이산적인 발화유무 여부만 파악할 수 있었다. 하지만, 이러한 조음음성학의 주장은 인간의 발화가 이산적인 특징을 가지는 것이 아니라. 각 음소(Phoneme), 특히 모음에 있어서, 각 모음들이 분절되어 존재할 수도 없고 분절되어 발음될 수도 없는 연속적인 체계임을 주장하는 음향음성학(Acoustic Phonetics)에 의해 학계의 의문을 불러일으키고 있다. 자세히 말하자면, 인간의 발화는 조음을 하여 “발화를 한다.” 또는 “발화 하지 못했다.”와 같이 이산적으로 나누어 질 수 있는 것이 아니라, 유사정도에 따른 비례적, 비율적, 단계적 특성을 지닌다는 것이다.
그렇기에 상기 음향음성학은 화자의 발화에 따른 언어음 자체의 물리적 속성을 수치화(Scaling)하여, 발화의 유사도 또는 근접도를 파악함으로서, 종래의 조음음성학이 구현할 수 없었던 발음의 비례적, 비율적, 단계적 유사정도에 따른 발화 측정에 대해 가능성을 열어두고 있다.
이러한 종래 관련 기술동향과 관련 학문적 배경을 참고하였을 때, 본 발명은 조음음성학의 기반을 두고서, 음향음성학이 추구하고자 하는 조음의 수치화(Scaling)에 따른 보다 정확한 발화 의도를 파악하고 구현할 수 있는 매우 획기적인 장점을 가지고 있다고 할 수 있다.
자세히 말하자면, 본 발명에서는 화자의 조음기관 작용에 의해 발생하는 조음도를 수치화(Scaling)하여 발화의도를 청각, 시각, 촉각의 형태로 직관적으로 제시하기 때문에 의사소통의 질 및 생활 편의도가 매우 탁월해 질 것으로 기대된다는 것이다.
더불어, 상기 화자의 발화에 따른 발화 의도를 문자로서 표현할 경우, Speech to Text로 응용되어, Silent Speech(침묵 대화)가 가능해진다. 이를 통해, 청각 장애인과 의사소통을 할 시에, 화자는 발화를 하고 청자인 청각 장애인은 이를 시각적 자료로 인지하기에 소통상의 어려움이 없어진다. 더불어, 의사전달에 있어서 소음에 영향을 받는 대중 교통, 공공 시설, 군사 시설 및 작전, 수중 활동 등에 활용 될 수 있다.
더불어, 발화에 따라 변화하는 화자의 두경부 조음기관의 외상을 촬상함으로서, 발화와 발화에 따른 조음기관의 외적 변화의 연관성을 파악해, 언어학적 방면과 보완 대체 의사소통 방면, 휴머노이드의 안면 구현 방면으로 활용될 수 있다.
더불어, 화자는 본인의 발화의 정오도, 근접유사도, 발화의도에 대한 내역을 제공 받음으로서, 화자는 표준 발화에 근접하기 위해 지속적인 재발화를 실시하고 스스로 발화 교정을 실시한다. 이때, 화자의 두경부 조음기관에 발화 피드백을 제공하는 센서를 구비함으로서, 특정 발음을 정확히 발화하기 위해 해당 발음이 조음되는 조음기관에 소리 신호, 온도 신호, 진동을 포함한 촉각 신호를 제공하여, 해당 조음기관을 교정할 수 있도록 돕는다.
도 1은 본 발명에 따른 센서부 구성의 예시
도 2는 본 발명에 따른 센서부의 위치 예시
도 3은 본 발명에 따른 센서부와 데이터 해석부 구성의 예시
도 4는 본 발명에 활용되는 모음 발화를 위한 구강설의 작용 예시
도 5는 본 발명에 따른 구강설 센서의 예시
도 6은 본 발명에 따른 구강설 센서의 또 다른 예시
도 7은 본 발명에 따른 구강설 센서의 또 다른 예시
도 8은 본 발명에 따른 구강설 센서의 또 다른 예시
도 9는 본 발명에 따른 구강설 센서의 또 다른 예시
도 10은 본 발명에 따른 구강설 센서의 통합 예시
도 11은 본 발명에 따른 구강설 센서의 부착 형태를 나타내는 단면도
도 12는 본 발명에 따른 구강설 센서의 구성을 나타낸 사시도
도 13은 본 발명에 따른 구강설 센서의 회로부의 구성을 나타낸 구성도
도 14는 본 발명에 따른 다양한 발화에 따른 구강설 센서의 활용 예시
도 15은 본 발명에 따른 센서부, 데이터해석부, 데이터베이스부의 구성 예시
도 16는 본 발명에 따른 데이터해석부가 측정된 조음기관 물리 특성을 발화 특징으로 파악하는 원리도
도 17은 본 발명에 따른 데이터해석부가 측정된 조음기관 물리 특성을 발화 특징으로 파악하는 보다 자세한 원리도
도 18은 본 발명에 따른 데이터해석부가 조음기관 물리 특성을 발화 특징으로 파악하도록 하는 모음에 관한 표준 발화 특징 행렬
도 19는 본 발명에 따른 데이터해석부가 조음기관 물리 특성을 발화 특징으로 파악하도록 하는 자음에 관한 표준 발화 특징 행렬
도 20은 본 발명에 따른 데이터해석부가 조음기관 물리 특성을 발화 특징으로 파악하기 위하여 진행하는 알고리즘 프로세스 예시
도 21은 본 발명에 따른 데이터해석부가 조음기관 물리 특성을 발화 특징으로 파악하기 위하여 진행하는 알고리즘 프로세스의 상세 예시
도 22는 본 발명에 따른 데이터해석부가 진행하는 발화 특징 파악을 위한 알고리즘 프로세스의 상세 원리도
도 23는 본 발명에 따른 구강설 센서가 화자에 의해 발화된 특정 모음을 발화 특징으로 파악하는 예시
도 24는 본 발명에 따른 구강설 센서가 화자에 의해 발화된 특정 자음을 측정하고 데이터해석부가 이를 Alveolar Stop으로 파악하는 것을 나타낸 예시
도 25은 본 발명에 따른 구강설 센서와 안면 센서가 화자에 의해 발화된 특정 자음을 측정하고 데이터해석부가 이를 Bilabial Stop으로 파악하는 것을 나타낸 예시
도 26은 본 발명에 따라 구강설 센서와 안면 센서가 실제로 화자에 의해 발화된 특정 자음을 측정하고 데이터해석부가 이를 Voiced Bilabial Stop인 /버/와 Voiceless Bilabial Stop인 /퍼/로 파악한 실제 실험 데이터
도 27은 본 발명에 따라 구강설 센서, 안면 센서, 음성취득센서, 성대센서, 치아센서가 화자에 의해 발화된 특정 자음을 측정하고 데이터해석부가 이를 Voiced Labiodental Fricative로 파악하는 것을 나타낸 예시
도 28는 본 발명에 따라 구강설 센서, 안면 센서, 음성취득센서, 성대센서, 치아센서가 화자에 의해 발화된 특정 자음을 측정하고 데이터해석부가 이를 Voiceless Labiodental Fricative로 파악하는 것을 나타낸 예시
도 29은 본 발명에 따라 센서부에 의해 조음기관 물리 특징을 취득하고 데이터해석부가 상기 데이터베이스와 연동되는 것을 나타낸 예시
도 30는 본 발명에 따라 구강설 센서, 안면 센서, 음성취득센서, 성대센서, 치아센서가 화자에 의해 발화된 특정 자음과 모음을 측정하고 데이터해석부가 이를 /beef/ 내지 [bif]라는 단어로 파악하는 것을 나타낸 예시
도 31은 본 발명에 따라 센서부에서 취득된 언어데이터를 파악할 때 활용되는 데이터베이스부를 나타낸 예시
도 32는 본 발명에 따라 센서부가 외부와 연결되기 위한 통신부와 연동된 것을 나타낸 예시
도 33는 본 발명에 따라 데이터해석부와 연동되는 데이터베이스부의 실제 예시
도 34은 본 발명에 따라 데이터해석부와 연동되는 데이터베이스부의 실제 또 다른 예시
도 35는 본 발명에 따라, 센서부, 데이터해석부, 데이터표현부, 데이터베이스부가 연동된 것을 나타내는 구조
도 36은 본 발명에 따라, 센서부, 데이터해석부, 데이터표현부, 데이터베이스부가 연동되어 작동하는 것을 나타내는 예시
도 37은 본 발명에 따라, 데이터표현부가 언어데이터를 소리로 표현하는 것을 나타내는 예시
도 38는 본 발명에 따라, 데이터표현부가 언어데이터를 문자를 포함한 시각적 자료로 표현하는 것을 나타내는 예시
도 39는 본 발명에 따라, 데이터표현부가 언어데이터를 문자를 포함한 시각적 자료로 표현하는 것을 나타내는 또 다른 예시
도 40은 본 발명에 따라, 데이터표현부가 언어데이터를 문자를 포함한 시각적 자료로 표현하는 것을 나타내는 또 다른 예시
도 41은 본 발명에 따라, 데이터표현부가 언어데이터를 문자와 발화 자료를 포함한 시각적 자료와 언어데이터의 표준 발화를 청각적으로 표현하는 것을 나타내는 또 다른 예시
도 42는 본 발명에 따라, 데이터표현부가 언어데이터를 문자로 시각적으로 표현하고 언어데이터의 표준 발화를 문장 단위로 청각적으로 표현하는 것을 나타낸 예시
도 43은 본 발명에 따라, 데이터표현부가 언어데이터를 단어 단위의 문자 및 그에 상응하는 그림 내지 사진으로서 시각적으료 표현하는 것을 나타내는 또 다른 예시
도 44는 본 발명에 따라, 데이터 표현부가 언어데이터를 연속 발화 단위로서 표현하여 제공하는 것을 나타내는 또 다른 예시
도 45는 본 발명에 따라, 데이터표현부가 언어데이터를 문자로 표현하되, 그에 상응하는 발음의 고저 색인을 함께 시각 및 청각적으로 제공하는 것을 나타내는 또 다른 예시
도 46은 본 발명에 따라, 촬상 센서가 화자의 발화에 따라 변화하는 두경부 조음기관의 외상을 촬상하고 이를 데이터해석부가 파악하는 것을 나타내는 예시
도 47은 본 발명에 따라, 촬상센서가 촬상한 정보들과 나머지 센서들이 파악한 발화 특징을 기반으로, 데이터해석부가 표준 발화 특징 행렬을 통해 상호 정보들을 결합시키는 것을 나타내는 예시
도 48은 데이터표현부가 언어데이터를 표출함에 있어서, 트레이닝부를 통해 화자로 하여금 언어 교정 및 지도를 돕는 것을 나타내는 예시
도 49는 촬상 센서가 촬상하는 화자의 비언어적 표현을 나타내는 예시
도 50은 본 발명에 따라, 피드백부와 피드백 센서가 본 발명에 포함된 예시
도 51은 본 발명에 따라, 피드백부와 피드백 센서의 구성을 나타낸 예시
도 52는 본 발명에 따라, 화자의 발화를 교정하기 위해 화자의 발화를 인지하고 분류하는 Confusion Matrix
도 53은 본 발명에 따라, 상기 Confusion Matrix를 백분율로 나타낸 결과
도 54는 본 발명에 따라, 상기 피드백 센서가 화자의 두경부에 적용된 예시
도 55는 본 발명에 따라, 상기 피드백 센서가 화자의 두경부에 적용된 자세한 예시
도 56은 본 발명에 따라, 상기 피드백 센서가 화자의 구상설에 인접한 상황의 예시
도 57은 본 발명에 따라, 상기 피드백부가 전체 시스템에 적용된 예시
이하, 첨부된 도면을 참조하면서 본 발명의 일실시예에 따른 촬상센서를 포함한 두경부 조음기관의 물리특성과 기반의 발화 의도 측정 및 발화 구현 시스템에 대해 상세히 설명하기로 한다.
본 발명의 하기의 실시 예는 본 발명을 구체화하기 위한 것일 뿐 본 발명의 권리범위를 제한하거나 이를 한정하는 것이 아님은 물론이다. 본 발명의 상세한 설명 및 실시예로부터 본 발명이 속하는 기술 분야의 전문가가 용이하게 유추할 수 있는 것은 본 발명의 권리범위에 속하는 것으로 해석된다.
본 발명을 실시하기 위한 내용을 도 1부터 도 41을 기반으로 상세히 설명하고자 한다. 도 1과 도2에 따르면, 본 발명의 센서부(100)는 두경부(11)에 위치하는 구강설 센서(110). 안면 센서(120), 음성 취득 센서(130), 성대 센서(140), 치아센서(150), 촬상 센서(150)로 구성된다.
더욱 자세히는 두경부에 위치하는 구강설 센서(110). 안면 센서(120), 음성 취득 센서(130), 성대 센서(140), 치아센서(150)은 상기 각 센서들이 위치하는 센서부의 위치(210)을 제공하며 화자(10)의 발화에 따른 발화 특징(220)을 파악한다. 도 3에 따르면, 데이터해석부(200)가 상기 이러한 발화 특징을 언어데이터(310)로 해석한다.
도 4, 도 5에 따르면 구강설 센서(110)의 경우, 구강설(12)의 일측면에 고착되거나 그 표면을 감싸거나, 그 내부에 삽입되며, 저고도, 전후설성, 굴곡도, 신전도, 회전도, 긴장도, 수축도, 이완도, 진동도 중 하나이상의 구강설 자체의 독립 물리 신호를 파악한다.
도 6, 도 7에 따르면, 상기 구강설 자체의 독립 물리 신호를 파악함에 있어서 , 구강설 센서(110)는 x축, y축, z축 방향의 가속도 내지 단위 시간 당 회전하는 각도의 변화량 중 하나이상을 파악함으로서, 구강설(12)을 포함한 다른 조음기관의 물리 특성에 의한 발화 특징(220)을 파악한다. 더불어, 도 8에 따르면, 구강설 센서(110)는 발화에 따른 구강설의 수축 내지 이완으로 발생하는 물리력에 따라 결정 구조(111)의 변화에 의해 편극이 발생하여 전기신호가 발생하는 압전소자(112)를 통해 구강설의 굽힘도를 파악함으로서, 구강설을 포함한 조음기관의 물티 특성에 의한 발화 특징(220)을 파악할 수 있다.
더불어, 도 9에 따르면, 구강설 센서(110)는 구강설(12)이 두경부(11) 내외의 다른 조음기관과의 상호작용에 의해 생기는 접근 및 접촉에 의해 발생하는 마찰전기(Tribo Electric Generator)에 따른 연계 물리 신호를 파악하기 위해 마찰대전소자(113)를 사용하여 화자(10)의 발화 특징(220)을 파악한다. 도 10, 도 11, 도 12에 따르면, 전술한 구강설 센서(110)의 작동 원리는 복합 박막 회로로 구성되어 단일한 필름 형태로 구현될 수 있다. 이때 센서부를 작동하기 위한 회로부(114), 그 회로를 감싸는 캡슐부(115)로 구성되며, 상기 구강설 센서(110)를 구강설(12)의 일면에 고착 시키는 접착부(116)으로 구성된다.
도 13에 따르면, 상기 구강설 센서(110)의 회로부(114)는 통신칩, 센싱회로, MCU로 구성된다.
도 14에 따르면, 본 발명은 화자(10)의 다양한 자모음의 발화에 따라, 상기 자모음 발화에 따른 발화 특징(220)을 파악할 수 있게 된다. 상기 도 12는 Bilabial Sound (양순음), Alveolar Sound (치경음), Palatal Sound (구개음)에 따른 상기 구강설 센서의 작용을 보여주는 예시이다.
도 15에 따르면, 구강설 센서(110), 안면 센서(120), 음성취득센서(130), 성대센서(140), 치아센서(150), 촬상센서(160)로 이루어진 두경부 조음기관 인근의 센서부(100)는 두경부 조음기관에서 센서부가 위치한 센서부의 위치(210), 발화에 따른 발화특징(220), 발화에 따른 화자의 음성(230), 발화의 시작, 발화 정지, 발화 종료를 포함하는 발화 내역 정보(240)을 파악한다. 이 때 발화 특징(220)은 인간이 발화할 때 발생하는 페쇄파열음화, 마찰음화, 파찰음화도, 비음화, 유음화, 활음화, 치찰음화, 유무성음화, 성문음화 중 하나이상의 기본적인 물리적 발화 특징을 의미한다. 또한 화자의 음성(230)은 상기 발화 특징으로 인해 함께 수반되는 청각적인 발화 특징이다.
더불어, 도 15에 따르면, 발화 내역 정보(240)는 상기 언급한 성대 센서(140)를 통한 것으로, 성대의 근전도 내지 떨림으로 그 정보를 파악한다. 더불어, 상기 데이터해석부는 구강설 센서(110), 안면 센서(120), 음성취득센서(130), 성대센서(140), 치아센서(150), 로 이루어진 두경부 조음기관 인근의 센서부(100)가 측정한 화자의 조음기관 물리특성에서 화자의 성별, 인종, 나이, 모국어에 따라 발생하는 발화 변이(250)를 파악한다. 이때 발화 변이(250)는 자모음의 동화(Assimilation), 이화(Dissimilation), 탈락(Elision), 첨가(Attachment), 강세(Stress), 약화(Reduction)로 야기되는 기식음화 (Asperation), 음절성자음화(Syllabic cosonant), 탄설음화(Flapping), 경음화(Tensification), 순음화(Labilalization), 연구개음화(Velarization), 치음화(Dentalizatiom), 구개음화 (Palatalization), 비음화(Nasalization), 강세변화(Stress Shift), 장음화(Lengthening) 중 하나이상의 이차조음현상을 포함한다.
도 15에 따르면, 본 발명은 상기 두경부 조음기관에 인접한 센서들 외에 두경부 외측에서 발화에 따른 두경부의 조음기관 변화 정보(161)를 포함하고 이에 따라 자연스럽게 발생하는 두경부 표정 변화 정보(162), 비언어적 표현 정보(163)를 파악하는 촬상 센서(160)를 포함한다.
도 15에 따르면, 데이터해석부(200)는 상기 두경부 조음기관 센서들(110, 120, 130, 140, 150)에 의해 측정된 센서부의 위치(210), 발화에 따른 발화특징(220), 발화에 따른 화자의 음성(230), 발화 내역 정보(240), 발화 변이(250)를 언어데이터(310)로 인지하여 처리한다. 더불어, 상기 언어데이터(310)를 인지하여 처리함에 있어서, 데이터해석부(200)는 데이터베이스부(350)과 연동된다. 상기 촬상센서(160)에 의해 측정된 두경부의 조음기관 변화 정보(161), 두경부 표정 변화 정보(162), 비언어적 표현 정보(163)를 언어데이터(310)로 인지하여 처리한다. 더불어, 상기 언어데이터(310)를 인지하여 처리함에 있어서, 데이터해석부(200)는 데이터베이스부(350)과 연동된다.
도 31에 따르면, 이때 데이터베이스부(350)는 자모음의 음소단위(361), 색인 음절 단위 색인(362), 단어단위 색인(363), 구절단위 색인(364), 문장단위 색인(365), 연속 발화 색인(366), 발음의 고저 색인(367)을 포함하는 언어 데이터 색인(360)을 가지고 있다. 이러한 언어 데이터 색인(360)을 통해, 데이터해석부(200)는 센서부(100)에서 취득된 다양한 발화 관련 정보들을 언어데이터로 처리할 수 있게 된다.
도 16, 17, 18에 따르면, 상기 데이터해석부(200)는 상기 구강설 센서(110)를 포함한 센서부(100)로부터 측정된 조음기관의 물리 특성을 먼저 획득한다. 구강설 센서로 인해 조음기관 물리 특성이 획득된 경우, 구강설 센서는 조음기관 물리 특성을 센싱하면서 센싱된 물리 특성의 행렬값을 만든다. 이후, 데이터해석부(200)는 자모음의 표준 발화 특징 행렬(205)에서 상기 이러한 물리 특성의 행렬값에 대응하는 자모음의 발화특징(220)을 파악한다. 이때 자모음의 표준 발화 특징 행렬(205)는 그 내부의 값들이 자모음 발화 기호, 2진수 내지 실수 중 하나이상으로 존재할 수 있다.
도 20에 따르면. 상기 데이터해석부(200)는 상기 센서부(100)에 의해 측정된 조음기관의 물리 특징을 파악함에 있어서, 조음기관 물리 특성을 취득하는 단계, 취득된 조음기관 물리 특성이 가지고 있는 각 자모음 단위의 패턴을 파악하는 단계, 각 자모음 패턴으로부터 고유한 특징을 추출하는 단계, 상기 추출된 특징들을 분류하는 단계, 분류된 패턴의 특징들을 다시금 재조합하는 단계로 이루어지고, 이를 통해 최종적으로 특정 발화 특징으로 파악한다.
도 21, 도 22, 23에 따르면, 상기 데이터해석부(200)이 진행하는 발화 특징 파악 알고리즘에 있어서, 상기 각 자모음의 단위의 패턴을 파악하는 단계는 조음기관 물리특성을 파악한 센서부(100)가 구강설일 경우에 x, y, z축을 기반으로 그 자모음 단위의 패턴을 파악한다. 상기 알고리즘은 K-nearset Neihbor(KNN), Artificial Neural Network(ANN), Convolutional Neural Network(CNN), Recurrent Neural Network(RNN), Restricted Boltzmann Machine(RBM), Hidden Markov Model(HMM) 중 하나이상의 알고리즘에 기반할 수 있다.
실제로 도 22, 23에서는 상기 구강설 센서(110)가 벡터량의 변화량 내지 각도 변화량을 파악하는 센서로 구동될 경우, 화자의 발화를 측정함으로서 벡터량의 변화량, 각도 변화량을 파악하고, 이를 통해 고설성(Tongue Height)과 전설성(Tongue Frontness)을 가지는 모음 [i]으로 인지한다. 또 다른 방법으로는 구강설 센서(110)가 압전신호 내지 마찰전기신호의 원리로 구동되는 센서일 경우, 압전에 따른 전기 신호 변화와 구강설 센서와 구강 내외부의 조음기관과 근접 내지 마찰하여 발생하는 마찰전기신호를 파악하여 고설성과 전설성을 가지는 모음 [i]으로 인지한다. 이 뿐만 아니라, [u]의 경우에도 같은 원리들을 기반으로, 고설성(Tongue Height: High)과 후설성(Backness)를 측정하여 해당 모음으로 파악하게 된다. []의 경우에도 같은 원리들을 기반으로, 저설성(Tongue Height: Low)r과 전설성(Tongue Frontness)를 측정하여 해당 모음으로 파악한다.
더불어 도 23에 따르면, 구강설 센서(110)는 화자의 발화에 따라 발생한 [i], [u], []과 같은 모음을 발화 특징(220)으로 측정한다. 이러한 모음의 발화 특징(220)은 상기 데이터베이스부(350)의 자모음의 음소 단위 색인(361)에 대응한다.
도 24에 따르면, 구강설 센서(110)는 화자에 의해 발화된 특정 자음을 발화 특징(220)으로 측정한다. 이러한 모음의 발화 특징(220)은 상기 데이터베이스부(350)의 자모음의 음소 단위 색인(361)에 대응되며, 이를 데이터해석부(200)가 언어데이터(310)인 Alveolar Stop으로 파악한다.
도 25에 따르면, 구강설 센서(110)와 안면 센서(120)는 화자에 의해 발화된 특정 자음을 발화 특징(220)으로 측정한다. 이러한 모음의 발화 특징(220)은 상기 데이터베이스부(350)의 자모음의 음소 단위 색인(361)에 대응되며, 이를 데이터해석부(200)가 언어데이터(310)인 Bilabial Stop으로 파악한다.
도 26은 본 발명에 따른 실제 실험 결과로서, 구강설 센서(110)와 안면 센서(120)는 화자에 의해 발화된 특정 자음을 발화 특징(220)으로 측정한다. 이러한 모음의 발화 특징(220)은 상기 데이터베이스부(350)의 자모음의 음소 단위 색인(361)에 대응되며, 이를 데이터해석부(200)가 언어데이터(310)인 Voiced Bilabial Stop인 /버/와 Voiceless Bilabial Stop인 /퍼/로 파악하였다.
도 27에 따르면, 구강설 센서(110), 안면 센서(120), 음성취득센서(130). 성대센서(140), 치아센서(150)은 화자에 의해 발화된 특정 자음을 발화 특징(220)으로 측정한다. 이러한 모음의 발화 특징(220)은 상기 데이터베이스부(350)의 자모음의 음소 단위 색인(361)에 대응되며, 이를 데이터해석부(200)가 언어데이터(310)인 Voiced Labiodental Fricative로 파악한다.
도 28에 따르면, 구강설 센서(110), 안면 센서(120), 음성취득센서(130). 성대센서(140), 치아센서(150)은 화자에 의해 발화된 특정 자음을 발화 특징(220)으로 측정한
다. 이러한 모음의 발화 특징(220)은 상기 데이터베이스부(350)의 자모음의 음소 단위 색인(361)에 대응되며, 이를 데이터해석부(200)가 언어데이터(310)인 Voiceless Labiodental Fricative로 파악한다.
도 21에 따르면, 상기 촬상 센서(150)는 화자(10)가 상기 구강설 센서(110), 안면 센서(120), 음성취득센서(130). 성대센서(140), 치아센서(160) 중 하나이상을 사용하는 상황에서 발화할 시에 발생하는 두경부의 조음기관 변화 정보(161), 두경부 표정 변화 정보(162), 비언어적 표현 정보(163)를 언어데이터(310)로 인지하여 처리한다. 특히, 두경부의 일면에 위치한 안면 센서는 레퍼런스 센서(121)를 기준으로 양극 센서(122)와 음극 센서(123)의 전위차를 가지고 그 자체 위치를 제공하며, 이는 상기 촬상 센서(160)이 촬상함으로서 파악되는 물리적인 두경부의 조음기관 변화 정보(161), 두경부 표정 변화 정보(162), 비언어적 표현 정보(163)와 함께 언어데이터(210)으로 데이터해석부(200)에 전달된다.
도 30에 따르면, 본 발명에 따라 구강설 센서(110), 안면 센서(120), 음성취득센서(130), 성대센서(140), 치아센서(150), 촬상센서(160)가 화자에 의해 발화된 특정 자음과 모음을 측정하고, 이러한 각 자모음의 발화 특징(220)은 상기 데이터베이스부(350)의 자모음의 음소 단위 색인(361)에 각 각 대응되며, 데이터해석부가 이를 /beef/ 내지 [bif]라는 단어로 파악한다.
도 31에 따르면, 상기 데이터베이스부(350)의 언어데이터 색인(360)은 자모음의 음소단위 색인(361), 음절 단위 색인(362), 단어 단위 색인(363), 구절 단위 색인(364), 문장 단위 색인(365), 연속 발화 색인(366), 발음의 고저 색인(367)으로 구성된다.
도 32에 따르면, 본 발명에는 데이터해석부와 데이터표현부 중 하나이상이 외부에 위치하여 작동할 경우, 연동되어 통신할 수 있는 통신부(400)를 포함된다. 더불어, 상기 통신부의 경우, 유선 내지 무선으로 구현되며, 무선의 경우 블루투스, 와이파이, 3G, 4G, NFC 등 다양한 방법이 사용될 수 있다.
도 33, 도 34에 따르면, 본 발명에 따라 데이터해석부와 연동되는 데이터베이스부는 상기 언어데이터 색인을 가지고서 실제 발화에 따른 발화 특징(220) 화자의 음성(230), 발화 내역 정보(240), 발화 변이(250)을 언어데이터(310)으로 파악한다. 도 33는 상기 도 23의 High Front tense Vowel과 High Back tense Vowel, 도 24의 Alveolar Sounds, 도 28의 Voiceless labiodental fricative를 포함하는 다양한 자모음 발화 특징을 센서부가 측정하고 데이터해석부가 반영한 실제 데이터이다. 도 34은 상기 도 23의 High Front lax Vowel, 도 24의 Alveolar Sounds, 도 25의 Bilabial Stop Sounds를 포함하는 다양한 자모음 발화 특징을 센서부가 측정하고 데이터해석부가 반영한 실제 데이터이다.
도 35에 따르면, 상기 센서부(100), 데이터해석부(200), 데이터표현부(300), 데이터베이스부(350)가 유기적으로 연동되어 작동하는 시스템임을 알 수 있다. 더불어, 도 36에 따르면, 상기 센서부가 실제 조음기관에 위치하여 화자의 발화에 따른 조음기관 물리특성을 측정하고 이를 상기 데이터해석부로 전달하고 상기 데이터해석부는 이를 언어데이터로 해석한다. 상기 해석된 언어데이터는 데이터표현부로 전달되며, 그 언어데이터의 해석 과정과 표현 과정에서 데이터베이스부가 연동되어 작동함을 알 수 있다.
도 37부터 도 41까지는 센서부(100)에 의해 획득된 화자의 두경부 조음기관의 물리특성이 데이터해석부(200)를 통해 센서부의 위치(210) ,발화 특징(220), 화자의 음성(230), 발화 내역 정보(240), 발화 변이(250)로 파악된다. 이후, 이러한 상기 정보들은 데이터해석부(200)에서 언어데이터(310)로 변환되며, 데이터표현부(300)에서 외부로 표현된다. 이때, 도 37은 언어데이터(310)를 데이터표현부(300)가 청각적으로 표현하는 것을 나타낸 것이다. 도 38은 데이터표현부(300)가 언어데이터(310)를 시각적으로 표현함에 있어서, 상기 데이터해석부(200)가 측정한 화자의 조음기관의 물리특성을 데이터베이스부(350)의 언어데이터 색인(360)과 비교하여, 실제 표준 발음의 광역표기 (broad description)와 함께 강세의 정오도, 유사근접도, 발화 의도 중 하나이상을 측정한 수치를 함께 제공하는 것을 나타낸 것이다.
도 39는 데이터표현부(300)가 언어데이터(310)를 시각과 청각적으로 표현함에 있어서, 상기 데이터해석부(200)가 측정한 화자의 조음기관의 물리특성을 데이터베이스부(350)의 언어데이터 색인(360)과 비교하여, 실제 표준 발음의 미세표기(narrow description)와 함께 강세의 정오도, 유사근접도, 발화 의도 중 하나이상을 측정한 수치를 함께 제공하는 것을 나타낸 것이다.
도 40은 데이터표현부(300)가 언어데이터(310)를 시각적으로 표현함에 있어서, 상기 데이터해석부(200)가 측정한 화자의 조음기관의 물리특성을 데이터베이스부(350)의 언어데이터 색인(360)과 비교하여, 실제 표준 발음의 미세표기(narrow description)와 함께 강세의 정오도, 유사근접도, 발화 의도 중 하나이상을 측정한 수치, 그리고 해당 언어데이터(310)가 단어로서 단어 단위 색인(363)에 대응할 경우, 그에 해당하는 이미지를 함께 제공하는 것을 나타낸 것이다.
도 41은 데이터표현부(300)가 언어데이터(310)를 시각과 청각적으로 표현함에 있어서, 상기 데이터해석부(200)가 측정한 화자의 조음기관의 물리특성을 데이터베이스부(350)의 언어데이터 색인(360)과 비교하여, 실제 표준 발음의 미세표기(narrow description)와 함께 강세의 정오도, 유사근접도, 발화 의도 중 하나이상을 측정한 수치를 제공하고 화자에 의한 언어데이터(310)를 교정하고 강화할 수 있도록 해당 발음을 발화할 수 있는 발화 교정 이미지를 함께 제공하는 것을 나타낸 것이다.
도 42는 데이터표현부(300)가 상기 언어데이터(310)를 문자로 시각화하고 소리로 청각화하여 제공함에 있어서, 상기 데이터해석부(200)가 측정한 화자의 조음기관의 물리특성을 데이터베이스부(350)의 자모음 음소 단위 색인(361), 음절단위 색인(362), 단어단위 색인(363), 구절 단위 색인(364), 문장 단위 색인(365) 중 하나이상의 언어데이터 색인(360)과 비교한다. 이러한 언어 데이터(310)를 트레이닝부(500)가 화자의 언어데이터(310)에 관련된 실제 표준 발음의 미세표기(narrow description)와 함께 강세의 정오도, 유사근접도, 발화 의도 중 하나이상을 측정한 문자와 소리로 제공하여 화자가 언어데이터(310)를 교정하고 강화할 수 있도록 돕는다.
도 43는 데이터표현부(300)가 상기 언어데이터(310)를 문자, 그림, 사진, 영상 중 하나이상으로 시각화하여 제공한다. 이 때 상기 데이터해석부(200)는 측정한 화자의 조음기관의 물리특성을 데이터베이스부(350)의 자모음 음소 단위 색인(361), 음절단위 색인(362), 단어단위 색인(363), 구절 단위 색인(364), 문장 단위 색인(365) 중 하나이상의 언어데이터 색인(360)과 비교한다. 더불어, 문자로 시각화 될 경우, 실제 표준 발음의 미세표기(narrow description)와 광역표기 (broad description)를 모두 제공한다. 이를 통해 언어 데이터(310)를 트레이닝부(500)가 화자의 언어데이터(310)에 관련된 실제 표준 발음의 미세표기(narrow description) 및 광역표기 (broad description)와 함께 강세의 정오도, 유사근접도, 발화 의도 중 하나이상을 측정한 문자와 소리로 제공하여 화자가 언어데이터(310)를 교정하고 강화할 수 있도록 돕는다.
도 44는 데이터표현부(300)가 상기 언어데이터(310)를 문자로 시각화하여 제공함에 있어서, 상기 데이터해석부(200)가 측정한 화자의 조음기관의 물리특성을 데이터베이스부(350)의 자모음 음소 단위 색인(361), 음절단위 색인(362), 단어단위 색인(363), 구절 단위 색인(364), 문장 단위 색인(365), 연속발화색인(366) 중 하나이상의 언어데이터 색인(360)과 비교한다. 이러한 언어 데이터(310)를 트레이닝부(500)가 화자의 언어데이터(310)에 관련된 실제 표준 발음의 미세표기(narrow description) 및 광역표기 (broad description)와 함께 강세의 정오도, 유사근접도, 발화 의도 중 하나이상을 측정한 연속 발화 단위의 문자와 소리로 제공하여 화자가 언어데이터(310)를 교정하고 강화할 수 있도록 돕는다.
도 45는 데이터표현부(300)가 상기 언어데이터(310)를 문자로 시각화하고 소리로 청각화하여 제공함에 있어서, 상기 데이터해석부(200)가 측정한 화자의 조음기관의 물리특성을 데이터베이스부(350)의 자모음 음소 단위 색인(361), 음절단위 색인(362), 단어단위 색인(363), 구절 단위 색인(364), 문장 단위 색인(365), 연속발화색인(366), 발음의 고저 색인(367) 중 하나이상의 언어데이터 색인(360)과 비교한다. 이러한 언어 데이터(310)를 트레이닝부(500)가 화자의 언어데이터(310)에 관련된 실제 표준 발음의 미세표기(narrow description) 및 광역표기 (broad description)와 함께 강세의 정오도, 유사근접도, 발화 의도 중 하나이상을 측정한 문자와 소리로 제공하여 화자가 언어데이터(310)를 교정하고 강화할 수 있도록 돕는다.
도 46에 따르면, 상기 촬상 센서(160)는 발화에 따른 화자의 두경부 조음기관의 외관상 변화를 촬상하고, 상기 데이터해석부(200)는 이를 통해 화자의 두경부 조음기관의 변화 정보(161), 두경부 표정 변화 정보(162)를 파악한다. 이때 상기 센서부(100)의 구강설 센서(110), 안면센서(120), 음성 취득 센서(130). 성대 센서(140). 치아센서(150)을 통해 파악된 화자의 발화 특징(210)도 함께 데이터해석부(200가 고려하게 된다.
도 47에 따르면, 상기 센서부(100)의 구강설 센서(110), 안면센서(120), 음성 취득 센서(130). 성대 센서(140). 치아센서(150)는 화자의 발화 특징(210)을 파악하고, 상기 촬상 센서(160)는 화자의 두경부 조음기관의 변화 정보(161), 두경부 표정 변화 정보(162)를 파악한다. 이를 상기 데이터해석부(200)가 표준 발화 특징 행렬(205)를 기반으로 상기 두경부 조음기관의 변화 정보(161), 두경부 표정 변화 정보(162)에 대응하는 발화 특징을 결합시킨다.
도 48에 따르면, 영어를 모국어로 하지 않는 한국인 화자는 [kiŋ]을 의도하고서, 발화하였고 센서부(100)는 상기 발화에 따른 조음기관 물리 특성을 파악한다. 그러나, 화자의 경우, 한국어에 존재하지 않는 Velar Nasal Sound 인 [ŋ]에 대해 조음과 발화 방법에 대해 미숙하였다. 이에 상기 데이터해석부(200)는 화자가 제대로 발화하지 못한 [ŋ]를 표준 발화 특징 행렬(205)과의 비교를 통해 파악한다. 이후, 데이터표현부(300)은 화자의 발화 정오도, 유사도를 제공하였고, 결과는 46%에 그쳤다. 이후, 데이터표현부(300)는 트레이닝부(500)을 통해, 화자로 하여금 [kiŋ]을 정확히 발음할 수 있도록 돕는다. 이때, 데이터표현부(300)에 의한 트레이닝부(500)는 화자가 어느 조음 기관을 어떻게 조작해야하는 지 직관적으로 보여주기 위해 Speech Guidance(Image)를 제공한다. 상기 Speech Guidance(Image)는 상기 [ŋ]을 발화하기 위한 조음기관에 부착되거나 인접한 센서부를 기반으로 발화 교정 및 안내를 실시한다. 예를 들어, 상기 [kiŋ]의 경우, [k]은 혀의 뒷부분(Tongue Body, Root)을 Velar(연구개) 방향으로 승강시켜 붙이고 유격시키면서 파열음을 내고, 성대의 떨림 없이 무성음으로, 입을 통해 /크/로 발화해야 한다. 이때, 혀의 뒷부분이 Velar(연구개) 방향으로 승강시키고 붙였다 유격되는 파열음을 내는 것은 구강설 센서(110)가 측정하게 된다. [i]의 경우에는, 전설 고설 긴장 모음(High Front Tense Vowel)임으로, 이 역시 구강설 센서(110)이 혀의 고설성(Hight)과 전설성(Frontness)를 파악한다. 더불어, [i]를 발화할 때, 입술의 양 끝이 양 볼로 각 각 당겨지는 현상이 발생한다. 이를 상기 안면 센서(120)가 파악하게 된다. [ŋ]의 경우에는, 혀의 뒷부분(Tongue Body, Tongue Root)를 Velar(연구개) 방향으로 승강시키고 코를 울려 발화해야 한다. 그렇기에 역시 구강설 센서(110)가 혀의 고저설성 및 전후설성을 파악한다. 더불어, 상기 발음은 비음이기에 코와 그 주변의 근육이 떨리게 된다. 이러한 현상은 상기 안면 센서(120)가 코 주변에 부착됨으로서 파악될 수 있다.
도 49에 따르면, 상기 촬상 센서(160)는 화자의 두경부 조음기관의 변화 정보(161), 두경부 표정 변화 정보(162)뿐 만 아니라, 화자가 발화하면서 표현하는 비언어적 표현(153)을 촬상한다. 즉, 비언어적 표현(153)는 화자의 발화 의도에 따라 발생하는 두경부의 상하좌우의 기울임, 흉곽부의 들썩임, 두경부와 흉곽부 간의 핏대 및 근육의 긴장, 상지부의 떨림, 상지부의 제스쳐, 하지부의 떨림, 하지부의 제스쳐 중 하나이상의 표현을 포함한다.
도 50, 51, 52, 53, 54, 55, 56, 57에 따르면, 데이터해석부(200)에서 전달된 언어데이터(310)를 데이터표현부(300)가 외부로 표현함에 있어서, 트레이닝부(400)를 거쳐서 발화 및 강세의 정오도, 유사근접도, 발화의도를 파악하고, 이를 피드백부(600)가 가이딩 신호(610)로 파악한다. 이때, 화자의 두경부 조음기관에는 상기 센서부(100)와 함께 피드백 센서(620)가 인접하여 존재한다. 상기 피드백 센서(620)는 화자가 보다 정확히 발화할 수 있도록, 해당 발화 내용에 관한 소리 신호, 온도 신호, 진동을 포함한 촉각 신호를 제공한다. 더욱 자세히는, 피드백 센서(620)이 가이딩 신호(610)를 제공하는 경우에는, 화자가 제대로 발화하지 못한 발음을 교정하여 발화할 수 있도록, 해당 발음이 조음되는 조음기관에 위치한 하나이상의 피드백 센서(620)가 발화 지도를 한다. 예를 들어, 화자가 /p/를 제대로 발화하지 못한 경우, 안면 센서(120)에 인접한 피드백 센서(620)가 소리를 내어 “입술을 붙였다가 떼면서 파열음을 생성하시오.”라고 소리 신호를 제공한다. 또 다른 예로, /r/을 제대로 발화하지 못한 경우, 도 56에서처럼 구강설 센서(110)에 인접한 하나이상의 피드백 센서(620) 중 구강설의 앞부분에 위치한 피드백 센서(620)에 진동을 제공함으로서, 발화가 적절하지 않음을 화자에게 전한다. 화자는 이러한 진동을 포함한 촉각 신호를 인지하고 구강설을 뒤로 굽혀 다시금 /r/ 발음을 발화한다. 이러한 재발화에 따른 조음 기관 물리 특성을 구강설 센서(110)가 파악하고, 이를 데이터해석부(200)가 언어데이터로 해석하고, 데이터표현부(300)에 제공함으로서, 발화 피드백을 종료하게 된다.
상기 과정을 예시로 증명하기 위해서, Time Domain의 Variance, 주파수 영역의 Cepstral Coefficient, Linear Predict Coding Coefficient를 사용하는 특징 추출 알고리즘을 대표하여 사용한다. 데이터의 분산 정도를 나타내는 Variance는 다음 [수학 식1]에 따라 계산되며, n은 모집단의 네트워크, 는 수집된 조음기관 물리 특성인 데이터의 모집단의 평균, 는 수집된 조음기관 물리 특성인 데이터들을 나타낸다.
Figure pat00001
[ 수학식1 ]
Cepstral Coefficient는 주파수의 세기를 정형화하기 위해 다음 [수학식 2]로 계산된다. 는 역 푸리에급수 변환인 Inverse Fourrier Transform을 나타내고, X(f)는 신호에 대한 주파수의 스펙트럼을 나타낸다. 본 예시에서는 Cepstral의 Cofficent는 n=0일 때의 값을 활용하였다.
[ 수학식2 ]
Figure pat00002
Linear Predict Coding Coefficient는 주파수의 선형적 특성을 나타내는 것으로 다음[수학식 3]에 따라 계산된다. 다음 n은 표본의 개수를 나타내며, 는 Linear Predict Coding Coefficient 계수이다. Cepstral의 계수는 n=1일때의 값을 사용하였다.
[수학식 3]
Figure pat00003
더불어, 조음기관 물리 특성인 데이터를 유사도에 따라 묶고 예측데이터를 생성하여 각 데이터를 분류하는 ANN을 활용하였다. 이를 통해, 화자가 최초 발화에 대해 표준 발화에 대비하여 본인 발화 내용의 정오도, 근접유사도, 발화 의도를 파악할 수 있게 된다. 이를 바탕으로 화자는 자신에 발화 내용에 대한 피드백을 얻고 지속적으로 발화 교정을 위한 재발화를 실시한다. 이러한 반복적 조음기관 물리특성 데이터 입력 방식을 통해 많은 조음기관 물리 특성 데이터가 모이고 ANN의 정확도가 증가한다. 본 연구에서는 입력 데이터인 조음기관 물리 특성을 10개의 자음으로 선정하였고, 추출 과정에서 5개의 조음위치인 Bilabial, Alveolar, Palatal, Velar, Glottal로 분류되었다. 이를 위해, 상기 5개의 조음위치에 해당하는 10개의 자음을 순서대로 100번씩, 총 1000번 무작위로 50번씩 총 500번 발음을 하였다. 이에 따라, 도 52와 같이 자음 분류를 위한 Confusion Matrix가 형성되었다. 이를 기반으로 각 조음위치마다 발화되는 자음의 개수가 상이하다는 것을 고려하여, 다음 도 53과 같이 백분율로 나타내었다. 이를 통해, 화자는 표준 발화와 대비하여 발음의 정오도 및 근접유사도가 낮은 Palatal과 관련하여, 자음을 제대로 발화하지 못함을 알 수 있다. 또한 도 52에 따르면, Palatal과 관련된 자음을 발화하고자 하였으나 Alveolar와 관련된 자음으로 잘못 발화한 경우는 17%이다. 이는 화자가 Palatal과 관련된 자음과 Alveolar와 관련된 자음 간의 차이를 명확히 인지하지 못함을 의미한다. 이를 해결하기 위해서 도 56에서처럼, 구강설(12)의 구강설 센서(110)에 인접한 하나이상의 피드백 센서(620)를 통해, 화자에게 상호 발음에 대한 차이를 알려줄 수 있다. 이를 위해서, 상기 구강설에 위치한 하나이상의 피드백 센서(620) 중 구강설의 앞부분에 위치한 피드백 센서(620)에 가이딩 신호(610)를 진동을 포함한 촉각 신호로서 전달한다. 이에 화자는 구강설의 앞부분에 집중하게 되고, Palatal과 Alveolar의 상이한 위치에 민감하게 반응하며 재발화를 함으로서 발화 교정을 지속하게 된다. 이러한 재발화 내용은 상기 구강설 센서(110)를 통해 지속적으로 측정되고 이를 데이터해석부(200)이 발화 특징(220)으로 파악하여, 데이터표현부(300)으로 전달하고 화자에게 재발화에 따른 발화 교정 내역을 제공한다.
도면에 기재된 방법 외에도 센서의 경우 다음과 같은 것들이 포함 될 수 있다.
1. 압력센서: MEMS 센서, Piezoelectric (압력-전압) 방식, Piezoresistive (압력-저항) 방식, Capacitive 방식, Pressure sensitive 고무 방식, Force sensing resistor (FSR) 방식, Inner particle 변형 방식, Buckling 측정 방식.
2. 마찰 센서: 마이크로 hair array 방식, 마찰온도 측정방식.
3. 정전기 센서: 정전기 소모 방식, 정전기 발전 방식.
4. 전기저항 센서: 직류저항 측정방식, 교류저항 측정방식, MEMS, Lateral 전극 array 방식, Layered 전극 방식, Field Effect Transistor (FET) 방식 (Organic-FET,Metal-oxide-semiconductor-FET, Piezoelectric-oxide-semiconductor -FET 등 포함).
5. Tunnel Effect Tactile 센서: Quantum tunnel composites 방식, Electron tunneling 방식, Electroluminescent light 방식.
6. 열저항 센서: 열전도도 측정방식, Thermoelectric 방식.
7. Optical 센서: light intensity 측정방식, refractive index 측정방식.
8. Magnetism based 센서: Hall-effect 측정 방식, Magnetic flux 측정 방식.
9. Ultrasonic based 센서: Acoustic resonance frequency 방식, Surface noise 방식, Ultrasonic emission 측정방식.
10. 소프트 재료 센서: 고무, 파우더, 다공성 소재, 스펀지, 하이드로젤, 에어로젤, 탄소섬유, 나노탄소재료, 탄소나노튜브, 그래핀, 그래파이트, 복합재, 나노복합재, metal-고분자 복합재, ceramic-고분자 복합재, 전도성 고분자 등의 재료를 이용한 pressure, stress, 혹은 strain 측정 방식, Stimuli responsive 방식.
11. Piezoelectric 소재 센서: Quartz, PZT (lead zirconate titanate) 등의 세라믹 소재, PVDF, PVDF copolymers, PVDF-TrFE 등의 고분자 소재, 셀룰로오스, ZnO 나노선 등의 나노소재 방식.
10: 화자 11: 두경부 12: 구강설 13: 성대
100 : 센서부 110: 구강설 센서 111: 결정 구조 112: 압전소자 113: 마찰대전소자
114: 회로부 115: 캡슐부 116: 접착부
120: 안면 센서 121: 레퍼런스 센서 122: 양극센서 123: 음극센서
130: 음성취득 센서 140: 성대 센서
150: 치아 센서 160: 촬상 센서
200: 데이터해석부 205: 표준 발화 특징 행렬
210: 센서부의 위치 220: 발화 특징 230: 화자의 음성
240: 발화 내역 정보
250: 발화 변이
300: 데이터표현부 310: 언어 데이터
350: 데이터베이스부 360: 언어 데이터 색인
361: 자모음의 음소단위 색인 362: 음절 단위 색인 363: 단어단위 색인
364: 구절단위 색인 365: 문장단위 색인 366: 연속 발화 색인 367: 발음의 고저 색인370: 발화 표현셋
400: 통신부
500: 트레이닝부
600: 피드백부 610: 가이딩 신호 620: 피드백 센서

Claims (47)

  1. 두경부의 일면에 인접하여 조음기관의 물리특성을 측정하는 센서부(100);와
    상기 센서부에 의해 측정된 조음 기관의 물리특성을 기반으로 화자의 발화 특징(220)을 파악하고 이를 언어 데이터(310)로 처리하는 데이터해석부(200);를 포함하는 것을 특징으로 하는 두경부 조음기관의 물리특성 기반의 발화 의도 측정 및 발화 구현 장치에 있어서,
    상기 센서부는 구강설의 일면에 인접하거나, 그 내부에 삽입되는 구강설 센서(110);를 포함하고
    상기 언어 데이터에 기반하여 화자의 발화에 대한 가이딩 신호(610)를 제공하는 피드백부(600)를 포함하는 것을 더욱 포함하는 것을 특징으로 하는 촬상센서를 포함한 두경부 조음기관의 물리특성과 기반의 발화 의도 측정 및 발화 구현 시스템
  2. 제 1항에 있어서,
    상기 구강설 센서(110)은 구강설의 저고도, 전후설성, 굴곡도, 신전도, 회전도, 긴장도, 수축도, 이완도, 진동도 중 하나이상의 독립 물리 신호를 파악하는 것을 특징으로 하는 촬상센서를 포함한 두경부 조음기관의 물리특성과 기반의 발화 의도 측정 및 발화 구현 시스템
  3. 제 1항 내지 2항에 있어서,
    상기 센서부(100)의 구강설 센서(110)는 구강설의 일측면에 고착되거나, 그 표면을 감싸거나, 그 내부에 삽입되어 발화에 따른 구강설의 x축, y축, z축 방향 기반의 시간에 따른 벡터량의 변화량을 파악함으로서, 구강설을 포함한 조음기관의 물리 특성에 의한 발화 특징(220)을 파악하는 것을 특징으로 하는 촬상센서를 포함한 두경부 조음기관의 물리특성과 기반의 발화 의도 측정 및 발화 구현 시스템
  4. 제 1항 내지 2항에 있어서,
    상기 센서부(100)의 구강설 센서(110)는 구강설의 일측면에 고착되거나, 그 표면을 감싸거나, 그 내부에 삽입되어 발화에 따른 구강설의 x축, y축, z축 방향 기반의 단위 시간 당 회전하는 각도의 변화량를 파악함으로서, 구강설을 포함한 조음기관의 물리 특성에 의한 발화 특징(220)을 파악하는 것을 특징으로 하는 촬상센서를 포함한 두경부 조음기관의 물리특성과 기반의 발화 의도 측정 및 발화 구현 시스템
  5. 제 1항 내지 2항에 있어서,
    상기 센서부(100)의 구강설 센서(110)은 구강설의 일측면에 고착되거나, 그 표면을 감싸고, 발화에 따른 구강설의 수축 내지 이완으로 발생하는 물리력에 따라 결정 구조(111)의 변화에 의해 편극이 발생하여 전기신호가 발생하는 압전소자(112)를 통해 구강설의 굽힘도를 파악함으로서, 구강설을 포함한 조음기관의 물티 특성에 의한 발화 특징(220)을 파악하는 것을 특징으로 하는 촬상센서를 포함한 두경부 조음기관의 물리특성과 기반의 발화 의도 측정 및 발화 구현 시스템
  6. 제 1항 내지 2항에 있어서,
    상기 센서부는 구강설이 두경부 내외의 다른 조음기관과의 상호작용에 의해 생기는 접근 및 접촉에 의해 발생하는 마찰전기(Tribo Electric Generator)에 따른 연계 물리 신호를 파악하기 위해 마찰대전소자(113)를 포함하는 것을 특징으로 하는 촬상센서를 포함한 두경부 조음기관의 물리특성과 기반의 발화 의도 측정 및 발화 구현 시스템
  7. 제 1항 내지 2항에 있어서,
    상기 센서부는 구강설이 두경부 내외의 수동적 조음기관과 인접 내지 응접에 의해 생기는 파열도, 마찰도, 공명도. 접근도 중 하나이상의 연계 물리 신호를 파악하는 것을 특징으로 하는 촬상센서를 포함한 두경부 조음기관의 물리특성과 기반의 발화 의도 측정 및 발화 구현 시스템
  8. 제 1항 내지 2항에 있어서,
    상기 센서부는 구강설이 두경부 내외의 능동적 조음기관과 인접 내지 응접에 의해 생기는 파열도, 마찰도, 공명도. 접근도 중 하나이상의 연계 물리 신호를 파악하는 것을 특징으로 하는 촬상센서를 포함한 두경부 조음기관의 물리특성과 기반의 발화 의도 측정 및 발화 구현 시스템
  9. 제 1항에 있어서,
    상기 데이터해석부(200)는 상기 센서부(100)에서 측정된 조음기관의 물리특성을 발화 특징으로 파악함에 있어서, 2진수 내지 실수로 구성된 표준 발화 특징 행렬(205)을 기반으로 화자의 발음과 강세의 정오도, 유사근접도, 발화 의도 중 하나이상(의 발화 특징)을 파악하는 촬상센서를 포함한 두경부 조음기관의 물리특성과 기반의 발화 의도 측정 및 발화 구현 시스템
  10. 제 1항에 있어서,
    상기 데이터해석부는 상기 센서부(100)에서 측정된 조음기관의 물리특성을 발화 특징으로 파악함에 있어서, 상기 조음기관의 물리특성을 각 자모음 단위의 패턴으로 인식하는 단계, 상기 자모음 단위의 패턴의 특징을 추출하고, 상기 분류된 패턴의 특징을 유사도에 따라 분류하는 단계, 분류된 패턴의 특징을 재조합하는 단계, 조음기관의 물리특성을 발화 특징으로 해석하는 단계에 따라 발화 특징을 파악하는 것을 특징으로 하는 촬상센서를 포함한 두경부 조음기관의 물리특성과 기반의 발화 의도 측정 및 발화 구현 시스템
  11. 제 9항 내지 10항에 있어서,
    상기 데이터해석부는 상기 센서부에서 측정되는 구강설의 독립 물리 신호를 통해 화자가 발화하는 자모음, 그에 따라 나타나는 어휘 단위 강세 (Lexical Stress), 문장 단위 강세(Tonic stress) 중 하나이상의 발화 특징을 파악하는 촬상센서를 포함한 두경부 조음기관의 물리특성과 기반의 발화 의도 측정 및 발화 구현 시스템
  12. 제 1항 내지 11항에 있어서,
    상기 데이터해석부는 상기 센서부에서 측정되는 구강설과 타 조음기관과의 인접 내지 응접에 의해 발생하는 연계 물리 신호를 통해 화자가 발화하는 자모음, 그에 따라 나타나는 어휘 단위 강세 (Lexical Stress), 문장 단위 강세(Tonic stress) 중 하나이상 발화 특징을 파악하는 촬상센서를 포함한 두경부 조음기관의 물리특성과 기반의 발화 의도 측정 및 발화 구현 시스템
  13. 제 11항 내지 12항에 있어서,
    상기 센서부(100)와 두경부 내외의 수동적 조음기관과 능동적 조음기관의 상호 작용에 의해 생겨 상기 데이터해석부(200)가 파악하는 발화 특징은 페쇄파열음화, 마찰음화, 파찰음화도, 비음화, 유음화, 활음화, 치찰음화, 유무성음화, 성문음화 중 하나이상을 포함하는 것을 특성으로 하는 촬상센서를 포함한 두경부 조음기관의 물리특성과 기반의 발화 의도 측정 및 발화 구현 시스템
  14. 제 12항 내지 13항에 있어서,
    상기 센서부에 의해 측정되는 물리 신호에 의한 발화 특징(220)은 자모음의 동화(Assimilation), 이화(Dissimilation), 탈락(Elision), 첨가(Attachment), 강세(Stress), 약화(Reduction)로 야기되는 기식음화 (Asperation), 음절성자음화(Syllabic cosonant), 탄설음화(Flapping), 경음화(Tensification), 순음화(Labilalization), 연구개음화(Velarization), 치음화(Dentalizatiom), 구개음화 (Palatalization), 비음화(Nasalization), 강세변화(Stress Shift), 장음화(Lengthening) 중 하나이상의 이차조음현상인 발화 변이(250)을 측정하는 것을 특징으로 하는 촬상센서를 포함한 두경부 조음기관의 물리특성과 기반의 발화 의도 측정 및 발화 구현 시스템
  15. 제 1항 내지 2항에 있어서,
    상기 구강설 센서는 센서 작동을 위한 회로부, 그 회로를 감싸는 캡슐부로 구성된 것을 특징으로 하는 촬상센서를 포함한 두경부 조음기관의 물리특성과 기반의 발화 의도 측정 및 발화 구현 시스템
  16. 제 1항, 2항, 3항, 4항, 5항 중 어느 한 항에 있어서,
    상기 구강설 센서는 박막 회로를 가진 필름 형태로서 구강설에 인접하여 작동하는 것을 특징으로 하는 촬상센서를 포함한 두경부 조음기관의 물리특성과 기반의 발화 의도 측정 및 발화 구현 시스템
  17. 제 1항, 15항, 16항 중 어느 한 항에 있어서,
    상기 구강설 센서의 하부는 구강설의 일면에 접착되고자 접착부를 포함하는 것을 특징으로 하는 촬상센서를 포함한 두경부 조음기관의 물리특성과 기반의 발화 의도 측정 및 발화 구현 시스템
  18. 제 2항, 3항, 4항, 5항, 15항, 16항 중 어느 한 항에 있어서,
    상기 구강설 센서의 각 회로는 하나의 통합되어 작동하는 것을 특징으로 하는 촬상센서를 포함한 두경부 조음기관의 물리특성과 기반의 발화 의도 측정 및 발화 구현 시스템
  19. 제 1항에 있어서,
    상기 센서부(100)는 하나이상의 안면 근육의 일면에 인접하는 안면 센서(110)를 더욱 포함할 수 있는 것을 특징으로 하는 촬상센서를 포함한 두경부 조음기관의 물리특성과 기반의 발화 의도 측정 및 발화 구현 시스템
  20. 제 19항에 있어서,
    상기 센서부(100)의 안면부 센서(120)는 두경부 근육의 신경신호 측정의 기준 전위를 생성하는 하나이상의 레퍼런스 센서(121)과 상기 두경부 근육의 신경신호를 측정하는 하나이상의 양극 센서(122)와 하나이상의 음극센서(123)을 포함하는 것을 특징으로 하는 촬상센서를 포함한 두경부 조음기관의 물리특성과 기반의 발화 의도 측정 및 발화 구현 시스템
  21. 제 19항 내지 20항에 있어서,
    상기 데이터해석부(200)는 안면부 센서(120)에 기반한 센서부의 위치(210)를 획득함에 있어서, 상기 레퍼런스 센서(121)을 기준으로 하여 상기 양극 센서(122)와 상기 음극센서(123)의 전위차를 파악하여 상기 안면부 센서(120)의 위치를 파악하는 것을 특징으로 하는 것을 특징으로 하는 촬상센서를 포함한 두경부 조음기관의 물리특성과 기반의 발화 의도 측정 및 발화 구현 시스템
  22. 제 19항 내지 20항에 있어서,
    상기 데이터해석부(200)는 안면부 센서(120)에 기반하여 화자의 발화 특징(220)을 획득함에 있어서, 상기 레퍼런스 센서(121)을 기준으로 하여 상기 양극 센서(122)와 상기 음극센서(123)의 전위차를 파악하여 상기 화자의 두경부에서 발생하는 조음기관의 물리 특성에 의한 발화 특징(220)를 파악하는 것을 특징으로 하는 촬상센서를 포함한 두경부 조음기관의 물리특성과 기반의 발화 의도 측정 및 발화 구현 시스템
  23. 제 1항에 있어서,
    상기 센서부(100) 내지 데이터해석부(200)는 화자(10)의 두경부 중 성대에 인접하여 성대의 근전도 내지 떨림을 파악하는 성대 센서(140)을 포함하는 것을 특징으로 하는 촬상센서를 포함한 두경부 조음기관의 물리특성과 기반의 발화 의도 측정 및 발화 구현 시스템
  24. 제 23항에 있어서,
    상기 성대 센서(140)는 화자(10)의 발화 시작, 발화 정지, 발화 종료 중 하나이상의 발화 내역 정보(240)를 파악하는 것을 특징으로 하는 촬상센서를 포함한 두경부 조음기관의 물리특성과 기반의 발화 의도 측정 및 발화 구현 시스템
  25. 제 1항에 있어서,
    상기 센서부는 치아의 일면에 인접하여 구강설 내지 아랫 입술이 접촉함으로 발생하는 전기적 용량 변화에 따른 신호발생 위치를 파악하는 치아센서(150)을 더욱 포함할 수 있는 것을 특징으로 하는 촬상센서를 포함한 두경부 조음기관의 물리특성과 기반의 발화 의도 측정 및 발화 구현 시스템
  26. 제 1항에 있어서,
    상기 데이터해석부(200)는 화자의 두경부 일면에 인접한 음성 취득 센서(130)를 통해 발화에 따른 화자의 음성(230)을 취득하는 것을 특징으로 하는 촬상센서를 포함한 두경부 조음기관의 물리특성과 기반의 발화 의도 측정 및 발화 구현 시스템
  27. 제 1항, 19항, 23항, 25항, 26항 중 어느 한 항에 있어서.
    상기 센서부(100)의 구강설 센서, 안면 센서, 음성취득 센서, 성대 센서, 치아 센서 중 하나이상의 센서에 전원을 공급하는 전원부를 포함하는 것을 특징으로 하는 촬상센서를 포함한 두경부 조음기관의 물리특성과 기반의 발화 의도 측정 및 발화 구현 시스템
  28. 제 1 항, 9항, 10항 중 어느 한 항에 있어서,
    상기 센서부는 데이터해석부가 외부에 위치하여 작동할 경우, 연동되어 통신할 수 있는 통신부(400)를 포함하는 것을 특징으로 하는 촬상센서를 포함한 두경부 조음기관의 물리특성과 기반의 발화 의도 측정 및 발화 구현 시스템
  29. 제 28항에 있어서,
    상기 통신부의 경우, 유선 내지 무선으로 구현되는 것을 특징으로 하는 촬상센서를 포함한 두경부 조음기관의 물리특성과 기반의 발화 의도 측정 및 발화 구현 시스템
  30. 제 1항에 있어서,
    상기 데이터해석부(200)는 상기 센서부의 위치(210), 화자의 발화 특징(220), 화자의 음성(230)에 대응하는 하나이상의 언어 데이터 색인(360)을 포함하는 데이터베이스부(350)와 연동되는 것을 특징으로 하는 촬상센서를 포함한 두경부 조음기관의 물리특성과 기반의 발화 의도 측정 및 발화 구현 시스템
  31. 제 30항에 있어서,
    상기 데이터베이스부(350)는 발화의 진행 시간, 발화에 따른 주파수, 발화의 진폭, 발화에 따른 두경부 근육의 근전도, 발화에 따른 두경부 근육의 위치 변화, 구강설의 굽힘 및 회전에 따른 위치 변화 중 하나이상의 정보를 기반으로 하나이상의 언어 데이터 색인(360)을 구성하는 것을 특징으로 하는 촬상센서를 포함한 두경부 조음기관의 물리특성과 기반의 발화 의도 측정 및 발화 구현 시스템
  32. 제 30항 내지 31항에 있어서,
    상기 데이터베이스부(350)는 하나이상의 언어 데이터 색인(360)을 구성함에 있어서, 자모음의 음소단위 색인(361), 음절 단위 색인(362), 단어단위 색인(363), 구절단위 색인(364), 문장단위 색인(365), 연속 발화 단위 색인(366), 발음의 고저 색인(367)을 포함하는 것을 특징으로 하는 촬상센서를 포함한 두경부 조음기관의 물리특성과 기반의 발화 의도 측정 및 발화 구현 시스템
  33. 제 1항에 있어서,
    상기 데이터해석부에서 처리된 언어 데이터(310)를 외부로 표현하는 데이터표현부(300)를 더욱 포함하는 것을 특징으로 하는 촬상센서를 포함한 두경부 조음기관의 물리특성과 기반의 발화 의도 측정 및 발화 구현 시스템
  34. 제1 내지 30항에 있어서,
    상기 데이터표현부(300)는 상기 데이터베이스부(350)의 언어 데이터 색인(360)과 연동되어, 화자의 발화 특징을 자모음의 음소(Phoneme) 단위, 하나이상의 단어 단위, 하나이상의 구절 단위(Citation Forms), 하나이상의 문장 단위, 연속 발화 단위(Consecutive Speech) 중 하나이상의 발화 표현셋(370)을 나타내는 것을 특징으로 하는 촬상센서를 포함한 두경부 조음기관의 물리특성과 기반의 발화 의도 측정 및 발화 구현 시스템

  35. 제 34항에 있어서,
    상기 데이터표현부에 의해 나타나는 발화 표현 셋은 문자 기호, 그림, 특수기호, 숫자 중 하나이상으로 시각화되어 화자와 청자에게 제공되는 것을 특징으로 하는 촬상센서를 포함한 두경부 조음기관의 물리특성과 기반의 발화 의도 측정 및 발화 구현 시스템
  36. 제 34항에 있어서,
    상기 데이터표현부에 의해 나타나는 발화 표현 셋은 소리 형태로 청각화되어 화자와 청자에게 제공되는 것을 특징으로 하는 촬상센서를 포함한 두경부 조음기관의 물리특성과 기반의 발화 의도 측정 및 발화 구현 시스템
  37. 제 34항에 있어서,
    상기 데이터표현부에 의해 나타나는 발화 표현 셋은 진동, 스누징, 태핑, 압박,이완 중 하나이상의 촉각적 방법으로 화자와 청자에게 제공되는 것을 특징으로 하는 것을 특징으로 하는 두촬상센서를 포함한 두경부 조음기관의 물리특성과 기반의 발화 의도 측정 및 발화 구현 시스템
  38. 제 1항, 30항, 34항 중 어느 한 항에 있어서,
    상기 센서부에서 측정되고 데이터해석부에서 처리된 화자의 발화 특징은 별도의 청각 출력 보조 장치 내지 청신경에 바로 전달될 수 있는 것을 특징으로 하는 촬상센서를 포함한 두경부 조음기관의 물리특성과 기반의 발화 의도 측정 및 발화 구현 시스템
  39. 제 1항, 30항, 34항 중 어느 한 항에 있어서,
    상기 데이터해석부는 상기 센서부에서 측정된 화자의 발화 특징에 대해 발음과 강세의 정오도, 유사근접도, 발화 의도 중 하나이상을 훈련시키는 트레이닝부(500)를 포함하는 것을 특징으로 하는 촬상센서를 포함한 두경부 조음기관의 물리특성과 기반의 발화 의도 측정 및 발화 구현 시스템
  40. 제 9항, 10항, 39항 중 어느 한 항에 있어서,
    상기 트레이닝부는 표준 발화 특징 행렬 내지 발화 특징 해석 단계를 통해, 화자의 발화 특징에 대한 발음과 강세의 정오도, 유사근접도, 발화의도에 대한 피드백 내용을 파악하고, 이를 상기 데이터표현부를 통해 표현하는 것을 특징으로 하는 촬상센서를 포함한 두경부 조음기관의 물리특성과 기반의 발화 의도 측정 및 발화 구현 시스템

  41. 제 1항에 있어서,
    상기 센서부(100)의 촬상 센서(160)는 화자의 두경부 조음기관의 변화 정보(161) 내지 화자의 두경부 표정 변화 정보(162)를 파악하기 위해 화자(10)의 두경부를 촬상하는 것을 특징으로 하는 촬상센서를 포함한 두경부 조음기관의 물리특성과 기반의 발화 의도 측정 및 발화 구현 시스템
  42. 제 1항에 있어서,
    상기 데이터해석부(200)는 발화에 따른 화자의 두경부 조음기관의 변화 정보(161) 내지 화자의 두경부 표정 변화 정보(162)를 파악하기 위해 화자(10)의 두경부를 촬상하는 촬상 센서(160)와 연동되는 것을 특징으로 하는 촬상센서를 포함한 두경부 조음기관의 물리특성과 기반의 발화 의도 측정 및 발화 구현 시스템
  43. 제 1항 내지 41항에 있어서,
    상기 촬상 센서(160)는 화자의 발화 의도에 따라 움직이는 두경부, 흉곽부, 상지부, 하지부의 비언어적 표현(163)을 더욱 촬상하는 것을 특징으로 하는 촬상센서를 포함한 두경부 조음기관의 물리특성과 기반의 발화 의도 측정 및 발화 구현 시스템
  44. 제 1항, 41항, 42항 43항 중 어느 한 항에 있어서,
    상기 비언어적 표현(163)은 화자의 발화 의도에 따라 발생하는 두경부의 상하좌우의 기울임, 흉곽부의 들썩임, 두경부와 흉곽부 간의 핏대 및 근육의 긴장, 상지부의 떨림, 상지부의 제스쳐, 하지부의 떨림, 하지부의 제스쳐 중 하나이상의 표현을 포함하는 것을 특징으로 하는 촬상센서를 포함한 두경부 조음기관의 물리특성과 기반의 발화 의도 측정 및 발화 구현 시스템
  45. 제 1항, 30항, 33항, 39항 중 어느 한 항에 있어서,
    상기 센서부에서 측정되는 조음 기관 물리특징을 상기 데이터해석부(200)가 언어 데이터(310)로 처리하고, 상기 트레이닝부가 표준 발화 특징 행렬 내지 발화 특징 해석 단계를 기반으로 발음과 강세의 정오도, 유사근접도, 발화의도에 대한 피드백 내용을 파악함에 있어서, 상기 피드백부(600)는 상기 피드백 내용을 온도 신호, 소리 신호, 진동을 포함하는 촉각 신호 중 하나이상의 가이딩 신호(610)로서 제공하는 것을 특징으로 하는 발화 개선을 위한 두경부 물리 특성 기반의 가이드 및 피드백 시스템
  46. 제 1항 내지 45항에 있어서,
    상기 피드백부(600)는 화자의 구강설 내지 두경부의 일면에 위치한 하나이상의 피드백 센서(620)를 통해 가이딩 신호(610)를 화자에게 제공하는 것을 특징으로 하는 발화 개선을 위한 두경부 물리 특성 기반의 가이드 및 피드백 시스템
  47. 제 1항, 45항, 46항 중 어느 한 항에 있어서,
    상기 트레이닝부(500)의 피드백 센서(620)는 화자의 발화에 따른 두경부 조음 기관의 물리 특성을 파악하는 센서부(100)와 통합되어, 상기 가이딩 신호(610)를 제공하는 것을 특징으로 하는 발화 개선을 위한 두경부 물리 특성 기반의 가이드 및 피드백 시스템
KR1020170125765A 2017-04-13 2017-09-28 발화 개선을 위한 두경부 물리 특성 기반의 가이드 및 피드백 시스템 KR20180115599A (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/605,361 US20200126557A1 (en) 2017-04-13 2018-04-13 Speech intention expression system using physical characteristics of head and neck articulator
PCT/KR2018/004325 WO2018190668A1 (ko) 2017-04-13 2018-04-13 두경부 조음기관의 물리 특성을 이용한 발화 의도 표현 시스템
KR1020180115927A KR102174188B1 (ko) 2017-04-13 2018-09-28 발화 개선을 위한 두경부 물리 특성 기반의 발화 개선 가이드 및 피드백 및 피드백 시스템
KR1020200141995A KR102251505B1 (ko) 2017-04-13 2020-10-29 발화 개선을 위한 두경부 물리 특성 기반의 발화 개선 가이드 및 피드백 및 피드백 시스템

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170048010 2017-04-13
KR20170048010 2017-04-13

Publications (1)

Publication Number Publication Date
KR20180115599A true KR20180115599A (ko) 2018-10-23

Family

ID=64101599

Family Applications (15)

Application Number Title Priority Date Filing Date
KR1020170126049A KR20180115601A (ko) 2017-04-13 2017-09-28 영상 객체의 발화 및 표정 구현을 위한 조음기관 물리 특성 기반의 발화-표정 데이터 맵핑 시스템
KR1020170126048A KR20180115600A (ko) 2017-04-13 2017-09-28 발화 의도 표현을 위한 두경부 조음기관 물리 특성 기반 시스템
KR1020170126470A KR20180115603A (ko) 2017-04-13 2017-09-28 조음기관의 물리 특성과 음성 간 매칭을 통한 발화 의도 측정 및 발화 구현 시스템
KR1020170125765A KR20180115599A (ko) 2017-04-13 2017-09-28 발화 개선을 위한 두경부 물리 특성 기반의 가이드 및 피드백 시스템
KR1020170126469A KR20180115602A (ko) 2017-04-13 2017-09-28 촬상센서를 포함한 두경부 조음기관의 물리특성과 기반의 발화 의도 측정 및 발화 구현 시스템
KR1020170126769A KR20180115604A (ko) 2017-04-13 2017-09-29 조음기관의 물리 특성과 문자 간 매칭을 통한 발화 의도 측정 및 발화 구현 시스템
KR1020170126770A KR20180115605A (ko) 2017-04-13 2017-09-29 로봇의 발화 및 안면 구현을 위한 조음기관 물리 특성 기반의 발화-표정 데이터 맵핑 시스템
KR1020180043031A KR102180551B1 (ko) 2017-04-13 2018-04-13 발화의도표현을 위한 두경부 조음기관 물리특성 기반시스템
KR1020180115144A KR102196099B1 (ko) 2017-04-13 2018-09-27 촬상센서를 포함한 두경부 조음기관의 물리특성과 기반의 발화 의도 측정 및 발화 구현 시스템
KR1020180115146A KR102152775B1 (ko) 2017-04-13 2018-09-27 로봇의 발화 및 안면 구현을 위한 조음기관 물리 특성 기반의 발화-표정 데이터 맵핑 시스템
KR1020180115145A KR102180331B1 (ko) 2017-04-13 2018-09-27 영상 객체의 발화 및 표정 구현을 위한 조음기관 물리 특성 기반의 발화-표정 데이터 맵핑 시스템
KR1020180116479A KR102231067B1 (ko) 2017-04-13 2018-09-28 조음기관의 물리 특성과 음성 및 문자 간 매칭을 통한 발화 의도 측정 및 발화 구현 시스템
KR1020180115927A KR102174188B1 (ko) 2017-04-13 2018-09-28 발화 개선을 위한 두경부 물리 특성 기반의 발화 개선 가이드 및 피드백 및 피드백 시스템
KR1020200141995A KR102251505B1 (ko) 2017-04-13 2020-10-29 발화 개선을 위한 두경부 물리 특성 기반의 발화 개선 가이드 및 피드백 및 피드백 시스템
KR1020200150799A KR102270653B1 (ko) 2017-04-13 2020-11-12 영상 객체의 발화 및 표정 구현을 위한 조음기관 물리 특성 기반의 발화-표정 데이터 맵핑 시스템

Family Applications Before (3)

Application Number Title Priority Date Filing Date
KR1020170126049A KR20180115601A (ko) 2017-04-13 2017-09-28 영상 객체의 발화 및 표정 구현을 위한 조음기관 물리 특성 기반의 발화-표정 데이터 맵핑 시스템
KR1020170126048A KR20180115600A (ko) 2017-04-13 2017-09-28 발화 의도 표현을 위한 두경부 조음기관 물리 특성 기반 시스템
KR1020170126470A KR20180115603A (ko) 2017-04-13 2017-09-28 조음기관의 물리 특성과 음성 간 매칭을 통한 발화 의도 측정 및 발화 구현 시스템

Family Applications After (11)

Application Number Title Priority Date Filing Date
KR1020170126469A KR20180115602A (ko) 2017-04-13 2017-09-28 촬상센서를 포함한 두경부 조음기관의 물리특성과 기반의 발화 의도 측정 및 발화 구현 시스템
KR1020170126769A KR20180115604A (ko) 2017-04-13 2017-09-29 조음기관의 물리 특성과 문자 간 매칭을 통한 발화 의도 측정 및 발화 구현 시스템
KR1020170126770A KR20180115605A (ko) 2017-04-13 2017-09-29 로봇의 발화 및 안면 구현을 위한 조음기관 물리 특성 기반의 발화-표정 데이터 맵핑 시스템
KR1020180043031A KR102180551B1 (ko) 2017-04-13 2018-04-13 발화의도표현을 위한 두경부 조음기관 물리특성 기반시스템
KR1020180115144A KR102196099B1 (ko) 2017-04-13 2018-09-27 촬상센서를 포함한 두경부 조음기관의 물리특성과 기반의 발화 의도 측정 및 발화 구현 시스템
KR1020180115146A KR102152775B1 (ko) 2017-04-13 2018-09-27 로봇의 발화 및 안면 구현을 위한 조음기관 물리 특성 기반의 발화-표정 데이터 맵핑 시스템
KR1020180115145A KR102180331B1 (ko) 2017-04-13 2018-09-27 영상 객체의 발화 및 표정 구현을 위한 조음기관 물리 특성 기반의 발화-표정 데이터 맵핑 시스템
KR1020180116479A KR102231067B1 (ko) 2017-04-13 2018-09-28 조음기관의 물리 특성과 음성 및 문자 간 매칭을 통한 발화 의도 측정 및 발화 구현 시스템
KR1020180115927A KR102174188B1 (ko) 2017-04-13 2018-09-28 발화 개선을 위한 두경부 물리 특성 기반의 발화 개선 가이드 및 피드백 및 피드백 시스템
KR1020200141995A KR102251505B1 (ko) 2017-04-13 2020-10-29 발화 개선을 위한 두경부 물리 특성 기반의 발화 개선 가이드 및 피드백 및 피드백 시스템
KR1020200150799A KR102270653B1 (ko) 2017-04-13 2020-11-12 영상 객체의 발화 및 표정 구현을 위한 조음기관 물리 특성 기반의 발화-표정 데이터 맵핑 시스템

Country Status (2)

Country Link
US (1) US20200126557A1 (ko)
KR (15) KR20180115601A (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200100411A (ko) * 2019-02-18 2020-08-26 충북대학교 산학협력단 발화 장애인들 및 외국인의 보편적 의사소통을 위한 음성 개선 방법

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3618061B1 (en) * 2018-08-30 2022-04-27 Tata Consultancy Services Limited Method and system for improving recognition of disordered speech
CN110047480A (zh) * 2019-04-22 2019-07-23 哈尔滨理工大学 用于社区医院科室查询的辅助管理机器人头部装置及控制
KR102197186B1 (ko) 2020-09-01 2020-12-31 오수원 차량용 색상시트 분류장치
WO2022076777A1 (en) * 2020-10-09 2022-04-14 The University Of North Carolina At Chapel Hill Intraoral speech devices, methods, and systems
KR102284254B1 (ko) * 2020-10-28 2021-08-02 이호영 발음 학습을 위한 교육용 장치
CN112863263B (zh) * 2021-01-18 2021-12-07 吉林农业科技学院 一种基于大数据挖掘技术的韩语发音纠正系统
KR102404152B1 (ko) * 2021-01-28 2022-05-31 여주대학교 산학협력단 혀 운동 기기
US11688106B2 (en) * 2021-03-29 2023-06-27 International Business Machines Corporation Graphical adjustment recommendations for vocalization
CN113223507B (zh) * 2021-04-14 2022-06-24 重庆交通大学 基于双输入互干扰卷积神经网络的异常语音识别方法
KR102519498B1 (ko) * 2021-05-14 2023-04-07 경희대학교 산학협력단 재활 장치 및 이를 이용하는 연하 장애 재활 시스템
US20230335006A1 (en) * 2022-04-14 2023-10-19 Annunciation Corporation Robotic Head For Modeling Articulation Of Speech Sounds
CN115222856B (zh) * 2022-05-20 2023-09-26 一点灵犀信息技术(广州)有限公司 表情动画生成方法及电子设备
KR20240018143A (ko) 2022-08-02 2024-02-13 이진 수면중 심전도 측정 데이터를 기반으로 한 수면 유도용 스마트 조명
WO2024073803A1 (en) * 2022-10-05 2024-04-11 Tepy Pty Ltd Soundless speech recognition method, system and device

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2833289B2 (ja) * 1991-10-01 1998-12-09 日本電気株式会社 アナログスイッチ
JP3893763B2 (ja) * 1998-08-17 2007-03-14 富士ゼロックス株式会社 音声検出装置
US6971993B2 (en) * 2000-11-15 2005-12-06 Logometrix Corporation Method for utilizing oral movement and related events
WO2002086801A1 (en) * 2001-04-17 2002-10-31 Koninklijke Philips Electronics N.V. Method and apparatus of managing information about a person
TW200305854A (en) * 2002-03-27 2003-11-01 Aliphcom Inc Microphone and voice activity detection (VAD) configurations for use with communication system
US20040243416A1 (en) * 2003-06-02 2004-12-02 Gardos Thomas R. Speech recognition
US8044766B2 (en) * 2005-10-31 2011-10-25 North Carolina State University Tongue operated magnetic sensor based wireless assistive technology
US9990859B2 (en) * 2008-01-17 2018-06-05 Speech Buddies, Inc. Intraoral tactile biofeedback methods, devices and systems for speech and language training
US20120259554A1 (en) * 2011-04-08 2012-10-11 Sony Computer Entertainment Inc. Tongue tracking interface apparatus and method for controlling a computer program
US10172555B2 (en) * 2013-03-08 2019-01-08 The Board Of Trustees Of The Leland Stanford Junior University Device for detecting on-body impacts
US9911358B2 (en) * 2013-05-20 2018-03-06 Georgia Tech Research Corporation Wireless real-time tongue tracking for speech impairment diagnosis, speech therapy with audiovisual biofeedback, and silent speech interfaces
EP2933067B1 (en) * 2014-04-17 2019-09-18 Softbank Robotics Europe Method of performing multi-modal dialogue between a humanoid robot and user, computer program product and humanoid robot for implementing said method
US20150305920A1 (en) * 2014-04-29 2015-10-29 Meditab Software Inc. Methods and system to reduce stuttering using vibration detection
TWI576826B (zh) * 2014-07-28 2017-04-01 jing-feng Liu Discourse Recognition System and Unit
CA2975124C (en) * 2015-01-31 2024-02-13 Brian Lee Moffat Control of a computer via distortions of facial geometry
EP3360244B1 (en) * 2015-10-05 2021-02-24 Koninklijke Philips N.V. Energy conversion system and method
KR101785500B1 (ko) * 2016-02-15 2017-10-16 인하대학교산학협력단 근육 조합 최적화를 통한 안면근육 표면근전도 신호기반 단모음인식 방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200100411A (ko) * 2019-02-18 2020-08-26 충북대학교 산학협력단 발화 장애인들 및 외국인의 보편적 의사소통을 위한 음성 개선 방법

Also Published As

Publication number Publication date
KR20180115603A (ko) 2018-10-23
KR102180551B1 (ko) 2020-11-18
KR20190037183A (ko) 2019-04-05
KR20190038392A (ko) 2019-04-08
KR20180115639A (ko) 2018-10-23
KR102231067B9 (ko) 2021-09-17
US20200126557A1 (en) 2020-04-23
KR102174188B1 (ko) 2020-11-04
KR20190037156A (ko) 2019-04-05
KR102180331B1 (ko) 2020-11-18
KR102270653B1 (ko) 2021-06-30
KR102270653B9 (ko) 2021-09-17
KR20180115604A (ko) 2018-10-23
KR20180115600A (ko) 2018-10-23
KR102251505B1 (ko) 2021-05-13
KR20180115601A (ko) 2018-10-23
KR20200127143A (ko) 2020-11-10
KR102196099B1 (ko) 2020-12-29
KR20190037175A (ko) 2019-04-05
KR20180115602A (ko) 2018-10-23
KR102231067B1 (ko) 2021-03-23
KR20180115605A (ko) 2018-10-23
KR20200132796A (ko) 2020-11-25
KR102152775B1 (ko) 2020-09-07
KR102251505B9 (ko) 2021-09-17
KR20190037157A (ko) 2019-04-05

Similar Documents

Publication Publication Date Title
KR102270653B1 (ko) 영상 객체의 발화 및 표정 구현을 위한 조음기관 물리 특성 기반의 발화-표정 데이터 맵핑 시스템
Lee et al. Biosignal sensors and deep learning-based speech recognition: A review
Denby et al. Silent speech interfaces
Perkell Movement goals and feedback and feedforward control mechanisms in speech production
Dellwo et al. How is individuality expressed in voice? An introduction to speech production and description for speaker classification
Honda Physiological processes of speech production
Vaissière et al. Multisensor Platform for Speech Physiology Research in a Phonetics Laboratory (< Feature Article> Methodology for Speech Physiology Research)
Sönmez et al. In-Depth analysis of speech production, auditory system, emotion theories and emotion recognition
Slifka Respiratory constraints on speech production at prosodic boundaries
Kröger et al. Neural modeling of speech processing and speech learning
KR102071421B1 (ko) 청음 향상을 위한 두경부 물리 특성 기반 복합시스템
Padmini et al. A simple speech production system based on formant estimation of a tongue articulatory system using human tongue orientation
KR102364032B1 (ko) 조음기관의 물리 특성과 음성 및 문자 간 매칭을 통한 발화 의도 측정 및 발화 구현 시스템
Assaneo et al. Discrete anatomical coordinates for speech production and synthesis
Cao et al. Magtrack: A wearable tongue motion tracking system for silent speech interfaces
Seong et al. A study on the voice security system using sensor technology
Carding et al. Voice and speech production
Flory The impact of head and body postures on the acoustic speech signal
Stone A silent-speech interface using electro-optical stomatography
Butcher Phonetics: The sounds humans make when speaking
Cho Analysis of Emotions using Vocal Tract and Source Features
WO2018190668A1 (ko) 두경부 조음기관의 물리 특성을 이용한 발화 의도 표현 시스템
Fawcus RESPIRATORY STUDIES
Harris A LITTLE HISTORY
Rudzicz A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Department of Computer Science