KR20180083616A - 광섬유 격자센서를 이용한 변형률 센서 - Google Patents

광섬유 격자센서를 이용한 변형률 센서 Download PDF

Info

Publication number
KR20180083616A
KR20180083616A KR1020170006128A KR20170006128A KR20180083616A KR 20180083616 A KR20180083616 A KR 20180083616A KR 1020170006128 A KR1020170006128 A KR 1020170006128A KR 20170006128 A KR20170006128 A KR 20170006128A KR 20180083616 A KR20180083616 A KR 20180083616A
Authority
KR
South Korea
Prior art keywords
optical fiber
sensor
strain
fixing
diameter
Prior art date
Application number
KR1020170006128A
Other languages
English (en)
Other versions
KR101901389B1 (ko
Inventor
이금석
Original Assignee
(주)에프비지코리아
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)에프비지코리아 filed Critical (주)에프비지코리아
Priority to KR1020170006128A priority Critical patent/KR101901389B1/ko
Publication of KR20180083616A publication Critical patent/KR20180083616A/ko
Application granted granted Critical
Publication of KR101901389B1 publication Critical patent/KR101901389B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet

Abstract

광섬유 격자센서를 이용한 변형률 센서에 관한 것으로, 직육면체 형상으로 형성되는 바디, 중앙부에 광섬유 격자센서가 마련되고 상기 바디에 길이 방향을 따라 설치되는 광섬유 및 상기 바디의 양측단 하면에 각각 요입 형성되고 상기 광섬유의 양단을 고정하는 한 쌍의 고정홈부를 포함하는 구성을 마련하여, 설치공간이 협소한 측정대상물에 연속적으로 복수의 변형률 센서를 연속적으로 설치해서 측정대상의 변형률을 측정할 수 있다는 효과가 얻어진다.

Description

광섬유 격자센서를 이용한 변형률 센서{STRAIN SENSOR USING FBG SENSOR}
본 발명은 광섬유 격자센서를 이용한 변형률 센서에 관한 것으로, 더욱 상세하게는 측정 대상의 변위에 따라 신축되는 광섬유 격자센서를 이용해서 변형률을 측정하는 광섬유 격자센서를 이용한 변형률 센서에 관한 것이다.
일반적으로 광섬유 센서(optical fiber sensor)는 광섬유를 지나가는 빛의 세기, 광섬유의 굴절률 및 길이, 모드, 그리고 편광상태의 변화 등을 이용하여 피측정량을 추정하는 센서이다.
광섬유의 주성분은 석영 유리로 이루어져 있으며, 광섬유 센서는 굴절률이 약간 높도록 게르마늄을 첨가한 광섬유 중심인 코어 부분과 중심을 보호하는 덧겹층인 클래딩 부분으로 구성된다.
광섬유 코어로 입사된 빛은 굴절률이 높은 코어층과 굴절률이 낮은 클래딩층의 경계면에서 반사되어 광섬유 코어 부분을 따라 전파된다.
이러한 광섬유 센서는 이용되는 효과에 따라 세기형, 위상형, 회절격자형, 모드변조형, 편광형, 분포측정형 등으로 구분되며, 전압, 전류, 온도, 압력, 스트레인, 회전율, 음향, 가스농도 등 다양한 측정값을 제공한다.
광섬유 센서는 초정밀 광대역 측정이 가능하고, 전자파의 영향을 받지 않으며, 원격측정이 용이하고, 센서부에서 전기를 사용하지 않으며, 실리카 재질의 뛰어난 내부식성으로 사용 환경에 대한 제약이 거의 없는 특징을 갖는다.
광섬유 센서 중에서 대표적인 것은 광섬유 격자센서(Fiber Bragg Grating Sensor) 타입의 광섬유 센서이다
광섬유 격자센서는 한 가닥의 광섬유에 여러 개의 광섬유 브래그 격자를 일정한 길이에 따라 새긴 후, 온도나 강도 등의 외부의 조건 변화에 따라 각 격자에서 반사되는 빛의 파장이 달라지는 특성을 이용한 센서이다.
따라서 광섬유 격자센서는 격자(grating)가 형성된 광섬유에 물리적인 힘의 작용으로 인하여 변형이 생겼을 때 격자에서의 빛 굴절 변화가 유발되고, 이러한 굴절 변화를 측정하여 광섬유의 변형률을 측정함으로써, 광섬유가 고정되는 구조물의 변형률을 측정하여 구조물에 작용하는 하중 및 응력을 알 수 있다.
광섬유 격자센서는 광섬유 코어부의 굴절률을 일정한 주기로 변화시킨 것으로서, 특정 파장의 광만을 선택적으로 반사한다.
이러한 광섬유 격자센서는 고유한 파장 값을 가지며, 전자기파의 영향을 받지 않는 등 물리적인 특성이 매우 우수하여 기존의 전기식 게이지를 대체해가고 있는 우수한 물리량 측정소자로서, 현재 그 활용범위가 급속도로 증대되고 있다.
그래서 광섬유 격자센서는 광섬유 내에서 굴절률이 높은 물질에서 낮은 물질로 빛이 진행될 때, 그 경계면에서 일정한 각도 내의 빛이 모두 반사되는 전반사의 원리를 이용해서 변형률, 각도, 가속도, 변위, 온도, 압력변위 등을 감지하는 감지센서로 사용되고 있다.
예를 들어, 본 발명자는 하기의 특허문헌 1 및 특허문헌 2 등 다수에 광섬유 격자센서를 이용한 기술을 개시하여 출원해서 등록받은 바 있다.
대한민국 특허 등록번호 제10-1057309호(2011년 8월 16일 공고) 대한민국 특허 등록번호 제10-0992628호(2010년 11월 5일 공고)
한편, 항공기의 주익은 각각 상방과 하방을 향해 볼록한 유선형으로 형성되는 상판과 하판 사이에 주익의 폭 방향을 따라 다수의 격벽이 설치된다.
특히, 무인 항공기의 주익은 유인 항공기에 비해 소형으로 제조된다.
이와 같은 무인 항공기의 주익의 변형률을 측정하고자 하는 경우, 주익 내부에 설치된 다수의 격벽으로 인해 종래의 광섬유 격자센서를 이용한 변형률 센서를 설치하기에 어려움이 있었다.
즉, 종래기술에 따른 변형률 센서는 약 10㎜ 이상의 직경을 갖는 고정형 보호관이 적용된 광섬유를 사용함에 따라, 광섬유의 직경 및 강성으로 인해 광섬유를 주익과 격벽 사이의 틈을 통해 설치하기 어려운 문제점이 있었다.
그리고 종래기술에 따른 변형률 센서는 광섬유 격자센서를 보호관 내부에 설치하고, 보호관의 양측에 고정구를 결합해서 설치됨에 따라, 협소한 설치공간의 제약이 있는 무인 항공기의 주익 내부에 설치하기 어려운 문제점이 있었다.
본 발명의 목적은 상기한 바와 같은 문제점을 해결하기 위한 것으로, 변형률을 측정하고자 하는 측정 대상에 용이하게 설치할 수 있는 광섬유 격자센서를 이용한 변형률 센서를 제공하는 것이다.
본 발명의 다른 목적은 측정대상에 설치 작업시 설치 상태를 용이하게 확인할 수 있는 광섬유 격자센서를 이용한 변형률 센서를 제공하는 것이다.
본 발명의 또 다른 목적은 변형률 센서의 설치 구조를 간단하게 하고, 소형화 및 경량화할 수 있는 광섬유 격자센서를 이용한 변형률 센서를 제공하는 것이다.
상기한 바와 같은 목적을 달성하기 위하여, 본 발명에 따른 광섬유 격자센서를 이용한 변형률 센서는 직육면체 형상으로 형성되는 바디, 중앙부에 광섬유 격자센서가 마련되고 상기 바디에 길이 방향을 따라 설치되는 광섬유 및 상기 바디의 양측단 하면에 각각 요입 형성되고 상기 광섬유의 양단을 고정하는 한 쌍의 고정홈부를 포함하는 것을 특징으로 한다.
상기 바디의 하면에는 고착제를 충진시켜 상기 광섬유를 고정하는 충진공간이 형성되고, 상기 바디의 상면에는 상기 고착제가 주입되는 주입구와 상기 고착제 주입시 상기 충진공간에 충진된 공기를 배출하는 배출구가 상기 충진공간과 연통 형성되는 것을 특징으로 한다.
상기 바디는 수직으로 배치된 부착면에 부착시, 상기 주입구와 배출구가 각각 상기 충진공간보다 상부에 배치된 상태에서 부착되는 것을 특징으로 한다.
상기 바디는 상기 고착제가 상기 충진공간에 충진되는 상태를 확인 가능하도록, 투명한 합성수지 재질의 재료로 제조되는 것을 특징으로 한다.
상기 고정홈부는 상기 바디의 하면 양측단에 각각 상기 바디의 길이 방향을 따라 상방으로 요입 형성되고, 상기 고정홈부의 폭은 상기 광섬유의 직경과 동일하거나 상기 광섬유의 직경보다 작은 폭으로 형성되며, 각 고정홈부에는 상기 광섬유의 직경보다 큰 직경을 갖는 설치홈이 형성되는 것을 특징으로 한다.
상기 광섬유 및 광섬유 격자센서는 각각 측정대상에 설치된 격벽과의 틈을 통해 설치 가능하도록, 미리 설정된 제1 직경과 제2 직경 이하로 마련되는 것을 특징으로 한다.
상기 광섬유 격자센서는 측정대상에 압축력이 작용하는 경우, 최초 설치시 설정된 중심파장보다 짧은 파장을 출력하고, 측정대상에 인장력이 작용하는 경우, 상기 중심파장보다 긴 파장을 출력하는 것을 특징으로 한다.
상술한 바와 같이, 본 발명에 따른 광섬유 격자센서를 이용한 변형률 센서에 의하면, 무인 항공기와 같이, 설치공간이 협소한 측정대상물에 연속적으로 복수의 변형률 센서를 연속적으로 설치해서 측정대상의 변형률을 측정할 수 있다는 효과가 얻어진다.
즉, 본 발명에 의하면, 바디의 개수에 대응되도록 복수의 광섬유 격자센서가 마련된 하나의 광섬유를 연속적으로 설치해서 대형 측정 대상물의 각 부위별 변형률을 측정할 수 있다는 효과가 얻어진다.
그리고 본 발명에 의하면, 항공기 주익의 상판 및 하판과 격벽 사이의 틈을 통해 설치 가능하도록, 광섬유의 직경을 최소화하고, 종래에 광섬유의 양단을 고정하는 고정부를 제거해서 변형률 센서의 구조를 간단하게 하고, 소형화 및 경량화할 수 있다는 효과가 얻어진다.
또한, 본 발명에 의하면, 바디를 투명한 재질의 재료로 제조함에 따라, 고착제가 충진공간 내부에 충진되는 상태를 용이하게 확인할 수 있고, 고착제를 충진공간에 전체적으로 충진시켜 바디를 부착면에 안정적으로 부착할 수 있다는 효과가 얻어진다.
결과적으로, 본 발명에 의하면, 무인항공기나 장시간 비행이 요구되는 무인공격기 및 정찰기, 로켓 등 다양한 항공기 구조물, 선박, 교량이나 터널 등의 구조불에 광섬유 격자센서를 이용한 변형률 센서를 설치해서 측정 대상의 정확한 성능 진단 및 효율적인 안전관리를 수행할 수 있다는 효과가 얻어진다.
도 1은 본 발명의 바람직한 실시 예에 따른 광섬유 격자센서를 이용한 변형률 센서의 평면도,
도 2는 도 1에 도시된 변형률 센서의 저면도,
도 3은 본 발명의 바람직한 실시 예에 따른 광섬유 격자센서를 이용한 변형률 센서의 설치방법을 단계별로 설명하는 공정도,
도 4는 측정 대상에 설치된 광섬유의 예시도,
도 5는 도 4에 도시된 A 부분의 확대도,
도 6은 측정 대상에 설치된 변형률 센서의 확대도,
도 7은 항공기 주익에 가해지는 외력을 예시한 도면,
도 8은 도 7에 도시된 외력에 의한 변형률 센서의 출력파장 변화를 예시한 도면.
이하 본 발명의 바람직한 실시 예에 따른 광섬유 격자센서를 이용한 변형률 센서를 첨부된 도면을 참조하여 상세하게 설명한다.
도 1은 본 발명의 바람직한 실시 예에 따른 광섬유 격자센서를 이용한 변형률 센서의 평면도이고, 도 2는 도 1에 도시된 변형률 센서의 저면도이다.
본 실시 예에서는 무인 항공기의 주익을 구성하는 상판과 하판의 변형률을 측정하는 변형률 센서의 구성을 설명하기로 한다.
물론, 본 발명은 반드시 이에 한정되는 것은 아니며, 상대적으로 소형인 무인 항공기뿐만 아니라, 상대적으로 대형인 유인 항공기, 선박, 교량이나 터널 등의 대형 구조물과 같은 측정 대상의 변형률을 측정하도록 변경될 수 있음에 유의하여야 한다.
이하에서는 변형률 센서(10)의 바디(20) 내부에 형성되는 충진공간(21)의 개구면이 형성된 면을 변형률 센서(10)의 '하면'이라 하고, 그 반대 방향을 '상면'이라 한다.
따라서 '좌측', '우측', '전방', '후방'과 같은 방향을 지시하는 용어들은 상기한 변형률 센서(10)의 하면과 상면 및 각 도면에 도시된 상태를 기준으로 각각의 방향을 지시하는 것으로 정의한다.
본 발명의 바람직한 실시 예에 따른 광섬유 격자센서를 이용한 변형률 센서(10)는 도 1 및 도 2에 도시된 바와 같이, 직육면체 형상으로 형성되는 바디(20), 중앙부에 광섬유 격자센서(31)가 마련되고 바디(20)의 길이 방향을 따라 설치되는 광섬유(30) 및 바디(20)의 양측단 하면에 각각 요입 형성되고 광섬유(30)의 양단을 고정하는 한 쌍의 고정홈부(40)를 포함할 수 있다.
바디(20)는 세로 및 높이에 비해 길이가 긴 대략 직육면체 형상으로 형성되고, 바디(20)의 하면에는 에폭시와 같은 고착제를 충진시켜 광섬유(30)를 고정하는 충진공간(21)이 형성될 수 있다.
충진공간(21)은 바디(20)의 하면에 상방으로 요입 형성된 공간으로 마련되고, 도 1에서 보았을 때 대략 상면이 개구된 'ㄷ' 형상으로 형성될 수 있다.
바디(20)의 일측 상면에는 고착제를 주입하는 주입구(22)가 형성되고, 바디(20)의 타측 상면에는 주입구(22)를 통해 주입된 고착제가 충진공간(21)에 충진되는 과정에서 충진공간(21) 내부에 충진된 공기를 배출하는 배출구(23)가 형성될 수 있다.
이를 위해, 주입구(22)과 배출구(23)는 충진공간(21)의 양단에 각각 연통 형성될 수 있다.
이러한 바디(20)는 주입구(22)를 통해 주입된 고착제가 충진공간(21)에 충진되는 상태를 용이하게 확인할 수 있도록, 플라스틱과 같은 투명한 합성수지 재질의 재료로 제조될 수 있다.
광섬유(30)의 중앙부에는 광섬유 격자센서(31)가 마련되고, 광섬유 격자센서(31)는 충진공간(21)의 내부에 배치될 수 있다.
광섬유(30)는 항공기 주익을 구성하는 상판과 하판 및 그 사이에 설치되는 격벽 사이의 틈을 통해 연속적인 설치가 가능하도록, 미리 설정된 제1 직경, 예컨대 약 1㎜ 이하의 직경을 갖고, 광섬유(30)에 설치되는 광섬유 격자센서(31)는 미리 설정된 제2 직경, 예컨대 약 0.3㎜ 이하의 직경을 가질 수 있다.
본 실시 예에서 광섬유(30)는 약 0.9㎜의 직경을 갖고, 광섬유 격자센서(31)는 약 0.25㎜의 직경으로 마련될 수 있다.
이러한 광섬유(30)의 외주면에는 광섬유를 보호하는 코팅층이 형성되고, 광섬유(30)의 양단은 한 쌍의 고정홈부(40) 사이에 미리 설정된 장력을 갖도록 설치될 수 있다.
각 고정홈부(40)는 바디(20)의 하면 양측단에 각각 바디의 길이 방향을 따라 상방으로 요입 형성될 수 있다.
고정홈부(40)의 폭은 광섬유(30)가 억지 끼움되도록, 광섬유(30)의 직경과 동일하거나 광섬유(30)의 직경보다 작은 폭으로 형성될 수 있다.
이러한 각 고정홈부(40)에는 광섬유(30) 설치시 각 고정홈부(40)에 용이하게 설치 가능하도록, 광섬유(30)의 직경보다 큰 직경을 갖는 대략 반구 형상 또는 원기둥 형상의 설치홈(41)이 형성될 수 있다.
한편, 광섬유(30)는 미리 설정된 간격만큼 이격되어 배치되는 복수, 예컨대 20개의 바디(20)에 연속적으로 설치될 수 있다.
이와 같이, 본 발명은 바디의 개수에 대응되도록 복수의 광섬유 격자센서가 마련된 하나의 광섬유를 연속적으로 설치해서 대형 측정 대상물의 부위별 변형률을 측정할 수 있다.
다음, 도 3 내지 도 6을 참조하여 본 발명의 바람직한 실시 예에 따른 광섬유 격자 센서를 이용한 변형률 센서의 설치방법 및 작동방법을 상세하게 설명한다.
도 3은 본 발명의 바람직한 실시 예에 따른 광섬유 격자센서를 이용한 변형률 센서의 설치방법을 단계별로 설명하는 공정도이고, 도 4는 측정 대상에 설치된 광섬유의 예시도이며, 도 5는 도 4에 도시된 A 부분의 확대도이고, 도 6은 측정 대상에 설치된 변형률 센서를 예시한 도면이다.
도 3의 S10단계에서 작업자는 도 4 및 도 5에 도시된 바와 같이, 광섬유(30)를 측정대상(50), 즉 항공기 주익(51)과 격벽(52) 사이의 틈을 통해 항공기 주익(51)의 길이 방향을 따라 길게 연장시켜 배치한 상태에서, 광섬유(30)를 각 변형률 센서(10)의 바디(20) 양단에 형성된 한 쌍의 고정홈부(41)에 삽입해서 결합한다.
이때, 광섬유(30)의 중앙부에 마련된 광섬유 격자센서(31)는 바디(20)의 하면에 형성된 충진공간(21) 내부에 배치된다.
S12단계에서 작업자는 도 6에 도시된 바와 같이, 변형률을 측정하고자 하는 측정대상(50)의 부착면에 각 바디(20)를 임시 고정한다.
이때, 작업자는 바디(20)의 하면에 부분적으로 접착제 등을 도포하여 바디(20)를 상기 부착면에 임시 고정할 수 있다.
S14단계에서 작업자는 주입구(22)를 통해 에폭시와 같은 고착제를 주입하여 충진공간(21) 내부에 고착제를 충진시킨다.
여기서, 변형률 센서(10)를 수평으로 배치된 부착면에 부착하는 경우, 주입구(22)와 배출구(23)가 각각 충진공간(21)보다 상부에 배치됨에 따라 에폭시와 같은 고착제는 충진공간(21)을 따라 전체적으로 충진된다.
반면, 변형률 센서(10)를 수직으로 배치된 부착면에 부착하는 경우, 바디(20)가 부착면에 부분적으로 임시 고정된 상태이므로, 충진공간(21)으로 주입된 고착제 중에서 일부가 부착면을 따라 하부로 흘러내리면서 충진공간(21)에 불완전하게 충진될 수 있다.
따라서 작업자는 바디(20)의 양단에 형성된 주입구(22)와 배출구(23)를 광섬유(30)보다 상부에 위치하도록 바디(20)의 부착 방향을 설정하고, 충진공간(21)에 전체적으로 고착제가 충진되도록, 충진공간 내부에 고착제의 충진 상태를 확인하면서 고착제를 서서히 주입한다(S16).
이때, 바디(20)가 투명한 합성수지 재질의 재료로 제조됨에 따라, 작업자는 고착제의 충진상태를 용이하게 확인할 수 있다.
이와 같이, 본 발명은 바디를 투명한 재질의 재료로 제조함에 따라, 고착제가 충진공간 내부에 충진되는 상태를 용이하게 확인할 수 있고, 고착제를 충진공간에 전체적으로 충진시켜 바디를 부착면에 안정적으로 부착할 수 있다.
이와 같은 과정을 통해, 변형률 센서(10)의 부착이 완료되면(S18), 작업자는 광섬유(30)의 일단에 계측기(도면 미도시)를 연결해서 측정대상(50)의 변형률을 측정할 수 있다(S20).
예를 들어, 도 7은 항공기 주익에 가해지는 외력을 예시한 도면이고, 도 8은 도 7에 도시된 외력에 의한 변형률 센서의 출력파장 변화를 예시한 도면이다.
도 7의 (b)에 도시된 바와 같이, 항공기 주익(51)의 상판과 하판에 각각 3개씩 총 6개의 광섬유 격자센서(FBG 1 내지 FBG 6)를 이용한 변형률 센서(10)가 설치된 상태를 설명한다.
주익(51)의 변화가 없는 평형 상태인 경우, 우측 가운데 그래프에 도시된 바와 같이, 제1 내지 제6 광섬유 격자 센서(FBG 1 내지 FBG 6)의 중심 파장은 도 8의 (a)에 도시된 바와 같이, 최초 설치시 출력되는 본래의 파장(λ1 ~λ6)을 유지하면서 아무런 변화가 없는 상태를 유지한다.
한편, 도 7의 (a)에 도시된 바와 같이, 주익(51)에 상방향으로 가력이 가해지는 경우, 주익(51)의 상판에 설치된 제1 내지 제3 광섬유 격자센서(FBG 1 내지 FBG 3)는 압축되는 힘을 받게 되고, 주익(51)의 하판에 설치된 제4 내지 제6 광섬유 격자센서(FBG 4 내지 FBG 6)는 인장되는 힘을 받게 된다.
이에 따라, 압축력을 받은 제1 내지 제3 광섬유 격자센서(FBG 1 내지 FBG 3)의 중심파장은 단파장, 즉 도 8의 (a)의 좌측에 도시된 청색 화살표 방향으로 이동하고, 인장력을 받은 제4 내지 제6 광섬유 격자센서(FBG 4 내지 FBG 6)의 중심파장은 장파장, 즉 도 8의 (a)의 우측에 도시된 적색 화살표 방향으로 이동한다.
반면, 도 7의 (c)에 도시된 바와 같이, 주익(51)에 하방향으로 가력이 가해지는 경우, 주익(51)의 상판에 설치된 제1 내지 제3 광섬유 격자센서(FBG 1 내지 FBG 3)는 인장되는 힘을 받게 되고, 주익(51)의 하판에 설치된 제4 내지 제6 광섬유 격자센서(FBG 4 내지 FBG 6)는 압축되는 힘을 받게 된다.
이에 따라, 인장력을 받은 제1 내지 제3 광섬유 격자센서(FBG 1 내지 FBG 3)의 중심파장은 장파장, 즉 도 8의 (c)의 좌측에 도시된 적색 화살표 방향으로 이동하고, 압축력을 받은 제4 내지 제6 광섬유 격자센서(FBG 4 내지 FBG 6)의 중심파장은 단파장, 즉 도 8의 (c)의 우측에 도시된 청색 화살표 방향으로 이동한다.
상기한 바와 같은 과정을 통하여, 본 발명은 각각의 광섬유 격자센서에서 출력되는 중심파장의 변화를 연속적으로 계측 및 신호처리를 해서 무인항공기 기체(주익)의 변화 방향과 변화량을 실시간으로 모니터링할 수 있다.
이상 본 발명자에 의해서 이루어진 발명을 상기 실시 예에 따라 구체적으로 설명하였지만, 본 발명은 상기 실시 예에 한정되는 것은 아니고, 그 요지를 이탈하지 않는 범위에서 여러 가지로 변경 가능한 것은 물론이다.
상기의 실시 예에서는 무인 항공기의 날개를 구성하는 상판과 하판의 변형률을 측정하는 변형률 센서의 구성을 설명하였으나, 본 발명은 상대적으로 소형인 무인 항공기뿐만 아니라, 상대적으로 대형인 유인 항공기, 선박, 교량이나 터널 등의 구조물과 같은 측정 대상의 변형률 측정이 가능하도록 변경될 수 있다.
본 발명은 협소한 설치공간을 갖는 측정 대상물의 변형률을 측정하는 변형률 센서 기술에 적용된다.
10: 광섬유 격자센서를 이용한 변형률 센서
20: 바디
21: 충진공간
22: 주입구
23: 배출구
30: 광섬유
31: 광섬유 격자센서
40: 고정홈부
41: 설치홈
50: 측정 대상
51: 주익
52: 격벽

Claims (7)

  1. 직육면체 형상으로 형성되는 바디,
    중앙부에 광섬유 격자센서가 마련되고 상기 바디에 길이 방향을 따라 설치되는 광섬유 및
    상기 바디의 양측단 하면에 각각 요입 형성되고 상기 광섬유의 양단을 고정하는 한 쌍의 고정홈부를 포함하는 것을 특징으로 하는 광섬유 격자센서를 이용한 변형률 센서.
  2. 제1항에 있어서,
    상기 바디의 하면에는 고착제를 충진시켜 상기 광섬유를 고정하는 충진공간이 형성되고,
    상기 바디의 상면에는 상기 고착제가 주입되는 주입구와
    상기 고착제 주입시 상기 충진공간에 충진된 공기를 배출하는 배출구가 상기 충진공간과 연통 형성되는 것을 특징으로 하는 광섬유 격자센서를 이용한 변형률 센서.
  3. 제2항에 있어서,
    상기 바디는 수직으로 배치된 부착면에 부착시, 상기 주입구와 배출구가 각각 상기 충진공간보다 상부에 배치된 상태에서 부착되는 것을 특징으로 하는 광섬유 격자센서를 이용한 변형률 센서.
  4. 제2항에 있어서,
    상기 바디는 상기 고착제가 상기 충진공간에 충진되는 상태를 확인 가능하도록, 투명한 합성수지 재질의 재료로 제조되는 것을 특징으로 하는 광섬유 격자센서를 이용한 변형률 센서.
  5. 제1항에 있어서,
    상기 고정홈부는 상기 바디의 하면 양측단에 각각 상기 바디의 길이 방향을 따라 상방으로 요입 형성되고,
    상기 고정홈부의 폭은 상기 광섬유의 직경과 동일하거나 상기 광섬유의 직경보다 작은 폭으로 형성되며,
    각 고정홈부에는 상기 광섬유의 직경보다 큰 직경을 갖는 설치홈이 형성되는 것을 특징으로 하는 광섬유 격자센서를 이용한 변형률 센서.
  6. 제1항에 있어서,
    상기 광섬유 및 광섬유 격자센서는 각각 측정대상에 설치된 격벽과의 틈을 통해 설치 가능하도록, 미리 설정된 제1 직경과 제2 직경 이하로 마련되는 것을 특징으로 하는 광섬유 격자센서를 이용한 변형률 센서.
  7. 제1항에 있어서,
    상기 광섬유 격자센서는 측정대상에 압축력이 작용하는 경우, 최초 설치시 설정된 중심파장보다 짧은 파장을 출력하고,
    측정대상에 인장력이 작용하는 경우, 상기 중심파장보다 긴 파장을 출력하는 것을 특징으로 하는 광섬유 격자센서를 이용한 변형률 센서.
KR1020170006128A 2017-01-13 2017-01-13 광섬유 격자센서를 이용한 변형률 센서 KR101901389B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170006128A KR101901389B1 (ko) 2017-01-13 2017-01-13 광섬유 격자센서를 이용한 변형률 센서

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170006128A KR101901389B1 (ko) 2017-01-13 2017-01-13 광섬유 격자센서를 이용한 변형률 센서

Publications (2)

Publication Number Publication Date
KR20180083616A true KR20180083616A (ko) 2018-07-23
KR101901389B1 KR101901389B1 (ko) 2018-09-28

Family

ID=63103078

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170006128A KR101901389B1 (ko) 2017-01-13 2017-01-13 광섬유 격자센서를 이용한 변형률 센서

Country Status (1)

Country Link
KR (1) KR101901389B1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110514133A (zh) * 2019-09-30 2019-11-29 西南石油大学 一种基于摄影测量的无人机隧道变形检测方法
CN113074760A (zh) * 2021-03-31 2021-07-06 西安石油大学 一种微应变光纤光栅传感器、应力测量系统及其工作方法
CN114424028A (zh) * 2019-09-17 2022-04-29 日东电工株式会社 传感器封装体及传感器封装体的安装方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102186746B1 (ko) 2019-03-22 2020-12-04 (주)다음기술단 계측장치 시스템을 이용한 구조물 시공 및 유지관리 방법
KR102472693B1 (ko) 2020-09-25 2022-12-01 (주)에프비지코리아 광섬유 격자센서를 이용한 신축이음장치의 감지장치 및 방법
KR102228641B1 (ko) 2020-09-25 2021-03-17 (주)에프비지코리아 광섬유 격자센서를 이용한 계측 시스템

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090009068A (ko) * 2007-07-18 2009-01-22 이금석 광섬유격자센서 감도 감쇄 방법 및 센서케이블
US20090126501A1 (en) * 2007-11-15 2009-05-21 Ferguson Stephen K Fiber optic strain gage and carrier
KR20090065558A (ko) * 2007-12-18 2009-06-23 이금석 광섬유격자 변형률 센서
KR100992628B1 (ko) 2010-02-09 2010-11-05 이금석 광섬유 격자센서를 이용한 압력변위센서
KR101057309B1 (ko) 2010-12-30 2011-08-16 이금석 광섬유격자센서를 이용한 변위 측정장치
KR20120010295A (ko) * 2010-07-26 2012-02-03 (주)지티씨코퍼레이션 부재 일체형 광섬유 격자 센서 구조

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090009068A (ko) * 2007-07-18 2009-01-22 이금석 광섬유격자센서 감도 감쇄 방법 및 센서케이블
US20090126501A1 (en) * 2007-11-15 2009-05-21 Ferguson Stephen K Fiber optic strain gage and carrier
KR20090065558A (ko) * 2007-12-18 2009-06-23 이금석 광섬유격자 변형률 센서
KR100992628B1 (ko) 2010-02-09 2010-11-05 이금석 광섬유 격자센서를 이용한 압력변위센서
KR20120010295A (ko) * 2010-07-26 2012-02-03 (주)지티씨코퍼레이션 부재 일체형 광섬유 격자 센서 구조
KR101057309B1 (ko) 2010-12-30 2011-08-16 이금석 광섬유격자센서를 이용한 변위 측정장치

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114424028A (zh) * 2019-09-17 2022-04-29 日东电工株式会社 传感器封装体及传感器封装体的安装方法
CN110514133A (zh) * 2019-09-30 2019-11-29 西南石油大学 一种基于摄影测量的无人机隧道变形检测方法
CN113074760A (zh) * 2021-03-31 2021-07-06 西安石油大学 一种微应变光纤光栅传感器、应力测量系统及其工作方法
CN113074760B (zh) * 2021-03-31 2022-07-19 西安石油大学 一种微应变光纤光栅传感器、应力测量系统及其工作方法

Also Published As

Publication number Publication date
KR101901389B1 (ko) 2018-09-28

Similar Documents

Publication Publication Date Title
KR101901389B1 (ko) 광섬유 격자센서를 이용한 변형률 센서
Udd Fiber optic smart structures
EP0034181B1 (en) Fiber optic strain sensor
Lu et al. Asymmetrical fiber Mach–Zehnder interferometer for simultaneous measurement of axial strain and temperature
US7720324B2 (en) Optical strain gauge strips
KR101889977B1 (ko) 광섬유 격자센서를 이용한 변위 측정장치 및 그의 감도 및 내구성 조절방법
US20120132008A1 (en) Fiber optic load measurement device
BR102014030075B1 (pt) fixador, e, método de instalar um fixador
McKenzie et al. Fiber optic sensing in spacecraft engineering: An historical perspective from the European space agency
EP2990756B1 (en) Strain sensor and strain sensor installation method
AU2016239915A1 (en) Optical-fibre sensor device
Zhu et al. Fabry-Perot vector curvature sensor based on cavity length demodulation
Tian et al. An overlap-splicing-based cavity in FBG sensor for the measurement of strain and temperature
KR101381954B1 (ko) 광페룰을 이용한 외부 패브리-페로 광섬유 센서 시스템 및 이에 적용되는 광섬유 센서 제조 방법
Taher The influence of no-core fiber length on the sensitivity in fiber optic strain sensor
CN104655590A (zh) 全光纤折射率和温度传感器及测量方法
Kisała Measurement of the maximum value of non-uniform strain using a temperature-insensitive fibre Bragg grating method
KR101148935B1 (ko) Fbg센서 모듈, 2축 fbg센서 모듈, fbg센서 모듈 제작 장치 및 fbg센서 모듈 제작 방법
CN109374026B (zh) 一种免熔接的开腔fp光纤光栅传感器的制备方法
KR102036260B1 (ko) 광섬유 격자를 이용한 누수 및 침수 감지센서
KR20120010295A (ko) 부재 일체형 광섬유 격자 센서 구조
Pei et al. FBG strain sensor applied in harsh environment of aerospace
KR20110122416A (ko) 직렬 연결을 통한 동시 다점 계측이 가능한 광섬유 브래그 격자 가속도 센서
KR101148930B1 (ko) Fbg센서 모듈, 2축 fbg센서 모듈, fbg센서 모듈 제작 장치 및 fbg센서 모듈 제작 방법
CN105784196A (zh) 基于双层光子晶体薄膜的反射式温度传感探头

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant