KR20180076680A - 수중통신에서 반복 전송장치 및 방법 - Google Patents

수중통신에서 반복 전송장치 및 방법 Download PDF

Info

Publication number
KR20180076680A
KR20180076680A KR1020160181100A KR20160181100A KR20180076680A KR 20180076680 A KR20180076680 A KR 20180076680A KR 1020160181100 A KR1020160181100 A KR 1020160181100A KR 20160181100 A KR20160181100 A KR 20160181100A KR 20180076680 A KR20180076680 A KR 20180076680A
Authority
KR
South Korea
Prior art keywords
central node
node
frequency band
underwater
information
Prior art date
Application number
KR1020160181100A
Other languages
English (en)
Other versions
KR102045110B1 (ko
Inventor
고학림
조용호
임태호
Original Assignee
호서대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 호서대학교 산학협력단 filed Critical 호서대학교 산학협력단
Priority to KR1020160181100A priority Critical patent/KR102045110B1/ko
Publication of KR20180076680A publication Critical patent/KR20180076680A/ko
Application granted granted Critical
Publication of KR102045110B1 publication Critical patent/KR102045110B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0071Use of interleaving
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/04Arrangements for detecting or preventing errors in the information received by diversity reception using frequency diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03828Arrangements for spectral shaping; Arrangements for providing signals with specified spectral properties
    • H04L25/03866Arrangements for spectral shaping; Arrangements for providing signals with specified spectral properties using scrambling

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

본 발명은 수중통신에 관한 것으로, 더욱 상세하게는 수중통신에서 전송신호를 시간/주파수 차원에서 반복 전송을 제어하는 신호전송장치 및 방법에 관한 것이다. 본 발명은 각각 할당된 작은 주파수 대역을 이용하여 상기 중앙노드와 임의의 센서노드 사이에서 수중통신을 수행할 때, 상기 할당된 작은 주파수 대역을 기설정된 알고리즘에 따라서 시간 차원을 N1개, 주파수 차원을 M1개로 나누어서 동일 데이터에 대해서 N1*M1 번의 반복 전송하는 것을 특징으로 한다.

Description

수중통신에서 반복 전송장치 및 방법{APPARATUS FOR REPETITIVE TRANSMISSION OF UNDERWATER COMMUNICATION AND METHOD THEREOF}
본 발명은 수중통신에 관한 것으로, 더욱 상세하게는 수중통신에서 전송신호를 시간/주파수 차원에서 반복 전송을 제어하는 반복 전송장치 및 방법에 관한 것이다.
최근 해양 자원 탐사, 해양 환경 감시, 수중 군사 방어 등에 대한 관심과 중요성이 높아지면서, 해양에서 다양한 수중 정보를 수집할 수 있는 수중 통신에 대한 수요가 증가하고 있다. 상기 수중 통신은 매체의 특성상 초음파를 이용하여 통신을 수행한다. 상기 수중 정보 전송을 위한 통신망은 수중환경에 수중정보의 송수신을 수행할 수 있는 센서노드를 설치하고, 상기 센서노드로부터 수중정보를 취득하고 제어하는 구성으로 이루어진다.
상기 수중 통신망은 초음파를 이용한 수중 통신 환경 때문에, 육상 통신에 비해 상대적으로 전송되는 신호의 대역폭이 작고, 거리에 대한 신호감쇠도 매우 크다. 즉, 수중 통신망에 이용되어지는 주파수는, 수 km에서 수십 km까지의 거리에서 신뢰성 있는 통신을 수행하기 위해서 매우 제한적일 수 밖에 없다.
더구나 수중 통신망을 이용한 수중 정보 취득에 대한 수요가 증가하게 되면, 수중에서 통신을 수행하는 센서노드의 수가 증가하게 된다. 그러나 종래의 수중 통신망에서는 수중채널 환경에서 사용 가능한 주파수의 제한 때문에, 복수개의 센서노드를 효율적으로 제어하지 못하였다.
즉, 종래의 수중 통신망에서 하나의 주파수만을 이용하여 통신을 수행하는 경우, 하나의 센서노드에 해당 주파수가 할당되면, 그 이외의 모든 센서노드는 신호를 송수신할 수 없었다.
또한, 종래의 수중 통신망에서 복수개의 주파수를 이용하여 통신을 수행하는 경우, 수중에서 통신을 원하는 센서 노드의 수가 할당된 주파수보다 많으면, 할당된 주파수를 초과하는 수 만큼의 수중 센서 노드는 신호를 송수신할 수 없었다. 더욱이 이 경우 모든 센서 노드는 주변의 센서 노드가 어떠한 주파수를 할당 받아 사용하고 있는지를 계속 점검해야 하기 때문에, 수중에서 배터리의 소모량이 크게 증가하여 수중 센서 노드의 운용 기간이 크게 감소한다.
따라서 종래의 수중 통신망에서는 복수개의 센서노드를 효율적으로 관리하지 못하여, 통신 가능한 센서 노드수를 제한시켰다. 더구나 해양정보에 대한 다양한 수요 증가로 센서노드 수 증가가 불가피하게 되고 있고, 여러가지 부분에서 수중 통신망의 효율적인 제어가 더욱 필요한 실정이다.
또한, 수중 통신은 육상 통신에 비해서 신호 전송이 매우 불안정하다. 그 이유는 여러가지가 있지만, 일 예로 조류, 파도 등에 의해 발생한 도플러(Doppler) 주파수 때문에 시간축에서 영향을 받는다. 또한 해수면, 해저면, 지형 등에 의한 다양한 다중 경로 때문에 주파수축에서 영향을 받을 수 있고, 음파의 속도가 해저깊이에 따라 달라지는 현상 역시 수중 통신에 영향을 준다. 또한 염도나 해수온도, 계절이나 시간 등의 요인들도 수중통신에 영향을 준다. 이와 같이 다양한 요인들에 의해서 수중통신이 불안정하고, 이러한 불안정함은 실제 신호를 수신해서 복조하는 복조성능을 저하시킨다.
따라서 본 발명의 목적은 수중통신에서 전송신호를 시간/주파수 자원 차원에서 반복 전송을 제어하는 반복 전송장치 및 방법을 제공하는데 있다.
본 발명의 다른 목적은 수중 통신망에서 제한된 주파수를 이용하여 수중통신을 수행할 때, 전송신호를 현재의 수중 특성에 맞게 가변적으로 반복 전송을 제어하는 반복 전송장치 및 방법을 제공하는데 있다.
본 발명의 다른 목적은 수중 통신망의 제한된 주파수 대역폭을 더 작은 복수개의 대역폭으로 분할하고, 유사한 통신 거리에 있는 복수개의 센서노드에 같은 주파수를 할당해서 많은 수의 센서노드를 이용한 효율적인 수중 통신을 수행하기 위해서 전송신호를 현재의 수중 특성에 맞게 가변적으로 반복 전송을 제어하는 반복 전송장치 및 방법을 제공하는데 있다.
상기와 같은 기술적 과제를 해결하기 위해 본 발명의 일 실시예에 따른 수중통신의 반복전송방법은, 수중 정보를 검출하는 복수개의 센서노드로부터 검출정보를 취합해서 지상네트워크로 전송하는 중앙노드를 이용한 수중 통신에서,
상기 중앙노드가 사용 가능한 전체 주파수 대역을 작은 주파수 대역으로 분할하고, 상기 중앙노드와 복수개의 센서노드 사이의 거리에 기반해서 상기 분할된 작은 주파수 대역을 각각의 센서노드에 할당해서 수중통신을 수행하되,
상기 각각 할당된 작은 주파수 대역을 이용하여 상기 중앙노드와 임의의 센서노드 사이에서 수중통신을 수행할 때, 상기 할당된 작은 주파수 대역을 기설정된 알고리즘에 따라서 시간 차원을 N1개, 주파수 차원을 M1개로 나누고, 동일 데이터에 대해서 N1 * M1 번의 반복 전송을 제어하는 것을 특징으로 한다.
본 발명의 다른 실시예에 따른 수중통신의 반복전송방법은, 수중 정보를 검출하는 복수개의 센서노드로부터 검출정보를 취합해서 지상네트워크로 전송하는 중앙노드를 이용한 수중 통신에서,
상기 중앙노드가 사용 가능한 전체 주파수 대역을 작은 주파수 대역으로 분할하고, 상기 중앙노드와 복수개의 센서노드 사이의 거리에 기반해서 상기 분할된 작은 주파수 대역을 각각의 센서노드에 할당해서 수중통신을 수행하되,
상기 할당된 작은 주파수 대역을 테스트신호를 통해서 얻어진 수중 특성에 대한 값을 기반으로, 시간 차원을 N2개, 주파수 차원을 M2개로 나누고, 동일 데이터에 대해서 N2 * M2번 범위 내에서 반복 전송을 제어하는 것을 특징으로 한다.
바람직하게는 상기 반복 전송되는 동일 데이터는, 각각 다른 인터리빙 룰을 적용하여 반복 전송을 제어하는 것을 특징으로 한다.
바람직하게는 상기 반복 전송되는 동일 데이터는, 각각 다른 스크램블링 룰을 적용하여 반복 전송을 제어하는 것을 특징으로 한다.
바람직하게는 상기 반복 전송되는 동일 데이터는, 각각 다른 프리코딩 룰을 적용하여 반복 전송을 제어하는 것을 특징으로 한다.
상기와 같은 기술적 과제를 해결하기 위해 본 발명의 일 실시예에 따른 수중통신의 반복전송장치는, 수중 정보를 검출하는 복수개의 센서노드로부터 검출정보를 취합해서 지상네트워크로 전송하는 중앙노드를 이용한 수중 통신에서,
상기 중앙노드가 사용 가능한 전체 주파수 대역을 작은 주파수 대역으로 분할하고, 상기 중앙노드와 복수개의 센서노드 사이의 거리에 기반해서 상기 분할된 작은 주파수 대역을 각각의 센서노드에 할당해서 수중통신을 수행하고,
상기 각각 할당된 작은 주파수 대역을 이용하여 상기 중앙노드와 임의의 센서노드 사이에서 수중통신을 수행할 때, 상기 할당된 작은 주파수 대역을 기설정된 알고리즘에 따라서 시간 차원을 N1개, 주파수 차원을 M1개로 나누어서 동일 데이터에 대해서 N1*M1 번의 반복 전송하는 것을 특징으로 한다.
본 발명의 다른 실시예에 따른 수중통신의 반복전송장치는, 수중 정보를 검출하는 복수개의 센서노드로부터 검출정보를 취합해서 지상네트워크로 전송하는 중앙노드를 이용한 수중 통신에서,
상기 중앙노드가 사용 가능한 전체 주파수 대역을 작은 주파수 대역으로 분할하고, 상기 중앙노드와 복수개의 센서노드 사이의 거리에 기반해서 상기 분할된 작은 주파수 대역을 각각의 센서노드에 할당해서 수중통신을 수행하고,
상기 각각 할당된 작은 주파수 대역을 이용하여 상기 중앙노드와 임의의 센서노드 사이에서 수중통신을 수행할 때, 상기 할당된 작은 주파수 대역을 테스트신호를 통해서 얻어진 수중 특성에 대한 값을 기반으로, 시간 차원을 N2개, 주파수 차원을 M2개로 나누어서 동일 데이터에 대해서 N2*M2 번의 반복 전송하는 것을 특징으로 한다.
바람직하게는 상기 중앙노드는 반복 전송 횟수를 결정하고, 결정된 반복 전송 횟수 정보를 센서노드로 전달하는 것을 특징으로 한다.
바람직하게는 상기 센서노드는 반복 전송 횟수를 결정하고, 결정된 반복 전송 횟수 정보를 중앙노드로 전달하는 것을 특징으로 한다.
본 발명에 따른 수중 통신의 신호전송장치 및 방법은, 중앙노드(20)와 복수개의 센서노드(10)의 거리정보에 따라 적정한 주파수 대역이 할당되어져서 수중 정보 통신이 수행될 때, 반송파에 실어 전송하는 전송신호를 현재의 수중환경에 맞도록 반복적으로 송신해서, 복수개의 센서노드(10)와 중앙노드(20) 사이의 수신 성능을 높이는 효과를 얻는다.
또한 본 발명에 따른 수중 통신의 신호전송장치 및 방법은, 한정되어진 주파수 대역 내에서 복수개의 센서노드(10)에 동일한 주파수 대역을 할당하고, 중앙노드(20)의 다중 접속 방식의 제어로 복수개의 센서노드들을 효율적으로 제어하여 수중 통신을 수행하되, 반송파에 실어 전송하는 전송신호를 현재의 수중환경에 맞도록 반복적으로 송신해서, 수신기의 다이버시티 이득을 높이는 효과를 얻는다.
도 1은 본 발명의 이해를 돕기 위해 도시한 수중 통신에 이용되어지는 일반적인 수중 통신망을 나타내는 도면이다.
도 2는 본 발명의 일 실시예에 따른 수중 통신 방법을 설명하기 위하여 구현된 중앙 제어형 수중 통신망을 개념적으로 설명하기 위한 도면이다.
도 3은 본 발명의 일 실시 예에 따른 제한된 주파수 대역폭 내에서 수중 통신을 위하여 주파수 대역을 분할한 과정을 보여주기 위한 도면이다.
도 4는 본 발명의 일 실시 예에 따른 제한된 주파수 대역폭 내에서 통신거리에 따라서 복수의 센서노드에 동일한 주파수 대역을 할당하는 과정을 보여주기 위한 도면이다.
도 5는 본 발명의 일 실시예에 따른 수중 통신 방법을 전체적으로 설명하기 위한 개략적인 구성도를 나타내는 도면이다.
도 6은 본 발명의 일 실시예에 따른 수중 통신 방법을 설명하기 위한 센서노드의 대략적인 구성을 나타내는 도면이다.
도 7은 본 발명의 일 실시예에 따른 수중 통신 방법을 설명하기 위한 중앙노드의 대략적인 구성을 나타내는 도면이다.
도 8은 본 발명의 일 실시예에 따른 수중 통신 방법의 동작 흐름도를 나타내는 도면이다.
도 9는 본 발명의 일 실시예에 따른 수중 통신 방법의 동작 흐름도를 나타내는 도면이다.
도 10은 본 발명의 일 실시예에 따른 수중 통신 방법의 동작 흐름도를 나타내는 도면이다.
도 11 내지 도 13은 본 발명의 수중 통신에서 신호의 반복 전송을 설명하기 위한 주파수/시간 자원의 예시도,
도 15 내지 도 17은 본 발명의 수중 통신에서 반복 전송 횟수 결정을 위한 송신측과 수신측의 관계도를 보여주고 있다.
도 18는 본 발명의 수중 통신에서 신호를 반복 전송시, 송신측의 일부 구성을 도시하는 블록도이다.
도 19는 본 발명의 수중 통신에서 신호를 반복 전송시, 수신측의 일부 구성을 도시하는 블록도이다.
도 20은 본 발명의 수중 통신에서 신호를 반복 전송 제어하기 위한 동작 과정도이다.
이하, 첨부된 도면을 참조하여 본 명세서에 개시된 실시 예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 유사한 구성요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 이하의 설명에서 사용되는 구성요소에 대한 접미사 "부" 와 "노드", '축' 과 '차원'은 명세서 작성의 용이함 만이 고려되어 부여되거나 혼용되는 것으로서, 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다.
또한, 본 명세서에 개시된 실시 예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 명세서에 개시된 실시 예의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 명세서에 개시된 실시 예를 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되지 않으며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
제1, 제2 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되지는 않는다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.
단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
본 출원에서, "포함한다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
이하, 도면들을 참조하여 본 발명의 실시 예에 대해 상세히 설명하기로 한다. 본 발명은 본 발명의 정신 및 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다.
도 1은 본 발명의 이해를 돕기 위해서 도시하고 있는 수중 통신에 이용되어지는 일반적인 수중 통신망을 나타내는 도면이다.
도1에 도시된 수중 통신망은, 복수개의 센서노드(1)와, 싱크노드(5), 그리고 상기 센서노드(1)와 싱크노드(5) 사이의 정보 전달 역할을 수행하는 중간노드(3)를 포함하여 구성된다.
상기와 같이 구성되는 수중 통신망에서 수중 정보의 전송은 다음과 같이 이루어진다. 상기 복수개의 센서노드(1) 중에서 검출한 수중정보를 전송하고자 하는 센서 노드(1)가 여러 단계로 구성되고 있는 중간노드(3)를 통해서 싱크노드(5)로 수중정보를 전송한다.
그러나 이와 같이 구성되는 수중 통신망은, 센서노드(1)에서 싱크노드(5)까지 검출한 수중정보를 전달함에 있어서 여러단계의 중간노드(3)를 거쳐야만 한다. 따라서 센서노드(1)와 여러 단계의 중간노드(3) 그리고 싱크노드(5)까지 연결되는 수중 통신망에서, 검출한 수중정보를 전송하기 위한 라우팅 알고리즘이 복잡하게 구현되어진다.
또한 상기 수중 통신망은, 센서노드(1)에서 싱크노드(5)까지 수중정보를 전달하는 과정에서 전송 에러가 발생하게 되면, 검출한 수중정보의 재전송을 위한 과정이 번거롭다.
또한, 상기 수중 통신망은 여러단계의 중간노드(3)를 거쳐야만 하는 문제 때문에, 수중 정보를 전달하는 중간노드에 문제가 발생하면, 문제가 발생된 중간노드와 관련된 센서노드의 사용이 안된다.
이러한 부분들 때문에 도 1에 도시된 일반적인 수중 통신망은 다양한 수중정보를 취득, 전달하는 과정에서 데이터 전송 효율을 비롯한 장비의 이용 효율이 떨어질 수 밖에 없다. 이러한 점들을 개선해서 본 발명은 중앙 제어형 수중 통신망을 구현하고자 한다.
이하 본 발명의 설명에서 "주파수 대역" 그리고 "주파수"가 혼용하여 사용되는 경우가 있다. 상기 "주파수"는 "주파수 대역"에 포함되고 있는 주파수를 지칭하고 있고, 주파수는 그 주파수의 일정 범위 안에 포함되는 주파수에는 거의 같은 신호가 실리므로, 상기 두 단어가 같은 의미로 표현 될 수 있다.
도 2는 본 발명의 일 실시 예에 따른 수중 통신 방법을 설명하기 위하여 구현된 중앙 제어형 수중 통신망을 개념적으로 설명하기 위한 도면이다.
본 발명의 실시예에 따른 중앙 제어형 수중 통신망은, 수중 환경에서 중앙 집중형으로 센서노드들을 연결하여 구성되어진다.
상기 중앙 제어형 수중 통신망은, 하나 이상의 센서노드(10)를 포함한다. 상기 센서노드(10)는, 수중환경에 고정 또는 이동 가능하도록 설치되어진다. 상기 센서노드(10)는, 많은 수중 정보를 취득하기 위해서 가능한 많이 설치되어진다.
상기 중앙 제어형 수중 통신망은, 상기 복수개의 센서노드(10)에서 취득한 수중 정보를 취합하는 중앙노드(20)를 포함한다. 상기 중앙노드(20)는, 복수개의 센서노드(10)에서 취합한 수중정보를 지상 네트워크(도시하지 않음)로 전송하는 기능을 수행한다.
상기와 같이 구성되어지는 중앙 제어형 수중 통신망은 전체적으로 다음과 같이 제어 되어진다.
도 3은 본 발명의 일 실시 예에 따른 수중 통신을 제어하기 위해서 제한된 주파수 대역 내에서 일정갯수의 작은 주파수 대역으로 분할한 과정을 나타내는 도면이다.
도면을 참조해서 설명하면, 중앙노드(20)와 복수개의 센서노드(10) 사이에서 이루어지는 수중 통신은 기본적으로 초음파로 행해진다. 그리고 상기 중앙노드(20)에서 사용 가능한 전체 주파수 대역을 순방향 주파수 대역과 역방향 주파수 대역으로 분할한다. 여기서 중앙노드(20)가 사용 가능한 전체 주파수 대역이라 함은, 중앙노드(20)와 각기 다른 거리에 설치되고 있는 센서노드(10) 사이에서 수중 통신이 가능한 영역에 포함되어지는 주파수 대역을 말한다. 즉, 중앙노드(20)에서 임의의 위치에 설치된 센서노드(10)로 신호 전송이 가능하고, 센서노드(10)에서 전송한 신호를 중앙노드(20)에서 수신 가능하도록 이용되어지는 주파수 대역을 표현한다.
상기 순방향 주파수 대역은, 중앙노드(20)에서 복수개의 센서노드(10)로 신호를 전송할 때 사용한다. 이때 사용되는 주파수 대역은, 중앙노드(20)가 사용 가능한 주파수 대역 중에서 가장 낮은 주파수 대역(f0)으로 설정한다.
통상적으로 수중 통신 환경에서는 송수신되는 주파수가 낮을수록 통신범위가 증가한다. 따라서 중앙노드(20)에서 센서노드(10)로 신호 전송시에는 거리에 관계없이 모든 센서노드에서 신호 수신이 가능해야만 한다. 그러므로 가장 낮은 주파수를 갖는 주파수 대역(f0)이 순방향 주파수 대역으로 결정되어서, 중앙노드(20)에서 복수개의 센서노드(10)로 신호 전송시에 이용되어진다.
그리고 역방향 주파수 대역은, 각각의 복수개의 센서노드(10)에서 중앙노드(20)로 신호 전송을 수행할 때 사용된다. 여기서 상기 사용 가능한 전체 주파수 대역 중에서, 상기 순방향 주파수 대역을 제외한 나머지 주파수 대역 전체가 역방향 주파수 대역에 포함되어진다.
그리고 상기 역방향 주파수 대역은, 다시 복수개의 작은 주파수 대역으로 분할되어진다. 이때 작은 주파수 대역으로 분할은, 중앙노드를 기준으로 센서노드와의 거리 사이에서 동일한 주파수 대역으로 신호 송수신이 가능한 센서노드를 같은 영역으로 묶고, 상기 분할된 영역 수 만큼 작은 주파수 대역 수(후술되는 영역 M 개)로 분할한다.
그리고 각각 분할되어진 작은 주파수 대역이 각기 다른 위치에 설치된 센서노드(10)의 신호전송에 이용되어지도록 할당된다. 예를 들면, 중앙노드(20)와 가장 먼거리에 위치하고 있는 센서노드(10)에 주파수 대역 (f1)이 할당된다. 그리고 중앙노드(20)와 가장 가까운 거리에 위치하고 있는 센서노드(10)에 주파수 대역(fM)이 할당된다.
이 경우 상기 중앙노드(20)를 기준으로 해서, 가장 먼거리에 위치하고 있는 센서노드(10)일수록 상기 역방향 주파수 대역에 포함된 주파수 대역 중에서 가장 낮은 주파수 대역이 할당되어진다. 반대로 상기 중앙노드(20)를 기준으로 해서 가장 가까운거리에 위치하고 있는 센서노드(10)에게 역방향 주파수 대역에 포함된 주파수 대역 중에서 가장 높은 주파수 대역이 할당되어진다. 이는 앞서도 잠시 언급한 바와 같이, 수중 통신 환경에서는 송수신되는 주파수가 낮을수록 통신범위가 증가하기 때문에, 낮은 주파수 대역의 주파수(f1)가 가장 장거리 통신용 주파수로 할당된다. 그리고 가장 높은 주파수 대역의 주파수(fM)가 가장 단거리 통신용 주파수로 할당된다.
이와 같은 과정으로 각각의 센서노드(10)에 수중 통신을 위한 주파수 대역이 할당되어지고, 이후 센서노드(10)에서 검출한 수중정보가 할당된 주파수 대역을 이용하여 중앙노드(20)로의 수중정보의 전송이 이루어지는 수중통신이 행해진다.
다음, 도 4는 본 발명의 일 실시 예에 따른 제한된 주파수 대역폭 내에서 복수의 센서노드에 동일한 주파수 대역을 할당하는 과정을 나타내는 도면이다.
수중 통신은 지상 통신과 비교해서 더 많이 환경적인 요인에 영향을 받는다. 그렇기 때문에 센서노드(10) 내에서 수중 센서를 이용하여 수중 정보를 검출하는 과정에서, 환경적인 영향으로 센서노드(10)의 분실 상황이 발생될 수 밖에 없다. 또한 임의의 센서노드(10)가 수중 정보를 정상적으로 검출하였다고 해도, 상기 검출한 수중 정보를 중앙노드(20)까지 전송되는 과정에서 데이터 전송 성공률이 항상 100% 만족될 수가 없다. 따라서 수중 통신망의 여건이 허락만 된다면, 센서노드(10)의 수를 가능한 많이 설치하는 것이, 수중 정보를 보다 정확하고 다양하게 얻는 것이 가능해진다.
한편, 도 4에 도시하고 있는 바와 같이, 상기 중앙노드(20)와 센서노드(10)와의 사이에는 같은 주파수 대역으로 신호의 전송이 가능한 영역이 존재한다. 즉, 중앙노드(20)를 기준으로 가장 가까운 거리에 포함되는 영역1에 존재하는 센서노드들에는 분할된 주파수 대역(fM)이 동일하게 할당된다. 그리고 중앙노드(20)를 기준으로 가장 먼 거리에 포함되는 영역(M)에 존재하는 센서노드들에는 분할된 주파수 대역(f1)이 동일하게 할당된다.
상기 중앙노드(20)와 센서노드(10) 사이의 동일 영역 또는 다른 영역으로의 영역 분할은, 중앙노드(20)와 센서노드(10) 사이의 신호 송수신이 가능한 범위 내에서 분할되어진다. 즉, 동일한 주파수 대역(fM)으로 수중 통신이 가능한 센서노드들이 영역1에 포함되어진다. 그리고 동일한 주파수 대역(f1)으로 수중 통신이 가능한 센서노드들이 영역M에 포함되어진다.
이와 같이 여러개의 센서노드에 동일한 주파수 대역을 할당하는 것은, 중앙노드(20)에서 사용 가능한 주파수 대역은 한계가 있기 때문이다. 일 예로, 수중 정보를 보다 정확하고 다양하게 취득하기 위해서는, 센서노드 수를 늘릴 수 밖에 없다. 이런 경우 중앙노드(20)에서 사용 가능한 전체 주파수 대역 내에 설치되고 있는 센서노드(10)의 수가 분할된 역방향 주파수 대역 수보다 많을 경우가 발생되어진다. 이때 도 4에 도시하고 있는 바와 같이 동일 영역에 존재하는 센서노드에는 동일한 주파수 대역을 할당해서 수중 통신을 제어한다.
한편, 상기와 같이 여러개의 센서노드에 동일한 주파수 대역을 할당한 경우, 같은 주파수 대역을 할당 받은 같은 영역에 있는 복수개의 센서노드(10)는 중앙노드(20)의 제어에 의해 다양한 다중접속 방식(주파수 분할 다중접속방식, 시분할 다중 접속 방식, 코드 분할 다중 접속 방식, 캐리어 센싱 다중접속 방식 등)을 이용하여 중앙노드(20)와의 통신을 수행한다. 상기 공지된 다중 접속 방식에 대한 부연 설명은 생략하기로 한다.
다음, 본 발명의 일 실시예에 따른 수중 통신망에서 중앙노드와 센서노드 사이의 거리에 따른 적응형 통신이 가능하기 위해서는 중앙노드에서 센서노드 사이의 거리 정보를 검출하는 과정을 필요로 한다. 이러한 설명에 앞서서 본 발명의 중앙노드와 센서 노드 사이의 수중정보 송수신을 위한 대략적인 구성을 설명한다.
도 5는 본 발명의 일 실시예에 따른 수중 통신 방법을 설명하기 위한 개략적인 구성도를 나타내는 도면이다.
도 6은 본 발명의 일 실시예에 따른 수중 통신 방법에 적용되어지는 센서노드의 대략적인 구성도를 나타내는 도면이다.
도 7은 본 발명의 일 실시예에 따른 수중 통신 방법에 적용되어지는 중앙노드의 대략적인 구성도를 나타내는 도면이다.
도5를 참조해 보면, 다수개의 센서노드(10) 들은 수중 정보를 채집하고, 중앙노드(20)로 전송한다. 이때 다수개의 센서노드(10)와 중앙노드(20) 사이에는 수중 통신망(50) 내에서 매체의 특성상 신호 전송을 가능케하는 초음파를 이용한 수중정보의 송수신이 이루어진다. 그리고 상기 센서노드(10)에서 중앙노드(20)로 신호 전송시에 자신의 위치 데이터도 같이 포함하여 전송한다. 상기 센서노드(10)의 위치정보는 센서 노드(10)가 수중의 임의의 위치에 설치되는 시점에서 센서 노드(10)에 기록되어 저장되어지는 것이 바람직하다. 그러나 상기 센서노드(10)의 위치는 수중 환경의 특성상 고정 설치되는 것이 어렵다. 따라서 상기 위치정보라고 표현했지만, 단지 센서 노드(10) 식별 정보로 이해하는 것이 바람직하다.
상기 중앙노드(20)는 다수개의 센서노드(10) 들로부터 취합한 수중정보를 지상으로 전송한다. 상기 중앙노드(20)는 지상 통신망(60)의 관리노드(64)로 취득한 수중 정보를 전송한다. 따라서 상기 중앙노드(20)는 수중 통신망(50) 내에서 복수개의 센서노드(10) 들과 수중 통신을 수행함과 동시에 지상의 관리노드(64)와 통신을 수행하게 된다. 그리고 상기 관리노드(64)는 중앙노드(20)를 통해서 전송받은 수중정보를 무선신호를 이용하여 지상통신망(62)과 연결하는 기능을 수행한다.
도 6을 참조하면, 상기 센서노드(10)는 수중에서 필요한 데이터를 수집하기 위한 하나 이상의 센서부(30), 각 센서부(30)에 의해 센싱된 데이터를 변조하고, 초음파로 변환한 후 중앙노드(20)로 전송하는 데이터 송신부(36), 상기 중앙노드(20)에서 전송한 초음파신호를 수신해서 복조하는 데이터 수신부(38)를 포함한다. 상기 데이터 송신부(36)와 데이터 수신부(38)는 송수신부(40)에 포함되고, 상기 센서부(30)와 송수신부(40) 사이의 제어를 수행하는 제어부(32)가 더 포함되어진다. 그리고 센서노드(10)의 전체적인 동작 제어를 위해 필요로 하는 각종 데이터 및 알고리즘을 저장하고, 상기 센서부(30)로부터 검출한 수중정보를 저장하는 메모리(34) 등을 포함하여 구성된다.
상기 복수개의 센서부(30)는 자신의 목적에 맞게 물의 온도, 용존산소량, 지진파를 비롯한 각종 수중 정보를 센싱하고, 센싱한 데이터를 제어부(32)로 출력한다. 상기 센서부(30)는 디지털 센서일 수도 있지만, 아날로그 신호로 센싱한 데이터를 디지털로 변환해서 출력할 수 있도록 구성 가능하다. 이 경우 상기 센서부(30)는 아날로그신호를 디지털신호로 변환하는 아날로그/디지털 변환기를 포함할 수 있다. 그리고 본 발명의 모든 구성에서 신호처리된 데이터는 디지털 신호임을 기본으로 한다.
상기 송수신부(40)는, 수중에서 초음파를 이용하여 데이터를 송신하거나 수신받는 기능을 수행한다. 즉, 데이터 송신부(36)는, 상기 센서부(30)에서 검출한 수중정보를 변조하고, 초음파신호로 변환한 후 중앙노드(20)로 송신한다. 그리고 데이터 수신부(38)는, 상기 중앙노드(20)에서 송신한 초음파신호를 수신하고 복조한 후, 제어부(32)로 출력한다.
도시되고 있는 센서노드(10)는, 데이터 수신부(38)를 통해서 중앙노드(20)에서 전송한 수중정보를 수신한다. 이때 중앙노드(20)에서 전송한 신호의 수신을 가능케 하기 위하여 상기 데이터 수신부(38)는, 상기 순방향 주파수 대역에 포함되고 있는 주파수로 주파수 설정이 이루어진다. 또한 데이터 송신부(36)는, 이후 자신에게 할당된 주파수 대역에 포함된 특정 주파수로 설정되어져서 중앙노드(20)로 전송하기 위한 정보를 상기 설정된 특정 주파수에 실어서 전송하게 된다. 따라서 상기 송수신부(40)에는 제어부(32)의 제어하에 주파수 설정이 이루어지는 구성이 포함되어진다. 이러한 구성은 이미 공지되어 있는 기술에 의해서 이루어지므로 부연설명은 생략한다. 그리고 각 센서노드(10)의 주파수 설정이 이루어지지 않은 상태인 초기 설정과정에서는 중앙노드(20)로부터의 신호 수신시에는 순방향 주파수 대역으로 설정되고, 초기 설정 전에 중앙노드(20)로 신호 전송시에는 분할된 역방향 주파수 대역 중에서 가장 낮은 주파수 대역으로 설정되도록 제어한다.
또한, 본 발명에서 상기 센서노드(10)는, 수중 환경에서 특정 위치에 고정 설치될 수도 있으나, 해류 등의 영향으로 수중 환경 상 대부분 일정 영역 내에서 이동 되어질 수 밖에 없다. 이와 같이 센서노드(10)가 이동될 우려가 많기 때문에, 중앙노드(20)와의 거리 측정은 수중 정보 측정이 이루어지는 시간에 실시간으로 이루어지는 것이 바람직하다. 그러나 실시간 제어가 불합리할 경우, 수중 통신이 이루어지는 시간을 피해서 일정시간 간격으로 반복 측정하는 것도 바람직하다. 이와 같이 거리 대비 사용 주파수가 변경될 수 있으므로, 상기 센서노드(10)는, 중앙노드(20)와의 수중통신을 위하여 사용 가능한 주파수 대역을 실시간으로 가변 제어할 필요성이 있다.
이와 같은 부분에서 상기 센서노드(10)의 송수신부(40)는, 설정 주파수를 가변 제어 가능하도록 구성되는 것이 바람직하다. 즉, 센서노드(10)의 현재 위치에 따라서 정보의 송신을 위한 주파수가 가변 제어되어져서 전송하고자 하는 정보를 중앙노드(20)로 전송 가능하도록 구성되어진다. 그리고 상기 센서노드(10)의 이동 위치는, 중앙노드(20)와의 신호 송수신이 가능한 특정 반경 내에서만 이루어지도록 하여, 센서노드(10)의 분실 위험을 방지하는 것이 바람직하다.
상기 제어부(32)는, 상기 센서부(30)에서 검출된 각종 수중 정보를 메모리(34)에 저장하는 제어를 수행하거나, 송수신부(40)를 통해서 이루어지는 수중정보의 송수신을 제어하는 기능을 수행한다.
또한 상기 제어부(32)는, 센서노드(10)와 중앙노드(20) 사이의 거리검출을 위한 제어를 수행한다. 이를 위해서 상기 제어부(32)는 중앙노드(20)에서 거리 검출을 위해 송신한 기준신호를 데이터 수신부(38)에 의해 수신하고, 수신전력의 크기를 검출 가능한 구성을 포함한다. 상기 수신신호의 전력세기는, 수신신호의 전력을 직접 검출하거나 또는 전류, 전압 등을 검출하여 간단한 연산과정으로 검출 가능하다. 상기 수신전력 크기 검출구성은 공지되고 있는 파워 검출기를 포함한 다양한 기술에 의해서 적용 가능하다. 또한 전류크기는, 수신부에 전류 검출용 저항을 설치하는 것에 의해서 간단하게 검출 가능하다. 이러한 검출부분들은 공지되고 있는 기술을 이용하므로 상세한 부연 설명은 생략하기로 한다. 그리고 검출된 수신신호의 전력세기를 이용한 거리 추정은 메모리(34)에 기저장되고 있는 전력세기 대비 거리값을 이용해서 거리를 추정하는 것이 가능하다.
또한 상기 제어부(32)는, 거리 검출을 위한 다른 방법으로서, 상기 중앙노드(20)에서 신호를 송신한 후 센서노드(10)에 도착하기까지 소요된 지연시간을 검출해서 이용하는 것이 가능하다. 상기 지연시간 검출은, 일 예로 중앙노드(20)에서 신호 송신을 시작하는 시점정보와 신호가 도착한 시점정보를 비교하여 그 차에 의해서 검출 가능하다. 그리고 도착한 시점 정보를 검출하기 위해서, 상기 제어부(32)에 시간 계수 기능 등을 포함하는 것이 바람직하다. 그리고 검출된 지연시간을 이용한 거리 추정은, 상기 메모리(34)에 기저장되고 있는 지연시간 대비 거리값을 이용해서 거리를 추정하는 것이 가능하다.
그리고 메모리(34)는 센서노드(10)에서 이용하거나 필요로 하고 검출한 각종 정보 저장에 이용되어진다. 상기 센서부(30)의 검출정보도 메모리(34)에 저장되어진다. 특히, 상기 메모리(34)에는, 센서노드(10)에서 거리 검출이 직접 이루어질 때, 거리 검출에 이용될 각종 정보들을 저장하게 된다. 일 예로, 수신전력의 세기를 판단하기 위한 정보, 지연시간을 검출하기 위한 정보, 수신전력의 세기를 이용하여 중앙노드(20)와 센서노드(10) 사이의 거리를 판단하기 위한 정보, 그리고 추정된 거리정보에 따라서 수중 통신이 가능한 주파수 대역 정보 등을 저장한다. 이렇게 메모리(34)에 저장된 각종 정보들을 이용하여 제어부(32)는 거리 추정, 특정 주파수 대역 요청 등의 과정을 수행한다.
도 7을 참조하면, 상기 중앙노드(20)는, 상기 센서노드(10)와 초음파로 수중신호의 송수신을 수행하기 위한 제 1 송수신부(22)와, 상기 관리노드(64)와 신호의 송수신을 수행하기 위한 제 2 송수신부(21)를 포함하여 구성된다. 그리고 상기 중앙노드(20)는, 상기 제 1,2 송수신부의 제어를 수행하고, 정보 저장을 제어하는 제어부(28)와, 각종 정보를 저장하는 메모리(29)를 포함한다. 상기 제 2 송수신부(21)는, 상기 중앙노드(20)의 위치가 수면 위인지 또는 수면 아래인지에 따라서 초음파로 전송 가능토록 구성되거나, 무선 신호 등으로 전송 가능토록 구성되는 것이 바람직하다.
또한, 상기 중앙노드(20)는, 자신이 사용 가능한 전체 주파수 대역을 순방향 주파수 대역과 역방향 주파수 대역으로 구분하고, 다시 역방향 주파수 대역을 작은 주파수 대역으로 분할하기 위한 주파수 분할기(27)를 포함하고 있다. 상기 주파수 분할기(27)는, 센서노드(10)와 수중정보를 송수신할 때 이용되어지므로 제 1 송수신부(22)에 포함되어질 수도 있다.
상기 주파수 분할기(27)는, 도4에 도시하고 있는 바와 같이, 중앙노드(20)에서 사용 가능한 전체 주파수 대역을 영역수(M개) 만큼 작은 주파수 대역으로 분할 가능하도록 구성된다. 따라서 상기 제어부(28)는, 상기 주파수 분할기(27)의 주파수 분할을 제어하고, 이후 임의의 센서노드(10)와의 신호 송수신시에 상기 주파수 분할기(27)의 주파수를 해당 주파수로 분할토록 제어하여 신호의 송수신이 정상적으로 이루어지도록 제어한다.
상기 제 1 송수신부(22) 내의 데이터 송신부(26)는 모든 센서노드로의 신호 전송이 가능하도록 순방향 주파수대역(f0)으로 설정하고 있다. 그리고 상기 제 1 송수신부(22) 내의 데이터 수신부(24)는 수중 통신이 행해질 임의의 센서노드에 할당된 주파수 대역 내에 존재하는 모든 역방향 주파수로 설정되어진다. 단, 각 센서노드(20)에 주파수가 설정되지 않은 초기 설정과정에서는, 상기 데이터 수신부(24)는 분할된 역방향 주파수 중에서 가장 낮은 주파수 대역으로 설정되어진다. 이것은, 센서노드(10)가 주파수 설정이 이루어지기 전이므로, 모든 거리에 존재하는 센서노드에서 송신한 신호를 수신 가능하도록 하기 위함이다.
이를 위해서 제어부(28)의 제어하에 주파수 분할기(27)를 통해서 주파수 분할되고, 상기 분할된 주파수로 데이터수신부(24)의 주파수가 설정되는 일련의 과정을 제어한다. 상기 주파수분할기의 주파수 분할 동작은 디지털식으로 행해지는 것이 바람직하다. 또한, 상기 데이터 수신부(24)는, 모든 센서노드와의 신호 송수신과정에서 정상적인 신호 수신이 가능하도록 주파수 가변 제어 구성을 포함한다.
또한, 상기 제어부(28)는, 각 센서노드(10)에 대한 전력관리, 트래픽제어와 유사한 거리에 존재하는 센서노드(10)에 대한 다중접속 제어 및 필요에 의해서 센서노드(10)와 중앙노드(20) 사이의 거리검출을 위한 제어를 수행한다. 본 발명에서는 센서노드(10)의 제어부(32)에서 거리 검출과정을 수행하는 경우도 실시 가능하나, 중앙노드(20)의 제어부(28)에서 거리 검출과정을 수행하는 경우도 실시 가능하다.
따라서 상기 제어부(28)는 센서노드의 주파수 설정이 이루어지지 않은 초기설정과정에서, 센서노드(10)에서 거리 검출을 위해 송신한 기준신호를 데이터 수신부(24)에 의해 수신하고, 수신전력의 크기를 검출 가능한 구성을 포함한다. 상기 수신신호의 전력세기는, 수신신호의 전력을 직접 검출하거나 또는 전류, 전압 등을 검출하여 간단한 연산과정으로 검출 가능하다. 상기 수신전력 크기 검출구성은 공지되고 있는 파워 검출기를 포함한 다양한 기술에 의해서 적용 가능하다. 상기 수신전력 크기 검출은, 센서노드에서 수행하고 그 검출정보만을 제공 받는 것도 물론 가능하다. 또한 전류크기는, 수신부에 전류 검출용 저항을 설치하는 것에 의해서 간단하게 검출 가능하다. 마찬가지로 상기 전류크기 검출도 센서노드에서 수행하고 그 검출정보만을 제공받는 것도 가능하다. 이러한 검출부분들은 공지되고 있는 기술을 이용하므로 상세한 부연 설명은 생략하기로 한다. 그리고 검출된 수신신호의 전력세기를 이용한 거리 추정은 메모리(29)에 기저장되고 있는 전력세기 대비 거리값을 이용해서 거리를 추정하는 것이 가능하다.
또한 상기 제어부(28)는, 거리 검출을 위한 다른 방법으로서, 상기 센서노드(10)에서 신호를 송신한 후 중앙노드(20)에 도착하기까지 소요된 지연시간을 검출해서 이용하는 것이 가능하다. 상기 지연시간 검출은, 일 예로 센서노드(10)에서 신호 송신을 시작하는 시점정보와 중앙노드(20)에 신호가 도착한 시점정보를 비교하여 그 차에 의해서 검출 가능하다. 그리고 도착한 시점 정보를 검출하기 위해서, 상기 제어부(28)에 시간 계수 기능 등을 포함하는 것이 바람직하다. 그리고 검출된 지연시간을 이용한 거리 추정은, 상기 메모리(29)에 기저장되고 있는 지연시간 대비 거리값을 이용해서 거리를 추정하는 것이 가능하다.
그리고 메모리(29)는 센서노드(10)에서 이용하거나 필요로 하고 검출한 각종 정보 저장에 이용되어진다. 특히, 상기 메모리(29)에는, 중앙노드(20)에서 거리 검출이 이루어질 때, 거리 검출에 이용될 각종 정보들을 저장하게 된다. 일 예로, 센서노드(10)로부터 제공받은 수신전력의 세기, 지연시간등을 이용하여 중앙노드(20)와 센서노드(10) 사이의 거리를 판단하기 위한 정보, 그리고 추정된 거리정보에 따라서 할당 가능한 수중 통신이 가능한 주파수 대역 정보 등을 저장한다. 이렇게 메모리(29)에 저장된 각종 정보들을 이용하여 제어부(28)는 거리를 추정하고, 임의의 센서노드에 할당할 특정 주파수 대역을 선택하게 된다. 그리고 상기 메모리(29)에는 주파수 분할을 위한 제어정보들도 포함하고, 분할된 주파수 대역과 그에 설정된 센서노드 등의 연관되어진 정보들도 저장한다. 그리고 센서노드들로부터 취합한 수중정보도 저장한다.
다음, 도 8은 본 발명의 일 실시예에 따른 수중 통신 방법의 제어 흐름도이다.
도시되고 있는 도 8은, 중앙노드(20)에서 센서노드(10)에 특정 주파수를 할당할 때 이용되어지는 제 1 제어방법에 따른 동작 과정이다.
본 발명의 수중 통신망에서는 중앙노드(20)와 센서노드(10) 간의 거리 정보를 검출해야 한다. 그리고 검출된 거리정보에 따라서 센서노드(10)에 특정 주파수 대역이 할당되어진다. 즉, 검출된 거리 정보에 따라 적응적으로 특정 주파수가 할당될 필요성이 있다.
먼저 중앙노드(20)의 제어부(28)는, 자신이 사용 가능한 전체 주파수 대역을 확인하고, 상기 사용 가능한 전체 주파수 대역을 도 3에 도시하고 있는 바와 같이, 순방향 주파수 대역과 역방향 주파수 대역으로 분할한다(200 단계)
또한, 상기 제어부(28)는, 도 4에 도시되고 있는 영역수(M개) 만큼 상기 역방향 주파수 대역을 작은 주파수 대역으로 분할하는 제어를 수행한다(205 단계). 상기 200 단계와 205 단계는, 상기 중앙노드의 성능에 따라서 기설정되도록 제어하는 것이 바람직하다. 즉, 중앙노드(20)가 수중환경에서 신호의 송수신을 수행할 때, 가장 멀리까지 전송 가능한 주파수를 순방향 주파수 대역에 포함시켜서 기저장한다. 그리고 상기 중앙노드(20)가 수중환경에서 신호의 송수신을 수행할 때, 각각의 사용 주파수가 신호를 전송 가능한 거리(영역)를 미리 구분하고, 기저장한다. 이렇게 구분되어 설정된 거리 및 주파수 값은 중앙노드(20)의 메모리(29)와 센서노드(10)의 메모리(34)에 저장하고, 이후 주파수 설정과정에서 이용하는 것이 바람직하다.
그리고 기저장하고 있는 거리 정보 검출에 이용될 기준신호를 메모리(29)로부터 읽어온다. 상기 기준신호는, 상기 순방향 주파수 대역에 실어지고, 데이터 송신부(26)를 통해 초음파신호로 변환되어져서 중앙노드(20)의 사용 가능한 전체 주파수 대역에 포함되어진 모든 센서노드(10)로 송신되고, 센서노드(10)의 수신부(38)는 기준신호를 수신한다(210 단계).
상기 210 단계에서 기준신호를 수신한 센서노드(10)들은 수신신호의 전력세기, 신호전송에 이용되어진 시간 지연 등을 검출하고, 검출신호를 이용하여 중앙노드(20)와의 거리를 추정한다(220 단계). 상기 센서노드(10)와 중앙노드(20)의 거리 추정은, 수신신호의 전력세기를 이용해서 추정된다.
상기 220 단계에서 거리 추정이 이루어진 후, 센서노드(10)는 중앙노드(20)로 추정된 거리에 해당하는 주파수 대역을 자신의 주파수 대역으로 할당해 줄 것을 요청한다(230 단계). 상기 230 단계에서 특정 주파수 대역 요청 과정에서는, 해당하는 센서노드에 주파수 대역이 할당되기 전이므로, 이 경우에서는 상기 역방향 주파수 대역 중에서 가장 낮은 주파수 대역으로 설정되어진 주파수 대역을 이용하여 주파수 대역 요청신호가 송신되어진다. 또한 상기 230 단계에서 추정된 거리에 해당하는 주파수 대역값도 기설정되어 저장되고 있는 메모리(34)의 저장값에 근거하여 선택이 이루어진다.
이후, 중앙노드(20)는, 복수개의 센서노드(10)로부터 요청되어진 주파수 대역 정보를 취합하고, 각각의 센서노드(10)에 적합한 주파수 대역을 할당하고, 할당된 주파수 정보를 해당하는 센서 노드 측으로 전송한다(240 단계). 따라서 상기 240 단계까지 상기 중앙노드(20)의 데이터 수신부(24) 또한 순방향 주파수 대역으로 설정되어진다.
이후부터 상기 센서노드(10)는 중앙노드(20)와의 수중 정보 송수신시에, 중앙노드(20)로부터는 순방향 주파수 대역에 할당되어진 주파수대역(f0)에 실어진 초음파신호를 수신하고, 중앙노드(20)로는 역방향 주파수 대역 내에서 자신에게 할당되어진 주파수 대역에 수중정보를 실어서 초음파신호로 송신한다.
이러한 과정으로 중앙노드(20)와 복수개의 센서노드(10) 사이에서는 중앙노드(20)와 센서노드(10)와의 거리정보에 따라 적응적으로 적정한 주파수 대역이 할당되어져서 수중 정보 통신이 수행되어진다. 따라서 본 발명은 한정되어진 주파수 대역 내에서 복수개의 센서노드(10)에 각각의 거리에 따른 적정 주파수가 할당되므로서, 할당 주파수가 불합리함에 따른 사용 불가능한 센서노드가 발생되지 않게 된다. 즉, 복수개의 센서노드(10)와 중앙노드(20) 사이의 수중 통신이 효율적으로 이루어지는 것이 가능하게 된다.
다음, 도 9는 본 발명의 일 실시예에 따른 수중 통신 방법의 제어 흐름도이다.
도시되고 있는 도 9는, 중앙노드(20)에서 센서노드(10)에 특정 주파수를 할당할 때 이용되어지는 제 2 제어방법에 따른 동작 과정이다. 도시되고 있는 실시예는 중앙노드(20)에서 자신의 판단하에 각 센서노드(10)와의 거리를 추정하고, 추정된 거리에 따라서 각각의 센서노드(10)에 주파수를 할당하기 위한 제어 과정이다.
먼저 중앙노드(20)의 제어부(28)는, 자신이 사용 가능한 전체 주파수 대역을 확인하고, 상기 사용 가능한 전체 주파수 대역을 도 3에 도시하고 있는 바와 같이, 순방향 주파수 대역과 역방향 주파수 대역으로 분할한다(300 단계).
그리고 상기 제어부(28)는, 도 4에 도시되고 있는 영역 수(M개) 만큼 상기 역방향 주파수 대역을 작은 주파수 대역으로 분할하는 제어를 수행한다(305 단계). 상기 300 단계와 305 단계는, 상기 중앙노드(20)의 성능에 따라서 기설정되도록 제어하는 것이 바람직하다. 즉, 중앙노드(20)가 수중환경에서 신호의 송수신을 수행할 때, 가장 멀리까지 전송 가능한 주파수를 순방향 주파수 대역에 포함시켜서 기저장한다. 그리고 상기 중앙노드(20)가 수중환경에서 신호의 송수신을 수행할 때, 각각의 사용 주파수가 신호 전송 가능한 거리(영역)를 미리 구분하고, 기저장한다. 이렇게 구분되어 설정된 거리 및 주파수 값은 중앙노드(20)의 메모리(29)와 센서노드(10)의 메모리(34)에 저장하고, 이후 주파수 설정과정에서 이용하는 것이 바람직하다.
그리고 기저장하고 있는 거리 정보 검출에 이용될 기준신호를 메모리로부터 읽어온다. 상기 기준신호는, 상기 순방향 주파수 대역에 실어지고, 초음파신호로 변환되어져서 모든 센서노드(10)로부터 중앙노드(20)로 송신동작이 제어된다. 복수개의 센서노드(10)로부터 송신된 기준신호를 데이터수신부(24)를 통해서 수신한 중앙노드(20)는, 각 센서노드로부터의 수신신호의 전력세기, 전송시간에 이용되어진 지연시간 등을 검출한다. 상기 검출신호를 위한 신호 송수신 과정에서는, 해당하는 센서노드에 주파수 대역이 할당되기 전 상태이다. 따라서 상기 센서노드(10)의 데이터송신부(36) 및 중앙노드(20)의 데이터수신부(24)는, 상기 역방향 주파수 대역 중에서 가장 낮은 주파수 대역으로 설정되어진 주파수 대역을 이용하여 신호의 송수신을 수행한다(310 단계). 한편, 상기 신호 검출 동작을 직접 센서노드(10)에서 수행하고, 그 검출제어정보를 중앙노드(20)에서 입력해서 이후 거리 추정에 이용하는 것도 가능하다.
상기 310 단계에서 거리 추정을 위한 신호를 검출한 중앙노드(20)는, 각각의 센서노드의 수신신호의 전력세기, 신호전송에 이용되어진 시간 지연 등을 이용하여 중앙노드와 각각의 센서노드와의 거리를 추정한다(320 단계). 이때의 거리 추정은 메모리(29)에 기저장되고 있는 전력세기 대비 거리값을 이용해서 거리를 추정하는 것이 가능하다. 또한 메모리(29)에 기저장되고 있는 시간지연 대비 거리값을 이용해서 거리를 추정하는 것이 가능하다.
이후, 중앙노드(20)는, 추정된 거리에 따라서 적응적으로 각각의 센서노드(10)에 적합한 주파수 대역을 할당하고, 할당된 주파수 정보를 해당하는 센서 노드 측으로 전송한다(330 단계,340 단계).
이후, 센서노드(10)는 중앙노드(20)와의 수중 정보 송수신시에, 중앙노드(20)로부터는 순방향 주파수 대역에 할당되어진 주파수대역(f0)에 실어진 초음파신호를 수신하고, 중앙노드(20)로는 역방향 주파수 대역 내에서 자신에게 할당되어진 주파수 대역에 수중정보를 실어서 초음파신호로 송신한다.
이러한 과정으로 중앙노드(20)와 복수개의 센서노드(10) 사이에서는 중앙노드(20)와 센서노드(10)와의 거리정보에 따라 적응적으로 적정한 주파수 대역이 할당되어져서 수중 정보 통신이 수행되어진다. 따라서 본 발명은 한정되어진 주파수 대역 내에서 복수개의 센서노드(10)와 중앙노드(20)의 수중 통신이 효율적으로 이루어지는 것이 가능하게 된다.
다음, 도 10은 본 발명의 일 실시예에 따른 수중 통신 방법의 제어 흐름도이다.
도시되고 있는 도 10은, 중앙노드(20)에서 센서노드(10)에 특정 주파수를 할당할 때 이용되어지는 제 3 제어방법에 따른 동작 과정이다. 도시되고 있는 실시예에서는 복수개의 센서노드에 동일한 주파수 대역이 설정 가능함을 보여주기 위한 과정도이다.
중앙노드(20)의 제어부(28)는, 자신이 사용 가능한 전체 주파수 대역을 확인하고, 상기 사용 가능한 전체 주파수 대역을 도 3에 도시하고 있는 바와 같이, 순방향 주파수 대역과 역방향 주파수 대역으로 분할한다(400 단계).
또한, 상기 제어부(28)는, 도 4에 도시되고 있는 영역수(M개) 만큼 상기 역방향 주파수 대역을 작은 주파수 대역으로 분할하는 제어를 수행한다(405 단계). 상기 400 단계와 405 단계는, 상기 중앙노드의 성능에 따라서 기설정되도록 제어하는 것이 바람직하다. 즉, 중앙노드(20)가 수중환경에서 신호의 송수신을 수행할 때, 가장 멀리까지 전송 가능한 주파수를 순방향 주파수 대역에 포함시켜서 기저장한다. 그리고 상기 중앙노드(20)가 수중환경에서 신호의 송수신을 수행할 때, 각각의 사용 주파수가 신호를 전송 가능한 거리(영역)를 미리 구분하고, 기저장한다. 이렇게 구분되어 설정된 거리 및 주파수 값은 중앙노드(20)의 메모리(29)와 센서노드(10)의 메모리(34)에 저장하고, 이후 주파수 설정과정에서 이용하는 것이 바람직하다.
그리고 기저장하고 있는 거리 정보 검출에 이용될 기준신호를 메모리(29)로부터 읽어온다. 상기 기준신호는, 상기 순방향 주파수 대역에 실어지고, 데이터 송신부(26)를 통해 초음파신호로 변환되어져서 중앙노드(20)의 사용 가능한 전체 주파수 대역에 포함되어진 모든 센서노드(10)로 송신된다(410 단계).
상기 410 단계에서 송신된 기준신호를 데이터수신부(38)를 통해서 수신한 센서노드(10)들은 수신신호의 전력세기, 또는/및 신호전송에 이용되어진 시간 지연 등을 검출하고, 검출신호를 중앙노드(20)로 송신한다. 상기 검출신호 송신 과정에서는, 해당하는 센서노드에 주파수 대역이 할당되기 전이므로, 이 경우에서는 상기 역방향 주파수 대역 중에서 가장 낮은 주파수 대역을 이용하여 검출신호가 중앙노드(20)로 송신되어진다.
상기 검출신호를 수신한 중앙노드(20)의 제어부(28)는, 각각의 센서노드로부터 입력된 수신신호의 전력세기 또는/및 신호전송에 이용되어진 시간 지연 등을 이용하여 중앙노드와 각각의 센서노드와의 거리를 추정한다(420 단계). 이때의 거리 추정은 메모리(29)에 기저장되고 있는 전력세기 대비 거리값을 이용해서 거리를 추정하는 것이 가능하다. 또한 메모리(29)에 기저장되고 있는 시간지연 대비 거리값을 이용해서 거리를 추정하는 것이 가능하다.
이후, 중앙노드(20)는, 추정된 거리에 따라서 적응적으로 각각의 센서노드(10)에 적합한 주파수 대역을 할당한다(430 단계). 상기 430 단계에서 센서노드(10)에 주파수 할당시, 도 4에 도시하고 있는 바와 같이, 동일거리 또는 유사 거리에 있는 센서 노드에 같은 주파수 대역을 할당한다. 이때 중앙노드(20)는 자신을 기준으로 해서 동일한 주파수 대역으로 신호의 송수신이 가능한 센서노드를 동일 영역으로 묶는다. 그리고 동일 영역에는 동일한 주파수 대역을 할당한다.
그리고 상기 430 단계에서 각 영역에 따라서 할당된 주파수 대역 정보를 복수개의 센서노드로 전송한다(440 단계).
상기 센서노드(10)는 이후 중앙노드(20)와의 수중 정보 송수신시에, 중앙노드(20)로부터는 순방향 주파수 대역에 할당되어진 주파수대역(f0)에 실어진 초음파신호를 수신하고, 중앙노드(20)로는 역방향 주파수 대역 내에서 자신에게 할당되어진 주파수 대역에 수중정보를 실어서 초음파신호로 송신한다.
한편, 상기 동일 영역 내에 존재하는 센서노드는 동일한 주파수대역을 가지고 수중신호의 전송이 이루어진다. 따라서 이 경우 중앙노드(20) 내 제어부(28)는, 동일 영역 내에 존재하는 복수개의 센서노드와의 수중 통신을 적절히 제어할 필요성이 있다. 이 경우에 앞서 설명한 바와 같이 다중 접속 방식에 따른 수중 통신 제어가 이루어진다(450 단계).
이와 같이 여러개의 센서노드에 동일한 주파수를 할당하는 것은, 중앙노드(20)에서 사용 가능한 주파수 대역은 한계가 있기 때문이다. 일 예로, 수중 정보를 보다 정확하고 다양하게 취득하기 위해서는, 센서노드 수를 늘릴 수 밖에 없다. 이런 경우 중앙노드(20)에서 사용 가능한 전체 주파수 대역 내에 설치되고 있는 센서노드(10)의 수가 분할된 역방향 주파수 대역 수보다 많을 경우가 발생되어진다. 이때 도 4에 도시하고 있는 바와 같이 동일 영역에 존재하는 센서노드에는 동일한 주파수 대역을 할당해서 수중 통신을 제어한다.
도 10의 실시예에 따르면, 본 발명은 한정되어진 주파수 대역 내에서 복수개의 센서노드(10)에 동일한 주파수 대역을 할당하고, 중앙노드(20)의 다중 접속 방식의 제어로 복수개의 센서노드들을 효율적으로 제어하여 수중 통신을 수행한다. 따라서 분할된 주파수 대역 수보다 많은 센서노드에 대해서도 효율적인 수중 통신 제어를 가능하게 한다.
다음은 상기에서 설명한 바와 같이 한정된 주파수 대역 내에서 복수개의 센서노드들을 이용한 효율적인 수중 통신에서 할당된 주파수를 이용하여 반송파신호를 전송하고, 상기 반송파신호에 수신 성능을 높일 수 있도록 신호를 전송함에 있어서, 반복해서 전송하는 동작에 대해서 살펴본다.
앞서 과정에서 중앙노드(20)와 임의의 센서노드(10) 사이에서 사용할 주파수(또는 주파수 대역 또는 작은 주파수 대역)가 할당되었다. 이후 중앙노드(20)와 임의의 센서노드(10) 사이에서 신호를 전송함에 있어서 상기에서 할당된 주파수를 이용하게 된다.
한편, 본 발명의 수중통신은 여러개의 반송파에 데이터를 실어보내는 OFDM, FBMC, FMT 방식을 이용한다. 일 예로 소정의 시간동안 특정 수의 부반송파가 할당되어져서 이용될 수 있다.
이하의 설명과정에서는 하나의 예로서 OFDM 통신 방식을 적용하여, 수중 통신을 수행하는 과정을 설명한다. 도 11에서는 OFDM 통신 방식에 이용되는 물리 자원 블록을 도시하고 있다. 즉, OFDM 통신에서 소정의 시간 동안 특정 수의 부반송파가 할당되고, 이를 물리 자원 블록이라고 하며, 시간 차원 및 주파수 차원 모두를 갖는다.
도시되고 있는 바와 같이, 반복 전송되는 데이터는 수신 노드에 할당된 시간/주파수 자원을 각각 N개와 M개로 나누어서 동일한 데이터를 N * M 번 반복 전송하게 된다. 상기 수신측에 할당되는 자원은 도 12에 도시하고 있는 바와 같이, 시간/주파수 상에서 연속적일 수도 있고, 도 13에 도시하고 있는 바와 같이 불연속적일 수도 있다. 그리고 데이터가 할당되는 자원의 최소 단위를 리소스 블록이라 할 때, 상기 리소스 블록은 시간/주파수 상에서 하나 이상의 자원으로 이루어질 수 있다.
도 14는 수신측에 할당된 자원을 이용하여 신호를 반복 전송할 때, 자원을 할당하기 위한 예시도를 보여주고 있다.
도시하고 있는 바와 같이 수신측에 할당된 자원을 시간축에서 NT 개, 주파수 축에서 NF개로 나누고, 동일한 데이터를 나누어진 자원별로 서로 다른 방식의 인터리빙, 서로 다른 방식의 스크램블링, 서로 다른 방식의 프리코딩을 적용하여 할당한다.
도시하고 있는 실시예에서는, 수신측에 총 90개의 리소스 블록이 할당되었고, 시간축에서 3번, 주파수 축에서 5번의 총 3*5 = 15번 반복 전송을 수행하는 경우를 설명하고 있다.
이 경우 송신 데이터는 6개의 리소스 블록에 할당된다. 그리고 이와 같은 리소스 블록 그룹이 시간축에서 3번, 주파수 축에서 5번 반복되어서 전송된다.
그리고 상기 각 리소스 블록 그룹에 할당된 하나의 송신 데이터는 각 리소스 블록 그룹별로 서로 다른 방식(인터리빙, 스크램블링, 프리코딩)이 적용되어져서 할당되어진다.
한편, 본 발명의 수중통신에서 신호를 반복 전송함에 있어, 가장 중요한 파라미터가 반복 전송 횟수를 결정하는 과정이다.
그 하나의 실시예로서 도 15에 도시하고 있는 바와 같이 신호를 송신하는 송신측에서 임의로 결정하는 방식이다.
중앙노드와 임의의 센서노드 사이에서 송신측으로 이용될 노드와 수신측으로 이용될 노드가 결정된다. 해당 네트워크의 동작 알고리즘과 운용방식에 따라서 중앙노드가 송신측으로 동작할 수도 있고, 센서노드가 송신측으로 동작할 수도 있다. 송신측으로 결정된 노드가 아닌 노드가 당연하게 수신측 노드로 결정되어진다. 예를 들어서 신호 전송을 먼저 요구하는 노드가 송신측으로 동작될 수 있고, 다른 한 쪽은 수신측으로 동작될 수도 있다. 즉, 중앙노드와 센서노드는 송신과 수신이 가능한 구성을 포함하고, 동작상태에 따라서 송신측으로 또는 수신측으로 운용될 수 있도록 구성되어진다.
그리고 앞서 설명된 과정에서와 같이, 상기 중앙노드와 임의의 센서노드 사이에서는 상기 중앙노드와 임의의 센서노드 간의 수중통신에서 사용할 작은 주파수 대역이 할당된다. 송신측 노드와 수신측 노드가 결정되어 있는 상태에서, 도 15는 송신측으로 결정된 노드 측에서 반복 전송을 위한 횟수를 결정함에 따른 과정이다.
일단은 송신측(TX)과 수신측(RX) 사이에서 서로의 상태 확인을 위하여 기준신호를 주고받는 기본 과정이 수행된다. 이 과정은 송신측과 수신측에서 서로 사용되는 채널 확인 등, 신호 송수신이 가능한 상태인지를 먼저 시험 확인하는 과정이라고 설명될 수 있다. 상기 송신측은 이 과정에서 수신측으로부터 피드백 받은 신호에 기초해서 반복횟수를 결정한다.
통상적으로 수중 통신 상황은 매시간마다 매우 유동적이다. 따라서 신호를 송수신하는 송신측과 수신측 사이에서 먼저 기준신호를 주고받는 과정을 통해서 수중 통신 상황을 판단하고, 실제 데이터를 전송할 반복 횟수를 결정하는 것이다.
이때 반복횟수를 결정함에 있어서, 수중통신에 영향을 끼칠 수 있는 다양한 요소들(온도, 시간, 계절, 염도, 해수온도, 사용자 입력값 등을 포함한 수중통신에 영향을 끼치는 다양한 파라미터들)이 적용되어 그에 따라 적절한 반복 횟수가 결정된다.
따라서 본 발명에서 반복 전송횟수를 최적으로 제어위해서는 현재의 수중상황에 맞는 조건을 찾아야 한다. 이 조건을 찾음에 있어서, 송신측 또는 수신측에서 자율적으로 기설정된 프로그램에 따라서 생성할 수 있다. 이때 반복 전송횟수 결정을 위한 변수로, 앞서 설명한 파라미터 외에도 수중채널 특성, 수신신호의 신호 대 잡음비(또는 간섭비), 비트 에러율, 패킷 에러율, 재전송 횟수 들이 적용될 수 있다.
상기 수중통신에서 신호 전송은 수중채널의 길이(다중경로 개수)와 밀접하게 관계되고, 수중채널이 시간적으로 얼마나 빨리 바뀌는가(도플러 주파수)와 밀접하게 관계된다. 따라서 수신측에서 상기 수중 채널 특성들을 측정하고, 측정한 수중 채널 특성들을 송신측으로 전달해주면, 송신측에서 피드백 정보를 이용해서 반복 전송 횟수를 결정할 수 있다.
따라서 반복 전송횟수를 결정함에 있어서, 수중채널 길이, 도플러 주파수, RSSI, RSRP, RSRQ, 비트 에러율, 패킷에러율, 잡음레벨, 그리고 반복 전송횟수를 결정하는 주체가 송신측인지 또는 수신측인지에 따라서 다르게 이루어질 수 있다.
일 예로 수중 채널이 주파수 축에서 변화가 심해질 경우, 주파수축에서의 반복횟수(NF)를 증가시켜서 수신측에서 주파수 다이버시티 이득을 얻을 수 있도록 제어 할 수 있다. 또한 수중 채널이 시간축에서 변화가 심해질 경우, 시간축에서의 반복횟수(NT)를 증가시켜서 수신측에서 주파수 다이버이티 이득을 얻을 수 있도록 제어할 수 있다. 또 다른 예로서 수신채널의 잡음 레벨이 증가할 경우에 반복 횟수를 증가시키는 제어를 통해서 수신측에서의 데이터 검출 성능이 향상되도록 제어할 수 있다. 또 하나의 예로서 통신 링크 상의 간섭 레벨(인접 셀, 인접 주파수 채널 등)이 증가할 경우, 신호를 전송하는 반복 횟수를 증가시키는 제어를 통해서 수신측에서 데이터 검출 성능이 향상되도록 제어 가능하다.
또한 수신신호의 크기(RSSI,RSRP, RSRQ 등)가 감소하거나 비트 에러율, 패킷 에러율, 재전송 횟수 등이 증가할 경우, 채널 추정 성능 향상을 위해서 시간축 또는 주파수 축 또는 시간축과 주파수축 모두 신호의 반복 전송 횟수를 증가시키는 제어를 수행할 수 있다. 따라서 반복 전송 횟수의 제어는, 송신측에서 미리 기설정되고 있는 알고리즘을 통해서 결정할 수도 있지만, 앞서 언급한 다양한 가변 변수들 값에 대한 수중 특성을 테스트신호를 통해서 검출하고, 상기 검출된 가변 변수들 값에 대하여 값을 설정하여 저장하고, 이를 이용하여 적용할 수도 있다. 상기 테스트 신호는, 일반적인 기준신호 전송방식을 채택해서 수행 가능하다.
이와 같이 다양한 파라미터에 의해서 송신측에서 반복 전송 횟수가 결정되면, 이후 결정된 반복 전송 횟수 정보를 수신측으로 전송하고, 이를 충분히 인지한 수신측의 확인이 이루어지면, 이후 전송하고자 하는 데이터를 결정된 반복 전송 횟수만큼 반복해서 전송하게 된다.
즉, 도 15는 수신측에서 전송한 기준신호 또는 수신측에서 전송한 통신링크에 관한 피드백 정보 등을 기반으로 해서 반복 전송 횟수를 결정하는 과정을 설명하였다.
다음 도 16은 반복 전송 횟수를 수신측에서 결정하는 과정을 도시하는 예시도이다.
송신측에서 기준신호 또는 통신링크에 관한 피드백 정보를 수신측으로 전송하면, 이를 수신하고 분석한 수신측에서 반복 전송 횟수를 결정하고, 결정된 반복 전송 횟수 정보를 송신측으로 제공하므로써, 송신측은 수신측에서 요구하는 반복 전송 횟수 만큼 신호 전송을 수행한다.
도 16에서와 같이 수신측에서 반복 전송 횟수를 결정하고, 송신측으로 통보하기 위해서는 앞서 도 15의 설명 중, 송신측에서 보유해야 하는 다양한 파라미터 및 그에 따른 설정값에 해당하는 정보들을 수신측에서 가지고 있어야만 한다. 이러한 부분을 만족하기 위해서 수신측의 메모리(도시하지 않음)에는 반복 전송 횟수 결정을 위한 파라미터 정보들을 기저장하는 것도 한가지 방법이다.
다음 도 17은 반복 전송 횟수를 결정하고, 결정된 반복 전송 횟수만큼 신호를 반복 전송을 수행한 이후에, 재전송이 필요한 경우 그에 따른 과정을 설명하기 위한 예시도이다.
즉, 이 경우는 이미 기결정된 반복 전송 횟수 만큼 신호를 반복 전송 하였으나, 에러가 발생되는 경우로 재전송 데이터에 대해서 반복 전송 횟수를 증가시켜서 전송하는 것이 바람직하다.
이 경우 반복 전송 횟수의 증가량은 미리 결정된 약속된 만큼 증가시키거나 브로드캐스팅 채널을 통해 송신측에서 사전에 전달할 수 있다. 또는 재 전송을 위한 데이터 전송 이전에 반복 전송 횟수 정보를 미리 수신측으로 전달할 수도 있다.
그리고 도 15 내지 도 17에서 반복 전송 횟수 정보는, 물리 계층 또는 MAC 계층에서 전송하는 것이 바람직하다. 그리고 물리 계층을 통해서 전송하는 경우에서는 브로드 캐스팅 채널, 제어채널 또는 데이터 채널을 통해서 전송하는 것이 바람직하다. 그리고 상기 반복 전송 횟수의 정보는 독립적으로 정의되어 전송되거나 다른 정보들과 합쳐져서 전송하는 것도 가능하다. 일예로 MCS(Modulation and Coding Scheme) 레벨 중에 한 형태로 전송되는 것이 가능할 것이다.
일반적인 기술에 따르면, 상기 MCS(Modulation and Coding Scheme : MCS) 테이블은, 수신측으로부터 귀환 받은 MCS 인덱스 등의 귀환 정보를 이용하여, MCS 룩업 테이블 내의 해당 MCS 인덱스에 해당하는 변조 차수 및 코딩율을 선택하게 된다. 따라서 상기 MCS 인덱스의 귀환 정보를 기반으로 해서 반복 전송 횟수를 기결정하고, 저장해서 이용하는 방법도 있다.
또한 도 15 내지 도 17에서 반복 전송 횟수 정보를 전송함에 있어서, 반복 전송 횟수 정보에 대해서 시간축 반복 횟수와 주파수축 반복 횟수가 직접 전송될 수도 있고, 미리 약속된 값들 중에서 해당 값의 인덱스 정보가 전송될 수도 있다. 여기서 인덱스 정보라 함은, 반복 전송 횟수 정보에 대해서 시간축 반복 횟수 또는 주파수축 반복 횟수를 알 수 있도록 돕는 정보라고 표현 가능하다. 즉, 송신측과 수신측의 미리 결정된 약속을 통해서 상호간에 주고받는 반복 전송 횟수 정보를 인지 가능한 정보이다. 이러한 정보를 통해서 수신측에서 결정된 반복 전송 횟수 정보 또는 송신측에서 결정된 반복 전송 횟수 정보가 상대측으로 전송되어지고, 이후 그 만큼의 데이터 반복 전송이 제어된다.
다음 도 18은 본 발명의 수중통신에서 신호를 반복 전송하기 위한 송신측 전송장치의 일부 구성을 도시하고 있고, 도 19는 본 발명의 수중 통신에서 반복 전송을 가능하게 하는 수신측의 일부 구성을 도시하고 있다.
상기 송신측의 구성은, 앞서 설명된 중앙노드가 될 수도 있고, 센서 노드가 될 수도 있다. 그리고 도시하지는 않고 있지만, 수중 기지국일 수도 있다. 즉, 수중 통신을 수행함에 있어서, 송신측에 구비되는 구성이다. 마찬가지로 상기 수신측의 구성은, 중앙노드 또는 센서 노드일 수 있고 도시하지 않은 수중 기지국일 수도 있다. 즉, 수중 통신을 수행함에 있어서, 수신측에 포함되는 구성이다.
본 발명은 OFDM 방식의 송신 데이터를 이용해서 수신측으로 전송한다. 그러나 동일한 데이터를 반복 전송함에 따라서 시간/주파수 상에서 큰 PAPR을 유발하고, 인접 셀 간의 간섭에 취약할 수 밖에 없다. 이러한 문제를 해결하기 위해서 본 발명에서는 데이터를 반복해서 송신할 때, 서로 다른 방식의 인터리빙, 서로 다른 방식의 스크램블링, 서로 다른 방식의 프리코딩을 행해서, 동일 데이터를 다르게 조합해서 전송하는 방식을 따른다.
따라서 본 발명의 송신측은 도 18에 도시하고 있는 바와 같이, OFDM 방식에 따라서 FEC(forward error correction) 인코딩을 수행하는 FEC 인코더(600)를 포함하고, 상기 FEC 인코더의 출력신호를 각기 다른 방식의 인터리빙이 가능하도록 알고리즘 된 다수개의 인터리버(601~604)를 포함한다. 그리고 각기 다른 방식의 스크램블링이 가능하도록 알고리즘 된 다수개의 스크램블러(605~608)를 포함한다. 그리고 상기 다수개의 스크램블링의 출력신호를 OFDM 변조 방식에 따라서 송신을 가능하게 하는 변조 동작을 수행하는 다수개의 변조부(609~612)를 포함한다. 그리고 상기 다수개의 변조부의 출력신호를 각기 다른 방식의 프리코딩이 이루어지도록 알고리즘 된 다수개의 프리코더(613~616)을 포함한다. 그리고 상기 전송을 위하여 프리코딩된 신호를 맵핑하는 매퍼(620)를 포함한다. 이렇게 맵핑된 신호는 전송 안테나를 통해서 송신되어진다.
상기 인터리빙 룰 적용은, 도 18에 도시되고 있는 각기 다른 알고리즘으로 구성된 다수개의 인터리버 중 어느 하나의 인터리버를 통해서 이루어지고, 다수의 인터리버를 순차적으로 이용하거나 랜덤하게 이용할 수도 있다. 물론, 수신측에서 디인터리빙 동작 제어를 위해서 상기 다수개의 인터리버의 사용순서에 대한 정보도 수신측은 당연히 인지하고 있어야 할 것이다.
상기 인터리버는 공지의 인터리버와 동일한 특징을 갖으나, 일 실시예를 살펴보면, FEC 인코더(600)의 출력비트 c(n), n=0,...,L-1을 시간축에서 NT = 3번, 주파수 축에서 NF = 5번, 총 15번(3*5)을 반복 전송하는 경우, i번째 반복 전송되는 비트 Ci(n)는, 다음과 같이 결정된다.
i번째 반복 전송에서 인터리버를 통과한 비트를 di(n)이라 하면,
di(n) = ci(lq(n))으로 결정된다.
여기서 lq()는 인터리버 패턴 테이블에서 q번째 인터리버 패턴이다. 따라서 lq(n)은 n번째 인터리빙 된 비트의 원래 위치가 된다.
그리고 각 반복 전송 별 인터리버 패턴 인덱스 q는 해당 데이터가 할당되는 심볼/슬롯/서브 프레임/프레임 인덱스, 해당 데이터가 할당되는 부반송파/리소스블록 인덱스, 반복 인덱스 등으로 결정될 수 있다. 즉, 수신측으로부터 피드백되는 상기의 데이터에 기초하여 수신측과 송신측 사이의 인터리빙 방식을 선택하는 것이 가능하다.
일 예) q=i →3 번째 반복 전송 비트의 경우, 인터리버 패턴 테이블의 3번째 열에 해당하는 인터리버 패턴 적용.
상기 스크램블링 룰 적용은, 도 18에 도시되고 있는 각기 다른 알고리즘으로 구성된 다수개의 스크램블러 중 어느 하나의 스크램블러를 통해서 이루어지고, 다수의 스크램블러를 순차적으로 이용하거나 랜덤하게 이용할 수도 있다. 물론, 수신측에서 디스크램블링 동작 제어를 위해서 상기 다수개의 스크램블러의 사용순서에 대한 정보도 수신측은 당연히 인지하고 있어야 할 것이다.
상기 스크램블러는 공지의 스크램블러와 동일한 특징을 갖으나, 일 실시예를 살펴보면, i번째 반복 전송에서 인터리버의 출력 di(n)은, 다음과 같이 스크램블링이 적용된다.
ei(n) = (s(n) + di(n))mod2, 여기서 s(n)은 스크램블링 비트이다.
상기 스크램블링 비트는 초기값을 가지고 스크램블러 내부에 구비된 PRS(Pseudo Random Sequence) 발생기에 의해 생성된다.
i번째 반복 전송에서 PRS 발생기의 초기값 Cinit(i)는, 해당 데이터가 할당되는 심볼/슬롯/서브프레임/프레임인덱스, 해당 데이터가 할당되는 부반송파/리소스블록 인덱스, 반복 인덱스 등으로 결정될 수 있다. 즉, 수신측으로부터 피드백되는 상기의 데이터에 기초하여 수신측과 송신측 사이의 스크램블링 방식을 선택하는 것이 가능하다.
일 예) Cinit(i) = nsf * 29 + ns * 24 + ID * 23 + i
여기서 nsf , ns 은 서브프레임 인덱스이고, ID는 수신 노드 ID이며, i는 해당 비트의 반복 전송 인덱스를 나타낸다.
상기 프리코딩 룰 적용은, 도 18에 도시되고 있는 각기 다른 알고리즘으로 구성된 다수개의 프리코더 중 어느 하나의 프리코더를 통해서 이루어지고, 다수의 프리코더를 순차적으로 이용하거나 랜덤하게 이용할 수도 있다. 물론, 수신측에서 디프리코딩 동작 제어를 위해서 상기 다수개의 프리코더의 사용순서에 대한 정보도 수신측은 당연히 인지하고 있어야 할 것이다.
상기 프리코더는 공지의 프리코더와 동일한 특징을 갖으나, 일 실시예를 살펴보면, i번째 반복 전송에서 변조부 출력 심볼 * (n)은 다음과 같이 적용된다.
Figure pat00001
pj(n,k)는 프리코딩 행렬 테이블에서 q번째 프리코딩 행렬의 n번째 행과 k번째 열의 원소이다. 상기 각 반복 전송 별로 프리코딩 행렬 인덱스 j는 해당 데이터가 할당되는 심볼/슬롯/서브프레임/프레임 인덱스, 해당 데이터가 할당되는 부반송파/리소스블록 인덱스, 그리고 반복 인덱스의 값에 의해 결정될 수 있다. 즉, 수신측으로부터 피드백되는 상기의 데이터에 기초하여 수신측과 송신측 사이의 프리코딩 방식을 선택하는 것이 가능하다. 이 경우 수신측이 가장 선호할 수 있는 방식의 인덱스값으로 결정하는 것이 바람직할 것이다.
일 예) j=i →3번째 반복 전송 비트의 경우, 프리코딩 행렬 테이블에서 3번째 프리코딩 행렬 적용.
이와 같이 본 발명은 신호를 반복 전송함에 있어서, 반복 횟수별 인터리빙 방식, 스크램블링 방식, 프리코딩 방식은 다양한 파라미터들(해당 데이터가 할당되는 심볼/슬롯/서브프레임/프레임 인덱스, 해당 데이터가 할당되는 부반송파/리소스블록 인덱스, 그리고 반복 인덱스의 값)에 의해서 결정되어진다. 그리고 상기 다양한 파라미터들의 값으로부터 결정된 제어값으로 상기 인터리버, 스크램블러, 변조부 및 프리코더의 제어를 수행하는 제어부(도시하지 않음)가 더 포함되어진다. 도시되고 있는 도 18에서는 상기 파라미터들의 값에 의해 결정된 제어값이 인터리버(604), 스크램블러(608), 프리코더(616)에 인가하는 라인만을 도시하고 있으나, 상기 구성되고 있는 모든 인터리버, 모든 스크램블러, 모든 프리코더에 상기 파라미터들의 값에 의해 결정된 제어값이 인가됨은 당연하다.
그리고 본 발명의 수신측은 도 19에 도시하고 있는 바와 같이, 상기 송신측에서 송신한 OFDM 신호를 수신하고 디맵핑하는 디맵퍼(700)를 포함한다. 상기 디맵핑이 이루어진 데이터는, 순차적으로 디프리코딩, 복조, 디스크램블링, 디인터리빙의 과정을 진행하게 된다. 따라서 수신측에서도 송신측의 인터리빙 룰을 해독하기 위한 디인터리버(713~716)가 다수개 구비되고, 수신신호의 스크램블링 룰을 해독하기 위한 디스크램블러(709~712)가 다수개 구비된다. 그리고 다수개의 OFDM 복조부(705~708)와 다수개의 디프리코더(701~704)가 포함되어져서 구성된다. 그리고 복수개의 디인터리버를 통과한 신호는 LLR(Log-Likelihood Ratio) 결합부(720)를 통해서 FEC 디코더(730)에 입력된다. 상기 FEC 디코더(730)는 입력된 데이터를 복원한다.
또한 수신 측에 있어서도 상기 다양한 파라미터들(해당 데이터가 할당되는 심볼/슬롯/서브프레임/프레임 인덱스, 해당 데이터가 할당되는 부반송파/리소스블록 인덱스, 그리고 반복 인덱스의 값)에 의해서 결정된 제어값으로 상기 디인터리버, 디스크램블러 및 디프리코더의 제어를 수행하는 제어부(도시하지 않음)가 더 포함되어진다. 그리고 이때 제어부가 상기 디인터리버, 디스크램블러, 디프리코더의 제어값은, 송신측에서 인터리버, 스크램블러, 프리코더를 제어함에 있어서 결정된 제어된 값으로부터 설정된 값이 된다. 그리고 도시되고 있는 도 19에서는 상기 파라미터들의 값에 의해 결정된 제어값이 디인터리버(716), 디스크램블러(712), 디프리코더(704)에 인가하는 라인만을 도시하고 있으나, 상기 구성되고 있는 모든 디인터리버, 모든 디스크램블러, 모든 디프리코더에 상기 파라미터들의 값에 의해 결정된 제어값이 인가됨은 당연하다.
다음은 상기에서 설명한 바와 같이 한정된 주파수 대역 내에서 복수개의 센서노드들을 이용한 효율적인 수중 통신에서 할당된 주파수를 이용하여 반송파신호를 전송하고, 상기 반송파신호에 수신 성능을 높일 수 있도록 동일한 데이터를 반복 전송하는 동작에 대해서 살펴본다.
도 20는 본 발명의 데이터 전송시, 동일 데이터에 대해서 반복 전송을 제어하는 동작 흐름도를 도시하고 있다.
앞서 과정에서 중앙노드(20)와 임의의 센서노드(10) 사이에서 사용할 주파수(또는 주파수 대역 또는 작은 주파수 대역)가 할당되었다. 이후 중앙노드(20)와 임의의 센서노드(10) 사이에서 신호를 전송함에 있어서 상기에서 할당된 작은 주파수 대역을 이용하게 된다(800 단계).
즉, 본 발명에서는 각각의 센서노드에 할당된 작은 주파수 대역을 시간 및/또는 주파수 차원 상에서 동일한 데이터를 반복 전송하여, 수신기에서의 다이버시티 이득을 증대시키는 제어를 수행한다.
먼저 반복 전송 횟수를 결정한다. 상기 반복 전송 횟수는, 도 15 내지 도 17의 과정에서 설명한 바와 같이 송신측 또는 수신측에서 각 설정된 알고리즘 및 수중 특성에 따라서 결정된다. 그리고 상기 결정된 반복전송 횟수 정보가 송신측과 수신측 모두 인지 가능하도록 결정된 송신측(또는 수신측)에서 수신측(또는 송신측)으로 반복전송 횟수 정보를 전달하는 과정이 수행된다(810 단계).
그리고 상기 800 단계에서 할당된 작은 주파수 대역에 대해서 시간축을 NT개, 주파수축을 NF개로 나눈다. 도 14에 도시하고 있는 실시예에서와 같이, 수신측에 할당된 작은 주파수 대역으로서 90개의 리소스블록으로 할당되었을 때, 예를 들어서 반복 전송 횟수가 15회로 결정되면, 시간축에서 3번, 주파수축에서 5번 반복전송해서 총 3*5= 15번의 반복 전송이 가능도록 시간축과 주파수축의 자원을 나누게 된다(820 단계).
반대로 시간축에서 5번, 주파수축에서 3번 반복 전송하도록 하여 총 5*3 = 15번의 반복 전송이 가능하도록 시간축과 주파수축의 자원을 나눌 수도 있다. 이 경우에 있어서 수중 특성에 따라서 수신신호의 데이터 검출 성능이 향상될 수 있는 방향으로 조절하는 것이 바람직하다.
다음, 상기와 같이 반복 전송 횟수가 결정된 상황에서, 동일한 데이터를 나누어진 자원별로 서로 다른 방식의 인터리빙, 서로 다른 방식의 스크램블링, 서로 다른 방식의 프리코딩을 적용하여 신호의 반복 전송을 제어하게 된다.
예를 들어서 수신측에 할당된 작은 주파수 대역에 대해서, 총 90개의 리소스 블록이 할당되었고, 15번의 반복 전송 횟수가 결정되면, 도 14에 도시하고 있는 바와 같이, 송신 데이터는 6개의 리소스 블록에 할당된다. 그리고 리소스 블록 그룹이 시간축에서 3번, 주파수축에서 5번 반복되어 전송된다.
이때 각 리소스 블록 그룹에 할당되는 데이터는 하나의 송신 데이터가 각 리소스 블록 그룹별로 서로 다른 방식의 인터리빙 룰과 서로 다른 방식의 스크램블링 룰과 서로 다른 방식의 프리코딩 룰이 적용되어진다(830 단계).
따라서 도 14에 도시되고 있는 리소스 블록 그룹 15개는 각각 다른 방식의 인터리빙 룰과 서로 다른 방식의 스크램블링룰과 서로 다른 방식의 프리코딩 룰이 적용된 데이터로 변환되어지고, 매퍼에서 맵핑되어진 후, 송신측의 송수신부를 통해서 수신측으로 송신된다(840 단계).
이와 같이 하여 전송되는 각각의 송신데이터는 인접 셀 간 동일 데이터를 결정된 반복 전송 횟수만큼 반복 전송함에 있어서도 각기 다른 방식의 인터리빙, 스크램블링, 프리코딩이 행해지므로 인해서 다른 데이터처럼 구성되어져서 전송이 이루어진다.
수신측의 송수신부는 이 데이터들을 수신하고, 각각 매칭되도록 디프리코딩, 복조, 디스크램블링, 디인터리빙을 수행하여, 데이터를 원래의 신호로 구현하게 된다.
이상의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
10 : 센서노드 20 : 중앙노드
21,22,40 : 송수신부 23,26,36 : 데이터 송신부
24,25,38 : 데이터 수신부 27 : 주파수 분할기
28,32 : 제어부 29,34 : 메모리
50 : 수중 통신망 62 : 지상 통신망
64 : 관리노드 600 : FEC 인코더
601~604 : 인터리버 605~608 : 스크램블러
609~612 : 변조부 613~616 : 프리코더
620 : 매퍼 700 : 디매퍼
701~704 : 디프리코더 705~708 : 복조부
709~712 : 디스크램블러 713~716 : 디인터리버
720 : LLR 결합부 730 : FEC 디코더

Claims (9)

  1. 수중 정보를 검출하는 복수개의 센서노드로부터 검출정보를 취합해서 지상네트워크로 전송하는 중앙노드를 이용한 수중 통신에서,
    상기 중앙노드가 사용 가능한 전체 주파수 대역을 작은 주파수 대역으로 분할하고, 상기 중앙노드와 복수개의 센서노드 사이의 거리에 기반해서 상기 분할된 작은 주파수 대역을 각각의 센서노드에 할당해서 수중통신을 수행하되,
    상기 각각 할당된 작은 주파수 대역을 이용하여 상기 중앙노드와 임의의 센서노드 사이에서 수중통신을 수행할 때, 상기 할당된 작은 주파수 대역을 기설정된 알고리즘에 따라서 시간 차원을 N1개, 주파수 차원을 M1개로 나누고, 동일 데이터에 대해서 N1 * M1 번의 반복 전송을 제어하는 수중통신의 반복전송방법.
  2. 수중 정보를 검출하는 복수개의 센서노드로부터 검출정보를 취합해서 지상네트워크로 전송하는 중앙노드를 이용한 수중 통신에서,
    상기 중앙노드가 사용 가능한 전체 주파수 대역을 작은 주파수 대역으로 분할하고, 상기 중앙노드와 복수개의 센서노드 사이의 거리에 기반해서 상기 분할된 작은 주파수 대역을 각각의 센서노드에 할당해서 수중통신을 수행하되,
    상기 할당된 작은 주파수 대역을 테스트신호를 통해서 얻어진 수중 특성에 대한 값을 기반으로, 시간 차원을 N2개, 주파수 차원을 M2개로 나누고, 동일 데이터에 대해서 N2 * M2번 범위 내에서 반복 전송을 제어하는 수중통신의 반복전송방법.
  3. 청구항 1 또는 청구항 2에 있어서,
    상기 반복 전송되는 동일 데이터는, 각각 다른 인터리빙 룰을 적용하여 반복 전송을 제어하는 수중통신의 반복전송방법.
  4. 청구항 1 또는 청구항 2에 있어서,
    상기 반복 전송되는 동일 데이터는, 각각 다른 스크램블링 룰을 적용하여 반복 전송을 제어하는 수중통신의 반복전송방법.
  5. 청구항 1 또는 청구항 2에 있어서,
    상기 반복 전송되는 동일 데이터는, 각각 다른 프리코딩 룰을 적용하여 반복 전송을 제어하는 수중통신의 반복전송방법.
  6. 수중 정보를 검출하는 복수개의 센서노드로부터 검출정보를 취합해서 지상네트워크로 전송하는 중앙노드를 이용한 수중 통신에서,
    상기 중앙노드가 사용 가능한 전체 주파수 대역을 작은 주파수 대역으로 분할하고, 상기 중앙노드와 복수개의 센서노드 사이의 거리에 기반해서 상기 분할된 작은 주파수 대역을 각각의 센서노드에 할당해서 수중통신을 수행하고,
    상기 각각 할당된 작은 주파수 대역을 이용하여 상기 중앙노드와 임의의 센서노드 사이에서 수중통신을 수행할 때, 상기 할당된 작은 주파수 대역을 기설정된 알고리즘에 따라서 시간 차원을 N1개, 주파수 차원을 M1개로 나누어서 동일 데이터에 대해서 N1*M1 번의 반복 전송하는 수중통신의 반복전송장치.
  7. 수중 정보를 검출하는 복수개의 센서노드로부터 검출정보를 취합해서 지상네트워크로 전송하는 중앙노드를 이용한 수중 통신에서,
    상기 중앙노드가 사용 가능한 전체 주파수 대역을 작은 주파수 대역으로 분할하고, 상기 중앙노드와 복수개의 센서노드 사이의 거리에 기반해서 상기 분할된 작은 주파수 대역을 각각의 센서노드에 할당해서 수중통신을 수행하고,
    상기 각각 할당된 작은 주파수 대역을 이용하여 상기 중앙노드와 임의의 센서노드 사이에서 수중통신을 수행할 때, 상기 할당된 작은 주파수 대역을 테스트신호를 통해서 얻어진 수중 특성에 대한 값을 기반으로, 시간 차원을 N2개, 주파수 차원을 M2개로 나누어서 동일 데이터에 대해서 N2*M2 번의 반복 전송하는 수중통신의 반복전송장치.
  8. 청구항 6 또는 청구항 7에 있어서,
    상기 중앙노드는 반복 전송 횟수를 결정하고, 결정된 반복 전송 횟수 정보를 센서노드로 전달하는 것을 특징으로 하는 수중통신의 반복전송장치.
  9. 청구항 6 또는 청구항 7에 있어서,
    상기 센서노드는 반복 전송 횟수를 결정하고, 결정된 반복 전송 횟수 정보를 중앙노드로 전달하는 것을 특징으로 하는 수중통신의 반복전송장치.
KR1020160181100A 2016-12-28 2016-12-28 수중통신에서 반복 전송장치 및 방법 KR102045110B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160181100A KR102045110B1 (ko) 2016-12-28 2016-12-28 수중통신에서 반복 전송장치 및 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160181100A KR102045110B1 (ko) 2016-12-28 2016-12-28 수중통신에서 반복 전송장치 및 방법

Publications (2)

Publication Number Publication Date
KR20180076680A true KR20180076680A (ko) 2018-07-06
KR102045110B1 KR102045110B1 (ko) 2019-11-14

Family

ID=62921167

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160181100A KR102045110B1 (ko) 2016-12-28 2016-12-28 수중통신에서 반복 전송장치 및 방법

Country Status (1)

Country Link
KR (1) KR102045110B1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102078943B1 (ko) * 2018-12-14 2020-02-19 호서대학교 산학협력단 수중환경에 적응적인 수중통신 방법
KR20200073977A (ko) * 2018-12-14 2020-06-24 호서대학교 산학협력단 수중환경에 적응적인 수중통신 시스템
KR20200107029A (ko) * 2019-03-05 2020-09-16 경북대학교 산학협력단 수중 센서 네트워크 및 이의 셀 구성 및 주파수 할당 방법

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150059589A (ko) * 2013-11-22 2015-06-01 한국전자통신연구원 철도 무선 센서 망의 간섭 신호 회피를 위한 전용채널 설정 장치 및 방법

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150059589A (ko) * 2013-11-22 2015-06-01 한국전자통신연구원 철도 무선 센서 망의 간섭 신호 회피를 위한 전용채널 설정 장치 및 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
S. Climent 외, "Underwater Acoustic Wireless Sensor Networks: Advances and Future Trends in Physical, MAC and Routing Layers", Sensors 2014, 14, pp.795-833, 2014. *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102078943B1 (ko) * 2018-12-14 2020-02-19 호서대학교 산학협력단 수중환경에 적응적인 수중통신 방법
KR20200073977A (ko) * 2018-12-14 2020-06-24 호서대학교 산학협력단 수중환경에 적응적인 수중통신 시스템
KR20200107029A (ko) * 2019-03-05 2020-09-16 경북대학교 산학협력단 수중 센서 네트워크 및 이의 셀 구성 및 주파수 할당 방법

Also Published As

Publication number Publication date
KR102045110B1 (ko) 2019-11-14

Similar Documents

Publication Publication Date Title
JP6445095B2 (ja) 分散入力分散出力無線システムにおける空間ダイバーシティを改善するシステム及び方法
KR101161913B1 (ko) 다중-채널 통신 시스템들에 대한 레이트 제어
KR101647263B1 (ko) 협력 다중점 전송 클러스터에서의 앵커링된 하향 선택을 위한 방법 및 시스템
ES2419079T3 (es) Información de retorno acerca de la información espacial en sistemas de comunicación inalámbricos
KR100754722B1 (ko) 무선 통신 시스템에서 채널 상태 정보를 이용한 데이터송수신 장치 및 방법
CN110661596B (zh) 多用户下行蜂窝系统中的数据传输方法与装置
JP4955661B2 (ja) 多アンテナシステムのための低複雑性ビーム形成
KR101501714B1 (ko) 미모 무선 통신 시스템에서 오버헤드를 줄이기 위한 장치 및 방법
KR20190109426A (ko) 전자 기기를 위한 비전 인텔리전스 관리
US20110200143A1 (en) Method for transmitting sounding reference signal sequence using plural antennas
MX2007011096A (es) Sistemas y metodos para formacion de haz en sistemas de comunicacion de entradas multiples y salidas multiples.
JP4971174B2 (ja) 通信システム
WO2011158726A1 (ja) 基地局装置、端末装置、通信システムおよび通信方法
JP7200243B2 (ja) 基準信号構成
WO2019119439A1 (en) Sequence selection for non-orthogonal multiple access transmissions
JP4971173B2 (ja) 通信システム
KR20140078599A (ko) 통신 시스템 및 통신 시스템에 사용되는 비트 로딩 방법
CN101160749A (zh) 在多输入多输出通信系统中进行波束成形的系统和方法
KR102045110B1 (ko) 수중통신에서 반복 전송장치 및 방법
US11012989B2 (en) Method and apparatus for sending signal of underwater communication
KR102268063B1 (ko) 수중환경에 적응적인 수중통신 시스템
KR102088550B1 (ko) 수중통신의 기준신호제어장치 및 그 방법
KR102078943B1 (ko) 수중환경에 적응적인 수중통신 방법
Hwang et al. A multi-user interference detection method for MU-MIMO transmission in LTE advanced system
KR20200062093A (ko) 채널 관련 정보 송수신 방법 및 장치

Legal Events

Date Code Title Description
A302 Request for accelerated examination
E701 Decision to grant or registration of patent right