KR20180075018A - Crosslinked cation exchange resin (CER)/ cation exchange polymer composite membrane by radiation and fabrication thereof - Google Patents

Crosslinked cation exchange resin (CER)/ cation exchange polymer composite membrane by radiation and fabrication thereof Download PDF

Info

Publication number
KR20180075018A
KR20180075018A KR1020160178888A KR20160178888A KR20180075018A KR 20180075018 A KR20180075018 A KR 20180075018A KR 1020160178888 A KR1020160178888 A KR 1020160178888A KR 20160178888 A KR20160178888 A KR 20160178888A KR 20180075018 A KR20180075018 A KR 20180075018A
Authority
KR
South Korea
Prior art keywords
cation exchange
cation
exchange resin
membrane
polymer composite
Prior art date
Application number
KR1020160178888A
Other languages
Korean (ko)
Other versions
KR101888935B1 (en
Inventor
손준용
신준화
정찬희
황인태
Original Assignee
한국원자력연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국원자력연구원 filed Critical 한국원자력연구원
Priority to KR1020160178888A priority Critical patent/KR101888935B1/en
Publication of KR20180075018A publication Critical patent/KR20180075018A/en
Application granted granted Critical
Publication of KR101888935B1 publication Critical patent/KR101888935B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/08Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/16Organic material
    • B01J39/18Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/34Introducing sulfur atoms or sulfur-containing groups
    • C08F8/36Sulfonation; Sulfation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/28Treatment by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/18Homopolymers or copolymers of aromatic monomers containing elements other than carbon and hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Fuel Cell (AREA)

Abstract

The present invention relates to a crosslinked cation-exchange resin/cation-exchange polymer composite membrane comprising a crosslinker having three or more radiation-crosslinkable vinyl groups, a cation-exchange polymer, and a cation-exchange resin, and to a preparation method for the same. According to the present invention, the crosslinked cation-exchange resin/cation-exchange polymer composite membrane is prepared by mixing a crosslinker having three or more vinyl groups in which a crosslinking structure can be introduced by radiation, a cation-exchange resin having high ion-exchange capacity, and a cation-exchange polymer in an appropriate ratio, and irradiating the mixture with radiation; can be prepared at room temperature in a short time; and has high dimensional stability as well as high permeation selectivity while maintaining high ion exchange capacity, and thus may be utilized in an ion exchange membrane, a fuel cell membrane, a flow battery membrane for a large-capacity secondary battery, a water treatment membrane, and the like.

Description

방사선 가교에 의한 양이온교환레진/양이온교환고분자 복합막 및 이의 제조 방법{Crosslinked cation exchange resin (CER)/ cation exchange polymer composite membrane by radiation and fabrication thereof}Technical Field [0001] The present invention relates to a cation exchange resin / cation exchange polymer composite membrane by radiation crosslinking and a method for producing the same,

본 발명은 방사선으로 가교 가능한 3개 이상의 비닐기를 갖는 가교제, 양이온교환고분자 및 양이온교환레진을 포함하는 가교 양이온교환레진/양이온교환고분자 복합막 및 이의 제조방법에 관한 것이다.The present invention relates to a crosslinked cation-exchange resin / cation-exchange polymer composite membrane comprising a crosslinking agent having three or more vinyl groups capable of crosslinking by radiation, a cation-exchange polymer and a cation-exchange resin, and a process for producing the same.

이온교환막은 1890년에 Maigrot과 Sabate가 과망간산 페이퍼를 분리막으로 사용하여 설탕 시럽에서 무기이온들을 제거하면서 처음으로 소개된 이후, 여러 산업 분야에 널리 적용되고 있다. 이온교환막을 사용하여 물질의 분리 및 정제를 하는 공정은 단순하고 특정이온에 대한 선택성이 뛰어나 응용범위가 넓다. 특히 이온교환막은 수용액 중의 양이온 및 음이온을 선택적으로 분리할 수 있어 연료전지, 이차전지, 흐름전지, 산과 염기 회수를 위한 물분해 전기투석, 산세 폐액으로부터 산 및 금속화학종을 회수하기 위한 확산투석, 초순수 공정 등에 폭넓게 사용되고 있다.Ion exchange membranes have been widely applied in many industrial fields since their introduction in 1890, when Maigrot and Sabate first removed inorganic ions from sugar syrup using permanganate paper as a separator. The process of separating and purifying a substance using an ion exchange membrane is simple and has excellent selectivity for a specific ion and has a wide range of applications. Particularly, the ion exchange membrane is capable of selectively separating cations and anions in an aqueous solution, and thus can be used for a fuel cell, a secondary battery, a flow cell, a water electrolysis electrodialysis for acid and base recovery, diffusion dialysis for recovering acid and metal species from a pickling effluent, Ultrapure water process and the like.

현재 상업적으로 사용되고 있는 이온교환막은 Dupont사의 Nafion, 그리고 RAI Research사의 R-1010, R-1030과 같은 불소계 이온교환막과 Tokuyama Soda 사의 AMX, CMX, 그리고 Kraton Polymers사의 S-SEBS와 같은 비불소계 이온교환막 등이 있으며 불소계 이온교환막의 경우 고분자 주 사슬에 불소기가 도입되어 화학안정성이 우수한 장점이 있지만, 복잡한 제조공정과 높은 가격 및 높은 온도에서의 이온전도도 감소 등으로 인하여 다양한 분야에서의 이용이 제한된다는 단점을 가지고 있다. 한편 비불소계 이온교환막은 불소계 이온교환막에 비하여 가격이 비교적 저렴하며 제조공정이 간단한 장점을 가지고 있지만, 이온교환막의 성능을 향상시키기 위해 과량의 이온교환 작용기를 도입하여 이온교환능을 높게 하면 과도한 수분흡수로 인해 부피변형률이 증가하여 막의 내구성을 감소시키는 단점을 가지고 있다.Currently commercially available ion exchange membranes include Nafion from Dupont, fluorine-based ion exchange membranes such as R-1010 and R-1030 from RAI Research, non-fluorine ion exchange membranes such as AMX, CMX from Tokuyama Soda, and S-SEBS from Kraton Polymers And the fluorine-based ion exchange membrane has an advantage of being excellent in chemical stability due to the introduction of a fluorine group into the main chain of the polymer, but its disadvantage is that it is limited in use in various fields due to complicated manufacturing process, reduction of ionic conductivity at a high price and high temperature Have. On the other hand, the non-fluorine-based ion exchange membrane has a relatively low cost compared to the fluorine-based ion exchange membrane and has a simple manufacturing process. However, when the ion exchange capacity is increased by introducing excessive ion exchange function to improve the performance of the ion exchange membrane, The volume strain is increased and the durability of the membrane is decreased.

따라서 이러한 문제점을 해결하기 위해 무기입자의 도입 및 고분자 블렌드 그리고 고분자 가교 등 다양한 방법을 이용하고 있다. 그 중에서도 가교방법은 높은 함수율과 낮은 치수안정성을 가진 이온교환막의 단점을 개선시키고, 기계적 강도 및 열 안정성을 향상시킬 수 있는 장점이 있어 많은 분야에 적용되고 있다.In order to solve these problems, various methods such as introduction of inorganic particles, blending of polymers, and crosslinking of polymers are used. Among them, the crosslinking method has been applied to many fields because it has the advantages of improving the mechanical strength and thermal stability, improving the disadvantages of the ion exchange membrane having high water content and low dimensional stability.

이온교환막 가교구조를 도입하기 위해 다양한 방법이 사용되고 있다. 열가교의 경우 고온에서 장시간의 가교 공정이 필요하며, UV를 이용한 가교는 개시제 사용으로 인한 오염과 낮은 투과력으로 인해 균일하게 가교 구조를 형성할 수 없는 단점이 있다. 방사선을 이용한 가교 기술은 개시제가 필요 없고 방사선의 높은 투과력 때문에 이온교환막 내부까지 치밀한 가교구조를 형성할 수 있으며 제조 공정 소요시간을 단축시킬 수 있는 장점이 있다.Various methods have been used to introduce ion exchange membrane crosslinking structures. In the case of thermal crosslinking, a crosslinking process at a high temperature is required for a long time, and crosslinking using UV is disadvantageous in that it can not form a crosslinked structure uniformly due to contamination due to the use of an initiator and low permeability. The crosslinking technique using radiation does not require an initiator and can form a dense crosslinked structure to the inside of the ion exchange membrane due to high permeability of radiation, and it can shorten the time required for the manufacturing process.

이에, 본 발명자들은 높은 이온교환능을 가지면서 치수 안정성 및 투과선택도가 우수한 양이온교환막에 대한 연구하던 중, 높은 이온교환능을 가진 양이온교환레진, 방사선으로 가교 가능한 세 개의 비닐기를 갖는 가교제 및 양이온교환고분자를 적절한 조성비로 혼합하여 도막한 후 상온에서 적정 조사선량의 전자선으로 조사하여 가교 구조를 가지는 가교 이온교환레진/이온교환 고분자 복합 양이온교환막을 제조할 수 있음을 확인하였고, 제조된 막은 높은 이온교환능을 가지면서 방사선에 의한 가교구조 형성으로 인하여 치수안정성과 투과선택도가 향상되는 것을 알아내고 본 발명을 완성하였다.Accordingly, the present inventors have conducted studies on cation exchange membranes having high ion exchange capacity and excellent dimensional stability and permeation selectivity, and have found that cation exchange resins having high ion exchange capacity, crosslinking agents having three vinyl groups capable of crosslinking by radiation, and cation exchange polymers And then irradiated with an electron beam at an appropriate irradiation dose at room temperature to obtain a crosslinked ion exchange resin / ion exchange polymer composite cation exchange membrane having a crosslinked structure. And that the dimensional stability and transmission selectivity are improved due to the formation of a crosslinked structure by radiation, thus completing the present invention.

등록특허공보 10-1655409호Patent Registration No. 10-1655409

본 발명의 목적은 높은 이온교환능을 가지면서 치수안정성이 향상된 방사선 가교 양이온교환레진/양이온교환고분자 복합막을 제공하는 것이다.An object of the present invention is to provide a radiation crosslinked cation exchange resin / cation exchange polymer composite membrane having a high ion exchange capacity and improved dimensional stability.

본 발명의 다른 목적은 상기 가교 양이온교환레진/양이온교환고분자 복합막의 제조방법을 제공하는 것이다.Another object of the present invention is to provide a process for producing the crosslinked cation-exchange resin / cation-exchange polymer composite membrane.

본 발명의 또 다른 목적은 상기 가교 양이온교환레진/양이온교환고분자 복합막을 포함하는 양이온교환막을 제공하는 것이다.It is another object of the present invention to provide a cation exchange membrane comprising the crosslinked cation exchange resin / cation exchange polymer composite membrane.

본 발명의 또 다른 목적은 상기 가교 양이온교환레진/양이온교환고분자 복합막을 포함하는 수처리막을 제공하는 것이다.Another object of the present invention is to provide a water treatment membrane comprising the crosslinked cation exchange resin / cation exchange polymer composite membrane.

본 발명의 다른 목적은 상기 가교 양이온교환레진/양이온교환고분자 복합막을 포함하는 연료전지막을 제공하는 것이다.Another object of the present invention is to provide a fuel cell membrane comprising the crosslinked cation-exchange resin / cation-exchange polymer composite membrane.

상기 목적을 달성하기 위하여,In order to achieve the above object,

본 발명은 양이온교환고분자;The present invention relates to a cation exchange polymer;

3개 이상의 비닐기를 갖는 가교제; 및A crosslinking agent having three or more vinyl groups; And

양이온교환레진;Cation exchange resin;

을 포함하는 가교 양이온교환레진/양이온교환고분자 복합막을 제공한다.Exchange resin / cation-exchange polymer composite membrane.

또한, 본 발명은 양이온교환고분자, 3개 이상의 비닐기를 갖는 가교제를 용매에 용해시킨 후, 양이온교환레진을 첨가하고 분산시켜 모액을 준비하는 단계(단계 1);The present invention also relates to a method for preparing a cation exchange resin, comprising the steps of: dissolving a cation exchange polymer, a crosslinking agent having three or more vinyl groups in a solvent, adding and dispersing a cation exchange resin to prepare a mother liquor (step 1);

상기 단계 1에서 준비한 모액을 유리판에 캐스팅하고 건조하는 단계(단계 2); 및Casting the mother liquor prepared in step 1 on a glass plate and drying (step 2); And

방사선을 조사하고 건조하는 단계(단계 3);Irradiating and drying the radiation (step 3);

를 포함하는 가교 양이온교환레진/양이온교환고분자 복합막의 제조방법을 제공한다.Exchange resin / cation-exchange polymer composite membrane.

나아가, 본 발명은 상기 가교 양이온교환레진/양이온교환고분자 복합막을 포함하는 양이온교환막을 제공한다.Furthermore, the present invention provides a cation exchange membrane comprising the crosslinked cation exchange resin / cation exchange polymer composite membrane.

또한, 본 발명은 상기 가교 양이온교환레진/양이온교환고분자 복합막을 포함하는 수처리막을 제공한다.The present invention also provides a water treatment membrane comprising the crosslinked cation exchange resin / cation exchange polymer composite membrane.

나아가, 본 발명은 상기 가교 양이온교환레진/양이온교환고분자 복합막을 포함하는 연료전지막을 제공한다.Further, the present invention provides a fuel cell membrane comprising the crosslinked cation-exchange resin / cation-exchange polymer composite membrane.

본 발명에 따른 방사선으로 가교 구조 도입이 가능한 3개 이상의 비닐기를 갖는 가교제, 높은 이온교환능을 갖는 양이온교환레진과 양이온교환고분자를 적절한 조성비로 혼합하고 방사선을 조사하여 제조한 가교 양이온교환레진/양이온교환고분자 복합막은 상온에서 단시간에 제조가 가능하며, 높은 이온교환능을 유지하면서 높은 치수안정성과 함께 높은 투과선택도를 가져 이온교환막, 연료전지막, 대용량 이차전지용 흐름전지막 및 수처리막 등에 활용이 가능하다.A crosslinking agent having three or more vinyl groups capable of introducing a crosslinking structure by radiation according to the present invention, a cation exchange resin having a high ion exchange capacity, a crosslinking cation exchange resin / cation exchange resin prepared by mixing a cation exchange polymer with an appropriate composition ratio, The polymer composite membrane can be manufactured at room temperature in a short time, and it can be used for an ion exchange membrane, a fuel cell membrane, a flow cell membrane for a large-capacity secondary battery, and a water treatment membrane because it has high dimensional stability and high permeation selectivity while maintaining high ion exchange capacity .

도 1은 본 발명에 따른 가교 양이온교환레진/양이온교환고분자 복합막의 제조과정을 나타낸 개략도이다.
도 2는 본 발명의 일실시예 및 비교예에 따른 가교 양이온교환레진/양이온교환고분자 복합막의 겔화율을 측정한 그래프이다.
도 3은 본 발명의 일실시예 및 비교예에 따른 가교 양이온교환레진/양이온교환고분자 복합막의 이온교환능을 측정한 그래프이다.
도 4는 본 발명의 일실시예 및 비교예에 따른 가교 양이온교환레진/양이온교환고분자 복합막의 함수율을 측정한 그래프이다.
도 5는 본 발명의 일실시예에 따른 가교 양이온교환레진/양이온교환고분자 복합막의 치수안정성을 측정한 그래프이다.
도 6은 본 발명의 일실시예 및 비교예에 따른 가교 양이온교환레진/양이온교환고분자 복합막의 투과선택도를 측정한 그래프이다.
1 is a schematic view showing a process for producing a crosslinked cation-exchange resin / cation-exchange polymer composite membrane according to the present invention.
FIG. 2 is a graph showing a gelation rate of a crosslinked cation-exchange resin / cation-exchange polymer composite membrane according to one embodiment of the present invention and a comparative example.
3 is a graph showing the ion exchange capacity of a crosslinked cation-exchange resin / cation-exchange polymer composite membrane according to one embodiment of the present invention and a comparative example.
4 is a graph showing the water content of a crosslinked cation-exchange resin / cation-exchange polymer composite membrane according to one embodiment of the present invention and a comparative example.
5 is a graph illustrating the dimensional stability of a crosslinked cation exchange resin / cation exchange polymer composite membrane according to an embodiment of the present invention.
FIG. 6 is a graph showing transmission selectivity of a crosslinked cation-exchange resin / cation-exchange polymer composite membrane according to an embodiment of the present invention and a comparative example.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

가교 양이온교환레진/양이온교환고분자 복합막Crosslinked cation exchange resin / cation exchange polymer composite membrane

본 발명은 양이온교환고분자;The present invention relates to a cation exchange polymer;

3개 이상의 비닐기를 갖는 가교제; 및A crosslinking agent having three or more vinyl groups; And

양이온교환레진;Cation exchange resin;

를 포함하는 가교 양이온교환레진/양이온교환고분자 복합막을 제공한다.Exchange resin / cation-exchange polymer composite membrane.

상기 가교 양이온교환레진/양이온교환고분자 복합막은 양이온교환고분자 30-75 중량부; 3개 이상의 비닐기를 갖는 가교제 5-40 중량부; 및 양이온교환레진 10-50 중량부를 포함할 수 있다.The crosslinked cation-exchange resin / cation-exchange polymer composite membrane comprises 30 to 75 parts by weight of a cation-exchange polymer; 5-40 parts by weight of a crosslinking agent having 3 or more vinyl groups; And 10-50 parts by weight of a cation exchange resin.

상기 양이온교환고분자는 술폰화 폴리스티렌 (sulfonated polystyrene, SPS), 술폰화 폴리(에테르 에테르 케톤) (sulfonated poly(ether ether ketone), SPEEK), 술폰화 폴리술폰 (sulfonated polysulfone, SPSu), 술폰화 폴리(아릴렌 에테르 술폰) (sulfonated poly(ether sulfone), SPES), 술폰화 폴리이미드 (sulfonated polyimide, SPI), 술폰화 폴리(페닐렌 옥사이드) (sulfonated poly (phenylene oxide), SPPO) 등을 단독으로 또는 혼합하여 사용할 수 있으나, 이에 제한하지 않는다.The cation exchange polymer may be selected from the group consisting of sulfonated polystyrene (SPS), sulfonated poly (ether ether ketone), SPEEK, sulfonated polysulfone (SPSu), sulfonated poly (SPES), sulfonated polyimide (SPI), sulfonated poly (phenylene oxide), SPPO), or the like can be used alone or in combination with one or more of the above-mentioned sulfonated poly (ether sulfone) But the present invention is not limited thereto.

여기서, 양이온교환고분자는 술폰산기를 포함하는 고분자로서 양이온교환을 원활히 하는 역할을 한다.Here, the cation exchange polymer is a polymer containing a sulfonic acid group and serves to facilitate cation exchange.

상기 양이온교환고분자의 함량은 30-75 중량부, 바람직하게는 35-70 중량부 사용할 수 있다. 만약, 30 중량부 미만으로 첨가할 경우 막 형성이 어려운 문제가 있을 수 있고, 75 중량부 초과하여 첨가할 경우 막 치수 안정성 확보가 어려운 문제가 있을 수 있다.The cation exchange polymer may be used in an amount of 30-75 parts by weight, preferably 35-70 parts by weight. If it is added in an amount of less than 30 parts by weight, it may be difficult to form a film, and when it is added in an amount exceeding 75 parts by weight, it may be difficult to secure dimensional stability of the film.

상기 3개의 비닐기를 갖는 가교제는 트리메티롤프로판 에톡시레이트 트리아크릴레이트 (trimethylolpropane ethoxylate triacrylate, TMPETA), 트리메티롤프로판 트리메타크릴레이트(trimethylolpropane trimethacrylate, TMPTA), 트리알릴 아이소시아누레이트(triallyl Isocyanurate, TAIC), 펜타에리스리톨 트리알릴 에테르(pentaerythritol triallyl ether, PETALE) 등을 단독으로 또는 혼합하여 사용할 수 있다.The three vinyl group-containing crosslinking agents may be selected from the group consisting of trimethylolpropane ethoxylate triacrylate (TMPETA), trimethylolpropane trimethacrylate (TMPTA), triallyl isocyanurate , TAIC), pentaerythritol triallyl ether (PETALE), etc. may be used alone or in combination.

여기서, 상기 3개의 비닐기를 갖는 가교제는 복합막의 치수 안정성을 향상시키는 역할을 한다.Here, the crosslinking agent having three vinyl groups serves to improve the dimensional stability of the composite membrane.

상기 3개의 비닐기를 갖는 가교제의 함량은 5-40 중량부, 바람직하게는 7-35 중량부 사용할 수 있다. 만약, 5 중량부 미만으로 첨가할 경우 기계적 강도 감소 및 치수 안정성 저하의 문제가 있을 수 있고, 40 중량부 초과하여 첨가할 경우 유연성이 감소하여 막이 깨지기 쉬운 문제가 있을 수 있다.The content of the crosslinking agent having three vinyl groups may be 5-40 parts by weight, preferably 7-35 parts by weight. If it is added in an amount of less than 5 parts by weight, there may be a problem of decrease in mechanical strength and dimensional stability, and when it is added in an amount exceeding 40 parts by weight, flexibility may be decreased and the film may be fragile.

상기 양이온교환레진은 술폰화 폴리스티렌 (sulfonated polystyrene, SPS)을 디비닐벤젠 (divinyl benzene, DVB)으로 가교한 것으로, 1-25 ㎛ 크기의 입자인 것을 사용할 수 있다. 상기 양이온교환레진의 입자 크기는 1-25 ㎛이 바람직하고, 25 ㎛ 초과일 경우 용매에 의한 분산이 어려운 문제가 있을 수 있다.The cation exchange resin is a sulfonated polystyrene (SPS) crosslinked with divinyl benzene (DVB), and may be particles having a size of 1-25 탆. The particle size of the cation exchange resin is preferably 1-25 탆, and when it is more than 25 탆, dispersion by a solvent may be difficult.

여기서, 상기 양이온교환레진은 이온교환능 및 치수안정성을 향상시키는 역할을 한다. 상기 양이온교환레진은 1 M 염산 수용액에 24시간 담궈 양이온교환레진에 남아 있는 나트륨이온을 수소이온으로 치환하여 사용하는 것이 바람직하다. 만약, 산처리를 하지 않을 경우에는 이온교환능의 감소를 유발하는 문제가 있을 수 있다.Here, the cation exchange resin serves to improve ion exchange capacity and dimensional stability. The cation exchange resin is preferably immersed in a 1 M aqueous hydrochloric acid solution for 24 hours to replace sodium ions remaining in the cation exchange resin with hydrogen ions. If acid treatment is not carried out, there may be a problem of causing a decrease in ion exchange capacity.

상기 양이온교환레진의 함량은 10-50 중량부, 바람직하게는 20-40 중량부, 더욱 바람직하게는 25-35 중량부 사용할 수 있다. 만약, 10 중량부 미만으로 첨가할 경우 물에 대한 치수안정성이 저하되는 문제가 있을 수 있고, 50 중량부 초과하여 첨가할 경우 막 유연성이 저하되는 문제가 있을 수 있다.The content of the cation exchange resin may be 10-50 parts by weight, preferably 20-40 parts by weight, more preferably 25-35 parts by weight. If it is added in an amount of less than 10 parts by weight, there may be a problem that the dimensional stability to water is lowered, and when it is added in an amount exceeding 50 parts by weight, there may be a problem that the film flexibility is lowered.

제조방법Manufacturing method

본 발명은 양이온교환고분자, 3개 이상의 비닐기를 갖는 가교제를 용매에 용해시킨 후, 양이온교환레진을 첨가하고 분산시켜 모액을 준비하는 단계(단계 1);The present invention relates to a method for producing a cation exchange resin, comprising the steps of: dissolving a cation exchange polymer, a crosslinking agent having three or more vinyl groups in a solvent, adding and dispersing a cation exchange resin to prepare a mother liquor (step 1);

상기 단계 1에서 준비한 모액을 유리판에 캐스팅하고 건조하는 단계(단계 2); 및Casting the mother liquor prepared in step 1 on a glass plate and drying (step 2); And

방사선을 조사하고 건조하는 단계(단계 3);Irradiating and drying the radiation (step 3);

를 포함하는 가교 양이온교환레진/양이온교환고분자 복합막의 제조방법을 제공한다.Exchange resin / cation-exchange polymer composite membrane.

본 발명에 따른 제조방법에 있어서, 상기 단계 1은 양이온교환고분자, 3개 이상의 비닐기를 갖는 가교제를 용매에 용해시킨 후, 양이온교환레진을 첨가하고 분산시켜 모액을 준비하는 단계이다. 구체적으로, 상기 단계 1은 양이온교환고분자 3-21.5 중량%, 3개 이상의 비닐기를 갖는 가교제 3-11 중량%를 용매 70-90 중량%에 용해시킨 후, 양이온교환레진 2.5-9.5 중량%를 첨가하고 분산시켜 모액을 제조할 수 있다.In the manufacturing method according to the present invention, step 1 is a step of dissolving a cation-exchange polymer, a crosslinking agent having three or more vinyl groups in a solvent, adding a cation-exchange resin, and dispersing the solution to prepare a mother liquor. Specifically, Step 1 is a step of dissolving 3 to 21.5 wt% of a cation exchange polymer, 3 to 11 wt% of a crosslinking agent having 3 or more vinyl groups in 70 to 90 wt% of a solvent, adding 2.5 to 9.5 wt% And then dispersed to prepare a mother liquor.

상기 단계 1 이전에 양이온교환레진을 염산 수용액에 12-36 시간 담지한 후, 세척 및 건조하는 단계를 더 포함할 수 있다. 양이온교환레진에 남아 있는 나트륨이온을 수소이온으로 치환하여 사용하는 것이 바람직하며, 만약 산처리를 하지 않을 경우에는 이온교환능의 감소를 유발하는 문제가 있을 수 있다.The method may further include a step of holding the cation exchange resin in an aqueous hydrochloric acid solution for 12 to 36 hours before the step 1, followed by washing and drying. It is preferable to replace sodium ions remaining in the cation exchange resin with hydrogen ions. If acid treatment is not performed, there may be a problem of causing a decrease in ion exchange capacity.

상기 양이온교환고분자, 가교제 및 양이온교환레진에 대한 설명은 상술한 바와 같다.The cation exchange polymer, the cross-linking agent and the cation exchange resin are as described above.

본 단계 1의 상기 용매는 양이온 교환 고분자와 세 개 이상의 비닐기 갖는 가교제를 용해시키는 역할을 한다. 상기 용매로는 N,N-디메틸아세트아미드(DMAc), 1-메틸-2-피로리디논(NMP), 디메틸설폭사이드(DMSO) 등의 극성용매를 단독 또는 혼합하여 사용할 수 있다.The solvent in this Step 1 serves to dissolve the cation exchange polymer and the crosslinking agent having three or more vinyl groups. As the solvent, a polar solvent such as N, N-dimethylacetamide (DMAc), 1-methyl-2-pyrrolidinone (NMP) or dimethylsulfoxide (DMSO) may be used alone or in combination.

이때, 상기 용매는 70-90 중량% 첨가하여 모액을 제조하는 것이 바람직하다. 만약, 상기 용매를 70 중량% 미만으로 첨가할 경우에는 용매의 분산 문제 및 가교 밀도 증가의 문제가 있을 수 있고, 90 중량%를 초과하여 첨가할 경우에는 막 형성이 어려운 문제가 있을 수 있다.At this time, the solvent is preferably added in an amount of 70 to 90% by weight to prepare a mother liquor. If the solvent is added in an amount of less than 70% by weight, there may be a problem of dispersion of a solvent and an increase in cross-linking density, and addition of more than 90% by weight may cause difficulty in film formation.

본 발명에 따른 제조방법에 있어서, 상기 단계 2는 상기 단계 1에서 준비한 모액을 유리판에 캐스팅하고 건조하는 단계이다.In the manufacturing method according to the present invention, the step 2 is a step of casting the mother liquor prepared in the step 1 on a glass plate and drying it.

구체적으로, 용액 케스팅 방법을 이용하여 상온에서 적정 크기의 유리판에 골고루 분사시키고, 60-80℃ 온도에서 1-2시간 동안 건조시켜 용매를 증발시킨다. 이 조건에서 건조시키면 용매가 일부 남아 용액이 흐르지 않을 정도의 점성을 가지게 된다.Specifically, the solution is uniformly sprayed on a glass plate having an appropriate size at room temperature using a solution casting method, and the solvent is evaporated by drying at 60-80 ° C for 1-2 hours. When dried under these conditions, some of the solvent remains to have such a viscosity that the solution does not flow.

본 발명에 따른 제조방법에 있어서, 상기 단계 3은 방사선을 조사하고 건조하는 단계이다.In the production method according to the present invention, step 3 is a step of irradiating and drying the radiation.

구체적으로, 상기 단계 2에서 용매를 증발시켜 유리판에 형성된 막에 방사선을 조사하고, 상온에서 10-14시간 동안 진공 건조하여 잔류해 있는 용매를 제거한 후, 제조된 가교 양이온교환레진/양이온교환고분자 복합막을 증류수를 이용해 유리판에서 분리하여, 본 발명에 따른 가교 양이온교환레진/양이온교환고분자 복합막을 제조할 수 있는 것이다.Specifically, in step 2, the solvent was evaporated to irradiate the film formed on the glass plate with radiation, vacuum-dried at room temperature for 10-14 hours to remove the remaining solvent, and then the resulting crosslinked cation exchange resin / cation exchange polymer composite The membrane can be separated from the glass plate using distilled water to produce the crosslinked cation-exchange resin / cation-exchange polymer composite membrane according to the present invention.

이때, 상기 방사선은 가교제와 양이온교환고분자/양이온교환레진을 가교시켜 치수안정성 및 기계적 강도를 향상시키는 역할을 한다. 상기 방사선으로는 감마선, 자외선 및 전자선으로 이루어지는 군으로부터 선택되는 1종을 조사하는 것이 바람직하며, 전자선을 조사하는 것이 더욱 바람직하다.At this time, the radiation serves to improve the dimensional stability and mechanical strength by crosslinking the crosslinking agent and the cation exchange polymer / cation exchange resin. As the radiation, it is preferable to irradiate one species selected from the group consisting of gamma ray, ultraviolet ray and electron ray, and it is more preferable to irradiate with electron rays.

또한, 상기 방사선은 0.1-20 kGy/pass의 선량률(dose rate)로 50-300 kGy 조사선량만큼 조사하여 주는 것이 바람직하고, 1-10 kGy/pass의 선량률로 100-200 kGy 조사선량만큼 조사하여 주는 것이 더욱 바람직하다.Preferably, the radiation is irradiated at a dose rate of 0.1 to 20 kGy / pass at an irradiation dose of 50 to 300 kGy, and irradiated at a dose rate of 1 to 10 kGy / pass at an irradiation dose of 100 to 200 kGy It is more desirable to give.

만약, 상기 전자선의 조사선량이 50 kGy 미만일 경우에는 충분한 가교가 일어나지 않는 문제가 있을 수 있고, 300 kGy이상을 초과할 경우에는 분자간의 끊어짐이 발생하여 분자량 감소로 인한 기계적 강도 저하의 문제가 있을 수 있다.If the irradiation dose of the electron beam is less than 50 kGy, there may be a problem that sufficient crosslinking does not occur. If the irradiation dose exceeds 300 kGy, there is a possibility that the molecular weight is cut off, have.

양이온교환막, 수처리막, 연료전지막A cation exchange membrane, a water treatment membrane, a fuel cell membrane

본 발명은 상기 가교 양이온교환레진/양이온교환고분자 복합막을 포함하는 양이온교환막을 제공한다.The present invention provides a cation exchange membrane comprising the crosslinked cation exchange resin / cation exchange polymer composite membrane.

또한, 본 발명은 상기 가교 양이온교환레진/양이온교환고분자 복합막을 포함하는 수처리막을 제공한다.The present invention also provides a water treatment membrane comprising the crosslinked cation exchange resin / cation exchange polymer composite membrane.

나아가, 본 발명은 상기 가교 양이온교환레진/양이온교환고분자 복합막을 포함하는 연료전지막을 제공한다.Further, the present invention provides a fuel cell membrane comprising the crosslinked cation-exchange resin / cation-exchange polymer composite membrane.

이하, 본 발명을 하기의 실시예에 의하여 더욱 상세하게 설명한다. 단, 하기의 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples. However, the following examples are illustrative of the present invention, and the present invention is not limited by the following examples.

<실시예> 방사선 가교 방법을 이용한 가교 양이온교환레진/양이온교환고분자 복합막의 제조EXAMPLES Preparation of Crosslinked Cation-Exchange Resin / Cation-Exchange Polymer Composite Membrane Using Radiation Crosslinking Method

본 발명에 따른 높은 이온교환능을 가지면서 치수 안정성 및 투과선택도가 향상된 가교 술폰화폴리스티렌의 양이온교환레진과 술폰화폴리스티렌(SPS)의 양이온교환고분자가 혼합된 방사선 가교 양이온교환레진/양이온교환고분자 복합 양이온교환막을 제조하였다.Crosslinked sulphonated polystyrene having cation exchange resin and sulfonated polystyrene (SPS) with high ion exchange capacity and improved dimensional stability and permeation selectivity according to the present invention Radiation crosslinked cation exchange resin / cation exchange polymer composite A cation exchange membrane was prepared.

단계 1: Step 1: 양이온교환고분자Cation exchange polymer // 가교제Cross-linking agent // 양이온교환레진Cation exchange resin 모액Mother liquor 제조하는 단계 Steps to manufacture

폴리스티렌 고분자를 디클로로에탄 용매에 용해한 후 폴리스티렌의 스티렌과 황산의 몰분율을 60/40 몰비로 황산을 첨가하여 60℃에서 1시간 동안 술폰화 반응 후 끓는 증류수에 부어 술폰화 폴리스티렌을 침전시키고 건조하여 술폰화 폴리스티렌 양이온교환고분자를 제조하였다. 양이온교환레진을 1 M HCl 용액에 24시간 동안 담지하여 양이온교환레진의 나트륨 이온을 수소이온으로 치환한 후 80℃ 증류수에 6시간 세척하고 50℃ 진공오븐에서 12시간 건조하였다. 수소이온으로 치환된 양이온 교환레진을 지르코늄자를 이용하여 볼밀로 320 rpm에서 4시간동안 분쇄하고 25 ㎛ 채를 이용하여 분쇄된 양이온교환레진 분말을 얻었다. 제조된 양이온교환고분자와 세 개 이상의 비닐기 갖는 가교제 트리메티롤프로판 에톡시레이트 트리아크릴레이트 (trimethylolpropane ethoxylate triacrylate, TMPETA)를 N,N-디메틸 아세트아미드(DMAc)에 용해시킨 후 상기 전처리된 양이온교환레진을 분산시켜 이온교환고분자/가교제/양이온교환레진 모액을 제조하였다. After dissolving the polystyrene polymer in dichloroethane solvent, sulfuric acid was added to the polystyrene at 60/40 molar ratio of styrene and sulfuric acid, and the sulfonated polystyrene was poured into boiling distilled water at 60 ° C for 1 hour to precipitate sulfonated polystyrene, Polystyrene cation exchange polymer was prepared. The cation exchange resin was immersed in a 1 M HCl solution for 24 hours. Subsequently, the sodium ion of the cation exchange resin was replaced with hydrogen ion, and then washed in distilled water at 80 ° C for 6 hours and dried in a vacuum oven at 50 ° C for 12 hours. The cation - exchange resin substituted with hydrogen ion was milled with a zirconium wheel at 320 rpm for 4 hours using a zirconium cylinder and 25 ㎛ of powder was obtained. After dissolving the prepared cation exchange polymer and a crosslinking agent trimethylolpropane ethoxylate triacrylate (TMPETA) having three or more vinyl groups in N, N-dimethylacetamide (DMAc), the pretreated cation exchange The resin was dispersed to prepare an ion exchange polymer / crosslinking agent / cation exchange resin mother liquor.

단계 2: Step 2: 모액을Mother liquor 유리판에 캐스팅하고  Cast on a glass plate 건조시키는Dry 단계 step

상기 단계 1에서 제조한 모액을 용액 케스팅 방법을 이용하여 상온에서 15 cm × 15 cm 유리판에 골고루 분사시켰다. 상기 모액이 분산된 유리판을 60℃에서 건조시켜 용매인 N,N-디메틸 아세트아미드(DMAc)를 1시간 동안 증발시켰다.The mother liquor prepared in the step 1 was uniformly sprayed on a 15 cm x 15 cm glass plate at room temperature using a solution casting method. The glass plate on which the mother liquor was dispersed was dried at 60 DEG C to evaporate N, N-dimethylacetamide (DMAc) as a solvent for 1 hour.

단계 3: 방사선을 조사하고 Step 3: Exposure to radiation 건조시키는Dry 단계 step

상기 단계 2에서 용매를 증발시킨 유리판을 10 kGy/pass의 선량률로 전자선을 100, 200 kGy 조사하였다. 조사된 유리판을 100℃에서 약 12시간 진공 건조하여 잔류해 있는 DMAc 용매를 제거한 후 상온까지 식힌 다음, 제조된 가교 양이온교환레진/양이온교환고분자 복합막을 증류수를 이용하여 유리판에서 분리하였다. 마지막으로, 상기에서 제조한 가교 양이온교환레진/양이온교환고분자 복합막을 진공오븐에 60℃에서 12시간 동안 건조하여 본 발명에 따른 가교 양이온교환레진/양이온교환고분자 복합막을 제조하였다.The glass plate on which the solvent was evaporated in step 2 was irradiated with electron beams of 100 kGy and 200 kGy with a dose rate of 10 kGy / pass. The irradiated glass plate was vacuum dried at 100 ° C for about 12 hours to remove the residual DMAc solvent, cooled to room temperature, and then the resulting crosslinked cation-exchange resin / cation-exchange polymer composite membrane was separated from the glass plate using distilled water. Finally, the crosslinked cation-exchange resin / cation-exchange polymer composite membrane prepared above was dried in a vacuum oven at 60 ° C. for 12 hours to prepare a crosslinked cation-exchange resin / cation-exchange polymer composite membrane according to the present invention.

하기 표 1과 같이 실시예 1 ~ 6을 제조하였다.Examples 1 to 6 were prepared as shown in Table 1 below.

실시예Example SPS
이온교환능 (meq/g)
SPS
Ion exchange capacity (meq / g)
SPS
함량(%)
SPS
content(%)
TMPETA
가교제 함량
(%)
TMPETA
Crosslinker content
(%)
양이온교환레진 이온교환능 (meq/g)Cation exchange resin Ion exchange capacity (meq / g) 양이온교환레진 함량 (%)Cation exchange resin content (%) 조사선량 (kGy)Irradiation dose (kGy)
1One 1.321.32 7070 00 3.973.97 3030 200200 22 1.321.32 6363 77 3.973.97 3030 200200 33 1.321.32 4949 2121 3.973.97 3030 100100 44 1.321.32 4949 2121 3.973.97 3030 200200 55 1.321.32 3535 3535 3.973.97 3030 100100 66 1.321.32 3535 3535 3.973.97 3030 200200

<비교예 1> 술폰화 폴리스티렌 양이온교환막의 제조&Lt; Comparative Example 1 > Preparation of sulfonated polystyrene cation exchange membrane

상기 폴리스티렌(polystryene)을 술폰화 반응하여 제조된 술폰화 폴리스티렌(sulfonated polystyrene)으로 양이온교환고분자막을 제조하였다.A cation exchange polymer membrane was prepared by sulfonated polystyrene prepared by sulfonating polystyrene.

단계 1: 술폰화 폴리스티렌 양이온교환고분자 제조하는 단계Step 1: Step of preparing a sulfonated polystyrene cation-exchange polymer

폴리스티렌 고분자를 디클로로에탄 용매에 용해한 후 폴리스티렌의 스티렌과 황산의 몰분율을 50/50 몰비로 황산을 첨가하여 60 ℃에서 1시간 동안 술폰화 반응 후 끓는 증류수에 부어 술폰화 폴리스티렌을 침전시키고 건조하여 술폰화 폴리스티렌 양이온교환고분자를 제조하였다.After dissolving the polystyrene polymer in dichloroethane solvent, the molar ratio of styrene and sulfuric acid in polystyrene was added at 50/50 molar ratio and sulfuric acid was added. The sulfonated polystyrene was poured into boiling distilled water at 60 ° C for 1 hour to precipitate sulfonated polystyrene, Polystyrene cation exchange polymer was prepared.

단계 2: 술폰화 폴리스티렌 양이온교환막 제조하는 단계Step 2: Step of preparing a sulfonated polystyrene cation exchange membrane

상기 단계 1에서 제조한 술폰화 폴리스티렌을 DMAc 용매에 10 중량%로 녹인 후 용액 케스팅 방법을 이용하여 상온에서 15 cm × 15 cm 유리판에 골고루 분사시켰다. 상기 술폰화 폴리스티렌 용액이 분산된 유리판을 60 ℃에서 12시간 진공 건조한 다음, 제조된 술폰화 폴리스티렌 양이온교환고분자막을 증류수를 이용하여 유리판에서 분리하였다. 마지막으로, 상기에서 제조한 폴리스티렌 양이온교환막을 진공오븐에 60 ℃에서 12시간 동안 건조하여 본 발명의 비교예 폴리스티렌 양이온교환막을 제조하였다.The sulfonated polystyrene prepared in the step 1 was dissolved in DMAc solvent at a concentration of 10% by weight, and sprayed uniformly on a 15 cm × 15 cm glass plate at room temperature using a solution casting method. The glass plate in which the sulfonated polystyrene solution was dispersed was vacuum dried at 60 ° C for 12 hours, and then the sulfonated polystyrene cation exchange polymer membrane was separated from the glass plate using distilled water. Finally, the polystyrene cation exchange membrane prepared above was dried in a vacuum oven at 60 DEG C for 12 hours to prepare a comparative polystyrene cation exchange membrane of the present invention.

<실험예 1> 겔화도 측정Experimental Example 1 Gelation degree measurement

실시예 1 ~ 6에서 제조한 가교 양이온교환레진/양이온교환고분자 복합막의 겔화도를 알아보기 위하여 다음과 같이 실험을 수행하였다. 구체적으로, 실시예 1 ~ 6에서 제조한 가교 양이온교환레진/양이온교환고분자 복합막을 전자선 조사 전에 사용하였던 용매인 DMAc에 하루 동안 담가 둔 후 무게 변화를 관찰하여 하기 수학식 1로 겔화율를 측정하였고, 그 결과를 도 2에 나타내었다.The gelation degree of the crosslinked cation exchange resin / cation exchange polymer composite membrane prepared in Examples 1 to 6 was examined in the following manner. Specifically, the crosslinked cation-exchange resin / cation-exchange polymer composite membrane prepared in Examples 1 to 6 was immersed in DMAc, a solvent used before electron beam irradiation, for one day, and the change in weight was observed. The results are shown in Fig.

Figure pat00001
Figure pat00001

상기 수학식 1에서,In the above equation (1)

W dry 는 DMAc 용매에 담가 두기 전의 가교 양이온교환레진/양이온교환고분자 복합막의 무게이며, W dry is the weight of the crosslinked cation-exchange resin / cation-exchange polymer composite membrane before being immersed in the DMAc solvent,

W dissolved 는 DMAc 용매에 하루 동안 담가 둔 후의 가교 양이온교환레진/양이온교환고분자 복합막의 무게이다. W dissolved is the weight of the crosslinked cation exchange resin / cation exchange polymer composite membrane after being soaked in the DMAc solvent for one day.

도 2는 본 발명의 일실시예 및 비교예에 따른 가교 양이온교환레진/양이온교환고분자 복합막의 겔화율를 측정한 그래프이다.2 is a graph showing a gelation rate of a crosslinked cation-exchange resin / cation-exchange polymer composite membrane according to one embodiment of the present invention and a comparative example.

도 2 에 나타난 바와 같이, TMPETA 가교제 함량이 30 중량 % 이상 (실시예 3, 실시예 4, 실시예 5, 실시예 6)에서 가교가 일어나는 것을 확인하였고 특히 전자선 조사선량이 200 kGy (실시예 4, 실시예 6)에서 96% 이상의 높은 겔화율을 보여 충분한 가교가 일어났다는 것을 확인하였다. As shown in FIG. 2, it was confirmed that the crosslinking occurred in the TMPETA crosslinking agent content of 30 wt% or more (Example 3, Example 4, Example 5, Example 6), and particularly, the irradiation dose of the electron beam was 200 kGy , Example 6) showed a high gelation rate of 96% or more, thus confirming that sufficient crosslinking occurred.

<실험예 2> 이온교환용량(Ion exchange capacity, IEC) 측정EXPERIMENTAL EXAMPLE 2 Measurement of Ion Exchange Capacity (IEC)

실시예 1, 2, 4, 및 6에서 제조한 가교 양이온교환레진/양이온교환고분자 복합막의 IEC를 알아보기 위하여 중화 적정 방법을 이용하여 다음과 같이 실험을 수행하였다.In order to examine the IEC of the crosslinked cation-exchange resin / cation-exchange polymer composite membrane prepared in Examples 1, 2, 4, and 6, the following experiment was conducted using a neutralization titration method.

구체적으로, 제조한 가교 양이온교환레진/양이온교환고분자 복합막을 3 M NaCl 용액에 24시간 넣어 두어 술폰기의 H+를 Na+ 형태로 중화시켜준 후 0.1 M NaOH를 이용하여 역 중화 적정하였다. 정확한 중화 적정을 위해 automatic titrator DL22(Mettler Toledo Company, Switzerland)를 사용하였고, 하기 수학식 2를 이용하여 IEC 값을 계산하였으며, 그 결과를 하기 도 3에 나타내었다.Specifically, the prepared crosslinked cation-exchange resin / cation-exchange polymer composite membrane was immersed in a 3 M NaCl solution for 24 hours to neutralize H + of the sulfone group to Na + form and then reverse-neutralize with 0.1 M NaOH. For accurate neutralization titration, an automatic titrator DL22 (Mettler Toledo Company, Switzerland) was used and the IEC value was calculated using the following equation (2). The results are shown in FIG.

Figure pat00002
Figure pat00002

상기 수학식 2에서,In Equation (2)

C NaOH 는 NaOH 용액의 농도, V NaOH 는 중화 적정 중에 사용된 0.1M NaOH 용액의 부피이며, C NaOH is the concentration of the NaOH solution, V NaOH is the volume of the 0.1 M NaOH solution used during neutralization titration,

W dry 는 가교 양이온교환레진/양이온교환고분자 복합막의 건조상태의 무게이다. W dry is the dry weight of the crosslinked cation exchange resin / cation exchange polymer composite membrane.

도 3은 본 발명의 일실시예 및 비교예에 따라 제조된 가교구조를 가지는 이온교환레진/이온교환고분자 복합 양이온교환막의 이온교환용량을 측정한 그래프이다.3 is a graph showing ion exchange capacity of an ion exchange resin / ion exchange polymer composite cation exchange membrane having a crosslinked structure prepared according to one embodiment of the present invention and a comparative example.

도 3에 나타난 바와 같이, 비교예로 제조된 양이온교환막의 이온교환용량이 1.93 meq/g이고 실시예 1, 2, 4, 및 6의 방사선 가교 방법으로 제조한 가교 이온교환레진/이온교환고분자 복합 양이온교환막 또한 1.93에서 2.11 meq/g 범위에서 유사한 이온교환용량을 갖는 것을 확인할 수 있었다.As shown in FIG. 3, the cross-linked ion exchange resin / ion-exchange polymer composite prepared by the radiation crosslinking method of Examples 1, 2, 4, and 6 and having the ion exchange capacity of 1.93 meq / It was also confirmed that the cation exchange membrane had similar ion exchange capacity in the range of 1.93 to 2.11 meq / g.

<실험예 3> 함수율 측정Experimental Example 3 Measurement of Moisture Content

비교예 1 과 실시예 4 및 6으로 제조된 가교 양이온교환레진/양이온교환고분자 복합막의 함수율을 알아보기 위하여 다음과 같이 실험을 수행하였다.In order to examine the water content of the crosslinked cation exchange resin / cation exchange polymer composite membrane prepared in Comparative Example 1 and Examples 4 and 6, the following experiment was conducted.

구체적으로, 비교예 1 과 실시예 4 및 6으로 제조된 가교 양이온교환레진/이온교환고분자 복합막을 온도에 따라 25℃ 및 60℃에서 증류수에 담가둔 후 제조된 양이온교환막 표면에 존재하는 수분을 제거하고 무게변화를 관찰하였으며, 하기 수학식 3으로 수분 흡수율을 측정하였고, 그 결과를 도 4에 나타내었다.Specifically, the crosslinked cation-exchange resin / ion-exchange polymer composite membrane prepared in Comparative Example 1 and Examples 4 and 6 was immersed in distilled water at 25 ° C and 60 ° C depending on the temperature, and then the water present on the surface of the prepared cation- And the weight change was observed. The moisture absorption rate was measured by the following equation (3), and the results are shown in FIG.

Figure pat00003
Figure pat00003

상기 수학식 3에서,In Equation (3)

W d 는 건조된 필름의 무게이고, W d is the weight of the dried film,

W s 는 수분을 흡수한 필름의 무게이다. W s is the weight of the film that absorbs moisture.

도 4는 본 발명의 비교예 및 일실시예에 따른 이온교환레진/이온교환고분자 복합 양이온교환막의 함수율을 측정한 그래프이다.4 is a graph showing the water content of the ion exchange resin / ion exchange polymer composite cation exchange membrane according to the comparative example of the present invention and one embodiment.

도 4에 나타난 바와 같이, 실시예 4 및 6으로 제조된 가교 복합 양이온교환막은 비교예 1로 제조된 양이온교환막보다 25 및 60 ℃에서의 함수율이 50% 정도 떨어지는 것을 확인할 수 있었다. 이는 이온교환수지 및 가교제에 의한 방사선 가교로 함수율이 감소하는 것을 확인하였다.. As shown in FIG. 4, it was confirmed that the cross-linked composite cation exchange membranes prepared in Examples 4 and 6 had a water content lower than that of the cation exchange membrane prepared in Comparative Example 1 by about 50% at 25 and 60 ° C. It was confirmed that the water content was decreased by the ion exchange resin and cross-linking agent.

<실험예 4> 치수변화 (dimensional change) 측정<Experimental Example 4> Measurement of dimensional change

비교예 1과 실시예 4 및 6으로 제조된 이온교환레진/이온교환고분자 복합 양이온교환막의 치수변화를 알아보기 위하여 다음과 같이 실험을 수행하였다.The following experiments were performed to examine the dimensional changes of the ion exchange resin / ion exchange polymer composite cation exchange membranes prepared in Comparative Example 1 and Examples 4 and 6.

구체적으로, 비교예 1 과 실시예 4 및 6으로 제조된 가교 양이온교환레진/양이온교환고분자 복합막을 온도에 따라 25℃ 및 60℃에서 증류수에 담가둔 후 제조된 양이온교환막 표면에 존재하는 수분을 제거하고 막의 면적변화를 관찰하였으며, 하기 수학식 4으로 치수변화를 측정하였고, 그 결과를 도 5에 나타내었다.Specifically, the crosslinked cation-exchange resin / cation-exchange polymer composite membrane prepared in Comparative Example 1 and Examples 4 and 6 was immersed in distilled water at 25 ° C and 60 ° C depending on the temperature, and then the water present on the surface of the prepared cation- And the change in the area of the membrane was observed. The change in dimension was measured by the following equation (4), and the results are shown in FIG.

Figure pat00004
Figure pat00004

상기 수학식 4에서,In Equation (4)

A i 는 건조된 막의 면적이고,A i is the area of the dried film,

A s 는 수분을 흡수한 막의 면적이다. A s is the area of the membrane that has absorbed water.

도 5에 나타난 바와 같이, 실시예 4 및 6으로 제조된 가교 복합 양이온교환막은 비교예 1로 제조된 양이온교환막보다 25℃ 및 60℃에서의 치수변화가 현저히 떨어지는 것을 확인할 수 있었다. 이는 이온교환수지 및 가교제에 의한 방사선 가교로 치수변화가 감소하여 치수안정성이 향상되었다는 것을 확인하였다.As shown in FIG. 5, it was confirmed that the crosslinked composite cation exchange membranes prepared in Examples 4 and 6 had significantly less dimensional changes at 25 ° C and 60 ° C than the cation exchange membranes prepared in Comparative Example 1. It was confirmed that the dimensional stability was improved by reducing the dimensional change due to the radiation crosslinking by the ion exchange resin and the crosslinking agent.

<실험예 5> 투과선택도 (permselectivity) 평가Experimental Example 5 Evaluation of permselectivity

비교예 1 과 실시예 4 및 6으로 제조된 양이온교환막의 투과선택도를 알아보기 위하여 다음과 같이 실험을 수행하였다.The permeation selectivity of the cation exchange membranes prepared in Comparative Examples 1 and 4 and 6 was examined in the following manner.

구체적으로, 실시예 4, 및 6의 가교 복합 양이온교환막 및 비교예 1의 양이온교환막을 측정 셀에 장착한 후 한쪽 셀에 0.1 M NaCl 용액을 담지하고 다른쪽 셀에 0.5 M NaCl에 담지하여 Ag/AgCl를 기준 전극으로 하여 25℃에서 전위차를 측정하였으며, 수학식 5로 투과선택도를 구하였고, 그 결과를 도 6에 나타내었다.Specifically, the crosslinked composite cation exchange membranes of Examples 4 and 6 and the cation exchange membrane of Comparative Example 1 were mounted on a measurement cell, and 0.1 M NaCl solution was supported on one cell and supported on 0.5 M NaCl on the other cell, The potential difference was measured at 25 캜 using AgCl as a reference electrode, and the permeation selectivity was calculated from the equation (5). The results are shown in Fig.

Figure pat00005
Figure pat00005

상기 수학식 5에서,In Equation (5)

Vmeas는 제조된 막의 전위차이고,V meas is the potential difference of the prepared film,

Vtheo는 제조된 막의 네른스트 방정식(Nernst equation)에 의해 구해진 이론 전위차이다.V theo is the theoretical potential difference obtained by the Nernst equation of the fabricated film.

도 6은 본 발명의 일실시예 및 비교예로 제조된 양이온교환막의 투과선택도를 평가한 결과를 보여준다.6 shows the results of evaluating the permeation selectivity of the cation exchange membrane prepared according to one embodiment of the present invention and the comparative example.

도 6에서 나타난 바와 같이, 이온교환수지 및 가교제를 첨가하지 않은 양이온교환막 (비교예1)의 투과선택도는 63%인 것에 비해 일실시예로 제조된 가교 복합양이온교환막의 투과선택도는 92%이상으로 양이온에 대한 투과선택도가 높음을 확인할 수 있다. 이러한 결과는 높은 이온교환능을 가짐에도 불구하고 양이온교환레진 및 가교제 첨가로 인한 방사선 가교로 인해 투과선택도가 높아지는 것을 확인할 수 있었다.As shown in FIG. 6, the permeation selectivity of the cation exchange membrane without the ion exchange resin and the crosslinking agent (Comparative Example 1) was 63%, while the permeation selectivity of the crosslinked composite cation exchange membrane prepared by one example was 92% The permeation selectivity to cations is high. These results show that although the ion exchange capacity is high, the permeation selectivity is increased due to the radiation crosslinking due to addition of the cation exchange resin and the crosslinking agent.

본 발명에 따른 방사선으로 가교 구조 도입이 가능한 3개 이상의 비닐기를 갖는 가교제, 양이온 교환 레진과 양이온 교환 고분자를 적절한 조성비로 혼합하고 방사선을 조사하여 제조한 가교 양이온교환레진/양이온교환고분자 복합막은 상온에서 단시간에 제조가 가능하며, 높은 이온교환능을 유지하면서 높은 치수안정성과 함께 높은 투과 선택도를 가져 이온교환막, 연료전지막, 대용량 이차전지용 흐름전지막 및 수처리막 등에 활용이 가능하다.The crosslinked cation-exchange resin / cation-exchange polymer composite membrane prepared by mixing at least three vinyl groups-capable crosslinking agent, cation-exchange resin, and cation-exchange polymer at a suitable composition ratio and irradiating the crosslinked structure, It can be manufactured in a short time and has high dimensional stability and high permeation selectivity while maintaining high ion exchange ability, so it can be used for ion exchange membrane, fuel cell membrane, flow cell membrane for large capacity secondary battery and water treatment membrane.

Claims (15)

양이온교환고분자;
3개 이상의 비닐기를 갖는 가교제; 및
양이온교환레진;
을 포함하는 가교 양이온교환레진/양이온교환고분자 복합막.
Cation exchange polymers;
A crosslinking agent having three or more vinyl groups; And
Cation exchange resin;
/ RTI &gt; wherein the crosslinked cation-exchange resin / cation-exchange polymer composite membrane comprises: &lt; RTI ID = 0.0 &gt;
제1항에 있어서,
양이온교환고분자 30-75 중량부; 3개 이상의 비닐기를 갖는 가교제 5-40 중량부; 및 양이온교환레진 10-50 중량부를 포함하는 것을 특징으로 하는 가교 양이온교환레진/양이온교환고분자 복합막.
The method according to claim 1,
30 to 75 parts by weight of a cation exchange polymer; 5-40 parts by weight of a crosslinking agent having 3 or more vinyl groups; And 10-50 parts by weight of a cation exchange resin. &Lt; RTI ID = 0.0 &gt; 11. &lt; / RTI &gt;
제1항에 있어서,
상기 양이온교환고분자는 술폰화 폴리스티렌 (sulfonated polystyrene, SPS), 술폰화 폴리(에테르 에테르 케톤) (sulfonated poly(ether ether ketone), SPEEK), 술폰화 폴리술폰 (sulfonated polysulfone, SPSu), 술폰화 폴리(아릴렌 에테르 술폰) (sulfonated poly(ether sulfone), SPES), 술폰화 폴리이미드 (sulfonated polyimide, SPI), 및 술폰화 폴리(페닐렌 옥사이드) (sulfonated poly (phenylene oxide), SPPO) 로 이루어지는 군으로부터 선택되는 1종 이상인 것을 특징으로 하는 복합막.
The method according to claim 1,
The cation exchange polymer may be selected from the group consisting of sulfonated polystyrene (SPS), sulfonated poly (ether ether ketone), SPEEK, sulfonated polysulfone (SPSu), sulfonated poly (SPES), sulfonated polyimide (SPI), and sulfonated poly (phenylene oxide) (SPPO). The term &quot; sulfonated poly (ether sulfone) And at least one kind selected from the group consisting of polyvinyl alcohol and polyvinyl alcohol.
제1항에 있어서,
상기 3개의 비닐기를 갖는 가교제는 트리메티롤프로판 에톡시레이트 트리아크릴레이트 (trimethylolpropane ethoxylate triacrylate, TMPETA), 트리메티롤프로판 트리메타크릴레이트(trimethylolpropane trimethacrylate, TMPTA), 트리알릴 아이소시아누레이트(triallyl Isocyanurate, TAIC), 펜타에리스리톨 트리알릴 에테르(pentaerythritol triallyl ether, PETALE)로 이루어지는 군으로부터 선택되는 1종 이상인 것을 특징으로 하는 복합막.
The method according to claim 1,
The three vinyl group-containing crosslinking agents may be selected from the group consisting of trimethylolpropane ethoxylate triacrylate (TMPETA), trimethylolpropane trimethacrylate (TMPTA), triallyl isocyanurate , TAIC), pentaerythritol triallyl ether (PETALE), and the like.
제1항에 있어서,
상기 양이온교환레진은 술폰화 폴리스티렌 (sulfonated polystyrene, SPS)을 디비닐벤젠 (divinyl benzene, DVB)으로 가교한 것으로, 1-25 ㎛ 크기의 입자인 것을 특징으로 하는 복합막.
The method according to claim 1,
Wherein the cation exchange resin is a copolymer of sulfonated polystyrene (SPS) with divinyl benzene (DVB) and having a particle size of 1-25 탆.
양이온교환고분자, 3개 이상의 비닐기를 갖는 가교제를 용매에 용해시킨 후, 양이온교환레진을 첨가하고 분산시켜 모액을 준비하는 단계(단계 1);
상기 단계 1에서 준비한 모액을 유리판에 캐스팅하고 건조하는 단계(단계 2); 및
방사선을 조사하고 건조하는 단계(단계 3);
를 포함하는 가교 양이온교환레진/양이온교환고분자 복합막의 제조방법.
Dissolving a cation exchange polymer, a crosslinking agent having three or more vinyl groups in a solvent, adding and dispersing a cation exchange resin to prepare a mother liquor (step 1);
Casting the mother liquor prepared in step 1 on a glass plate and drying (step 2); And
Irradiating and drying the radiation (step 3);
Exchange resin / cation-exchange polymer composite membrane.
제6항에 있어서,
상기 단계 1은 양이온교환고분자 3-21.5 중량%, 3개 이상의 비닐기를 갖는 가교제 3-11 중량%를 용매 70-90 중량%에 용해시킨 후, 양이온교환레진 2.5-9.5 중량%를 첨가하고 분산시켜 모액을 준비하는 것을 특징으로 하는 제조방법.
The method according to claim 6,
In step 1, 3 to 21.5 weight% of a cation exchange polymer, 3 to 11 weight% of a crosslinking agent having three or more vinyl groups, is dissolved in 70 to 90 weight% of a solvent, 2.5 to 9.5 weight% of a cation exchange resin is added and dispersed Wherein a mother liquor is prepared.
제6항에 있어서,
상기 단계 1 이전에 양이온교환레진을 염산 수용액에 12-36 시간 담지한 후, 세척 및 건조하는 단계를 더 포함하는 것을 특징으로 하는 제조방법.
The method according to claim 6,
Further comprising the step of supporting the cation exchange resin in an aqueous hydrochloric acid solution for 12 to 36 hours before the step 1, followed by washing and drying.
제6항에 있어서,
상기 단계 1의 용매는 N,N-디메틸아세트아미드(DMAc), 1-메틸-2-피로리디논(NMP) 및 디메틸설폭사이드(DMSO)으로 이루어지는 군으로부터 선택되는 1종 이상인 것을 특징으로 하는 제조방법.
The method according to claim 6,
The solvent of step 1 is at least one selected from the group consisting of N, N-dimethylacetamide (DMAc), 1-methyl-2-pyrrolidinone (NMP) and dimethylsulfoxide (DMSO) Way.
제6항에 있어서,
상기 단계 3의 방사선은 감마선, 자외선 및 전자선으로 이루어지는 군으로부터 선택되는 1종인 것을 특징으로 하는 제조방법.
The method according to claim 6,
Wherein the radiation of step (3) is one kind selected from the group consisting of gamma ray, ultraviolet ray and electron ray.
제10항에 있어서,
상기 단계 3의 방사선은 전자선인 것을 특징으로 하는 제조방법.
11. The method of claim 10,
Wherein the radiation of step 3 is an electron beam.
제10항에 있어서,
상기 방사선은 0.1-20 kGy/pass의 선량율로 50-300 kGy 조사선량만큼 조사하는 것을 특징으로 하는 가교 제조방법.
11. The method of claim 10,
Wherein the radiation is irradiated at a dose rate of 0.1 - 20 kGy / pass by a dose of 50 - 300 kGy irradiation.
제1항의 가교 양이온교환레진/양이온교환고분자 복합막을 포함하는 양이온교환막.
A cation exchange membrane comprising the crosslinked cation exchange resin / cation exchange polymer composite membrane of claim 1.
제1항의 가교 양이온교환레진/양이온교환고분자 복합막을 포함하는 수처리막.
A water treatment membrane comprising the crosslinked cation exchange resin / cation exchange polymer composite membrane of claim 1.
제1항의 가교 양이온교환레진/양이온교환고분자 복합막을 포함하는 연료전지막.A fuel cell membrane comprising the crosslinked cation exchange resin / cation exchange polymer composite membrane of claim 1.
KR1020160178888A 2016-12-26 2016-12-26 Crosslinked cation exchange resin (CER)/ cation exchange polymer composite membrane by radiation and fabrication thereof KR101888935B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160178888A KR101888935B1 (en) 2016-12-26 2016-12-26 Crosslinked cation exchange resin (CER)/ cation exchange polymer composite membrane by radiation and fabrication thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160178888A KR101888935B1 (en) 2016-12-26 2016-12-26 Crosslinked cation exchange resin (CER)/ cation exchange polymer composite membrane by radiation and fabrication thereof

Publications (2)

Publication Number Publication Date
KR20180075018A true KR20180075018A (en) 2018-07-04
KR101888935B1 KR101888935B1 (en) 2018-08-16

Family

ID=62913225

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160178888A KR101888935B1 (en) 2016-12-26 2016-12-26 Crosslinked cation exchange resin (CER)/ cation exchange polymer composite membrane by radiation and fabrication thereof

Country Status (1)

Country Link
KR (1) KR101888935B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111793235A (en) * 2020-06-08 2020-10-20 金华市金秋环保水处理有限公司 Preparation method of cation exchange membrane with IPN structure
KR20220091725A (en) * 2020-12-24 2022-07-01 경상국립대학교산학협력단 Proton exchange membrane comprising perfluorosulfonic acid ionomer grafted graphene oxide and use thereof
KR20220108411A (en) 2021-01-27 2022-08-03 (주)신넥앤테크 Surface modification method of cation-exchange resin

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040031161A (en) * 2002-10-04 2004-04-13 삼성에스디아이 주식회사 Composition of proton tansfer polymer, polymer film using the same and fuel cell using the polymer film
KR20150054235A (en) * 2013-11-11 2015-05-20 한국원자력연구원 Crosslinked SPEEK proton exchange membrane having improved chemical stability by radiation and fabrication thereof
KR101655409B1 (en) 2014-05-30 2016-09-09 한국원자력연구원 Crosslinked Polymer Blend Catio Exchange Membrane and Manufacturing Method of th Same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040031161A (en) * 2002-10-04 2004-04-13 삼성에스디아이 주식회사 Composition of proton tansfer polymer, polymer film using the same and fuel cell using the polymer film
KR20150054235A (en) * 2013-11-11 2015-05-20 한국원자력연구원 Crosslinked SPEEK proton exchange membrane having improved chemical stability by radiation and fabrication thereof
KR101655409B1 (en) 2014-05-30 2016-09-09 한국원자력연구원 Crosslinked Polymer Blend Catio Exchange Membrane and Manufacturing Method of th Same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111793235A (en) * 2020-06-08 2020-10-20 金华市金秋环保水处理有限公司 Preparation method of cation exchange membrane with IPN structure
KR20220091725A (en) * 2020-12-24 2022-07-01 경상국립대학교산학협력단 Proton exchange membrane comprising perfluorosulfonic acid ionomer grafted graphene oxide and use thereof
KR20220108411A (en) 2021-01-27 2022-08-03 (주)신넥앤테크 Surface modification method of cation-exchange resin

Also Published As

Publication number Publication date
KR101888935B1 (en) 2018-08-16

Similar Documents

Publication Publication Date Title
Maurya et al. A review on recent developments of anion exchange membranes for fuel cells and redox flow batteries
JP5846699B2 (en) Cross-linked sulfonated poly (ether ether ketone) cation exchange membrane with improved chemical stability by radiation and method for producing the same
KR101586769B1 (en) Manufacturing Method of Thin Ion Exchange Membrane Using High Molecular Support
KR101888935B1 (en) Crosslinked cation exchange resin (CER)/ cation exchange polymer composite membrane by radiation and fabrication thereof
KR20170095867A (en) Novel polymers and methods for their manufacture
EP3478750A1 (en) Cross-linked high stable anion exchange blend membranes with polyethyleneglycols as hydrophilic membrane phase
KR101719248B1 (en) Ionic polymer membrane comprising radiation-crosslinkable poly(vinyl alcohol) and the method of preparation thereof
KR20140126199A (en) Manufacturing Method of Ion Exchange Membrane Using Porous Substrate and Polymer Coating
KR101569719B1 (en) Crosslinked hydrocarbon polymer electrolyte membranes with diols by radiation and manufacturing method thereof
KR101705563B1 (en) Ion-exchange membrane for water treatment and manufacturing method the same
JPS5858365B2 (en) Manufacturing method of cation exchange membrane
KR101670390B1 (en) Method of bi-polar membrane for producing sodium hypochlorite
KR101188267B1 (en) Anion exchange composite membrane with olefin-based additives and method for preparing the same
KR102170555B1 (en) Anion-exchange membranes and preparation method thereof
KR101655409B1 (en) Crosslinked Polymer Blend Catio Exchange Membrane and Manufacturing Method of th Same
KR20160060890A (en) Vinylbenzene-styrene based anion exchange composite membranes with nitrile rubber and method for preparing the same
KR101710195B1 (en) Bipolar Membrane for Water-Splitting Electrodialysis Process
KR101394417B1 (en) Fabrication method for the fuel cell membranes by using the carbon-based membranes prepared by radiation grafting of vinyl benzyl chloride based monomers
KR101814037B1 (en) Organic-inorganic complex ion exchange membrane and process for preparing for the same
KR101681637B1 (en) Styrene-tert-butyl styrene based cation exchange composite membranes with nitrile rubber and method for preparing the same
KR101267979B1 (en) Hydrocarbon polymer proton exchange membranes having improved thermal and dimension stability and fabrication method thereof
KR101165588B1 (en) Preparation of organic-inorganic hybrid ion-exchange membrane
KR101590917B1 (en) Bipolar Membrane and Preparation Method Thereof
KR100460454B1 (en) A swollen cation exchange membrane using water-soluble polymer and preparation method thereof
Katcharava et al. Optimized step‐growth polymerization of water‐insoluble, highly sulfonated poly (phenylene sulfone)

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant