KR20180076390A - Method for Rematerializing Waste De-NOx Catalyst Using Inorganic Acid - Google Patents

Method for Rematerializing Waste De-NOx Catalyst Using Inorganic Acid Download PDF

Info

Publication number
KR20180076390A
KR20180076390A KR1020160179959A KR20160179959A KR20180076390A KR 20180076390 A KR20180076390 A KR 20180076390A KR 1020160179959 A KR1020160179959 A KR 1020160179959A KR 20160179959 A KR20160179959 A KR 20160179959A KR 20180076390 A KR20180076390 A KR 20180076390A
Authority
KR
South Korea
Prior art keywords
catalyst
waste
waste catalyst
acid
inorganic acid
Prior art date
Application number
KR1020160179959A
Other languages
Korean (ko)
Other versions
KR101896094B1 (en
Inventor
노세윤
김남하
서병한
이효상
Original Assignee
대영씨엔이(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대영씨엔이(주) filed Critical 대영씨엔이(주)
Priority to KR1020160179959A priority Critical patent/KR101896094B1/en
Publication of KR20180076390A publication Critical patent/KR20180076390A/en
Application granted granted Critical
Publication of KR101896094B1 publication Critical patent/KR101896094B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/48Liquid treating or treating in liquid phase, e.g. dissolved or suspended
    • B01J38/60Liquid treating or treating in liquid phase, e.g. dissolved or suspended using acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/02Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/48Liquid treating or treating in liquid phase, e.g. dissolved or suspended
    • B01J38/60Liquid treating or treating in liquid phase, e.g. dissolved or suspended using acids
    • B01J38/62Liquid treating or treating in liquid phase, e.g. dissolved or suspended using acids organic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated

Abstract

The present method relates to a method of rematerializing a de-NO_x catalyst, the method which uses an organic acid to remove poisoning materials of the waste de-NO_x catalyst discarded after being used in a power plant or the like, thereby enabling the waste catalyst to be reused. A method of rematerializing the waste de-NO_x catalyst using the inorganic acid comprises: a step of collecting a waste catalyst component from a waste de-NO_x catalyst module; a pretreatment step of crushing the waste catalyst component and removing metallic foreign materials from the crushed waste catalyst component by using a magnet to obtain a pretreated waste catalyst; a step of reacting the pretreated waste catalyst with the inorganic acid to remove the poisoning materials in the waste catalyst; a step of filtering the poisoning material-removed waste catalyst to obtain a filtered waste catalyst and washing the filtered waste catalyst to obtain a washed waste catalyst; a step of firing the washed waste catalyst to obtain a fired waste catalyst; and a step of milling the fired waste catalyst to produce a fine powder from the fired waste catalyst. Since the method of the present invention is a method of removing the poisoning materials in the waste catalyst, the method can reduce preparation costs of the catalyst by minimizing loss amounts of effective catalyst components contained in the waste catalyst, and particularly enabling titanium dioxide and tungsten trioxide occupying most of a de-NO_x catalyst to be recovered such that the recovered titanium dioxide and tungsten trioxide can be rematerialized. Further, since the method of the present invention is a method of recovering titanium dioxide and tungsten trioxide by removing the poisoning materials such as sodium, potassium calcium, sulfur trioxide and the others that inhibit catalytic activities instead of performing a process of separating and extracting tungsten and vanadium, the process being expensive in the recovery of titanium dioxide and tungsten trioxide from the waste catalyst, the method reduces costs required in the rematerialization process. The method can reduce a rematerializing manufacturing process since the recovered titanium dioxide and tungsten trioxide can be reused as catalyst raw materials even without passing through a separate processing process.

Description

무기산을 사용한 폐탈질촉매의 재 소재화 방법{Method for Rematerializing Waste De-NOx Catalyst Using Inorganic Acid}BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for remineralizing a waste denitration catalyst using an inorganic acid,

본 발명은 발전소 등에서 사용된 후 폐기되는 폐탈질촉매의 피독물질을 무기산을 이용하여 제거함으로써 폐촉매의 재사용을 가능하게 하는 폐탈질촉매의 재 소재화 방법에 관한 것이다.The present invention relates to a method for remanufacturing a waste denitration catalyst which enables the reuse of spent catalyst by removing inorganic poisons of a waste denitration catalyst that is discarded after being used in a power plant.

급속한 경제발전과 함께 산업화는 막대한 양의 에너지를 필요로 하는데, 이에 따라 화석연료의 사용량이 증가하면서 다량의 환경오염원의 배출이 무분별하게 이루어져 왔으며, 이 결과 심각한 환경파괴를 가져와 근래에 이르러 자연환경에 대한 중요성을 재인식하는 계기가 되고 있다.With rapid economic development, industrialization requires enormous amount of energy. As a result, the amount of fossil fuels has increased and the emission of a large amount of environmental pollutants has been made indiscreetly. As a result, serious environmental destruction has been caused, and in recent years, It is an opportunity to re-recognize the importance of

환경오염원 중 대기오염 문제가 점점 심각해지고 있고 대기오염에서 질소산화물에 의한 위해성이 중요하게 대두함에 따라 질소산화물의 배출규제가 강화되어 국내 발전설비에는 대부분 배연탈질설비(deNOx system)가 설치, 운전 중에 있다.As the problem of air pollution among environmental pollution sources becomes more serious and the risk of nitrogen oxides in air pollution becomes important, regulation of emission of nitrogen oxides is strengthened. Most of domestic power generation facilities are equipped with deNOx system have.

국내의 탈질촉매 시장규모는 2011년 40000 ㎥에서 점점 증가되어 2015년에는 45000 ㎥에 육박하고 있으며, 촉매비용 또한 연간 1500 억원에 이르고 점차 증가하는 추세이다.The domestic market for NOx catalysts is gradually increasing from 40,000 ㎥ in 2011 to 45,000 ㎥ in 2015, and the cost of catalysts is gradually increasing from 150 billion won annually.

탈질촉매는 배기가스 중에 함유된 분진, 황, 알칼리 금속, 비소, 인 화합물 등 업종에 따라 다양한 경로로 오염되고 이에 의해 촉매활성이 점차 저하되며, 일반적으로 배연탈질설비에 사용되는 촉매의 교체주기는 3~5 년 정도로서 주기별로 교체되고 있다.The denitration catalyst is contaminated by various routes such as dust, sulfur, alkali metal, arsenic, and phosphorus compounds contained in the exhaust gas and thereby the catalytic activity is gradually lowered. In general, the replacement cycle of the catalyst used in the exhaust- It has been replaced every three to five years.

활성저하로 교체되는 폐촉매는 폐기물로 분리되어 지정된 장소에서 폐기되나 폐촉매에는 유가금속 및 여러 종류의 유용금속들이 포함되어 있어서 재활용가치가 높으며, 폐촉매의 재 소재화는 자원절약 효과 및 제조단가 절감으로 인한 경쟁력증가, 국외 기업과의 경쟁력 상승효과를 얻을 수 있어서 폐촉매의 재 소재화 기술확보가 필요하다.The waste catalyst, which is replaced with depletion, is separated into waste and disposed of at the designated site. However, the recycled value of the waste catalyst is high because the waste catalyst contains valuable metals and various kinds of valuable metals. It is necessary to acquire the technology of recycling the spent catalyst because it can increase the competitiveness due to the reduction and increase the competitiveness with foreign companies.

탈질촉매의 성분구성은 제조회사와 용도에 따라 차이가 있으나 대부분 초기원료 성분은 이산화티탄 80~90 %, 삼산화텅스텐 5~10 %, 오산화바나듐 1~2 % 정도로 이루어지며, 이를 재활용하는 종래기술로는 탈질 폐촉매성분(이산화티탄, 삼산화텅스텐, 오산화바나듐 등) 중 희귀금속으로 분류된 텅스텐, 바나듐 금속을 알칼리 습식 침출법으로 개별 추출하는 유가금속 회수기술이 알려져 있다.The composition of the denitration catalyst varies depending on the manufacturer and the application, but most of the initial raw materials are composed of 80 to 90% of titanium dioxide, 5 to 10% of tungsten trioxide, and 1 to 2% of vanadium pentoxide. There is known a valuable metal recovering technique in which tungsten and vanadium metal classified as rare metals in the denitrification catalyst components (titanium dioxide, tungsten trioxide, vanadium pentoxide, etc.) are individually extracted by an alkaline wet leaching method.

상기 알칼리 습식 침출법은 부가가치가 높은 텅스텐과 바나듐을 추출하여 재사용하는 기술인데, 이러한 유가금속 회수기술은 텅스텐과 바나듐의 회수율이 낮고 추출과정 또한 매우 까다로우며, 촉매성분 대부분을 차지하는 이산화티탄을 회수하지 못하여 촉매 재 소재화 분야에 적용할 경우 많은 비용이 소요되어 자원 재활용의 효율성을 만족시키지 못하고 있다.The alkaline wet leaching method is a technique of extracting and reusing high value added tungsten and vanadium. Such a valuable metal recovery technology has a low recovery rate of tungsten and vanadium and a very difficult extraction process, and recovery of titanium dioxide Therefore, it is costly to apply to the field of catalyst materialization, and thus the efficiency of resource recycling is not satisfied.

이러한 문제를 해결하기 위하여, 한국등록특허공보 제1360292호에는 호열성 균주를 이용하여 폐촉매로부터 유가금속을 회수하는 방법이 제시되어 있으며, 석유 정제 공정에서 발생하는 폐촉매의 기름성분을 먼저 제거한 후 비철계 9K 배지에서 철 및 황을 산화시키는 호열성 균주를 폐촉매에 접종하여 유가금속을 생물학적으로 침출시켜 회수한다.In order to solve such a problem, Korean Patent Registration No. 1360292 discloses a method for recovering valuable metals from a spent catalyst by using a thermophilic strain, wherein the oil component of the waste catalyst generated in the petroleum refining step is removed first Fermenting a fermenting strain which oxidizes iron and sulfur in a non-ferrous 9K medium and inoculating the spent catalyst to recover biologically leached ferrous metal.

상기 발명은 생물학적 방법을 이용함으로써 경제성을 확보하고 니켈(Ni) 및 바나듐(V)의 침출률을 단시간 내에 높일 수 있으며 철(Fe), 몰리브데늄(Mo) 및 알루미늄(Al) 또한 회수할 수 있는 장점이 있으나, 촉매 중에 가장 많이 함유된 성분인 티탄(Ti), 텅스텐(W) 성분 등은 회수가 어려워 폐촉매의 재활용 측면에서 효율적이지 못하다.The present invention can be economically achieved by using a biological method and can raise the leaching rate of nickel (Ni) and vanadium (V) in a short time, and can recover iron (Fe), molybdenum (Mo) and aluminum However, titanium (Ti) and tungsten (W), which are the most abundant components in the catalyst, are difficult to be recovered and thus are not effective in terms of recycling the spent catalyst.

또한, 한국등록특허공보 제1452179호에는 탈질 폐촉매의 침출용액으로부터 바나듐 및 텅스텐을 회수하는 방법이 제시되어 있으며, 소다배소 공정, 알칼리 상압 침출공정 또는 알칼리 가압 침출공정으로 제조된 탈질 폐촉매의 침출용액에 산(염산, 질산, 황산)과 칼슘화합물을 첨가하여 바나듐을 Ca(VO3)2 형태로 침전시켜 회수한 후 잔여 침출용액에 산과 칼슘화합물을 첨가하여 텅스텐을 CaWO4 형태로 침전시켜 회수한다.Korean Patent Publication No. 1452179 discloses a method for recovering vanadium and tungsten from a leach solution of a denitrification catalyst. The leaching of the denitrification catalyst produced by the soda roasting process, the alkali atmospheric pressure leaching process or the alkali pressure leaching process Acid (hydrochloric acid, nitric acid, sulfuric acid) and a calcium compound are added to the solution to convert vanadium to Ca (VO 3 ) 2 And then the acid and calcium compounds were added to the remaining leach solution to remove tungsten from CaWO 4 And precipitated and recovered.

상기 발명은 탈질 폐촉매에 함유된 바나듐과 텅스텐을 선택적으로 회수할 수 있으나, 폐촉매에 함유된 유가금속 중 알칼리 용액에 침출되지 않는 유가금속은 회수하지 못하고 또한 침출용액을 동일한 성분을 이용하여 동일한 방법으로 회수하므로 실제로 바나듐과 텅스텐의 분리회수가 어려우며, 회수된 Ca(VO3)2와 CaWO4를 촉매로 재활용하기 위해서는 이를 다시 재가공해야 하는 문제가 있다.The present invention can selectively recover vanadium and tungsten contained in the denitrification catalyst, but can not recover valuable metals that are not leached into the alkali solution of the valuable metals contained in the waste catalyst, and can not recover the same The separation of vanadium and tungsten is difficult. In order to recycle the recovered Ca (VO 3 ) 2 and CaWO 4 as a catalyst, it is necessary to reprocess it again.

본 발명은 상기의 문제를 해결하기 위한 것으로서, 사용된 후 폐기되는 폐탈질촉매 중의 유가금속을 분리 회수하는 종래의 방식 대신에 폐탈질촉매에 함유된 피독물질을 제거함으로써 폐탈질촉매를 효율적으로 재 소재화하는 방법을 제공하는 것이다.DISCLOSURE Technical Problem Accordingly, the present invention has been made to solve the above problems, and it is an object of the present invention to provide a waste denitration catalyst which efficiently removes poisonous substances contained in a waste denitration catalyst, instead of a conventional method of separating and recovering valuable metals in a waste denitration catalyst, And to provide a method of materialization.

상기 과제를 해결하기 위하여, 본 발명은 폐탈질촉매 모듈로부터 폐촉매 성분을 수거하는 단계; 상기 폐촉매 성분을 분쇄하고 자석을 이용하여 금속성 이물질을 제거하는 전처리 단계; 상기 전처리한 폐촉매를 무기산과 반응시켜 폐촉매 내의 피독물질을 제거하는 단계; 상기 피독물질이 제거된 폐촉매를 여과하여 수세하는 단계; 상기 수세한 폐촉매를 소성하는 단계; 및 상기 소성한 폐촉매를 미분하는 단계;를 포함하는 무기산을 이용한 폐탈질촉매의 재 소재화 방법을 제공한다.In order to solve the above problems, the present invention provides a method for removing NOx from a waste denitration catalyst module, A pretreatment step of pulverizing the waste catalyst component and removing a metallic foreign substance using a magnet; Reacting the pretreated spent catalyst with an inorganic acid to remove poisonous materials in the spent catalyst; Filtering the waste catalyst from which the poisoning material has been removed to wash it; Firing the washed spent catalyst; And finely pulverizing the calcined waste catalyst. The present invention also provides a method of remineralizing a waste denitration catalyst using an inorganic acid.

이때, 상기 전처리 단계는 수거한 폐촉매 성분을 입자크기 100~2000 ㎛로 분쇄한 후 7000~12000 Gauss 세기의 자석으로 폐촉매 성분 중의 금속성 이물질을 제거하는 것이 바람직하다.At this time, it is preferable that the waste catalyst component collected is pulverized to a particle size of 100-2000 mu m, and then a metallic foreign substance in the waste catalyst component is removed with a magnet of 7000-12000 Gauss strength.

또한, 상기 피독물질의 제거는 폐촉매와 무기산을 상온~120 ℃의 온도에서 300~500 rpm으로 교반하면서 30~120 분간 반응시키는 과정으로 이루어지는 것이 바람직하다.In addition, the removal of the poisoning material is preferably performed by reacting the spent catalyst and the inorganic acid at a temperature of 120 ° C to 300-500 rpm for 30-120 minutes.

또한, 상기 무기산은 0.1~2.0 M 농도의 황산 수용액, 0.1~2.0 M 농도의 염산 수용액, 0.1~1.0 M 농도의 과산화수소수 또는 이들의 혼합용액인 것이 바람직하다.The inorganic acid is preferably an aqueous sulfuric acid solution having a concentration of 0.1 to 2.0 M, an aqueous hydrochloric acid solution having a concentration of 0.1 to 2.0 M, a hydrogen peroxide aqueous solution having a concentration of 0.1 to 1.0 M, or a mixed solution thereof.

또한, 상기 피독물질을 제거하는 단계는 무기산에 유기산을 첨가하여 전처리한 폐촉매와 반응시키거나, 전처리한 폐촉매를 무기산과 반응시킨 후 유기산 반응용액 또는 무기산-유기산의 혼합 반응용액으로 추가 반응시키는 것이 바람직하고, 상기 유기산은 0.1~1.5 M의 구연산 수용액 또는 0.1~1.0 M의 EDTA 수용액인 것이 더욱 바람직하며, 상기 유기산 반응용액 또는 무기산-유기산의 혼합 반응용액은 구연산과 EDTA, 과산화수소와 구연산, 또는 과산화수소와 EDTA가 4~6:4~6의 부피비로 혼합된 것이 가장 바람직하다.The step of removing the poisoning material may be performed by reacting the waste catalyst with a pretreated waste catalyst by adding an organic acid to the inorganic acid, or reacting the pretreated waste catalyst with an inorganic acid, followed by further reaction with an organic acid reaction solution or a mixed reaction solution of an inorganic acid- More preferably, the organic acid is 0.1 to 1.5 M aqueous citric acid solution or 0.1 to 1.0 M aqueous EDTA solution, and the organic acid reaction solution or mixed reaction solution of inorganic acid-organic acid is citric acid, EDTA, hydrogen peroxide and citric acid, It is most preferable that hydrogen peroxide and EDTA are mixed in a volume ratio of 4: 6: 4 to 6:

또한, 상기 소성하는 단계는 수세한 폐촉매를 140~160 ℃에서 40~80 분간 가열한 후 300~450 ℃에서 10~150 분간 소성하는 것이 바람직하다.In the firing step, it is preferable that the washed spent catalyst is heated at 140 to 160 ° C. for 40 to 80 minutes and then calcined at 300 to 450 ° C. for 10 to 150 minutes.

본 발명에 따른 폐탈질촉매의 재 소재화 방법은 폐촉매 중의 피독물질을 제거하는 방식이므로 폐촉매에 함유된 유효 촉매성분의 유실량이 최소화되며, 특히 탈질촉매의 대부분을 차지하는 이산화티탄과 삼산화텅스텐을 대부분 회수하여 재 소재화할 수 있어서 촉매의 제조원가를 절감할 수 있다.Since the method of remanufacturing the waste denitration catalyst according to the present invention is a method of removing poisonous substances in the spent catalyst, the amount of effective catalyst component contained in the waste catalyst is minimized, and titanium dioxide and tungsten trioxide, which occupy most of the denitration catalyst, Most of the catalyst can be recovered and recycled to reduce the manufacturing cost of the catalyst.

또한, 폐촉매에서 회수에 비용이 많이 드는 텅스텐, 바나듐을 분리추출하는 대신에 촉매활성을 저해하는 나트륨, 칼륨, 칼슘, 삼산화황 등의 피독물질을 제거하여 이산화티탄과 삼산화텅스텐을 회수하는 방식이므로 재 소재화 과정에 소요되는 비용이 적고 회수한 이산화티탄과 삼산화텅스텐은 별도의 가공과정을 거치지 않아도 촉매원료로 재사용이 가능하므로 재 소재화 제조공정을 줄일 수 있다.In addition, instead of separating and extracting tungsten and vanadium, which are costly to recover from waste catalysts, removing poisoning substances such as sodium, potassium, calcium, and sulfur trioxide, which inhibit catalytic activity, to recover titanium dioxide and tungsten trioxide Titanium dioxide and tungsten trioxide, which have a low cost of materialization and are recovered, can be reused as a catalyst material without any separate processing steps, thereby reducing the manufacturing process of the materialization.

도 1은 본 발명에 따른 폐탈질촉매의 피독물질 제거 및 폐촉매의 재 소재화 방법을 나타낸 순서도이다.
도 2는 본 발명에 따른 폐탈질촉매의 재 소재화 공정 중 전처리 과정을 보여주는 공정도이다.
도 3은 전처리된 폐탈질촉매의 피독물질을 제거하여 재 소재화하는 과정을 보여주는 공정도이다.
1 is a flowchart showing a method of removing a poisonous substance from a waste denitration catalyst according to the present invention and a method for recovering a waste catalyst.
FIG. 2 is a process diagram showing a pretreatment process during the materialization process of the waste denitration catalyst according to the present invention. FIG.
FIG. 3 is a process diagram showing a process of removing a poisonous substance from a pretreated waste denitration catalyst to make it a material.

본 발명은 국내외 발전소 등에서 사용되고 있는 삼산화텅스텐-이산화티탄(WO3-TiO2) 기반의 폐탈질촉매의 재 소재화 방법에 관한 것으로서, 폐촉매 모듈을 분해하여 에어브러싱(air brushing)한 후 금속망 분리 및 분쇄하여 폐촉매 성분을 수거하는 단계, 상기 수거한 폐촉매 성분을 자석을 이용하여 금속성 이물질을 제거하는 전처리 단계, 상기 전처리한 폐촉매를 무기산과 반응시켜 폐촉매 내의 피독물질을 제거하는 단계, 상기 폐촉매와 반응액을 압력 또는 진공을 이용하여 여과 및 수세하는 단계, 상기 수세한 폐촉매를 소성하는 단계 및 상기 소성한 폐촉매를 미세크기로 미분하는 단계를 포함하는 폐탈질촉매의 재 소재화 방법을 제공한다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for remanufacturing a waste denitration catalyst based on tungsten trioxide (WO 3 -TiO 2 ) used in domestic and overseas power plants and the like. The waste catalyst module is disassembled and air- Separating and pulverizing the waste catalyst component, collecting the waste catalyst component, pretreating the waste catalyst component using a magnet to remove metallic foreign substances, and removing the poisoning substance in the spent catalyst by reacting the pretreated waste catalyst with inorganic acid , Filtering and washing the waste catalyst and the reaction solution using pressure or vacuum, firing the washed spent catalyst, and finely dividing the fired waste catalyst to a fine size. Provides a method of materialization.

본 발명은 폐탈질촉매의 특정성분을 추출하는 것이 아니라 탈질효율을 저하시키는 원인 인자인 나트륨(Na), 칼륨(K), 칼슘(Ca), 삼산화황(SO3) 등을 제거하여 촉매원료의 주성분인 이산화티탄, 삼산화텅스텐, 오산화바나듐을 회수함으로써, 폐촉매의 재 소재화 과정에서 이들의 유실량을 최소화할 수 있다.The present invention is the main component of the catalyst material by removing the causative factors of sodium that instead of extracting a specific component of the waste removal catalyst decreases the NOx removal efficiency (Na), potassium (K), calcium (Ca), sulfur trioxide (SO 3), etc. By recovering titanium dioxide, tungsten trioxide, and vanadium pentoxide, it is possible to minimize the loss of these waste catalysts during the reconditioning of spent catalysts.

이하, 본 발명의 바람직한 실시예를 첨부된 도면을 참조하여 좀 더 상세히 설명한다.Hereinafter, preferred embodiments of the present invention will be described in more detail with reference to the accompanying drawings.

단, 하기의 실시예는 본 발명을 예시하기 위한 것일 뿐, 본 발명이 하기 실시예에 의해 한정되는 것이 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 치환 및 균등한 타 실시예로 변경할 수 있음은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어서 명백할 것이다.It is to be understood, however, that the invention is not to be construed as being limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Will be apparent to those skilled in the art to which the present invention pertains.

도 1에는 본 발명의 무기산을 이용한 폐탈질촉매의 재 소재화 방법을 나타낸 순서도가 도시되어 있다.FIG. 1 is a flow chart showing a method for remanufacturing a waste denitration catalyst using inorganic acid according to the present invention.

본 발명에 따른 폐탈질촉매의 재 소재화 방법은 먼저 폐탈질촉매 모듈로부터 폐촉매를 수거하여 금속성 이물질을 제거하는 전처리 단계(S10)를 거치는데, 폐탈질촉매 모듈을 분해하여 에어브러싱한 후 금속망 분리 및 분쇄하여 폐촉매를 수거하며, 자석을 이용하여 폐촉매 중의 금속성 이물질을 제거한다.The method for remineralizing a waste denitration catalyst according to the present invention includes a pretreatment step (S10) for collecting waste catalysts from a waste denitration catalyst module to remove metallic foreign substances. The waste denitration catalyst module is disassembled and air- And the spent catalyst is collected, and the metallic foreign substance in the spent catalyst is removed using a magnet.

도 2에는 상기 순서도에 포함된 전처리 단계(S10)의 공정도가 도시되어 있다.FIG. 2 is a flow chart of the preprocessing step S10 included in the flow chart.

상기 전처리 단계(S10)는 국내외 발전소 등에 공급되어 있는 삼산화텅스텐-이산화티탄(WO3-TiO2) 기반의 폐탈질촉매 모듈(11)을 분리한 후 공기압축기(air compressor, 15)를 이용하여 120~400 ℓ/min의 유속으로 에어브러싱하고 금속망 분리 및 분쇄를 거쳐 자석 또는 전자석을 이용하여 금속성 이물질을 제거한다.In the pretreatment step S10, the wastewater denitration catalyst module 11 based on tungsten trioxide-WO 3 -TiO 2 , which is supplied to domestic and overseas power plants, is separated, and then an air compressor 15 Air brushing at a flow rate of ~ 400 L / min, metal mesh separation and crushing, and metallic or foreign materials are removed using magnets or electromagnets.

상기 폐탈질촉매 모듈은 중유화력발전, 석탄화력발전 폐탈질촉매와 복합화력발전 폐탈질촉매에 적용될 수 있고 모든 삼산화텅스텐-이산화티탄 기반의 폐탈질촉매에 적용될 수 있다.The waste denitration catalyst module may be applied to heavy fuel oil power generation, coal-fired power generation waste denitration catalyst and combined-cycle power generation waste denitration catalyst, and may be applied to all of the waste denitration catalysts based on tungsten trioxide-titanium dioxide.

폐탈질촉매의 모듈타입은 플레이트(plate) 타입(13)과 하니컴(honeycomb) 타입(14)으로 구분할 수 있으며, 플레이트 타입의 경우 폐탈질촉매 모듈(11)에서 케니스터(canister, 12)를 분리하고 케니스터(12)에서 플레이트 촉매(13) 분리한 다음 플레이트 촉매(13)의 금속망에서 촉매를 분리한 후 분쇄하며, 하니컴 타입의 경우 전체를 그대로 분쇄한다.The module type of the waste denitration catalyst can be divided into a plate type 13 and a honeycomb type 14. In the case of a plate type, a canister 12 is separated from a waste denitration catalyst module 11 The plate catalyst 13 is separated from the canister 12, and then the catalyst is separated from the metal net of the plate catalyst 13 and pulverized. In the case of the honeycomb type, the entire catalyst is crushed.

상기 분쇄된 폐촉매(16)의 입자크기는 100~2000 ㎛가 바람직하고 이를 7000~12000 Gauss 세기의 자석 또는 전자석(18)을 이용하여 폐촉매(16) 중의 금속성 이물질, 금속성 오염물질(19)을 제거하여 전처리 폐촉매(17)를 얻는다.The pulverized spent catalyst 16 preferably has a particle size of 100 to 2,000 mu m and is preferably made of a metallic foreign substance in the spent catalyst 16 or a metallic contaminant 19 in the spent catalyst 16 by using a magnet or electromagnet 18 having a strength of 7000 to 12000 Gauss, To obtain a pretreated spent catalyst (17).

다음은 상기 전처리 폐촉매(17)에 무기산 용액을 반응시켜 폐촉매 내의 피독물질을 제거한다(S20).Next, an inorganic acid solution is reacted with the pretreated spent catalyst 17 to remove poisonous substances in the spent catalyst (S20).

상기 전 처리된 폐촉매(17)는 발전소의 촉매타입, 연료, 선택적 촉매환원반응(selective catalytic reduction, SCR)의 컨트롤 조건 등에 따라 피독물질의 종류와 함량이 상이하므로, 이에 알맞은 무기산 용액과 반응시켜 피독물질을 제거하며, 온도(상온~120 ℃), 교반속도(300~500 rpm), 시간(30~120 분간)을 조절하여 반응시킨다.The pretreated spent catalyst 17 may be reacted with an appropriate inorganic acid solution because the type and content of the poisonous substance are different depending on the catalyst type of the power plant, the fuel, and the control conditions of the selective catalytic reduction (SCR) Remove poisonous substances and react by adjusting temperature (room temperature ~ 120 ℃), stirring speed (300 ~ 500 rpm) and time (30 ~ 120min).

상기 무기산으로서 과산화수소(hydrogen peroxide, H2O2), 황산(sulfuric acid, H2SO4), 염산(hydrochloric acid, HCl) 중에서 1종 이상을 사용하고 과산화수소는 0.1~1.0 M 농도의 수용액인 것이 바람직하고 황산과 염산은 0.1~2.0 M 농도의 수용액인 것이 바람직하며, 이들 반응용액 중 황산과 과산화수소, 또는 염산과 과산화수소를 조합하여 폐촉매(17)와 반응시키는 것이 바람직하고 황산:과산화수소(또는 염산:과산화수소)=4~6:4~6 부피비로 혼합되는 것이 더욱 바람직하며 이들이 부피 기준 서로 동일한 양으로 혼합되는 것이 가장 바람직하다.At least one of hydrogen peroxide (H 2 O 2 ), sulfuric acid (H 2 SO 4 ) and hydrochloric acid (HCl) is used as the inorganic acid and hydrogen peroxide is an aqueous solution having a concentration of 0.1 to 1.0 M Preferably, sulfuric acid and hydrochloric acid are aqueous solutions having a concentration of 0.1 to 2.0 M, and sulfuric acid and hydrogen peroxide or hydrochloric acid and hydrogen peroxide are preferably combined with the spent catalyst 17 in these reaction solutions, and sulfuric acid: hydrogen peroxide (or hydrochloric acid : Hydrogen peroxide) = 4 to 6: 4 to 6 volume ratio, and it is most preferable that they are mixed in the same amount in terms of volume.

또한, 상기 무기산에 유기산을 첨가하여 피독물질을 제거하는 것도 가능하며, 예를 들어 과산화수소수에 구연산(citric acid, C6H8O7) 또는 에틸렌디아민테트라아세트산(ethylenediaminetetraacetic acid, EDTA)을 혼합하여 폐촉매(17)의 피독물질을 제거할 수 있으며, 과산화수소수:구연산(또는 EDTA)=4~6:4~6 부피비로 혼합되는 것이 바람직하고 과산화수소수와 구연산(또는 EDTA)이 부피 기준 서로 동일한 양으로 혼합되는 것이 더욱 바람직하다.For example, citric acid (C 6 H 8 O 7 ) or ethylenediaminetetraacetic acid (EDTA) may be added to the aqueous hydrogen peroxide solution to remove the toxic substance It is preferable to mix the hydrogen peroxide solution with citric acid (or EDTA) = 4 to 6: 4 to 6 by volume, and the hydrogen peroxide solution and citric acid (or EDTA) It is more preferable that they are mixed in the same amount.

폐촉매의 탈질성능을 저하시키는 물질은 대부분 알칼리(토)금속산화물과 인, 비소의 금속산화물이다.Most substances that degrade the denitrification performance of spent catalysts are alkaline (earth) metal oxides and metal oxides of phosphorus and arsenic.

EDTA는 4 개의 카복실 그룹이 있고 H+ 이온이 떨어지면서 산소에 음전하가 생성되어 리간드로 작용할 수 있어서, 배위수가 존재하는 리간드 결합이 가능한 금속과 대부분의 중금속에 EDTA를 가하면 EDTA가 폐촉매에 흡착된 금속이온과 결합하여 착이온, 착화합물을 형성함에 따라 피독물질로 작용하는 금속성분이 더 이상 폐촉매 성분과 배위결합을 하지 못하도록 하기 때문에 EDTA와 반응시킨 폐촉매를 여과하여 폐촉매로부터 피독물질을 제거할 수 있다.EDTA has four carboxyl groups and a negative charge can be generated in the oxygen due to the drop of H + ion. As a result, EDTA is adsorbed on the waste catalyst when EDTA is added to a ligand-binding metal and most heavy metals, As the metal ions are combined with the metal ions to form complex ions, the metal component acting as a poisoning substance can no longer coordinate with the waste catalyst component. Therefore, the waste catalyst reacted with EDTA is filtered to remove the poisonous substance from the waste catalyst can do.

상기 피독물질 제거단계(S20)는 필요에 따라 상기와 같이 무기산 반응용액으로 해독한 후 유기산 반응용액 또는 무기산-유기산의 혼합 반응용액으로 추가 해독할 수도 있으며, 상기 무기산에 첨가되는 유기산 또는 추가 해독에 사용되는 유기산으로서 0.1~1.5 M의 구연산 수용액 또는 0.1~1.0 M의 EDTA 수용액 등이 사용될 수 있고 추가 해독에 사용되는 무기산으로서 과산화수소, 황산, 염산이 사용된다.The poisoning material removal step (S20) may be further decrypted as an inorganic acid reaction solution as described above, and further decrypted as a mixed reaction solution of an organic acid reaction solution or an inorganic acid-organic acid. In addition, 0.1 to 1.5 M citric acid aqueous solution or 0.1 to 1.0 M aqueous EDTA solution may be used as the organic acid to be used, and hydrogen peroxide, sulfuric acid and hydrochloric acid are used as the inorganic acid used for further decryption.

또한, 추가 해독에 사용되는 유기산 또는 무기산-유기산은 구연산과 EDTA, 과산화수소와 구연산, 또는 과산화수소와 EDTA의 조합이 바람직하고 이들 조합되는 물질의 혼합비는 각각 4~6:4~6의 부피비로 혼합되는 것이 더욱 바람직하며, 각각 부피 기준 서로 동일한 양으로 혼합되는 것이 가장 바람직하다.Further, the organic acid or inorganic acid-organic acid used for the further decryption is preferably a combination of citric acid and EDTA, hydrogen peroxide and citric acid, or hydrogen peroxide and EDTA, and the mixing ratio of these combined substances is 4 to 6: 4 to 6 More preferably, they are mixed in the same amount as each other on a volume basis.

상기 피독물질 제거시 및/또는 추가 해독시 폐촉매와 반응용액의 혼합량은 폐촉매에 함유된 피독물질이 충분히 제거될 수 있도록 폐촉매:반응용액=1:5~10 부피비로 혼합하여 반응시키는 것이 바람직하다.The mixture amount of the waste catalyst and the reaction solution during the removal of the poisonous material and / or the additional detoxification is such that the poisonous substances contained in the waste catalyst are sufficiently removed, and the waste catalyst and the reaction solution are mixed at a volume ratio of 1: 5 to 10 desirable.

다음은 상기 피독물질이 제거된 폐촉매에서 반응용액인 무기산을 제거하는 여과 및 수세 단계(S30)를 진행하는데, 먼저 폐촉매를 여과하여 폐촉매 중의 반응용액을 제거하고 이를 수세한 후 다시 여과하여 반응용액과 함께 물을 제거한다.Next, the filtering and washing step (S30) for removing the inorganic acid as the reaction solution from the poisoned material-removed spent catalyst is performed. First, the waste catalyst is filtered to remove the reaction solution in the spent catalyst, Water is removed with the reaction solution.

상기 여과는 폐촉매의 입자크기에 따라 여과 필터의 공극 크기를 선택하고 통상의 폐촉매 입자크기를 감안하여 공극 크기 1~50 ㎛의 필터를 이용하는 것이 바람직하며, 필터의 종류는 제한되지 않으나 여과시 압력 또는 진공을 이용하여 여과하는 것이 바람직하다.It is preferable that the pore size of the filter is selected according to the particle size of the spent catalyst and the filter having a pore size of 1 to 50 탆 is used in consideration of the size of the normal spent catalyst particle. It is preferable to perform filtration using pressure or vacuum.

또한, 상기 수세는 반응용액이 충분히 제거되도록 폐촉매의 부피기준 2~10 배의 증류수를 사용하는 것이 바람직하다.Also, it is preferable to use distilled water of 2 to 10 times the volume of the spent catalyst so that the reaction solution is sufficiently removed.

다음은 반응용액을 제거한 폐촉매를 소성한 후 미세하게 분쇄하며(S40), 소성은 140~160 ℃에서 40~80 분간 소성한 후 300~450 ℃에서 10~150 분간 소성하는 것이 바람직하고 재 소재화된 촉매의 용도에 따라 온도 및 시간을 조절할 수 있다.Next, the waste catalyst from which the reaction solution is removed is calcined and finely pulverized (S40). The calcination is preferably performed at 140 to 160 ° C. for 40 to 80 minutes and then at 300 to 450 ° C. for 10 to 150 minutes. The temperature and time can be controlled depending on the use of the catalyst.

상기와 같은 본 발명에 따른 폐탈질촉매의 재 소재화 방법은 전량 수입중인 삼산화텅스텐, 이산화티탄의 수입과 촉매의 제조원가를 줄일 수 있으며, 폐촉매의 폐기물 처리비용을 절감할 수 있어서 환경문제의 해결에도 도움을 준다.The method of remanufacturing a waste denitration catalyst according to the present invention can reduce the cost of importing tungsten trioxide and titanium dioxide, the cost of manufacturing the catalyst, and the waste treatment cost of the spent catalyst, It also helps.

<실시예 1> 염산을 이용한 폐탈질촉매의 재 소재화 방법Example 1 Method for Reconstruction of Waste Denitration Catalyst Using Hydrochloric Acid

도 3에는 폐탈질촉매 중의 삼산화텅스텐, 이산화티탄 촉매물질 회수를 위하여 폐촉매의 피독물질을 제거하여 재 소재화하는 과정을 보여주는, 본 발명의 일 실시예에 따른 공정도가 도시되어 있다.FIG. 3 is a process diagram according to an embodiment of the present invention showing a process of removing a poisoning substance of a waste catalyst and recovering a material for recovery of tungsten trioxide and titanium dioxide catalyst materials in a waste denitration catalyst.

도 3을 참고하면, 도 2에서 전처리된 폐탈질촉매를 저장 사일로(21)에 저장한 후 저장 사일로(21)의 폐촉매 50 ㎏과 증류수 탱크(23)의 증류수 500ℓ를 1차 세척조(22)에 이송하고 이들을 교반하여 폐촉매를 증류수로 1차 수세한 후 공극 크기 23 ㎛의 1차 필터(24)에서 여과하였으며, 이때 발생한 폐수는 폐수처리조(25)로 이송하여 처리하였다.2, the waste denitration catalyst pretreated in FIG. 2 is stored in a storage silo 21 and 50 kg of the spent catalyst in the storage silo 21 and 500 l of distilled water in the distilled water tank 23 are introduced into the primary washing tank 22, The waste catalysts were firstly washed with distilled water and then filtered through a primary filter 24 having a pore size of 23 탆. The generated wastewater was transferred to a wastewater treatment tank 25 and treated.

상기 1차 여과한 폐촉매는 증류수 탱크(23)의 증류수와 화학용액 저장탱크(27)의 염산을 이송받아 혼합된 1.92 mole 농도의 염산 수용액 500 ℓ와 함께 화학용액 반응조(26)에서 100 ℃의 온도로 1 시간 동안 300 rpm으로 교반하여 반응시켰다.The distilled water from the distilled water tank 23 and the hydrochloric acid in the chemical solution storage tank 27 were transferred to the primary filtration catalyst to obtain a mixed solution of 500 ml of a 1.92 mole hydrochloric acid aqueous solution and 100 ° C And the mixture was stirred at 300 rpm for 1 hour.

상기 반응이 끝난 폐촉매는 공극 크기 23 ㎛의 2차 필터(31)에서 반응용액을 모두 제거한 후 2차 세척조(33)에서 증류수 탱크(23)의 증류수 500 ℓ를 이송받아 2차 수세하였으며, 이때 발생한 폐수는 화학약품 처리조(32)로 이송하여 처리하였다.After the reaction was completed, the reaction solution was removed from the secondary filter 31 having a pore size of 23 μm, and 500 L of the distilled water in the distilled water tank 23 was transferred from the secondary washing tank 33 to the second wash water. The generated wastewater was transferred to the chemical treatment tank 32 for treatment.

상기 2차 수세한 폐촉매를 공극 크기 23 ㎛의 3차 필터(34)에서 다시 여과하고 이때 발생한 폐수는 폐수처리조(35)로 이송하여 처리하였으며, 상기 3차 여과한 폐촉매는 소성로(41)로 이송한 후 소성로(41)에 공기를 공급하면서 150 ℃의 온도로 1 시간 가열한 후 400 ℃의 온도로 2 시간 소성하였다.The waste water that has been washed secondarily was again filtered by a tertiary filter 34 having a pore size of 23 μm and the generated wastewater was transferred to a wastewater treatment tank 35 for treatment. , And then heated at a temperature of 150 DEG C for one hour while supplying air to the firing furnace 41, and then calcined at a temperature of 400 DEG C for two hours.

소성이 끝난 폐촉매를 미분기(pulverizing mill, 42)로 이송하여 45 ㎛ 미만으로 미분하여 재 소재화하였다.The calcined spent catalyst was transferred to a pulverizing mill (42) to be finely divided into less than 45 탆 and made into a material.

<실시예 2> 염산과 과산화수소의 혼합 반응용액을 이용한 폐탈질촉매의 재 소재화 방법<Example 2> Reconstitution of a waste denitration catalyst using mixed reaction solution of hydrochloric acid and hydrogen peroxide

도 2에서 전처리된 저장 사일로(21)의 폐탈질촉매 50 ㎏과 증류수 탱크(23)의 증류수 500ℓ를 1차 세척조(22)에 이송하고 이들을 교반하여 폐촉매를 증류수로 1차 수세한 후 공극 크기 23 ㎛의 1차 필터(24)에서 여과하였다.50 kg of the waste denitration catalyst in the storage silo 21 pretreated in FIG. 2 and 500 L of distilled water in the distilled water tank 23 are transferred to the primary washing tank 22 and stirred. The spent catalyst is firstly rinsed with distilled water, And filtered through a primary filter 24 having a diameter of 23 mu m.

상기 1차 여과한 폐촉매는 증류수 탱크(23)의 증류수와 화학용액 저장탱크(27)의 염산과 과산화수소를 이송받아 1.90 mole 농도의 염산 수용액 250 ℓ와 1.0 mole 농도의 과산화수소수 250 ℓ를 혼합한 반응용액과 함께 화학용액 반응조(26)에서 100 ℃의 온도로 1 시간 동안 300 rpm으로 교반하여 반응시켰다.The distilled water in the distilled water tank 23 and the hydrochloric acid and hydrogen peroxide in the chemical solution storage tank 27 were transferred to the primary filtered catalyst, and 250 L of a hydrochloric acid aqueous solution having a concentration of 1.90 mole and 250 L of a hydrogen peroxide solution having a concentration of 1.0 mole were mixed And reacted with the reaction solution in a chemical solution tank 26 at a temperature of 100 ° C for 1 hour at 300 rpm.

상기 반응이 끝난 폐촉매는 공극 크기 23 ㎛의 2차 필터(31)에서 반응용액을 모두 제거한 후 2차 세척조(33)에서 증류수 탱크(23)의 증류수 500 ℓ를 이송받아 2차 수세하였으며, 2차 수세한 폐촉매를 공극 크기 23 ㎛의 3차 필터(34)에서 여과하였다.After the reaction was completed, the reaction solution was removed from the secondary filter 31 having a pore size of 23 μm, and then 500 L of the distilled water in the distilled water tank 23 was transferred to the second washing tank 33, The waste catalyst washed with water was filtered through a tertiary filter (34) having a pore size of 23 mu m.

상기 3차 여과한 폐촉매를 소성로(41)에서 공기를 공급하면서 150 ℃의 온도로 1 시간 가열한 후 400 ℃의 온도로 2 시간 소성하였으며, 소성이 끝난 폐촉매를 미분기(42)에서 45 ㎛ 미만으로 미분하여 재 소재화하였다.The third filtered catalyst was heated at a temperature of 150 ° C. for one hour while being supplied with air from a calcining furnace 41 and then calcined at a temperature of 400 ° C. for two hours. The calcined spent catalyst was passed through a differentiator (42) By weight.

<실시예 3> 황산을 이용한 폐탈질촉매의 재 소재화 방법<Example 3> Reconstitution of waste denitration catalyst using sulfuric acid

도 2에서 전처리된 폐탈질촉매를 저장 사일로(21)에 저장한 후 저장 사일로(21)의 폐촉매 60 ㎏과 증류수 탱크(23)의 증류수 600ℓ를 1차 세척조(22)에 이송하고 이들을 교반하여 폐촉매를 증류수로 1차 수세한 후 공극 크기 23 ㎛의 1차 필터(24)에서 여과하였으며, 이때 발생한 폐수는 폐수처리조(25)로 이송하여 처리하였다.The waste denitration catalyst pretreated in FIG. 2 is stored in the storage silo 21 and then 60 kg of the spent catalyst in the storage silo 21 and 600 L of distilled water in the distilled water tank 23 are transferred to the primary washing tank 22, The waste catalyst was firstly washed with distilled water and then filtered through a first filter 24 having a pore size of 23 μm. The generated wastewater was transferred to a wastewater treatment tank 25 for treatment.

상기 1차 여과한 폐촉매는 증류수 탱크(23)의 증류수와 화학용액 저장탱크(27)의 황산을 이송받아 혼합된 2.0 mole 농도의 황산 수용액 600 ℓ와 함께 화학용액 반응조(26)에서 100 ℃의 온도로 1 시간 동안 350 rpm으로 교반하여 반응시켰다.The distilled water from the distilled water tank 23 and the sulfuric acid in the chemical solution storage tank 27 were transferred to the primary filtration catalyst and mixed with 600 liters of a 2.0 mole aqueous sulfuric acid solution mixed together. And the mixture was stirred at 350 rpm for 1 hour.

상기 반응이 끝난 폐촉매는 공극 크기 23 ㎛의 2차 필터(31)에서 반응용액을 모두 제거한 후 2차 세척조(33)에서 증류수 탱크(23)의 증류수 600 ℓ를 이송받아 2차 수세하였으며, 이때 발생한 폐수는 화학약품 처리조(32)로 이송하여 처리하였다.After the reaction was completed, the reaction solution was removed from the secondary filter 31 having a pore size of 23 μm, and 600 L of the distilled water in the distilled water tank 23 was transferred to the secondary washing tank 33 to be secondly washed with water. The generated wastewater was transferred to the chemical treatment tank 32 for treatment.

상기 2차 수세한 폐촉매를 공극 크기 23 ㎛의 3차 필터(34)에서 다시 여과하고 이때 발생한 폐수는 폐수처리조(35)로 이송하여 처리하였으며, 상기 3차 여과한 폐촉매는 소성로(41)로 이송한 후 소성로(41)에 공기를 공급하면서 150 ℃의 온도로 1 시간 가열한 후 400 ℃의 온도로 2 시간 소성하였다.The waste water that has been washed secondarily was again filtered by a tertiary filter 34 having a pore size of 23 μm and the generated wastewater was transferred to a wastewater treatment tank 35 for treatment. , And then heated at a temperature of 150 DEG C for one hour while supplying air to the firing furnace 41, and then calcined at a temperature of 400 DEG C for two hours.

소성이 끝난 폐촉매를 미분기(pulverizing mill, 42)로 이송하여 45 ㎛ 미만으로 미분하여 재 소재화하였다.The calcined spent catalyst was transferred to a pulverizing mill (42) to be finely divided into less than 45 탆 and made into a material.

<실시예 4> 황산과 과산화수소의 혼합 반응용액을 이용한 폐탈질촉매의 재 소재화 방법<Example 4> Reconstitution of a waste denitration catalyst using mixed reaction solution of sulfuric acid and hydrogen peroxide

도 2에서 전처리된 저장 사일로(21)의 폐탈질촉매 60 ㎏과 증류수 탱크(23)의 증류수 600ℓ를 1차 세척조(22)에 이송하고 이들을 교반하여 폐촉매를 증류수로 1차 수세한 후 공극 크기 23 ㎛의 1차 필터(24)에서 여과하였다.60 kg of the waste denitration catalyst of the storage silo 21 pretreated in FIG. 2 and 600 L of distilled water of the distilled water tank 23 are transferred to the primary washing tank 22, and the waste catalyst is firstly rinsed with distilled water, And filtered through a primary filter 24 having a diameter of 23 mu m.

상기 1차 여과한 폐촉매는 증류수 탱크(23)의 증류수와 화학용액 저장탱크(27)의 황산과 과산화수소를 이송받아 2.0 mole 농도의 황산 수용액 300 ℓ와 1.0 mole 농도의 과산화수소수 300 ℓ를 혼합한 반응용액과 함께 화학용액 반응조(26)에서 100 ℃의 온도로 1 시간 동안 350 rpm으로 교반하여 반응시켰다.The distilled water of the distilled water tank 23 and the sulfuric acid and the hydrogen peroxide of the chemical solution storage tank 27 were transferred to the primary filtered catalyst, and 300 L of a 2.0 M concentration sulfuric acid aqueous solution and 300 L of a 1.0 M concentration hydrogen peroxide solution were mixed And the mixture was reacted with the reaction solution in a chemical solution tank 26 at a temperature of 100 ° C for one hour at 350 rpm.

상기 반응이 끝난 폐촉매는 공극 크기 23 ㎛의 2차 필터(31)에서 반응용액을 모두 제거한 후 2차 세척조(33)에서 증류수 탱크(23)의 증류수 600 ℓ를 이송받아 2차 수세하였으며, 2차 수세한 폐촉매를 공극 크기 23 ㎛의 3차 필터(34)에서 여과하였다.After the reaction was completed, the reaction solution was completely removed from the secondary filter 31 having a pore size of 23 μm, and then 600 L of the distilled water in the distilled water tank 23 was transferred to the secondary washing tank 33, The waste catalyst washed with water was filtered through a tertiary filter (34) having a pore size of 23 mu m.

상기 3차 여과한 폐촉매를 소성로(41)에서 공기를 공급하면서 150 ℃의 온도로 1 시간 가열한 후 400 ℃의 온도로 2 시간 소성하였으며, 소성이 끝난 폐촉매를 미분기(42)에서 45 ㎛ 미만으로 미분하여 재 소재화하였다.The third filtered catalyst was heated at a temperature of 150 ° C. for one hour while being supplied with air from a calcining furnace 41 and then calcined at a temperature of 400 ° C. for two hours. The calcined spent catalyst was passed through a differentiator (42) By weight.

<시험예> 피독물질 제거율 및 탈질효율 분석&Lt; Test Example > Analysis of poisoning substance removal efficiency and denitrification efficiency

도 3의 피독물질 제거공정 투입 전·후의 폐탈질촉매 성분을 분석하여 하기 표 1에 나타내었고 분석결과를 바탕으로 피독물질 제거율을 계산하여 하기 표 2에 나타내었다.3 shows the results of analyzing the components of the waste denitration catalyst before and after the poisoning material removal process. The results are shown in Table 1 below.

성분분석은 XRF(X-Ray Flourescence Spectrometry, ZSX Primus Ⅱ, Rigaku사, 일본)를 사용하였다.XRF (X-Ray Flourescence Spectrometry, ZSX Primus II, Rigaku, Japan) was used for the analysis of the components.

피독물질 제거 전·후의 XRF 분석결과(중량%)XRF analysis results (% by weight) before and after the poisoning material removal 성분ingredient 폐탈질촉매(피독물질 제거 전)Waste Denitration Catalyst (Before Removing Poisonous Substance) 재 소재화 탈질촉매(피독물질 제거 후)Reformatization denitration catalyst (after removal of poisonous substance) 염산Hydrochloric acid 염산+과산화수소Hydrochloric acid + hydrogen peroxide 황산Sulfuric acid 황산+과산화수소Sulfuric acid + hydrogen peroxide Na2ONa 2 O 0.13680.1368 0.04700.0470  00 0.03820.0382 00 MgOMgO 0.20730.2073 0.14700.1470 0.10430.1043 0.11750.1175 0.09450.0945 Al2O3 Al 2 O 3 1.96361.9636 1.78521.7852 1.61321.6132 1.69331.6933 1.51201.5120 SiO2 SiO 2 6.22746.2274 6.64086.6408 6.14926.1492 5.94175.9417 5.76025.7602 P2O5 P 2 O 5 1.84951.8495 1.90711.9071 1.39721.3972 1.93591.9359 1.55501.5550 SO3 SO 3 2.66752.6675 0.86000.8600 0.73020.7302 0.84000.8400 0.79900.7990 K2OK 2 O 0.04650.0465 0.01910.0191 0.02040.0204 0.01330.0133 0.01130.0113 CaOCaO 1.73831.7383 1.20001.2000 1.10001.1000 1.01881.0188 0.85100.8510 TiO2 TiO 2 78.533778.5337 82.070082.0700 83.722583.7225 82.492182.4921 83.300483.3004 V2O5 V 2 O 5 1.46581.4658  00 00 0.67220.6722 0.79860.7986 Fe2O3 Fe 2 O 3 0.19780.1978 0.17670.1767 0.17280.1728 0.19930.1993 0.20120.2012 NiONiO 0.03980.0398 00  00 00 00 SrOSrO 0.02050.0205 0.02060.0206 0.02250.0225 0.01840.0184 0.01310.0131 ZnOZnO 0.01550.0155 00 00 00 00 Nb2O5 Nb 2 O 5 0.10250.1025 0.10520.1052 0.10020.1002 0.09700.0970 0.10050.1005 MoO3 MoO 3 0.20480.2048 0.35190.3519 0.18420.1842 0.20070.2007 0.19610.1961 WO3 WO 3 4.58274.5827 4.66944.6694 4.68334.6833 4.72164.7216 4.80714.8071 system 100100 100100 100100 100100 100100

피독물질 제거율(%)Poisonous substance removal rate (%) 성분ingredient 염산Hydrochloric acid 염산+과산화수소Hydrochloric acid + hydrogen peroxide 황산Sulfuric acid 황산+과산화수소Sulfuric acid + hydrogen peroxide Na2O (%)Na 2 O (%) 65.665.6 100.0100.0 72.072.0 100.0100.0 K2O (%)K 2 O (%) 58.958.9 56.156.1 71.371.3 75.675.6 CaO (%)CaO (%) 30.930.9 36.736.7 41.341.3 51.051.0 SO3 (%)SO 3 (%) 67.767.7 72.672.6 68.568.5 70.070.0

상기 표 1 및 표 2를 보면, 염산보다는 황산의 피독물질 제거율이 약간 높고 염산이나 황산을 단독으로 사용하는 것보다 과산화수소를 같이 사용하는 것이 좀 더 효율적이며, 오산화바나듐은 염산으로 처리할 경우 재 소재화 탈질촉매에서 모두 제거되므로 염산보다 황산을 과산화수소를 같이 사용하는 것이 피독물질 제거에 가장 유리함을 알 수 있다.Table 1 and Table 2 show that the removal rate of sulfuric acid poison is slightly higher than that of hydrochloric acid, and it is more efficient to use hydrogen peroxide together than hydrochloric acid or sulfuric acid alone. Vanadium pentoxide, when treated with hydrochloric acid, It can be seen that the use of sulfuric acid and hydrogen peroxide more than hydrochloric acid is most advantageous for removing poisonous substances since all of them are removed from the flue gas denitration catalyst.

또한, 상기 피독물질을 제거한 재 소재화 탈질촉매를 질소가 충전된 고정층 반응기에 장착하고 유량 600 cc, 공간속도(space velocity) 60000h-1, O2 함량 3 vol.%, NO 함량 800 ppm, NH3/NO mole ratio 1.0, 반응온도 350 ℃의 조건에서 탈질효율을 측정하였으며, 상기 실시예 1~4 모두에서 평균 80 % 이상의 탈질효율을 나타내었다.The reformate denitration catalyst from which the poisoning substance was removed was placed in a fixed-bed reactor filled with nitrogen, and a flow rate of 600 cc, a space velocity of 60000 h -1 , an O 2 content of 3 vol.%, An NO content of 800 ppm, NH 3 / NO mole ratio of 1.0, and a reaction temperature of 350 ° C. The denitration efficiency was 80% or more on average in all of Examples 1 to 4 above.

상기의 시험결과로부터, 본 발명의 방법으로 재 소재화된 탈질촉매는 폐촉매를 경제적으로 재활용하여 일정 수준 이상의 탈질효과를 발휘할 수 있어서 폐탈질촉매의 효율적인 재 소재화가 가능함을 알 수 있다.From the test results, it can be seen that the denitration catalyst that has been reformed by the method of the present invention economically recycles the waste catalyst and can exert a denitrification effect to a certain level or more, thereby enabling the waste denitration catalyst to be efficiently restored.

11:폐탈질촉매 모듈, 12:모듈에서 분리된 케니스터, 13:케니스터에서 분리된 플레이트 촉매, 14:모듈에서 분리된 하니컴 촉매, 15:공기압축기, 16:금속성 이물질이 포함된 분쇄 폐촉매, 17:금속성 이물질이 제거된 전처리 폐촉매, 18:(전)자석, 19:금속성 이물질, 21:폐촉매 저장 사일로, 22:1차 세척조, 23:증류수 탱크, 24:1차 필터, 25: 폐수처리조, 26:화학용액 반응조, 27:화학용액 저장탱크, 31:2차 필터, 32:화학약품 처리조, 33:2차 세척조, 34:3차 필터, 35:폐수처리조, 41:소성로, 42:미분기11: a waste denitration catalyst module, 12: a canister separated from the module, 13: a plate catalyst separated from the canister, 14: a honeycomb catalyst separated from the module, 15: an air compressor, 16: A pretreatment waste catalyst from which metallic foreign substances have been removed, 18: a magnet, 19: a metallic foreign matter, 21: a spent catalyst storage silo, 22: a primary washing tank, 23: a distilled water tank, 24: A chemical solution tank, a chemical solution tank, a chemical tank, a chemical tank, a chemical tank, a chemical tank, a chemical tank, Calcination furnace, 42: differentiator

Claims (9)

폐탈질촉매 모듈로부터 폐촉매 성분을 수거하는 단계;
상기 폐촉매 성분을 분쇄하고 자석을 이용하여 금속성 이물질을 제거하는 전처리 단계;
상기 전처리한 폐촉매를 무기산과 반응시켜 폐촉매 내의 피독물질을 제거하는 단계;
상기 피독물질이 제거된 폐촉매를 여과하여 수세하는 단계;
상기 수세한 폐촉매를 소성하는 단계; 및
상기 소성한 폐촉매를 미분하는 단계;를 포함하는 무기산을 이용한 폐탈질촉매의 재 소재화 방법.
Collecting spent catalyst components from the waste denitration catalyst module;
A pretreatment step of pulverizing the waste catalyst component and removing a metallic foreign substance using a magnet;
Reacting the pretreated spent catalyst with an inorganic acid to remove poisonous materials in the spent catalyst;
Filtering the waste catalyst from which the poisoning material has been removed to wash it;
Firing the washed spent catalyst; And
And finely pulverizing the calcined waste catalyst. The method of claim 1,
청구항 1에 있어서,
상기 전처리 단계는 수거한 폐촉매 성분을 입자크기 100~2000 ㎛로 분쇄한 후 7000~12000 Gauss 세기의 자석으로 폐촉매 성분 중의 금속성 이물질을 제거하는 것을 특징으로 하는 무기산을 이용한 폐탈질촉매의 재 소재화 방법.
The method according to claim 1,
Wherein the pre-treating step is a step of pulverizing the collected catalyst component to a particle size of 100 to 2,000 mu m and then removing a metallic foreign substance in the waste catalyst component with a magnet having a strength of 7000 to 12000 Gauss strength. How to do it.
청구항 1에 있어서,
상기 피독물질의 제거는 폐촉매와 무기산을 상온~120 ℃의 온도에서 300~500 rpm으로 교반하면서 30~120 분간 반응시키는 과정으로 이루어지는 것을 특징으로 하는 무기산을 이용한 폐탈질촉매의 재 소재화 방법.
The method according to claim 1,
Wherein the poisoning material is removed by reacting the waste catalyst and the inorganic acid at a temperature of 120 ° C to 300-500 rpm while stirring for 30-120 minutes.
청구항 1에 있어서,
상기 무기산은 0.1~2.0 M 농도의 황산 수용액, 0.1~2.0 M 농도의 염산 수용액, 0.1~1.0 M 농도의 과산화수소수 또는 이들의 혼합용액인 것을 특징으로 하는 무기산을 이용한 폐탈질촉매의 재 소재화 방법.
The method according to claim 1,
Wherein the inorganic acid is a sulfuric acid aqueous solution having a concentration of 0.1 to 2.0 M, an aqueous hydrochloric acid solution having a concentration of 0.1 to 2.0 M, a hydrogen peroxide aqueous solution having a concentration of 0.1 to 1.0 M, or a mixed solution thereof. .
청구항 1에 있어서,
상기 피독물질을 제거하는 단계는 무기산에 유기산을 첨가하여 전처리한 폐촉매와 반응시키는 것을 특징으로 하는 무기산을 이용한 폐탈질촉매의 재 소재화 방법.
The method according to claim 1,
Wherein the step of removing the poisoning material comprises reacting an inorganic acid with an organic acid to react with a pretreated waste catalyst.
청구항 1에 있어서,
상기 피독물질을 제거하는 단계는 전처리한 폐촉매를 무기산과 반응시킨 후 유기산 반응용액 또는 무기산-유기산의 혼합 반응용액으로 추가 반응시키는 것을 특징으로 하는 무기산을 이용한 폐탈질촉매의 재 소재화 방법.
The method according to claim 1,
Wherein the step of removing the poisoning material comprises reacting the pretreated waste catalyst with an inorganic acid, and further reacting the waste catalyst with an organic acid reaction solution or a mixed reaction solution of an inorganic acid-organic acid.
청구항 5 또는 청구항 6에 있어서,
상기 유기산은 0.1~1.5 M의 구연산 수용액 또는 0.1~1.0 M의 EDTA 수용액인 것을 특징으로 하는 무기산을 이용한 폐탈질촉매의 재 소재화 방법.
The method according to claim 5 or 6,
Wherein the organic acid is 0.1 to 1.5 M citric acid aqueous solution or 0.1 to 1.0 M aqueous EDTA solution.
청구항 7에 있어서,
상기 유기산 반응용액 또는 무기산-유기산의 혼합 반응용액은 구연산과 EDTA, 과산화수소와 구연산, 또는 과산화수소와 EDTA가 4~6:4~6의 부피비로 혼합된 것을 특징으로 하는 무기산을 이용한 폐탈질촉매의 재 소재화 방법.
The method of claim 7,
Wherein the mixed reaction solution of the organic acid reaction solution or the inorganic acid-organic acid is mixed with citric acid, EDTA, hydrogen peroxide and citric acid, or hydrogen peroxide and EDTA in a volume ratio of 4-6: 4-6. Materialization method.
청구항 1에 있어서,
상기 소성하는 단계는 수세한 폐촉매를 140~160 ℃에서 40~80 분간 가열한 후 300~450 ℃에서 10~150 분간 소성하는 것을 특징으로 하는 무기산을 이용한 폐탈질촉매의 재 소재화 방법.
The method according to claim 1,
Wherein the calcining step comprises heating the washed spent catalyst at 140 to 160 DEG C for 40 to 80 minutes and then calcining at 300 to 450 DEG C for 10 to 150 minutes.
KR1020160179959A 2016-12-27 2016-12-27 Method for Rematerializing Waste De-NOx Catalyst Using Inorganic Acid KR101896094B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160179959A KR101896094B1 (en) 2016-12-27 2016-12-27 Method for Rematerializing Waste De-NOx Catalyst Using Inorganic Acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160179959A KR101896094B1 (en) 2016-12-27 2016-12-27 Method for Rematerializing Waste De-NOx Catalyst Using Inorganic Acid

Publications (2)

Publication Number Publication Date
KR20180076390A true KR20180076390A (en) 2018-07-06
KR101896094B1 KR101896094B1 (en) 2018-09-07

Family

ID=62920862

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160179959A KR101896094B1 (en) 2016-12-27 2016-12-27 Method for Rematerializing Waste De-NOx Catalyst Using Inorganic Acid

Country Status (1)

Country Link
KR (1) KR101896094B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210124477A (en) * 2019-03-28 2021-10-14 미츠비시 파워 가부시키가이샤 Regeneration method of denitration catalyst and regeneration system of denitration catalyst
CN115475516A (en) * 2021-06-16 2022-12-16 国家能源投资集团有限责任公司 Recovery method of waste plate type catalyst

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102549157B1 (en) 2021-07-09 2023-06-29 주식회사 케이에스자원개발 Pulmonary desorption catalyst treatment unit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10337482A (en) * 1997-06-09 1998-12-22 Ishikawajima Harima Heavy Ind Co Ltd Method and device for regenerating activity of denitrification catalyst
KR20050079626A (en) * 2002-06-21 2005-08-10 쥬코쿠 덴료쿠 가부시키 가이샤 Method of regenerating nox removal catalyst
KR20120107550A (en) * 2011-03-22 2012-10-04 주식회사 나노 Method of recycling waste denitrification catalyst
KR20140080933A (en) * 2012-12-21 2014-07-01 한국남부발전 주식회사 Magnetic sorter having crushing function

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10337482A (en) * 1997-06-09 1998-12-22 Ishikawajima Harima Heavy Ind Co Ltd Method and device for regenerating activity of denitrification catalyst
KR20050079626A (en) * 2002-06-21 2005-08-10 쥬코쿠 덴료쿠 가부시키 가이샤 Method of regenerating nox removal catalyst
KR20120107550A (en) * 2011-03-22 2012-10-04 주식회사 나노 Method of recycling waste denitrification catalyst
KR20140080933A (en) * 2012-12-21 2014-07-01 한국남부발전 주식회사 Magnetic sorter having crushing function

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210124477A (en) * 2019-03-28 2021-10-14 미츠비시 파워 가부시키가이샤 Regeneration method of denitration catalyst and regeneration system of denitration catalyst
CN115475516A (en) * 2021-06-16 2022-12-16 国家能源投资集团有限责任公司 Recovery method of waste plate type catalyst
CN115475516B (en) * 2021-06-16 2023-11-28 国家能源投资集团有限责任公司 Recovery method of waste plate type catalyst

Also Published As

Publication number Publication date
KR101896094B1 (en) 2018-09-07

Similar Documents

Publication Publication Date Title
KR101885917B1 (en) Method for Rematerializing Waste De-NOx Catalyst Using Organic Acid
CN104862485B (en) A kind of vanadium of useless vanadium tungsten system SCR catalyst, tungsten separation and method of purification
EP0834584B1 (en) Recovery of tantalum and/or niobium from metalfluoride containing materials and ore residues with use of sulfuric acid roasting
CN104384167B (en) A kind of comprehensive reutilization method of discarded titanium-based vanadium system SCR catalyst
KR101896094B1 (en) Method for Rematerializing Waste De-NOx Catalyst Using Inorganic Acid
CN101921916A (en) Method for recycling metal oxide from waste flue gas denitration catalyst
CN104630482B (en) A kind of alkali leaching ion-exchange process of waste denitration catalyst comprehensive utilization
US9181605B2 (en) Treatment method of spent uranium catalyst
CN106048230B (en) The separation of tungsten and vanadium, recovery method in a kind of useless SCR denitration
CN110124490B (en) Method and device for treating multi-pollutant flue gas and recycling wastewater by using activated carbon
Su et al. Optimizing vanadium and tungsten leaching with lowered silicon from spent SCR catalyst by pre-mixing treatment
CN104178636B (en) A kind of activation burning reclaims Ti in SCR spent catalyst, V, Mo, the method for Si in conjunction with acidic leaching
CN107185554A (en) A kind of method that useless SCR denitration cleaning is recycled
CN106756054A (en) It is a kind of that titanium, tungsten, the method for vanadium are separated and recovered from discarded SCR denitration
CN115445604A (en) Resource recycling method of waste denitration catalyst
CN104084221B (en) In a kind of biological adsorption solution, heavy metal ion prepares the method for catalysis material
CN106947864A (en) A kind of system and its processing method that heavy metal is reclaimed from discarded SCR catalyst
CN113716669B (en) Method for degrading sulfur-containing organic wastewater by using ferrous sulfide mechanically
US20190309392A1 (en) Process for the preparation of a concentrate of metals, rare metals and rare earth metals from residues of alumina production by bayer process or from materials with a chemical composition similar to said residues, and refinement of the concentrate so obtained
CN109433217B (en) Red mud denitration catalyst and preparation method thereof
CN109226222B (en) Application of surfactant, leacheate for uranium-polluted soil and remediation method
CN102816933A (en) Treatment process method of chrome slag
CN106756053A (en) It is a kind of that titanium, the method for tungsten are separated and recovered from discarded SCR denitration
CN112823938A (en) Recycling method of denitration catalyst
CN106350679B (en) A method of recycling valuable metal titanium vanadium tungsten from useless SCR denitration

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right