KR20180060010A - 무선 통신 시스템에서 제어 채널의 디코딩을 위한 장치 및 방법 - Google Patents

무선 통신 시스템에서 제어 채널의 디코딩을 위한 장치 및 방법 Download PDF

Info

Publication number
KR20180060010A
KR20180060010A KR1020160158978A KR20160158978A KR20180060010A KR 20180060010 A KR20180060010 A KR 20180060010A KR 1020160158978 A KR1020160158978 A KR 1020160158978A KR 20160158978 A KR20160158978 A KR 20160158978A KR 20180060010 A KR20180060010 A KR 20180060010A
Authority
KR
South Korea
Prior art keywords
decoding
signal
control channel
electronic device
candidates
Prior art date
Application number
KR1020160158978A
Other languages
English (en)
Inventor
신명철
심세준
양하영
김종돈
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1020160158978A priority Critical patent/KR20180060010A/ko
Priority to EP17874864.6A priority patent/EP3547578A4/en
Priority to PCT/KR2017/013645 priority patent/WO2018097688A1/ko
Priority to US16/464,514 priority patent/US11064476B2/en
Publication of KR20180060010A publication Critical patent/KR20180060010A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0036Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the receiver
    • H04L1/0038Blind format detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0047Decoding adapted to other signal detection operation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0072Error control for data other than payload data, e.g. control data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided

Abstract

본 개시는 LTE(Long Term Evolution)와 같은 4G(4th generation) 통신 시스템 이후 보다 높은 데이터 전송률을 지원하기 위한 5G(5th generation) 또는 pre-5G 통신 시스템에 관련된 것이다. 다양한 실시 예들에 따른, 무선 통신 시스템에서 전자 장치는, 신호를 수신하도록 구성되는 통신부와, MIB(master information block) 후보들 및 CFI(control format indicator)의 후보들에 기반하여 결정된 디코딩 조건들 중 제1 디코딩 조건에 따라, 상기 신호의 제어 채널의 디코딩을 수행하고, 상기 디코딩의 수행 결과에 따라, 상기 제1 디코딩 조건에 대한 디코딩의 성공 여부를 결정하도록 구성되는 제어부를 포함할 수 있다.

Description

무선 통신 시스템에서 제어 채널의 디코딩을 위한 장치 및 방법{APPARATUS AND METHOD FOR DECODING CONTROL CHANNEL IN WIRELESS COMMUNICATION SYSTEM}
본 개시(disclosure)는 일반적으로 무선 통신 시스템에 관한 것이다. 보다 구체적으로, 무선 통신 시스템에서 제어 채널(control channel)의 디코딩을 수행하는 장치 및 방법에 관한 것이다.
4G(4th generation) 통신 시스템 상용화 이후 증가 추세에 있는 무선 데이터 트래픽 수요를 충족시키기 위해, 개선된 5G(5th generation) 통신 시스템 또는 pre-5G 통신 시스템을 개발하기 위한 노력이 이루어지고 있다. 이러한 이유로, 5G 통신 시스템 또는 pre-5G 통신 시스템은 4G 네트워크 이후(Beyond 4G Network) 통신 시스템 또는 LTE(Long Term Evolution) 시스템 이후(Post LTE) 시스템이라 불리어지고 있다.
높은 데이터 전송률을 달성하기 위해, 5G 통신 시스템은 초고주파(mmWave) 대역(예를 들어, 60기가(60GHz) 대역과 같은)에서의 구현이 고려되고 있다. 초고주파 대역에서의 전파의 경로손실 완화 및 전파의 전달 거리를 증가시키기 위해, 5G 통신 시스템에서는 빔포밍(beamforming), 거대 배열 다중 입출력(massive MIMO), 전차원 다중입출력(Full Dimensional MIMO, FD-MIMO), 어레이 안테나(array antenna), 아날로그 빔형성(analog beam-forming), 및 대규모 안테나(large scale antenna) 기술들이 논의되고 있다.
또한 시스템의 네트워크 개선을 위해, 5G 통신 시스템에서는 진화된 소형 셀, 개선된 소형 셀(advanced small cell), 클라우드 무선 액세스 네트워크(cloud radio access network, cloud RAN), 초고밀도 네트워크(ultra-dense network), 기기 간 통신(Device to Device communication, D2D), 무선 백홀(wireless backhaul), 이동 네트워크(moving network), 협력 통신(cooperative communication), CoMP(Coordinated Multi-Points), 및 수신 간섭제거(interference cancellation) 등의 기술 개발이 이루어지고 있다.
이 밖에도, 5G 시스템에서는 진보된 코딩 변조(Advanced Coding Modulation, ACM) 방식인 FQAM(Hybrid Frequency Shift Keying and Quadrature Amplitude Modulation) 및 SWSC(Sliding Window Superposition Coding)과, 진보된 접속 기술인 FBMC(Filter Bank Multi Carrier), NOMA(Non Orthogonal Multiple Access), 및 SCMA(Sparse Code Multiple Access) 등이 개발되고 있다.
LTE 하향링크 시스템과 같은 OFDM(orthogonal frequency division multiplexing)에서는, 신호에 포함되는 제어 영역에 대하여 디코딩이 수행된 뒤, 데이터 영역에 대한 디코딩이 수행된다. 제어 영역은 데이터 영역을 디코딩하기 위한 제어 정보들로, MIB(master information block), CFI(control format indicator), DCI(downlink control information)를 포함한다. 제어 영역에 대한 디코딩으로서, MIB를 얻기 위한 PBCH(physical broadcasting channel) 디코딩, CFI를 얻기 위한 PCFICH(physical control format indicator channel) 디코딩, DCI를 얻기 위한 PDCCH 디코딩이 순차적으로 수행된다.
한편, 순차적인 디코딩에 따라 CFI의 코드율 또는 MIB의 코드율(code rate)이 DCI에 대한 코드율보다 높은 것이 일반적이나, 반대의 경우에는 PBCH 디코딩 또는 PCFICH 디코딩이 전체 제어 채널의 디코딩 성능에 영향을 미치는 바, 이를 해소하기 위한 디코딩 기법이 요구된다.
상술한 바와 같은 논의를 바탕으로, 본 개시(disclosure)는 무선 통신 시스템에서 효과적으로 디코딩을 수행하기 위한 장치 및 방법을 제공한다.
또한, 본 개시는 무선 통신 시스템에서 제어 채널의 구조에 대한 정보 없이 제어 채널을 디코딩하기 위한 장치 및 방법을 제공한다.
또한, 본 개시는 무선 통신 시스템에서 MIB(master information block) 및 CFI(control format indicator)의 디코딩의 선행 없이 제어 채널을 디코딩하기 위한 장치 및 방법을 제공한다.
또한, 본 개시는 무선 통신 시스템에서 MIB(master information block) 후보들 및 CFI(control format indicator) 후보들에 기반하여 제어 채널의 디코딩 조건을 설정하기 위한 장치 및 방법을 제공한다.
또한, 본 개시는 무선 통신 시스템에서 지원하는 대역폭 및 송신 안테나에 따라 가능한 제어 채널의 디코딩 조건들의 범위를 간소화하기 위한 장치 및 방법을 제공한다.
또한, 본 개시는 무선 통신 시스템에서 PBCH(physical broadcasting channel) 디코딩 또는 PCFICH(physical control format indicator channel) 디코딩의 오류로 인한 전체 제어 채널의 디코딩 성능 저하를 감소시키기 위한 장치 및 방법을 제공한다.
또한, 본 개시는 무선 통신 시스템에서 데이터 영역의 디코딩을 강인하게(robust) 수행하는 장치 및 방법을 제공한다.
본 개시의 다양한 실시 예들에 따르면, 무선 통신 시스템에서 전자 장치는, 신호를 수신하도록 구성되는 통신부와, MIB(master information block) 후보들 및 CFI(control format indicator)의 후보들에 기반하여 결정된 디코딩 조건들 중 제1 디코딩 조건에 따라, 상기 신호의 제어 채널의 디코딩을 수행하고, 상기 디코딩의 수행 결과에 따라, 상기 제1 디코딩 조건에 대한 디코딩의 성공 여부를 결정하도록 구성되는 제어부를 포함할 수 있다.
본 개시의 다양한 실시 예들에 따르면, 무선 통신 시스템에서 전자 장치의 동작 방법은, 신호를 수신하는 과정과, MIB(master information block) 후보들 및 CFI(control format indicator)의 후보들에 기반하여 결정된 디코딩 조건들 중 제1 디코딩 조건에 따라, 상기 신호의 제어 채널의 디코딩을 수행하는 과정과, 상기 디코딩의 수행 결과에 따라, 상기 제1 디코딩 조건에 대한 디코딩의 성공 여부를 결정하는 과정을 포함할 수 있다.
본 개시의 다양한 실시 예들에 따르면, 무선 통신 시스템에서 전자 장치는 기지국으로부터 신호를 수신하도록 구성되는 통신부와, 상기 신호의 제어 채널(control channel)의 구조에 대한 후보들에 기반하여 결정된 디코딩 조건들에 따라, 상기 제어 채널의 디코딩을 수행하도록 구성되는 제어부를 포함하고, 상기 제어 채널의 구조에 대한 후보들은, 상기 신호의 전송 대역폭, 상기 신호를 송신하기 위해 사용된 안테나 개수, ACK/NACK(acknowledge/negative-acknowledge) 전송을 위한 채널의 할당 중 적어도 하나에 기반하여 결정될 수 있다.
본 개시의 다양한 실시 예들에 따른 장치 및 방법은, MIB(master information block) 후보들 및 CFI(control format indicator) 후보들에 기반하여 반복적으로 디코딩을 수행함으로써, 디코딩 성능을 향상시킬 수 있다.
본 개시에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 개시가 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
도 1은 본 개시의 다양한 실시 예들에 따른 무선 네트워크 환경(wireless network environment)을 도시한다.
도 2는 본 개시의 다양한 실시 예들에 따른 전자 장치(electronic device)의 디코딩(decoding)의 예를 도시한다.
도 3은 본 개시의 다양한 실시 예들에 따른 전자 장치의 기능적 구성의 예를 도시한다.
도 4는 본 개시의 다양한 실시 예들에 따른 MIB(master information block) 및 CFI(control format indicator)에 따른 제어 채널의 자원 구성의 예를 도시한다.
도 5는 본 개시의 다양한 실시 예들에 따른 전자 장치의 디코딩 동작의 흐름도를 도시한다.
도 6은 본 개시의 다양한 실시 예들에 따른 전자 장치의 다른 디코딩 동작의 흐름도를 도시한다.
도 7은 본 개시의 다양한 실시 예들에 따른 디코딩 조건들의 구성의 흐름도를 도시한다.
도 8은 본 개시의 다양한 실시 예들에 따른 전자 장치의 PDCCH(physical downlink control channel) 유형(format)에 따른 디코딩 기법의 예를 도시한다.
도 9는 본 개시의 다양한 실시 예들에 따른 전자 장치의 디코딩 성능을 나타내기 위한 그래프를 도시한다.
본 개시에서 사용되는 용어들은 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 다른 실시 예의 범위를 한정하려는 의도가 아닐 수 있다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함할 수 있다. 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 용어들은 본 개시에 기재된 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가질 수 있다. 본 개시에 사용된 용어들 중 일반적인 사전에 정의된 용어들은, 관련 기술의 문맥상 가지는 의미와 동일 또는 유사한 의미로 해석될 수 있으며, 본 개시에서 명백하게 정의되지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다. 경우에 따라서, 본 개시에서 정의된 용어일지라도 본 개시의 실시 예들을 배제하도록 해석될 수 없다.
이하에서 설명되는 본 개시의 다양한 실시 예들에서는 하드웨어적인 접근 방법을 예시로서 설명한다. 하지만, 본 개시의 다양한 실시 예들에서는 하드웨어와 소프트웨어를 모두 사용하는 기술을 포함하고 있으므로, 본 개시의 다양한 실시 예들이 소프트웨어 기반의 접근 방법을 제외하는 것은 아니다.
이하, 본 문서의 다양한 실시 예들이 첨부된 도면을 참조하여 기재된다. 실시 예 및 이에 사용된 용어들은 본 문서에 기재된 기술을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 해당 실시예의 다양한 변경, 균등물, 및/또는 대체물을 포함하는 것으로 이해되어야 한다. 도면의 설명과 관련하여, 유사한 구성요소에 대해서는 유사한 참조 부호가 사용될 수 있다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함할 수 있다.
본 문서에서, "A 또는 B" 또는 "A 및/또는 B 중 적어도 하나" 등의 표현은 함께 나열된 항목들의 모든 가능한 조합을 포함할 수 있다. "제 1," "제 2," "첫째," 또는 "둘째,"등의 표현들은 해당 구성요소들을, 순서 또는 중요도에 상관없이 수식할 수 있고, 한 구성요소를 다른 구성요소와 구분하기 위해 사용될 뿐 해당 구성요소들을 한정하지 않는다. 어떤(예: 제 1) 구성요소가 다른(예: 제 2) 구성요소에 "(기능적으로 또는 통신적으로) 연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 상기 어떤 구성요소가 상기 다른 구성요소에 직접적으로 연결되거나, 다른 구성요소(예: 제 3 구성요소)를 통하여 연결될 수 있다.
본 문서에서, "~하도록 구성된(또는 설정된)(configured to)"은 상황에 따라, 예를 들면, 하드웨어적 또는 소프트웨어적으로 "~에 적합한," "~하는 능력을 가지는," "~하도록 변경된," "~하도록 만들어진," "~를 할 수 있는," 또는 "~하도록 설계된"과 상호 호환적으로(interchangeably) 사용될 수 있다. 어떤 상황에서는, "~하도록 구성된 장치"라는 표현은, 그 장치가 다른 장치 또는 부품들과 함께 "~할 수 있는" 것을 의미할 수 있다. 예를 들면, 문구 "A, B, 및 C를 수행하도록 구성된(또는 설정된) 프로세서"는 해당 동작을 수행하기 위한 전용 프로세서(예: 임베디드 프로세서), 또는 메모리 장치에 저장된 하나 이상의 소프트웨어 프로그램들을 실행함으로써, 해당 동작들을 수행할 수 있는 범용 프로세서(예: CPU(central processing unit) 또는 application processor)를 의미할 수 있다.
수신되는 신호의 제어 영역에 대하여 디코딩 수행시, 순차적인 디코딩 동작들로 인하여 먼저 수행되는 디코딩(예: PBCH 디코딩, PCFHICH 디코딩)의 성능에 따라 전체 시스템의 성능이 좌우되는 문제점이 있다. 따라서, 이하 본 개시에서는, 가능한 MIB 후보들 및 CFI 후보들을 결정하고 반복적으로 디코딩을 수행함으로써, 이전 단계에서의 디코딩 성능에 영향을 받지 않는 제어 채널의 디코딩 방안에 대하여 설명한다.
도 1은 본 개시의 다양한 실시 예들에 따른 무선 네트워크 환경(wireless network environment)을 도시한다.
도 1을 참고하면, 상기 무선 네트워크 환경은 무선 네트워크 환경 100일 수 있다. 상기 무선 네트워크 환경 100은 기지국 110 및 전자 장치 120을 포함할 수 있다.
상기 기지국 110은, 네트워크 유형에 따라 "기지국(base station)" 외에 "액세스 포인트(AP: Access Point)", 이노드비("eNodeB" 또는 "eNB"), 송수신 포인트(Transmission Reception Point, TRP)들이 대신 사용될 수 있다. 이하 편의상, 기지국 110은 본 특허 문서에서 원격(remote) 단말기들(terminals)에 무선 액세스를 제공하는 네트워크 인프라스트럭쳐(infrastructure) 구성 요소들을 의미하기 위해 사용될 수 있다.
일부 실시 예들에서, 상기 전자 장치 120은 단말(terminal)일 수 있다. 상기 전자 장치 120은 상기 기지국 110으로부터 데이터를 수신하거나, 데이터에 대한 제어 정보를 수신할 수 있다. 상기 제어 정보는 하향링크 스케줄링(downlink scheduling)에 관한 정보, 상기 단말의 상향링크 전송시 사용하는 자원, 상향링크 스케줄링 승인(scheduling grant), HARQ(hybrid automatic repeat request) ACK(acknowledgment)에 대한 정보들을 포함할 수 있다. 네트워크 유형에 따라, 상기 전자 장치 120은 "사용자 장비(User Equipment, UE)", "이동국(mobile station)", "가입자국(subscriber station)", "원격 단말기(remote terminal)", "무선 단말기(wireless terminal)", 또는 "사용자 장치(user device)"와 같은 다른 잘 알려진 용어들이 사용될 수도 있다.
다른 일부 실시 예들에서, 상기 전자 장치 120은 기지국일 수 있다. 예를 들어, 상기 전자 장치 120은 OTAR(over the air receiver) 기능을 지원하는 기지국일 수 있다. 상기 전자 장치 120은 이웃하는 기지국들로부터 신호를 수신하여 주기적으로 무선 환경을 측정하고, SON(self-organized network)을 위하여 상기 기지국 110으로부터 자원 할당과 관련된 제어 정보를 수신하는 기지국일 수 있다. 상기 제어 정보는 하향링크 스케줄링(downlink scheduling)에 관한 정보를 포함할 수 있다. 네트워크 유형에 따라, 상기 전자 장치 120은 상기 기지국 110과 같은 독립적인 기지국이거나, 상기 기지국 110보다 작은 영역을 커버(cover)하는 기지국(예: 펨토(femto) 기지국, 피코(pico) 기지국, 스몰 셀(small cell) 기지국)일 수 있다.
본 개시는, 상기 기지국 110이 상기 전자 장치 120에게 제어 정보를 전송하는 경우, 상기 전자 장치 120이 상기 제어 정보를 디코딩하는 과정에 대하여 구체적으로 설명한다. 상기 제어 정보는 스케줄링 또는 전력 제어 명령과 같은 하향링크 제어 정보일 수 있다. 이하, 도 2 내지 도 9는 설명의 편의를 위하여, LTE 하향링크 시스템을 예로 들어 설명하나, 이에 한정되지 않는다.
도 2는 본 개시의 다양한 실시 예들에 따른 전자 장치(electronic device)의 디코딩의 예를 도시한다. 상기 전자 장치는 상기 도 1의 전자 장치 120일 수 있다. 이하 도 2에서는 다양한 실시 예들을 설명하기 위하여 필요한 용어들에 대하여 정의한다. 이하 설명에서 사용되는 제어 정보를 지칭하는 용어(예: 제어 채널(control channel), 제어 영역(control region)), 연산 상태를 위한 용어(예: 디코딩(decoding), 설정(configuration)), 데이터를 지칭하는 용어(예: 데이터 영역(data region), 값(value)), 망 객체(network entity)들을 지칭하는 용어, 메시지들을 지칭하는 용어(예: 요청(request), 프레임(frame), 서브프레임(subframe)), 장치의 구성 요소를 지칭하는 용어 등은 설명의 편의를 위해 예시된 것이다. 따라서, 본 발명이 후술되는 용어들에 한정되는 것은 아니며, 동등한 기술적 의미를 가지는 다른 용어가 사용될 수 있다.
도 2를 참고하면, 일반적으로, 하향링크 데이터를 위한 제어 영역의 디코딩은 PBCH(physical broadcasting channel) 디코딩 210, PCFICH(physical control format indicator channel) 디코딩 220, PDCCH(physical downlink control channel) 디코딩 230을 포함할 수 있다. 상기 제어 영역의 디코딩 결과로 DCI(downlink format indicator) 231가 획득되는 경우, DCI 231에 기반하여 PDSCH(physical downlink shared channel) 디코딩 240이 수행될 수 있다. 구체적으로, 서브프레임을 수신한 장치는 PBCH 디코딩 210을 수행하여, 시스템 정보인 MIB(master information block) 211를 획득한다. 상기 장치는 PCFICH 디코딩 220을 수행하여, 수신되는 서브프레임의 제어 영역을 가리키는 CFI(control format indicator) 221를 획득한다. 상기 장치는, 획득한 MIB 211 및 CFI 221에 기반하여 PDCCH 디코딩을 수행함으로써 DCI 231을 획득할 수 있다. 그러나, 상기 PBCH 디코딩 210 또는 상기 PCFICH 디코딩 220에 에러가 발생하는 경우, DCI 231의 코드율이 낮더라도, 상기 PDCCH의 디코딩 230의 성공 여부가 불확실할 수 있다. 다시 말하면, PDCCH 디코딩의 성공 여부와 상관없이, 상기 PBCH 디코딩 210 또는 상기 PCFICH 디코딩 220에 에러로 인하여 제어 채널 전체의 디코딩에 에러가 발생할 수 있다.
따라서, 본 개시의 다양한 실시 예들에 따른 상기 전자 장치 120은, 상기 PBCH 디코딩 210, 상기 PCFICH 디코딩 220을 수행하지 않고 PDCCH 디코딩 230을 수행한다. 다시 말해, 다양한 실시 예들에 따른 상기 전자 장치 120은 일반적인 수신 장치와 달리, PBCH 디코딩 210 또는 PCFICH 디코딩 220을 수행하지 않을 수 있다. 즉, 상기 전자 장치 120은, PBCH 디코딩 210을 수행하지 않고 PDCCH 디코딩 230을 수행할 수 있다. 상기 전자 장치 120은 PBCH 디코딩 210을 수행하지 아니하므로, PBCH 디코딩 210을 수행하는 경우 획득될 MIB의 내용을 알 수 없다. 따라서, 상기 전자 장치 120은 MIB의 내용을 예측하고, 예측되는 MIB의 내용에 기초하여 PDCCH 디코딩 230을 수행할 수 있다. 여기서, PBCH 디코딩 210의 결과로서 획득될 MIB는 셀 대역폭, 셀의 PHICH(physical HARQ indicator channel) 설정에 대한 정보, SFN(system frame number), 송신 안테나의 수를 가리키는 정보를 포함한다. 이하, 획득될 것으로 예측 가능한 MIB의 집합은 MIB 후보들 251로 지칭될 수 있다. 상기 전자 장치 120은, 가능한 셀 대역폭의 수, 셀의 가능한 PHICH 설정에 대한 정보, 사용 가능한 송신 안테나 수 중 적어도 하나에 기반하여 NMIB개의 MIB 후보들 251을 결정할 수 있다.
상기 전자 장치 120은, PCFICH 디코딩 220을 수행하지 않고 PDCCH 디코딩 230을 수행할 수 있다. 상기 전자 장치 120은 PCFICH 디코딩 220을 수행하지 않는바, PCFICH 디코딩 220을 수행하는 경우 획득될 CFI를 알 수 없다. 따라서, 상기 전자 장치 120은 CFI의 내용을 예측하고, 예측되는 CFI의 내용에 기초하여 PDCCH 디코딩 230을 수행할 수 있다. 여기서,. PCFICH 디코딩 220의 결과로서 획득될 CFI는 제어 영역을 위해 할당된 심볼의 개수를 가리키며, 1, 2, 3 중 하나일 수 있다. 이하, 획득될 것으로 예측 가능한 CFI의 집합은 CFI 후보들 253으로 지칭될 수 있다. 다시 말하면, 상기 전자 장치 120은, 3개의 CFI 후보들 253을 결정할 수 있다.
상기 전자 장치 120은 NMIB개의 MIB 후보들 251 및 3개의 CFI 후보들 253에 따라 다수의 디코딩 조건들(decoding condition) 250을 결정할 수 있다. 상기 다수의 디코딩 조건들 250은 제어 채널에 대한 디코딩 조건들의 집합일 수 있다. 상기 전자 장치 120은, 상기 다수의 디코딩 조건들 250중 하나를 선택하여 PDCCH 디코딩 230을 반복적으로 수행할 수 있다. 상기 전자 장치 120은 순환 중복 검사(cyclic redundancy check, CRC)를 통하여 상기 PDCCH 디코딩 230으로부터 성공적인 DCI 231을 획득할 때까지, 상기 다수의 디코딩 조건들 250중 선택되는 디코딩 조건을 변경하고, 변경된 디코딩 조건에 따라 PDCCH 디코딩을 반복적으로 수행할 수 있다. 상기 전자 장치 120은 디코딩 조건을 변경하면서, PDCCH 디코딩 230을 반복적으로 수행함으로써 PBCH 디코딩 210 또는 PCFICH 디코딩 220의 에러에 대한 위험성을 감소시킬 수 있다. 상술한 바와 같이, 상기 전자 장치 120은 PBCH 디코딩 210 또는 PCFICH 디코딩 220을 수행하지 않음으로써, MIB의 코드율 또는 CFI의 코드율이 DCI의 코드율 보다 상대적으로 높은 경우, 제어 채널에 대한 디코딩의 성공률을 향상시킬 수 있는 효과가 있다.
상기 전자 장치 120은 PDCCH 디코딩 230의 성공에 따라 DCI 231을 획득한 경우, 획득된 DCI 231에 기반하여 PDSCH 디코딩 240을 수행할 수 있다. 상기 전자 장치 120은 상기 DCI 231 획득시 선택된 디코딩 조건을 서브프레임 파라미터(subframe parameter)로 설정(set)할 수 있다. 상기 서브프레임 파라미터는, 해당 서브프레임의 전송 대역폭, 서브프레임 내의 CFI 수, 서브프레임을 송신한 안테나의 개수, 서브프레임 내에서 PHICH 자원 할당을 가리킬 수 있다. 상기 전자 장치 120은 상기 PBCH 디코딩 210 또는 PCFICH 디코딩 220을 수행하지 않더라도, PBCH 디코딩 210으로부터 획득될 MIB 및 PCFICH 디코딩 220으로부터 획득될 CFI가 상기 설정된 서브프레임 파라미터에 대응하는 것으로 결정할 수 있다.
상기 전자 장치 120은 PDSCH 디코딩 240 결과에 따라 ACK 또는 NACK(negative-acknowledge)의 송신 여부를 결정할 수 있다. 상기 전자 장치 120은 순환 중복 검사를 통하여 상기 PDSCH 디코딩 240의 에러 발생 여부, 즉 성공 여부를 결정할 수 있다. 상기 전자 장치 120은, 상기 PDSCH 디코딩 240이 성공한 경우, 상기 기지국 110으로부터 전송된 데이터를 획득할 수 있고, 설정된 서브프레임 파라미터의 PHICH 자원 설정에 따라 ACK 을 전송할 수 있다. 반대로, 상기 PDSCH 디코딩 240이 실패한 경우, 상기 전자 장치 120은 상기 설정된 서브프레임 파라미터의 PHICH 자원 설정에 따라 NACK을 전송할 수 있다.
도 2를 참고하여, PBCH 및 PCFICH의 디코딩 없이 PDCCH를 디코딩하는 절차가 설명되었다. 여기서, PDCCH는 자원 할당 정보를 전달하는 제어 채널의 일 예이고, PBCH 및 PCFICH는 상기 제어 채널에 대한 설정 정보를 전달하는 다른 제어 채널의 예이다. 여기서, 상기 다른 제어 채널은 '제어 채널 설정 채널', '프라이머리 제어 채널(primary control channel)' 등으로, 상기 제어 채널은 '자원 할당 채널', '세컨더리 제어 채널(secondary control channel)'등으로 지칭될 수 있다. 따라서, 상술한 디코딩 절차는 제어 채널 및 상기 제어 채널에 대한 설정을 지시하는 다른 제어 채널의 관계에서 동일 또는 유사하게 적용될 수 있다. 이하 설명의 편의를 위해, LTE 시스템을 예로 들어 설명하나, 후술하는 다양한 실시 예들은 다른 규격에 따르는 시스템에도 용이하게 적용될 수 있다.
도 3은 본 개시의 다양한 실시 예들에 따른 전자 장치의 기능적 구성의 예를 도시한다. 상기 전자 장치는 상기 도 1의 전자 장치 120일 수 있다. 이하 사용되는 '...부', '...기' 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어, 또는, 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다.
도 3을 참고하면, 상기 전자 장치 120은 통신부 310, 제어부 320, 저장부 330을 포함할 수 있다.
상기 통신부 310은 무선 채널을 통해 신호를 송신하기 위한 기능들을 수행할 수 있다. 예를 들어, 상기 통신부 310은 시스템의 물리 계층 규격에 따라 기저대역 신호 및 비트열 간 변환 기능을 수행할 수 있다. 예를 들어, 데이터를 송신하는 경우, 상기 통신부 310은 송신 비트열을 부호화 및 변조함으로써 복소 심볼들을 생성할 수 있다. 또한, 데이터를 수신하는 경우, 상기 통신부 310은 기저대역 신호를 복조 및 복호화하여 수신 비트열로 복원할 수 있다. 상기 통신부 310은 기저대역 신호를 RF(radio frequency) 대역 신호로 상향 변환하여 안테나를 통해 송신할 수 있다. 상기 통신부 310은 안테나를 통해 수신되는 RF 대역 신호를 기저대역 신호로 하향 변환할 수 있다. 예를 들어, 상기 통신부 310은 송신 필터, 수신 필터, 증폭기, 믹서(mixer), 오실레이터, DAC(Digital Analog Converter), ADC(Analog Digital Converter) 등을 포함할 수 있다. 상기 통신부 310은 다수의 안테나들이 구비된 경우, 다수의 RF 체인들을 포함할 수 있다.
상기 통신부 310은 상기 도 1의 기지국 110으로부터 신호를 수신할 수 있다. 상기 통신부 310은 서브프레임(subframe) 단위로 상기 신호를 수신할 수 있다. 상기 통신부 310은 상기 신호를 수신하는 대로, 성공적인 디코딩을 위하여 상기 신호에 포함된 심볼들을 제어부 320에게 전달할 수 있다. 하나의 서브프레임은 제어 영역에 대응하는 적어도 하나의 제어 심볼과 데이터 영역에 대응하는 데이터 심볼들을 포함할 수 있다. 데이터 전송의 제어를 위하여, 제어 심볼이 상대적으로 먼저 전송되는 바, 상기 통신부 310은 상기 제어부 320에게 제어 심볼을 전송하고 순차적으로 데이터 영역에 대응하는 심볼들을 전송한다.
상기 통신부 310은, 상기 전자 장치 120이 기지국인 일부 실시 예들에서, 상기 기지국 110에게 자원 할당을 요청할 수 있다. 상기 기지국은 SON을 지원하는 기지국일 수 있다. 상기 통신부 310은, OTAR 기능을 통하여 다수의 신호를 수신할 수 있다. 상기 통신부 310은 상기 수신된 신호로부터 측정되는 무선 환경에 따라 자원을 할당하도록 상기 기지국 110에게 요청할 수 있다.
상기 제어부 320은 제어 채널 디코딩부 321, 디코딩 성공 판단부 323, 및 데이터 디코딩부 325를 포함할 수 있다. 상기 제어부 320은 제어 영역에 대한 디코딩이 성공한 경우에 데이터 영역에 대한 디코딩을 수행하고, 실패한 경우에는 반복하여 제어 영역에 대한 디코딩을 수행하도록, 상기 제어 채널 디코딩부 321, 상기 디코딩 성공 판단부 323, 및 상기 데이터 디코딩부 325를 제어할 수 있다.
상기 제어 채널 디코딩부 321은 상기 통신부 310으로부터 수신되는 서브프레임의 제어 영역에 대하여 디코딩을 수행할 수 있다. 일 실시 예에 따라, 상기 제어 채널 디코딩부 321은, PBCH 디코딩 및 PCFICH 디코딩이 선행되지 않는, PDCCH 영역의 디코딩을 수행할 수 있다. 이를 위해, 상기 제어 채널 디코딩부 321은 상기 다수의 디코딩 조건들을 결정할 수 있다. 상기 다수의 디코딩 조건들은 제어 채널에 대한 디코딩 조건의 집합이다. 상기 다수의 디코딩 조건들은 PBCH 디코딩 및 PCFICH 디코딩을 수행하지 않음에 따라, 가능한 경우의 수들의 조합들로 구성되는 디코딩 조건들을 포함할 수 있다. 다시 말해서, 상기 다수의 디코딩 조건들은 가능한 MIB들 및 가능한 CFI들에 기반하여 결정될 수 있다. 구체적으로, 상기 제어 채널 디코딩부 321은 상기 통신부 310에서 수신될 수 있는 신호의 대역폭, 송신 안테나의 개수, PHICH 설정 정보와 같은 예측되는 MIB들로 구성된 NMIB개의 MIB 후보들을 식별할 수 있다. 또한, 상기 제어 채널 디코딩부 321은 상기 통신부 310에서 수신될 수 있는 CFI값들로서, 3개의 CFI 후보들을 식별 수 있다. 상기 제어 채널 디코딩부 321은, 상기 MIB 후보들 및 상기 CFI 후보들에 따라 NMIB x 3개의 디코딩 조건들을 생성할 수 있다.
일부 실시 예들에서, 상기 제어 채널 디코딩부 321은 접속 중인 네트워크에 대한 정보에 따라 예측되는 MIB 후보들을 줄일 수 있다. 예를 들어, 상기 제어 채널 디코딩부 321은, 상기 전자 장치 120의 통신 시스템을 지원하는 망 제공자(network provider)에 따라, 실제로 상기 전자 장치 120에게 제공될 전송 대역폭을 미리 확인할 수 있다. 상기, 대역폭이 확인됨에 따라, 상기 제어 채널 디코딩부 321은, 가능한 대역폭의 경우의 수만큼 MIB 후보들의 수를 감소시킬 수 있다. 가능한 전송 대역폭의 경우의 수가 6일 때 가능한 MIB 후보들의 수가 144개인 경우, 상기 제어 채널 디코딩부 321은 24개의 MIB 후보들의 수를 결정할 수 있다. 상기 제어 채널 디코딩부 321이 MIB 후보들의 수를 감소시킴에 따라, 반복되는 디코딩의 횟수가 감소할 수 있다. 반복되는 디코딩의 횟수가 감소함에 따라, 상기 전자 장치 120의 소모 전력이 감소할 수 있다.
상기 제어 채널 디코딩부 321은 상기 다수의 디코딩 조건들 중 하나를 선택하고, 이에 따라 제어 채널에 대한 디코딩을 수행할 수 있다. 일 예로, 상기 제어 채널 디코딩부 321은 i번째 디코딩 조건인, 1.4 MHz 대역폭, 2개의 송신 안테나 수, 첫번째 심볼을 통한 PHICH 할당, PHICH 그룹 스케일링 인자(PHICH group scailing factor)가 1, CFI 값이 3에 따라 제어 영역에 대한 디코딩을 수행할 수 있다. 상기 제어 채널은 서브프레임에서 PDCCH일 수 있다.
상기 디코딩 성공 판단부 323은 상기 제어 채널 디코딩부 321에서 수행한 제어 채널의 디코딩 성공 여부를 판단할 수 있다. 상기 디코딩 성공 판단부 323은 순환 중복 검사를 통하여 제어 채널의 디코딩 성공 여부를 판단할 수 있다. CRC 확인 결과가 일치하면, 상기 디코딩 성공 판단부 323은 제어 채널의 디코딩이 성공한 것으로 판단할 수 있다.
상기 디코딩 성공 판단부 323은 상기 제어 채널의 디코딩 결과에 따라 제어 채널의 디코딩을 반복하여 수행할지 여부를 결정할 수 있다. 제어 채널에 대한 디코딩 결과가 실패한 경우, 상기 디코딩 성공 판단부 323은 상기 제어 채널 디코딩부 321에게 상기 다수의 디코딩 조건들 중에서 기선택된 조건 외에 다른 조건을 선택하여 디코딩을 수행하도록 요청할 수 있다. 일 예로, 상기 제어 채널 디코딩부 321은 상기 요청에 따라, i번째 디코딩 조건과 다른 조건을 선택할 수 있다. 상기 제어 채널 디코딩부 321은 i+1번째 디코딩 조건인 1.4 GHz 대역폭, 2개의 송신 안테나 수, 첫번째 심볼을 통한 PHICH 할당, PHICH 그룹 스케일링 인자(PHICH group scailing factor)가 2, CFI 값이 1에 따라 제어 채널의 디코딩을 수행할 수 있다.
일부 실시 예들에서, 상기 디코딩 성공 판단부 323은, PDCCH 영역에 대한 디코딩이 성공한 경우, PDCCH 디코딩 동작을 반복하지 않을 것으로 결정할 수 있다. 상기 디코딩 성공 판단부 323은 성공한 디코딩 결과에 따라 하나의 DCI를 획득할 수 있다. 한편, 다른 일부 실시 예들에서, 상기 디코딩 성공 판단부 323은, PDCCH 영역에 대한 디코딩이 성공한 경우, 다수의 디코딩 조건들 중에서 기선택된 조건 외에 다른 조건을 선택하여 디코딩을 반복하여 수행하도록 요청할 수 있다. 다시 말해서, 상기 제어 채널 디코딩부 321은 상기 다수의 디코딩 조건들 전부에 대하여 각각 PDCCH 디코딩 동작을 반복하여 수행할 수 있다. 상기 디코딩 성공 판단부 323은, 상기 다수의 디코딩 조건들 수만큼 반복 수행된 PDCCH 디코딩 동작들 각각에 대해 디코딩의 성공 여부를 판단할 수 있다. 경우에 따라, 상기 디코딩 성공 판단부 323은 디코딩 동작들을 반복함으로써, 2개 이상의 DCI를 획득할 수도 있다.
상기 디코딩 성공 판단부 323은 PDCCH 디코딩의 결과로 DCI를 획득하는 경우 상기 획득된 DCI를 데이터 디코딩부 325로 전달할 수 있다. 구체적으로, 상기 디코딩 성공 판단부 323은, PDSCH 디코딩에 이용되도록 상기 획득된 DCI를 컨트롤 레이어(control layer)로, 보고(report)할 수 있다. 상기 컨트롤 레이어는 상기 제어부 320의 MAC(medium access control) 계층에서 PHY 계층을 제어하기 위한 레이어일 수 있다.
상기 데이터 디코딩부 325는 획득한 DCI에 따른 PDSCH 영역에 대한 디코딩을 수행할 수 있다. 구체적으로, 상기 데이터 디코딩부 325는, 보고된 DCI를 통하여 할당된 PDSCH 영역을 결정할 수 있다. 상기 데이터 디코딩부 325는, 상기 DCI가 가리키는 PDSCH 영역에 대하여 디코딩을 수행할 수 있다. 상기 데이터 디코딩부 325는 상기 PDSCH 영역에 대한 디코딩 결과로서, 상기 기지국 110이 전송한 데이터를 획득할 수 있다. 상기 데이터 디코딩부 325는 상기 통신부 310이 상기 기지국 110에게 ACK을 전송하도록 제어할 수 있다. 반대로, 상기 데이터 디코딩부 325는 획득한 데이터가 없거나 상기 PDSCH 영역에 대한 디코딩이 실패한 경우, 상기 통신부 310이 상기 기지국 110에게 NACK을 전송하도록 제어할 수 있다.
저장부 330은, 다수의 디코딩 조건들을 저장할 수 있다. 상기 다수의 디코딩 조건들은 제어 채널에 대한 디코딩 조건의 집합을 지칭할 수 있다. 상기 저장부 330은, 미리 획득 가능한 파라미터(예: 망 제공자에 따른 전송 대역폭), PBCH 디코딩으로부터 획득될 수 있는 파라미터(예: PHICH 설정 정보), PCFICH 디코딩으로부터 획득될 수 있는 CFI 값들에 기반하여 결정되는 다수의 디코딩 조건들을 저장할 수 있다. 일부 실시 예들에서, 상기 저장부 330은 상기 다수의 디코딩 조건들을 인덱싱(indexing)할 수 있다. 상기 저장부 330은 상기 제어부 230에 요청에 따라 인덱스(index)를 하나씩 증가시키면서 상기 저장된 디코딩 조건들 중 하나에 대한 설정 정보를 상기 제어부 230에게 전달할 수 있다. 다른 일부 실시 예들에서, 상기 저장부 330은 상기 다수의 디코딩 조건들을 파라미터들(예: 전송 대역폭, PHICH 자원 할당 구간) 각각으로 나누어 저장할 수 있다. 상기 저장부 330은 상기 제어부 230의 요청에 따라 하나의 파라미터 값을 변경시키면서 상기 저장된 디코딩 조건들 중 하나에 대한 설정 정보를 상기 제어부 230에게 전달할 수 있다.
상기 저장부 330은, PDSCH 디코딩을 위한 파라미터들을 저장할 수 있다. 예를 들어, 상기 저장부 330은 PDCCH 디코딩 성공시 획득되는 DCI를 저장할 수 있다. 상기 제어부 320의 요청에 따라, 상기 저장부 330은 획득된 DCI를 저장하거나, 출력할 수 있다. 다른 예를 들어, 상기 저장부 330은 PDCCH 디코딩 성공한 경우에 대응하는 디코딩 조건을 저장할 수 있다. 구체적으로, 상기 저장부 330은 상기 PDCCH 디코딩이 성공한 경우에 대응하는, 전송 대역폭 정보, PHICH 설정 정보, 송신 안테나의 개수 정보, CFI 값에 대한 정보 중 적어도 하나를 저장할 수 있다. 상기 CFI 값은 서브 프레임 내에서 제어 영역과 데이터 영역의 경계를 구분하는바, PDSCH 디코딩 수행시, 상기 저장부 330은 상기 제어부 230에게 상기 CFI 값을 제공할 수 있다.
도 4는 본 개시의 다양한 실시 예들에 따른 MIB 및 CFI에 따른 제어 채널의 자원 구성의 예를 도시한다. 다양한 실시 예들에 따른 전자 장치 120은, 전술한 바와 같이, MIB 후보들 및 CFI 후보들에 따라 제어 채널에 대한 다수의 디코딩 조건들을 결정할 수 있다. 이하, 상기 다수의 디코딩 조건들에 포함되는 MIB 후보들 각각 및 CFI 후보들 각각의 구성에 대하여 구체적으로 설명한다.
도 4를 참고하면, 상기 전자 장치 120을 지원하는 통신 시스템(예: LTE)은, PBCH를 통한 MIB 410의 전송 및 PCFICH를 통한 CFI 420의 전송을 지원할 수 있다. 상기 MIB 410은 기지국과 단말 간의 통신에 필수적인 시스템 정보를 포함한다. 상기 MIB 410은 40비트로 구성될 수 있다. 상기 MIB 410은 시스템 정보의 전달을 위한 24비트와 오류 제어를 위한 16비트 419로 구성될 수 있다.
상기 시스템 정보는 전송 대역폭을 가리키는 정보 411을 포함할 수 있다. 상기 전송 대역폭을 가리키는 정보 411은 3비트로 구성될 수 있다. 상기 전송 대역폭을 가리키는 정보 411은 8개 이하의 서로 다른 대역폭을 가리킬 수 있다. 예를 들어, 상기 전송 대역폭을 가리키는 정보 411은 6개의 대역폭(1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, 20 MHz) 중 하나를 가리킬 수 있다. 즉, 상기 전 송 대역폭을 가리키는 정보 411은 제어 영역의 주파수 축 크기를 가리키므로, 상기 전자 장치 120은 상기 전송 대역폭을 가리키는 정보 411에 따라 제어 영역을 추출하는 부반송파들의 개수를 다르게 설정한다. 다시 말해, 상기 전자 장치 120은상기 전송 대역폭을 가리키는 정보 411에 따라 FFT(fast fourier transform)의 연산의 크기를 다르게 설정한다. 상기 전자 장치 120은 PBCH 디코딩을 수행하지 않아서 전송 대역폭을 알 수 없는바, 상기 전자 장치 120은 전송 대역폭을 달리하는 6번의 디코딩 동작을 반복하여 수행할 수 있다.
상기 시스템 정보는 PHICH 설정을 가리키는 정보 413을 포함할 수 있다. 상기 PHICH 설정 정보 413은 PHICH가 할당되는 구간(duration)에 대한 정보와 PHICH 그룹 스케일링 인자에 대한 정보를 포함할 수 있다. 상기 구간에 대한 정보는 1비트로 구성될 수 있다. 상기 구간에 대한 정보는 하나의 서브프레임에서 1개의 심볼에 PHICH가 할당되는지 또는 3개의 심볼에 PHICH가 할당되는지 여부를 가리킨다. 즉, 상기 구간에 대한 정보는 2개의 서로 다른 PHICH 할당 구간을 나타낼 수 있다. 상기 PHICH 그룹 스케일링 인자에 대한 정보는 2비트로 구성될 수 있다. 상기 PHICH 그룹 스케일링 인자에 대한 정보는 서로 다른 4가지 경우로 양자화되어, 몇 개의 PHICH 그룹이 전송 대역폭에 의해 지원되는지 여부를 가리킨다. 여기서, PHICH 그룹은 여러 개의 자원 엘리먼트에 분산되어 전송되도록 코드 다중화되어 생성되는 다수의 PHICH 집합으로 정의된다. 하나의 PHICH 그룹은 일반(normal) 순환 전치(cyclic prefix, CP)의 경우 8개의 PHICH들, 확장(extended) 순환 전치의 경우, 4개의 PHICH들로 구성된다. 상기 PHICH 그룹 스케일링 인자는
Figure pat00001
,
Figure pat00002
, 1, 2 중 하나일 수 있다. 일 예로, 전송 대역폭이 10MHz이고, PHICH 그룹 스케일링 인자가 2인 경우, 10MHz 대역폭에 따른 50개의 자원 블록(resource block)에 6.25개의 PHICH 그룹이 포함될 수 있고, 스케일링인 인자 2를 곱하면 12가 되므로, 그 올림수인 13개의 PHICH 그룹이 지원될 수 있다. 그러나, 상기 전자 장치 120은 PBCH 디코딩을 수행하지 않아서 PHICH 설정 정보 413을 알 수 없으므로, 상기 전자 장치 120은 PHICH 설정을 달리하는 총 8번(2 x 4)의 디코딩 동작을 반복하여 수행할 수 있다.
이외에, 상기 시스템 정보는 시스템 프레임 번호(system frame number)의 최하위 2개의 비트를 제외한 나머지 8비트 415와 예약된 10비트 417을 포함할 수 있다.
상기 오류 제어를 위한 16비트 419는 순환 중복 검사를 위한 16 비트일 수 있다. 상기 순환 중복 검사의 마스킹(masking) 패턴은, 송신 안테나의 개수에 따라 다른 패턴을 가지는 바, 상기 순환 중복 검사를 위한 16비트는 신호의 전송에 이용된 안테나의 개수를 가리킨다. 안테나의 개수에 따라, 제어 영역에 포함되는 기준 신호들의 개수 및 위치가 달라진다. 따라서, 상기 마스킹 패턴에 따라, 상기 전자 장치 120은 기준 신호가 아닌 제어 정보를 포함하는 자원 엘리먼트(resource element, RE)들을 분류할 수 있다. 상기 전자 장치 120은 PBCH 디코딩을 수행하지 않아서, 이용된 안테나의 개수를 알 수 없으므로, 이용 가능한 안테나의 개수 각각을 가정하여 PDCCH 디코딩을 수행할 수 있다. 예를 들어, 상기 이용 가능한 안테나의 개수가 1개, 2개, 4개 중 하나인 경우, 상기 전자 장치 120은 3번의 PDCCH 디코딩 동작을 반복하여 수행할 수 있다.
상기 전자 장치 120은 가능한 대역폭의 수, 가능한 PHICH 설정, 가능한 송신 안테나의 개수에 따라 다수의 MIB 후보들을 결정할 수 있다. 예를 들어, 상기 전자 장치 120은 6개의 대역폭 후보들, 8개의 PHICH 설정 후보들, 3개의 송신 안테나의 개수 후보들에 따라 총 144개의 MIB 후보들을 결정할 수 있다.
상기 CFI 420은 해당 서브프레임에서 제어 영역의 범위를 가리킨다. 예를 들어, 상기 CFI 420이 3인 경우, 해당 서브프레임에 포함되는 심볼들 중에서 3개의 심볼이 제어 영역임을 가리킬 수 있다. 상기 CFI 420은 2비트로 구성될 수 있다. 상기 CFI 420은 1, 2, 3 중 하나를 가리킬 수 있다. CFI 420은 제어 영역의 심볼 개수를 가리키므로, 상기 전자 장치 120은 CFI 420에 따라 제어 정보를 획득하기 위해 처리해야할 심볼들의 개수를 설정할 수 있다. 그러나, 상기 전자 장치 120은 PCFICH 디코딩을 수행하지 않는 바, CFI값이 1인 경우, 2인 경우, 3인 경우를 모두 가정하여 PDCCH 디코딩을 반복하여 수행할 수 있다. 즉, 상기 전자 장치 120은 3개의 CFI 후보들을 결정할 수 있다.
상기 전자 장치 120은 MIB 후보들 및 CFI 후보들에 따라 다수의 디코딩 조건들을 결정할 수 있다. 즉, 디코딩 조건들은 MIB 후보들 및 CFI 후보들의 조합들로서, PDCCH의 구조에 대한 정보의 후보들을 의미한다. 상기 전자 장치 120은 상기 다수의 디코딩 조건들 각각에 따라, 다른 PDCCH 영역에 대하여 디코딩을 수행할 수 있다. 다시 말하면, 상기 다수의 디코딩 조건들 각각은 서브프레임 내에서 다른 PDCCH 영역을 제공하는 바, 정확한 PDCCH의 디코딩을 위하여, 다수의 디코딩 조건들 각각에 대한 디코딩이 요구된다. 구체적으로, 다른 PDCCH 영역은 자원 블록 내에서 다른 자원 할당을 의미한다.
상기 전자 장치 120은 상기 다수의 디코딩 조건들 중 하나를 선택하여, 서브프레임 430 내 해당 PDCCH 영역에 대하여 디코딩을 수행할 수 있다. 상기 PDCCH 영역은 전송 대역폭을 가리키는 정보 411, PHICH 설정 정보 413, 오류 제어를 위한 16비트 419, CFI 420이 가리키는 바에 따라 달라질 수 있다.
상기 PDCCH 영역은 상기 전송 대역폭을 가리키는 정보 411에 따라, 주파수 축상에서 다른 수의 서브 캐리어들을 포함할 수 있다. 예를 들어, 상기 전송 대역폭이 15MHz를 가리키는 경우, 75개의 자원 블록, 즉 900개의 서브 캐리어들을 포함할 수 있다. 상기 전송 대역폭이 1.4MHz를 가리키는 경우, 6개의 자원 블록, 즉 72개의 서브캐리어들을 포함할 수 있다. 따라서, 상기 전송 대역폭을 가리키는 정보 411에 따라 상기 PDCCH 영역의 주파수 대역이 달라질 수 있다.
상기 PDCCH 영역은 상기 PHICH 설정 정보 413, 상기 오류 제어를 위한 16비트 419, 및 상기 CFI 420이 가리키는 바에 따라, 매핑될(mapped) 수 있다. 상기 서브프레임 430에서, PCFICH의 맵핑, PHICH의 맵핑 후 남은 자원 엘리먼트 그룹들(resource element groups, REGs)이 시스템 내에서 PDCCH를 위해 사용된다. 따라서 상기 전자 장치 120은 상기 PDCCH 디코딩 수행시, 디코딩 조건마다 다르게 할당된 PDCCH의 자원 영역의 고려가 요구된다.
구체적으로, 상기 서브프레임 430은 상기 전송 대역폭을 가리키는 정보 411 및 상기 CFI 420이 가리키는 바에 따라 제어 영역과 데이터 영역으로 구분된다. 예를 들어, 상기 전송 대역폭이 1.4MHz이고, CFI 420이 2인 경우, 상기 서브프레임 430 내의 2번째와 3번째 심볼이 제어 영역임을 가리킬 수 있다. 다른 예를 들어, 상기 전송 대역폭이 10MHz이고 CFI 420이 3인 경우, 1번째 내지 3번째 심볼에 걸쳐 제어 영역임을 가리킬 수 있다. 상기 전자 장치 120은 구분된 제어 영역 내에서 PDCCH 디코딩을 수행할 수 있다.
상기 서브프레임 430은, 상기 PHICH 설정 정보 413에 따라 상기 구분된 제어 영역 내에서 몇 개의 심볼에 PHICH가 사용되었는지, 몇 개의 자원 엘리먼트 그룹에 PHICH 그룹이 사용되었는지 결정될 수 있다. 상기 전자 장치 120은 상기 PHICH 또는 상기 PHICH 그룹에 할당된 자원 외에서 PDCCH 디코딩을 수행할 수 있다.
상기 서브프레임 430은, 상기 오류 제어를 위한 16비트 419가 가리키는 송신 안테나의 수에 따른 기준 신호들(reference signals, RSs)을 포함할 수 있다. 상기 기준 신호는 채널 추정 또는 채널 상태 정보의 획득을 위한 기준 신호일 수 있다. 송신 안테나의 수가 4인 경우 송신되는 기준 신호들의 수는 송신 안테나의 수가 1인 경우 송신되는 기준 신호들의 수보다 4배 많을 수 있다. 예를 들어, 송신 안테나의 수가 4개인 경우, 추가되는 세번째 및 네번째 안테나 포트에 대응하는 기준 신호들은 서브프레임 내 슬롯들 각각의 두번째 OFDM 심볼 내에서 다중화될 수 있다. 따라서, 송신 안테나의 수가 증가함에 따라 제어 영역에 할당되는 기준 신호의 심볼들이 증가하고, 상기 전자 장치 120은 상기 기준 신호의 심볼들이 할당된 자원 외에서 PDCCH 디코딩을 수행할 수 있다.
도 5는 본 개시의 다양한 실시 예들에 따른 전자 장치의 디코딩 동작의 흐름도를 도시한다. 상기 전자 장치는 상기 도 1의 전자 장치 120일 수 있다.
도 5를 참고하면, 510 단계에서, 상기 전자 장치 120은 기지국(예: 도 1의 기지국 110)으로부터 신호를 수신할 수 있다. 여기서, 상기 신호는 시스템 정보, 제어 정보 및 데이터를 포함할 수 있다. 상기 시스템 정보는 PBCH를 통해 전달되는 MIB를 포함할 수 있다. 상기 전자 장치 120은 40ms에 걸쳐 4개로 다중화된 MIB를 수신할 수 있다. 상기 제어 정보는 PCFICH를 통해 전달되는 CFI, PDCCH를 통해 전달되는 DCI를 포함할 수 있다. 상기 전자 장치 120은 매 서브프레임마다 대응하는 CFI, DCI를 수신할 수 있다. 상기 데이터는 PDSCH를 통해 전달되는 데이터일 수 있다.
일부 실시 예들에서, 전자 장치 120은 전원이 온(ON)된 상황에서 최초로 시스템에 접속 시 수행되는 셀 탐색 과정 직후, 수신되는 신호에 대해 상기 디코딩을 수행할 수 있다. 즉, 시스템 정보를 수신하기 전의 상황이 가정될 수 있다. 상기 전자 장치 120은 셀과의 동기를 찾은 뒤, 상기 디코딩을 수행할 수 있다.
520 단계에서, 상기 전자 장치 120은 제어 채널의 디코딩을 수행할 수 있다. 이 때, 일 실시 예에 따라, 시스템 정보, 제어 정보를 수신하나 PDCCH 디코딩 성능의 향상을 위하여, 상기 전자 장치 120은 시스템 정보 중 MIB, 제어 정보 중 CFI를 획득하는 디코딩 동작은 수행하지 않을 수 있다. 상기 전자 장치 120은 MIB 후보들 및 가능한 CFI 후보들에 기반하여 결정되는 다수의 디코딩 조건들 중 하나를 선택하여 상기 제어 채널의 디코딩을 수행할 수 있다. 또한, 상기 전자 장치 120은, 540 단계에 따라 반복 동작 수행시, 540에서 선택되는 디코딩 조건으로 상기 제어 채널의 디코딩을 수행할 수 있다. 디코딩 조건 각각은 서로 다른 제어 채널의 구조를 나타낼 수 있다.
먼저, 상기 전자 장치 120은 가능한 MIB 후보들 및 가능한 CFI 후보들에 기반하여 다수의 디코딩 조건들을 결정할 수 있다. 상기 MIB 후보들은 510 단계에서의 신호가 전송될 수 있는 전송 대역폭 후보들, 상기 신호에 대응하여 설정될 수 있는 PHICH 설정 후보들, 상기 신호를 전송할 수 있는 안테나의 개수 후보들에 따라 결정된다. 상기 CFI 후보들은 1 내지 3을 포함한다. 예를 들어, 상기 전자 장치 120은 6개의 대역폭 후보들(예: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, 20 MHz), 2개의 PHICH 구간 정보 후보들(예: 1개 심볼 또는 3개 심볼), 4개의 PHICH 그룹 수 후보들(예:
Figure pat00003
,
Figure pat00004
, 1, 2), 3개의 송신 안테나 개수 후보들(예: 1, 2, 4), 3개의 CFI 후보들(예: 1, 2, 3)에 따라 최대 432개의 디코딩 조건들을 결정할 수 있다.
상기 전자 장치 120은 상기 다수의 디코딩 조건들 중에서 하나를 선택하여 제어 채널의 디코딩을 수행할 수 있다. 상기 제어 채널은 PDCCH와 같은 햐향링크 제어 채널일 수 있다. 예를 들어, 상기 다수의 디코딩 조건이 5MHz 대역폭을 가리키고, 1개의 PHICH 심볼, PHICH 그룹 스케일링 인자가 1, 안테나 수가 4개, CFI가 3인 경우, 상기 전자 장치 120은 3의 CFI 및 5MHz의 대역폭이 가리키는 제어 영역 내에서, PCFICH 심볼, PHICH 그룹 스케일링 인자에 따라 결정되는 PHICH 자원 영역, 및 안테나의 수가 4개임에 따라 추가되는 기준 심볼의 자원 영역을 제외한 부분에 대하여 PDCCH 디코딩을 수행할 수 있다.
530 단계에서, 상기 전자 장치 120은 상기 디코딩의 수행 결과에 따라, 선택된 디코딩 조건에 대한 디코딩의 성공 여부를 결정할 수 있다. 구체적으로, 상기 전자 장치 120은 적어도 하나의 RNTI(radio network temporary identifier)들을 사용하여, 순환 중복 검사를 수행할 수 있다. 상기 적어도 하나의 RNTI 각각은 유니캐스트 전송, 전력 제어 명령, 랜덤액세스 응답 등 목적에 따라 다른 유형의 식별자일 수 있다. 상기 중복 검사를 수행하여 도출되는 CRC 값이 일치하지 않는 경우(예: 나머지 값이 0이 아닌 경우), 선택된 조건에 대한 디코딩이 실패라고 결정할 수 있다. 상기 전자 장치 120은 540 단계를 수행한 뒤, 520 단계 및 530 단계를 반복하여 수행할 수 있다. 반대로, 상기 전자 장치 120은 상기 순환 중복 검사를 수행하여 오류가 없다고 결정하는 경우, 선택된 조건에 대한 디코딩이 성공이라고 결정할 수 있다. 상기 전자 장치 120은 550 단계를 수행할 수 있다.
540 단계에서, 상기 선택된 디코딩 조건에 대한 디코딩이 실패한 경우, 상기 전자 장치 120은 상기 디코딩 조건들 중 다른 디코딩 조건을 선택할 수 있다. 상기 전자 장치 120은 상기 디코딩 조건들 중에서 적어도 하나의 설정을 변경하여 530 단계를 수행할 수 있다. 예를 들어, 상기 전자 장치 120은 PHICH의 할당 구간을 1개의 심볼로 설정하고 PDCCH 디코딩을 수행했던 경우, 상기 전자 장치 120은 이전 설정에서 상기 PHICH의 할당 구간이 3으로 변경된 디코딩 조건을 선택할 수 있다.
일부 실시 예들에서, 상기 전자 장치 120은 상기 디코딩 조건을 구성하는 다수의 설정 파라미터들(예: 전송 대역폭, 전송 안테나의 개수, PHICH 구간, PHICH 그룹 스케일링 인자, CFI) 중 미리 설정된 우선 순위에 따라 다른 디코딩 조건을 선택할 수 있다. 예를 들어, 상기 CFI에 대한 우선순위가 전송 안테나 개수에 대한 우선순위보다 높은 경우, 상기 전자 장치 120은 상기 전송 안테나 개수에 대한 설정보다 상기 CFI에 대한 설정이 조절된 디코딩 조건을 우선적으로 선택할 수 있다. 또한, 상기 전자 장치 120은 상기 우선순위에 따라 상기 다수의 디코딩 조건들 각각의 설정 순서에 대한 인덱스를 결정할 수 있다.
550 단계에서, 상기 전자 장치 120은, 상기 선택된 디코딩 조건에 대한 디코딩이 성공한 경우, 제어 채널의 디코딩에 의해 얻어진 제어 정보(예: DCI)를 이용하여 데이터 채널(PDSCH)의 디코딩을 수행할 수 있다. 상기 전자 장치 120은 상기 선택된 디코딩 조건을 저장할 수 있다. 예를 들어, 상기 전자 장치 120은 상기 선택된 디코딩 조건의 CFI 설정값이 2인 경우, CFI값을 2로 저장할 수 있다. 하나의 서브프레임에서 제어 영역을 제외하는 경우, 데이터 영역에 대응하는 바, 상기 전자 장치 120은 서브프레임 내에서 2개의 심볼에 대응하는 제어 영역을 제외한 데이터 영역에 대하여, PDSCH 디코딩을 수행할 수 있다.
도 5를 참고하여 설명한 실시 예에서, 상기 전자 장치 120은 디코딩 조건들을 변경하며, 디코딩을 반복적으로 수행한다. 이 때, 다른 실시 예에 따라, 상기 전자 장치 120은 획득한 DCI를 저장할 수 있다. 상기 DCI는 할당되는 자원 블록에 대한 정보를 포함할 수 있다. 상기 전자 장치 120은 DL-SCH를 통하여 데이터가 전달되는 경우, 상기 저장된 DCI를 이용하여 PDSCH 디코딩을 수행할 수 있다.
또한, 도 5를 참고하여 설명한 실시 예에서, 상기 전자 장치 120은 MIB 후보들 및 가능한 CFI 후보들에 기반하여 결정되는 다수의 디코딩 조건들에 따라 제어 채널의 디코딩을 시도한다. 이 때, 다른 실시 예에 따라, 상기 전자 장치 120은 망 사업자로부터 결정되는 대역폭 정보 및 송신 안테나의 개수를 이용하여 디코딩 조건들의 개수를 줄일 수 있다. 이에 따라, 상기 전자 장치 120은 접속 중인 망에 대한 정보를 확인하고, 확인된 정보에 기초하여 디코딩 조건들의 일부를 제외할 수 있다. 예를 들어, 상기 전자 장치 120은 가입자 식별 모듈(subscriber identification module, SIM)을 통해 망에 대한 정보를 확인하거나, 위치 정보로부터 망에 대한 정보를 확인하거나, 사용자로부터 입력에 따라 망에 대한 정보를 확인하거나, 상기 전자 장치 120의 제조시 기록된 정보로부터 망에 대한 정보를 확인할 수 있다.
또한, 도 5를 참고하여 설명한 실시 예에서, 디코딩 조건들 각각에 따른 디코딩 시, 상기 전자 장치 120은 제어 정보에 대한 다양한 유형(format)들을 고려한다. 즉, 제어 채널은 다수의 제어 정보 메시지들을 전달할 수 있으며, 메시지들은 유형에 따라 서로 다른 특성을 가진다. 예를 들어, 메시지들은 서로 다른 코드율을 가질 수 있다. 이에 따라, 다른 실시 예에서, 상기 전자 장치는 MIB 및 CFI에 적용된 코드율보다 낮은 코드율을 가지는 제어 정보의 유형만을 대상으로 디코딩을 수행할 수 있다.
또한, 도 5에서, DCI를 획득한 경우, 상기 전자 장치 120은 시도되지 않은 디코딩 조건에 대한 PDCCH 디코딩은 더 이상 수행하지 않을 수 있다. 상기 전자 장치 120은 불필요한 디코딩 동작을 줄임으로써, PDCCH 디코딩에 소요되는 시간을 최소화할 수 있다. 한편, 보다 정확한 디코딩 결과의 도출을 위하여, 상기 전자 장치 120은 모든 디코딩 조건에 대하여 PDCCH 디코딩을 수행할 수도 있다. 이하 도 6에서는 모든 디코딩 조건에 대한 디코딩을 수행함으로써 오류율을 감소시키는 실시 예에 대하여 서술한다.
도 6은 본 개시의 다양한 실시 예들에 따른 전자 장치의 다른 디코딩 동작의 흐름도를 도시한다. 상기 전자 장치는 상기 도 1의 전자 장치 120일 수 있다.
도 6을 참고하면, 610 단계에서, 상기 전자 장치 120은 기지국 110으로부터 신호를 수신할 수 있다. 620 단계에서, 상기 전자 장치 120은 제어 채널의 디코딩을 수행할 수 있다. 상기 610 내지 620 단계는 상기 도 5의 510 내지 520 단계에 대응하는바, 상기 510 내지 520 단계의 설명 각각이 상기 610 내지 620 단계에서도 동일 또는 유사하게 적용될 수 있다.
630 단계에서, 상기 전자 장치 120은 상기 제어 채널의 디코딩의 수행 결과에 따라, 선택된 디코딩 조건에 대한 디코딩의 성공 여부를 결정할 수 있다. 상기 전자 장치 120은, 상기 디코딩이 성공하였다고 판단한 경우, 631 단계를 수행할 수 있다. 반대로 상기 디코딩이 실패하였다고 판단한 경우, 상기 전자 장치 120은 631 단계를 수행하지 않고 635 단계를 수행할 수 있다.
631 단계에서, 상기 전자 장치 120은 획득한 DCI를 전달할 수 있다. 상기 전자 장치 120은 상기 제어 채널(예: PDCCH)의 디코딩이 성공한 결과로서, DCI를 획득할 수 있다. 상기 전자 장치 120은, 획득한 DCI를 통하여 PDSCH 디코딩이 수행되도록 MAC 계층에서의 컨트롤 레이어를 제어할 수 있다. 상기 전자 장치 120은, 상기 PDSCH 디코딩을 수행하는 구성에게 상기 DCI를 전달할 수 있다.
635 단계에서, 상기 전자 장치 120은 결정한 다수의 디코딩 조건들 모두에 대하여 디코딩이 수행되었는지 여부를 결정할 수 있다. 예를 들어, 상기 전자 장치 120은 현재 선택된 디코딩 조건의 인덱스가, 전체 인덱스들 중 마지막에 대응하는 인덱스인지 여부를 결정할 수 있다. 상기 전자 장치 120은 PDCCH 디코딩 수행시 선택되지 않은 디코딩 조건이 있는 경우, 640 단계를 수행할 수 있다. 상기 전자 장치 120은, 상기 다수의 디코딩 조건들 모두에 대하여 각각 PDCCH 디코딩이 수행된 경우, 641 단계를 수행할 수 있다.
640 단계에서, 상기 전자 장치 120은, 다른 디코딩 조건을 선택할 수 있다. 즉, 상기 전자 장치 120은 이전 디코딩 조건의 일부 설정을 변경하여 새로운 디코딩 조건을 선택할 수 있다. 도 6의 실시 예에 따를 때, 다수의 디코딩 조건들 모두에 대하여 PDCCH 디코딩을 수행하는 바, 상기 전자 장치 120은 특별한 순서에 상관없이, 임의로 선택되지 않은 디코딩 조건을 선택할 수 있다. 예를 들어, 상기 전자 장치 120은 i번째 디코딩 조건이 선택되었던 경우, i+1 번째 디코딩 조건을 선택할 수 있다. 이후, 상기 전자 장치 120은 620 단계 내지 635 단계를 반복하여 수행할 수 있다.
641 단계에서, 상기 전자 장치 120은 CFI를 전달할 수 있다. 상기 전자 장치 120은 성공한 디코딩 조건에 따른, CFI를 결정할 수 있다. 상기 전자 장치 120은 상기 결정한 CFI를 PDSCH 디코딩을 수행하는 구성(예: 디코딩 연산부)에게 전달할 수 있다. 상기 CFI가 가리키는 영역을 제외한 나머지 영역이 데이터 영역에 대응하는 바, 상기 전자 장치 120은 PDSCH 영역의 결정을 위하여 상기 CFI를 전달할 수 있다.
650 단계에서, 상기 전자 장치 120은 PDSCH 디코딩을 수행할 수 있다. 상기 전자 장치 120은 1개의 DCI 값을 획득하는 것이 일반적이나, 상기 전자 장치 120은 다수의 디코딩 조건들 각각에 대한 PDCCH 디코딩을 반복적으로 수행함에 따라, 2개 이상의 DCI 값들을 획득할 수 있다. 즉, 순환 중복 검사의 결과에 따라 디코딩 성공 판정을 받은, 디코딩 설정 조건이 2개 이상일 수 있다. 이 때, 상기 전자 장치 120은 상기 2개 이상의 DCI 값들 중 하나를 선택하여 PDSCH 디코딩을 수행할 수 있다. 일부 실시 예들에서, 상기 전자 장치 120은 상기 2개 이상의 DCI 값들 각각에 대한 신뢰도에 기반하여, 하나의 DCI를 선택할 수 있다. 상기 2개 이상의 DCI 값들 각각에 대한 신뢰도는 우도 기법(likihood metric)이나, SCM(soft correlation metric)에 따라 산출될 수 있다.
상기 전자 장치 120은 CFI 및 DCI를 이용하여 PDSCH 영역을 식별 수 있다. 획득된 DCI가 2개 이상인 경우, 상기 전자 장치 120은 선택한 DCI 및 이에 대응하는 CFI를 이용하여 상기 PDSCH 영역을 식별할 수 있다. 상기 전자 장치 120은 식별된 PDSCH 영역에 대하여 디코딩을 수행함으로써, 상기 기지국 110이 전송한 데이터를 획득할 수 있다. 이 때, 상기 전자 장치 120은 상기 기지국 110에게 ACK를 전송할 수 있다. 반대로, 상기 식별된 PDSCH 영역에 대한 디코딩이 실패하여 상기 데이터를 획득하지 못하거나 상기 디코딩은 성공하였으나 전송한 데이터가 없는 경우, 상기 전자 장치 120은 상기 기지국 110에게 NACK을 전송할 수 있다.
상기 도 5 내지 도 6에서는, 선택된 디코딩 조건을 통하여 반복적으로 디코딩을 수행하는 동작들이 서술되었다. 이하 도 7에서는, 제어 채널의 디코딩 조건을 선택하기 위한 디코딩 조건 집합, 즉, 다수의 디코딩 조건을 구성하는 방법에 대하여 구체적으로 서술한다.
도 7은 본 개시의 다양한 실시 예들에 따른 디코딩 조건들의 구성의 흐름도를 도시한다. 상기 디코딩 조건은 제어 채널, 즉 PDCCH 디코딩에 대한 조건이다. 이하, 상기 디코딩 조건들의 구성은 상기 도 1의 전자 장치 120이 결정하는 것으로 설명하나, 이에 한정되지 않는다. 따라서, 상기 디코딩 조건들의 구성은 임의의 외부 장치로부터 구성되거나, 상기 기지국 110에 의해 구성된 뒤 하향링크 또는 X2 인터페이스를 통하여 상기 전자 장치 120에게 전달될 수도 있다.
도 7을 참고하면, 710 단계에서, 상기 전자 장치 120은 불확실(uncertainty) 설정 파라미터를 결정할 수 있다. 상기 불확실 설정 파라미터는 파라미터는 MIB로부터 지시되는 파라미터들과 CFI 중 값을 알 수 있는 설정 파라미터를 제외한 나머지로 정의된다. 즉, 상기 불확실 설정 파라미터는 MIB로부터 지시되는 파라미터들과 CFI 중 적어도 하나일 수 있다. 상기 MIB로부터 지시되는 파라미터들은, 수신되는 심볼들의 전송 대역폭, PHICH 자원 할당에 대한 서브프레임 내 심볼의 수, 상기 PHICH 자원 할당에 사용된 PHICH 그룹의 수, 및 상기 심볼들을 전송하는 송신 안테나의 개수일 수 있다.
상기 전자 장치 120은 MIB로부터 지시되는 파라미터들 중에서 PBCH 디코딩을 수행하지 않고 획득 가능한 파라미터(다시 말하면, 확실 설정 파라미터)가 있는지 여부를 결정할 수 있다. 일부 실시 예들에서, 상기 전자 장치 120은 셀 탐색 및 동기 수행 시 또는 기본적으로 제공되는 전송 대역폭을 획득할 수 있다. 예를 들어, 상기 전자 장치 120은 셀 탐색을 수행하는 경우, 해당 셀 내에서 상기 전자 장치 120이 지원되는 기지국의 망 사업자에 대한 정보를 획득할 수 있다. 상기 전자 장치 120은 상기 망 사업자에 대한 정보로부터 전송 대역폭을 획득할 수 있다. 다른 예를 들어, 상기 전자 장치 120은 내장된 정보로서 전송 대역폭을 포함할 수 있다. 상기 전자 장치 120이 제한된 망 사업자만을 지원하는 단말기이거나 특정 대역폭만을 지원하는 단말기(예: 싱글심(single SIM) 단말기)인 경우, 수신될 신호의 전송 대역폭에 대한 정보를 미리 획득할 수 있다. 또 다른 예를 들어, 상기 전자 장치 120은 기지국 110의 망 사업자에 대한 전송 대역폭을, 가입 절차 또는 네트워크 인증 절차 수행시 임의의 경로로 획득할 수 있다.
다른 일부 실시 예들에서, 상기 전자 장치 120은 송신 안테나의 수를 미리 획득할 수도 있다. 상기 전자 장치 120은, 망 사업자에 대한 정보 획득시, 해당 망 사업자의 통신 방식으로서 송신 안테나의 개수에 대한 정보를 획득할 수 있다. 본 개시에서는 상기 송신 안테나의 개수가 1개, 2개, 4개 중 하나로 서술하였으나, 통신 기술 및 망 사업자의 정책에 따라 상기 송신 안테나의 개수는 다양하게 결정될 수 있다.
상기 서술한 실시 예들 외에도, 상기 전자 장치 120은, MIB로부터 지시되는 파라미터들 및 CFI 중 적어도 하나를 별도의 경로를 통하여 획득할 수 있다. 예를 들어, 상기 MIB로부터 지시되는 파라미터들은 4개의 프레임으로 다중화되어 전송되고, CFI 값은 서브프레임으로 전송되는 바, 상기 전자 장치 120은 PDCCH 디코딩이 성공한 경우에 대응하는 MIB 관련 파라미터들(예: 전송 대역폭)에 대한 정보를 미리 저장하여 사용할 수 있다. 즉, 이후 서브프레임에서 상기 전자 장치 120은 상기 저장된 MIB 관련 파라미터들을 획득할 수 있다.
상기 전자 장치 120은 PBCH 디코딩을 수행하지 않고 획득 가능한 파라미터를 제외한 다른 파라미터들을 불확실 설정 파라미터들로 결정할 수 있다. 예를 들어, PBCH 디코딩을 수행하지 않고 전송 대역폭 및 송신 안테나의 개수에 대한 정보를 획득한 경우, 상기 전자 장치 120은 PHICH 자원 할당에 대한 서브프레임 내 심볼의 수, 상기 PHICH 자원 할당에 사용된 PHICH 그룹의 수, 및 CFI를 불확실 설정 파라미터들로 결정할 수 있다.
720 단계에서, 상기 전자 장치 120은 MIB 후보들 및 CFI 후보들을 결정할 수 있다. 상기 전자 장치 120은 710 단계에서 결정한 불확실 설정 파라미터들에 기반하여 상기 MIB 후보들 및 CFI 후보들을 결정할 수 있다.
일부 실시 예들에서, 상기 전자 장치 120은 상기 불확실 설정 파라미터들 각각의 경우의 수를 독립적으로 구분하여 MIB 후보들을 각각 결정할 수 있다. 예를 들어, PBCH 디코딩을 수행하지 않고 전송 대역폭 및 송신 안테나의 개수에 대한 정보를 획득한 경우, 상기 전자 장치 120은 PHICH 자원 할당에 대한 서브프레임 내 심볼의 수로서 2가지 경우의 수 및 상기 PHICH 자원 할당에 사용된 PHICH 그룹의 수로서 4가지 경우의 수에 따라 8개의 MIB 후보들을 결정할 수 있다.
다른 일부 실시 예들에서, 상기 전자 장치 120은 상기 불확실 설정 파라미터들 중 적어도 하나를 제한하여, MIB 후보들 및 CFI 후보들을 결정할 수 있다. 예를 들어, PBCH 디코딩을 수행하지 않고, 전송 대역폭은 10MHz 대역폭을 초과하고 PHICH 자원 할당에 대한 심볼의 수가 3개임을 획득한 경우, 이미 PHICH가 3개의 심볼을 차지하므로, 상기 전자 장치 120은 3을 CFI값으로 결정할 수 있다. 다른 예를 들어, 상기 PHICH 자원 할당에 대한 심볼의 수가 3개임을 획득하였으나, 획득한 전송 대역폭이 10MHz 대역폭 이하로, 제어 영역의 크기가 4개의 심볼에 대응하는 경우, 상기 전자 장치 120은, 제어 영역의 크기가 2개의 심볼인지 3개의 심볼인지 구분을 위하여 2 또는 3을 CFI 후보들로 결정할 수 있다. 또 다른 예를 들어, 상기 전자 장치 120은, 전송 대역폭에 대한 정보는 획득하지 않고 PHICH 자원 할당에 대한 심볼의 수가 3개인 정보만을 획득한 경우에는, 디코딩의 안정성 보장을 위하여 2 또는 3 모두를 CFI 후보들로 결정할 수 있다. 전술한 예들에서는, 이미 PHICH 자원 할당에 대한 정보가 1개의 심볼을 초과하였는바 CFI값이 1인 경우는 고려되지 않는다.
730 단계예서, 상기 전자 장치 120은 다수의 디코딩 조건들을 결정할 수 있다. 상기 다수의 디코딩 조건들은 제어 영역 내 제어 채널, 즉 PDCCH 디코딩을 위한 조건들일 수 있다. 상기 전자 장치 120은 상기 결정한 MIB 후보들 및 CFI 후보들에 기반하여 상기 다수의 디코딩 조건들을 결정할 수 있다. 예를 들어, 상기 MIB 후보들이 8개이고, CFI 후보들이 3개인 경우 각각 독립적으로 구분되어, 상기 전자 장치 120은 24개의 디코딩 조건들을 결정할 수 있다. 이미 획득한 파라미터들은 상기 디코딩 조건들 각각에 대하여 동일하게 포함된다.
일부 실시 예들에서, 상기 전자 장치 120은 상기 다수의 디코딩 조건들을 하나의 변수인 인덱스로서 저장할 수 있다. 따라서, 상기 다수의 디코딩 조건들 각각은 지칭되는 인덱스에 따라 서로 다른 설정을 가질 수 있다. 다른 일부 실시 예들에서, 상기 전자 장치 120은 상기 다수의 디코딩 조건들을 설정 파라미터 각각의 변수로서 저장할 수도 있다. 상기 전자 장치 120은 반복 디코딩 동작 중, 적어도 하나의 설정 파라미터에 대한 실제 값을 획득하는 경우, 해당 변수를 고정시킴으로써 PDCCH 디코딩의 반복 횟수를 빠르게 감소시킬 수 있다.
도 8은 본 개시의 다양한 실시 예들에 따른 전자 장치의 PDCCH 유형(format)에 따른 디코딩 기법의 예를 도시한다. 상기 전자 장치는 상기 도 1의 전자 장치 120일 수 있다.
도 8을 참고하면, 상기 전자 장치 120은 MIB 후보들 810 및 CFI 후보들 820에 기반하여 디코딩 조건들을 결정할 수 있다. 상기 전자 장치 120은 상기 디코딩 조건들 각각에 대하여 반복적으로 PDCCH 디코딩을 수행할 수 있다. 상기 전자 장치 120은 상기 MIB 후보들 810 및 상기 CFI 후보들 820 외에 PDCCH 유형 후보들 830에 따라 반복적으로 PDCCH 디코딩을 수행할 수 있다.
일반적으로, PDCCH는 CCE(control channel element)에 의해 구성된다. 상기 CCE는 9개의 자원 엘리먼트 그룹들로 구성된다. 상기 CCE는 간섭 완화 및 다이버시티(diversity) 확보를 위한 인터리빙(interleaving)을 통해 시스템 대역폭 및 OFDM 심볼에 분포될 수 있다. PDCCH에서 CCE의 개수는 CCE 집성 레벨(aggregation level)로 지칭될 수 있다. PDCCH 유형은 CCE 집성 레벨에 따라 결정될 수 있다. CCE 집성 레벨이 1, 2, 4, 8인 경우, 각각 PDCCH 유형은 0번, 1번, 2번, 3번으로 결정될 수 있다. 하나의 서브프레임 내에서 서로 다른 PDCCH들은 서로 다른 집성 레벨을 이용할 수 있다.
PDCCH 유형은 4가지지만, PDCCH내의 탐색 공간(search space)이 단말 특정 탐색 공간(UE-specific search space, USS)) 인지, 공통 탐색 공간(common search space, CSS)여부 및 DCI 포맷에 따라 더 많은 수의 PDCCH 유형 후보들 830이 구별될 수 있다. 구체적인 경우의 수는 일 예로 하기의 표 1과 같다.
Search space Number of PDCCH candidates
Type Aggregation level Size(in CCEs)
UE-specific 1 6 6
2 12 6
4 8 2
8 16 2
Common 4 16 4
8 16 2
상기 표 1을 참고할 때, 단말 특정 탐색 공간에서 PDCCH 후보의 수가 총 16개이고, 고려해야 할 DCI 포맷이 2가지이므로 32개(16 x 2), 공통 탐색 공간에서 PDCCH 후보의 수가 6개이고 고려해야할 DCI 포맷은 2가지이므로, 12개(6 x 2)로 총 44가지의 PDCCH 유형 후보들 830이 구별될 수 있다. 즉, 상기 전자 장치 120은 하나의 디코딩 조건에 대하여 44회의 블라인드 디코딩(blind decoding) 동작을 수행할 수 있다.
에러에 강인함을(robustness) 나타내는 지표로서, 코드율(code rate)이 이용될 수 있다. 코드율은 낮은 경우 에러의 검출 및 에러의 정정 능력이 뛰어나다. 일반적으로, PBCH 디코딩 및 PDCCH 디코딩의 경우, 동일한 채널 코딩이 사용되는 바 기본적인 성능은 사용하는 코드율에 따라 그 성능이 결정된다. PBCH는 동일한 데이터를 10ms의 주기로 4번 전송된다. 구체적으로, 하나의 BCH 전송 블록은 매 40ms 마다 한번씩 전송되고, 물리 계층에서 다중화되어, 4개의 정보가 하나의 프레임마다 각각 전송된다. 따라서, 첫번째 MIB에 디코딩하지 못하는 경우, 이후 MIB는 다음에 전송하는 MIB에 정보의 LLR을 더함으로써 낮은 코드율을 가질 수 있다. 전송 횟수에 따른 MIB의 코드율은 하기의 표와 같다.
MIB coding rate 1st transmission 2nd transmission 3rd transmission 4th transmission
Normal CP 0.083 0.042 0.028 0.021
Extended CP 0.093 0.046 0.031 0.023
한편, PDCCH 디코딩시 공통 탐색 공간에서, 각각의 대역폭에 따른 DCI에 대한 코드율은 하기의 표와 같다.
DCI format Bandwidth DCI bits with CRC DCI coding rate
PDCCH format 2 PDCCH format 3
1A 5 41 0.14 0.07
10 42 0.15 0.07
20 44 0.15 0.08
1C 5 28 0.10 0.05
10 29 0.10 0.05
20 31 0.10 0.05
표 2 및 표 3을 참고할 때, MIB의 코드율에 비하여 DCI의 코드율이 낮은 것일 일반적이나, PDCCH 유형이 3인 경우 DCI의 코드율이 더 낮은 경우가 존재한다. 디코딩 수행시, 다수의 시나리오들 중 가장 열악한 성능을 보이는 시나리오에서도 일정 수준 이상의 디코딩 성공률을 보장할 것이 요구되는 바, 전자 장치 120은 PBCH 디코딩 결과와 상관없이, PDCCH를 디코딩 할 것이 요구될 수 있다. 따라서, 상기 전자 장치 120은 MIB 후보들 및 CFI 후보들에 기반하여 결정된 디코딩 조건들 모두에 대하여 반복적으로 디코딩을 수행함으로써, PBCH 혹은 PCFICH 디코딩 실패에 따른 절차 지연을 미리 방지하고, 순차적인 디코딩 동작보다 오류율을 줄일 수 있다.
상기 전자 장치 120은, 반복적인 디코딩을 수행함에 따라, PDCCH 유형이 3인 경우와 같이, 높은 CCE 집성 레벨을 갖는 경우의 디코딩 성능을, 종래의 순차적 디코딩 기법 대비, 향상시킬 수 있다. 보다 높은 CCE 집성 레벨은 불량한 무선 통신 환경 하의 수신 장치에 대하여 보다 양호한 코딩률과 신뢰성을 제공할 수 있다. 일 예로, 상기 전자 장치 120은 CCE 집성 레벨이 8인 경우, 상대적으로 DCI 코드율이 낮다고 결정할 수 있다.
상기 전자 장치 120은, MIB의 코드율보다 낮은 코드율을 가지는 PDCCH의 유형으로 제한하여, 상기 PDCCH 디코딩을 반복적으로 수행할 수 있다. 일부 실시 예들에서, 상기 전자 장치 120은, MIB 후보들 및 CFI 후보들에 따른 다수의 디코딩 조건들 중 하나를 선택하고, PDCCH 유형에 따라 디코딩을 반복적으로 수행시, PDCCH 유형 후보들을 CCE 집성 레벨이 8인 경우로 제한할 수 있다. 상기 표 1에 따라 상기 PDCCH 유형에 따른 경우의 수는 44회에서 8회로 감소할 수 있다. 상기 전자 장치 120은 CCE 집성 레벨이 8인 경우에 대하여, 상기 다수의 디코딩 조건들 각각에 대해 PDCCH 디코딩을 수행할 수 있다. 상기 전자 장치 120은 그 외 CCE 집성 레벨에 대해서는, 종래의 순차적 디코딩 기법과 같이 PBCH 디코딩 및 PCFICH 디코딩을 수행한 후, PDCCH 디코딩을 수행할 수 있다. 상기 전자 장치 120은, PDCCH의 유형, DCI 유형 및 탐색 공간에 따라 블라인드 디코딩(blind decoding)의 범위를 축소시킴으로써, 절차의 지연 시간을 감소시키고 MIB 후보들 및 CFI 후보들에 기반한 디코딩 기법의 효과를 극대화할 수 있다.
도 9는 본 개시의 다양한 실시 예들에 따른 전자 장치의 디코딩 성능을 나타내기 위한 그래프를 도시한다. 상기 전자 장치는 상기 도 1의 전자 장치 120일 수 있다. 본 개시의 다양한 실시 예들에 따른 디코딩 기법은 이하 설명에서, 시스템 블라인드 디코딩(system blind decoding)으로 지칭될 수 있다.
도 9를 참고하면, 그래프 900은 SNR(signal-to-noise ratio)에 대한 BLER(block error rate)를 나타낸다. 상기 그래프 900에서 가로축은 SNR 값, 세로 축은 BLER을 나타낸다. 가로축의 단위는 데시벨(decibel, dB)이고, 세로축의 단위는 퍼센트(percent,%)이다. 상기 그래프 900은 이미 획득한 MIB 값 및 CFI 후보들에 기반하여 수행되는 디코딩의 성능을 도시한 그래프이다. 상기 그래프 900은, 일반적인 PCFICH 디코딩 910, CFI 값을 알고 있을 때의 PDCCH 디코딩 920, PCFICH 디코딩을 수행한 뒤 PDCCH 디코딩을 수행하는 순차적 디코딩 930, 본 개시의 다양한 실시 예들에 따른 시스템 블라인드 디코딩 940을 포함할 수 있다. 상기 디코딩 910 내지 디코딩 940의 디코딩은 CCE 집성 레벨 8, DCI 포맷 1C의 조건에서 수행된다.
상기 그래프 900을 참고하면, 본 발명에 따른 디코딩 940은 순차적 디코딩 930보다 낮은 BLER을 보임이 확인된다. 즉, 상기 시스템 블라인드 디코딩은 종래의 순차적 디코딩보다 에러에 더 강인함을 확인할 수 있다. 추가적으로, 상기 디코딩 940은 CFI 값을 알고 있을 때, PDCCH 디코딩 920과 동일한 BLER을 가짐이 확인된다. 다시 말하면, 상기 시스템 블라인드 디코딩 성능은 PCFICH 디코딩 성능과 상관없이 PDCCH 디코딩 성능에 대응함을 확인할 수 있다. 상기 시스템 블라인드 디코딩은 반복적으로 디코딩을 수행함으로써, PCFICH 디코딩에서의 불확실성을 줄일 수 있다.
도 9에서는 MIB값은 이미 획득한 경우에 대하여 서술하였으나, 그렇지 않은 경우에 대해서도 동일한 성능을 얻을 수 있다. 구체적으로, 상기 시스템 블라인드 디코딩은 PBCH 디코딩 성능 또는 PCFICH 디코딩 성능과 상관없이 PDCCH 디코딩 성능에 대응하는 디코딩 성능을 얻을 수 있다. 상기 시스템 블라인드 디코딩에서의 MIB 후보들 및 CFI 후보들에 대한 디코딩 설정 조건들의 집합을 set X라 하고, 하나의 디코딩 조건을 Xl이라고 할 때, 하기의 수학식이 참조될 수 있다.
Figure pat00005
size(x)는 디코딩 설정 조건들의 수를 나타낸다. PDCCH 디코딩의 성공 확률을
Figure pat00006
로 정의하는 경우, 디코딩 설정 조건들 모두에 대하여 반복적으로 디코딩을 수행시, PDCCH 디코딩 성공 확률은 하기의 수학식과 같이 얻어진다.
Figure pat00007
상기 수학식 2에 따라, 모든 디코딩 조건들에 대해서 반복적으로 PDCCH 디코딩을 수행하는 시스템 블라인드 디코딩을 통하여, 전자 장치 120은, 실제 MIB 및 실제 CFI를 알고 있는 경우의 PDCCH 디코딩과 동일한 성능의 효과를 얻을 수 있다.
한편 본 개시의 상세한 설명에서는 구체적인 실시 예에 관해 설명하였으나, 본 개시의 범위에서 벗어나지 않는 한도 내에서 여러 가지 변형이 가능함은 물론이다. 그러므로 본 개시의 범위는 설명된 실시 예에 국한되어 정해져서는 아니 되며 후술하는 특허청구의 범위뿐만 아니라 이 특허청구의 범위와 균등한 것들에 의해 정해져야 한다.
그리고 본 명세서와 도면에 개시된 실시 예들은 본 발명의 내용을 쉽게 설명하고, 이해를 돕기 위해 특정 예를 제시한 것일 뿐이며, 본 발명의 범위를 한정하고자 하는 것은 아니다. 따라서 본 발명의 범위는 여기에 개시된 실시 예들 이외에도 본 발명의 기술적 사상을 바탕으로 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (20)

  1. 무선 통신 시스템에서 전자 장치에 있어서,
    신호를 수신하도록 구성되는 통신부와,
    MIB(master information block) 후보들 및 CFI(control format indicator)의 후보들에 기반하여 결정된 디코딩 조건들 중 제1 디코딩 조건에 따라, 상기 신호의 제어 채널의 디코딩을 수행하고,
    상기 디코딩의 수행 결과에 따라, 상기 제1 디코딩 조건에 대한 디코딩의 성공 여부를 결정하도록 구성되는 제어부를 포함하는 전자 장치.
  2. 청구항 1에 있어서,
    상기 MIB 후보들은 상기 신호에 이용될 수 있는 대역폭들, 상기 신호에 이용될 수 있는 PHICH(physical hybrid automatic repeat request indicater channel) 자원 할당 정보 값들, 상기 신호에 이용될 수 있는 송신 안테나 수를 가리키는 값들에 기반하여 결정되고,
    상기 CFI 후보들은 상기 신호에 이용될 수 있는 CFI 값들에 기반하여 결정되는 전자 장치.
  3. 청구항 1에 있어서, 상기 제어부는,
    상기 신호가 전송된 대역폭을 가리키는 정보 및 상기 신호가 전송된 송신 안테나 수를 가리키는 정보를 획득하도록 추가적으로 구성되고,
    상기 MIB 후보들은 상기 신호에 이용된 대역폭, 상기 신호가 전송된 송신 안테나 수, 및 상기 신호에 이용될 수 있는 PHICH 자원할당 정보 값들에 기반하여 결정되는 전자 장치.
  4. 청구항 1에 있어서, 상기 신호의 제어 채널은 상기 신호의 PDCCH(physical downlink control channel) 영역인 전자 장치.
  5. 청구항 1에 있어서, 상기 제어부는,
    상기 제1 디코딩 조건에 따른 디코딩이 성공하지 못한 경우, 상기 디코딩 조건들 중 제2 디코딩 조건에 따라, 상기 신호의 제어 채널의 디코딩을 수행하도록 추가적으로 구성되는 전자 장치.
  6. 청구항 1에 있어서, 상기 제어부는,
    상기 제1 디코딩 조건에 따른 디코딩이 성공한 경우, 상기 제어 채널을 통해 전달되는 제어 정보를 결정하고,
    상기 제1 디코딩 조건 및 상기 제어 정보에 기반하여, 상기 신호의 데이터 영역의 디코딩을 수행하도록 추가적으로 구성되는 전자 장치.
  7. 청구항 1에 있어서, 상기 제어부는,
    상기 제1 디코딩 조건에 따른 디코딩이 성공한 경우, 상기 제1 디코딩 조건을 저장하고,
    상기 디코딩 조건들 중 제2 디코딩 조건에 따른, 상기 신호의 제어 채널의 디코딩을 수행하도록 추가적으로 구성되는 전자 장치.
  8. 청구항 7에 있어서, 상기 제어부는
    상기 제2 디코딩 조건에 따른 디코딩이 성공한 경우, 상기 제1 디코딩 조건 및 상기 제2 디코딩 조건에 대한 신뢰도를 각각 결정하고,
    상기 제1 디코딩 조건 및 상기 제2 디코딩 조건 중 상기 신뢰도 각각에 기반하여 선택되는 하나의 디코딩 조건에 대응하는 제어 정보에 기반하여, 상기 신호의 데이터 영역의 디코딩을 수행하도록 추가적으로 구성되는 전자 장치.
  9. 청구항 1에 있어서, 상기 제어부는,
    상기 MIB의 코드율보다 낮은 코드율을 가지는 제어 정보의 대한 제어 채널 유형(format)에 기반하여 상기 신호의 제어 채널의 디코딩을 수행하도록 구성되는 전자 장치.
  10. 청구항 9에 있어서,
    상기 제어 채널 유형은 CCE(control channel element) 집성 레벨 (aggregation level)이 8인 전자 장치.
  11. 무선 통신 시스템(wireless communication system)에서 전자 장치(electronic device)의 동작 방법에 있어서,
    신호를 수신하는 과정과,
    MIB(master information block) 후보들 및 CFI(control format indicator)의 후보들에 기반하여 결정된 디코딩 조건들 중 제1 디코딩 조건에 따라, 상기 신호의 제어 채널의 디코딩을 수행하는 과정과,
    상기 디코딩의 수행 결과에 따라, 상기 제1 디코딩 조건에 대한 디코딩의 성공 여부를 결정하는 과정을 포함하는 방법.
  12. 청구항 11에 있어서,
    상기 MIB 후보들은 상기 신호에 이용될 수 있는 대역폭들, 상기 신호에 이용될 수 있는 PHICH(physical hybrid automatic repeat request indicater channel) 자원 할당 정보 값들, 상기 신호에 이용될 수 있는 송신 안테나 수를 가리키는 값들에 기반하여 결정되고,
    상기 CFI 후보들은 상기 신호에 이용될 수 있는 CFI 값들에 기반하여 결정되는 방법.
  13. 청구항 11에 있어서,
    상기 신호가 전송된 대역폭을 가리키는 정보 및 상기 신호가 전송된 송신 안테나 수를 가리키는 정보를 획득하는 과정을 더 포함하고,
    상기 MIB 후보들은 상기 신호에 이용된 대역폭, 상기 신호가 전송된 송신 안테나 수, 및 상기 신호에 이용될 수 있는 PHICH 자원할당 정보 값들에 기반하여 결정되는 방법.
  14. 청구항 11에 있어서, 상기 신호의 제어 채널은 상기 신호의 PDCCH(physical downlink control channel) 영역인 방법.
  15. 청구항 11에 있어서,
    상기 제1 디코딩 조건에 따른 디코딩이 성공하지 못한 경우, 상기 디코딩 조건들 중 제2 디코딩 조건에 따라, 상기 신호의 제어 채널의 디코딩을 수행하는 과정을 더 포함하는 방법.
  16. 청구항 11에 있어서,
    상기 제1 디코딩 조건에 따른 디코딩이 성공한 경우, 상기 제어 채널을 통해 전달되는 제어 정보를 결정하는 과정과,
    상기 제1 디코딩 조건 및 상기 제어 정보에 기반하여, 상기 신호의 데이터 영역의 디코딩을 수행하는 과정을 더 포함하는 방법.
  17. 청구항 11에 있어서,
    상기 제1 디코딩 조건에 따른 디코딩이 성공한 경우, 상기 제1 디코딩 조건을 저장하는 과정과,
    상기 디코딩 조건들 중 제2 디코딩 조건에 따른, 상기 신호의 제어 채널의 디코딩을 수행하는 과정을 더 포함하는 방법.
  18. 청구항 17에 있어서,
    상기 제2 디코딩 조건에 따른 디코딩이 성공한 경우, 상기 제1 디코딩 조건 및 상기 제2 디코딩 조건에 따라 신뢰도를 각각 결정하는 과정과,
    상기 제1 디코딩 조건 및 상기 제2 디코딩 조건 중 하나의 디코딩 조건에 대응하는 제어 정보에 기반하여, 상기 신호의 데이터 영역의 디코딩을 수행하는 과정을 더 포함하는 방법.
  19. 청구항 11에 있어서, 상기 신호의 제어 채널의 디코딩을 수행하는 과정은,
    MIB의 코드율보다 낮은 코드율을 가지는 제어 정보의 제어 채널의 유형(format)에 기반하여 상기 신호의 제어 채널의 디코딩을 수행하는 과정을 포함하는 방법.
  20. 무선 통신 시스템(wireless communication system)에서 전자 장치(electronic device)에 있어서,
    기지국으로부터 신호를 수신하도록 구성되는 통신부와,
    상기 신호의 제어 채널(control channel)의 구조에 대한 후보들에 기반하여 결정된 디코딩 조건들에 따라, 상기 제어 채널의 디코딩을 수행하도록 구성되는 제어부를 포함하고,
    상기 제어 채널의 구조에 대한 후보들은, 상기 신호의 전송 대역폭, 상기 신호를 송신하기 위해 사용된 안테나 개수, ACK/NACK(acknowledge/negative-acknowledge) 전송을 위한 채널의 할당 중 적어도 하나에 기반하여 결정되는 전자 장치.
KR1020160158978A 2016-11-28 2016-11-28 무선 통신 시스템에서 제어 채널의 디코딩을 위한 장치 및 방법 KR20180060010A (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020160158978A KR20180060010A (ko) 2016-11-28 2016-11-28 무선 통신 시스템에서 제어 채널의 디코딩을 위한 장치 및 방법
EP17874864.6A EP3547578A4 (en) 2016-11-28 2017-11-28 DEVICE AND METHOD FOR DECODING A CONTROL CHANNEL IN A WIRELESS COMMUNICATION SYSTEM
PCT/KR2017/013645 WO2018097688A1 (ko) 2016-11-28 2017-11-28 무선 통신 시스템에서 제어 채널의 디코딩을 위한 장치 및 방법
US16/464,514 US11064476B2 (en) 2016-11-28 2017-11-28 Control channel decoding device and method in wireless communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160158978A KR20180060010A (ko) 2016-11-28 2016-11-28 무선 통신 시스템에서 제어 채널의 디코딩을 위한 장치 및 방법

Publications (1)

Publication Number Publication Date
KR20180060010A true KR20180060010A (ko) 2018-06-07

Family

ID=62195323

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160158978A KR20180060010A (ko) 2016-11-28 2016-11-28 무선 통신 시스템에서 제어 채널의 디코딩을 위한 장치 및 방법

Country Status (4)

Country Link
US (1) US11064476B2 (ko)
EP (1) EP3547578A4 (ko)
KR (1) KR20180060010A (ko)
WO (1) WO2018097688A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110603874B (zh) * 2017-05-05 2023-12-01 苹果公司 新无线电控制信道资源集合设计
US10965360B2 (en) * 2017-08-23 2021-03-30 Qualcomm Incorporated Methods and apparatus related to beam refinement
CN113328828B (zh) * 2021-05-08 2022-11-29 Oppo广东移动通信有限公司 信息处理方法、终端、芯片及存储介质
CN113382429B (zh) * 2021-06-22 2022-07-22 展讯半导体(成都)有限公司 无线通信控制方法、装置、系统、电子设备、存储介质

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8811373B2 (en) * 2007-08-15 2014-08-19 Qualcomm Incorporated Rate matching of messages containing system parameters
KR20110038994A (ko) * 2009-10-09 2011-04-15 삼성전자주식회사 다중 안테나를 이용하는 무선 통신 시스템에서 다중 사용자 제어 채널 송수신 방법 및 장치
US8797922B2 (en) 2010-08-24 2014-08-05 Qualcomm Incorporated Handling ambiguous relay physical downlink control channel (R-PDCCH) decoding for a relay node
EP2702707B1 (en) 2011-04-29 2018-04-04 LG Electronics Inc. Method for transmitting and receiving downlink control information in a wireless communication system and apparatus for the same
GB2492062B (en) * 2011-06-15 2015-10-14 Sca Ipla Holdings Inc Apparatus and methods for controlling carrier selection in a wireless telecommunications system
US9198181B2 (en) * 2012-03-19 2015-11-24 Blackberry Limited Enhanced common downlink control channels
US8898552B2 (en) 2012-04-24 2014-11-25 Samsung Electronics Co., Ltd. Communication system with blind decoding mechanism and method of operation thereof
EP3444995B1 (en) * 2012-05-11 2021-07-07 Telefonaktiebolaget LM Ericsson (publ) A node and method for downlink communications scheduling
GB201214136D0 (en) * 2012-08-07 2012-09-19 Gen Dynamics Broadband Inc Method and apparatus for a wireless communication unit operating on a virtual carrier
WO2014042373A1 (ko) * 2012-09-16 2014-03-20 엘지전자 주식회사 무선 통신 시스템에서 브로드캐스트 신호를 수신 또는 전송하기 위한 방법 및 이를 위한 장치
US9088974B2 (en) 2013-01-17 2015-07-21 Qualcomm Incorporated Antenna port management for localized enhanced physical downlink control channel transmissions
CN104348579B (zh) * 2013-08-05 2019-11-19 中兴通讯股份有限公司 下行信道时域位置确定方法和装置
US10034271B2 (en) 2014-06-13 2018-07-24 Apple Inc. Decoding of PCFICH in LTE for power savings and range improvement
JP2017526197A (ja) * 2014-06-27 2017-09-07 インテル アイピー コーポレーション 狭帯域を利用したMTCのためのeNBおよびUEの方法および装置
US10630352B2 (en) * 2014-11-07 2020-04-21 Lg Electronics Inc. Signal transmission method and apparatus of apparatus having plurality of antennas in wireless communication system
WO2016126142A1 (ko) * 2015-02-06 2016-08-11 엘지전자 주식회사 시스템 정보를 수신하는 방법 및 사용자기기와, 시스템 정보를 전송하는 방법 및 기지국
US9979509B2 (en) * 2015-07-24 2018-05-22 Apple Inc. Apparatus, system, and method for blind decoding PCFICH for wireless communication devices
KR102407923B1 (ko) 2015-09-04 2022-06-13 삼성전자주식회사 디코딩을 제어하기 위한 장치 및 방법

Also Published As

Publication number Publication date
EP3547578A1 (en) 2019-10-02
US20190380113A1 (en) 2019-12-12
US11064476B2 (en) 2021-07-13
EP3547578A4 (en) 2019-12-25
WO2018097688A1 (ko) 2018-05-31

Similar Documents

Publication Publication Date Title
US10820338B2 (en) User equipments, base stations and methods for RNTI-based PDSCH downlink slot aggregation
CN111010889B (zh) 终端装置、基站和方法
US10305623B2 (en) Resource allocation for repetitions of transmissions in a communication system
CN110419182B (zh) 发送pbch的方法和设备以及接收pbch的方法和设备
US11122556B2 (en) Communication method and communication apparatus
US10595289B2 (en) Method and apparatus for detecting synchronization signal in wireless communication system
US11116008B2 (en) Method and device for radio resource allocation in wireless communication system
CN110612690B (zh) 用户设备、基站和方法
CN111713024B (zh) 被打孔极化码的基于互信息的构造
CN111096035B (zh) 用于基于rnti的pdsch下行链路时隙聚合的用户设备、基站和方法
US11082066B2 (en) Efficient control channel design using polar codes
JP7331204B2 (ja) 端末及び通信方法
US11026184B2 (en) Terminal apparatus, base station apparatus, and communication method for transmitting resource information and transmission power control information to the terminal device with a grant-free access resource allocation or a scheduled access resource allocation
US11064476B2 (en) Control channel decoding device and method in wireless communication system
CN110140323B (zh) 用户设备、基站和方法
WO2019099738A1 (en) User equipments, base stations and methods
EP3711201A1 (en) User equipments, base stations and methods
US11777526B2 (en) Efficient control channel design using polar codes
KR20200050849A (ko) 무선 통신 시스템에서 무선 자원 할당을 위한 방법 및 장치
KR20180121231A (ko) 무선 통신 시스템에서 서로 다른 서비스들을 지원하기 위한 장치 및 방법
US20220377778A1 (en) Method and apparatus for transmitting uplink channel in wireless communication system
US20190181910A1 (en) Transmitter and communication method
CN113796143A (zh) 用于微时隙pusch的传输块确定的用户设备、基站和方法
WO2019099388A1 (en) User equipments, base stations and methods
KR20190029397A (ko) 무선 통신 시스템에서 제어 정보를 전송하기 위한 장치 및 방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal