KR101885917B1 - Method for Rematerializing Waste De-NOx Catalyst Using Organic Acid - Google Patents

Method for Rematerializing Waste De-NOx Catalyst Using Organic Acid Download PDF

Info

Publication number
KR101885917B1
KR101885917B1 KR1020160179958A KR20160179958A KR101885917B1 KR 101885917 B1 KR101885917 B1 KR 101885917B1 KR 1020160179958 A KR1020160179958 A KR 1020160179958A KR 20160179958 A KR20160179958 A KR 20160179958A KR 101885917 B1 KR101885917 B1 KR 101885917B1
Authority
KR
South Korea
Prior art keywords
catalyst
waste
spent catalyst
spent
delete delete
Prior art date
Application number
KR1020160179958A
Other languages
Korean (ko)
Other versions
KR20180076389A (en
Inventor
노세윤
김남하
서병한
이효상
Original Assignee
대영씨엔이(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대영씨엔이(주) filed Critical 대영씨엔이(주)
Priority to KR1020160179958A priority Critical patent/KR101885917B1/en
Publication of KR20180076389A publication Critical patent/KR20180076389A/en
Application granted granted Critical
Publication of KR101885917B1 publication Critical patent/KR101885917B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/48Liquid treating or treating in liquid phase, e.g. dissolved or suspended
    • B01J38/60Liquid treating or treating in liquid phase, e.g. dissolved or suspended using acids
    • B01J38/62Liquid treating or treating in liquid phase, e.g. dissolved or suspended using acids organic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/02Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/48Liquid treating or treating in liquid phase, e.g. dissolved or suspended
    • B01J38/60Liquid treating or treating in liquid phase, e.g. dissolved or suspended using acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

본 발명은 발전소 등에서 사용된 후 폐기되는 폐탈질촉매의 피독물질을 유기산을 이용하여 제거함으로써 폐촉매의 재사용을 가능하게 하는 폐탈질촉매의 재 소재화 방법에 관한 것이다.
본 발명에 따른 폐탈질촉매의 재 소재화 방법은 폐촉매 중의 피독물질을 제거하는 방식이므로 폐촉매에 함유된 유효 촉매성분의 유실량이 최소화되고 특히 탈질촉매의 대부분을 차지하는 이산화티탄과 삼산화텅스텐을 대부분 회수하여 재 소재화할 수 있어서 촉매의 제조원가를 절감할 수 있으며, 또한 폐촉매에서 회수에 비용이 많이 드는 텅스텐, 바나듐을 분리추출하는 대신에 촉매활성을 저해하는 나트륨, 칼륨, 칼슘, 삼산화황 등의 피독물질을 제거하여 이산화티탄과 삼산화텅스텐을 회수하는 방식이므로 재 소재화 과정에 소요되는 비용이 적고 회수한 이산화티탄과 삼산화텅스텐은 별도의 가공과정을 거치지 않아도 촉매원료로 재사용이 가능하므로 재 소재화 제조공정을 줄일 수 있으며, 탈질촉매의 기본성분인 오산화바나듐이 제거되지 않으므로 오산화바나듐의 도핑 양을 줄일 수 있는 장점이 있다.
The present invention relates to a method for remanufacturing a waste denitration catalyst, which enables the reuse of waste catalyst by removing organic pollutants in a waste denitration catalyst to be discarded after being used in a power plant or the like.
Since the method of remanufacturing the waste denitration catalyst according to the present invention is a method of removing poisonous substances in the spent catalyst, the amount of effective catalyst components contained in the spent catalyst is minimized, and especially titanium dioxide and tungsten trioxide, which occupy most of the denitration catalyst, It is possible to reduce the cost of production of the catalyst by recovering and recycling the catalyst. Further, instead of separating and extracting tungsten and vanadium, which are expensive to recover from spent catalyst, poisoning of sodium, potassium, calcium, Since titanium dioxide and tungsten trioxide are recovered by removing the material, the cost required for the materialization process is small, and the recovered titanium dioxide and tungsten trioxide can be reused as a catalyst raw material without a separate processing step. The process can be reduced and vanadium pentoxide, which is a basic component of the denitration catalyst, can not be removed Since it is advantageous to reduce the amount of doped vanadium pentoxide.

Figure R1020160179958
Figure R1020160179958

Description

유기산을 사용한 폐탈질촉매의 재 소재화 방법{Method for Rematerializing Waste De-NOx Catalyst Using Organic Acid}BACKGROUND OF THE INVENTION 1. Field of the Invention [0001] The present invention relates to a method for remineralizing a waste denitration catalyst using an organic acid,

본 발명은 발전소 등에서 사용된 후 폐기되는 폐탈질촉매의 피독물질을 유기산을 이용하여 제거함으로써 폐촉매의 재사용을 가능하게 하는 폐탈질촉매의 재 소재화 방법에 관한 것이다.The present invention relates to a method for remanufacturing a waste denitration catalyst, which enables the reuse of waste catalyst by removing organic pollutants in a waste denitration catalyst to be discarded after being used in a power plant or the like.

급속한 경제발전과 함께 산업화는 막대한 양의 에너지를 필요로 하는데, 이에 따라 화석연료의 사용량이 증가하면서 다량의 환경오염원의 배출이 무분별하게 이루어져 왔으며, 이 결과 심각한 환경파괴를 가져와 근래에 이르러 자연환경에 대한 중요성을 재인식하는 계기가 되고 있다.With rapid economic development, industrialization requires enormous amount of energy. As a result, the amount of fossil fuels has increased and the emission of a large amount of environmental pollutants has been made indiscreetly. As a result, serious environmental destruction has been caused, and in recent years, It is an opportunity to re-recognize the importance of

환경오염원 중 대기오염 문제가 점점 심각해지고 있고 대기오염에서 질소산화물에 의한 위해성이 중요하게 대두함에 따라 질소산화물의 배출규제가 강화되어 국내 발전설비에는 대부분 배연탈질설비(deNOx system)가 설치, 운전 중에 있다.As the problem of air pollution among environmental pollution sources becomes more serious and the risk of nitrogen oxides in air pollution becomes important, regulation of emission of nitrogen oxides is strengthened. Most of domestic power generation facilities are equipped with deNOx system have.

국내의 탈질촉매 시장규모는 2011년 40000 ㎥에서 점점 증가되어 2015년에는 45000 ㎥에 육박하고 있으며, 촉매비용 또한 연간 1500 억원에 이르고 점차 증가하는 추세이다.The domestic market for NOx catalysts is gradually increasing from 40,000 ㎥ in 2011 to 45,000 ㎥ in 2015, and the cost of catalysts is gradually increasing from 150 billion won annually.

탈질촉매는 배기가스 중에 함유된 분진, 황, 알칼리 금속, 비소, 인 화합물 등 업종에 따라 다양한 경로로 오염되고 이에 의해 촉매활성이 점차 저하되며, 일반적으로 배연탈질설비에 사용되는 촉매의 교체주기는 3~5 년 정도로서 주기별로 교체되고 있다.The denitration catalyst is contaminated by various routes such as dust, sulfur, alkali metal, arsenic, and phosphorus compounds contained in the exhaust gas and thereby the catalytic activity is gradually lowered. In general, the replacement cycle of the catalyst used in the exhaust- It has been replaced every three to five years.

활성저하로 교체되는 폐촉매는 폐기물로 분리되어 지정된 장소에서 폐기되나 폐촉매에는 유가금속 및 여러 종류의 유용금속들이 포함되어 있어서 재활용가치가 높으며, 폐촉매의 재 소재화는 자원절약 효과 및 제조단가 절감으로 인한 경쟁력증가, 국외 기업과의 경쟁력 상승효과를 얻을 수 있어서 폐촉매의 재 소재화 기술확보가 필요하다.The waste catalyst, which is replaced with depletion, is separated into waste and disposed of at the designated site. However, the recycled value of the waste catalyst is high because the waste catalyst contains valuable metals and various kinds of valuable metals. It is necessary to acquire the technology of recycling the spent catalyst because it can increase the competitiveness due to the reduction and increase the competitiveness with foreign companies.

탈질촉매의 성분구성은 제조회사와 용도에 따라 차이가 있으나 대부분 초기원료 성분은 이산화티탄 80~90 %, 삼산화텅스텐 5~10 %, 오산화바나듐 1~2 % 정도로 이루어지며, 이를 재활용하는 종래기술로는 탈질 폐촉매성분(이산화티탄, 삼산화텅스텐, 오산화바나듐 등) 중 희귀금속으로 분류된 텅스텐, 바나듐 금속을 알칼리 습식 침출법으로 개별 추출하는 유가금속 회수기술이 알려져 있다.The composition of the denitration catalyst varies depending on the manufacturer and the application, but most of the initial raw materials are composed of 80 to 90% of titanium dioxide, 5 to 10% of tungsten trioxide, and 1 to 2% of vanadium pentoxide. There is known a valuable metal recovering technique in which tungsten and vanadium metal classified as rare metals in the denitrification catalyst components (titanium dioxide, tungsten trioxide, vanadium pentoxide, etc.) are individually extracted by an alkaline wet leaching method.

상기 알칼리 습식 침출법은 부가가치가 높은 텅스텐과 바나듐을 추출하여 재사용하는 기술인데, 이러한 유가금속 회수기술은 텅스텐과 바나듐의 회수율이 낮고 추출과정 또한 매우 까다로우며, 촉매성분 대부분을 차지하는 이산화티탄을 회수하지 못하여 촉매 재 소재화 분야에 적용할 경우 많은 비용이 소요되어 자원 재활용의 효율성을 만족시키지 못하고 있다.The alkaline wet leaching method is a technique of extracting and reusing high value added tungsten and vanadium. Such a valuable metal recovery technology has a low recovery rate of tungsten and vanadium and a very difficult extraction process, and recovery of titanium dioxide Therefore, it is costly to apply to the field of catalyst materialization, and thus the efficiency of resource recycling is not satisfied.

이러한 문제를 해결하기 위하여, 한국등록특허공보 제1360292호에는 호열성 균주를 이용하여 폐촉매로부터 유가금속을 회수하는 방법이 제시되어 있으며, 석유 정제 공정에서 발생하는 폐촉매의 기름성분을 먼저 제거한 후 비철계 9K 배지에서 철 및 황을 산화시키는 호열성 균주를 폐촉매에 접종하여 유가금속을 생물학적으로 침출시켜 회수한다.In order to solve such a problem, Korean Patent Registration No. 1360292 discloses a method for recovering valuable metals from a spent catalyst by using a thermophilic strain, wherein the oil component of the waste catalyst generated in the petroleum refining step is removed first Fermenting a fermenting strain which oxidizes iron and sulfur in a non-ferrous 9K medium and inoculating the spent catalyst to recover biologically leached ferrous metal.

상기 발명은 생물학적 방법을 이용함으로써 경제성을 확보하고 니켈(Ni) 및 바나듐(V)의 침출률을 단시간 내에 높일 수 있으며 철(Fe), 몰리브데늄(Mo) 및 알루미늄(Al) 또한 회수할 수 있는 장점이 있으나, 촉매 중에 가장 많이 함유된 성분인 티탄(Ti), 텅스텐(W) 성분 등은 회수가 어려워 폐촉매의 재활용 측면에서 효율적이지 못하다.The present invention can be economically achieved by using a biological method and can raise the leaching rate of nickel (Ni) and vanadium (V) in a short time, and can recover iron (Fe), molybdenum (Mo) and aluminum However, titanium (Ti) and tungsten (W), which are the most abundant components in the catalyst, are difficult to be recovered and thus are not effective in terms of recycling the spent catalyst.

또한, 한국등록특허공보 제1543243호에는 탈황 폐촉매로부터 유가금속인 몰리브덴과 바나듐을 분리 및 회수하는 방법이 제시되어 있으며, 몰리브덴과 바나듐을 포함하는 수첨 탈황 폐촉매에 유기산(옥살산)을 첨가하여 재제조용액을 제조하고 여기에 추출제(아민, 2-하이드록시-5-노닐아세토페논 옥심, 트리-부틸 포스페이트)와 희석제(케로신)를 첨가하여 몰리브덴을 회수하며, 상기 몰리브덴을 회수한 추출여액으로부터 바나듐을 추출하고 탈거제(탄산나트륨 또는 황산)로 탈거하여 바나듐을 회수한다.In addition, Korean Patent Publication No. 1543243 discloses a method for separating and recovering molybdenum and vanadium, which are valuable metals, from a desulfurization spent catalyst, and an organic acid (oxalic acid) is added to a hydrodesulfurized waste catalyst containing molybdenum and vanadium (Amine, 2-hydroxy-5-nonylacetophenone oxime, tri-butyl phosphate) and a diluent (kerosene) are added to recover the molybdenum, and the molybdenum is recovered from the extraction filtrate , And the vanadium is recovered by stripping with a stripping agent (sodium carbonate or sulfuric acid).

상기 발명은 수첨 탈황 폐촉매의 재제조용액으로부터 몰리브덴 및 바나듐을 높은 비율로 분리 및 회수할 수 있고, 추가공정을 통해 회수된 바나듐을 선택적 촉매환원 반응용 촉매 제조에 사용되는 함침용액으로 이용할 수 있으나, 폐촉매에 함유된 촉매 성분 중 유기산에 침출되지 않는 성분은 회수하지 못하고 특히 촉매의 주요성분인 티탄과 텅스텐 성분을 회수하지 못하여 실제로 산업현장에 적용하는 데에는 경제적이지 못하다.The present invention can separate and recover molybdenum and vanadium at a high ratio from the remanufacturing solution of the hydrodesulfurized spent catalyst, and the vanadium recovered through the additional process can be used as the impregnation solution used in the preparation of the catalyst for the selective catalytic reduction reaction , The catalyst component contained in the spent catalyst can not be recovered from the organic acid but can not be recovered from titanium and tungsten, which are the major components of the catalyst. Thus, it is not economical to actually apply it to the industrial field.

본 발명은 상기의 문제를 해결하기 위한 것으로서, 사용된 후 폐기되는 폐탈질촉매 중의 유가금속을 분리 회수하는 종래의 방식 대신에 폐탈질촉매에 함유된 피독물질을 제거함으로써 폐탈질촉매를 효율적으로 재 소재화하는 방법을 제공하는 것이다.DISCLOSURE Technical Problem Accordingly, the present invention has been made to solve the above problems, and it is an object of the present invention to provide a waste denitration catalyst which efficiently removes poisonous substances contained in a waste denitration catalyst, instead of a conventional method of separating and recovering valuable metals in a waste denitration catalyst, And to provide a method of materialization.

상기 과제를 해결하기 위하여, 본 발명은 폐탈질촉매 모듈로부터 폐촉매 성분을 수거하는 단계; 상기 수거한 폐촉매 성분을 입자크기 100~2000 ㎛로 분쇄한 후 7000~12000 Gauss 세기의 자석으로 폐촉매 성분 중의 금속성 이물질을 제거하는 전처리 단계; 상기 전처리한 폐촉매를 0.1~1.0 M 농도의 EDTA 수용액과 1:5~10 부피비(폐촉매:EDTA 수용액)로 혼합하고 상온~120 ℃의 온도에서 300~500 rpm으로 교반하면서 30~120 분간 반응시켜 폐촉매 내의 피독물질을 1차 제거하는 단계; 상기 피독물질이 1차 제거된 폐촉매를 0.1~2.0 M의 황산 수용액 또는 0.1~2.0 M의 염산 수용액이 0.1~1.0 M의 과산화수소수와 4~6:4~6의 부피비(황산 수용액 또는 염산 수용액:과산화수소수)로 혼합된 반응용액과 1:5~10 부피비(폐촉매:반응용액)로 혼합하고 반응시켜 폐촉매 내의 피독물질을 2차 제거하는 단계; 상기 피독물질이 2차 제거된 폐촉매를 여과하여 수세하는 단계; 상기 수세한 폐촉매를 140~160 ℃에서 40~80 분간 가열한 후 300~450 ℃에서 10~150 분간 소성하는 단계; 및 상기 소성한 폐촉매를 미분하는 단계;를 포함하는 유기산을 이용한 폐탈질촉매의 재 소재화 방법을 제공한다.In order to solve the above problems, the present invention provides a method for removing NOx from a waste denitration catalyst module, A pretreatment step of pulverizing the collected spent catalyst component to a particle size of 100 to 2,000 mu m and then removing a metallic foreign substance in the waste catalyst component with a magnet having a strength of 7000 to 12000 Gauss; The pretreated spent catalyst is mixed with an aqueous solution of EDTA at a concentration of 0.1 to 1.0 M in an amount of 1: 5 to 10 by volume (spent catalyst: EDTA aqueous solution), stirred at 300 to 500 rpm at a temperature of 120 to 120 ° C for 30 to 120 minutes Thereby removing the poisonous substance in the spent catalyst. The spent catalyst in which the poisoning substance is primarily removed is treated with 0.1 to 2.0 M sulfuric acid aqueous solution or 0.1 to 2.0 M hydrochloric acid aqueous solution with 0.1 to 1.0 M hydrogen peroxide solution and 4 to 6: 4 to 6 volume ratio sulfuric acid aqueous solution or hydrochloric acid aqueous solution : Hydrogen peroxide solution) and reacting the reaction mixture with the reaction solution in a volume ratio of 1: 5 to 10: 10 (waste catalyst: reaction solution) to remove the poisoning material in the spent catalyst; Filtering the waste catalyst from which the poisoning material has been secondarily removed by filtration; Heating the washed spent catalyst at 140 to 160 ° C for 40 to 80 minutes, and then calcining at 300 to 450 ° C for 10 to 150 minutes; And finely pulverizing the calcined waste catalyst. The present invention also provides a method of remineralizing a waste denitration catalyst using an organic acid.

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

본 발명에 따른 폐탈질촉매의 재 소재화 방법은 폐촉매 중의 피독물질을 제거하는 방식이므로 폐촉매에 함유된 유효 촉매성분의 유실량이 최소화되며, 특히 탈질촉매의 대부분을 차지하는 이산화티탄과 삼산화텅스텐을 대부분 회수하여 재 소재화할 수 있어서 촉매의 제조원가를 절감할 수 있다.Since the method of remanufacturing the waste denitration catalyst according to the present invention is a method of removing poisonous substances in the spent catalyst, the amount of effective catalyst component contained in the waste catalyst is minimized, and titanium dioxide and tungsten trioxide, which occupy most of the denitration catalyst, Most of the catalyst can be recovered and recycled to reduce the manufacturing cost of the catalyst.

또한, 폐촉매에서 회수에 비용이 많이 드는 텅스텐, 바나듐을 분리추출하는 대신에 촉매활성을 저해하는 나트륨, 칼륨, 칼슘, 삼산화황 등의 피독물질을 제거하여 이산화티탄과 삼산화텅스텐을 회수하는 방식이므로 재 소재화 과정에 소요되는 비용이 적고 회수한 이산화티탄과 삼산화텅스텐은 별도의 가공과정을 거치지 않아도 촉매원료로 재사용이 가능하므로 재 소재화 제조공정을 줄일 수 있으며, 탈질촉매의 기본성분인 오산화바나듐이 제거되지 않으므로 오산화바나듐의 도핑 양을 줄일 수 있는 장점이 있다.In addition, instead of separating and extracting tungsten and vanadium, which are costly to recover from waste catalysts, removing poisoning substances such as sodium, potassium, calcium, and sulfur trioxide, which inhibit catalytic activity, to recover titanium dioxide and tungsten trioxide Since titanium dioxide and tungsten trioxide recovered at a low cost for the materialization process can be reused as a catalyst raw material without having to undergo a separate processing step, the manufacturing process of the materialization can be reduced and vanadium pentoxide, which is a basic component of the denitration catalyst, It is advantageous in that the amount of vanadium pentoxide can be reduced.

도 1은 본 발명에 따른 폐탈질촉매의 피독물질 제거 및 폐촉매의 재 소재화 방법을 나타낸 순서도이다.
도 2는 본 발명에 따른 폐탈질촉매의 재 소재화 공정 중 전처리 과정을 보여주는 공정도이다.
도 3은 전처리된 폐탈질촉매의 피독물질을 제거하여 재 소재화하는 과정을 보여주는 공정도이다.
1 is a flowchart showing a method of removing a poisonous substance from a waste denitration catalyst according to the present invention and a method for recovering a waste catalyst.
FIG. 2 is a process diagram showing a pretreatment process during the materialization process of the waste denitration catalyst according to the present invention. FIG.
FIG. 3 is a process diagram showing a process of removing a poisonous substance from a pretreated waste denitration catalyst to make it a material.

본 발명은 국내외 발전소 등에서 사용되고 있는 삼산화텅스텐-이산화티탄(WO3-TiO2) 기반의 폐탈질촉매의 재 소재화 방법에 관한 것으로서, 폐촉매 모듈을 분해하여 에어브러싱(air brushing)한 후 금속망 분리 및 분쇄하여 폐촉매 성분을 수거하는 단계, 상기 수거한 폐촉매 성분을 자석을 이용하여 금속성 이물질을 제거하는 전처리 단계, 상기 전처리한 폐촉매를 유기산과 반응시켜 폐촉매 내의 피독물질을 제거하는 단계, 상기 폐촉매와 반응액을 압력 또는 진공을 이용하여 여과 및 수세하는 단계, 상기 수세한 폐촉매를 소성하는 단계 및 상기 소성한 폐촉매를 미세크기로 미분하는 단계를 포함하는 폐탈질촉매의 재 소재화 방법을 제공한다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for remanufacturing a waste denitration catalyst based on tungsten trioxide (WO 3 -TiO 2 ) used in domestic and overseas power plants and the like. The waste catalyst module is disassembled and air- Separating and pulverizing the waste catalyst component, collecting the waste catalyst component, pretreating the waste catalyst component with a magnet to remove metallic foreign substances, and removing the poisoning substance in the spent catalyst by reacting the pretreated waste catalyst with organic acid , Filtering and washing the waste catalyst and the reaction solution using pressure or vacuum, firing the washed spent catalyst, and finely dividing the fired waste catalyst to a fine size. Provides a method of materialization.

본 발명은 폐탈질촉매의 특정성분을 추출하는 것이 아니라 탈질효율을 저하시키는 원인 인자인 나트륨(Na), 칼륨(K), 칼슘(Ca), 삼산화황(SO3) 등을 제거하여 촉매원료의 주성분인 이산화티탄, 삼산화텅스텐, 오산화바나듐을 회수함으로써, 폐촉매의 재 소재화 과정에서 이들의 유실량을 최소화할 수 있다.The present invention is the main component of the catalyst material by removing the causative factors of sodium that instead of extracting a specific component of the waste removal catalyst decreases the NOx removal efficiency (Na), potassium (K), calcium (Ca), sulfur trioxide (SO 3), etc. By recovering titanium dioxide, tungsten trioxide, and vanadium pentoxide, it is possible to minimize the loss of these waste catalysts during the reconditioning of spent catalysts.

이하, 본 발명의 바람직한 실시예를 첨부된 도면을 참조하여 좀 더 상세히 설명한다.Hereinafter, preferred embodiments of the present invention will be described in more detail with reference to the accompanying drawings.

단, 하기의 실시예는 본 발명을 예시하기 위한 것일 뿐, 본 발명이 하기 실시예에 의해 한정되는 것이 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 치환 및 균등한 타 실시예로 변경할 수 있음은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어서 명백할 것이다.It is to be understood, however, that the invention is not to be construed as being limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Will be apparent to those skilled in the art to which the present invention pertains.

도 1에는 본 발명의 유기산을 이용한 폐탈질촉매의 재 소재화 방법을 나타낸 순서도가 도시되어 있다.FIG. 1 is a flowchart showing a method for remineralizing a waste denitration catalyst using an organic acid according to the present invention.

본 발명에 따른 폐탈질촉매의 재 소재화 방법은 먼저 폐탈질촉매 모듈로부터 폐촉매를 수거하여 금속성 이물질을 제거하는 전처리 단계(S10)를 거치는데, 폐탈질촉매 모듈을 분해하여 에어브러싱한 후 금속망 분리 및 분쇄하여 폐촉매를 수거하며, 자석을 이용하여 폐촉매 중의 금속성 이물질을 제거한다.The method for remineralizing a waste denitration catalyst according to the present invention includes a pretreatment step (S10) for collecting waste catalysts from a waste denitration catalyst module to remove metallic foreign substances. The waste denitration catalyst module is disassembled and air- And the spent catalyst is collected, and the metallic foreign substance in the spent catalyst is removed using a magnet.

도 2에는 상기 순서도에 포함된 전처리 단계(S10)의 공정도가 도시되어 있다.FIG. 2 is a flow chart of the preprocessing step S10 included in the flow chart.

상기 전처리 단계(S10)는 국내외 발전소 등에 공급되어 있는 삼산화텅스텐-이산화티탄(WO3-TiO2) 기반의 폐탈질촉매 모듈(11)을 분리한 후 공기압축기(air compressor, 15)를 이용하여 120~400 ℓ/min의 유속으로 에어브러싱하고 금속망 분리 및 분쇄를 거쳐 자석 또는 전자석을 이용하여 금속성 이물질을 제거한다.In the pretreatment step S10, the wastewater denitration catalyst module 11 based on tungsten trioxide-WO 3 -TiO 2 , which is supplied to domestic and overseas power plants, is separated, and then an air compressor 15 Air brushing at a flow rate of ~ 400 L / min, metal mesh separation and crushing, and metallic or foreign materials are removed using magnets or electromagnets.

상기 폐탈질촉매 모듈은 중유화력발전, 석탄화력발전 폐탈질촉매와 복합화력발전 폐탈질촉매에 적용될 수 있고 모든 삼산화텅스텐-이산화티탄 기반의 폐탈질촉매에 적용될 수 있다.The waste denitration catalyst module may be applied to heavy fuel oil power generation, coal-fired power generation waste denitration catalyst and combined-cycle power generation waste denitration catalyst, and may be applied to all of the waste denitration catalysts based on tungsten trioxide-titanium dioxide.

폐탈질촉매의 모듈타입은 플레이트(plate) 타입(13)과 하니컴(honeycomb) 타입(14)으로 구분할 수 있으며, 플레이트 타입의 경우 폐탈질촉매 모듈(11)에서 케니스터(canister, 12)를 분리하고 케니스터(12)에서 플레이트 촉매(13) 분리한 다음 플레이트 촉매(13)의 금속망에서 촉매를 분리한 후 분쇄하며, 하니컴 타입의 경우 전체를 그대로 분쇄한다.The module type of the waste denitration catalyst can be divided into a plate type 13 and a honeycomb type 14. In the case of a plate type, a canister 12 is separated from a waste denitration catalyst module 11 The plate catalyst 13 is separated from the canister 12, and then the catalyst is separated from the metal net of the plate catalyst 13 and pulverized. In the case of the honeycomb type, the entire catalyst is crushed.

상기 분쇄된 폐촉매(16)의 입자크기는 100~2000 ㎛가 바람직하고 이를 7000~12000 Gauss 세기의 자석 또는 전자석(18)을 이용하여 폐촉매(16) 중의 금속성 이물질, 금속성 오염물질(19)을 제거하여 전처리 폐촉매(17)를 얻는다.The pulverized spent catalyst 16 preferably has a particle size of 100 to 2,000 mu m and is preferably made of a metallic foreign substance in the spent catalyst 16 or a metallic contaminant 19 in the spent catalyst 16 by using a magnet or electromagnet 18 having a strength of 7000 to 12000 Gauss, To obtain a pretreated spent catalyst (17).

다음은 상기 전처리 폐촉매(17)에 유기산 용액을 반응시켜 폐촉매 내의 피독물질을 제거한다(S20).Next, the organic acid solution is reacted with the pretreated spent catalyst 17 to remove poisonous substances in the spent catalyst (S20).

상기 전 처리된 폐촉매(17)는 발전소의 촉매타입, 연료, 선택적 촉매환원반응(selective catalytic reduction, SCR)의 컨트롤 조건 등에 따라 피독물질의 종류와 함량이 상이하므로, 이에 알맞은 유기산 용액과 반응시켜 피독물질을 제거하며, 온도(상온~120 ℃), 교반속도(300~500 rpm), 시간(30~120 분간)을 조절하여 반응시킨다.The pretreated spent catalyst 17 is reacted with an appropriate organic acid solution because the type and content of the poisonous substance are different depending on the catalyst type of the power plant, the fuel, the control conditions of the selective catalytic reduction (SCR) Remove poisonous substances and react by adjusting temperature (room temperature ~ 120 ℃), stirring speed (300 ~ 500 rpm) and time (30 ~ 120min).

상기 유기산으로서 구연산(citric acid, C6H8O7) 및/또는 에틸렌디아민테트라아세트산(ethylenediaminetetraacetic acid, EDTA)을 사용하고 구연산은 0.1~1.5 M 농도의 수용액인 것이 바람직하고 EDTA는 0.1~1.0 M 농도의 수용액인 것이 바람직하며, 구연산과 EDTA를 함께 사용할 경우 구연산:EDTA=4~6:4~6 부피비로 혼합되는 것이 바람직하고 구연산과 EDTA가 부피 기준 서로 동일한 양으로 혼합되는 것이 더욱 바람직하다.Citric acid (C 6 H 8 O 7 ) and / or ethylenediaminetetraacetic acid (EDTA) are preferably used as the organic acid, citric acid is preferably an aqueous solution having a concentration of 0.1 to 1.5 M and EDTA is preferably 0.1 to 1.0 M When citric acid and EDTA are used together, it is preferable to mix citric acid: EDTA = 4 to 6: 4 to 6 by volume. It is more preferable that citric acid and EDTA are mixed in the same amount based on volume.

폐촉매의 탈질성능을 저하시키는 물질은 대부분 알칼리(토)금속산화물과 인, 비소의 금속산화물이다.Most substances that degrade the denitrification performance of spent catalysts are alkaline (earth) metal oxides and metal oxides of phosphorus and arsenic.

EDTA는 4 개의 카복실 그룹이 있고 H+ 이온이 떨어지면서 산소에 음전하가 생성되어 리간드로 작용할 수 있어서, 배위수가 존재하는 리간드 결합이 가능한 금속과 대부분의 중금속에 EDTA를 가하면 EDTA가 폐촉매에 흡착된 금속이온과 결합하여 착이온, 착화합물을 형성함에 따라 피독물질로 작용하는 금속성분이 더 이상 폐촉매 성분과 배위결합을 하지 못하도록 하기 때문에 EDTA와 반응시킨 폐촉매를 여과하여 폐촉매로부터 피독물질을 제거할 수 있다.EDTA has four carboxyl groups and a negative charge can be generated in the oxygen due to the drop of H + ion. As a result, EDTA is adsorbed on the waste catalyst when EDTA is added to a ligand-binding metal and most heavy metals, As the metal ions are combined with the metal ions to form complex ions, the metal component acting as a poisoning substance can no longer coordinate with the waste catalyst component. Therefore, the waste catalyst reacted with EDTA is filtered to remove the poisonous substance from the waste catalyst can do.

또한, 상기 유기산에 과산화수소를 첨가하여 피독물질을 제거하는 것도 가능하며, 예를 들어 구연산 또는 EDTA에 과산화수소를 혼합하여 폐촉매(17)의 피독물질을 제거할 수 있으며, 구연산(또는 EDTA):과산화수소=4~6:4~6 부피비로 혼합되는 것이 바람직하고 구연산(또는 EDTA)과 과산화수소가 부피 기준 서로 동일한 양으로 혼합되는 것이 더욱 바람직하다.In addition, hydrogen peroxide can be added to the organic acid to remove poisonous substances. For example, citric acid or EDTA may be mixed with hydrogen peroxide to remove poisonous substances from the spent catalyst 17, and citric acid (or EDTA) = 4 to 6: 4 to 6 by volume, and it is more preferable that citric acid (or EDTA) and hydrogen peroxide are mixed in the same amount in terms of volume.

상기 피독물질 제거단계(S20)는 필요에 따라 상기와 같이 유기산 반응용액으로 해독한 후 무기산 반응용액으로 추가 해독할 수도 있으며, 상기 유기산에 첨가되는 무기산 또는 추가 해독에 사용되는 무기산으로서 0.1~2.0 M의 황산(sulfuric acid, H2SO4) 수용액, 0.1~2.0 M의 염산(hydrochloric acid, HCl) 수용액 등이 사용될 수 있고 더불어 0.1~1.0 M의 과산화수소수(hydrogen peroxide, H2O2)가 추가될 수 있다.The poisoning material removing step (S20) may be further decrypted as an organic acid reaction solution after decrypting the organic acid reaction solution as described above. If necessary, the inorganic acid added to the organic acid or the inorganic acid used for further decryption may be 0.1 to 2.0 M Aqueous solution of sulfuric acid (H 2 SO 4 ) and 0.1 to 2.0 M of hydrochloric acid (HCl) solution may be used. In addition, 0.1 to 1.0 M of hydrogen peroxide (H 2 O 2 ) may be added .

또한, 추가 해독에 사용되는 무기산 반응용액은 황산과 과산화수소, 염산과 과산화수소의 조합이 바람직하고 이들 조합되는 물질의 혼합비는 각각 4~6:4~6의 부피비로 혼합되는 것이 더욱 바람직하며, 각각 부피 기준 서로 동일한 양으로 혼합되는 것이 가장 바람직하다.In addition, the inorganic acid reaction solution used for the further decryption is preferably a combination of sulfuric acid, hydrogen peroxide, hydrochloric acid and hydrogen peroxide, and more preferably the mixing ratio of the combined substances is 4: 6: 4 to 6: It is most preferable that the standards are mixed with the same amount.

상기 피독물질 제거시 및/또는 추가 해독시 폐촉매와 반응용액의 혼합량은 폐촉매에 함유된 피독물질이 충분히 제거될 수 있도록 폐촉매:반응용액=1:5~10 부피비로 혼합하여 반응시키는 것이 바람직하다.The mixture amount of the waste catalyst and the reaction solution during the removal of the poisonous material and / or the additional detoxification is such that the poisonous substances contained in the waste catalyst are sufficiently removed, and the waste catalyst and the reaction solution are mixed at a volume ratio of 1: 5 to 10 desirable.

다음은 상기 피독물질이 제거된 폐촉매에서 반응용액인 유기산을 제거하는 여과 및 수세 단계(S30)를 진행하는데, 먼저 폐촉매를 여과하여 폐촉매 중의 반응용액을 제거하고 이를 수세한 후 다시 여과하여 반응용액과 함께 물을 제거한다.Next, the filtration and washing step (S30) for removing the organic acid as the reaction solution in the waste catalyst from which the poisoning substances have been removed is performed. First, the waste catalyst in the waste catalyst is removed by filtering the waste catalyst, Water is removed with the reaction solution.

상기 여과는 폐촉매의 입자크기에 따라 여과 필터의 공극 크기를 선택하고 통상의 폐촉매 입자크기를 감안하여 공극 크기 1~50 ㎛의 필터를 이용하는 것이 바람직하며, 필터의 종류는 제한되지 않으나 여과시 압력 또는 진공을 이용하여 여과하는 것이 바람직하다.It is preferable that the pore size of the filter is selected according to the particle size of the spent catalyst and the filter having a pore size of 1 to 50 탆 is used in consideration of the size of the normal spent catalyst particle. It is preferable to perform filtration using pressure or vacuum.

또한, 상기 수세는 반응용액이 충분히 제거되도록 폐촉매의 부피기준 2~10 배의 증류수를 사용하는 것이 바람직하다.Also, it is preferable to use distilled water of 2 to 10 times the volume of the spent catalyst so that the reaction solution is sufficiently removed.

다음은 반응용액을 제거한 폐촉매를 소성한 후 미세하게 분쇄하며(S40), 소성은 140~160 ℃에서 40~80 분간 소성한 후 300~450 ℃에서 10~150 분간 소성하는 것이 바람직하고 재 소재화된 촉매의 용도에 따라 온도 및 시간을 조절할 수 있다.Next, the waste catalyst from which the reaction solution is removed is calcined and finely pulverized (S40). The calcination is preferably performed at 140 to 160 ° C. for 40 to 80 minutes and then at 300 to 450 ° C. for 10 to 150 minutes. The temperature and time can be controlled depending on the use of the catalyst.

상기와 같은 본 발명에 따른 폐탈질촉매의 재 소재화 방법은 전량 수입중인 삼산화텅스텐, 이산화티탄의 수입과 촉매의 제조원가를 줄일 수 있으며, 폐촉매의 폐기물 처리비용을 절감할 수 있어서 환경문제의 해결에도 도움을 준다.The method of remanufacturing a waste denitration catalyst according to the present invention can reduce the cost of importing tungsten trioxide and titanium dioxide, the cost of manufacturing the catalyst, and the waste treatment cost of the spent catalyst, It also helps.

<실시예 1> 구연산을 이용한 폐탈질촉매의 재 소재화 방법<Example 1> Reconstitution of waste denitration catalyst using citric acid

도 3에는 폐탈질촉매 중의 삼산화텅스텐, 이산화티탄 촉매물질 회수를 위하여 폐촉매의 피독물질을 제거하여 재 소재화하는 과정을 보여주는, 본 발명의 일 실시예에 따른 공정도가 도시되어 있다.FIG. 3 is a process diagram according to an embodiment of the present invention showing a process of removing a poisoning substance of a waste catalyst and recovering a material for recovery of tungsten trioxide and titanium dioxide catalyst materials in a waste denitration catalyst.

도 3을 참고하면, 도 2에서 전처리된 폐탈질촉매를 저장 사일로(21)에 저장한 후 저장 사일로(21)의 폐촉매 50 ㎏과 증류수 탱크(23)의 증류수 500ℓ를 1차 세척조(22)에 이송하고 이들을 교반하여 폐촉매를 증류수로 1차 수세한 후 공극 크기 23 ㎛의 1차 필터(24)에서 여과하였으며, 이때 발생한 폐수는 폐수처리조(25)로 이송하여 처리하였다.2, the waste denitration catalyst pretreated in FIG. 2 is stored in a storage silo 21 and 50 kg of the spent catalyst in the storage silo 21 and 500 l of distilled water in the distilled water tank 23 are introduced into the primary washing tank 22, The waste catalysts were firstly washed with distilled water and then filtered through a primary filter 24 having a pore size of 23 탆. The generated wastewater was transferred to a wastewater treatment tank 25 and treated.

상기 1차 여과한 폐촉매는 증류수 탱크(23)의 증류수와 화학용액 저장탱크(27)의 구연산을 이송받아 혼합된 0.8 mole 농도의 구연산 수용액 500 ℓ와 함께 화학용액 반응조(26)에서 100 ℃의 온도로 1 시간 동안 450 rpm으로 교반하여 반응시켰다.The distilled water in the distilled water tank 23 and the citric acid solution in the chemical solution storage tank 27 were transferred to the primary filtered catalyst and mixed with 500 L of a citric acid aqueous solution having a concentration of 0.8 mole in the chemical solution tank 26, And the mixture was stirred at 450 rpm for 1 hour.

상기 반응이 끝난 폐촉매는 공극 크기 23 ㎛의 2차 필터(31)에서 반응용액을 모두 제거한 후 2차 세척조(33)에서 증류수 탱크(23)의 증류수 500 ℓ를 이송받아 2차 수세하였으며, 이때 발생한 폐수는 화학약품 처리조(32)로 이송하여 처리하였다.After the reaction was completed, the reaction solution was removed from the secondary filter 31 having a pore size of 23 μm, and 500 L of the distilled water in the distilled water tank 23 was transferred from the secondary washing tank 33 to the second wash water. The generated wastewater was transferred to the chemical treatment tank 32 for treatment.

상기 2차 수세한 폐촉매를 공극 크기 23 ㎛의 3차 필터(34)에서 다시 여과하고 이때 발생한 폐수는 폐수처리조(35)로 이송하여 처리하였으며, 상기 3차 여과한 폐촉매는 소성로(41)로 이송한 후 소성로(41)에 공기를 공급하면서 150 ℃의 온도로 1 시간 가열한 후 400 ℃의 온도로 2 시간 소성하였다.The waste water that has been washed secondarily was again filtered by a tertiary filter 34 having a pore size of 23 μm and the generated wastewater was transferred to a wastewater treatment tank 35 for treatment. , And then heated at a temperature of 150 DEG C for one hour while supplying air to the firing furnace 41, and then calcined at a temperature of 400 DEG C for two hours.

소성이 끝난 폐촉매를 미분기(pulverizing mill, 42)로 이송하여 45 ㎛ 미만으로 미분하여 재 소재화하였다.The calcined spent catalyst was transferred to a pulverizing mill (42) to be finely divided into less than 45 탆 and made into a material.

<실시예 2> 구연산과 과산화수소의 혼합 반응용액을 이용한 폐탈질촉매의 재 소재화 방법<Example 2> Reconstitution of a waste denitration catalyst using mixed reaction solution of citric acid and hydrogen peroxide

도 2에서 전처리된 저장 사일로(21)의 폐탈질촉매 60 ㎏과 증류수 탱크(23)의 증류수 600ℓ를 1차 세척조(22)에 이송하고 이들을 교반하여 폐촉매를 증류수로 1차 수세한 후 공극 크기 23 ㎛의 1차 필터(24)에서 여과하였다.60 kg of the waste denitration catalyst of the storage silo 21 pretreated in FIG. 2 and 600 L of distilled water of the distilled water tank 23 are transferred to the primary washing tank 22, and the waste catalyst is firstly rinsed with distilled water, And filtered through a primary filter 24 having a diameter of 23 mu m.

상기 1차 여과한 폐촉매는 증류수 탱크(23)의 증류수와 화학용액 저장탱크(27)의 구연산과 과산화수소를 이송받아 0.4 mole 농도의 구연산 수용액과 과산화수소수를 각각 300 ℓ씩 혼합한 반응용액과 함께 화학용액 반응조(26)에서 100 ℃의 온도로 1 시간 동안 450 rpm으로 교반하여 반응시켰다.The distilled water from the distilled water tank 23 and the citric acid and hydrogen peroxide in the chemical solution storage tank 27 were transferred to the primary filtered catalyst and mixed with a reaction solution in which a solution of citric acid in a concentration of 0.4 mole and hydrogen peroxide And the mixture was reacted in a chemical solution tank 26 at a temperature of 100 DEG C for one hour at 450 rpm for reaction.

상기 반응이 끝난 폐촉매는 공극 크기 23 ㎛의 2차 필터(31)에서 반응용액을 모두 제거한 후 2차 세척조(33)에서 증류수 탱크(23)의 증류수 600 ℓ를 이송받아 2차 수세하였으며, 2차 수세한 폐촉매를 공극 크기 23 ㎛의 3차 필터(34)에서 여과하였다.After the reaction was completed, the reaction solution was completely removed from the secondary filter 31 having a pore size of 23 μm, and then 600 L of the distilled water in the distilled water tank 23 was transferred to the secondary washing tank 33, The waste catalyst washed with water was filtered through a tertiary filter (34) having a pore size of 23 mu m.

상기 3차 여과한 폐촉매를 소성로(41)에서 공기를 공급하면서 150 ℃의 온도로 1 시간 가열한 후 400 ℃의 온도로 2 시간 소성하였으며, 소성이 끝난 폐촉매를 미분기(42)에서 45 ㎛ 미만으로 미분하여 재 소재화하였다.The third filtered catalyst was heated at a temperature of 150 ° C. for one hour while being supplied with air from a calcining furnace 41 and then calcined at a temperature of 400 ° C. for two hours. The calcined spent catalyst was passed through a differentiator (42) By weight.

<실시예 3> 구연산, 과산화수소 및 EDTA의 혼합 반응용액을 이용한 폐탈질촉매의 재 소재화 방법<Example 3> Reconstitution of waste denitration catalyst using mixed reaction solution of citric acid, hydrogen peroxide and EDTA

도 2에서 전처리된 저장 사일로(21)의 탈질 폐촉매 60 ㎏과 증류수 탱크(23)의 증류수 600ℓ를 1차 세척조(22)에 이송하고 이들을 교반하여 폐촉매를 증류수로 1차 수세한 후 공극 크기 23 ㎛의 1차 필터(24)에서 여과하였다.60 kg of the denitrification catalyst of the storage silo 21 pretreated in FIG. 2 and 600 L of the distilled water of the distilled water tank 23 are transferred to the primary washing tank 22 and stirred. The spent catalyst is firstly rinsed with distilled water, And filtered through a primary filter 24 having a diameter of 23 mu m.

상기 1차 여과한 폐촉매는 증류수 탱크(23)의 증류수와 화학용액 저장탱크(27)의 구연산, 과산화수소 및 EDTA를 이송받아 0.1 mole 농도의 구연산 수용액, 과산화수소수 및 EDTA를 각각 200 ℓ씩 혼합한 반응용액과 함께 화학용액 반응조(26)에서 100 ℃의 온도로 1 시간 동안 450 rpm으로 교반하여 반응시켰다.The dehydrated water from the distilled water tank 23 and citric acid, hydrogen peroxide, and EDTA in the chemical solution storage tank 27 were transferred to the primary filtrate, and a 0.1 molar aqueous citric acid solution, hydrogen peroxide solution and EDTA were mixed The mixture was reacted with the reaction solution at a temperature of 100 ° C. for 1 hour at 450 rpm in a chemical solution tank 26 to react.

상기 반응이 끝난 폐촉매는 공극 크기 23 ㎛의 2차 필터(31)에서 반응용액을 모두 제거한 후 2차 세척조(33)에서 증류수 탱크(23)의 증류수 600 ℓ를 이송받아 2차 수세하였으며, 2차 수세한 폐촉매를 공극 크기 23 ㎛의 3차 필터(34)에 여과하였다.After the reaction was completed, the reaction solution was completely removed from the secondary filter 31 having a pore size of 23 μm, and then 600 L of the distilled water in the distilled water tank 23 was transferred to the secondary washing tank 33, The waste catalyst washed with water was filtered through a tertiary filter 34 having a pore size of 23 mu m.

상기 3차 여과한 폐촉매를 소성로(41)에서 공기를 공급하면서 150 ℃의 온도로 1 시간 가열한 후 400 ℃의 온도로 2 시간 소성하였으며, 소성이 끝난 폐촉매를 미분기(42)에서 45 ㎛ 미만으로 미분하여 재 소재화하였다.The third filtered catalyst was heated at a temperature of 150 ° C. for one hour while being supplied with air from a calcining furnace 41 and then calcined at a temperature of 400 ° C. for two hours. The calcined spent catalyst was passed through a differentiator (42) By weight.

<시험예> 피독물질 제거율 및 탈질효율 분석&Lt; Test Example > Analysis of poisoning substance removal efficiency and denitrification efficiency

도 3의 피독물질 제거공정 투입 전·후의 폐탈질촉매 성분을 분석하여 하기 표 1에 나타내었고 분석결과를 바탕으로 피독물질 제거율을 계산하여 하기 표 2에 나타내었다.3 shows the results of analyzing the components of the waste denitration catalyst before and after the poisoning material removal process. The results are shown in Table 1 below.

성분분석은 XRF(X-Ray Flourescence Spectrometry, ZSX Primus Ⅱ, Rigaku사, 일본)를 사용하였다.XRF (X-Ray Flourescence Spectrometry, ZSX Primus II, Rigaku, Japan) was used for the analysis of the components.

피독물질 제거 전·후의 XRF 분석결과(중량%)XRF analysis results (% by weight) before and after the poisoning material removal 성분ingredient 폐탈질촉매(피독물질 제거 전)Waste Denitration Catalyst (Before Removing Poisonous Substance) 재 소재화 탈질촉매(피독물질 제거 후)Reformatization denitration catalyst (after removal of poisonous substance) 구연산Citric acid 구연산+과산화수소Citric acid + hydrogen peroxide 구연산+과산화수소+EDTACitric acid + hydrogen peroxide + EDTA Na2ONa 2 O 0.24690.2469 00 00 00 Al2O3 Al 2 O 3 3.00823.0082 2.54932.5493 2.63302.6330 2.59512.5951 SiO2 SiO 2 10.186310.1863 10.286610.2866 10.364110.3641 10.334510.3345 P2O5 P 2 O 5 0.12040.1204 0.09270.0927 0.09890.0989 0.10400.1040 SO3 SO 3 4.40934.4093 0.35020.3502 0.30130.3013 0.20520.2052 K2OK 2 O 0.16070.1607 0.02720.0272 0.02570.0257 0.01810.0181 CaOCaO 0.06410.0641 0.01200.0120 00 00 TiO2 TiO 2 68.358268.3582 74.972874.9728 74.803774.8037 74.006174.0061 V2O5 V 2 O 5 0.89550.8955 0.68700.6870 00 0.86200.8620 Fe2O3 Fe 2 O 3 2.78422.7842 1.19241.1924 1.44591.4459 1.50761.5076 ZrO2 ZrO 2 0.01500.0150 0.01960.0196 0.01630.0163 0.01560.0156 As2O3 As 2 O 3 0.54140.5414 0.44990.4499 0.51190.5119 0.50090.5009 Nb2O5 Nb 2 O 5 0.10650.1065 0.13210.1321 0.14130.1413 0.14130.1413 MoO3 MoO 3 0.06170.0617 0.04470.0447 0.06560.0656 0.07320.0732 WO3 WO 3 9.04169.0416 9.18359.1835 9.59239.5923 9.63649.6364 system 100100 100100 100100 100100

피독물질 제거율(%)Poisonous substance removal rate (%) 성분ingredient 구연산Citric acid 구연산+과산화수소Citric acid + hydrogen peroxide 구연산+과산화수소+EDTACitric acid + hydrogen peroxide + EDTA Na2ONa 2 O 100.0100.0 100.0100.0 100.0100.0 K2OK 2 O 83.083.0 84.084.0 88.788.7 CaOCaO 81.281.2 100.0100.0 100.0100.0 SO3 SO 3 92.092.0 93.193.1 95.395.3

상기 표 1 및 표 2를 보면, 피독성분인 나트륨과 칼슘 성분은 100 % 제거되고 삼산화황 성분은 90 % 이상, 칼슘 성분은 80 % 이상이 제거되었으며, 구연산만으로 피독물질을 제거하는 것보다 구연산과 과산화수소를 같이 사용하는 것이 좀 더 효율적이고 구연산, 과산화수소 및 EDTA를 모두 사용하는 것이 피독물질 제거에 가장 효율적임을 알 수 있다.Table 1 and Table 2 show that the poisonous components of sodium and calcium are 100% removed, the sulfur trioxide component is more than 90%, the calcium component is more than 80%, and citric acid is more effective than citric acid It is more efficient to use hydrogen peroxide together, and it can be seen that the use of both citric acid, hydrogen peroxide and EDTA is most effective for removing poisonous substances.

또한, 상기 피독물질을 제거한 재 소재화 탈질촉매를 질소가 충전된 고정층 반응기에 장착하고 유량 600 cc, 공간속도(space velocity) 60000h-1, O2 함량 3 vol.%, NO 함량 800 ppm, NH3/NO mole ratio 1.0, 반응온도 350 ℃의 조건에서 탈질효율을 측정하였으며, 상기 실시예 1~3 모두에서 평균 80 % 이상의 탈질효율을 나타내었다.The reformate denitration catalyst from which the poisoning substance was removed was placed in a fixed-bed reactor filled with nitrogen, and a flow rate of 600 cc, a space velocity of 60000 h -1 , an O 2 content of 3 vol.%, An NO content of 800 ppm, NH 3 / NO mole ratio of 1.0, and a reaction temperature of 350 ° C. The denitrification efficiency was 80% or more on average in all of Examples 1 to 3.

상기의 시험결과로부터, 본 발명의 방법으로 재 소재화된 탈질촉매는 폐촉매를 경제적으로 재활용하여 일정 수준 이상의 탈질효과를 발휘할 수 있어서 폐탈질촉매의 효율적인 재 소재화가 가능함을 알 수 있다.From the test results, it can be seen that the denitration catalyst that has been reformed by the method of the present invention economically recycles the waste catalyst and can exert a denitrification effect to a certain level or more, thereby enabling the waste denitration catalyst to be efficiently restored.

11:폐탈질촉매 모듈, 12:모듈에서 분리된 케니스터, 13:케니스터에서 분리된 플레이트 촉매, 14:모듈에서 분리된 하니컴 촉매, 15:공기압축기, 16:금속성 이물질이 포함된 분쇄 폐촉매, 17:금속성 이물질이 제거된 전처리 폐촉매, 18:(전)자석, 19:금속성 이물질, 21:폐촉매 저장 사일로, 22:1차 세척조, 23:증류수 탱크, 24:1차 필터, 25: 폐수처리조, 26:화학용액 반응조, 27:화학용액 저장탱크, 31:2차 필터, 32:화학약품 처리조, 33:2차 세척조, 34:3차 필터, 35:폐수처리조, 41:소성로, 42:미분기11: a waste denitration catalyst module, 12: a canister separated from the module, 13: a plate catalyst separated from the canister, 14: a honeycomb catalyst separated from the module, 15: an air compressor, 16: A pretreatment waste catalyst from which metallic foreign substances have been removed, 18: a magnet, 19: a metallic foreign matter, 21: a spent catalyst storage silo, 22: a primary washing tank, 23: a distilled water tank, 24: A chemical solution tank, a chemical solution tank, a chemical tank, a chemical tank, a chemical tank, a chemical tank, a chemical tank, Calcination furnace, 42: differentiator

Claims (9)

폐탈질촉매 모듈로부터 폐촉매 성분을 수거하는 단계;
상기 수거한 폐촉매 성분을 입자크기 100~2000 ㎛로 분쇄한 후 7000~12000 Gauss 세기의 자석으로 폐촉매 성분 중의 금속성 이물질을 제거하는 전처리 단계;
상기 전처리한 폐촉매를 0.1~1.0 M 농도의 EDTA 수용액과 1:5~10 부피비(폐촉매:EDTA 수용액)로 혼합하고 상온~120 ℃의 온도에서 300~500 rpm으로 교반하면서 30~120 분간 반응시켜 폐촉매 내의 피독물질을 1차 제거하는 단계;
상기 피독물질이 1차 제거된 폐촉매를 0.1~2.0 M의 황산 수용액 또는 0.1~2.0 M의 염산 수용액이 0.1~1.0 M의 과산화수소수와 4~6:4~6의 부피비(황산 수용액 또는 염산 수용액:과산화수소수)로 혼합된 반응용액과 1:5~10 부피비(폐촉매:반응용액)로 혼합하고 반응시켜 폐촉매 내의 피독물질을 2차 제거하는 단계;
상기 피독물질이 2차 제거된 폐촉매를 여과하여 수세하는 단계;
상기 수세한 폐촉매를 140~160 ℃에서 40~80 분간 가열한 후 300~450 ℃에서 10~150 분간 소성하는 단계; 및
상기 소성한 폐촉매를 미분하는 단계;를 포함하는 유기산을 이용한 폐탈질촉매의 재 소재화 방법.
Collecting spent catalyst components from the waste denitration catalyst module;
A pretreatment step of pulverizing the collected spent catalyst component to a particle size of 100 to 2,000 mu m and then removing a metallic foreign substance in the waste catalyst component with a magnet having a strength of 7000 to 12000 Gauss;
The pretreated spent catalyst is mixed with an aqueous solution of EDTA at a concentration of 0.1 to 1.0 M in an amount of 1: 5 to 10 by volume (spent catalyst: EDTA aqueous solution), stirred at 300 to 500 rpm at a temperature of 120 to 120 ° C for 30 to 120 minutes Thereby removing the poisonous substance in the spent catalyst.
The spent catalyst in which the poisoning substance is primarily removed is treated with 0.1 to 2.0 M sulfuric acid aqueous solution or 0.1 to 2.0 M hydrochloric acid aqueous solution with 0.1 to 1.0 M hydrogen peroxide solution and 4 to 6: 4 to 6 volume ratio sulfuric acid aqueous solution or hydrochloric acid aqueous solution : Hydrogen peroxide solution) and reacting the reaction mixture with the reaction solution in a volume ratio of 1: 5 to 10: 10 (waste catalyst: reaction solution) to remove the poisoning material in the spent catalyst;
Filtering the waste catalyst from which the poisoning material has been secondarily removed by filtration;
Heating the washed spent catalyst at 140 to 160 ° C for 40 to 80 minutes, and then calcining at 300 to 450 ° C for 10 to 150 minutes; And
And finely pulverizing the calcined waste catalyst. The method of claim 1,
삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete
KR1020160179958A 2016-12-27 2016-12-27 Method for Rematerializing Waste De-NOx Catalyst Using Organic Acid KR101885917B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160179958A KR101885917B1 (en) 2016-12-27 2016-12-27 Method for Rematerializing Waste De-NOx Catalyst Using Organic Acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160179958A KR101885917B1 (en) 2016-12-27 2016-12-27 Method for Rematerializing Waste De-NOx Catalyst Using Organic Acid

Publications (2)

Publication Number Publication Date
KR20180076389A KR20180076389A (en) 2018-07-06
KR101885917B1 true KR101885917B1 (en) 2018-08-07

Family

ID=62920796

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160179958A KR101885917B1 (en) 2016-12-27 2016-12-27 Method for Rematerializing Waste De-NOx Catalyst Using Organic Acid

Country Status (1)

Country Link
KR (1) KR101885917B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230009569A (en) 2021-07-09 2023-01-17 주식회사 케이에스자원개발 Pulmonary desorption catalyst treatment unit

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020163242A (en) * 2019-03-28 2020-10-08 三菱日立パワーシステムズ株式会社 Regeneration process of denitration catalyst, and regeneration system of denitration catalyst
CN114984972B (en) * 2021-03-01 2023-08-29 国家能源投资集团有限责任公司 Method for recycling vanadium-tungsten-titanium powder from waste denitration catalyst, vanadium-tungsten-titanium powder, denitration catalyst and preparation method of denitration catalyst
CN117505066B (en) * 2024-01-05 2024-03-29 湖南启航纳米材料科技有限公司 Yellow tungsten oxide deironing processing apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3915173B2 (en) * 1997-06-09 2007-05-16 石川島播磨重工業株式会社 Denitration catalyst activity regeneration method and apparatus
JP4578048B2 (en) * 2002-06-21 2010-11-10 中国電力株式会社 Denitration catalyst regeneration method
KR101246271B1 (en) * 2011-03-22 2013-03-21 주식회사 나노 Method of recycling waste denitrification catalyst
KR101436698B1 (en) * 2012-12-21 2014-09-01 한국남부발전 주식회사 Magnetic sorter having crushing function

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230009569A (en) 2021-07-09 2023-01-17 주식회사 케이에스자원개발 Pulmonary desorption catalyst treatment unit

Also Published As

Publication number Publication date
KR20180076389A (en) 2018-07-06

Similar Documents

Publication Publication Date Title
KR101885917B1 (en) Method for Rematerializing Waste De-NOx Catalyst Using Organic Acid
KR101896094B1 (en) Method for Rematerializing Waste De-NOx Catalyst Using Inorganic Acid
CN104862485B (en) A kind of vanadium of useless vanadium tungsten system SCR catalyst, tungsten separation and method of purification
CN105648241B (en) Valuable metal tungsten, vanadium, the method for titanium synthetical recovery in useless vanadium tungsten titanium denitrating catalyst
CN110124507B (en) Method and device for cleaning and treating multi-pollutant flue gas
CN104384167B (en) A kind of comprehensive reutilization method of discarded titanium-based vanadium system SCR catalyst
CN101921916A (en) Method for recycling metal oxide from waste flue gas denitration catalyst
CN106048230B (en) The separation of tungsten and vanadium, recovery method in a kind of useless SCR denitration
CN110124490B (en) Method and device for treating multi-pollutant flue gas and recycling wastewater by using activated carbon
Su et al. Optimizing vanadium and tungsten leaching with lowered silicon from spent SCR catalyst by pre-mixing treatment
CN107185554A (en) A kind of method that useless SCR denitration cleaning is recycled
CN106947864B (en) A kind of system and its processing method recycling heavy metal from discarded SCR catalyst
CN115445604A (en) Resource recycling method of waste denitration catalyst
CN104630482A (en) Alkali-leaching ion exchange method for comprehensively utilizing waste denitrification catalyst
CN105621483A (en) Process for reclaiming honeycomb SCR waste catalyst
CN113716669B (en) Method for degrading sulfur-containing organic wastewater by using ferrous sulfide mechanically
CN104772318A (en) Comprehensive utilization method for waste SCR denitration catalyst
JP7018493B2 (en) Multi-stage reaction and separation system for hydrometallurgy based on carbon dioxide
US20190309392A1 (en) Process for the preparation of a concentrate of metals, rare metals and rare earth metals from residues of alumina production by bayer process or from materials with a chemical composition similar to said residues, and refinement of the concentrate so obtained
CN104178636A (en) Method for recovering Ti, V, Mo and Si in SCR (selective catalytic reduction) waste catalyst by combination of activation calcination and acid leaching
CN109433217B (en) Red mud denitration catalyst and preparation method thereof
CN105771997A (en) Preparation method and application of dealkalized red mud
Chen et al. Catalysts prepared from solid wastes for efficient removal of NOx in NH3-SCR process: a review
CN102816933A (en) Treatment process method of chrome slag
CN106756053A (en) It is a kind of that titanium, the method for tungsten are separated and recovered from discarded SCR denitration

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant