KR102446703B1 - Apparatus for generating hydrogen using hydrogen peroxide - Google Patents

Apparatus for generating hydrogen using hydrogen peroxide Download PDF

Info

Publication number
KR102446703B1
KR102446703B1 KR1020200159346A KR20200159346A KR102446703B1 KR 102446703 B1 KR102446703 B1 KR 102446703B1 KR 1020200159346 A KR1020200159346 A KR 1020200159346A KR 20200159346 A KR20200159346 A KR 20200159346A KR 102446703 B1 KR102446703 B1 KR 102446703B1
Authority
KR
South Korea
Prior art keywords
hydrogen
voltage
hydrogen peroxide
generating electrode
aqueous solution
Prior art date
Application number
KR1020200159346A
Other languages
Korean (ko)
Other versions
KR20220071800A (en
Inventor
송현곤
이동규
이지수
신석민
이영대
Original Assignee
울산과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 울산과학기술원 filed Critical 울산과학기술원
Priority to KR1020200159346A priority Critical patent/KR102446703B1/en
Priority to PCT/KR2021/016689 priority patent/WO2022114638A1/en
Publication of KR20220071800A publication Critical patent/KR20220071800A/en
Application granted granted Critical
Publication of KR102446703B1 publication Critical patent/KR102446703B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • C25B11/085Organic compound
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • C25B9/23Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Catalysts (AREA)

Abstract

본 발명은 과산화수소를 이용한 저전압 수소 발생 시스템에 관한 것으로, 구체적으로 산소발생전극, 분리막 및 수소발생전극을 포함하고, 상기 산소발생전극의 과산화수소의 산화 반응에 의하여 수소가 발생하는 저전압 수소 발생 시스템에 관한 것이다. 본 발명의 과산화수소를 이용한 저전압 수소 발생 시스템은 기존 전기 분해에 비하여 낮은 전압으로 과산화수소의 산화 반응을 통하여 수소를 발생시킬 수 있어, 기존의 방법에 비하여 낮은 전력으로 수소를 생산할 수 있어, 비용을 절감시킬 수 있는 효과가 있다.The present invention relates to a low-voltage hydrogen generating system using hydrogen peroxide, and specifically, to a low-voltage hydrogen generating system comprising an oxygen generating electrode, a separator, and a hydrogen generating electrode, wherein hydrogen is generated by an oxidation reaction of hydrogen peroxide of the oxygen generating electrode will be. The low-voltage hydrogen generation system using hydrogen peroxide of the present invention can generate hydrogen through the oxidation reaction of hydrogen peroxide at a lower voltage than conventional electrolysis, and can produce hydrogen with low power compared to the conventional method, thereby reducing costs. can have an effect.

Description

과산화수소를 이용한 저전압 수소 발생 시스템{APPARATUS FOR GENERATING HYDROGEN USING HYDROGEN PEROXIDE}Low-voltage hydrogen generation system using hydrogen peroxide

본 발명은 과산화수소를 이용한 저전압 수소 발생 시스템에 관한 것으로, 구체적으로 산소발생전극, 분리막 및 수소발생전극을 포함하고, 상기 산소발생전극의 과산화수소의 산화 반응에 의하여 수소가 발생하는 저전압 수소 발생 시스템에 관한 것이다. The present invention relates to a low-voltage hydrogen generating system using hydrogen peroxide, and specifically, to a low-voltage hydrogen generating system comprising an oxygen generating electrode, a separator, and a hydrogen generating electrode, wherein hydrogen is generated by an oxidation reaction of hydrogen peroxide of the oxygen generating electrode will be.

한정된 화석에너지로 인해 최근 유가의 고공행진이 계속되고 있어 대체할 새로운 에너지 개발이 시급해지고 있다. 또한 지구 온난화 문제가 대두됨에 따라 온실가스가 발생하지 않는 친환경 에너지 개발에 적극 나서고 있다.Due to the limited fossil energy, the recent high oil price is continuing, so it is urgent to develop new energy to replace it. In addition, as the global warming problem is emerging, we are actively developing eco-friendly energy that does not generate greenhouse gases.

수소를 연료로 사용할 경우에 연소 시 극소량의 NOx을 제외하고는 공해물질이 생성되지 않기 때문에 현재 화석에너지가 갖고 있는 환경 오염문제를 해결할 수 있다. 뿐만 아니라, 무한정인 물을 원료로 하여 제조할 수 있으므로, 향후 화학에너지 고갈에 대한 궁극적인 대안으로 각광받고 있다. 이와 같이, 수소에너지 기술은 이미 그 중요성이 국제사회에 너무나 널리 알려져 왔다. 따라서 미국, 일본, 독일을 비롯한 기술선진국들은 21세기 에너지문제와 환경문제를 한꺼번에 해결할 수 있는 거의 유일한 대안으로 수소에너지 기술의 연구에 심혈을 기울여 왔으며, 이미 상당한 성과를 거두고 있다.When hydrogen is used as a fuel, pollutants are not generated except for a very small amount of NOx during combustion, so it is possible to solve the environmental pollution problem that fossil energy currently has. In addition, since it can be manufactured using unlimited water as a raw material, it is in the spotlight as an ultimate alternative to the depletion of chemical energy in the future. As such, the importance of hydrogen energy technology has already been widely known to the international community. Therefore, technologically advanced countries, including the United States, Japan, and Germany, have been concentrating on the research of hydrogen energy technology as almost the only alternative that can solve the energy and environmental problems of the 21st century at once, and have already achieved considerable results.

수전해는 물의 전기 분해 반응으로, 친환경적으로 대용량의 수소를 생산할 수 있는 기술이다. 수전해는 현재의 수소 수요에 대한 대응 및 태양광이나 풍력과 같은 신재생 에너지로부터 생산된 전기에너지의 저장을 목적으로 하는 기술이다. 수전해는 양극에서는 산화 반응이 일어나 산소가 발생하고, 음극에서는 환원 반응이 일어나 수소가 발생한다. 실제 물의 전기 분해 반응은 산소 발생 반응 및 수소 발생 반응에 필요한 높은 과전압으로 인해 1.23V보다 높은 전압을 필요로 한다. Water electrolysis is a technology that can produce large-capacity hydrogen in an environment-friendly manner through the electrolysis of water. Water electrolysis is a technology that aims to respond to current hydrogen demand and store electrical energy produced from renewable energy such as solar or wind power. In water electrolysis, an oxidation reaction occurs at the anode to generate oxygen, and a reduction reaction occurs at the cathode to generate hydrogen. The actual water electrolysis reaction requires a voltage higher than 1.23V due to the high overvoltage required for the oxygen evolution reaction and the hydrogen evolution reaction.

따라서 수소 생산 효율을 높이기 위해서는 산소 및 수소 발생 반응에 대하여 활성이 높으며 값이 싼 전극 촉매의 개발이 필요하다. 산소 및 수소 발생 반응의 고효율 저비용 촉매로는 3d 전이금속 기반 물질이 주로 연구 되고 있으며, 전이 금속 산화물, 탄화물, 질화물, 인화물 등의 다양한 화합물 형태로 연구가 이루어지고 있다. 이 중 전이 금속 인화물의 경우 전이 금속 산화물에 비하여 상대적으로 내구성이 우수하며, 전이 금속 탄화물 및 질화물에 비해 비교적 유독하지 않은 전구체를 사용하여 합성할 수 있다는 장점이 있다. Therefore, in order to increase the hydrogen production efficiency, it is necessary to develop an electrode catalyst that is highly active for oxygen and hydrogen generating reactions and is inexpensive. As a high-efficiency, low-cost catalyst for oxygen and hydrogen generation reactions, 3d transition metal-based materials have been mainly studied, and various compounds such as transition metal oxides, carbides, nitrides, and phosphides have been studied. Among them, transition metal phosphide has relatively superior durability compared to transition metal oxide, and has the advantage that it can be synthesized using relatively non-toxic precursors compared to transition metal carbides and nitrides.

한편, 전기분해 공정은 에너지를 다량으로 소비하는 공정으로서 전력비용을 감소시키기 위해서는 전해전압을 낮추는 것이 요구된다. 이러한 전해전압은 이론 분해전압과 함께 양극 또는 음극의 과전압, 전해액에 의한 전압, 막전압, 금속도체의 접촉전압 등의 합이다. 그중에서 이론 분해전압을 제외한 다른 전압들은 모두 개선의 여지가 있으며, 그중에서도 양극 또는 음극의 과전압을 낮추는 것이 큰 의미가 있다.On the other hand, the electrolysis process is a process that consumes a large amount of energy, and in order to reduce the power cost, it is required to lower the electrolytic voltage. The electrolytic voltage is the sum of the overvoltage of the anode or cathode, the voltage by the electrolyte, the film voltage, and the contact voltage of the metal conductor, together with the theoretical decomposition voltage. Among them, all other voltages except the theoretical decomposition voltage have room for improvement.

대한민국 공개특허 제10-2020-0011643호Republic of Korea Patent Publication No. 10-2020-0011643

본 발명은 종래의 전기분해 장치에 비하여 낮은 과전압으로도 전기분해를 수행하여 수소를 발생시킬 수 있는 저전압 수소 발생 시스템을 제공하고자 한다.An object of the present invention is to provide a low-voltage hydrogen generating system capable of generating hydrogen by performing electrolysis even with a low overvoltage compared to a conventional electrolysis apparatus.

본 발명의 일 구현 예에서는 과산화수소의 산화 반응을 이용하는 저전압 수소 발생 시스템을 제공한다.One embodiment of the present invention provides a low-voltage hydrogen generation system using the oxidation reaction of hydrogen peroxide.

본 발명의 저전압 수소 발생 시스템은 산소발생전극, 분리막 및 수소발생전극을 포함하고, 상기 과산화수소의 산화 반응은 산소발생전극에서 일어난다. The low-voltage hydrogen generating system of the present invention includes an oxygen generating electrode, a separator, and a hydrogen generating electrode, and the oxidation reaction of hydrogen peroxide occurs at the oxygen generating electrode.

본 발명의 저전압 수소 발생 시스템은 산소발생전극 및 수소발생전극에 일정 전원을 인가할 수 있는 전원장치를 더 포함할 수 있다. The low-voltage hydrogen generating system of the present invention may further include a power supply capable of applying a predetermined power to the oxygen generating electrode and the hydrogen generating electrode.

본 발명의 저전압 수소 발생 시스템의 수소발생전극에서는 수소발생반응(Hydrogen evolution reaction, HER)에 의하여 수소가 발생할 수 있다.In the hydrogen generating electrode of the low voltage hydrogen generating system of the present invention, hydrogen may be generated by a hydrogen evolution reaction (HER).

본 발명의 저전압 수소 발생 시스템은 과산화수소를 포함하는 전해액을 포함할 수 있으며, 상기 전해액은 HClO4 수용액, KOH 수용액, NaOH 수용액, LiOH 수용액, K2CO3 수용액 및 KHCO2 수용액으로 구성된 군으로부터 선택된 어느 하나 이상일 수 있으며, 바람직하게는 HClO4 수용액 및 KOH 수용액 중 어느 하나이며, 농도는 0.1M 내지 1M이다. The low-voltage hydrogen generating system of the present invention may include an electrolyte containing hydrogen peroxide, wherein the electrolyte is selected from the group consisting of HClO 4 aqueous solution, KOH aqueous solution, NaOH aqueous solution, LiOH aqueous solution, K 2 CO 3 aqueous solution and KHCO 2 aqueous solution It may be one or more, preferably any one of HClO 4 aqueous solution and KOH aqueous solution, and the concentration is 0.1M to 1M.

상기 전해액에서 과산화수소의 농도는 10mM 내지 1M이며, 바람직하게는 50mM 내지 0.5M이다. The concentration of hydrogen peroxide in the electrolyte is 10mM to 1M, preferably 50mM to 0.5M.

상기 분리막은 양이온 교환수지 분리막(PEM; proton exchange membrane) ), 음이온 교환수지 분리막(AEM; anion exchange membrane) 또는 다공성 분리막을 포함하는 분리막으로 구성된 군으로부터 선택된 분리막일 수 있으며, 본 발명의 기술 분야인 수전해 시스템에서 사용되는 분리막이 사용될 수 있다. The separation membrane may be a separation membrane selected from the group consisting of a cation exchange resin separation membrane (PEM; proton exchange membrane), an anion exchange resin separation membrane (AEM), or a separation membrane including a porous membrane, and the technical field of the present invention is A separator used in a water electrolysis system may be used.

상기 산소발생전극은 촉매를 포함하고, 상기 촉매는 Pt, Ir, Ru, Ni, Mn, Co, Fe, Ti, Re, Nb, V, S 및 Mo 금속 및 상기 금속의 산화물, 질화물, 탄화물, 인화물, 황화물로 이루어지는 군에서 선택되는 적어도 어느 하나일 수 있으며, 바람직하게는 Pt, 유리상 탄소(glassy carbon), cobalt(II) 1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25-hexadecafluoro-29H,31H-phthalo-cyanine(CoIIHFPC), 산화루테늄(RuO2) 및 CNT-COOH 중 어느 하나일 수 있다. The oxygen generating electrode includes a catalyst, wherein the catalyst includes Pt, Ir, Ru, Ni, Mn, Co, Fe, Ti, Re, Nb, V, S and Mo metals and oxides, nitrides, carbides, and phosphides of the metals. , may be at least one selected from the group consisting of sulfides, preferably Pt, glassy carbon, cobalt(II) 1,2,3,4,8,9,10,11,15,16 ,17,18,22,23,24,25-hexadecafluoro-29H,31H-phthalo-cyanine (Co II HFPC), ruthenium oxide (RuO 2 ), and CNT-COOH.

상기 수소발생전극은 촉매를 포함하고, 상기 촉매는 Pt, Pd, Ir, Au, Ag 또는 이들의 합금으로 이루어지는 군에서 선택될 수 있으나, 이에 제한되는 것은 아니다. The hydrogen generating electrode includes a catalyst, and the catalyst may be selected from the group consisting of Pt, Pd, Ir, Au, Ag, or alloys thereof, but is not limited thereto.

상기 산소발생전극 및 수소발생전극은 지지체를 포함할 수 있고, 지지체 상에 상기 촉매층을 더 포함할 수 있다. The oxygen generating electrode and the hydrogen generating electrode may include a support, and may further include the catalyst layer on the support.

상기 지지체는 카본블랙, 케첸 블랙, 아세틸렌 블랙, 활성 탄소 분말, 탄소 분자체, 탄소나노튜브, 미세 기공을 갖고 있는 활성탄, 메조포러스 카본, 전도성고분자 또는 이들의 혼합물을 사용할 수 있다. As the support, carbon black, Ketjen black, acetylene black, activated carbon powder, carbon molecular sieve, carbon nanotube, activated carbon having micropores, mesoporous carbon, conductive polymer, or a mixture thereof may be used as the support.

본 발명의 과산화수소를 이용한 저전압 수소 발생 시스템은 기존 전기 분해에 비하여 낮은 전압으로 과산화수소의 산화 반응을 통하여 수소를 발생시킬 수 있어, 기존의 방법에 비하여 낮은 전력으로 수소를 생산할 수 있어, 비용을 절감시킬 수 있는 효과가 있다.The low-voltage hydrogen generation system using hydrogen peroxide of the present invention can generate hydrogen through the oxidation reaction of hydrogen peroxide at a lower voltage than conventional electrolysis, and can produce hydrogen with low power compared to the conventional method, thereby reducing costs. can have an effect.

도 1은 본 발명의 저전압 수소 발생 시스템의 개략도이다.
도 2는 본 발명의 저전압 수소 발생 시스템의 CV(cyclic voltammogram)을 나타내는 그래프이다(50mM H2O2 in 0.1M HClO4 WE: Pt(0.071cm2), CE: Pt, RE: Ag/AgCl).
도 3는 과산화수소 유무에 따른 본 발명의 저전압 수소 발생 시스템의 CV(cyclic voltammogram) 및 CP(chronopotentiometry)를 나타내는 그래프이다(50mM H2O2 in 0.1M HClO4 WE: Pt(0.071cm2), CE: Pt, RE: Ag/AgCl, Membrane : Fumatech F-920-rf (CEM)).
도 4 및 도 5는 글래시 카본 전극을 사용한 경우 본 발명의 저전압 수소 발생 시스템의 CV(cyclic voltammogram) 및 CP(chronopotentiometry)를 나타내는 그래프이다(50mM H2O2 in 0.1M HClO4 WE: GC (0.196cm2), CE: Pt disk, RE: Ag/AgCl, Membrane : Fumatech F-920-rf (CEM)).
도 6은 물리적으로 과산화수를 생성시켜 반응전극으로 공급하는 실험을 개략적으로 도시한 그림(A) 및 그에 따른 본 발명의 저전압 수소 발생 시스템의 CP(chronopotentiometry)를 나타내는 그래프이다(0.1M KOH).
도 7은 염기성 조건 하에서, 다양한 촉매에 대한 본 발명의 저전압 수소 발생 시스템의 CV(cyclic voltammogram)을 나타내는 그래프이다(0.5M H2O2 in 1M KOH).
도 8은 0.1M H2O2 및 0.1M HClO4 조건에서 전류 밀도 측정 결과를 나타내는 그래프이다(빨강: CoIIHFPC, 파랑: 산화루테늄(RuO2) 및 녹색: CNT-COOH).
도 9는 0.01 ~ 0.1M H2O2 및 0.1M KOH 조건에서 전류 밀도 측정 결과를 나타내는 그래프이다(빨강: CoIIHFPC, 파랑: 산화루테늄(RuO2) 및 녹색: CNT-COOH).
도 10는 0.01 ~ 1M H2O2 및 1M KOH 조건에서 전류 밀도 측정 결과를 나타내는 그래프이다(빨강: CoIIHFPC, 파랑: 산화루테늄(RuO2) 및 녹색: CNT-COOH).
1 is a schematic diagram of a low voltage hydrogen generation system of the present invention.
Figure 2 is a graph showing a CV (cyclic voltammogram) of the low-voltage hydrogen generation system of the present invention (50mM H 2 O 2 in 0.1M HClO 4 WE: Pt (0.071cm 2 ), CE: Pt, RE: Ag/AgCl) .
Figure 3 is a graph showing the CV (cyclic voltammogram) and CP (chronopotentiometry) of the low-voltage hydrogen generating system of the present invention according to the presence or absence of hydrogen peroxide (50mM H 2 O 2 in 0.1M HClO 4 WE: Pt (0.071cm 2 ), CE : Pt, RE: Ag/AgCl, Membrane: Fumatech F-920-rf (CEM)).
4 and 5 are graphs showing CV (cyclic voltammogram) and CP (chronopotentiometry) of the low-voltage hydrogen generation system of the present invention when a glassy carbon electrode is used (50 mM H 2 O 2 in 0.1M HClO 4 WE: GC ( 0.196 cm 2 ), CE: Pt disk, RE: Ag/AgCl, Membrane: Fumatech F-920-rf (CEM)).
6 is a diagram schematically illustrating an experiment in which water peroxide is physically generated and supplied to a reaction electrode (A) and a graph showing CP (chronopotentiometry) of the low-voltage hydrogen generation system of the present invention according thereto (0.1M KOH).
7 is a graph showing a cyclic voltammogram (CV) of the low-voltage hydrogen generation system of the present invention for various catalysts under basic conditions (0.5MH 2 O 2 in 1M KOH).
8 is a graph showing the current density measurement results under 0.1MH 2 O 2 and 0.1M HClO 4 conditions (red: Co II HFPC, blue: ruthenium oxide (RuO 2 ) and green: CNT-COOH).
9 is 0.01 ~ 0.1MH 2 O 2 and 0.1M KOH It is a graph showing the current density measurement results under the conditions (red: Co II HFPC, blue: ruthenium oxide (RuO 2 ) and green: CNT-COOH).
10 is a graph showing the current density measurement results under 0.01 ~ 1M H 2 O 2 and 1M KOH conditions (red: Co II HFPC, blue: ruthenium oxide (RuO 2 ) and green: CNT-COOH).

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로서, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail through examples. These examples are only for illustrating the present invention in more detail, and it will be apparent to those skilled in the art that the scope of the present invention is not limited by these examples according to the gist of the present invention. .

본 명세서에서 어떤 부재가 다른 부재 "상에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.In the present specification, when a member is said to be located “on” another member, this includes not only a case in which a member is in contact with another member but also a case in which another member is present between the two members.

본 명세서에서 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.In the present specification, when a part "includes" a certain component, it means that other components may be further included, rather than excluding other components, unless otherwise stated.

<실시예 1> 과산화수소를 이용한 저전압 수소 발생 시스템<Example 1> Low-voltage hydrogen generation system using hydrogen peroxide

도 1은 본 발명의 저전압 수소 발생 시스템의 개략도를 나타낸다. 1 shows a schematic diagram of a low voltage hydrogen generation system of the present invention.

일반적으로 물분해 장치는 하기와 같은 화학반응식과 같이 물을 전기분해하여 산소기체(O2)와 수소기체(H2)를 발생시킬 수 있다. 구체적으로, 상기 물분해 장치에 전압을 인가하여 하기 화학반응식과 같이 물의 전기분해 반응을 유도할 수 있다.In general, the water decomposition device electrolyzes water as shown in the following chemical reaction formula to generate oxygen gas (O 2 ) and hydrogen gas (H 2 ). Specifically, an electrolysis reaction of water may be induced as shown in the following chemical reaction formula by applying a voltage to the water decomposition device.

[반응식 1][Scheme 1]

2H2O(l) + 전기 → H2(g) + O2(g)2H 2 O(l) + electricity → H 2 (g) + O 2 (g)

여기서, 음극(anode)인 산소발생전극은 하기와 같은 화학반응식과 같이 물을 전기분해하여 산소기체를 발생시킬 수 있다.Here, the oxygen generating electrode, which is the anode, may generate oxygen gas by electrolyzing water as shown in the following chemical reaction formula.

[반응식 2][Scheme 2]

2H2O(l) → O2(g) + 4H+ + 4e- E0 = 1.23V2H2O(l) → O2(g) + 4H+ + 4e- E0 = 1.23V

또한, 양극(cathode)인 수소발생전극은 하기와 같은 화학반응식과 같이 물을 전기분해하여 수소기체를 발생시킬 수 있다. In addition, the hydrogen generating electrode, which is an anode, can generate hydrogen gas by electrolyzing water as shown in the following chemical reaction formula.

[반응식 3][Scheme 3]

2H+ + 2e- → H2(g) E0 = 0V2H+ + 2e- → H2(g) E0 = 0V

그러나 본 발명의 저전압 수소 발생 시스템은 산소발생전극인 음극(anode)의 산화 반응을 과산화수소의 산화반응으로 대체하였으며, 이는 하기와 같은 화학반응식에 의하여 산소기체를 발생시킬 수 있다. However, the low-voltage hydrogen generating system of the present invention replaces the oxidation reaction of the anode, which is the oxygen generating electrode, with the oxidation reaction of hydrogen peroxide, which can generate oxygen gas by the following chemical reaction formula.

H2O2(l) → O2(g) + 2H+ + 2e- E0 = 0.69VH2O2(l) → O2(g) + 2H++ 2e- E0 = 0.69V

기존 전기 분해 시스템의 경우에는 수소 기체를 발생시키기 위하여 1.23V의 과전압이 필요하였으나, 본 발명의 수소 발생 시스템은 이론적으로 0.69V의 과전압으로 수소 기체를 발생할 수 있다. In the case of the conventional electrolysis system, an overvoltage of 1.23V was required to generate hydrogen gas, but the hydrogen generating system of the present invention can theoretically generate hydrogen gas with an overvoltage of 0.69V.

<실험예 1> 순환 전압전류곡선 (cyclic voltammogram)<Experimental Example 1> Cyclic voltammogram

본 발명 수소 발생 시스템의 산화환원전류를 측정하기 위하여 셀을 제조하였으며, 작동전극 및 상대전극은 Pt, 기준 전극은 Ag/AgCl, 전해액은 0.1M HClO4 수용액에 50mM H2O2를 첨가하였다. A cell was prepared to measure the redox current of the hydrogen generating system of the present invention, the working electrode and the counter electrode were Pt, the reference electrode was Ag/AgCl, and the electrolyte was 0.1M HClO 4 50mM H 2 O 2 .

도 2를 참고하면, 백금 디스크에서 5mA/cm2 전류밀도를 내기위해 1.7V의 전압이 필요하던 수전해가 1.1V로 감소하는 것을 확인할 수 있었으며, 이는 본 발명의 수소 발생 시스템이 기존의 전기 분해 시스템에 비하여 적은 과전압을 필요로 한다는 것을 의미한다. Referring to FIG. 2, it was confirmed that the water electrolysis, which required a voltage of 1.7V to produce a current density of 5mA/cm 2 in the platinum disk, was reduced to 1.1V, which is the hydrogen generation system of the present invention. This means that it requires less overvoltage compared to the system.

<실험예 2> 시간대전위차법 (chronopotentiometry)<Experimental Example 2> Chronopotentiometry

본 발명 수소 발생 시스템에서 과산화수소(H2O2)의 유무에 따른 비교분석을 위하여 실험예 1과 동일한 셀을 제조하여 CV 및 CP 곡선을 확인하였다. For comparative analysis according to the presence or absence of hydrogen peroxide (H 2 O 2 ) in the hydrogen generating system of the present invention, the same cell as in Experimental Example 1 was prepared and CV and CP curves were confirmed.

도 3을 참고하면, 단계적으로 일전한 전류를 걸어주었을 때 4.2mA/cm2의 전류에서, pt촉매를 사용하였을 때, 2V에서 1V로 과전압이 줄어든 것을 확인할 수 있었다. Referring to FIG. 3 , it was confirmed that the overvoltage was reduced from 2V to 1V when the pt catalyst was used at a current of 4.2mA/cm 2 when a stepwise constant current was applied.

<실험예 3> 유리상 탄소(glassy carbon) 전극에서의 순환 전압전류곡선 (cyclic voltammogram)<Experimental Example 3> Cyclic voltammogram in a glassy carbon electrode

본 발명 수소 발생 시스템에서 과산화수소(H2O2)의 농도에 따른 전류 밀도의 차이를 확인하기 위하여 작동 전극을 유리상 탄소를 사용한 것을 제외하고는 실험예 1과 동일한 셀을 제조하여 CV 곡선은 확인하였다. In order to confirm the difference in current density according to the concentration of hydrogen peroxide (H 2 O 2 ) in the hydrogen generating system of the present invention, the same cell as in Experimental Example 1 was prepared except that glassy carbon was used as the working electrode, and the CV curve was confirmed. .

도 4 및 5를 참고하면, H2O2의 농도가 100mM이상일때, 메스트렌스퍼에 의한 제한이 걸리지않고 과전압에 따라 전류증가하는 것을 확인할 수 있었으며, 과전압이 기존 전기 분해 시스템에 비하여 약 50%가 감소하는 것을 확인할 수 있었다. Referring to Figures 4 and 5, when the concentration of H 2 O 2 is 100mM or more, it was confirmed that the current increase according to the overvoltage without being limited by the mestran spur, the overvoltage is about 50% compared to the existing electrolysis system was found to decrease.

<실험예 4> Mass transfer-controlled system<Experimental Example 4> Mass transfer-controlled system

메스트렌스퍼 제한을 완전히 배제하기 위해, 물리적으로 과산화수를 생성시켜 반응전극으로 공급하는 식의 실험을 디자인하였다. In order to completely exclude the restriction of mestran, an experiment was designed in which water peroxide was physically generated and supplied to the reaction electrode.

H2O2 생성을 위하여(2e- Oxygen reduction) 작동전극 ZnTP, 상대전극 Pt wire를 사용하였으며, H2O2 산화를 위하여 작동전극 Pt ring, 상대전극 Pt wire를 사용하였다. For H 2 O 2 generation (2e - oxygen reduction), a working electrode ZnTP and a counter electrode Pt wire were used. For H 2 O 2 oxidation, a working electrode Pt ring and a counter electrode Pt wire were used.

도 6을 참조하면, Disk에서 H2O2를 생성시켜 ring 전극에 공급하여 ring 전극에서 H2O2 산화반응을 일으켰다. Referring to FIG. 6 , H 2 O 2 was generated in the disk and supplied to the ring electrode to cause H 2 O 2 oxidation reaction in the ring electrode.

도 6B를 참조하면, 0.1M KOH에서 과산화수소를 생성시키는 경우 수소 발생을 위한 과전압이 대략 0.8V 가 나와 이론전압인 0.69V 에 거의 가깝게 일어나는 것을 확인할 수 있었다. Referring to FIG. 6B , when hydrogen peroxide is generated in 0.1M KOH, it can be confirmed that the overvoltage for hydrogen generation is approximately 0.8V, which is almost close to the theoretical voltage of 0.69V.

<실험예 5> 과산화수소 산화반응 전극 촉매<Experimental Example 5> Electrode catalyst for oxidation of hydrogen peroxide

과산화수소의 산화반응에서의 실험적인 과전압을 극복하기 위한 적절한 촉매를 탐색하였다. 후보 물질은 cobalt(II) 1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25-hexadecafluoro-29H,31H-phthalo-cyanine(CoIIHFPC), 산화루테늄(RuO2) 및 탄소촉매인 CNT-COOH를 선정하였다. 상기 후보 물질을 작동 전극으로 하여 실시예 1과 동일하게 셀을 제조하였으며, 전해액은 0.1M KOH 수용액에 0.1M H2O2를 첨가하였다.An appropriate catalyst was searched for overcoming the experimental overpotential in the oxidation reaction of hydrogen peroxide. The candidate substance is cobalt(II) 1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25-hexadecafluoro-29H,31H-phthalo-cyanine (Co II HFPC), ruthenium oxide (RuO 2 ) and CNT-COOH as a carbon catalyst were selected. A cell was prepared in the same manner as in Example 1 using the candidate material as a working electrode, and the electrolyte was 0.1M KOH 0.1MH 2 O 2 was added to the aqueous solution.

도 7을 참고하면, 동일한 촉매를 사용하였음에도 과산화수소를 첨가하는 경우 과전압이 약 50% 감소하는 것을 확인할 수 있었으며, 염기성 조건하에서 CoIIHFPC가 가장 우수한 촉매 능력을 나타내는 것을 확인할 수 있었다. Referring to FIG. 7 , it was confirmed that the overvoltage was reduced by about 50% when hydrogen peroxide was added even though the same catalyst was used, and it was confirmed that Co II HFPC exhibited the best catalytic ability under basic conditions.

<실험예 6> 과산화수소 농도 및 pH에 따른 전류 밀도 측정<Experimental Example 6> Measurement of current density according to hydrogen peroxide concentration and pH

과산화 수소의 농도 및 pH에 따른 전류 밀도를 측정하였으며, 그 결과를 도 8 내지 도 10에 도시하였다(빨강: CoIIHFPC, 파랑: 산화루테늄(RuO2) 및 녹색: CNT-COOH). The current density according to the concentration and pH of hydrogen peroxide was measured, and the results are shown in FIGS. 8 to 10 (red: Co II HFPC, blue: ruthenium oxide (RuO 2 ) and green: CNT-COOH).

도 8은 0.1M H2O2 및 0.1M HClO4 조건에서 전류 밀도 측정 결과를 나타내는 그래프로, 산성 조건에서는 CoIIHFPC 보다 산화루테늄에서 더 높은 전류 밀도가 발생되는 것을 확인할 수 있었다. 8 is a graph showing the current density measurement results under 0.1MH 2 O 2 and 0.1M HClO 4 conditions, and it was confirmed that a higher current density was generated in ruthenium oxide than in Co II HFPC under acidic conditions.

도 9는 0.01 ~ 0.5M H2O2 및 0.1M KOH 조건에서 전류 밀도 측정 결과를 나타내는 그래프로, 염기성 조건에서는 산화루테늄 보다 CoIIHFPC 에서 더 높은 전류 밀도가 발생되는 것을 확인할 수 있었으며, 과산화수소의 농도가 높아질수록 전류 밀도가 높아지는 것을 확인할 수 있었다. 9 is 0.01 to 0.5MH 2 O 2 and 0.1M KOH As a graph showing the current density measurement results under the conditions, it was confirmed that a higher current density was generated in Co II HFPC than in ruthenium oxide under basic conditions, and it was confirmed that the current density increased as the concentration of hydrogen peroxide increased.

도 10는 0.01 ~ 1M H2O2 및 1M KOH 조건에서 전류 밀도 측정 결과를 나타내는 그래프로, KOH의 농도가 증가하는 경우 0.1M KOH 조건에 비하여 높은 전류 밀도가 발생하였으며, 특히 CoIIHFPC 촉매를 사용한 경우에는 1.35V에서 대략 800 mA/cm2의 전류 밀도가 발생되는 것을 확인할 수 있었다. 10 is a graph showing the current density measurement results under 0.01 ~ 1M H 2 O 2 and 1M KOH conditions, when the concentration of KOH increases, 0.1M KOH A high current density was generated compared to the conditions, and in particular, when the Co II HFPC catalyst was used, it was confirmed that a current density of approximately 800 mA/cm 2 was generated at 1.35V.

이상으로 본 발명의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 실시예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다.As above, a specific part of the present invention has been described in detail. For those of ordinary skill in the art, these specific descriptions are only preferred embodiments, and it is clear that the scope of the present invention is not limited thereto. Accordingly, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

Claims (10)

과산화수소의 산화 반응을 이용하는 저전압 수소 발생 시스템에 있어서,
상기 시스템은 산소발생전극, 분리막 및 수소발생전극을 포함하고, 상기 과산화수소의 산화 반응은 산소발생전극에서 일어나며,
상기 수소발생전극에서는 수소발생반응(Hydrogen evolution reaction, HER)에 의하여 수소가 발생하며,
상기 시스템은 과산화수소를 포함하는 전해액을 포함하며,
상기 과산화수소의 농도는 100mM 내지500mM이며,
상기 산소발생전극은 촉매를 포함하고,
상기 촉매는 cobalt(II)1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25-hexadecafluoro-29H,31H-phthalo-cyanine(CoIIHFPC) 또는 산화루테늄(RuO2)인,
저전압 수소 발생 시스템.
In the low-voltage hydrogen generation system using the oxidation reaction of hydrogen peroxide,
The system includes an oxygen generating electrode, a separator and a hydrogen generating electrode, wherein the oxidation reaction of hydrogen peroxide occurs in the oxygen generating electrode,
In the hydrogen generating electrode, hydrogen is generated by a hydrogen evolution reaction (HER),
The system comprises an electrolyte comprising hydrogen peroxide,
The concentration of hydrogen peroxide is 100mM to 500mM,
The oxygen generating electrode includes a catalyst,
The catalyst is cobalt(II)1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25-hexadecafluoro-29H,31H-phthalo-cyanine (Co II HFPC) or ruthenium oxide (RuO 2 ),
Low voltage hydrogen generation system.
삭제delete 삭제delete 삭제delete 제1항에 있어서,
상기 전해액은 HClO4 수용액, KOH 수용액, NaOH 수용액, LiOH 수용액, K2CO3 수용액 및 KHCO2 수용액으로 구성된 군으로부터 선택된 어느 하나 이상인 저전압 수소 발생 시스템.

According to claim 1,
The electrolyte is HClO 4 aqueous solution, KOH aqueous solution, NaOH aqueous solution, LiOH aqueous solution, K 2 CO 3 aqueous solution and KHCO 2 low voltage hydrogen generating system at least one selected from the group consisting of aqueous solution.

삭제delete 제1항에 있어서,
상기 분리막은 양이온 교환수지 분리막, 음이온 교환수지 분리막 또는 다공성 분리막을 포함하는 분리막으로 구성된 군으로부터 선택된 분리막인 저전압 수소 발생 시스템.
According to claim 1,
The separation membrane is a low voltage hydrogen generating system that is a separation membrane selected from the group consisting of a cation exchange resin separation membrane, an anion exchange resin separation membrane, or a separation membrane comprising a porous membrane.
삭제delete 삭제delete 제1항에 있어서,
상기 수소발생전극은 촉매를 포함하고, 상기 촉매는 Pt, Pd, Ir, Au, Ag 또는 이들의 합금으로 이루어지는 군에서 선택되는 적어도 어느 하나인 저전압 수소 발생 시스템.
According to claim 1,
The hydrogen generating electrode includes a catalyst, and the catalyst is at least one selected from the group consisting of Pt, Pd, Ir, Au, Ag, or alloys thereof.
KR1020200159346A 2020-11-24 2020-11-24 Apparatus for generating hydrogen using hydrogen peroxide KR102446703B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020200159346A KR102446703B1 (en) 2020-11-24 2020-11-24 Apparatus for generating hydrogen using hydrogen peroxide
PCT/KR2021/016689 WO2022114638A1 (en) 2020-11-24 2021-11-16 Low-voltage hydrogen generation system using hydrogen peroxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200159346A KR102446703B1 (en) 2020-11-24 2020-11-24 Apparatus for generating hydrogen using hydrogen peroxide

Publications (2)

Publication Number Publication Date
KR20220071800A KR20220071800A (en) 2022-05-31
KR102446703B1 true KR102446703B1 (en) 2022-09-22

Family

ID=81756146

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200159346A KR102446703B1 (en) 2020-11-24 2020-11-24 Apparatus for generating hydrogen using hydrogen peroxide

Country Status (2)

Country Link
KR (1) KR102446703B1 (en)
WO (1) WO2022114638A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101147917B1 (en) * 2003-12-26 2012-05-25 가부시키가이샤 지에스 유아사 Method for producing hydrogen and hydrogen-producing apparatus used therefor
JP2016527396A (en) 2013-07-17 2016-09-08 インドゥストリエ・デ・ノラ・ソチエタ・ペル・アツィオーニ Alkaline solution electrolysis cell
KR101854184B1 (en) * 2016-06-24 2018-05-04 이화여자대학교 산학협력단 Porous composite and catalyst for oxygen evolution reaction including the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10048030A1 (en) * 2000-09-26 2002-04-11 Degussa Process for the electrochemical production of hydrogen peroxide
EP1837942A1 (en) * 2004-12-28 2007-09-26 GS Yuasa Corporation Stand-alone hydrogen production system
KR20190106784A (en) * 2018-03-07 2019-09-18 주식회사 패러데이오투 Electrochemical Oxygen Generator
KR102203081B1 (en) 2018-07-25 2021-01-14 (주) 시온텍 Apparatus for generating oxygen and hydrogen
KR102210525B1 (en) * 2019-04-12 2021-02-02 재단법인대구경북과학기술원 Electrode for Oxygen Evolution Reaction and The Fabrication Method Thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101147917B1 (en) * 2003-12-26 2012-05-25 가부시키가이샤 지에스 유아사 Method for producing hydrogen and hydrogen-producing apparatus used therefor
JP2016527396A (en) 2013-07-17 2016-09-08 インドゥストリエ・デ・ノラ・ソチエタ・ペル・アツィオーニ Alkaline solution electrolysis cell
KR101854184B1 (en) * 2016-06-24 2018-05-04 이화여자대학교 산학협력단 Porous composite and catalyst for oxygen evolution reaction including the same

Also Published As

Publication number Publication date
WO2022114638A1 (en) 2022-06-02
KR20220071800A (en) 2022-05-31

Similar Documents

Publication Publication Date Title
Liu et al. Efficient synergism of NiSe2 nanoparticle/NiO nanosheet for energy-relevant water and urea electrocatalysis
Chen et al. Chemical-assisted hydrogen electrocatalytic evolution reaction (CAHER)
Luo et al. Bipolar Membrane-Assisted Solar Water Splitting in Optimal pH.
Rashid et al. Hydrogen production by water electrolysis: a review of alkaline water electrolysis, PEM water electrolysis and high temperature water electrolysis
CN107904614B (en) A kind of Ni3S2@Ni-Fe LDH analyses oxygen electro catalytic electrode and the preparation method and application thereof
Marshall et al. Production of hydrogen by the electrochemical reforming of glycerol–water solutions in a PEM electrolysis cell
Jadhav et al. Enhancing the performance of single-chambered microbial fuel cell using manganese/palladium and zirconium/palladium composite cathode catalysts
Dong et al. Carbon‐supported perovskite oxides as oxygen reduction reaction catalyst in single chambered microbial fuel cells
Corona-Guinto et al. Performance of a PEM electrolyzer using RuIrCoOx electrocatalysts for the oxygen evolution electrode
Park et al. High-performance anion exchange membrane water electrolyzer enabled by highly active oxygen evolution reaction electrocatalysts: Synergistic effect of doping and heterostructure
CN110205636A (en) A kind of preparation method of self-cradling type three-dimensional porous structure double-function catalyzing electrode
Fukushima et al. Carbon-neutral energy cycles using alcohols
WO2016096806A1 (en) Method for hydrogen production and electrolytic cell thereof
Kumar et al. Recent advances in hydrogen production through proton exchange membrane water electrolysis–a review
Zhang et al. Hydrogen production by traditional and novel alkaline water electrolysis on nickel or iron based electrocatalysts
WO2007136140A1 (en) Method for evaluating performance of electrode catalyst for battery, method for exploring electrode catalyst for battery, electrode catalyst for battery, and fuel battery using the electrode catalyst
Zhang et al. Facile generation of CeO2 nanoparticles on multiphased NiSx nanoplatelet arrays as a free-standing electrode for efficient overall water splitting
KR20190083546A (en) Electrochemical hydrogenation reactor and method of hydrogenation using the same
KR102446703B1 (en) Apparatus for generating hydrogen using hydrogen peroxide
Joe et al. Production of hydrogen by anion exchange membrane using AWE
Muhoza et al. Enhancing catalyst efficiency of activated carbon for oxygen reduction reaction in air cathode microbial fuel cell application
CN110065932B (en) Lithium insertion type selenium compound, and preparation method and application thereof
Audichon et al. Synthesis of RuxIr1-xO2 anode electrocatalysts for proton exchange membrane water electrolysis
Liu et al. Facile construction Co-doped and CeO2 heterostructure modified NiS2 grown on foamed nickel for high-performance bifunctional water electrolysis catalysts
WO2024063051A1 (en) Alkaline water electrolysis system, method for alkaline water electrolysis, and method for producing hydrogen

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right