KR20180097883A - Electrolysis apparatus having anode catalyst for optimization of reverse water-gas shift reaction - Google Patents

Electrolysis apparatus having anode catalyst for optimization of reverse water-gas shift reaction Download PDF

Info

Publication number
KR20180097883A
KR20180097883A KR1020170024602A KR20170024602A KR20180097883A KR 20180097883 A KR20180097883 A KR 20180097883A KR 1020170024602 A KR1020170024602 A KR 1020170024602A KR 20170024602 A KR20170024602 A KR 20170024602A KR 20180097883 A KR20180097883 A KR 20180097883A
Authority
KR
South Korea
Prior art keywords
reaction
electrolysis
reverse water
anode catalyst
carbon dioxide
Prior art date
Application number
KR1020170024602A
Other languages
Korean (ko)
Inventor
배중면
장영훈
권영진
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to KR1020170024602A priority Critical patent/KR20180097883A/en
Publication of KR20180097883A publication Critical patent/KR20180097883A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/26Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/40Carbon monoxide
    • C25B11/0463
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • C25B11/077Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound the compound being a non-noble metal oxide
    • C25B11/0773Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound the compound being a non-noble metal oxide of the perovskite type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

The present invention relates to a high temperature electrolysis apparatus having an anode catalyst for maximizing a reverse water-gas reaction, which comprises an anode for performing a first reaction formula, H_2O + 2e- → H_2+ O^(-2) (steam electrolysis, favorable kinetics), a second reaction formula, CO_2+ 2e- → CO + O^(-2) (CO_2 electrolysis, slow kinetics), and a third reaction formula, CO_2+ H_2→ CO + H_2O (reverse water-gas shift, RWGS fast kinetics), and performs an electrolytic purification reaction through H_2O and CO_2 supplied to the anode, wherein an anode catalyst can be an LSCM.

Description

역수성가스반응 극대화를 위한 연료극 촉매를 갖는 고온전기분해장치{Electrolysis apparatus having anode catalyst for optimization of reverse water-gas shift reaction}[0001] The present invention relates to a high-temperature electrolysis apparatus having an anode catalyst for maximizing a reverse water-gas reaction,

본 발명은 역수성가스반응 극대화를 위한 연료극 촉매를 갖는 고온전기분해장치에 관한 것으로서, 더욱 상세하게는 수증기와 이산화탄소를 공동전기분해하는 고온전기분해조 상의 연료극에서 LSCM을 채택하여 역수성가스 반응을 극대화하여 이산화탄소의 전환 효율성을 높이는 기술에 관한 것이다.The present invention relates to a high temperature electrolytic apparatus having an anode catalyst for maximizing a reverse water gas reaction, and more particularly, to a high temperature electrolytic apparatus for electrolyzing water vapor and carbon dioxide, To maximize the conversion efficiency of carbon dioxide.

최근 들어 산업의 발달에 따라 화석연료의 사용이 증가됨으로써 방출되는 이산화탄소의 양이 급증하고 있다. 이산화탄소는 지구온난화 현상을 야기시키는 중요한 원인이기 때문에 이산화탄소 배출 제어에 대한 필요성이 제기되었고, 이에 따라 인간의 산업활동으로 발생되는 이산화탄소를 대기 중에 방출하지 않고 회수하는 기술개발이 시급하게 되었다. 즉, 온실가스로 인한 환경문제로 인하여 이산화탄소 포집(CCS)에 관한 연구가 활발히 일어나고 있고, 포집된 이산화탄소를 의미 있게 사용하기 위한 다양한 연구가 진행 중이다.In recent years, the use of fossil fuels has increased with the development of industry, and the amount of carbon dioxide emitted is increasing rapidly. Since carbon dioxide is an important cause of global warming, there has been a need to control carbon dioxide emission, and it has become urgent to develop a technology for recovering carbon dioxide generated by human industrial activity without releasing it into the air. In other words, studies on carbon capture (CCS) have been actively conducted due to environmental problems caused by greenhouse gases, and various studies are under way to use meaningfully the captured carbon dioxide.

이러한 이산화탄소 저감 기술 분야에서 가장 중요한 것은 생성된 이산화탄소를 화학적으로 전환시키는 기술이며, 대표적으로는 이산화탄소를 수소화반응을 통해 메탄올로 전환시키는 촉매공정이 있다.One of the most important technologies in the field of carbon dioxide abatement technology is a technology for chemically converting generated carbon dioxide, which is typically a catalytic process for converting carbon dioxide into methanol through hydrogenation.

기존의 이산화탄소의 수소화반응은 이산화탄소를 직접 수소화하는 1 단계 반응인데, 이산화탄소가 수소화 반응을 이룰 때 생성되는 물로 인해 공정 효율이 매우 떨어지는 단점이 있다.The existing hydrogenation reaction of carbon dioxide is a first step reaction in which carbon dioxide is directly hydrogenated. However, there is a disadvantage in that the process efficiency is very low due to the water produced when the carbon dioxide undergoes the hydrogenation reaction.

역수성가스 반응은 이산화탄소를 저감시키려는 특수한 목적하에 개발되었으며 고에너지 형태인 수소가 반응의 원료로 첨가되는 독특한 반응이다. 상기 반응은 열역학 평형에 지배를 받는 흡열반응으로, 충분한 반응성을 가지기 위해서는 500 ℃ 이상의 고온에서 작동되어야 하고, 따라서 상기 온도에서도 안정적으로 작동하는 촉매를 필요로 한다.The reverse water-gas reaction has been developed for a specific purpose to reduce carbon dioxide and is a unique reaction in which hydrogen in a high energy form is added as a raw material for the reaction. The reaction is an endothermic reaction governed by thermodynamic equilibrium. In order to have sufficient reactivity, it is necessary to operate at a high temperature of 500 ° C or higher, and thus to operate stably at the above-mentioned temperature.

물과 이산화탄소의 공동전기분해가 가능한 장치로서 고온전기분해조를 들 수 있는데, 상기 고온전기분해조에서는 이산화탄소로부터 연료로 사용이 가능한 일산화탄소를 얻을 수 있다. 즉, 고온전기분해조는 수증기 전기 분해와 이산화탄소 전기분해를 함께 수행하고, 수증기와 이산화탄소의 공동 전기 분해는 다양한 합성 연료 내에서 촉매 반응될 수 있는 합성 가스인 이산화탄소와 수소를 생산할 수 있다.As a device capable of co-electrolysis of water and carbon dioxide, a high-temperature electrolysis tank can be used. In the high-temperature electrolysis tank, carbon monoxide which can be used as fuel from carbon dioxide can be obtained. That is, the hot electrolytic unit performs steam electrolysis and carbon dioxide electrolysis together, and the joint electrolysis of water vapor and carbon dioxide can produce carbon dioxide and hydrogen, synthetic gases that can be catalytically reacted in various synthetic fuels.

한편, 기존의 고온전기분해조에 채용되는 연료극 촉매로는 대부분 니켈(Ni)을 사용하는데, 전통적으로 고온전기분해조의 연료극 촉매로 사용되는 니켈은 탄소침적 및 redox cycle에 의한 크랙 생성 등에 의하여 내구성이 좋지 못한 단점이 존재한다.On the other hand, most of the anode catalysts used in the conventional high temperature electrolytic bath use nickel (Ni). Traditionally, the nickel used as the anode catalyst of the high temperature electrolytic bath is poor in durability due to carbon deposition and crack generation by the redox cycle There are some shortcomings.

(특허문헌 1) KR10-1211263 B(Patent Document 1) KR10-1211263 B

본 발명은 상기 종래의 문제점을 해소하고자 하는 것으로서, 수증기와 이산화탄소를 공동전기분해하는 고온전기분해장치 상의 연료극에서 역수성가스 반응을 극대화하도록 촉매를 채택함으로써 이산화탄소의 전환 효율성을 높이고자 한다.An object of the present invention is to improve the conversion efficiency of carbon dioxide by adopting a catalyst in order to maximize the reverse water gas reaction in the fuel electrode on the high temperature electrolytic apparatus for co-electrolysis of water vapor and carbon dioxide.

본 발명은 고온전기분해조의 연료극 촉매로 사용하면서 동시에 역수성가스 반응의 촉매 역할을 할 수 있는 소재 LSCM을 채택함으로써 이산화탄소의 전환을 극대화할 수 있다.The present invention can maximize the conversion of carbon dioxide by adopting the material LSCM which can be used as a catalyst for the anode catalyst of the high temperature electrolysis bath and as a catalyst for the reverse water gas reaction.

상기와 같은 목적을 달성하기 위한 본 발명에 따른 역수성가스반응 극대화를 위한 연료극 촉매를 갖는 고온전기분해장치는 하기의 제1 반응식 내지 제3 반응식이 수행되는 연료극을 포함하고, 상기 연료극으로 공급되는 H2O 및 CO2 를 통해 공전해 반응이 이루어지며, 상기 연료극 촉매는 LSCM 인 것을 특징으로 한다.In order to accomplish the above object, the present invention provides a high temperature electrolytic apparatus having a fuel electrode catalyst for maximizing a reverse water-based gas reaction, comprising a fuel electrode to be subjected to the first to third reaction schemes described below, H 2 O and CO 2 , and the anode catalyst is LSCM.

제1 반응식 : H2O + 2e- → H2 + O-2(Steam electrolysis, Favorable kinetics)First Scheme: H 2 O + 2e-? H 2 + O -2 (Steam electrolysis, Favorable kinetics)

제2 반응식 : CO2 + 2e- → CO + O-2(CO2 electrolysis, Slow kinetics) Second Scheme: CO 2 + 2e -? CO + O -2 (CO 2 electrolysis, Slow kinetics)

제3 반응식 : CO2 + H2 → CO + H2O(Reverse water-gas shift, RWGS Fast kinetics)Third Reaction: CO 2 + H 2 → CO + H 2 O (Reverse water-gas shift, RWGS Fast kinetics)

상술한 바와 같은 본 발명에 따른 역수성가스반응 극대화를 위한 연료극 촉매를 갖는 고온전기분해장치는 수증기와 이산화탄소를 공동전기분해하는 고온전기분해장치 상의 연료극에서 역수성가스 반응을 극대화하는 소재인 LSCM을 채택함으로써 고온전기분해장치의 연료극 촉매와 RWGS 촉매 역할을 동시에 수행하게 되어 결과적으로 이산화탄소의 전환 효율성을 극대화할 수 있다.The high temperature electrolytic apparatus having the anode catalyst for maximizing the reverse water-based gas reaction according to the present invention as described above is characterized in that LSCM, which is a material maximizing the reverse water gas reaction in the fuel electrode on the high temperature electrolytic apparatus for jointly electrolyzing water vapor and carbon dioxide It is possible to maximize the conversion efficiency of carbon dioxide as a result of simultaneously performing the role of the anode catalyst and the RWGS catalyst of the high-temperature electrolysis apparatus.

본 발명은 CO2에서 분해된 CO와 H2O에서 분해된 H2를 포집하여 Fisher-tropsch process를 통해 탄화수소 계열 연료를 제조한다.The present invention is to produce a hydrocarbon-based fuel with a Fisher-tropsch process by collecting the H 2 from the decomposition of CO and H 2 O decomposition in the CO 2.

본 발명은 SOECs(Solid Oxide Electrolysis Cells)에 널리 사용하는 촉매인 니켈의 경우에 공전해 시에 탄소침적, 조대화 및 산화환원반응으로 인한 전극 손상으로 장기 내구성을 확보가 힘들다는 단점을 극복하게 한다.The present invention overcomes the disadvantage that it is difficult to secure long-term durability due to electrode damage due to carbon deposition, coarsening, and oxidation-reduction reaction in the case of nickel, which is a catalyst widely used in SOECs (Solid Oxide Electrolysis Cells) .

본 발명은 산화물 촉매를 적용함으로써 내구성 확보를 가능하게 한다.The present invention makes it possible to secure durability by applying an oxide catalyst.

도 1은 본 발명의 일 실시예에 따른 역수성가스반응 극대화를 위한 연료극 촉매를 갖는 고온전기분해조의 개념도이다.
도 2는 HSC chemistry software에 의한 열역학적 계산에 의하여, 특정온도 이상에서부터 생산된 수소를 소비하면서 CO2의 CO 변환을 보이는 그래프이다.
도 3은 H2O/CO2/H2/N2 기체를 일정 비율로 공급하여 CO 변환율을 측정하는 RWGS 측정 시스템을 보인다.
도 4는 전기전도도 측정 실험장치를 보인다.
도 5는 Ni-YSZ 및 Ni base Bimetal 화합물의 RWGS 반응 활성도 및 반응 전/후 촉매 사진을 보인다.
도 6은 산화물 촉매의 RWGS 반응 활성도 및 전기전도도를 보인다.
도 7은 LSCM RWGS 반응 장기(200시간) 성능 측정 결과를 보인다.
도 8은 다공성 전해질 구조체에 Ni과 LSCM을 함침한 상태에서 임피던스 분광법으로 측정한 결과를 보인다.
도 9는 다공성 전해질 구조체에 LSCM 함침한 결과 광학현미경 이미지를 보인다.
도 10은 LSCM 반전지 수전해 상황에서 SOEC 성능측정 결과를 보인다.
1 is a conceptual diagram of a high-temperature electrolytic cell having an anode catalyst for maximizing a reverse water-gas reaction according to an embodiment of the present invention.
FIG. 2 is a graph showing the CO conversion of CO 2 while consuming hydrogen produced at a specific temperature or higher by thermodynamic calculation by HSC chemistry software.
FIG. 3 shows a RWGS measurement system for measuring the CO conversion rate by supplying H 2 O / CO 2 / H 2 / N 2 gas at a constant rate.
Fig. 4 shows an apparatus for measuring electric conductivity.
FIG. 5 shows RWGS reaction activity and pre / post catalyst photographs of Ni-YSZ and Ni base Bimetal compounds.
6 shows the RWGS reaction activity and electric conductivity of the oxide catalyst.
FIG. 7 shows the results of the LSCM RWGS reaction organs (200 hours) performance measurement.
8 shows the result of measurement by impedance spectroscopy in a state where Ni and LSCM are impregnated into the porous electrolyte structure.
FIG. 9 shows an optical microscope image as a result of LSCM impregnation of the porous electrolyte structure.
FIG. 10 shows the result of SOEC performance measurement in the LSCM reverse power receiving condition.

이하, 첨부된 도면을 참조하여 본 발명의 실시예를 더욱 상세히 설명하기로 한다. 그러나, 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. 도면 상에서 동일 부호는 동일한 요소를 지칭한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. It should be understood, however, that the invention is not limited to the disclosed embodiments, but is capable of other various forms of implementation, and that these embodiments are provided so that this disclosure will be thorough and complete, It is provided to let you know completely. Wherein like reference numerals refer to like elements throughout.

각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.It should be noted that, in adding reference numerals to the constituent elements of the drawings, the same constituent elements are denoted by the same reference symbols as possible even if they are shown in different drawings. In the following description of the present invention, a detailed description of known functions and configurations incorporated herein will be omitted when it may make the subject matter of the present invention rather unclear.

또한, 본 발명의 구성 요소를 설명하는 데 있어서, 제 1, 제 2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 어떤 구성 요소가 다른 구성요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 그 구성 요소는 그 다른 구성요소에 직접적으로 연결되거나 또는 접속될 수 있지만, 각 구성 요소 사이에 다른 구성 요소가 "연결", "결합" 또는 "접속"될 수도 있다고 이해되어야 할 것이다.In describing the components of the present invention, terms such as first, second, A, B, (a), and (b) may be used. These terms are intended to distinguish the constituent elements from other constituent elements, and the terms do not limit the nature, order or order of the constituent elements. When a component is described as being "connected", "coupled", or "connected" to another component, the component may be directly connected or connected to the other component, Quot; may be "connected," "coupled," or "connected. &Quot;

이하, 본 발명에 따라 역수성가스반응 극대화를 위한 연료극 촉매를 갖는 고온전기분해장치를 설명한다.Hereinafter, a high temperature electrolytic apparatus having an anode catalyst for maximizing a reverse water-gas reaction according to the present invention will be described.

도 1을 참조하면, 산업 플랜트(industrial plant)를 통해 H2O 및 CO2 가 발생하여 고온전기분해장치의 연료극으로 공급된다. 연료극 상으로 공급되는 전기는 재생가능한 에너지원으로부터 이루어진다.Referring to FIG. 1, H 2 O and CO 2 are generated through an industrial plant and supplied to the anode of a hot electrolyzer. Electricity supplied onto the anode is made from a renewable energy source.

고온전기분해장치에서 이루어지는 H2O 및 CO2 공전해 반응식은 하기와 같다.The reaction formula of H 2 O and CO 2 in the high temperature electrolysis apparatus is as follows.

반응식1 : H2O + 2e- → H2 + O-2(Steam electrolysis, Favorable kinetics)Reaction 1: H 2 O + 2e- → H 2 + O -2 (Steam electrolysis, Favorable kinetics)

반응식2 : CO2 + 2e- → CO + O-2(CO2 electrolysis, Slow kinetics) Reaction 2: CO 2 + 2e -? CO + O -2 (CO 2 electrolysis, Slow kinetics)

반응식3 : CO2 + H2 → CO + H2O(Reverse water-gas shift, RWGS Fast kinetics)Reaction 3: CO 2 + H 2 → CO + H 2 O (Reverse water-gas shift, RWGS Fast kinetics)

여기에서, 상대적으로 CO2의 변환이 H2O에 비해 느리기 때문에 RWGS 반응이 활발할수록 H2/CO 생산량이 늘어나게 된다.Here, since the conversion of CO 2 is relatively slower than that of H 2 O, the more the RWGS reaction becomes active, the more H 2 / CO production is increased.

한편, SOEC(Solid Oxide Electrolysis Cells) system에서 생산된 Syngas(H2/CO)를 syngas storage로 이송한 다음에 Fisher-tropsch process를 통해 탄화수소계열 연료로 재생산이 가능하다.Meanwhile, Syngas (H 2 / CO) produced from SOEC (Solid Oxide Electrolysis Cells) system can be transferred to syngas storage and then reproduced as hydrocarbon-based fuel through the Fisher-tropsch process.

도 2를 참조하면, HSC chemistry software를 통한 열역학적 계산에 의할때, 약 500℃ 이후부터 생산된 수소를 소비하면서 CO2가 CO로 변환하기 시작하는 것을 확인할 수 있다.Referring to FIG. 2, it can be seen that CO 2 starts to be converted into CO by consuming hydrogen produced after about 500 ° C. according to thermodynamic calculation through HSC chemistry software.

이때, 연료극 촉매는 RWGS 반응이 활발하면서 동시에 일정 수준 이상의 전기 전도도를 갖춰야 하고 장기 내구성을 위하여 Carbon formation이 일어나면 안된다는 제한점이 있다.At this time, the fuel electrode catalyst is required to have a certain level of electric conductivity at the same time as the RWGS reaction is active, and there is a limitation that the carbon formation should not occur for long term durability.

도 3을 참조하면, RWGS 실험 벤치 구성도를 보이는 것으로서, 구체적인 RWGS 실험은 H2O/CO2/H2/N2 기체를 35%/35%/10%/20% 비율로 공급하며, CO 변환율을 통해 측정한다.Referring to FIG. 3, the RWGS experimental bench configuration is shown. In the RWGS experiment, H 2 O / CO 2 / H 2 / N 2 gas is supplied at 35% / 35% / 10% / 20% Measure through conversion rate.

도 4를 참조하면, 전기전도도 측정 실험장치를 보이는 것으로서, 전기전도도는 환원 환경인 H2 10% 상태에서 시편 양단에 전기를 인가하고 그 사이 전압차를 측정하는 4전극법을 이용한다.Referring to FIG. 4, an electric conductivity measuring apparatus is shown. The electric conductivity is a four-electrode method in which electricity is applied to both ends of a specimen at a reducing environment of H 2 10% and a voltage difference therebetween is measured.

도 5를 참조하면, Ni-YSZ 및 Ni base Bimetal 화합물의 RWGS 반응 활성도 및 반응 전/후 촉매 사진을 보인다.Referring to FIG. 5, RWGS reaction activity of Ni-YSZ and Ni-based bimetal compounds and pre / post catalyst images are shown.

SOEC 연료극으로 널리 사용하는 Ni-YSZ에 비해 Bi-metal 촉매의 활성도는 크게 차이가 없었으나, 24시간 반응 후 눈에 띄게 Carbon formation이 일어나 공전해 촉매로 사용이 제한되는 것을 알 수 있다.The activity of the Bi-metal catalyst was not significantly different from that of Ni-YSZ, which is widely used as a SOEC fuel electrode. However, after 24 hours of reaction, significant carbon formation occurred and the use of the catalyst was restricted.

도 6을 참조하면, 산화물 촉매의 RWGS 반응 활성도 및 전기전도도를 보이는 것으로서, Carbon formation이 일어나지 않는 산화물 촉매를 통한 RWGS 반응 활성도 평가 및 전기 전도도 측정 결과, LSCM이 적절한 활성도 및 전기전도도를 나타내는 것을 확인할 수 있다.Referring to FIG. 6, RWGS reaction activity and electrical conductivity of the oxide catalyst are shown. As a result, RWGS reaction activity and electrical conductivity were measured through an oxide catalyst in which no carbon formation occurred. As a result, it was confirmed that LSCM exhibited proper activity and electric conductivity have.

도 7을 참조하면, LSCM RWGS 반응 장기(200시간) 성능 측정 결과를 보이는 것으로서, LSCM은 200시간 성능 측정 간에도 RWGS 반응 활성도에 변화가 없어 장기 성능 확보가 가능할 것으로 판단된다.Referring to FIG. 7, the results of the LSCM RWGS reaction (200 hours) measurement are shown, and it is considered that the LSCM can secure the long-term performance because there is no change in the RWGS reaction activity even during the 200-hour performance measurement.

도 8을 참조하면, 다공성 전해질 구조체에 Ni과 LSCM 함침하여 임피던스 분광법으로 측정한 결과를 보이는 것으로서, LSCM은 Ni-YSZ에 비해 반응 활성도가 저조하나 다공성 전해질 구조체에 함침하는 방법을 적용하면 연구 결과와 같이 성능향상이 가능하다는 것을 알 수 있다.Referring to FIG. 8, the results of impedance measurement by impregnating Ni and LSCM into the porous electrolyte structure show that the LSCM has lower reactivity than Ni-YSZ. However, when the porous electrolyte structure is impregnated with the porous electrolyte structure, You can see that performance improvements are possible.

도 9를 참조하면, 다공성 전해질 구조체에 LSCM이 양호하게 함침되는 것을 광학현미경(SEM)을 통해 확인할 수 있다.Referring to FIG. 9, it can be confirmed through an optical microscope (SEM) that the porous electrolyte structure is impregnated with LSCM well.

도 10을 참조하면, LSCM 반전지 수전해 상황에서 SOEC 성능측정 결과를 보이는 것으로서, LSCM을 이용하여 수전해 성능 측정결과 그 성능이 우수함을 확인할 수 있다.Referring to FIG. 10, the SOEC performance measurement result is shown in the LSCM reverse power receiving condition, and it is confirmed that the performance of the LSCM is superior to that of the LSCM.

상술한 바와 같이 본 발명에 따른 역수성가스반응 극대화를 위한 연료극 촉매를 갖는 고온전기분해조는 수증기와 이산화탄소를 공동전기분해하는 고온전기분해조 상의 연료극에서 역수성가스 반응을 극대화하는 소재인 LSCM을 채택함으로써 고온전기분해조의 연료극 촉매와 RWGS 촉매 역할을 동시에 수행하게 되어 결과적으로 이산화탄소의 전환 효율성을 극대화할 수 있다.As described above, the high-temperature electrolysis tank having the anode catalyst for maximizing the reverse water-gas reaction according to the present invention adopts the LSCM which maximizes the reverse water gas reaction at the anode of the high-temperature electrolysis tank for co-electrolysis of water vapor and carbon dioxide Thereby simultaneously performing the role of the fuel electrode catalyst and the RWGS catalyst in the high-temperature electrolysis bath, and as a result, the conversion efficiency of carbon dioxide can be maximized.

이상에서 기재된 "포함하다", "구성하다" 또는 "가지다" 등의 용어는, 특별히 반대되는 기재가 없는 한, 해당 구성 요소가 내재될 수 있음을 의미하는 것이므로, 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것으로 해석되어야 한다. 기술적이거나 과학적인 용어를 포함한 모든 용어들은, 다르게 정의되지 않는 한, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가진다. 사전에 정의된 용어와 같이 일반적으로 사용되는 용어들은 관련 기술의 문맥 상의 의미와 일치하는 것으로 해석되어야 하며, 본 발명에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.It is to be understood that the terms "comprises", "comprising", or "having" as used in the foregoing description mean that the constituent element can be implanted unless specifically stated to the contrary, But should be construed as further including other elements. All terms, including technical and scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs, unless otherwise defined. Commonly used terms, such as predefined terms, should be interpreted to be consistent with the contextual meanings of the related art, and are not to be construed as ideal or overly formal, unless expressly defined to the contrary.

이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The foregoing description is merely illustrative of the technical idea of the present invention, and various changes and modifications may be made by those skilled in the art without departing from the essential characteristics of the present invention. Therefore, the embodiments disclosed in the present invention are intended to illustrate rather than limit the scope of the present invention, and the scope of the technical idea of the present invention is not limited by these embodiments. The scope of protection of the present invention should be construed according to the following claims, and all technical ideas within the scope of equivalents should be construed as falling within the scope of the present invention.

Claims (1)

역수성가스반응 극대화를 위한 연료극 촉매를 갖는 고온전기분해장치에 있어서,
상기 고온전기분해장치는 하기의 제1 반응식 내지 제3 반응식이 수행되는 연료극을 포함하고,
상기 연료극으로 공급되는 H2O 및 CO2 를 통해 공전해 반응이 이루어지며,
상기 연료극 촉매는 LSCM 인 것을 특징으로 하는,
고온전기분해장치.
제1 반응식 : H2O + 2e- → H2 + O-2(Steam electrolysis, Favorable kinetics)
제2 반응식 : CO2 + 2e- → CO + O-2(CO2 electrolysis, Slow kinetics)
제3 반응식 : CO2 + H2 → CO + H2O(Reverse water-gas shift, RWGS Fast kinetics)
A high-temperature electrolysis apparatus having an anode catalyst for maximizing a reverse water-gas reaction,
The high temperature electrolytic apparatus includes a fuel electrode on which the first to third reaction schemes below are performed,
The reaction is performed through H 2 O and CO 2 supplied to the fuel electrode,
Characterized in that the anode catalyst is LSCM.
High temperature electrolysis apparatus.
First Scheme: H 2 O + 2e-? H 2 + O -2 (Steam electrolysis, Favorable kinetics)
Second Scheme: CO 2 + 2e -? CO + O -2 (CO 2 electrolysis, Slow kinetics)
Third Reaction: CO 2 + H 2 → CO + H 2 O (Reverse water-gas shift, RWGS Fast kinetics)
KR1020170024602A 2017-02-24 2017-02-24 Electrolysis apparatus having anode catalyst for optimization of reverse water-gas shift reaction KR20180097883A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170024602A KR20180097883A (en) 2017-02-24 2017-02-24 Electrolysis apparatus having anode catalyst for optimization of reverse water-gas shift reaction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170024602A KR20180097883A (en) 2017-02-24 2017-02-24 Electrolysis apparatus having anode catalyst for optimization of reverse water-gas shift reaction

Publications (1)

Publication Number Publication Date
KR20180097883A true KR20180097883A (en) 2018-09-03

Family

ID=63600978

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170024602A KR20180097883A (en) 2017-02-24 2017-02-24 Electrolysis apparatus having anode catalyst for optimization of reverse water-gas shift reaction

Country Status (1)

Country Link
KR (1) KR20180097883A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115279718A (en) * 2020-03-31 2022-11-01 大阪瓦斯株式会社 Hydrocarbon production system, production method therefor, and operation method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115279718A (en) * 2020-03-31 2022-11-01 大阪瓦斯株式会社 Hydrocarbon production system, production method therefor, and operation method therefor

Similar Documents

Publication Publication Date Title
Ebbesen et al. High temperature electrolysis in alkaline cells, solid proton conducting cells, and solid oxide cells
Foit et al. Power‐to‐Syngas: An Enabling Technology for the Transition of the Energy System?
Kyriakou et al. Symmetrical exsolution of Rh nanoparticles in solid oxide cells for efficient syngas production from greenhouse gases
Coutanceau et al. Hydrogen electrochemical production
Guo et al. Hydrogen production via electrolysis of aqueous formic acid solutions
Wang et al. Evaluation of low-cost cathode catalysts for high yield biohydrogen production in microbial electrolysis cell
KR20180097883A (en) Electrolysis apparatus having anode catalyst for optimization of reverse water-gas shift reaction
Ikuerowo et al. The integration of wind and solar power to water electrolyzer for green hydrogen production
Baxter et al. Near 100% CO2 conversion and CH4 selectivity in a solid oxide electrolysis cell with integrated catalyst operating at 450° C
Alamiery Advancements in materials for hydrogen production: A review of cutting-edge technologies
Dong et al. Ion-conducting ceramic membranes for renewable energy technologies
Metz et al. Producing hydrogen through electrolysis and other processes
Eguchi Performance and degradation of Ni-based cermet anode for solid oxide fuel cells
KR101599918B1 (en) System generating synthesis gas
KR101249204B1 (en) Electrochemical reaction device and method for electrochemical reaction
Quina et al. Direct electrocatalytic CO2 reduction in a pressurized tubular protonic membrane reactor
Pitschak et al. Electrolytic processes
Jiang et al. Integrating hydrogen utilization in CO2 electrolysis with reduced energy loss
KR102608113B1 (en) Nickel-iron hydroxide using in situ precipitation method, manufacturing method thereof and its application for oxygen generating electrode
KR102446703B1 (en) Apparatus for generating hydrogen using hydrogen peroxide
Ma et al. Detailed study of sulfur poisoning and recovery of Ni-YSZ-based anodes operating up to 1.8 W cm-2 in a biogas fuel
AlZahrani Investigation of a novel high temperature solid oxide electrolyzer for solar hydrogen production
Hou et al. Green Hydrogen Production by Water Electrolysis
LIU et al. Direct Carbon Solid Oxide Fuel Cells
BAYKARA Sulfur Resistant Perovskite Electrocatalysts for High Temperature Applications

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E601 Decision to refuse application