KR20180075483A - 픽셀의 기울기에 기초하여 인트라 또는 인터 예측 블록을 후처리하는 방법 및 장치 - Google Patents

픽셀의 기울기에 기초하여 인트라 또는 인터 예측 블록을 후처리하는 방법 및 장치 Download PDF

Info

Publication number
KR20180075483A
KR20180075483A KR1020187008709A KR20187008709A KR20180075483A KR 20180075483 A KR20180075483 A KR 20180075483A KR 1020187008709 A KR1020187008709 A KR 1020187008709A KR 20187008709 A KR20187008709 A KR 20187008709A KR 20180075483 A KR20180075483 A KR 20180075483A
Authority
KR
South Korea
Prior art keywords
pixel
current
block
encoding unit
encoding
Prior art date
Application number
KR1020187008709A
Other languages
English (en)
Inventor
진보라
박민우
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Publication of KR20180075483A publication Critical patent/KR20180075483A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/85Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using pre-processing or post-processing specially adapted for video compression
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/107Selection of coding mode or of prediction mode between spatial and temporal predictive coding, e.g. picture refresh
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/117Filters, e.g. for pre-processing or post-processing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/124Quantisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/136Incoming video signal characteristics or properties
    • H04N19/14Coding unit complexity, e.g. amount of activity or edge presence estimation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/44Decoders specially adapted therefor, e.g. video decoders which are asymmetric with respect to the encoder
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/46Embedding additional information in the video signal during the compression process
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/80Details of filtering operations specially adapted for video compression, e.g. for pixel interpolation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/80Details of filtering operations specially adapted for video compression, e.g. for pixel interpolation
    • H04N19/82Details of filtering operations specially adapted for video compression, e.g. for pixel interpolation involving filtering within a prediction loop
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/90Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using coding techniques not provided for in groups H04N19/10-H04N19/85, e.g. fractals
    • H04N19/91Entropy coding, e.g. variable length coding [VLC] or arithmetic coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/90Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using coding techniques not provided for in groups H04N19/10-H04N19/85, e.g. fractals
    • H04N19/94Vector quantisation

Abstract

픽셀의 기울기에 기초하여 인트라 또는 인터 예측 블록을 후처리하는 부호화 방법 및 장치 또는 복호화 방법 및 장치가 개시된다. 개시된 일 실시예에 따른 영상 복호화 방법 및 장치는 복호화되는 현재 블록의 예측 모드 정보 및 예측 블록에 대한 필터링 수행 여부를 나타내는 필터링 정보를 비트스트림으로부터 획득하고, 예측 모드 정보에 따라서 현재 블록에 대한 제 1 예측 블록을 생성하고, 필터링 정보가 제 1 예측 블록에 대해 필터링을 수행함을 나타내는 경우, 제 1 예측 블록 내부의 현재 픽셀과 현재 픽셀의 주변 픽셀들 사이의 기울기 값에 기초하여 현재 픽셀의 픽셀값을 변경하여 제 2 예측 블록을 생성하고, 비트스트림으로부터 현재 블록과 제 2 예측 블록의 차이값에 해당하는 레지듀얼을 추출하여 복원하고, 레지듀얼과 제 2 예측 블록을 가산하여 현재 블록을 복호화한다.

Description

픽셀의 기울기에 기초하여 인트라 또는 인터 예측 블록을 후처리하는 방법 및 장치
본 명세서는 픽셀의 기울기에 기초하여 인트라 또는 인터 예측 블록을 후처리함으로써 영상의 압축 효율을 향상시키는 영상의 부호화 방법 및 장치, 그 복호화 방법 및 장치에 관한 것이다.
일반적인 영상 압축 표준안에서는 하나의 프레임을 복수 개의 블록 단위들로 분할한 다음 각 단위로 예측을 수행하여 예측 블록을 구하고, 원 영상 블록과 예측 블록의 차이를 변환 및 양자화하는 방식으로 영상 데이터를 압축한다.
예측의 방식으로는 인트라 예측(intra prediction)과 인터 예측(inter prediction)의 두 가지 종류가 있다. 인트라 예측은 현재 프레임에 존재하는 주변 블록의 데이터를 이용하여 현재 블록의 예측을 수행한다. 인터 예측은 블록 기반 움직임 보상을 이용하여 이전에 부호화된 하나 또는 그 이상의 참조 프레임으로부터 현재 블록에 대응되는 예측 블록을 생성한다. 부호화시에 인트라 예측 및 인터 예측에서 이용가능한 모든 부호화 모드에서 각각의 블록을 부호화한 다음, 블록의 부호화에 소요되는 비트율과 원 블록과 복호화된 블록과의 왜곡 정도에 따라 최적의 부호화 모드를 정해 블록을 부호화한다.
해결하고자 하는 기술적 과제는 픽셀의 기울기에 기초하여 인트라 또는 인터 예측 블록을 후처리함으로써 영상의 압축 효율을 향상시키는 영상의 부호화 방법 및 장치, 그 복호화 방법 및 장치를 제공하는 것이다.
상기 기술적 과제를 해결하기 위한 일 실시예에 따른 영상 복호화 방법은 복호화되는 현재 블록의 예측 모드 정보 및 예측 블록에 대한 필터링 수행 여부를 나타내는 필터링 정보를 비트스트림으로부터 획득하는 단계; 상기 예측 모드 정보에 따라서 상기 현재 블록에 대한 제 1 예측 블록을 생성하는 단계; 상기 필터링 정보가 상기 제 1 예측 블록에 대해 필터링을 수행함을 나타내는 경우, 상기 제 1 예측 블록 내부의 현재 픽셀과 상기 현재 픽셀의 주변 픽셀들 사이의 기울기 값에 기초하여 상기 현재 픽셀의 픽셀값을 변경하여 제 2 예측 블록을 생성하는 단계; 상기 비트스트림으로부터 상기 현재 블록과 상기 제 2 예측 블록의 차이값에 해당하는 레지듀얼을 추출하여 복원하는 단계; 및 상기 레지듀얼과 상기 제 2 예측 블록을 가산하여 상기 현재 블록을 복호화하는 단계를 포함한다.
또한, 일 실시예에 따른 영상 복호화 방법에서, 상기 제 1 예측 블록을 생성하는 단계는, 상기 현재 블록에 대한 인트라 예측 또는 인터 예측을 수행하여 상기 제 1 예측 블록을 생성하는 단계를 포함할 수 있다.
또한, 일 실시예에 따른 영상 복호화 방법에서, 상기 제 2 예측 블록을 생성하는 단계는, 상기 현재 픽셀의 픽셀값을 변경한 후, 상기 현재 픽셀에 인접한 다음 픽셀의 픽셀값을 변경하는 단계를 포함하고, 상기 다음 픽셀의 픽셀값은, 상기 다음 픽셀과 상기 다음 픽셀의 주변 픽셀들 사이의 기울기 값에 기초하여 변경될 수 있다.
또한, 일 실시예에 따른 영상 복호화 방법에서, 상기 제 2 예측 블록을 생성하는 단계는, 상기 현재 픽셀 및 상기 현재 픽셀의 상측에 위치한 상측 픽셀 사이의 차이 값을 나타내는 제 1 기울기 값 및 상기 현재 픽셀 및 상기 현재 픽셀의 좌측에 위치한 좌측 픽셀 사이의 차이 값을 나타내는 제 2 기울기 값에 기초하여, 상기 현재 픽셀, 상기 상측 픽셀 및 상기 좌측 픽셀의 가중치를 결정하는 단계; 및 상기 현재 픽셀의 가중치, 상기 상측 픽셀의 가중치 및 상기 좌측 픽셀의 가중치를 이용하여 상기 현재 픽셀의 픽셀값을 변경하는 단계를 포함할 수 있다.
또한, 일 실시예에 따른 영상 복호화 방법에서, 상기 제 1 예측 블록이 상기 인트라 예측을 이용하여 생성된 경우, 상기 현재 픽셀, 상기 상측 픽셀 및 상기 좌측 픽셀의 가중치는 상기 인트라 예측의 방향에 기초하여 결정될 수 있다.
또한, 일 실시예에 따른 영상 복호화 방법에서, 상기 제 2 예측 블록을 생성하는 단계는, 상기 제 1 기울기 값, 상기 제 2 기울기 값, 상기 현재 픽셀 및 상기 현재 픽셀의 우측에 위치한 우측 픽셀 사이의 차이 값을 나타내는 제 3 기울기 값 및 상기 현재 픽셀 및 상기 현재 픽셀의 하측에 위치한 하측 픽셀 사이의 차이 값을 나타내는 제 4 기울기 값에 기초하여, 상기 현재 픽셀, 상기 상측 픽셀, 상기 좌측 픽셀, 상기 우측 픽셀 및 상기 하측 픽셀의 가중치를 결정하는 단계를 더 포함하고, 상기 현재 픽셀의 픽셀값은 상기 현재 픽셀의 가중치, 상기 상측 픽셀의 가중치, 상기 좌측 픽셀의 가중치, 상기 우측 픽셀의 가중치 및 상기 하측 픽셀의 가중치에 기초하여 변경될 수 있다.
또한, 일 실시예에 따른 영상 복호화 방법에서, 상기 제 2 예측 블록을 생성하는 단계는, 상기 제 1 예측 블록의 크기를 mxn(m 및 n은 양의 정수), 상기 제 1 예측 블록 내부의 i번째 열 및 j번째 행에 위치한 상기 현재 픽셀의 픽셀값을 f[i][j], 상기 현재 픽셀의 가중치를 α, 상기 상측 픽셀의 픽셀값을 f[i][j-1], 상기 상측 픽셀의 가중치를 β, 상기 좌측 픽셀의 픽셀값을 f[i-1][j], 상기 좌측 픽셀의 가중치를 γ, 상기 우측 픽셀의 픽셀값을 f[i+1][j], 상기 우측 픽셀의 가중치를 δ, 상기 하측 픽셀의 픽셀값을 f[i][j+1], 상기 하측 픽셀의 가중치를 ε 라고 할 때, 다음의 수학식;
Figure pct00001
을 통해 상기 현재 픽셀의 픽셀값을 f`[i][j]로 변경하는 단계를 포함할 수 있다.
또한, 일 실시예에 따른 영상 복호화 방법에서, 상기 우측 픽셀의 가중치 δ는 상기 좌측 픽셀의 가중치 γ와 동일하고, 상기 하측 픽셀의 가중치 ε는 상기 상측 픽셀의 가중치 β와 동일할 수 있다.
또한, 일 실시예에 따른 영상 복호화 방법에서, 상기 우측 픽셀의 가중치 δ 및 상기 하측 픽셀의 가중치 ε는 0일 수 있다.
또한, 일 실시예에 따른 영상 복호화 방법에서, 상기 필터링 정보는 상기 필터링의 반복 적용 횟수에 대한 정보를 포함하고, 상기 제 2 예측 블록을 생성하는 단계는 상기 필터링의 반복 적용 횟수에 대한 정보에 기초하여 소정 횟수로 반복 수행될 수 있다.
또한, 일 실시예에 따른 영상 복호화 방법에서, 상기 제 2 예측 블록을 생성하는 단계는 상기 현재 픽셀의 변경 전 픽셀값과 변경 후 픽셀값의 차이가 소정의 임계값 이하로 수렴할 때까지 상기 제 2 예측 블록 내의 각 픽셀의 픽셀값을 변경하는 동작을 반복 수행할 수 있다.
일 실시예에 따른 영상 복호화 장치는, 복호화되는 현재 블록의 예측 모드 정보 및 예측 블록에 대한 필터링 수행 여부를 나타내는 필터링 정보를 비트스트림으로부터 획득하는 엔트로피 디코더; 상기 예측 모드 정보에 따라서 상기 현재 블록에 대한 제 1 예측 블록을 생성하는 예측부; 상기 필터링 정보가 상기 제 1 예측 블록에 대해 필터링을 수행함을 나타내는 경우, 상기 제 1 예측 블록 내부의 현재 픽셀과 상기 현재 픽셀의 주변 픽셀들 사이의 기울기 값에 기초하여 상기 현재 픽셀의 픽셀값을 변경하여 제 2 예측 블록을 생성하는 후처리부; 상기 비트스트림으로부터 상기 현재 블록과 상기 제 2 예측 블록의 차이값에 해당하는 레지듀얼을 추출하여 복원하는 역변환 및 역양자화부; 및 상기 레지듀얼과 상기 제 2 예측 블록을 가산하여 상기 현재 블록을 복호화하는 가산부를 포함한다.
또한, 일 실시예에 따른 영상 복호화 장치에서, 상기 예측부는 상기 현재 블록에 대한 인트라 예측 또는 인터 예측을 수행하여 상기 제 1 예측 블록을 생성할 수 있다.
또한, 일 실시예에 따른 영상 복호화 장치에서, 상기 후처리부는, 상기 현재 픽셀의 픽셀값을 변경한 후, 상기 현재 픽셀에 인접한 다음 픽셀의 픽셀값을 변경하고, 상기 다음 픽셀의 픽셀값은, 상기 다음 픽셀과 상기 다음 픽셀의 주변 픽셀들 사이의 기울기 값에 기초하여 변경될 수 있다.
일 실시예에 따른 영상 부호화 방법은, 부호화되는 현재 블록에 대한 제 1 예측 블록을 생성하는 단계; 상기 제 1 예측 블록 내부의 현재 픽셀과 상기 현재 픽셀의 주변 픽셀들 사이의 기울기 값에 기초하여 상기 현재 픽셀의 픽셀값을 변경하여 제 2 예측 블록을 생성하는 단계; 및 상기 현재 블록과 상기 제 2 예측 블록의 차이값을 부호화하는 단계를 포함한다.
도 1은 일 실시예에 따른 영상 부호화 장치의 구성을 나타낸 블록도이다.
도 2는 16×16 인트라 예측 모드의 일 예를 나타낸 도면이다.
도 3은 4×4 인트라 예측 모드의 일 예를 나타낸 도면이다.
도 4는 일 실시예에 따른 제 1 예측 블록의 후처리 동작을 설명하기 위한 참조도이다.
도 5는 일 실시예에 따른 후처리부(140)의 동작을 설명하기 위한 다른 참조도이다.
도 6은 일 실시예에 따라 픽셀 간의 기울기에 기초하여 제 1 블록을 후처리하는 동작을 설명하기 위한 참조도이다.
도 7은 일 실시예에 따른 영상 복호화 장치의 구성을 나타낸 블록도이다.
도 8은 일 실시예에 따른 영상 부호화 방법을 나타낸 플로우 차트이다.
도 9는 일 실시예에 따른 영상 복호화 방법을 나타낸 플로우 차트이다.
도 10은 일 실시예에 따라 현재 부호화 단위가 분할되어 적어도 하나의 부호화 단위가 결정되는 과정을 도시한다.
도 11은 일 실시예에 따라 비-정사각형의 형태인 부호화 단위가 분할되어 적어도 하나의 부호화 단위가 결정되는 과정을 도시한다.
도 12는 일 실시예에 따라 블록 형태 정보 및 분할 형태 정보 중 적어도 하나에 기초하여 부호화 단위가 분할되는 과정을 도시한다.
도 13은 일 실시예에 따라 홀수개의 부호화 단위들 중 소정의 부호화 단위가 결정되는 방법을 도시한다.
도 14는 일 실시예에 따라 현재 부호화 단위가 분할되어 복수개의 부호화 단위들이 결정되는 경우, 복수개의 부호화 단위들이 처리되는 순서를 도시한다.
도 15는 일 실시예에 따라 소정의 순서로 부호화 단위가 처리될 수 없는 경우, 현재 부호화 단위가 홀수개의 부호화 단위로 분할되는 것으로 결정되는 과정을 도시한다.
도 16은 일 실시예에 따라 제1 부호화 단위가 분할되어 적어도 하나의 부호화 단위가 결정되는 과정을 도시한다.
도 17은 일 실시예에 따라 제1 부호화 단위가 분할되어 결정된 비-정사각형 형태의 제2 부호화 단위가 소정의 조건을 만족하는 경우, 제2 부호화 단위가 분할될 수 있는 형태가 제한되는 것을 도시한다.
도 18은 일 실시예에 따라 분할 형태 정보가 4개의 정사각형 형태의 부호화 단위로 분할하는 것을 나타낼 수 없는 경우, 정사각형 형태의 부호화 단위가 분할되는 과정을 도시한다
도 19는 일 실시예에 따라 복수개의 부호화 단위들 간의 처리 순서가 부호화 단위의 분할 과정에 따라 달라질 수 있음을 도시한 것이다.
도 20은 일 실시예에 따라 부호화 단위가 재귀적으로 분할되어 복수개의 부호화 단위가 결정되는 경우, 부호화 단위의 형태 및 크기가 변함에 따라 부호화 단위의 심도가 결정되는 과정을 도시한다.
도 21은 일 실시예에 따라 부호화 단위들의 형태 및 크기에 따라 결정될 수 있는 심도 및 부호화 단위 구분을 위한 인덱스(part index, 이하 PID)를 도시한다.
도 22는 일 실시예에 따라 픽쳐에 포함되는 복수개의 소정의 데이터 단위에 따라 복수개의 부호화 단위들이 결정된 것을 도시한다.
도 23은 일 실시예에 따라 픽쳐에 포함되는 기준 부호화 단위의 결정 순서를 결정하는 기준이 되는 프로세싱 블록을 도시한다.
개시된 실시예의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것일 뿐이다.
본 명세서에서 사용되는 용어에 대해 간략히 설명하고, 개시된 실시예에 대해 구체적으로 설명하기로 한다.
본 명세서에서 사용되는 용어는 본 발명에서의 기능을 고려하면서 가능한 현재 널리 사용되는 일반적인 용어들을 선택하였으나, 이는 관련 분야에 종사하는 기술자의 의도 또는 판례, 새로운 기술의 출현 등에 따라 달라질 수 있다. 또한, 특정한 경우는 출원인이 임의로 선정한 용어도 있으며, 이 경우 해당되는 발명의 설명 부분에서 상세히 그 의미를 기재할 것이다. 따라서 본 발명에서 사용되는 용어는 단순한 용어의 명칭이 아닌, 그 용어가 가지는 의미와 본 발명의 전반에 걸친 내용을 토대로 정의되어야 한다.
본 명세서에서의 단수의 표현은 문맥상 명백하게 단수인 것으로 특정하지 않는 한, 복수의 표현을 포함한다.
명세서 전체에서 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있음을 의미한다. 또한, 명세서에서 사용되는 "부"라는 용어는 소프트웨어, FPGA 또는 ASIC과 같은 하드웨어 구성요소를 의미하며, "부"는 어떤 역할들을 수행한다. 그렇지만 "부"는 소프트웨어 또는 하드웨어에 한정되는 의미는 아니다. "부"는 어드레싱할 수 있는 저장 매체에 있도록 구성될 수도 있고 하나 또는 그 이상의 프로세서들을 재생시키도록 구성될 수도 있다. 따라서, 일 예로서 "부"는 소프트웨어 구성요소들, 객체지향 소프트웨어 구성요소들, 클래스 구성요소들 및 태스크 구성요소들과 같은 구성요소들과, 프로세스들, 함수들, 속성들, 프로시저들, 서브루틴들, 프로그램 코드의 세그먼트들, 드라이버들, 펌웨어, 마이크로 코드, 회로, 데이터, 데이터베이스, 데이터 구조들, 테이블들, 어레이들 및 변수들을 포함한다. 구성요소들과 "부"들 안에서 제공되는 기능은 더 작은 수의 구성요소들 및 "부"들로 결합되거나 추가적인 구성요소들과 "부"들로 더 분리될 수 있다.
이하, "영상"은 비디오의 정지영상와 같은 정적 이미지이거나 동영상, 즉 비디오 그 자체와 같은 동적 이미지를 나타낼 수 있다.
이하 "샘플"은, 영상의 샘플링 위치에 할당된 데이터로서 프로세싱 대상이 되는 데이터를 의미한다. 예를 들어, 공간영역의 영상에서 픽셀값, 변환 영역 상의 변환 계수들이 샘플들일 수 있다. 이러한 적어도 하나의 샘플들을 포함하는 단위를 블록이라고 정의할 수 있다.
아래에서는 첨부한 도면을 참고하여 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략한다.
이하 도 1 내지 도 23을 참조하여 일 실시예에 따른 영상 부호화 장치 및 영상 복호화 장치, 영상 부호화 방법 및 영상 복호화 방법이 상술된다. 도 1 내지 도 9를 참조하여 일 실시예에 따른 픽셀의 기울기에 기초하여 인트라 예측 블록 또는 인터 예측 블록을 후처리하는 부호화 방법 및 장치 또는 복호화 방법 및 장치가 후술되고, 도 10 내지 도 23을 참조하여 일 실시예에 따른 영상의 데이터 단위를 결정하는 방법이 후술된다.
이하 도 1 내지 도 9를 참조하여 일 실시예에 따른 픽셀의 기울기에 기초하여 인트라 예측 블록 또는 인터 예측 블록을 후처리하는 부호화 방법 및 장치 또는 복호화 방법 및 장치가 상술된다.
도 1은 일 실시예에 따른 영상 부호화 장치의 구성을 나타낸 블록도이다.
일 실시예에 따른 영상 부호화 장치(100)는 영상을 부호화하기 위해, 부호화 단위의 최대 크기에 따라 현재 픽처의 영상 데이터를 최대 부호화 단위로 분할할 수 있다. 각각의 최대 부호화 단위는 블록 형태 및 분할 형태별로 분할되는 부호화 단위들을 포함할 수 있다. 일 실시예에 따른 최대 부호화 단위는 최대 부호화 단위에 포함된 공간 영역(spatial domain)의 영상 데이터가 블록 형태 및 분할 형태에 따라 계층적으로 분류될 수 있다. 부호화 단위의 블록 형태는 정사각형 또는 직사각형일 수 있으며, 임의의 기하학적 형태일 수 있으므로, 일정한 크기의 데이터 단위로 제한되는 것은 아니다.
부호화되는 픽처의 크기가 커짐에 따라, 더 큰 단위로 영상을 부호화하면 더 높은 영상 압축률로 영상을 부호화할 수 있다. 그러나, 부호화 단위를 크게 하고, 그 크기를 고정시켜버리면, 계속해서 변하는 영상의 특성을 반영하여 효율적으로 영상을 부호화할 수 없다.
예를 들어, 바다 또는 하늘에 대한 평탄한 영역을 부호화할 때에는 부호화 단위를 크게 할수록 압축률이 향상될 수 있으나, 사람들 또는 빌딩에 대한 복잡한 영역을 부호화할 때에는 부호화 단위를 작게 할수록 압축률이 향상된다.
이를 위해 일 실시예에 따른 영상 부호화 장치(100)는 픽처 또는 슬라이스마다 상이한 크기의 최대 부호화 단위를 설정하고, 최대 부호화 단위로부터 분할되는 하나 이상의 부호화 단위의 블록 형태 및 분할 형태를 설정한다. 블록 형태 및 분할 형태에 따라 최대 부호화 단위에 포함된 부호화 단위의 크기를 가변적으로 설정할 수 있게 된다.
하나 이상의 부호화 단위의 블록 형태 및 분할 형태는 R-D 코스트(Rate-Distortion Cost) 계산에 기초해 결정될 수 있다. 블록 형태 및 분할 형태는 픽처 또는 슬라이스마다 상이하게 결정되거나, 각각의 최대 부호화 단위마다 상이하게 결정될 수도 있다.
일 실시예에 따라, 최대 부호화 단위로부터 분할되는 부호화 단위는 블록 형태 및 분할 형태로 특징지어질 수 있다. 블록 형태 및 분할 형태로 부호화 단위를 결정하는 구체적인 방식에 대해서는 도 10 내지 도 23을 통해 보다 상세히 후술하기로 한다.
도 1을 참조하면, 일 실시예에 따른 영상 부호화 장치(100)는 예측부(110), 변환 및 양자화부(120), 엔트로피 코딩부(130) 및 후처리부(140)를 포함한다.
예측부(110)는 인터 예측과 인트라 예측을 수행한다. 인터 예측은 이전에 부호화되고 복원되어 저장된 참조 픽쳐를 이용하여, 현재 블록을 예측하는 것을 말한다. 이러한 인터 예측은 움직임 추정부(111) 및 움직임 보상부(112)에서 수행된다. 인트라 예측은 예측하고자 하는 블록에 인접한 블록의 픽셀을 이용하여 현재 블록을 예측하는 것을 말한다. 이러한 인트라 예측은 인트라 예측부(113)에서 수행된다. 인트라 예측에서 사용되는 모드는 크게 4×4 인트라 예측 모드, 8×8 인트라 예측 모드 및 16×16 인트라 예측 모드로 구분된다.
도 2는 16×16 인트라 예측 모드의 일 예를 나타낸 도면이고, 도 3은 4×4 인트라 예측 모드의 일 예를 나타낸 도면이다.
도 2를 참조하면, 16×16 인트라 예측 모드에는 수직(Vertical) 모드, 수평(Horizontal) 모드, DC(Direct Current) 모드, 플레인(plane) 모드의 총 4개의 모드가 존재한다. 또한, 도 3을 참조하면, 4×4 인트라 예측 모드에는 수직(Vertical) 모드, 수평(Horizontal) 모드, DC(Direct Current) 모드, 대각선 왼쪽(Diagonal Down-left) 모드, 대각선 오른쪽(Diagonal Down-right) 모드, 수직 오른쪽(Vertical right) 모드, 수직 왼쪽(Vertical left) 모드, 수평 위쪽(Horizontal-up) 모드 및 수평 아래쪽(Horizontal-down) 모드의 총 9개의 모드가 존재한다.
예를 들어, 도 3의 모드 0, 즉 수직 모드에 따라, 4×4 크기의 현재 블록을 예측 부호화하는 동작을 설명한다. 먼저 4×4 크기의 현재 블록의 위쪽에 인접한 픽셀 A 내지 D의 픽셀값을 4×4 현재 블록의 픽셀값으로 예측한다. 즉, 픽셀 A의 값을 4×4 현재 블록의 첫 번째 열에 포함된 4개의 픽셀값으로, 픽셀 B의 값을 4×4 현재 블록의 두 번째 열에 포함된 4개의 픽셀값으로, 픽셀 C의 값을 4×4 현재 블록의 세 번째 열에 포함된 4개의 픽셀값으로, 픽셀 D의 값을 4×4 현재 블록의 네 번째 열에 포함된 4개의 픽셀값으로 예측한다. 이와 같이 소정 방향으로 주변 픽셀의 값을 확장하는 인트라 예측을 통해 생성된 예측 블록은 예측 모드에 따라서 일정한 방향성을 갖는다. 이러한 예측 블록 내부의 방향성은 부호화되는 현재 블록의 픽셀들이 일정한 방향성을 갖는 경우에는 예측 효율이 향상될 수 있지만 현재 블록의 픽셀들이 방향성을 갖지 않는 경우에는 예측 효율이 떨어질 수 있다. 따라서, 후술되는 바와 같이 일 실시예에 따른 영상 부호화 장치의 후처리부(140)는 예측 블록에 대한 후처리 동작으로서, 예측 블록 내부의 각 픽셀과 적어도 하나의 주변 픽셀을 이용한 연산을 통해 예측 블록 내부의 각 픽셀의 픽셀값을 변경하여 새로운 예측 블록을 생성함으로써 영상의 예측 효율을 향상시킨다.
다시 도 1을 참조하면, 변환 및 양자화부(120)는 예측부(110) 및 후처리부(140)에서 출력되는 예측 블록과 원 영상 블록의 차이값인 레지듀얼을 변환 및 양자화하고, 엔트로피 코딩부(130)는 양자화된 레지듀얼 정보를 가변 길이 부호화하여 압축을 수행한다. 부호화된 레지듀얼은 역양자화부(114) 및 역변환부(115)를 통해 복원되고, 가산부(116)는 복원된 레지듀얼과 예측 블록을 가산하여 현재 블록을 복원한다. 복원된 블록은 미도시된 저장부에 저장되어서 다음 블록의 부호화시에 참조 데이터로서 이용된다.
이하, 도 1의 후처리부(140)에서 수행되는 예측 블록의 후처리 동작에 대하여 설명한다.
후처리부(140)는 움직임 보상부(112) 또는 인트라 예측부(113)에서 생성된 제 1 예측 블록을 구성하는 각 픽셀과 적어도 하나의 주변 픽셀을 이용한 연산을 통해 제 1 예측 블록을 구성하는 각 픽셀의 픽셀값을 변경하여 제 2 예측 블록을 생성한다. 여기서, 움직임 보상부(112)는 일반적인 인터 예측 방식을 적용하여 제 1 예측 블록을 생성할 수 있다. 또한, 인트라 예측부(113)는 일반적인 인트라 예측 방식을 적용하여 제 1 예측 블록을 생성할 수 있다.
도 4는 일 실시예에 따른 제 1 예측 블록의 후처리 동작을 설명하기 위한 참조도이다. 도 4에서 도면 부호 410 내지 460은 후처리부(140)에 의하여 처리되는 제 1 예측 블록의 내부의 각 픽셀값이 변경되는 과정을 시간 순서로 나타낸 것이다.
도 4를 참조하면, 일 실시예에 따른 후처리부(140)는 제 1 예측 블록 내부의 변경하고자 하는 픽셀과 그 상측 및 좌측에 위치한 주변 픽셀들의 픽셀값들에 기초한 연산을 통해 제 1 예측 블록의 각 픽셀의 픽셀값을 변경할 수 있다. 여기서, 변경하고자 하는 픽셀과 상측에 위치한 픽셀과의 차이 값인 제 1 기울기 값 및 변경하고자 하는 픽셀과 좌측에 위치한 픽셀과의 차이 값인 제 2 기울기 값에 기초하여, 변경하고자 하는 픽셀과 상측 및 좌측에 위치한 픽셀에 가중치가 부여될 수 있다. 예를 들어, 도 4에서 제 1 예측 블록(410)의 변경하고자 하는 현재 픽셀(411)의 픽셀값을 f[1][1], 상측에 위치한 픽셀(412)의 픽셀값을 f[1][0], 좌측에 위치한 픽셀(413)의 픽셀값을 f[0][1]이라고 하면, 픽셀(411)의 픽셀값 f[1][1]을 변경한 값을 f'[1][1]이라고 하면, f'[1][1]은 다음의 수학식 1과 같이 계산될 수 있다.
Figure pct00002
수학식 1에서, α, β, γ는 각각의 위치의 픽셀에 적용되는 가중치 값으로서, 임의의 양의 실수 값을 가질 수 있으며, 제 1 기울기 값 및 제 2 기울기 값에 기초하여 결정될 수 있다. 각 픽셀에 적용되는 가중치 값이 결정되는 구체적인 과정에 대해서는 도 6을 참조하여 후술하기로 한다.
도 4에 도시된 바와 같이, 일 실시예에 따른 후처리부(140)는 제 1 예측 블록 내부의 각 픽셀들에 대해서 최좌상측으로부터 최우하측 방향으로 변경하고자 하는 픽셀과 그 상측 및 좌측에 위치한 픽셀들에 가중치를 부여한 연산을 통해 제 1 예측 블록의 각 픽셀의 픽셀값을 변경한다. 그러나, 일 실시예에 따른 예측 블록의 후처리 동작은 최좌상측으로부터 최우하측 방향으로 한정되는 것이 아니라, 최우상측으로부터 최좌하측 방향으로, 또는 최우하측으로부터 최좌상측 방향으로, 또는 최좌하측으로부터 최우상측 방향으로 제 1 예측 블록의 각 픽셀들에 대하여 순차적으로 수행될 수 있다. 예를 들어 도 4에 도시된 처리 순서와 반대로 최우하측으로부터 최좌상측 방향으로 제 1 예측 블록의 픽셀들을 변경하는 경우에는 변경하고자 하는 픽셀과 그 하측 및 우측에 위치한 픽셀들에 기울기에 기초한 가중치를 적용하여 제 1 예측 블록의 각 픽셀의 픽셀값을 변경한다.
한편, 도 4에서는 변경하고자 하는 픽셀의 상측 및 좌측에 위치한 픽셀을 고려하는 것으로 설명하였으나, 다른 실시예에 따라 변경하고자 하는 픽셀의 상하좌우 픽셀을 이용할 수도 있다. 따라서, 제 1 예측 블록의 후처리 동작에 있어서 변경하고자 하는 픽셀의 상측 및 좌측 픽셀만 이용되는 것으로 한정 해석되어서는 안될 것이다. 현재 픽셀의 상하좌우 픽셀을 이용하여 후처리를 수행하는 실시예는 도 6을 통해 상세히 후술하기로 한다.
도 5는 일 실시예에 따른 후처리부(140)의 동작을 설명하기 위한 다른 참조도이다. 도 5에서 도면 부호 510은 현재 변경하고자 하는 제 1 예측 블록의 현재 픽셀을 나타내며, 도면 부호 511은 현재 픽셀(510)의 상측에 위치한 상측 픽셀을 나타내며, 도면 부호 512는 현재 픽셀(510)의 좌측에 위치한 좌측 픽셀을 나타낸다.
도 5를 참조하여, 일 실시예에 따른 후처리부(140)의 동작을 일반화하면 다음과 같다. 제 1 예측 블록의 크기를 mxn(m 및 n은 양의 정수), 제 1 예측 블록 내부의 변경하고자 하는 i(i는 0부터 m-1까지의 정수)번째 열 및 j(j는 0부터 n-1까지의 정수)번째 행에 위치한 현재 픽셀(510)의 픽셀값을 f[i][j], 현재 픽셀(510)의 상측에 위치한 상측 픽셀(511)의 픽셀값을 f[i][j-1], 현재 픽셀(510)의 좌측에 위치한 좌측 픽셀(512)의 픽셀값을 f[i-1][j], 라고 할 때, 다음의 수학식 2를 통해 현재 픽셀(510)의 픽셀값을 f'[i][j]로 변경한다.
Figure pct00003
수학식 2에서, α, β, γ는 각각의 위치의 픽셀에 적용되는 가중치 값(또는 필터 계수)으로서, 임의의 양의 실수 값을 가질 수 있으며, 제 1 기울기 값 및 제 2 기울기 값에 기초하여 결정될 수 있다.
후처리부(140)는 제 1 예측 블록(500) 내부의 모든 픽셀들에 대하여 최좌상측에서 최우하측 방향으로 전술한 수학식 2를 적용하여 픽셀값을 변경함으로써 제 2 예측 블록을 생성한다.
도 6은 일 실시예에 따라 픽셀 간의 기울기에 기초하여 제 1 예측 블록을 후처리하는 동작을 설명하기 위한 참조도이다.
도 6을 참조하면, 제 1 예측 블록 내의 변경하고자 하는 현재 픽셀(610)의 픽셀값이 “C”일 때, 주변 픽셀들 중 상측 픽셀(620)의 픽셀값은 “A”이고, 좌측 픽셀(630)의 픽셀값은 “L”이며, 우측 픽셀(640)의 픽셀값은 “R”이며, 하측 픽셀(650)의 픽셀값은 “B”로 나타낸다.
일 실시예에 따라, 후처리부(140)는 현재 픽셀(610)의 픽셀값을 변경하기 위해 상측 픽셀(620) 및 좌측 픽셀(630) 뿐만 아니라, 우측 픽셀(640) 및 하측 픽셀(650)의 픽셀값을 이용할 수도 있다. 일 실시예에 따라, 후처리부(140)는 현재 픽셀(610), 상측 픽셀(620), 좌측 픽셀(630), 우측 픽셀(640) 및 하측 픽셀(650)에 부여할 가중치들을 결정할 수 있다. 가중치는 현재 픽셀(610)과 상측 픽셀(620) 사이의 차이 값을 나타내는 제 1 기울기 값(예를 들어, |A-C|), 현재 픽셀(610)과 좌측 픽셀(630) 사이의 차이 값을 나타내는 제 2 기울기 값(예를 들어, |L-C|), 현재 픽셀(610)과 우측 픽셀(640) 사이의 차이 값을 나타내는 제 3 기울기 값(예를 들어, |R-C|) 및 현재 픽셀(610)과 하측 픽셀(650) 사이의 차이 값을 나타내는 제 4 기울기 값(예를 들어, |B-C|)에 따라 결정될 수 있다. 예를 들어, 기울기 값이 큰 순서대로 가중치가 차등적으로 부여될 수 있다.
일 실시예에 따라, 상측 픽셀(620) 및 좌측 픽셀(630)의 가중치가 먼저 결정되고, 결정된 상측 픽셀(620) 및 좌측 픽셀(630)의 가중치에 기초하여 우측 픽셀(640) 및 하측 픽셀(650)의 가중치가 결정될 수도 있다. 예를 들어, 제 1 기울기 값이 상기 제 2 기울기 값보다 큰 경우 상측 픽셀(620)의 가중치는 좌측 픽셀(630)의 가중치보다 크고, 제 2 기울기 값이 제 1 기울기 값보다 큰 경우 좌측 픽셀(630)의 가중치는 상측 픽셀(620)의 가중치보다 클 수 있다. 또한, 제 1 기울기 값과 제 2 기울기 값이 동일한 경우 상측 픽셀(620) 및 좌측 픽셀(630)의 가중치는 동일할 수 있다. 상측 픽셀(620) 및 좌측 픽셀(630)의 가중치가 결정되면, 우측 픽셀(640)의 가중치는 좌측 픽셀(630)의 가중치와 동일하게 결정될 수도 있으며, 하측 픽셀(650)의 가중치는 상측 픽셀(620)의 가중치와 동일하게 결정될 수도 있다.
다른 실시예에 따라, 후처리부(140)가 현재 픽셀(610)의 픽셀값을 변경하기 위해 상측 픽셀(620) 및 좌측 픽셀(630) 만을 이용하는 경우, 우측 픽셀(640) 및 하측 픽셀(650)의 가중치는 0으로 결정될 수 있다.
후처리부(140)가 현재 픽셀(610)의 픽셀값을 변경하기 위해 상측 픽셀(620) 및 좌측 픽셀(630) 만을 이용하는 경우에 있어서, 제 1 기울기 값이 제 2 기울기 값보다 클 경우 현재 픽셀(610), 상측 픽셀(620) 및 좌측 픽셀(630)에 각각 64, 40, 24 의 가중치가 부여될 수 있다. 또 다른 예로, 제 2 기울기 값이 제 1 기울기 값보다 클 경우 현재 픽셀(610), 상측 픽셀(620) 및 좌측 픽셀(630)에 각각 64, 24, 40 의 가중치가 부여될 수 있다.
한편, 현재 픽셀(610), 상측 픽셀(620) 및 좌측 픽셀(630)의 가중치는 제 1 예측 블록을 생성하기 위해 사용된 인트라 예측의 방향에 기초하여 결정될 수도 있다. 즉, 제 1 예측 블록을 생성하기 위해 사용된 인트라 예측의 방향이 수직 방향인 경우 상측 픽셀(620)의 가중치가 좌측 픽셀(630)의 가중치보다 클 수 있다. 또한, 제 1 예측 블록을 생성하기 위해 사용된 인트라 예측의 방향이 수평 방향인 경우 좌측 픽셀(630)의 가중치가 상측 픽셀(620)의 가중치보다 클 수 있다.
상술한 실시예에서, 상측 픽셀(620), 좌측 픽셀(630), 우측 픽셀(640) 및 하측 픽셀(650)은 현재 픽셀(610)에 인접한 픽셀인 경우로 설명하였으나, 다양한 실시예에 따라서 상측 픽셀(620), 좌측 픽셀(630), 우측 픽셀(640) 및 하측 픽셀(650)은 현재 픽셀(610)로부터 반드시 인접한 픽셀일 필요는 없다. 예를 들어, 제 1 예측 블록의 후처리(필터링)에 이용될 픽셀은 참조 샘플 내에서 고정된 위치의 픽셀일 수 있다. 일 실시예에 따라, 현재 픽셀(610)의 픽셀값을 변경하기 위해 이용되는 상측 픽셀(620), 좌측 픽셀(630), 우측 픽셀(640) 및 하측 픽셀(650)은 참조 샘플 또는 예측 블록 내 생성된 픽셀일 수 있다.
전술한 바와 같이, 예측 블록을 후처리함으로써 주변 블록과 예측 블록 사이의 경계를 완화시킴으로써 예측 성능이 향상될 수 있다. 또한, 전술한 바와 같이 현재 픽셀과 주변 픽셀들 사이의 기울기(gradient) 값이 큰 방향의 가중치가 크도록 필터링을 수행할 경우, 픽셀 값의 차이가 크게 나는 부분(즉, 경계의 비연속성의 정도가 심한 부분)에서 예측 성능이 향상될 수 있다.
일 실시예에 따라, 현재 픽셀을 기준으로 상하좌우 픽셀을 이용한 후처리 동작을 일반화하면 다음과 같다. 제 1 예측 블록의 크기를 mxn(m 및 n은 양의 정수), 제 1 예측 블록 내부의 변경하고자 하는 i(i는 0부터 m-1까지의 정수)번째 열 및 j(j는 0부터 n-1까지의 정수)번째 행에 위치한 현재 픽셀(610)의 픽셀값을 f[i][j], 상측 픽셀(620)의 픽셀값을 f[i][j-1], 좌측 픽셀(630)의 픽셀값을 f[i-1][j], 우측 픽셀의 픽셀값을 f[i+1][j], 하측 픽셀의 픽셀값을 f[i][j+1]라고 할 때, 다음의 수학식 3을 통해 현재 픽셀(610)의 픽셀값을 f'[i][j]로 변경한다.
Figure pct00004
수학식 3에서, α, β, γ, δ, ε 는 각각의 위치의 픽셀에 적용되는 가중치 값(또는 필터 계수)으로서, 임의의 양의 실수 값을 가질 수 있으며, 제 1 내지 제 4 기울기 값들에 기초하여 결정될 수 있다.
일 실시예에 따라, 현재 픽셀의 픽셀값이 변경되면, 현재 픽셀에 인접한 다음 픽셀의 픽셀값을 변경하는 후처리 동작이 수행될 수 있다. 이 때, 다음 픽셀의 픽셀값은 변경된 현재 픽셀의 경우와 마찬가지로 다음 픽셀의 주변 픽셀들 사이의 기울기 값에 기초하여 변경될 수 있다. 이처럼, 일 실시예에 따른 후처리부(140)는 제 1 예측 블록 내부의 각 픽셀들에 대해서 소정 방향으로 변경하고자 하는 픽셀과 그 주변에 위치한 픽셀들에 가중치를 부여한 연산을 통해 제 1 예측 블록의 각 픽셀의 픽셀값을 변경하여 제 2 예측 블록을 생성할 수 있다. 일 실시예에 따른 예측 블록의 후처리 동작은 최좌상측으로부터 최우하측 방향으로 한정되는 것이 아니라, 최우상측으로부터 최좌하측 방향으로, 또는 최우하측으로부터 최좌상측 방향으로, 또는 최좌하측으로부터 최우상측 방향으로 제 1 예측 블록의 각 픽셀들에 대하여 순차적으로 수행될 수도 있다.
일 실시예에 따라, 제 1 예측 블록에 대해 수행되는 후처리 동작은 소정 횟수에 따라 반복 적용될 수도 있다. 예를 들어, 전술한 실시예에 따라 제 1 예측 블록에 대해 후처리를 수행하여 첫 번째 필터링된 블록을 생성하고, 첫 번째 필터링된 블록에 대해 다시 후처리 동작을 수행하여 두 번째 필터링된 블록을 생성할 수 있다. 일 실시예에 따른 후처리부(140)는 제 1 예측 블록에 대해 후처리 동작을 k(k는 양의 정수) 회에 걸쳐 수행하여 k 번째 필터링된 블록을 생성할 수 있다. 이 때, 최종적으로 생성된 k 번째 필터링된 블록은 제 2 예측 블록일 수 있다. 후처리 동작이 수행되는 횟수 k는 미리 정해진 값으로서 부호화 장치(100)로부터 복호화 장치(700)로 전송되는 정보에 포함되는 값일 수 있다. 또한, 후처리부(140)는 각각의 픽셀의 변경 전 픽셀값과 변경 후 픽셀값의 차이가 소정의 임계값 이하로 수렴할 때까지 제 2 예측 블록 내의 각 픽셀의 픽셀값을 변경하는 동작을 반복 수행할 수도 있다.
다시 도 1을 참조하면, 미도시된 제어부는 전술한 일 실시예에 따른 연산을 적용하여 생성된 제 2 예측 블록들을 부호화한 비트스트림의 코스트를 비교하고, 최소 코스트를 갖는 제 2 예측 블록을 생성하는데 이용된 연산 정보를 비트스트림의 헤더 영역에 부가한다. 연산 정보를 비트스트림에 부가할 때 제어부는 소정 개수의 블록들의 부호화시에 결정된 연산 정보의 분포에 기초하여, 많이 이용되는 연산 정보에 적은 비트를 할당하는 가변 길이 부호화 방식을 적용함으로써 서로 다른 연산을 구분하여 표시할 수 있다.
한편, 블록을 더 작은 서브 블록들로 나누어 예측을 수행하는 경우, 각 서브 블록 별로 서로 다른 연산을 적용하여 제 2 예측 블록을 생성할 수도 있고, 계산을 간소화하고 오버 헤드의 비율을 낮추기 위해서 동일한 블록에 포함되는 서브 블록들에는 동일한 연산을 적용되도록 할 수 있다.
최적의 연산 모드를 결정하기 위한 코스트로는 율-왜곡 최적화(Rate-Distortion Optimization) 방식이 이용될 수 있다. 일 실시예에 따른 부호화 방법은 다른 블록의 참조 블록으로 이용되는 예측 블록에 적용되기 때문에 율-왜곡 최적화 방식에서 왜곡값(distortion)에 높은 가중치를 두어 코스트를 계산하는 것이 바람직하다. 즉, 종래 율-왜곡 최적화 방식은 수학식; Cost=왜곡값(distortion)+비트율(bit-rate) 과 같이 부호화된 영상과 원영상의 차이값인 왜곡값 및 발생되는 비트레이트에 기초하여 코스트를 계산한다.
이에 반하여 일 실시예에 따른 부호화 방식에서는 수학식; Cost=α*왜곡값(distortion)+비트율(bit-rate) (α는 2 이상의 실수값) 와 같이 종래 율-왜곡 최적화 방식에 비하여 왜곡값에 보다 높은 가중치를 할당하여 최적의 연산 모드를 결정하는 것이 바람직하다.
일 실시예에 따른 영상 부호화 장치(100)는 최적의 연산 모드를 결정하기 위한 코스트를 계산하여, 인트라 또는 인터 예측된 제 1 예측 블록을 후처리하는 동작을 수행할지 여부를 결정할 수 있다. 또한, 일 실시예에 따른 영상 부호화 장치(100)는 블록의 블록 크기, 블록 모드, 인트라 예측 방향, 주변 블록의 부호화 정보, 주변 영상의 특성, 사용자 입력, 연산복잡도, 다양한 파라미터 등에 기초하여 가변적으로 필터링 수행 여부를 결정할 수도 있다. 일 실시예에 따른 영상 부호화 장치(100)는 필터링 수행 여부를 나타내는 필터링 정보를 비트스트림을 통해 영상 복호화 장치(700)로 전송할 수 있다. 이 때, 필터링 정보는 블록, 슬라이스(slice), 픽처(picture), 시퀀스(sequence), 비디오(video) 등의 단위에서 시그널링 될 수 있다.
도 7은 일 실시예에 따른 영상 복호화 장치의 구성을 나타낸 블록도이다.
도 7을 참조하면, 영상 복호화 장치(700)는 엔트로피 디코더(710), 재정렬부(720), 역양자화부(730), 역변환부(740), 가산부(745), 움직임 보상부(750), 인트라 예측부(760), 필터(770) 및 후처리부(780)를 포함한다.
엔트로피 디코더(710)는 영상 복호화 장치(700)가 수신한 비트스트림을 파싱하여, 부호화 단위별로 영상 데이터를 획득한다. 엔트로피 디코더(710)는 현재 픽처 또는 슬라이스에 대한 파라미터 셋 RBSP(Raw byte sequence payload)로부터 현재 픽처 또는 슬라이스에 대한 정보를 추출할 수 있다.
일 실시예에 따른 영상 복호화 장치(700)는 수신된 비트열을 파싱하여, 최대 부호화 단위의 크기, 최대 부호화 단위로부터 분할되는 부호화 단위의 블록 형태 및 분할 형태, 부호화 단위의 부호화 모드에 관한 정보를 추출한다. 블록 형태, 분할 형태 및 부호화 모드에 관한 정보는 복호화에 이용되며, 부호화 모드에 관한 정보는, 블록 형태, 분할 형태, 부호화 단위별 예측 모드 정보, 변환 단위의 크기 정보 등을 포함할 수 있다.
일 실시예에 따른 엔트로피 디코더(710)는 압축된 비트스트림을 수신하고 엔트로피 복호화를 수행하여 현재 블록의 예측 모드 정보 및 제 2 예측 블록의 생성을 위해서 이용된 후처리 연산 모드 정보를 추출한다. 또한, 엔트로피 디코더(710)는 텍스쳐 데이터에 대한 엔트로피 복호화를 수행하여 현재 블록의 양자화된 변환 계수를 추출한다. 역양자화부(730) 및 역변환부(740)는 양자화된 변환 계수에 대한 역양자화 및 역변환을 수행하여 부호화시에 현재 블록과 제 2 예측 블록의 차이에 해당하는 레지듀얼을 복원한다. 움직임 보상부(750) 및 인트라 예측부(760)은 현재 블록의 예측 모드에 따라서 예측 블록을 생성하여 출력한다. 후처리부(780)는 현재 블록이 전술한 도 1의 후처리부(140)에서 생성된 제 2 예측 블록을 이용하여 부호화된 경우, 비트스트림으로부터 추출된 후처리 연산 정보에 따라서 움직임 보상부(750) 또는 인트라 예측부(760)에서 생성된 제 1 예측 블록의 각 픽셀값을 변경함으로써 제 2 예측 블록을 생성한다. 복호화 장치(700)의 후처리부(780)의 동작은 비트스트림으로부터 추출된 후처리 연산 정보에 따라서 제 2 예측 블록을 생성한다는 점을 제외하고는 도 1의 후처리부(140)의 동작과 동일하므로 구체적인 설명은 생략한다.
일 실시예에 따라, 비트스트림으로부터 추출된 후처리 연산 정보에는 제 1 예측 블록에 대한 필터링 수행 여부를 나타내는 필터링 정보가 포함될 수 있다. 따라서, 필터링 정보가 제 1 예측 블록에 대해 필터링을 수행함을 나타내는 경우, 제 1 예측 블록 내부의 현재 픽셀과 현재 픽셀의 주변 픽셀들 사이의 기울기 값에 기초하여 현재 픽셀의 픽셀값을 변경하는 후처리 동작이 수행될 수 있다. 그러나, 필터링 정보가 제 1 예측 블록에 대해 필터링을 수행하지 않음을 나타내는 경우, 후처리부(780)의 후처리 동작은 생략되며 제 2 예측 블록은 제 1 예측 블록과 동일하게 된다.
또한, 일 실시예에 따라, 비트스트림으로부터 추출된 후처리 연산 정보에는 필터링의 반복 적용 횟수에 대한 정보가 포함될 수 있다. 일 실시예에 따른 후처리부(780)는 비트스트림으로부터 추출된 필터링의 반복 적용 횟수에 대한 정보에 기초하여 후처리 연산을 반복 수행할 수도 있다.
일 실시예에 따른 필터링 수행 여부를 나타내는 정보 및 필터링 횟수를 나타내는 정보는 다양한 데이터 단위와 관련된 비트스트림에 포함될 수 있다. 예를 들면, 영상 복호화 장치(700)는 시퀀스 파라미터 세트(sequence parameter set), 픽쳐 파라미터 세트(picture parameter set), 비디오 파라미터 세트(video parameter set), 슬라이스 헤더(slice header), 슬라이스 세그먼트 헤더(slice segment header)에 포함된 필터링 수행 여부를 나타내는 정보 또는 필터링 횟수를 나타내는 정보를 이용할 수 있다. 나아가, 영상 복호화 장치(700)는 최대 부호화 단위, 기준 부호화 단위, 프로세싱 블록마다 비트스트림으로부터 필터링 수행 여부를 나타내는 정보 또는 필터링 횟수를 나타내는 정보에 대응하는 신택스를 비트스트림으로부터 획득하여 이용할 수 있다.
가산부(745)는 움직임 보상부(750), 인트라 예측부(760)에서 생성된 예측 블록과 복원된 레지듀얼을 더하여 현재 블록을 복호화한다. 특히 복호화되는 현재 블록이 상술한 실시예들에 따른 제 2 예측 블록에 기초하여 부호화된 경우, 가산부(745)는 후처리부(780)에서 생성된 제 2 예측 블록과 복원된 레지듀얼을 가산하여 현재 블록을 복호화한다. 복호화된 블록은 필터(770)를 거쳐 소정의 메모리에 저장된 후 다음 블록의 복호화시에 참조 데이터로 이용된다.
도 8은 일 실시예에 따른 영상 부호화 방법을 나타낸 플로우 차트이다.
도 8을 참조하면, 단계 S810에서 부호화되는 현재 블록에 대한 제 1 예측 블록을 생성한다. 여기서, 제 1 예측 블록은 일반적인 인트라 예측 또는 인터 예측 방식을 적용하여 생성된 예측 블록일 수 있다.
단계 S820에서 제 1 예측 블록 내부의 현재 픽셀과 현재 픽셀의 주변 픽셀들 사이의 기울기 값에 기초하여 현재 픽셀의 픽셀값을 변경하여 제 2 예측 블록을 생성한다. 전술한 후처리부(140)의 일 실시예에서 설명한 바와 같이, 제 1 예측 블록의 변경하고자 하는 픽셀을 중심으로 그 주변 픽셀들에 기울기에 기초한 가중치를 적용하여 제 1 예측 블록의 각 픽셀들의 픽셀값을 변경함으로써 제 2 예측 블록을 생성한다.
단계 S830에서 현재 블록과 제 2 예측 블록의 차이값을 부호화한다. 즉, 현재 블록과 제 2 예측 블록의 차이값인 레지듀얼을 변환, 양자화 및 엔트로피 부호화하여 비트스트림을 생성한다. 생성된 비트스트림의 소정 영역에는 제 2 예측 블록을 생성하는데 이용된 연산 정보를 부가함으로써 복호화 장치에서 현재 블록에 대한 제 2 예측 블록을 생성할 수 있도록 한다.
도 9는 일 실시예에 따른 영상 복호화 방법을 나타낸 플로우 차트이다.
도 9를 참조하면, 단계 S910에서 복호화되는 현재 블록의 예측 모드 정보 및 예측 블록에 대한 필터링 수행 여부를 나타내는 필터링 정보를 비트스트림으로부터 획득한다.
단계 S920에서, 예측 모드 정보에 따라서 현재 블록에 대한 제 1 예측 블록을 생성한다.
단계 S930에서, 필터링 정보가 제 1 예측 블록에 대해 필터링을 수행함을 나타내는 경우, 제 1 예측 블록 내부의 현재 픽셀과 현재 픽셀의 주변 픽셀들 사이의 기울기 값에 기초하여 현재 픽셀의 픽셀값을 변경하여 제 2 예측 블록을 생성한다.
단계 S940에서, 비트스트림으로부터 현재 블록과 제 2 예측 블록의 차이값에 해당하는 레지듀얼을 추출하여 복원한다.
단계 S950에서, 레지듀얼과 제 2 예측 블록을 가산하여 현재 블록을 복호화한다.
이하, 도 10 내지 도 23을 참조하여 일 실시예에 따른 영상의 데이터 단위를 결정하는 방법이 상술된다.
도 10은 일 실시예에 따라 영상 복호화 장치(700)가 현재 부호화 단위를 분할하여 적어도 하나의 부호화 단위를 결정하는 과정을 도시한다.
일 실시예에 따라 영상 복호화 장치(700)는 블록 형태 정보를 이용하여 부호화 단위의 형태를 결정할 수 있고, 분할 형태 정보를 이용하여 부호화 단위가 어떤 형태로 분할되는지를 결정할 수 있다. 즉, 영상 복호화 장치(700)가 이용하는 블록 형태 정보가 어떤 블록 형태를 나타내는지에 따라 분할 형태 정보가 나타내는 부호화 단위의 분할 방법이 결정될 수 있다.
일 실시예에 따라, 영상 복호화 장치(700)는 현재 부호화 단위가 정사각형 형태임을 나타내는 블록 형태 정보를 이용할 수 있다. 예를 들어 영상 복호화 장치(700)는 분할 형태 정보에 따라 정사각형의 부호화 단위를 분할하지 않을지, 수직으로 분할할지, 수평으로 분할할지, 4개의 부호화 단위로 분할할지 등을 결정할 수 있다. 도 10을 참조하면, 현재 부호화 단위(1000)의 블록 형태 정보가 정사각형의 형태를 나타내는 경우, 복호화부(1030)는 분할되지 않음을 나타내는 분할 형태 정보에 따라 현재 부호화 단위(1000)와 동일한 크기를 가지는 부호화 단위(1010a)를 분할하지 않거나, 소정의 분할방법을 나타내는 분할 형태 정보에 기초하여 분할된 부호화 단위(1010b, 1010c, 1010d 등)를 결정할 수 있다.
도 10을 참조하면 영상 복호화 장치(700)는 일 실시예에 따라 수직방향으로 분할됨을 나타내는 분할 형태 정보에 기초하여 현재 부호화 단위(1000)를 수직방향으로 분할한 두개의 부호화 단위(1010b)를 결정할 수 있다. 영상 복호화 장치(700)는 수평방향으로 분할됨을 나타내는 분할 형태 정보에 기초하여 현재 부호화 단위(1000)를 수평방향으로 분할한 두개의 부호화 단위(1010c)를 결정할 수 있다. 영상 복호화 장치(700)는 수직방향 및 수평방향으로 분할됨을 나타내는 분할 형태 정보에 기초하여 현재 부호화 단위(1000)를 수직방향 및 수평방향으로 분할한 네개의 부호화 단위(1010d)를 결정할 수 있다. 다만 정사각형의 부호화 단위가 분할될 수 있는 분할 형태는 상술한 형태로 한정하여 해석되어서는 안되고, 분할 형태 정보가 나타낼 수 있는 다양한 형태가 포함될 수 있다. 정사각형의 부호화 단위가 분할되는 소정의 분할 형태들은 이하에서 다양한 실시예를 통해 구체적으로 설명하도록 한다.
도 11은 일 실시예에 따라 영상 복호화 장치(700)가 비-정사각형의 형태인 부호화 단위를 분할하여 적어도 하나의 부호화 단위를 결정하는 과정을 도시한다.
일 실시예에 따라 영상 복호화 장치(700)는 현재 부호화 단위가 비-정사각형 형태임을 나타내는 블록 형태 정보를 이용할 수 있다. 영상 복호화 장치(700)는 분할 형태 정보에 따라 비-정사각형의 현재 부호화 단위를 분할하지 않을지 소정의 방법으로 분할할지 여부를 결정할 수 있다. 도 11을 참조하면, 현재 부호화 단위(1100 또는 1150)의 블록 형태 정보가 비-정사각형의 형태를 나타내는 경우, 영상 복호화 장치(700)는 분할되지 않음을 나타내는 분할 형태 정보에 따라 현재 부호화 단위(1100 또는 1150)와 동일한 크기를 가지는 부호화 단위(1110 또는 1160)를 분할하지 않거나, 소정의 분할방법을 나타내는 분할 형태 정보에 따라 기초하여 분할된 부호화 단위(1120a, 1120b, 1130a, 1130b, 1130c, 1170a, 1170b, 1180a, 1180b, 1180c)를 결정할 수 있다. 비-정사각형의 부호화 단위가 분할되는 소정의 분할 방법은 이하에서 다양한 실시예를 통해 구체적으로 설명하도록 한다.
일 실시예에 따라 영상 복호화 장치(700)는 분할 형태 정보를 이용하여 부호화 단위가 분할되는 형태를 결정할 수 있고, 이 경우 분할 형태 정보는 부호화 단위가 분할되어 생성되는 적어도 하나의 부호화 단위의 개수를 나타낼 수 있다. 도 11를 참조하면 분할 형태 정보가 두개의 부호화 단위로 현재 부호화 단위(1100 또는 1150)가 분할되는 것을 나타내는 경우, 영상 복호화 장치(700)는 분할 형태 정보에 기초하여 현재 부호화 단위(1100 또는 1150)를 분할하여 현재 부호화 단위에 포함되는 두개의 부호화 단위(1120a, 11420b, 또는 1170a, 1170b)를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(700)가 분할 형태 정보에 기초하여 비-정사각형의 형태의 현재 부호화 단위(1100 또는 1150)를 분할하는 경우, 비-정사각형의 현재 부호화 단위(1100 또는 1150)의 긴 변의 위치를 고려하여 현재 부호화 단위를 분할할 수 있다. 예를 들면, 영상 복호화 장치(700)는 현재 부호화 단위(1100 또는 1150)의 형태를 고려하여 현재 부호화 단위(1100 또는 1150)의 긴 변을 분할하는 방향으로 현재 부호화 단위(1100 또는 1150)를 분할하여 복수개의 부호화 단위를 결정할 수 있다.
일 실시예에 따라, 분할 형태 정보가 홀수개의 블록으로 부호화 단위를 분할하는 것을 나타내는 경우, 영상 복호화 장치(700)는 현재 부호화 단위(1100 또는 1150)에 포함되는 홀수개의 부호화 단위를 결정할 수 있다. 예를 들면, 분할 형태 정보가 3개의 부호화 단위로 현재 부호화 단위(1100 또는 1150)를 분할하는 것을 나타내는 경우, 영상 복호화 장치(700)는 현재 부호화 단위(1100 또는 1150)를 3개의 부호화 단위(1130a, 1130b, 1130c, 1180a, 1180b, 1180c)로 분할할 수 있다. 일 실시예에 따라 영상 복호화 장치(700)는 현재 부호화 단위(1100 또는 1150)에 포함되는 홀수개의 부호화 단위를 결정할 수 있으며, 결정된 부호화 단위들의 크기 모두가 동일하지는 않을 수 있다. 예를 들면, 결정된 홀수개의 부호화 단위(1130a, 1130b, 1130c, 1180a, 1180b, 1180c) 중 소정의 부호화 단위(1130b 또는 1180b)의 크기는 다른 부호화 단위(1130a, 1130c, 1180a, 1180c)들과는 다른 크기를 가질 수도 있다. 즉, 현재 부호화 단위(1100 또는 1150)가 분할되어 결정될 수 있는 부호화 단위는 복수의 종류의 크기를 가질 수 있고, 경우에 따라서는 홀수개의 부호화 단위(1130a, 1130b, 1130c, 1180a, 1180b, 1180c)가 각각 서로 다른 크기를 가질 수도 있다.
일 실시예에 따라 분할 형태 정보가 홀수개의 블록으로 부호화 단위가 분할되는 것을 나타내는 경우, 영상 복호화 장치(700)는 현재 부호화 단위(1100 또는 1150)에 포함되는 홀수개의 부호화 단위를 결정할 수 있고, 나아가 영상 복호화 장치(700)는 분할하여 생성되는 홀수개의 부호화 단위들 중 적어도 하나의 부호화 단위에 대하여 소정의 제한을 둘 수 있다. 도 11을 참조하면 영상 복호화 장치(700)는 현재 부호화 단위(1100 또는 1150)가 분할되어 생성된 3개의 부호화 단위(1130a, 1130b, 1130c, 1180a, 1180b, 1180c)들 중 중앙에 위치하는 부호화 단위(1130b, 1180b)에 대한 복호화 과정을 다른 부호화 단위(1130a, 1130c, 1180a, 1180c)와 다르게 할 수 있다. 예를 들면, 영상 복호화 장치(700)는 중앙에 위치하는 부호화 단위(1130b, 1180b)에 대하여는 다른 부호화 단위(1130a, 1130c, 1180a, 1180c)와 달리 더 이상 분할되지 않도록 제한하거나, 소정의 횟수만큼만 분할되도록 제한할 수 있다.
도 12는 일 실시예에 따라 영상 복호화 장치(700)가 블록 형태 정보 및 분할 형태 정보 중 적어도 하나에 기초하여 부호화 단위를 분할하는 과정을 도시한다.
일 실시예에 따라 영상 복호화 장치(700)는 블록 형태 정보 및 분할 형태 정보 중 적어도 하나에 기초하여 정사각형 형태의 제1 부호화 단위(1200)를 부호화 단위들로 분할하거나 분할하지 않는 것으로 결정할 수 있다. 일 실시예에 따라 분할 형태 정보가 수평 방향으로 제1 부호화 단위(1200)를 분할하는 것을 나타내는 경우, 영상 복호화 장치(700)는 제1 부호화 단위(1200)를 수평 방향으로 분할하여 제2 부호화 단위(1210)를 결정할 수 있다. 일 실시예에 따라 이용되는 제1 부호화 단위, 제2 부호화 단위, 제3 부호화 단위는 부호화 단위 간의 분할 전후 관계를 이해하기 위해 이용된 용어이다. 예를 들면, 제1 부호화 단위를 분할하면 제2 부호화 단위가 결정될 수 있고, 제2 부호화 단위가 분할되면 제3 부호화 단위가 결정될 수 있다. 이하에서는 이용되는 제1 부호화 단위, 제2 부호화 단위 및 제3 부호화 단위의 관계는 상술한 특징에 따르는 것으로 이해될 수 있다.
일 실시예에 따라 영상 복호화 장치(700)는 결정된 제2 부호화 단위(1210)를 블록 형태 정보 및 분할 형태 정보 중 적어도 하나에 기초하여 부호화 단위들로 분할하거나 분할하지 않는 것으로 결정할 수 있다. 도 12를 참조하면 영상 복호화 장치(700)는 블록 형태 정보 및 분할 형태 정보 중 적어도 하나에 기초하여 제1 부호화 단위(1200)를 분할하여 결정된 비-정사각형의 형태의 제2 부호화 단위(1210)를 적어도 하나의 제3 부호화 단위(1220a, 1220b, 1220c, 1220d 등)로 분할하거나 제2 부호화 단위(1210)를 분할하지 않을 수 있다. 영상 복호화 장치(700)는 블록 형태 정보 및 분할 형태 정보 중 적어도 하나를 획득할 수 있고 영상 복호화 장치(700)는 획득한 블록 형태 정보 및 분할 형태 정보 중 적어도 하나에 기초하여 제1 부호화 단위(1200)를 분할하여 다양한 형태의 복수개의 제2 부호화 단위(예를 들면, 1210)를 분할할 수 있으며, 제2 부호화 단위(1210)는 블록 형태 정보 및 분할 형태 정보 중 적어도 하나에 기초하여 제1 부호화 단위(1200)가 분할된 방식에 따라 분할될 수 있다. 일 실시예에 따라, 제1 부호화 단위(1200)가 제1 부호화 단위(1200)에 대한 블록 형태 정보 및 분할 형태 정보 중 적어도 하나에 기초하여 제2 부호화 단위(1210)로 분할된 경우, 제2 부호화 단위(1210) 역시 제2 부호화 단위(1210)에 대한 블록 형태 정보 및 분할 형태 정보 중 적어도 하나에 기초하여 제3 부호화 단위(예를 들면, 1220a, 1220b, 1220c, 1220d 등)으로 분할될 수 있다. 즉, 부호화 단위는 부호화 단위 각각에 관련된 분할 형태 정보 및 블록 형태 정보 중 적어도 하나에 기초하여 재귀적으로 분할될 수 있다. 따라서 비-정사각형 형태의 부호화 단위에서 정사각형의 부호화 단위가 결정될 수 있고, 이러한 정사각형 형태의 부호화 단위가 재귀적으로 분할되어 비-정사각형 형태의 부호화 단위가 결정될 수도 있다. 도 12를 참조하면, 비-정사각형 형태의 제2 부호화 단위(1210)가 분할되어 결정되는 홀수개의 제3 부호화 단위(1220b, 1220c, 1220d) 중 소정의 부호화 단위(예를 들면, 가운데에 위치하는 부호화 단위 또는 정사각형 형태의 부호화 단위)는 재귀적으로 분할될 수 있다. 일 실시예에 따라 홀수개의 제3 부호화 단위(1220b, 1220c, 1220d) 중 하나인 정사각형 형태의 제3 부호화 단위(1220c)는 수평 방향으로 분할되어 복수개의 제4 부호화 단위로 분할될 수 있다. 복수개의 제4 부호화 단위 중 하나인 비-정사각형 형태의 제4 부호화 단위(1240)는 다시 복수개의 부호화 단위들로 분할될 수 있다. 예를 들면, 비-정사각형 형태의 제4 부호화 단위(1240)는 홀수개의 부호화 단위(1250a, 1250b, 1250c)로 다시 분할될 수도 있다.
부호화 단위의 재귀적 분할에 이용될 수 있는 방법에 대하여는 다양한 실시예를 통해 후술하도록 한다.
일 실시예에 따라 영상 복호화 장치(700)는 블록 형태 정보 및 분할 형태 정보 중 적어도 하나에 기초하여 제3 부호화 단위(1220a, 1220b, 1220c, 1220d 등) 각각을 부호화 단위들로 분할하거나 제2 부호화 단위(1210)를 분할하지 않는 것으로 결정할 수 있다. 영상 복호화 장치(700)는 일 실시예에 따라 비-정사각형 형태의 제2 부호화 단위(1210)를 홀수개의 제3 부호화 단위(1220b, 1220c, 1220d)로 분할할 수 있다. 영상 복호화 장치(700)는 홀수개의 제3 부호화 단위(1220b, 1220c, 1220d) 중 소정의 제3 부호화 단위에 대하여 소정의 제한을 둘 수 있다. 예를 들면 영상 복호화 장치(700)는 홀수개의 제3 부호화 단위(1220b, 1220c, 1220d) 중 가운데에 위치하는 부호화 단위(1220c)에 대하여는 더 이상 분할되지 않는 것으로 제한하거나 또는 설정 가능한 횟수로 분할되어야 하는 것으로 제한할 수 있다. 도 12를 참조하면, 영상 복호화 장치(700)는 비-정사각형 형태의 제2 부호화 단위(1210)에 포함되는 홀수개의 제3 부호화 단위(1220b, 1220c, 1220d)들 중 가운데에 위치하는 부호화 단위(1220c)는 더 이상 분할되지 않거나, 소정의 분할 형태로 분할(예를 들면 4개의 부호화 단위로만 분할하거나 제2 부호화 단위(1210)가 분할된 형태에 대응하는 형태로 분할)되는 것으로 제한하거나, 소정의 횟수로만 분할(예를 들면 n회만 분할, n>0)하는 것으로 제한할 수 있다. 다만 가운데에 위치한 부호화 단위(1220c)에 대한 상기 제한은 단순한 실시예들에 불과하므로 상술한 실시예들로 제한되어 해석되어서는 안되고, 가운데에 위치한 부호화 단위(1220c)가 다른 부호화 단위(1220b, 1220d)와 다르게 복호화 될 수 있는 다양한 제한들을 포함하는 것으로 해석되어야 한다.
일 실시예에 따라 영상 복호화 장치(700)는 현재 부호화 단위를 분할하기 위해 이용되는 블록 형태 정보 및 분할 형태 정보 중 적어도 하나를 현재 부호화 단위 내의 소정의 위치에서 획득할 수 있다.
도 13은 일 실시예에 따라 영상 복호화 장치(700)가 홀수개의 부호화 단위들 중 소정의 부호화 단위를 결정하기 위한 방법을 도시한다. 도 13을 참조하면, 현재 부호화 단위(1300)의 블록 형태 정보 및 분할 형태 정보 중 적어도 하나는 현재 부호화 단위(1300)에 포함되는 복수개의 샘플 중 소정 위치의 샘플(예를 들면, 가운데에 위치하는 샘플(1340))에서 획득될 수 있다. 다만 이러한 블록 형태 정보 및 분할 형태 정보 중 적어도 하나가 획득될 수 있는 현재 부호화 단위(1300) 내의 소정 위치가 도 13에서 도시하는 가운데 위치로 한정하여 해석되어서는 안되고, 소정 위치에는 현재 부호화 단위(1300)내에 포함될 수 있는 다양한 위치(예를 들면, 최상단, 최하단, 좌측, 우측, 좌측상단, 좌측하단, 우측상단 또는 우측하단 등)가 포함될 수 있는 것으로 해석되어야 한다. 영상 복호화 장치(700)는 소정 위치로부터 획득되는 블록 형태 정보 및 분할 형태 정보 중 적어도 하나를 획득하여 현재 부호화 단위를 다양한 형태 및 크기의 부호화 단위들로 분할하거나 분할하지 않는 것으로 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(700)는 현재 부호화 단위가 소정의 개수의 부호화 단위들로 분할된 경우 그 중 하나의 부호화 단위를 선택할 수 있다. 복수개의 부호화 단위들 중 하나를 선택하기 위한 방법은 다양할 수 있으며, 이러한 방법들에 대한 설명은 이하의 다양한 실시예를 통해 후술하도록 한다.
일 실시예에 따라 영상 복호화 장치(700) 는 현재 부호화 단위를 복수개의 부호화 단위들로 분할하고, 소정 위치의 부호화 단위를 결정할 수 있다.
도 13은 일 실시예에 따라 영상 복호화 장치(700)가 홀수개의 부호화 단위들 중 소정 위치의 부호화 단위를 결정하기 위한 방법을 도시한다.
일 실시예에 따라 영상 복호화 장치(700)는 홀수개의 부호화 단위들 중 가운데에 위치하는 부호화 단위를 결정하기 위하여 홀수개의 부호화 단위들 각각의 위치를 나타내는 정보를 이용할 수 있다. 도 13을 참조하면, 영상 복호화 장치(700)는 현재 부호화 단위(1300)를 분할하여 홀수개의 부호화 단위들(1320a, 1320b, 1320c)을 결정할 수 있다. 영상 복호화 장치(700)는 홀수개의 부호화 단위들(1320a, 1320b, 1320c)의 위치에 대한 정보를 이용하여 가운데 부호화 단위(1320b)를 결정할 수 있다. 예를 들면 영상 복호화 장치(700)는 부호화 단위들(1320a, 1320b, 1320c)에 포함되는 소정의 샘플의 위치를 나타내는 정보에 기초하여 부호화 단위들(1320a, 1320b, 1320c)의 위치를 결정함으로써 가운데에 위치하는 부호화 단위(1320b)를 결정할 수 있다. 구체적으로, 영상 복호화 장치(700)는 부호화 단위들(1320a, 1320b, 1320c)의 좌측 상단의 샘플(1330a, 1330b, 1330c)의 위치를 나타내는 정보에 기초하여 부호화 단위(1320a, 1320b, 1320c)의 위치를 결정함으로써 가운데에 위치하는 부호화 단위(1320b)를 결정할 수 있다.
일 실시예에 따라 부호화 단위(1320a, 1320b, 1320c)에 각각 포함되는 좌측 상단의 샘플(1330a, 1330b, 1330c)의 위치를 나타내는 정보는 부호화 단위(1320a, 1320b, 1320c)의 픽쳐 내에서의 위치 또는 좌표에 대한 정보를 포함할 수 있다. 일 실시예에 따라 부호화 단위(1320a, 1320b, 1320c)에 각각 포함되는 좌측 상단의 샘플(1330a, 1330b, 1330c)의 위치를 나타내는 정보는 현재 부호화 단위(1300)에 포함되는 부호화단위(1320a, 1320b, 1320c)들의 너비 또는 높이를 나타내는 정보를 포함할 수 있고, 이러한 너비 또는 높이는 부호화 단위(1320a, 1320b, 1320c)의 픽쳐 내에서의 좌표 간의 차이를 나타내는 정보에 해당할 수 있다. 즉, 영상 복호화 장치(700)는 부호화 단위(1320a, 1320b, 1320c)의 픽쳐 내에서의 위치 또는 좌표에 대한 정보를 직접이용하거나 좌표간의 차이값에 대응하는 부호화 단위의 너비 또는 높이에 대한 정보를 이용함으로써 가운데에 위치하는 부호화 단위(1320b)를 결정할 수 있다.
일 실시예에 따라, 상단 부호화 단위(1320a)의 좌측 상단의 샘플(1330a)의 위치를 나타내는 정보는 (xa, ya) 좌표를 나타낼 수 있고, 가운데 부호화 단위(1320b)의 좌측 상단의 샘플(1330b)의 위치를 나타내는 정보는 (xb, yb) 좌표를 나타낼 수 있고, 하단 부호화 단위(1320c)의 좌측 상단의 샘플(1330c)의 위치를 나타내는 정보는 (xc, yc) 좌표를 나타낼 수 있다. 영상 복호화 장치(700)는 부호화 단위(1320a, 1320b, 1320c)에 각각 포함되는 좌측 상단의 샘플(1330a, 1330b, 1330c)의 좌표를 이용하여 가운데 부호화 단위(1320b)를 결정할 수 있다. 예를 들면, 좌측 상단의 샘플(1330a, 1330b, 1330c)의 좌표를 오름차순 또는 내림차순으로 정렬하였을 때, 가운데에 위치하는 샘플(1330b)의 좌표인 (xb, yb)를 포함하는 부호화 단위(1320b)를 현재 부호화 단위(1300)가 분할되어 결정된 부호화 단위(1320a, 1320b, 1320c) 중 가운데에 위치하는 부호화 단위로 결정할 수 있다. 다만 좌측 상단의 샘플(1330a, 1330b, 1330c)의 위치를 나타내는 좌표는 픽쳐 내에서의 절대적인 위치를 나타내는 좌표를 나타낼 수 있고, 나아가 상단 부호화 단위(1320a)의 좌측 상단의 샘플(1330a)의 위치를 기준으로, 가운데 부호화 단위(1320b)의 좌측 상단의 샘플(1330b)의 상대적 위치를 나타내는 정보인 (dxb, dyb)좌표, 하단 부호화 단위(1320c)의 좌측 상단의 샘플(1330c)의 상대적 위치를 나타내는 정보인 (dxc, dyc)좌표를 이용할 수도 있다. 또한 부호화 단위에 포함되는 샘플의 위치를 나타내는 정보로서 해당 샘플의 좌표를 이용함으로써 소정 위치의 부호화 단위를 결정하는 방법이 상술한 방법으로 한정하여 해석되어서는 안되고, 샘플의 좌표를 이용할 수 있는 다양한 산술적 방법으로 해석되어야 한다.
일 실시예에 따라 영상 복호화 장치(700)는 현재 부호화 단위(1300)를 복수개의 부호화 단위(1320a, 1320b, 1320c)로 분할할 수 있고, 부호화 단위(1320a, 1320b, 1320c)들 중 소정의 기준에 따라 부호화 단위를 선택할 수 있다. 예를 들면, 영상 복호화 장치(700)는 부호화 단위(1320a, 1320b, 1320c) 중 크기가 다른 부호화 단위(1320b)를 선택할 수 있다.
일 실시예에 따라 영상 복호화 장치(700)는 상단 부호화 단위(1320a)의 좌측 상단의 샘플(1330a)의 위치를 나타내는 정보인 (xa, ya) 좌표, 가운데 부호화 단위(1320b)의 좌측 상단의 샘플(1330b)의 위치를 나타내는 정보인 (xb, yb) 좌표, 하단 부호화 단위(1320c)의 좌측 상단의 샘플(1330c)의 위치를 나타내는 정보인 (xc, yc) 좌표를 이용하여 부호화 단위(1320a, 1320b, 1320c) 각각의 너비 또는 높이를 결정할 수 있다. 영상 복호화 장치(700)는 부호화 단위(1320a, 1320b, 1320c)의 위치를 나타내는 좌표인 (xa, ya), (xb, yb), (xc, yc)를 이용하여 부호화 단위(1320a, 1320b, 1320c) 각각의 크기를 결정할 수 있다.
일 실시예에 따라, 영상 복호화 장치(700)는 상단 부호화 단위(1320a)의 너비를 xb-xa로 결정할 수 있고 높이를 yb-ya로 결정할 수 있다. 일 실시예에 따라 영상 복호화 장치(700)는 가운데 부호화 단위(1320b)의 너비를 xc-xb로 결정할 수 있고 높이를 yc-yb로 결정할 수 있다. 일 실시예에 따라 영상 복호화 장치(700)는 하단 부호화 단위의 너비 또는 높이는 현재 부호화 단위의 너비 또는 높이와 상단 부호화 단위(1320a) 및 가운데 부호화 단위(1320b)의 너비 및 높이를 이용하여 결정할 수 있다. 영상 복호화 장치(700)는 결정된 부호화 단위(1320a, 1320b, 1320c)의 너비 및 높이에 기초하여 다른 부호화 단위와 다른 크기를 갖는 부호화 단위를 결정할 수 있다. 도 13을 참조하면, 영상 복호화 장치(700)는 상단 부호화 단위(1320a) 및 하단 부호화 단위(1320c)의 크기와 다른 크기를 가지는 가운데 부호화 단위(1320b)를 소정 위치의 부호화 단위로 결정할 수 있다. 다만 상술한 영상 복호화 장치(700)가 다른 부호화 단위와 다른 크기를 갖는 부호화 단위를 결정하는 과정은 샘플 좌표에 기초하여 결정되는 부호화 단위의 크기를 이용하여 소정 위치의 부호화 단위를 결정하는 일 실시예에 불과하므로, 소정의 샘플 좌표에 따라 결정되는 부호화 단위의 크기를 비교하여 소정 위치의 부호화 단위를 결정하는 다양한 과정이 이용될 수 있다.
다만 부호화 단위의 위치를 결정하기 위하여 고려하는 샘플의 위치는 상술한 좌측 상단으로 한정하여 해석되어서는 안되고 부호화 단위에 포함되는 임의의 샘플의 위치에 대한 정보가 이용될 수 있는 것으로 해석될 수 있다.
일 실시예에 따라 영상 복호화 장치(700)는 현재 부호화 단위의 형태를 고려하여, 현재 부호화 단위가 분할되어 결정되는 홀수개의 부호화 단위들 중 소정 위치의 부호화 단위를 선택할 수 있다. 예를 들면, 현재 부호화 단위가 너비가 높이보다 긴 비-정사각형 형태라면 영상 복호화 장치(700)는 수평 방향에 따라 소정 위치의 부호화 단위를 결정할 수 있다. 즉, 영상 복호화 장치(700)는 수평 방향으로 위치를 달리 하는 부호화 단위들 중 하나를 결정하여 해당 부호화 단위에 대한 제한을 둘 수 있다. 현재 부호화 단위가 높이가 너비보다 긴 비-정사각형 형태라면 영상 복호화 장치(700)는 수직 방향에 따라 소정 위치의 부호화 단위를 결정할 수 있다. 즉, 영상 복호화 장치(700)는 수직 방향으로 위치를 달리 하는 부호화 단위들 중 하나를 결정하여 해당 부호화 단위에 대한 제한을 둘 수 있다.
일 실시예에 따라 영상 복호화 장치(700)는 짝수개의 부호화 단위들 중 소정 위치의 부호화 단위를 결정하기 위하여 짝수개의 부호화 단위들 각각의 위치를 나타내는 정보를 이용할 수 있다. 영상 복호화 장치(700)는 현재 부호화 단위를 분할하여 짝수개의 부호화 단위들을 결정할 수 있고 짝수개의 부호화 단위들의 위치에 대한 정보를 이용하여 소정 위치의 부호화 단위를 결정할 수 있다. 이에 대한 구체적인 과정은 도 13에서 상술한 홀수개의 부호화 단위들 중 소정 위치(예를 들면, 가운데 위치)의 부호화 단위를 결정하는 과정에 대응하는 과정일 수 있으므로 생략하도록 한다.
일 실시예에 따라, 비-정사각형 형태의 현재 부호화 단위를 복수개의 부호화 단위로 분할한 경우, 복수개의 부호화 단위들 중 소정 위치의 부호화 단위를 결정하기 위하여 분할 과정에서 소정 위치의 부호화 단위에 대한 소정의 정보를 이용할 수 있다. 예를 들면 영상 복호화 장치(700)는 현재 부호화 단위가 복수개로 분할된 부호화 단위들 중 가운데에 위치하는 부호화 단위를 결정하기 위하여 분할 과정에서 가운데 부호화 단위에 포함된 샘플에 저장된 블록 형태 정보 및 분할 형태 정보 중 적어도 하나를 이용할 수 있다.
도 13을 참조하면 영상 복호화 장치(700)는 블록 형태 정보 및 분할 형태 정보 중 적어도 하나에 기초하여 현재 부호화 단위(1300)를 복수개의 부호화 단위들(1320a, 1320b, 1320c)로 분할할 수 있으며, 복수개의 부호화 단위들(1320a, 1320b, 1320c) 중 가운데에 위치하는 부호화 단위(1320b)를 결정할 수 있다. 나아가 영상 복호화 장치(700)는 블록 형태 정보 및 분할 형태 정보 중 적어도 하나가 획득되는 위치를 고려하여, 가운데에 위치하는 부호화 단위(1320b)를 결정할 수 있다. 즉, 현재 부호화 단위(1300)의 블록 형태 정보 및 분할 형태 정보 중 적어도 하나는 현재 부호화 단위(1300)의 가운데에 위치하는 샘플(1340)에서 획득될 수 있으며, 상기 블록 형태 정보 및 상기 분할 형태 정보 중 적어도 하나에 기초하여 현재 부호화 단위(1300)가 복수개의 부호화 단위들(1320a, 1320b, 1320c)로 분할된 경우 상기 샘플(1340)을 포함하는 부호화 단위(1320b)를 가운데에 위치하는 부호화 단위로 결정할 수 있다. 다만 가운데에 위치하는 부호화 단위로 결정하기 위해 이용되는 정보가 블록 형태 정보 및 분할 형태 정보 중 적어도 하나로 한정하여 해석되어서는 안되고, 다양한 종류의 정보가 가운데에 위치하는 부호화 단위를 결정하는 과정에서 이용될 수 있다.
일 실시예에 따라 소정 위치의 부호화 단위를 식별하기 위한 소정의 정보는, 결정하려는 부호화 단위에 포함되는 소정의 샘플에서 획득될 수 있다. 도 13을 참조하면, 영상 복호화 장치(700)는 현재 부호화 단위(1300)가 분할되어 결정된 복수개의 부호화 단위들(1320a, 1320b, 1320c) 중 소정 위치의 부호화 단위(예를 들면, 복수개로 분할된 부호화 단위 중 가운데에 위치하는 부호화 단위)를 결정하기 위하여 현재 부호화 단위(1300) 내의 소정 위치의 샘플(예를 들면, 현재 부호화 단위(1300)의 가운데에 위치하는 샘플)에서 획득되는 블록 형태 정보 및 분할 형태 정보 중 적어도 하나를 이용할 수 있다. . 즉, 영상 복호화 장치(700)는 현재 부호화 단위(1300)의 블록 블록 형태를 고려하여 상기 소정 위치의 샘플을 결정할 수 있고, 영상 복호화 장치(700)는 현재 부호화 단위(1300)가 분할되어 결정되는 복수개의 부호화 단위(1320a, 1320b, 1320c)들 중, 소정의 정보(예를 들면, 블록 형태 정보 및 분할 형태 정보 중 적어도 하나)가 획득될 수 있는 샘플이 포함된 부호화 단위(1320b)를 결정하여 소정의 제한을 둘 수 있다. 도 13을 참조하면 일 실시예에 따라 영상 복호화 장치(700)는 소정의 정보가 획득될 수 있는 샘플로서 현재 부호화 단위(1300)의 가운데에 위치하는 샘플(1340)을 결정할 수 있고, 영상 복호화 장치(700)는 이러한 샘플(1340)이 포함되는 부호화 단위(1320b)를 복호화 과정에서의 소정의 제한을 둘 수 있다. 다만 소정의 정보가 획득될 수 있는 샘플의 위치는 상술한 위치로 한정하여 해석되어서는 안되고, 제한을 두기 위해 결정하려는 부호화 단위(1320b)에 포함되는 임의의 위치의 샘플들로 해석될 수 있다.
일 실시예에 따라 소정의 정보가 획득될 수 있는 샘플의 위치는 현재 부호화 단위(1300)의 형태에 따라 결정될 수 있다. 일 실시예에 따라 블록 형태 정보는 현재 부호화 단위의 형태가 정사각형인지 또는 비-정사각형인지 여부를 결정할 수 있고, 형태에 따라 소정의 정보가 획득될 수 있는 샘플의 위치를 결정할 수 있다. 예를 들면, 영상 복호화 장치(700)는 현재 부호화 단위의 너비에 대한 정보 및 높이에 대한 정보 중 적어도 하나를 이용하여 현재 부호화 단위의 너비 및 높이 중 적어도 하나를 반으로 분할하는 경계 상에 위치하는 샘플을 소정의 정보가 획득될 수 있는 샘플로 결정할 수 있다. 또다른 예를 들면, 영상 복호화 장치(700)는 현재 부호화 단위에 관련된 블록 형태 정보가 비-정사각형 형태임을 나타내는 경우, 현재 부호화 단위의 긴 변을 반으로 분할하는 경계에 인접하는 샘플 중 하나를 소정의 정보가 획득될 수 있는 샘플로 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(700)는 현재 부호화 단위를 복수개의 부호화 단위로 분할한 경우, 복수개의 부호화 단위들 중 소정 위치의 부호화 단위를 결정하기 위하여, 블록 형태 정보 및 분할 형태 정보 중 적어도 하나를 이용할 수 있다. 일 실시예에 따라 영상 복호화 장치(700)는 블록 형태 정보 및 분할 형태 정보 중 적어도 하나를 부호화 단위에 포함된 소정 위치의 샘플에서 획득할 수 있고, 영상 복호화 장치(700)는 현재 부호화 단위가 분할되어 생성된 복수개의 부호화 단위들을 복수개의 부호화 단위 각각에 포함된 소정 위치의 샘플로부터 획득되는 분할 형태 정보 및 블록 형태 정보 중 적어도 하나를 이용하여 분할할 수 있다. 즉, 부호화 단위는 부호화 단위 각각에 포함된 소정 위치의 샘플에서 획득되는 블록 형태 정보 및 분할 형태 정보 중 적어도 하나를 이용하여 재귀적으로 분할될 수 있다. 부호화 단위의 재귀적 분할 과정에 대하여는 도 12를 통해 상술하였으므로 자세한 설명은 생략하도록 한다.
일 실시예에 따라 영상 복호화 장치(700)는 현재 부호화 단위를 분할하여 적어도 하나의 부호화 단위를 결정할 수 있고, 이러한 적어도 하나의 부호화 단위가 복호화되는 순서를 소정의 블록(예를 들면, 현재 부호화 단위)에 따라 결정할 수 있다.
도 14는 일 실시예에 따라 영상 복호화 장치(700)가 현재 부호화 단위를 분할하여 복수개의 부호화 단위들을 결정하는 경우, 복수개의 부호화 단위들이 처리되는 순서를 도시한다.
일 실시예에 따라 영상 복호화 장치(700)는 블록 형태 정보 및 분할 형태 정보에 따라 제1 부호화 단위(1400)를 수직 방향으로 분할하여 제2 부호화 단위(1410a, 1410b)를 결정하거나 제1 부호화 단위(1400)를 수평 방향으로 분할하여 제2 부호화 단위(1430a, 1430b)를 결정하거나 제1 부호화 단위(1400)를 수직 방향 및 수평 방향으로 분할하여 제2 부호화 단위(1450a, 1450b, 1450c, 1450d)를 결정할 수 있다.
도 14를 참조하면, 영상 복호화 장치(700)는 제1 부호화 단위(1400)를 수직 방향으로 분할하여 결정된 제2 부호화 단위(1410a, 1410b)를 수평 방향(1410c)으로 처리되도록 순서를 결정할 수 있다. 영상 복호화 장치(700)는 제1 부호화 단위(1400)를 수평 방향으로 분할하여 결정된 제2 부호화 단위(1430a, 1430b)의 처리 순서를 수직 방향(1430c)으로 결정할 수 있다. 영상 복호화 장치(700)는 제1 부호화 단위(1400)를 수직 방향 및 수평 방향으로 분할하여 결정된 제2 부호화 단위(1450a, 1450b, 1450c, 1450d)를 하나의 행에 위치하는 부호화 단위들이 처리된 후 다음 행에 위치하는 부호화 단위들이 처리되는 소정의 순서(예를 들면, 래스터 스캔 순서((raster scan order) 또는 z 스캔 순서(z scan order)(1450e) 등)에 따라 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(700)는 부호화 단위들을 재귀적으로 분할할 수 있다. 도 14를 참조하면, 영상 복호화 장치(700)는 제1 부호화 단위(1400)를 분할하여 복수개의 부호화 단위들(1410a, 1410b, 1430a, 1430b, 1450a, 1450b, 1450c, 1450d)을 결정할 수 있고, 결정된 복수개의 부호화 단위들(1410a, 1410b, 1430a, 1430b, 1450a, 1450b, 1450c, 1450d) 각각을 재귀적으로 분할할 수 있다. 복수개의 부호화 단위들(1410a, 1410b, 1430a, 1430b, 1450a, 1450b, 1450c, 1450d)을 분할하는 방법은 제1 부호화 단위(1400)를 분할하는 방법에 대응하는 방법이 될 수 있다. 이에 따라 복수개의 부호화 단위들(1410a, 1410b, 1430a, 1430b, 1450a, 1450b, 1450c, 1450d)은 각각 독립적으로 복수개의 부호화 단위들로 분할될 수 있다. 도 14를 참조하면 영상 복호화 장치(700)는 제1 부호화 단위(1400)를 수직 방향으로 분할하여 제2 부호화 단위(1410a, 1410b)를 결정할 수 있고, 나아가 제2 부호화 단위(1410a, 1410b) 각각을 독립적으로 분할하거나 분할하지 않는 것으로 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(700)는 좌측의 제2 부호화 단위(1410a)를 수평 방향으로 분할하여 제3 부호화 단위(1420a, 1420b)로 분할할 수 있고, 우측의 제2 부호화 단위(1410b)는 분할하지 않을 수 있다.
일 실시예에 따라 부호화 단위들의 처리 순서는 부호화 단위의 분할 과정에 기초하여 결정될 수 있다. 다시 말해, 분할된 부호화 단위들의 처리 순서는 분할되기 직전의 부호화 단위들의 처리 순서에 기초하여 결정될 수 있다. 영상 복호화 장치(700)는 좌측의 제2 부호화 단위(1410a)가 분할되어 결정된 제3 부호화 단위(1420a, 1420b)가 처리되는 순서를 우측의 제2 부호화 단위(1410b)와 독립적으로 결정할 수 있다. 좌측의 제2 부호화 단위(1410a)가 수평 방향으로 분할되어 제3 부호화 단위(1420a, 1420b)가 결정되었으므로 제3 부호화 단위(1420a, 1420b)는 수직 방향(1420c)으로 처리될 수 있다. 또한 좌측의 제2 부호화 단위(1410a) 및 우측의 제2 부호화 단위(1410b)가 처리되는 순서는 수평 방향(1410c)에 해당하므로, 좌측의 제2 부호화 단위(1410a)에 포함되는 제3 부호화 단위(1420a, 1420b)가 수직 방향(1420c)으로 처리된 후에 우측 부호화 단위(1410b)가 처리될 수 있다. 상술한 내용은 부호화 단위들이 각각 분할 전의 부호화 단위에 따라 처리 순서가 결정되는 과정을 설명하기 위한 것이므로, 상술한 실시예에 한정하여 해석되어서는 안되고, 다양한 형태로 분할되어 결정되는 부호화 단위들이 소정의 순서에 따라 독립적으로 처리될 수 있는 다양한 방법으로 이용되는 것으로 해석되어야 한다.
도 15는 일 실시예에 따라 영상 복호화 장치(700)가 소정의 순서로 부호화 단위가 처리될 수 없는 경우, 현재 부호화 단위가 홀수개의 부호화 단위로 분할되는 것임을 결정하는 과정을 도시한다.
일 실시예에 따라 영상 복호화 장치(700)는 획득된 블록 형태 정보 및 분할 형태 정보에 기초하여 현재 부호화 단위가 홀수개의 부호화 단위들로 분할되는 것을 결정할 수 있다. 도 15를 참조하면 정사각형 형태의 제1 부호화 단위(1500)가 비-정사각형 형태의 제2 부호화 단위(1510a, 1510b)로 분할될 수 있고, 제2 부호화 단위(1510a, 1510b)는 각각 독립적으로 제3 부호화 단위(1520a, 1520b, 1520c, 1520d, 1520e)로 분할될 수 있다. 일 실시예에 따라 영상 복호화 장치(700)는 제2 부호화 단위 중 좌측 부호화 단위(1510a)는 수평 방향으로 분할하여 복수개의 제3 부호화 단위(1520a, 1520b)를 결정할 수 있고, 우측 부호화 단위(1510b)는 홀수개의 제3 부호화 단위(1520c, 1520d, 1520e)로 분할할 수 있다.
일 실시예에 따라 영상 복호화 장치(700)는 제3 부호화 단위들(1520a, 1520b, 1520c, 1520d, 1520e)이 소정의 순서로 처리될 수 있는지 여부를 판단하여 홀수개로 분할된 부호화 단위가 존재하는지를 결정할 수 있다. 도 15를 참조하면, 영상 복호화 장치(700)는 제1 부호화 단위(1500)를 재귀적으로 분할하여 제3 부호화 단위(1520a, 1520b, 1520c, 1520d, 1520e)를 결정할 수 있다. 영상 복호화 장치(700)는 블록 형태 정보 및 분할 형태 정보 중 적어도 하나에 기초하여, 제1 부호화 단위(1500), 제2 부호화 단위(1510a, 1510b) 또는 제3 부호화 단위(1520a, 1520b, 1520c, 1520d, 1520e)가 분할되는 형태 중 홀수개의 부호화 단위로 분할되는지 여부를 결정할 수 있다. 예를 들면, 제2 부호화 단위(1510a, 1510b) 중 우측에 위치하는 부호화 단위가 홀수개의 제3 부호화 단위(1520c, 1520d, 1520e)로 분할될 수 있다. 제1 부호화 단위(1500)에 포함되는 복수개의 부호화 단위들이 처리되는 순서는 소정의 순서(예를 들면, z-스캔 순서(z-scan order)(1530))가 될 수 있고, 영상 복호화 장치(700)는 우측 제2 부호화 단위(1510b)가 홀수개로 분할되어 결정된 제3 부호화 단위(1520c, 1520d, 1520e)가 상기 소정의 순서에 따라 처리될 수 있는 조건을 만족하는지를 판단할 수 있다.
일 실시예에 따라 영상 복호화 장치(700)는 제1 부호화 단위(1500)에 포함되는 제3 부호화 단위(1520a, 1520b, 1520c, 1520d, 1520e)가 소정의 순서에 따라 처리될 수 있는 조건을 만족하는지를 결정할 수 있으며, 상기 조건은 제3 부호화 단위(1520a, 1520b, 1520c, 1520d, 1520e)의 경계에 따라 제2 부호화 단위(1510a, 1510b)의 너비 및 높이 중 적어도 하나를 반으로 분할되는지 여부와 관련된다. 예를 들면 비-정사각형 형태의 좌측 제2 부호화 단위(1510a)의 높이를 반으로 분할하여 결정되는 제3 부호화 단위(1520a, 1520b)는 조건을 만족하지만, 우측 제2 부호화 단위(1510b)를 3개의 부호화 단위로 분할하여 결정되는 제3 부호화 단위(1520c, 1520d, 1520e)들의 경계가 우측 제2 부호화 단위(1510b)의 너비 또는 높이를 반으로 분할하지 못하므로 제3 부호화 단위(1520c, 1520d, 1520e)는 조건을 만족하지 못하는 것으로 결정될 수 있고, 영상 복호화 장치(700)는 이러한 조건 불만족의 경우 스캔 순서의 단절(disconnection)로 판단하고, 판단 결과에 기초하여 우측 제2 부호화 단위(1510b)는 홀수개의 부호화 단위로 분할되는 것으로 결정할 수 있다. 일 실시예에 따라 영상 복호화 장치(700)는 홀수개의 부호화 단위로 분할되는 경우 분할된 부호화 단위들 중 소정 위치의 부호화 단위에 대하여 소정의 제한을 둘 수 있으며, 이러한 제한 내용 또는 소정 위치 등에 대하여는 다양한 실시예를 통해 상술하였으므로 자세한 설명은 생략하도록 한다.
도 16은 일 실시예에 따라 영상 복호화 장치(700)가 제1 부호화 단위(1600)를 분할하여 적어도 하나의 부호화 단위를 결정하는 과정을 도시한다. 일 실시예에 따라 영상 복호화 장치(700)는 수신부(210)를 통해 획득한 블록 형태 정보 및 분할 형태 정보 중 적어도 하나에 기초하여 제1 부호화 단위(1600)를 분할할 수 있다. 정사각형 형태의 제1 부호화 단위(1600)는 4개의 정사각형 형태를 가지는 부호화 단위로 분할되거나 또는 비-정사각형 형태의 복수개의 부호화 단위로 분할할 수 있다. 예를 들면 도 16을 참조하면, 블록 형태 정보가 제1 부호화 단위(1600)는 정사각형임을 나타내고 분할 형태 정보가 비-정사각형의 부호화 단위로 분할됨을 나타내는 경우 영상 복호화 장치(700)는 제1 부호화 단위(1600)를 복수개의 비-정사각형의 부호화 단위들로 분할할 수 있다. 구체적으로, 분할 형태 정보가 제1 부호화 단위(1600)를 수평 방향 또는 수직 방향으로 분할하여 홀수개의 부호화 단위를 결정하는 것을 나타내는 경우, 영상 복호화 장치(700)는 정사각형 형태의 제1 부호화 단위(1600)을 홀수개의 부호화 단위들로서 수직 방향으로 분할되어 결정된 제2 부호화 단위(1610a, 1610b, 1610c) 또는 수평 방향으로 분할되어 결정된 제2 부호화 단위(1620a, 1620b, 1620c)로 분할할 수 있다.
일 실시예에 따라 영상 복호화 장치(700)는 제1 부호화 단위(1600)에 포함되는 제2 부호화 단위(1610a, 1610b, 1610c, 1620a, 1620b, 1620c)가 소정의 순서에 따라 처리될 수 있는 조건을 만족하는지를 결정할 수 있으며, 상기 조건은 제2 부호화 단위(1610a, 1610b, 1610c, 1620a, 1620b, 1620c)의 경계에 따라 제1 부호화 단위(1600)의 너비 및 높이 중 적어도 하나를 반으로 분할되는지 여부와 관련된다. 도 16를 참조하면 정사각형 형태의 제1 부호화 단위(1600)를 수직 방향으로 분할하여 결정되는 제2 부호화 단위(1610a, 1610b, 1610c)들의 경계가 제1 부호화 단위(1600)의 너비를 반으로 분할하지 못하므로 제1 부호화 단위(1600)는 소정의 순서에 따라 처리될 수 있는 조건을 만족하지 못하는 것으로 결정될 수 있다. 또한 정사각형 형태의 제1 부호화 단위(1600)를 수평 방향으로 분할하여 결정되는 제2 부호화 단위(1620a, 1620b, 1620c)들의 경계가 제1 부호화 단위(1600)의 너비를 반으로 분할하지 못하므로 제1 부호화 단위(1600)는 소정의 순서에 따라 처리될 수 있는 조건을 만족하지 못하는 것으로 결정될 수 있다. 영상 복호화 장치(700)는 이러한 조건 불만족의 경우 스캔 순서의 단절(disconnection)로 판단하고, 판단 결과에 기초하여 제1 부호화 단위(1600)는 홀수개의 부호화 단위로 분할되는 것으로 결정할 수 있다. 일 실시예에 따라 영상 복호화 장치(700)는 홀수개의 부호화 단위로 분할되는 경우 분할된 부호화 단위들 중 소정 위치의 부호화 단위에 대하여 소정의 제한을 둘 수 있으며, 이러한 제한 내용 또는 소정 위치 등에 대하여는 다양한 실시예를 통해 상술하였으므로 자세한 설명은 생략하도록 한다.
일 실시예에 따라, 영상 복호화 장치(700)는 제1 부호화 단위를 분할하여 다양한 형태의 부호화 단위들을 결정할 수 있다.
도 16을 참조하면, 영상 복호화 장치(700)는 정사각형 형태의 제1 부호화 단위(1600), 비-정사각형 형태의 제1 부호화 단위(1630 또는 1650)를 다양한 형태의 부호화 단위들로 분할할 수 있다.
도 17은 일 실시예에 따라 영상 복호화 장치(700)가 제1 부호화 단위(1700)가 분할되어 결정된 비-정사각형 형태의 제2 부호화 단위가 소정의 조건을 만족하는 경우 제2 부호화 단위가 분할될 수 있는 형태가 제한되는 것을 도시한다.
일 실시예에 따라 영상 복호화 장치(700)는 수신부(210)를 통해 획득한 블록 형태 정보 및 분할 형태 정보 중 적어도 하나에 기초하여 정사각형 형태의 제1 부호화 단위(1700)를 비-정사각형 형태의 제2 부호화 단위(1710a, 1710b, 1720a, 1720b)로 분할하는 것으로 결정할 수 있다. 제2 부호화 단위(1710a, 1710b, 1720a, 1720b)는 독립적으로 분할될 수 있다. 이에 따라 영상 복호화 장치(700)는 제2 부호화 단위(1710a, 1710b, 1720a, 1720b) 각각에 관련된 블록 형태 정보 및 분할 형태 정보 중 적어도 하나에 기초하여 복수개의 부호화 단위로 분할하거나 분할하지 않는 것을 결정할 수 있다. 일 실시예에 따라 영상 복호화 장치(700)는 수직 방향으로 제1 부호화 단위(1700)가 분할되어 결정된 비-정사각형 형태의 좌측 제2 부호화 단위(1710a)를 수평 방향으로 분할하여 제3 부호화 단위(1712a, 1712b)를 결정할 수 있다. 다만 영상 복호화 장치(700)는 좌측 제2 부호화 단위(1710a)를 수평 방향으로 분할한 경우, 우측 제2 부호화 단위(1710b)는 좌측 제2 부호화 단위(1710a)가 분할된 방향과 동일하게 수평 방향으로 분할될 수 없도록 제한할 수 있다. 만일 우측 제2 부호화 단위(1710b)가 동일한 방향으로 분할되어 제3 부호화 단위(1714a, 1714b)가 결정된 경우, 좌측 제2 부호화 단위(1710a) 및 우측 제2 부호화 단위(1710b)가 수평 방향으로 각각 독립적으로 분할됨으로써 제3 부호화 단위(1712a, 1712b, 1714a, 1714b)가 결정될 수 있다. 하지만 이는 영상 복호화 장치(700)가 블록 형태 정보 및 분할 형태 정보 중 적어도 하나에 기초하여 제1 부호화 단위(1700)를 4개의 정사각형 형태의 제2 부호화 단위(1730a, 1730b, 1730c, 1730d)로 분할한 것과 동일한 결과이며 이는 영상 복호화 측면에서 비효율적일 수 있다.
일 실시예에 따라 영상 복호화 장치(700)는 수평 방향으로 제1 부호화 단위(11300)가 분할되어 결정된 비-정사각형 형태의 제2 부호화 단위(1720a 또는 1720b)를 수직 방향으로 분할하여 제3 부호화 단위(1722a, 1722b, 1724a, 1724b)를 결정할 수 있다. 다만 영상 복호화 장치(700)는 제2 부호화 단위 중 하나(예를 들면 상단 제2 부호화 단위(1720a))를 수직 방향으로 분할한 경우, 상술한 이유에 따라 다른 제2 부호화 단위(예를 들면 하단 부호화 단위(1720b))는 상단 제2 부호화 단위(1720a)가 분할된 방향과 동일하게 수직 방향으로 분할될 수 없도록 제한할 수 있다.
도 18은 일 실시예에 따라 분할 형태 정보가 4개의 정사각형 형태의 부호화 단위로 분할하는 것을 나타낼 수 없는 경우, 영상 복호화 장치(700)가 정사각형 형태의 부호화 단위를 분할하는 과정을 도시한다.
일 실시예에 따라 영상 복호화 장치(700)는 블록 형태 정보 및 분할 형태 정보 중 적어도 하나에 기초하여 제1 부호화 단위(1800)를 분할하여 제2 부호화 단위(1810a, 1810b, 1820a, 1820b 등)를 결정할 수 있다. 분할 형태 정보에는 부호화 단위가 분할될 수 있는 다양한 형태에 대한 정보가 포함될 수 있으나, 다양한 형태에 대한 정보에는 정사각형 형태의 4개의 부호화 단위로 분할하기 위한 정보가 포함될 수 없는 경우가 있다. 이러한 분할 형태 정보에 따르면, 영상 복호화 장치(700)는 정사각형 형태의 제1 부호화 단위(1800)를 4개의 정사각형 형태의 제2 부호화 단위(1830a, 1830b, 1830c, 1830d)로 분할하지 못한다. 분할 형태 정보에 기초하여 영상 복호화 장치(700)는 비-정사각형 형태의 제2 부호화 단위(1810a, 1810b, 1820a, 1820b 등)를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(700)는 비-정사각형 형태의 제2 부호화 단위(1810a, 1810b, 1820a, 1820b 등)를 각각 독립적으로 분할할 수 있다. 재귀적인 방법을 통해 제2 부호화 단위(1810a, 1810b, 1820a, 1820b 등) 각각이 소정의 순서대로 분할될 수 있으며, 이는 블록 형태 정보 및 분할 형태 정보 중 적어도 하나에 기초하여 제1 부호화 단위(1800)가 분할되는 방법에 대응하는 분할 방법일 수 있다.
예를 들면 영상 복호화 장치(700)는 좌측 제2 부호화 단위(1810a)가 수평 방향으로 분할되어 정사각형 형태의 제3 부호화 단위(1812a, 1812b)를 결정할 수 있고, 우측 제2 부호화 단위(1810b)가 수평 방향으로 분할되어 정사각형 형태의 제3 부호화 단위(1814a, 1814b)를 결정할 수 있다. 나아가 영상 복호화 장치(700)는 좌측 제2 부호화 단위(1810a) 및 우측 제2 부호화 단위(1810b) 모두 수평 방향으로 분할되어 정사각형 형태의 제3 부호화 단위(1816a, 1816b, 1816c, 1816d)를 결정할 수도 있다. 이러한 경우 제1 부호화 단위(1800)가 4개의 정사각형 형태의 제2 부호화 단위(1830a, 1830b, 1830c, 1830d)로 분할된 것과 동일한 형태로 부호화 단위가 결정될 수 있다.
또 다른 예를 들면 영상 복호화 장치(700)는 상단 제2 부호화 단위(1820a)가 수직 방향으로 분할되어 정사각형 형태의 제3 부호화 단위(1822a, 1822b)를 결정할 수 있고, 하단 제2 부호화 단위(1820b)가 수직 방향으로 분할되어 정사각형 형태의 제3 부호화 단위(1824a, 1824b)를 결정할 수 있다. 나아가 영상 복호화 장치(700)는 상단 제2 부호화 단위(1820a) 및 하단 제2 부호화 단위(1820b) 모두 수직 방향으로 분할되어 정사각형 형태의 제3 부호화 단위(1822a, 1822b, 1824a, 1824b)를 결정할 수도 있다. 이러한 경우 제1 부호화 단위(1800)가 4개의 정사각형 형태의 제2 부호화 단위(1830a, 1830b, 1830c, 1830d)로 분할된 것과 동일한 형태로 부호화 단위가 결정될 수 있다.
도 19는 일 실시예에 따라 복수개의 부호화 단위들 간의 처리 순서가 부호화 단위의 분할 과정에 따라 달라질 수 있음을 도시한 것이다.
일 실시예에 따라 영상 복호화 장치(700)는 블록 형태 정보 및 분할 형태 정보에 기초하여 제1 부호화 단위(1900)를 분할할 수 있다. 블록 형태 정보가 정사각형 형태를 나타내고, 분할 형태 정보가 제1 부호화 단위(1900)가 수평 방향 및 수직 방향 중 적어도 하나의 방향으로 분할됨을 나타내는 경우, 영상 복호화 장치(700)는 제1 부호화 단위(1900)를 분할하여 제2 부호화 단위(예를 들면, 1910a, 1910b, 1920a, 1920b, 1930a, 1930b, 1930c, 1930d 등)를 결정할 수 있다. 도 19를 참조하면 제1 부호화 단위1900)가 수평 방향 또는 수직 방향만으로 분할되어 결정된 비-정사각형 형태의 제2 부호화 단위(1910a, 1910b, 1920a, 1920b)는 각각에 대한 블록 형태 정보 및 분할 형태 정보에 기초하여 독립적으로 분할될 수 있다. 예를 들면 영상 복호화 장치(700)는 제1 부호화 단위(1900)가 수직 방향으로 분할되어 생성된 제2 부호화 단위(1910a, 1910b)를 수평 방향으로 각각 분할하여 제3 부호화 단위(1916a, 1916b, 1916c, 1916d)를 결정할 수 있고, 제1 부호화 단위(1900)가 수평 방향으로 분할되어 생성된 제2 부호화 단위(1920a, 1920b)를 수평 방향으로 각각 분할하여 제3 부호화 단위(1926a, 1926b, 1926c, 1926d)를 결정할 수 있다. 이러한 제2 부호화 단위(1910a, 1910b, 1920a, 1920b)의 분할 과정은 도 17과 관련하여 상술하였으므로 자세한 설명은 생략하도록 한다.
일 실시예에 따라 영상 복호화 장치(700)는 소정의 순서에 따라 부호화 단위를 처리할 수 있다. 소정의 순서에 따른 부호화 단위의 처리에 대한 특징은 도 14과 관련하여 상술하였으므로 자세한 설명은 생략하도록 한다. 도 19를 참조하면 영상 복호화 장치(700)는 정사각형 형태의 제1 부호화 단위(1900)를 분할하여 4개의 정사각형 형태의 제3 부호화 단위(1916a, 1916b, 1916c, 1916d, 1926a, 1926b, 1926c, 1926d)를 결정할 수 있다. 일 실시예에 따라 영상 복호화 장치(700)는 제1 부호화 단위(1900)가 분할되는 형태에 따라 제3 부호화 단위(1916a, 1916b, 1916c, 1916d, 1926a, 1926b, 1926c, 1926d)의 처리 순서를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(700)는 수직 방향으로 분할되어 생성된 제2 부호화 단위(1910a, 1910b)를 수평 방향으로 각각 분할하여 제3 부호화 단위(1916a, 1916b, 1916c, 1916d)를 결정할 수 있고, 영상 복호화 장치(700)는 좌측 제2 부호화 단위(1910a)에 포함되는 제3 부호화 단위(1916a, 1916b)를 수직 방향으로 먼저 처리한 후, 우측 제2 부호화 단위(1910b)에 포함되는 제3 부호화 단위(1916c, 1916d)를 수직 방향으로 처리하는 순서(1917)에 따라 제3 부호화 단위(1916a, 1916b, 1916c, 1916d)를 처리할 수 있다.
일 실시예에 따라 영상 복호화 장치(700)는 수평 방향으로 분할되어 생성된 제2 부호화 단위(1920a, 1920b)를 수직 방향으로 각각 분할하여 제3 부호화 단위(1926a, 1926b, 1926c, 1926d)를 결정할 수 있고, 영상 복호화 장치(700)는 상단 제2 부호화 단위(1920a)에 포함되는 제3 부호화 단위(1926a, 1926b)를 수평 방향으로 먼저 처리한 후, 하단 제2 부호화 단위(1920b)에 포함되는 제3 부호화 단위(1926c, 1926d)를 수평 방향으로 처리하는 순서(1927)에 따라 제3 부호화 단위(1926a, 1926b, 1926c, 1926d)를 처리할 수 있다.
도 19를 참조하면, 제2 부호화 단위(1910a, 1910b, 1920a, 1920b)가 각각 분할되어 정사각형 형태의 제3 부호화 단위(1916a, 1916b, 1916c, 1916d, 1926a, 1926b, 1926c, 1926d)가 결정될 수 있다. 수직 방향으로 분할되어 결정된 제2 부호화 단위(1910a, 1910b) 및 수평 방향으로 분할되어 결정된 제2 부호화 단위(1920a, 1920b)는 서로 다른 형태로 분할된 것이지만, 이후에 결정되는 제3 부호화 단위(1916a, 1916b, 1916c, 1916d, 1926a, 1926b, 1926c, 1926d)에 따르면 결국 동일한 형태의 부호화 단위들로 제1 부호화 단위(1900)가 분할된 결과가 된다. 이에 따라 영상 복호화 장치(700)는 블록 형태 정보 및 분할 형태 정보 중 적어도 하나에 기초하여 상이한 과정을 통해 재귀적으로 부호화 단위를 분할함으로써 결과적으로 동일한 형태의 부호화 단위들을 결정하더라도, 동일한 형태로 결정된 복수개의 부호화 단위들을 서로 다른 순서로 처리할 수 있다.
도 20은 일 실시예에 따라 부호화 단위가 재귀적으로 분할되어 복수개의 부호화 단위가 결정되는 경우, 부호화 단위의 형태 및 크기가 변함에 따라 부호화 단위의 심도가 결정되는 과정을 도시한다.
일 실시예에 따라 영상 복호화 장치(700)는 부호화 단위의 심도를 소정의 기준에 따라 결정할 수 있다. 예를 들면 소정의 기준은 부호화 단위의 긴 변의 길이가 될 수 있다. 영상 복호화 장치(700)는 현재 부호화 단위의 긴 변의 길이가 분할되기 전의 부호화 단위의 긴 변의 길이보다 2n (n>0) 배로 분할된 경우, 현재 부호화 단위의 심도는 분할되기 전의 부호화 단위의 심도보다 n만큼 심도가 증가된 것으로 결정할 수 있다. 이하에서는 심도가 증가된 부호화 단위를 하위 심도의 부호화 단위로 표현하도록 한다.
도 20을 참조하면, 일 실시예에 따라 정사각형 형태임을 나타내는 블록 형태 정보(예를 들면 블록 형태 정보는 ′0: SQUARE′를 나타낼 수 있음)에 기초하여 영상 복호화 장치(700)는 정사각형 형태인 제1 부호화 단위(2000)를 분할하여 하위 심도의 제2 부호화 단위(2002), 제3 부호화 단위(2004) 등을 결정할 수 있다. 정사각형 형태의 제1 부호화 단위(2000)의 크기를 2Nx2N이라고 한다면, 제1 부호화 단위(2000)의 너비 및 높이를 1/21배로 분할하여 결정된 제2 부호화 단위(2002)는 NxN의 크기를 가질 수 있다. 나아가 제2 부호화 단위(2002)의 너비 및 높이를 1/2크기로 분할하여 결정된 제3 부호화 단위(2004)는 N/2xN/2의 크기를 가질 수 있다. 이 경우 제3 부호화 단위(2004)의 너비 및 높이는 제1 부호화 단위(2000)의 1/22배에 해당한다. 제1 부호화 단위(2000)의 심도가 D인 경우 제1 부호화 단위(2000)의 너비 및 높이의 1/21배인 제2 부호화 단위(2002)의 심도는 D+1일 수 있고, 제1 부호화 단위(2000)의 너비 및 높이의 1/22배인 제3 부호화 단위(2004)의 심도는 D+2일 수 있다.
일 실시예에 따라 비-정사각형 형태를 나타내는 블록 형태 정보(예를 들면 블록 형태 정보는, 높이가 너비보다 긴 비-정사각형임을 나타내는 ′1: NS_VER′ 또는 너비가 높이보다 긴 비-정사각형임을 나타내는 ′2: NS_HOR′를 나타낼 수 있음)에 기초하여, 영상 복호화 장치(700)는 비-정사각형 형태인 제1 부호화 단위(2010 또는 2020)를 분할하여 하위 심도의 제2 부호화 단위(2012 또는 2022), 제3 부호화 단위(2014 또는 2024) 등을 결정할 수 있다.
영상 복호화 장치(700)는 Nx2N 크기의 제1 부호화 단위(2010)의 너비 및 높이 중 적어도 하나를 분할하여 제2 부호화 단위(예를 들면, 2002, 2012, 2022 등)를 결정할 수 있다. 즉, 영상 복호화 장치(700)는 제1 부호화 단위(2010)를 수평 방향으로 분할하여 NxN 크기의 제2 부호화 단위(2002) 또는 NxN/2 크기의 제2 부호화 단위(2022)를 결정할 수 있고, 수평 방향 및 수직 방향으로 분할하여 N/2xN 크기의 제2 부호화 단위(2012)를 결정할 수도 있다.
일 실시예에 따라 영상 복호화 장치(700)는 2NxN 크기의 제1 부호화 단위(2020) 의 너비 및 높이 중 적어도 하나를 분할하여 제2 부호화 단위(예를 들면, 2002, 2012, 2022 등)를 결정할 수도 있다. 즉, 영상 복호화 장치(700)는 제1 부호화 단위(2020)를 수직 방향으로 분할하여 NxN 크기의 제2 부호화 단위(2002) 또는 N/2xN 크기의 제2 부호화 단위(2012)를 결정할 수 있고, 수평 방향 및 수직 방향으로 분할하여 NxN/2 크기의 제2 부호화 단위(2022)를 결정할 수도 있다.
일 실시예에 따라 영상 복호화 장치(700)는 NxN 크기의 제2 부호화 단위(2002) 의 너비 및 높이 중 적어도 하나를 분할하여 제3 부호화 단위(예를 들면, 2004, 2014, 2024 등)를 결정할 수도 있다. 즉, 영상 복호화 장치(700)는 제2 부호화 단위(2002)를 수직 방향 및 수평 방향으로 분할하여 N/2xN/2 크기의 제3 부호화 단위(2004)를 결정하거나 N/22xN/2 크기의 제3 부호화 단위(2014)를 결정하거나 N/2xN/22 크기의 제3 부호화 단위(2024)를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(700)는 N/2xN 크기의 제2 부호화 단위(2012)의 너비 및 높이 중 적어도 하나를 분할하여 제3 부호화 단위(예를 들면, 2004, 2014, 2024 등)를 결정할 수도 있다. 즉, 영상 복호화 장치(700)는 제2 부호화 단위(2012)를 수평 방향으로 분할하여 N/2xN/2 크기의 제3 부호화 단위(2004) 또는 N/2xN/22 크기의 제3 부호화 단위(2024)를 결정하거나 수직 방향 및 수평 방향으로 분할하여 N/22xN/2 크기의 제3 부호화 단위(2014)를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(700)는 NxN/2 크기의 제2 부호화 단위(2014)의 너비 및 높이 중 적어도 하나를 분할하여 제3 부호화 단위(예를 들면, 2004, 2014, 2024 등)를 결정할 수도 있다. 즉, 영상 복호화 장치(700)는 제2 부호화 단위(2012)를 수직 방향으로 분할하여 N/2xN/2 크기의 제3 부호화 단위(2004) 또는 N/22xN/2 크기의 제3 부호화 단위(2014)를 결정하거나 수직 방향 및 수평 방향으로 분할하여 N/2xN/22크기의 제3 부호화 단위(2024)를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(700)는 정사각형 형태의 부호화 단위(예를 들면, 2000, 2002, 2004)를 수평 방향 또는 수직 방향으로 분할할 수 있다. 예를 들면, 2Nx2N 크기의 제1 부호화 단위(2000)를 수직 방향으로 분할하여 Nx2N 크기의 제1 부호화 단위(2010)를 결정하거나 수평 방향으로 분할하여 2NxN 크기의 제1 부호화 단위(2020)를 결정할 수 있다. 일 실시예에 따라 심도가 부호화 단위의 가장 긴 변의 길이에 기초하여 결정되는 경우, 2Nx2N 크기의 제1 부호화 단위(2000, 2002 또는 2004)가 수평 방향 또는 수직 방향으로 분할되어 결정되는 부호화 단위의 심도는 제1 부호화 단위(2000, 2002 또는 2004)의 심도와 동일할 수 있다.
일 실시예에 따라 제3 부호화 단위(2014 또는 2024)의 너비 및 높이는 제1 부호화 단위(2010 또는 2020)의 1/22배에 해당할 수 있다. 제1 부호화 단위(2010 또는 2020)의 심도가 D인 경우 제1 부호화 단위(2010 또는 2020)의 너비 및 높이의 1/2배인 제2 부호화 단위(2012 또는 2014)의 심도는 D+1일 수 있고, 제1 부호화 단위(2010 또는 2020)의 너비 및 높이의 1/22배인 제3 부호화 단위(2014 또는 2024)의 심도는 D+2일 수 있다.
도 21은 일 실시예에 따라 부호화 단위들의 형태 및 크기에 따라 결정될 수 있는 심도 및 부호화 단위 구분을 위한 인덱스(part index, 이하 PID)를 도시한다.
일 실시예에 따라 영상 복호화 장치(700)는 정사각형 형태의 제1 부호화 단위(2100)를 분할하여 다양한 형태의 제2 부호화 단위를 결정할 수 있다. 도 21를 참조하면, 영상 복호화 장치(700)는 분할 형태 정보에 따라 제1 부호화 단위(2100)를 수직 방향 및 수평 방향 중 적어도 하나의 방향으로 분할하여 제2 부호화 단위(2102a, 2102b, 2104a, 2104b, 2106a, 2106b, 2106c, 2106d)를 결정할 수 있다. 즉, 영상 복호화 장치(700)는 제1 부호화 단위(2100)에 대한 분할 형태 정보에 기초하여 제2 부호화 단위(2102a, 2102b, 2104a, 2104b, 2106a, 2106b, 2106c, 2106d)를 결정할 수 있다.
일 실시예에 따라 정사각형 형태의 제1 부호화 단위(2100)에 대한 분할 형태 정보에 따라 결정되는 제2 부호화 단위(2102a, 2102b, 2104a, 2104b, 2106a, 2106b, 2106c, 2106d)는 긴 변의 길이에 기초하여 심도가 결정될 수 있다. 예를 들면, 정사각형 형태의 제1 부호화 단위(2100)의 한 변의 길이와 비-정사각형 형태의 제2 부호화 단위(2102a, 2102b, 2104a, 2104b)의 긴 변의 길이가 동일하므로, 제1 부호화 단위(2100)와 비-정사각형 형태의 제2 부호화 단위(2102a, 2102b, 2104a, 2104b)의 심도는 D로 동일하다고 볼 수 있다. 이에 반해 영상 복호화 장치(700)가 분할 형태 정보에 기초하여 제1 부호화 단위(2100)를 4개의 정사각형 형태의 제2 부호화 단위(2106a, 2106b, 2106c, 2106d)로 분할한 경우, 정사각형 형태의 제2 부호화 단위(2106a, 2106b, 2106c, 2106d)의 한 변의 길이는 제1 부호화 단위(2100)의 한 변의 길이의 1/2배 이므로, 제2 부호화 단위(2106a, 2106b, 2106c, 2106d)의 심도는 제1 부호화 단위(2100)의 심도인 D보다 한 심도 하위인 D+1의 심도일 수 있다.
일 실시예에 따라 영상 복호화 장치(700)는 높이가 너비보다 긴 형태의 제1 부호화 단위(2110)를 분할 형태 정보에 따라 수평 방향으로 분할하여 복수개의 제2 부호화 단위(2112a, 2112b, 2114a, 2114b, 2114c)로 분할할 수 있다. 일 실시예에 따라 영상 복호화 장치(700)는 너비가 높이보다 긴 형태의 제1 부호화 단위(2120)를 분할 형태 정보에 따라 수직 방향으로 분할하여 복수개의 제2 부호화 단위(2122a, 2122b, 2124a, 2124b, 2124c)로 분할할 수 있다.
일 실시예에 따라 비-정사각형 형태의 제1 부호화 단위(2110 또는 2120)에 대한 분할 형태 정보에 따라 결정되는 제2 부호화 단위(2112a, 2112b, 2114a, 2114b, 2116a, 2116b, 2116c, 2116d)는 긴 변의 길이에 기초하여 심도가 결정될 수 있다. 예를 들면, 정사각형 형태의 제2 부호화 단위(2112a, 2112b)의 한 변의 길이는 높이가 너비보다 긴 비-정사각형 형태의 제1 부호화 단위(2110)의 한 변의 길이의 1/2배이므로, 정사각형 형태의 제2 부호화 단위(2102a, 2102b, 2104a, 2104b)의 심도는 비-정사각형 형태의 제1 부호화 단위(2110)의 심도 D보다 한 심도 하위의 심도인 D+1이다.
나아가 영상 복호화 장치(700)가 분할 형태 정보에 기초하여 비-정사각형 형태의 제1 부호화 단위(2110)를 홀수개의 제2 부호화 단위(2114a, 2114b, 2114c)로 분할할 수 있다. 홀수개의 제2 부호화 단위(2114a, 2114b, 2114c)는 비-정사각형 형태의 제2 부호화 단위(2114a, 2114c) 및 정사각형 형태의 제2 부호화 단위(2114b)를 포함할 수 있다. 이 경우 비-정사각형 형태의 제2 부호화 단위(2114a, 2114c)의 긴 변의 길이 및 정사각형 형태의 제2 부호화 단위(2114b)의 한 변의 길이는 제1 부호화 단위(2110)의 한 변의 길이의 1/2배 이므로, 제2 부호화 단위(2114a, 2114b, 2114c)의 심도는 제1 부호화 단위(2110)의 심도인 D보다 한 심도 하위인 D+1의 심도일 수 있다. 영상 복호화 장치(700)는 제1 부호화 단위(2110)와 관련된 부호화 단위들의 심도를 결정하는 상기 방식에 대응하는 방식으로, 너비가 높이보다 긴 비-정사각형 형태의 제1 부호화 단위(2120)와 관련된 부호화 단위들의 심도를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(700)는 분할된 부호화 단위들의 구분을 위한 인덱스(PID)를 결정함에 있어서, 홀수개로 분할된 부호화 단위들이 서로 동일한 크기가 아닌 경우, 부호화 단위들 간의 크기 비율에 기초하여 인덱스를 결정할 수 있다. 도 21를 참조하면, 홀수개로 분할된 부호화 단위들(2114a, 2114b, 2114c) 중 가운데에 위치하는 부호화 단위(2114b)는 다른 부호화 단위들(2114a, 2114c)와 너비는 동일하지만 높이가 다른 부호화 단위들(2114a, 2114c)의 높이의 두 배일 수 있다. 즉, 이 경우 가운데에 위치하는 부호화 단위(2114b)는 다른 부호화 단위들(2114a, 2114c)의 두 개를 포함할 수 있다. 따라서, 스캔 순서에 따라 가운데에 위치하는 부호화 단위(2114b)의 인덱스(PID)가 1이라면 그 다음 순서에 위치하는 부호화 단위(2114c)는 인덱스가 2가 증가한 3일수 있다. 즉 인덱스의 값의 불연속성이 존재할 수 있다. 일 실시예에 따라 영상 복호화 장치(700)는 이러한 분할된 부호화 단위들 간의 구분을 위한 인덱스의 불연속성의 존재 여부에 기초하여 홀수개로 분할된 부호화 단위들이 서로 동일한 크기가 아닌지 여부를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(700)는 현재 부호화 단위로부터 분할되어 결정된 복수개의 부호화 단위들을 구분하기 위한 인덱스의 값에 기초하여 특정 분할 형태로 분할된 것인지를 결정할 수 있다. 도 21를 참조하면 영상 복호화 장치(700)는 높이가 너비보다 긴 직사각형 형태의 제1 부호화 단위(2110)를 분할하여 짝수개의 부호화 단위(2112a, 2112b)를 결정하거나 홀수개의 부호화 단위(2114a, 2114b, 2114c)를 결정할 수 있다. 영상 복호화 장치(700)는 복수개의 부호화 단위 각각을 구분하기 위하여 각 부호화 단위를 나타내는 인덱스(PID)를 이용할 수 있다. 일 실시예에 따라 PID는 각각의 부호화 단위의 소정 위치의 샘플(예를 들면, 좌측 상단 샘플)에서 획득될 수 있다.
일 실시예에 따라 영상 복호화 장치(700)는 부호화 단위의 구분을 위한 인덱스를 이용하여 분할되어 결정된 부호화 단위들 중 소정 위치의 부호화 단위를 결정할 수 있다. 일 실시예에 따라 높이가 너비보다 긴 직사각형 형태의 제1 부호화 단위(2110)에 대한 분할 형태 정보가 3개의 부호화 단위로 분할됨을 나타내는 경우 영상 복호화 장치(700)는 제1 부호화 단위(2110)를 3개의 부호화 단위(2114a, 2114b, 2114c)로 분할할 수 있다. 영상 복호화 장치(700)는 3개의 부호화 단위(2114a, 2114b, 2114c) 각각에 대한 인덱스를 할당할 수 있다. 영상 복호화 장치(700)는 홀수개로 분할된 부호화 단위 중 가운데 부호화 단위를 결정하기 위하여 각 부호화 단위에 대한 인덱스를 비교할 수 있다. 영상 복호화 장치(700)는 부호화 단위들의 인덱스에 기초하여 인덱스들 중 가운데 값에 해당하는 인덱스를 갖는 부호화 단위(2114b)를, 제1 부호화 단위(2110)가 분할되어 결정된 부호화 단위 중 가운데 위치의 부호화 단위로서 결정할 수 있다. 일 실시예에 따라 영상 복호화 장치(700)는 분할된 부호화 단위들의 구분을 위한 인덱스를 결정함에 있어서, 부호화 단위들이 서로 동일한 크기가 아닌 경우, 부호화 단위들 간의 크기 비율에 기초하여 인덱스를 결정할 수 있다. 도 21를 참조하면, 제1 부호화 단위(2110)가 분할되어 생성된 부호화 단위(2114b)는 다른 부호화 단위들(2114a, 2114c)와 너비는 동일하지만 높이가 다른 부호화 단위들(2114a, 2114c)의 높이의 두 배일 수 있다. 이 경우 가운데에 위치하는 부호화 단위(2114b)의 인덱스(PID)가 1이라면 그 다음 순서에 위치하는 부호화 단위(2114c)는 인덱스가 2가 증가한 3일수 있다. 이러한 경우처럼 균일하게 인덱스가 증가하다가 증가폭이 달라지는 경우, 영상 복호화 장치(700)는 다른 부호화 단위들과 다른 크기를 가지는 부호화 단위를 포함하는 복수개의 부호화 단위로 분할된 것으로 결정할 수 있다, 일 실시예에 따라 분할 형태 정보가 홀수개의 부호화 단위로 분할됨을 나타내는 경우, 영상 복호화 장치(700)는 홀수개의 부호화 단위 중 소정 위치의 부호화 단위(예를 들면 가운데 부호화 단위)가 다른 부호화 단위와 크기가 다른 형태로 현재 부호화 단위를 분할할 수 있다. 이 경우 영상 복호화 장치(700)는 부호화 단위에 대한 인덱스(PID)를 이용하여 다른 크기를 가지는 가운데 부호화 단위를 결정할 수 있다. 다만 상술한 인덱스, 결정하고자 하는 소정 위치의 부호화 단위의 크기 또는 위치는 일 실시예를 설명하기 위해 특정한 것이므로 이에 한정하여 해석되어서는 안되며, 다양한 인덱스, 부호화 단위의 위치 및 크기가 이용될 수 있는 것으로 해석되어야 한다.
일 실시예에 따라 영상 복호화 장치(700)는 부호화 단위의 재귀적인 분할이 시작되는 소정의 데이터 단위를 이용할 수 있다.
도 22는 일 실시예에 따라 픽쳐에 포함되는 복수개의 소정의 데이터 단위에 따라 복수개의 부호화 단위들이 결정된 것을 도시한다.
일 실시예에 따라 소정의 데이터 단위는 부호화 단위가 블록 형태 정보 및 분할 형태 정보 중 적어도 하나를 이용하여 재귀적으로 분할되기 시작하는 데이터 단위로 정의될 수 있다. 즉, 현재 픽쳐를 분할하는 복수개의 부호화 단위들이 결정되는 과정에서 이용되는 최상위 심도의 부호화 단위에 해당할 수 있다. 이하에서는 설명 상 편의를 위해 이러한 소정의 데이터 단위를 기준 데이터 단위라고 지칭하도록 한다.
일 실시예에 따라 기준 데이터 단위는 소정의 크기 및 형태를 나타낼 수 있다. 일 실시예에 따라, 기준 부호화 단위는 MxN의 샘플들을 포함할 수 있다. 여기서 M 및 N은 서로 동일할 수도 있으며, 2의 승수로 표현되는 정수일 수 있다. 즉, 기준 데이터 단위는 정사각형 또는 비-정사각형의 형태를 나타낼 수 있으며, 이후에 정수개의 부호화 단위로 분할될 수 있다.
일 실시예에 따라 영상 복호화 장치(700)는 현재 픽쳐를 복수개의 기준 데이터 단위로 분할할 수 있다. 일 실시예에 따라 영상 복호화 장치(700)는 현재 픽쳐를 분할하는 복수개의 기준 데이터 단위를 각각의 기준 데이터 단위에 대한 분할 정보를 이용하여 분할할 수 있다. 이러한 기준 데이터 단위의 분할 과정은 쿼드 트리(quad-tree)구조를 이용한 분할 과정에 대응될 수 있다.
일 실시예에 따라 영상 복호화 장치(700)는 현재 픽쳐에 포함되는 기준 데이터 단위가 가질 수 있는 최소 크기를 미리 결정할 수 있다. 이에 따라, 영상 복호화 장치(700)는 최소 크기 이상의 크기를 갖는 다양한 크기의 기준 데이터 단위를 결정할 수 있고, 결정된 기준 데이터 단위를 기준으로 블록 형태 정보 및 분할 형태 정보를 이용하여 적어도 하나의 부호화 단위를 결정할 수 있다.
도 22를 참조하면, 영상 복호화 장치(700)는 정사각형 형태의 기준 부호화 단위(2200)를 이용할 수 있고, 또는 비-정사각형 형태의 기준 부호화 단위(2202)를 이용할 수도 있다. 일 실시예에 따라 기준 부호화 단위의 형태 및 크기는 적어도 하나의 기준 부호화 단위를 포함할 수 있는 다양한 데이터 단위(예를 들면, 시퀀스(sequence), 픽쳐(picture), 슬라이스(slice), 슬라이스 세그먼트(slice segment), 최대부호화단위 등)에 따라 결정될 수 있다.
일 실시예에 따라 영상 복호화 장치(700)의 수신부(210)는 기준 부호화 단위의 형태에 대한 정보 및 기준 부호화 단위의 크기에 대한 정보 중 적어도 하나를 상기 다양한 데이터 단위마다 비트스트림으로부터 획득할 수 있다. 정사각형 형태의 기준 부호화 단위(2200)에 포함되는 적어도 하나의 부호화 단위가 결정되는 과정은 도 10의 현재 부호화 단위(300)가 분할되는 과정을 통해 상술하였고, 비-정사각형 형태의 기준 부호화 단위(2200)에 포함되는 적어도 하나의 부호화 단위가 결정되는 과정은 도 11의 현재 부호화 단위(1100 또는 1150)가 분할되는 과정을 통해 상술하였으므로 자세한 설명은 생략하도록 한다.
일 실시예에 따라 영상 복호화 장치(700)는 소정의 조건에 기초하여 미리 결정되는 일부 데이터 단위에 따라 기준 부호화 단위의 크기 및 형태를 결정하기 위하여, 기준 부호화 단위의 크기 및 형태를 식별하기 위한 인덱스를 이용할 수 있다. 즉, 수신부(210)는 비트스트림으로부터 상기 다양한 데이터 단위(예를 들면, 시퀀스, 픽쳐, 슬라이스, 슬라이스 세그먼트, 최대부호화단위 등) 중 소정의 조건(예를 들면 슬라이스 이하의 크기를 갖는 데이터 단위)을 만족하는 데이터 단위로서 슬라이스, 슬라이스 세그먼트, 최대부호화 단위 등 마다, 기준 부호화 단위의 크기 및 형태의 식별을 위한 인덱스만을 획득할 수 있다. 영상 복호화 장치(700)는 인덱스를 이용함으로써 상기 소정의 조건을 만족하는 데이터 단위마다 기준 데이터 단위의 크기 및 형태를 결정할 수 있다. 기준 부호화 단위의 형태에 대한 정보 및 기준 부호화 단위의 크기에 대한 정보를 상대적으로 작은 크기의 데이터 단위마다 비트스트림으로부터 획득하여 이용하는 경우, 비트스트림의 이용 효율이 좋지 않을 수 있으므로, 기준 부호화 단위의 형태에 대한 정보 및 기준 부호화 단위의 크기에 대한 정보를 직접 획득하는 대신 상기 인덱스만을 획득하여 이용할 수 있다. 이 경우 기준 부호화 단위의 크기 및 형태를 나타내는 인덱스에 대응하는 기준 부호화 단위의 크기 및 형태 중 적어도 하나는 미리 결정되어 있을 수 있다. 즉, 영상 복호화 장치(700)는 미리 결정된 기준 부호화 단위의 크기 및 형태 중 적어도 하나를 인덱스에 따라 선택함으로써, 인덱스 획득의 기준이 되는 데이터 단위에 포함되는 기준 부호화 단위의 크기 및 형태 중 적어도 하나를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(700)는 하나의 최대 부호화 단위에 포함하는 적어도 하나의 기준 부호화 단위를 이용할 수 있다. 즉, 영상을 분할하는 최대 부호화 단위에는 적어도 하나의 기준 부호화 단위가 포함될 수 있고, 각각의 기준 부호화 단위의 재귀적인 분할 과정을 통해 부호화 단위가 결정될 수 있다. 일 실시예에 따라 최대 부호화 단위의 너비 및 높이 중 적어도 하나는 기준 부호화 단위의 너비 및 높이 중 적어도 하나의 정수배에 해당할 수 있다. 일 실시예에 따라 기준 부호화 단위의 크기는 최대부호화단위를 쿼드 트리 구조에 따라 n번 분할한 크기일 수 있다. 즉, 영상 복호화 장치(700)는 최대부호화단위를 쿼드 트리 구조에 따라 n 번 분할하여 기준 부호화 단위를 결정할 수 있고, 다양한 실시예들에 따라 기준 부호화 단위를 블록 형태 정보 및 분할 형태 정보 중 적어도 하나에 기초하여 분할할 수 있다.
도 23은 일 실시예에 따라 픽쳐(2300)에 포함되는 기준 부호화 단위의 결정 순서를 결정하는 기준이 되는 프로세싱 블록을 도시한다.
일 실시예에 따라 영상 복호화 장치(700)는 픽쳐를 분할하는 적어도 하나의 프로세싱 블록을 결정할 수 있다. 프로세싱 블록이란, 영상을 분할하는 적어도 하나의 기준 부호화 단위를 포함하는 데이터 단위로서, 프로세싱 블록에 포함되는 적어도 하나의 기준 부호화 단위는 특정 순서대로 결정될 수 있다. 즉, 각각의 프로세싱 블록에서 결정되는 적어도 하나의 기준 부호화 단위의 결정 순서는 기준 부호화 단위가 결정될 수 있는 다양한 순서의 종류 중 하나에 해당할 수 있으며, 각각의 프로세싱 블록에서 결정되는 기준 부호화 단위 결정 순서는 프로세싱 블록마다 상이할 수 있다. 프로세싱 블록마다 결정되는 기준 부호화 단위의 결정 순서는 래스터 스캔(raster scan), Z 스캔(Z-scan), N 스캔(N-scan), 우상향 대각 스캔(up-right diagonal scan), 수평적 스캔(horizontal scan), 수직적 스캔(vertical scan) 등 다양한 순서 중 하나일 수 있으나, 결정될 수 있는 순서는 상기 스캔 순서들에 한정하여 해석되어서는 안 된다.
일 실시예에 따라 영상 복호화 장치(700)는 프로세싱 블록의 크기에 대한 정보를 획득하여 영상에 포함되는 적어도 하나의 프로세싱 블록의 크기를 결정할 수 있다. 영상 복호화 장치(700)는 프로세싱 블록의 크기에 대한 정보를 비트스트림으로부터 획득하여 영상에 포함되는 적어도 하나의 프로세싱 블록의 크기를 결정할 수 있다. 이러한 프로세싱 블록의 크기는 프로세싱 블록의 크기에 대한 정보가 나타내는 데이터 단위의 소정의 크기일 수 있다.
일 실시예에 따라 영상 복호화 장치(700)의 수신부(210)는 비트스트림으로부터 프로세싱 블록의 크기에 대한 정보를 특정의 데이터 단위마다 획득할 수 있다. 예를 들면 프로세싱 블록의 크기에 대한 정보는 영상, 시퀀스, 픽쳐, 슬라이스, 슬라이스 세그먼트 등의 데이터 단위로 비트스트림으로부터 획득될 수 있다. 즉 수신부(210)는 상기 여러 데이터 단위마다 비트스트림으로부터 프로세싱 블록의 크기에 대한 정보를 획득할 수 있고 영상 복호화 장치(700)는 획득된 프로세싱 블록의 크기에 대한 정보를 이용하여 픽쳐를 분할하는 적어도 하나의 프로세싱 블록의 크기를 결정할 수 있으며, 이러한 프로세싱 블록의 크기는 기준 부호화 단위의 정수배의 크기일 수 있다.
일 실시예에 따라 영상 복호화 장치(700)는 픽쳐(2300)에 포함되는 프로세싱 블록(2302, 2312)의 크기를 결정할 수 있다. 예를 들면, 영상 복호화 장치(700)는 비트스트림으로부터 획득된 프로세싱 블록의 크기에 대한 정보에 기초하여 프로세싱 블록의 크기를 결정할 수 있다. 도 23을 참조하면, 영상 복호화 장치(700)는 일 실시예에 따라 프로세싱 블록(2302, 2312)의 가로크기를 기준 부호화 단위 가로크기의 4배, 세로크기를 기준 부호화 단위의 세로크기의 4배로 결정할 수 있다. 영상 복호화 장치(700)는 적어도 하나의 프로세싱 블록 내에서 적어도 하나의 기준 부호화 단위가 결정되는 순서를 결정할 수 있다.
일 실시예에 따라, 영상 복호화 장치(700)는 프로세싱 블록의 크기에 기초하여 픽쳐(2300)에 포함되는 각각의 프로세싱 블록(2302, 2312)을 결정할 수 있고, 프로세싱 블록(2302, 2312)에 포함되는 적어도 하나의 기준 부호화 단위의 결정 순서를 결정할 수 있다. 일 실시예에 따라 기준 부호화 단위의 결정은 기준 부호화 단위의 크기의 결정을 포함할 수 있다.
일 실시예에 따라 영상 복호화 장치(700)는 비트스트림으로부터 적어도 하나의 프로세싱 블록에 포함되는 적어도 하나의 기준 부호화 단위의 결정 순서에 대한 정보를 획득할 수 있고, 획득한 결정 순서에 대한 정보에 기초하여 적어도 하나의 기준 부호화 단위가 결정되는 순서를 결정할 수 있다. 결정 순서에 대한 정보는 프로세싱 블록 내에서 기준 부호화 단위들이 결정되는 순서 또는 방향으로 정의될 수 있다. 즉, 기준 부호화 단위들이 결정되는 순서는 각각의 프로세싱 블록마다 독립적으로 결정될 수 있다.
일 실시예에 따라 영상 복호화 장치(700)는 특정 데이터 단위마다 기준 부호화 단위의 결정 순서에 대한 정보를 비트스트림으로부터 획득할 수 있다. 예를 들면, 수신부(210)는 기준 부호화 단위의 결정 순서에 대한 정보를 영상, 시퀀스, 픽쳐, 슬라이스, 슬라이스 세그먼트, 프로세싱 블록 등의 데이터 단위로마다 비트스트림으로부터 획득할 수 있다. 기준 부호화 단위의 결정 순서에 대한 정보는 프로세싱 블록 내에서의 기준 부호화 단위 결정 순서를 나타내므로, 결정 순서에 대한 정보는 정수개의 프로세싱 블록을 포함하는 특정 데이터 단위 마다 획득될 수 있다.
영상 복호화 장치(700)는 일 실시예에 따라 결정된 순서에 기초하여 적어도 하나의 기준 부호화 단위를 결정할 수 있다.
일 실시예에 따라 수신부(210)는 비트스트림으로부터 프로세싱 블록(2302, 2312)과 관련된 정보로서, 기준 부호화 단위 결정 순서에 대한 정보를 획득할 수 있고, 영상 복호화 장치(700)는 상기 프로세싱 블록(2302, 2312)에 포함된 적어도 하나의 기준 부호화 단위를 결정하는 순서를 결정하고 부호화 단위의 결정 순서에 따라 픽쳐(2300)에 포함되는 적어도 하나의 기준 부호화 단위를 결정할 수 있다. 도 23을 참조하면, 영상 복호화 장치(700)는 각각의 프로세싱 블록(2302, 2312)과 관련된 적어도 하나의 기준 부호화 단위의 결정 순서(2304, 2314)를 결정할 수 있다. 예를 들면, 기준 부호화 단위의 결정 순서에 대한 정보가 프로세싱 블록마다 획득되는 경우, 각각의 프로세싱 블록(2302, 2312)과 관련된 기준 부호화 단위 결정 순서는 프로세싱 블록마다 상이할 수 있다. 프로세싱 블록(2302)과 관련된 기준 부호화 단위 결정 순서(2304)가 래스터 스캔(raster scan)순서인 경우, 프로세싱 블록(2302)에 포함되는 기준 부호화 단위는 래스터 스캔 순서에 따라 결정될 수 있다. 이에 반해 다른 프로세싱 블록(2312)과 관련된 기준 부호화 단위 결정 순서(2314)가 래스터 스캔 순서의 역순인 경우, 프로세싱 블록(2312)에 포함되는 기준 부호화 단위는 래스터 스캔 순서의 역순에 따라 결정될 수 있다.
영상 복호화 장치(700)는 일 실시예에 따라, 결정된 적어도 하나의 기준 부호화 단위를 복호화할 수 있다. 영상 복호화 장치(700)는 상술한 실시예를 통해 결정된 기준 부호화 단위에 기초하여 영상을 복호화 할 수 있다. 기준 부호화 단위를 복호화 하는 방법은 영상을 복호화 하는 다양한 방법들을 포함할 수 있다.
일 실시예에 따라 영상 복호화 장치(700)는 현재 부호화 단위의 형태를 나타내는 블록 형태 정보 또는 현재 부호화 단위를 분할하는 방법을 나타내는 분할 형태 정보를 비트스트림으로부터 획득하여 이용할 수 있다. 블록 형태 정보 또는 분할 형태 정보는 다양한 데이터 단위와 관련된 비트스트림에 포함될 수 있다. 예를 들면, 영상 복호화 장치(700)는 시퀀스 파라미터 세트(sequence parameter set), 픽쳐 파라미터 세트(picture parameter set), 비디오 파라미터 세트(video parameter set), 슬라이스 헤더(slice header), 슬라이스 세그먼트 헤더(slice segment header)에 포함된 블록 형태 정보 또는 분할 형태 정보를 이용할 수 있다. 나아가, 영상 복호화 장치(700)는 최대 부호화 단위, 기준 부호화 단위, 프로세싱 블록마다 비트스트림으로부터 블록 형태 정보 또는 분할 형태 정보에 대응하는 신택스를 비트스트림으로부터 획득하여 이용할 수 있다.
이제까지 다양한 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.
한편, 상술한 본 발명의 실시예들은 컴퓨터에서 실행될 수 있는 프로그램으로 작성가능하고, 컴퓨터로 읽을 수 있는 기록매체를 이용하여 상기 프로그램을 동작시키는 범용 디지털 컴퓨터에서 구현될 수 있다. 상기 컴퓨터로 읽을 수 있는 기록매체는 마그네틱 저장매체(예를 들면, 롬, 플로피 디스크, 하드디스크 등), 광학적 판독 매체(예를 들면, 시디롬, 디브이디 등)와 같은 저장매체를 포함한다.

Claims (15)

  1. 복호화되는 현재 블록의 예측 모드 정보 및 예측 블록에 대한 필터링 수행 여부를 나타내는 필터링 정보를 비트스트림으로부터 획득하는 단계;
    상기 예측 모드 정보에 따라서 상기 현재 블록에 대한 제 1 예측 블록을 생성하는 단계;
    상기 필터링 정보가 상기 제 1 예측 블록에 대해 필터링을 수행함을 나타내는 경우, 상기 제 1 예측 블록 내부의 현재 픽셀과 상기 현재 픽셀의 주변 픽셀들 사이의 기울기 값에 기초하여 상기 현재 픽셀의 픽셀값을 변경하여 제 2 예측 블록을 생성하는 단계;
    상기 비트스트림으로부터 상기 현재 블록과 상기 제 2 예측 블록의 차이값에 해당하는 레지듀얼을 추출하여 복원하는 단계; 및
    상기 레지듀얼과 상기 제 2 예측 블록을 가산하여 상기 현재 블록을 복호화하는 단계를 포함하는 것을 특징으로 하는, 영상 복호화 방법.
  2. 제 1 항에 있어서,
    상기 제 1 예측 블록을 생성하는 단계는,
    상기 현재 블록에 대한 인트라 예측 또는 인터 예측을 수행하여 상기 제 1 예측 블록을 생성하는 단계를 포함하는 것을 특징으로 하는, 영상 복호화 방법.
  3. 제 2 항에 있어서,
    상기 제 2 예측 블록을 생성하는 단계는,
    상기 현재 픽셀의 픽셀값을 변경한 후, 상기 현재 픽셀에 인접한 다음 픽셀의 픽셀값을 변경하는 단계를 포함하고,
    상기 다음 픽셀의 픽셀값은, 상기 다음 픽셀과 상기 다음 픽셀의 주변 픽셀들 사이의 기울기 값에 기초하여 변경되는 것을 특징으로 하는, 영상 복호화 방법.
  4. 제 2 항에 있어서,
    상기 제 2 예측 블록을 생성하는 단계는,
    상기 현재 픽셀 및 상기 현재 픽셀의 상측에 위치한 상측 픽셀 사이의 차이 값을 나타내는 제 1 기울기 값 및 상기 현재 픽셀 및 상기 현재 픽셀의 좌측에 위치한 좌측 픽셀 사이의 차이 값을 나타내는 제 2 기울기 값에 기초하여, 상기 현재 픽셀, 상기 상측 픽셀 및 상기 좌측 픽셀의 가중치를 결정하는 단계; 및
    상기 현재 픽셀의 가중치, 상기 상측 픽셀의 가중치 및 상기 좌측 픽셀의 가중치를 이용하여 상기 현재 픽셀의 픽셀값을 변경하는 단계를 포함하는 것을 특징으로 하는, 영상 복호화 방법.
  5. 제 4 항에 있어서,
    상기 제 1 예측 블록이 상기 인트라 예측을 이용하여 생성된 경우,
    상기 현재 픽셀, 상기 상측 픽셀 및 상기 좌측 픽셀의 가중치는 상기 인트라 예측의 방향에 기초하여 결정되는 것을 특징으로 하는, 영상 복호화 방법.
  6. 제 4 항에 있어서,
    상기 제 2 예측 블록을 생성하는 단계는,
    상기 제 1 기울기 값, 상기 제 2 기울기 값, 상기 현재 픽셀 및 상기 현재 픽셀의 우측에 위치한 우측 픽셀 사이의 차이 값을 나타내는 제 3 기울기 값 및 상기 현재 픽셀 및 상기 현재 픽셀의 하측에 위치한 하측 픽셀 사이의 차이 값을 나타내는 제 4 기울기 값에 기초하여, 상기 현재 픽셀, 상기 상측 픽셀, 상기 좌측 픽셀, 상기 우측 픽셀 및 상기 하측 픽셀의 가중치를 결정하는 단계를 더 포함하고,
    상기 현재 픽셀의 픽셀값은 상기 현재 픽셀의 가중치, 상기 상측 픽셀의 가중치, 상기 좌측 픽셀의 가중치, 상기 우측 픽셀의 가중치 및 상기 하측 픽셀의 가중치에 기초하여 변경되는 것을 특징으로 하는, 영상 복호화 방법.
  7. 제 6 항에 있어서,
    상기 제 2 예측 블록을 생성하는 단계는,
    상기 제 1 예측 블록의 크기를 mxn(m 및 n은 양의 정수), 상기 제 1 예측 블록 내부의 i번째 열 및 j번째 행에 위치한 상기 현재 픽셀의 픽셀값을 f[i][j], 상기 현재 픽셀의 가중치를 α, 상기 상측 픽셀의 픽셀값을 f[i][j-1], 상기 상측 픽셀의 가중치를 β, 상기 좌측 픽셀의 픽셀값을 f[i-1][j], 상기 좌측 픽셀의 가중치를 γ, 상기 우측 픽셀의 픽셀값을 f[i+1][j], 상기 우측 픽셀의 가중치를 δ, 상기 하측 픽셀의 픽셀값을 f[i][j+1], 상기 하측 픽셀의 가중치를 ε라고 할 때, 다음의 수학식;
    Figure pct00005
    을 통해 상기 현재 픽셀의 픽셀값을 f`[i][j]로 변경하는 단계를 포함하는 것을 특징으로 하는, 영상 복호화 방법.
  8. 제 7 항에 있어서,
    상기 우측 픽셀의 가중치 δ는 상기 좌측 픽셀의 가중치 γ와 동일하고, 상기 하측 픽셀의 가중치 ε는 상기 상측 픽셀의 가중치 β와 동일한 것을 특징으로 하는, 영상 복호화 방법.
  9. 제 7 항에 있어서,
    상기 우측 픽셀의 가중치 δ 및 상기 하측 픽셀의 가중치 ε는 0인 것을 특징으로 하는, 영상 복호화 방법.
  10. 제 3 항에 있어서,
    상기 필터링 정보는 상기 필터링의 반복 적용 횟수에 대한 정보를 포함하고,
    상기 제 2 예측 블록을 생성하는 단계는 상기 필터링의 반복 적용 횟수에 대한 정보에 기초하여 소정 횟수로 반복 수행되는 것을 특징으로 하는, 영상 복호화 방법.
  11. 제 3 항에 있어서,
    상기 제 2 예측 블록을 생성하는 단계는, 상기 현재 픽셀의 변경 전 픽셀값과 변경 후 픽셀값의 차이가 소정의 임계값 이하로 수렴할 때까지 상기 제 2 예측 블록 내의 각 픽셀의 픽셀값을 변경하는 동작을 반복 수행하는 것을 특징으로 하는, 영상 복호화 방법.
  12. 복호화되는 현재 블록의 예측 모드 정보 및 예측 블록에 대한 필터링 수행 여부를 나타내는 필터링 정보를 비트스트림으로부터 획득하는 엔트로피 디코더;
    상기 예측 모드 정보에 따라서 상기 현재 블록에 대한 제 1 예측 블록을 생성하는 예측부;
    상기 필터링 정보가 상기 제 1 예측 블록에 대해 필터링을 수행함을 나타내는 경우, 상기 제 1 예측 블록 내부의 현재 픽셀과 상기 현재 픽셀의 주변 픽셀들 사이의 기울기 값에 기초하여 상기 현재 픽셀의 픽셀값을 변경하여 제 2 예측 블록을 생성하는 후처리부;
    상기 비트스트림으로부터 상기 현재 블록과 상기 제 2 예측 블록의 차이값에 해당하는 레지듀얼을 추출하여 복원하는 역변환 및 역양자화부; 및
    상기 레지듀얼과 상기 제 2 예측 블록을 가산하여 상기 현재 블록을 복호화하는 가산부를 포함하는 것을 특징으로 하는, 영상 복호화 장치.
  13. 제 12 항에 있어서,
    상기 예측부는 상기 현재 블록에 대한 인트라 예측 또는 인터 예측을 수행하여 상기 제 1 예측 블록을 생성하는 것을 특징으로 하는, 영상 복호화 장치.
  14. 제 13 항에 있어서,
    상기 후처리부는, 상기 현재 픽셀의 픽셀값을 변경한 후, 상기 현재 픽셀에 인접한 다음 픽셀의 픽셀값을 변경하고,
    상기 다음 픽셀의 픽셀값은, 상기 다음 픽셀과 상기 다음 픽셀의 주변 픽셀들 사이의 기울기 값에 기초하여 변경되는 것을 특징으로 하는, 영상 복호화 장치.
  15. 부호화되는 현재 블록에 대한 제 1 예측 블록을 생성하는 단계;
    상기 제 1 예측 블록 내부의 현재 픽셀과 상기 현재 픽셀의 주변 픽셀들 사이의 기울기 값에 기초하여 상기 현재 픽셀의 픽셀값을 변경하여 제 2 예측 블록을 생성하는 단계; 및
    상기 현재 블록과 상기 제 2 예측 블록의 차이값을 부호화하는 단계를 포함하는 것을 특징으로 하는, 영상 부호화 방법.
KR1020187008709A 2015-11-24 2016-11-24 픽셀의 기울기에 기초하여 인트라 또는 인터 예측 블록을 후처리하는 방법 및 장치 KR20180075483A (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201562259200P 2015-11-24 2015-11-24
US62/259,200 2015-11-24
PCT/KR2016/013610 WO2017091001A1 (ko) 2015-11-24 2016-11-24 픽셀의 기울기에 기초하여 인트라 또는 인터 예측 블록을 후처리하는 방법 및 장치

Publications (1)

Publication Number Publication Date
KR20180075483A true KR20180075483A (ko) 2018-07-04

Family

ID=58763406

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020187008709A KR20180075483A (ko) 2015-11-24 2016-11-24 픽셀의 기울기에 기초하여 인트라 또는 인터 예측 블록을 후처리하는 방법 및 장치

Country Status (4)

Country Link
US (1) US10595050B2 (ko)
KR (1) KR20180075483A (ko)
CN (1) CN108293117A (ko)
WO (1) WO2017091001A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102022375B1 (ko) * 2018-08-22 2019-09-18 (주)넥서스일렉트로닉스 Uhd tv용 업스케일 칩셋 모듈

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11095911B2 (en) 2016-02-16 2021-08-17 Samsung Electronics Co., Ltd. Method and apparatus for encoding image
GB2572595B (en) * 2018-04-04 2023-03-22 British Broadcasting Corp Video encoding and decoding
WO2020187199A1 (en) * 2019-03-17 2020-09-24 Beijing Bytedance Network Technology Co., Ltd. Calculation of prediction refinement based on optical flow
CN114640845B (zh) * 2021-02-23 2023-02-28 杭州海康威视数字技术股份有限公司 编解码方法、装置及其设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100896279B1 (ko) 2005-04-15 2009-05-07 엘지전자 주식회사 영상 신호의 스케일러블 인코딩 및 디코딩 방법
KR101361005B1 (ko) * 2008-06-24 2014-02-13 에스케이 텔레콤주식회사 인트라 예측 방법 및 장치와 그를 이용한 영상부호화/복호화 방법 및 장치
KR101517768B1 (ko) 2008-07-02 2015-05-06 삼성전자주식회사 영상의 부호화 방법 및 장치, 그 복호화 방법 및 장치
KR101700358B1 (ko) * 2009-12-09 2017-01-26 삼성전자주식회사 영상의 부호화 방법 및 장치, 그 복호화 방법 및 장치
KR101383775B1 (ko) 2011-05-20 2014-04-14 주식회사 케이티 화면 내 예측 방법 및 장치
CN103765901B (zh) 2011-06-28 2018-03-30 三星电子株式会社 用于使用帧内预测进行图像编码和解码的方法和设备
US9179148B2 (en) * 2011-06-30 2015-11-03 Futurewei Technologies, Inc. Simplified bilateral intra smoothing filter
KR101699529B1 (ko) 2015-07-24 2017-01-24 삼성전자 주식회사 영상의 복호화 방법 및 장치

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102022375B1 (ko) * 2018-08-22 2019-09-18 (주)넥서스일렉트로닉스 Uhd tv용 업스케일 칩셋 모듈

Also Published As

Publication number Publication date
WO2017091001A1 (ko) 2017-06-01
US10595050B2 (en) 2020-03-17
US20180332309A1 (en) 2018-11-15
CN108293117A (zh) 2018-07-17

Similar Documents

Publication Publication Date Title
KR20180075660A (ko) 비디오 복호화 방법 및 그 장치 및 비디오 부호화 방법 및 그 장치
KR20180093950A (ko) 영상 부호화 방법 및 장치와 영상 복호화 방법 및 장치
KR20180075483A (ko) 픽셀의 기울기에 기초하여 인트라 또는 인터 예측 블록을 후처리하는 방법 및 장치
KR20180101711A (ko) 크로마 다중 변환에 의한 비디오 복호화 방법 및 장치,크로마 다중 변환에 의한 비디오 부호화 방법 및 장치
KR20190020161A (ko) 루마 블록 및 크로마 블록을 부호화 또는 복호화하는 방법 및 장치
KR20190038910A (ko) 픽처 외곽선의 부호화 단위를 부호화 또는 복호화하는 방법 및 장치
KR20190092382A (ko) 인트라 예측에서 참조 샘플을 필터링하는 방법 및 장치
KR20180107097A (ko) 비디오 복호화 방법 및 그 장치 및 비디오 부호화 방법 및 그 장치
KR20180086203A (ko) 영상을 부호화/복호화 하는 방법 및 그 장치
KR20180067598A (ko) 영상을 부호화/복호화 하는 방법 및 그 장치
KR20180075558A (ko) 비디오 복호화 방법 및 장치, 그 부호화 방법 및 장치
KR102593443B1 (ko) 블록 맵을 이용하여 영상을 부호화 또는 복호화하는 방법 및 장치
KR20190019925A (ko) 영상을 부호화/복호화 하는 방법 및 그 장치
KR101699529B1 (ko) 영상의 복호화 방법 및 장치
KR101649276B1 (ko) 영상의 복호화 방법 및 장치
KR101677277B1 (ko) 영상의 부호화 방법 및 장치, 그 복호화 방법 및 장치
KR101703332B1 (ko) 영상의 복호화 방법 및 장치
KR101989997B1 (ko) 영상의 부호화 방법 및 장치, 및 컴퓨터로 판독 가능한 기록 매체
KR101940255B1 (ko) 영상의 부호화 방법 및 장치, 컴퓨터로 판독가능한 기록매체
KR101824056B1 (ko) 영상의 복호화 방법 및 장치
KR101766418B1 (ko) 영상의 복호화 방법 및 장치
KR102660093B1 (ko) 블록 맵을 이용하여 영상을 부호화 또는 복호화하는 방법 및 장치
KR20150092063A (ko) 영상의 복호화 방법 및 장치
KR101700369B1 (ko) 영상의 복호화 방법 및 장치
KR101683177B1 (ko) 영상의 복호화 방법 및 장치