CN111096035B - 用于基于rnti的pdsch下行链路时隙聚合的用户设备、基站和方法 - Google Patents

用于基于rnti的pdsch下行链路时隙聚合的用户设备、基站和方法 Download PDF

Info

Publication number
CN111096035B
CN111096035B CN201880057794.1A CN201880057794A CN111096035B CN 111096035 B CN111096035 B CN 111096035B CN 201880057794 A CN201880057794 A CN 201880057794A CN 111096035 B CN111096035 B CN 111096035B
Authority
CN
China
Prior art keywords
rnti
pdsch
pdcch
type
slot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201880057794.1A
Other languages
English (en)
Other versions
CN111096035A (zh
Inventor
野上智造
尹占平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FG Innovation Co Ltd
Sharp Corp
Original Assignee
FG Innovation Co Ltd
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FG Innovation Co Ltd, Sharp Corp filed Critical FG Innovation Co Ltd
Publication of CN111096035A publication Critical patent/CN111096035A/zh
Application granted granted Critical
Publication of CN111096035B publication Critical patent/CN111096035B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种用于基于无线电网络临时标识符(RNTI)的物理下行链路共享信道(PDSCH)下行链路时隙聚合的用户设备(UE)、基站和方法。所述UE包括:高层处理器,所述高层处理器被配置为获取用于下行链路时隙聚合的专用无线电资源控制(RRC)配置,并且,被配置为监视携带用于调度PDSCH的下行链路控制信息(DCI)格式的物理下行链路控制信道(PDCCH);以及接收部,所述接收部被配置为接收所述PDSCH。基于所述PDCCH是(i)由第一类型的RNTI加扰的携带循环冗余校验(CRC)的PDCCH还是(ii)由与所述第一类型的RNTI不同的第二类型的RNTI加扰的携带CRC的PDCCH,来确定所述PDSCH是(a)应用下行链路时隙聚合的PDSCH还是(b)不应用下行链路时隙聚合的PDSCH。

Description

用于基于RNTI的PDSCH下行链路时隙聚合的用户设备、基站和方法
相关申请的交叉引用
本专利申请要求于2017年9月8日提交的名称为“USER EQUIPMENTS,BASESTATIONS AND METHODS”的美国临时专利申请号62/556,189的权益和优先权,该申请的代理人案卷号为SLA3762P(在下文中称为“SLA3762P应用”)。所有SLA3762P专利申请的全部内容据此全文明确地以引用方式并入本专利申请中。
技术领域
本公开整体涉及通信系统。更具体地,本公开涉及用于通信系统的新信令、过程、用户设备(User Equipment,UE)和基站。
背景技术
为了满足消费者需求并改善便携性和便利性,无线通信设备已变得更小且功能更强大。消费者已变得依赖于无线通信设备,并期望得到可靠的服务、扩大的覆盖区域和增强的功能性。无线通信系统可为多个无线通信设备提供通信,每个无线通信设备都可由基站提供服务。基站可以是与无线通信设备通信的设备。
随着无线通信设备的发展,人们一直在寻求改善通信容量、速度、灵活性和/或效率的方法。然而,改善通信容量、速度、灵活性和/或效率可能会带来某些问题。
例如,无线通信设备可使用通信结构与一个或多个设备通信。然而,所使用的通信结构可能仅提供有限的灵活性和/或效率。如本讨论所示,改善通信灵活性和/或效率的系统和方法可能是有利的。
发明内容
本公开涉及用于通信系统的新信令、过程、用户设备(UE)和基站。
在本公开的第一方面,公开了一种用于基于无线电网络临时标识符(RadioNetwork Temporary Identifier,RNTI)的物理下行链路共享信道(Physical DownlinkShared Channel,PDSCH)下行链路时隙聚合的用户设备(UE),所述UE包括:高层处理器,所述高层处理器被配置为获取用于下行链路时隙聚合的专用无线电资源控制(RadioResource Control,RRC)配置,并且,被配置为监视携带用于调度PDSCH的下行链路控制信息(Downlink Control Information,DCI)格式的物理下行链路控制信道(PhysicalDownlink Control Channel,PDCCH);以及接收部,所述接收部被配置为接收所述PDSCH;其中:基于所述PDCCH是(i)携带由第一类型的RNTI加扰的循环冗余校验(Cyclic RedundancyCheck,CRC)的PDCCH还是(ii)携带由与所述第一类型的RNTI不同的第二类型的RNTI加扰的CRC的PDCCH,来确定所述PDSCH是(a)应用下行链路时隙聚合的PDSCH还是(b)不应用下行链路时隙聚合的PDSCH。
在本公开的第二方面,公开了一种由UE执行的用于基于RNTI的PDSCH下行链路时隙聚合的方法,所述方法包括:通过高层处理器获取用于下行链路时隙聚合的专用RRC配置;通过所述高层处理器来监视携带用于调度PDSCH的DCI格式的PDCCH;以及通过接收部接收所述PDSCH;其中:基于所述PDCCH是(i)携带由第一类型的RNTI加扰的CRC的PDCCH还是(ii)携带由与所述第一类型的RNTI不同的第二类型的RNTI加扰的CRC的PDCCH,来确定所述PDSCH是(a)应用下行链路时隙聚合的PDSCH还是(b)不应用下行链路时隙聚合的PDSCH。
在本公开的第三方面,公开了一种用于基于RNTI的PDSCH下行链路时隙聚合的基站,所述基站包括:高层处理器,所述高层处理器被配置为发送用于下行链路时隙聚合的专用RRC配置;以及传输部,所述传输部被配置为传输携带用于调度PDSCH的DCI格式的PDCCH,并且,被配置为传输所述PDSCH;其中:基于所述PDCCH是(i)携带由第一类型的RNTI加扰的CRC的PDCCH还是(ii)携带由与所述第一类型的RNTI不同的第二类型的RNTI加扰的CRC的PDCCH,来确定所述PDSCH是(a)应用下行链路时隙聚合的PDSCH还是(b)不应用下行链路时隙聚合的PDSCH。
在本公开的第四方面,公开了一种用于由基站执行的用于基于RNTI的PDSCH下行链路时隙聚合的方法,所述方法包括:通过高层处理器来发送用于下行链路时隙聚合的专用RRC配置;通过传输部来传输携带用于调度PDSCH的DCI格式的PDCCH;以及通过所述传输部传输PDSCH;其中:基于所述PDCCH是(i)携带由第一类型的RNTI加扰的CRC的PDCCH还是(ii)携带由与所述第一类型的RNTI不同的第二类型的RNTI加扰的CRC的PDCCH,来确定所述PDSCH是(a)应用下行链路时隙聚合的PDSCH还是(b)不应用下行链路时隙聚合的PDSCH。
附图说明
当与附图一起阅读时,根据以下详细描述可以最好地理解示例性公开的各方面。各种特征未按比例绘制,为了清楚讨论,各种特征的尺寸可任意增大或减小。
图1是示出可在其中实施用于上行链路传输的系统和方法的一个或多个gNB以及一个或多个用户设备(UE)的一种具体实施的框图;
图2示出了可在UE中利用的各种部件;
图3示出了可在gNB中利用的各种部件;
图4是示出可在其中实施用于执行上行链路传输的系统和方法的UE的一个具体实施的框图;
图5是示出可在其中实施用于执行上行链路传输的系统和方法的gNB的一个具体实施的框图;
图6是示出资源的一个示例的图示;
图7A、图7B、图7C和图7D示出了几个参数的示例;
图8A、图8B和图8C示出了用于在相应的图7A、图7B和图7D中示出的参数的子帧结构的示例;
图9A、图9B和图9C示出了用于在相应的图7A、图7B和图7D中示出的参数的子帧结构的示例;
图10A、图10B、图10C、图10D、图10E和图10F示出了时隙和子时隙的示例;
图11A、图11B、图11C和图11D示出了调度时间线的示例;
图12A是示出gNB的一个具体实施的框图;
图12B是由图12A中的gNB执行的方法的流程图;
图12C是由图12A中的gNB执行的另一方法的流程图;
图13A是示出UE的一个具体实施的框图;
图13B是由图13A中的UE执行的方法的流程图;
图13C是由图13A中的UE执行的另一方法的流程图;
图14示出了控制资源单元和参考信号结构的示例;
图15示出了控制信道和共享信道复用的示例;
图16示出了控制信道和共享信道复用的另一示例;
图17示出了控制信道和共享信道复用的另一示例;
图18示出了控制信道映射的示例;
图19示出了下行链路调度和混合自动重传请求(Hybrid Automatic RepeatRequest,HARQ)时间线的示例;
图20示出了上行链路调度时间线的示例;
图21示出了下行链路非周期性信道状态信息-参考信号(Channel StateInformation-Reference Signal,CSI-RS)传输时间线的示例;
图22示出了上行链路非周期性探测参考信号(Sounding Reference Signal,SRS)传输时间线的示例;
图23示出了指定显式定时指示的值的表;
图24示出了指定显式定时指示的值的另一个表;
图25A、图25B和图25C示出了在控制信道和共享信道之间的控制信道资源集内资源共享的示例;
图26A、图26B和图26C示出了控制信道和共享信道之间的资源共享的示例;
图27A、图27B和图27C示出了控制信道和共享信道之间的资源共享的示例;
图28示出了控制信道和共享信道之间的资源共享的另一示例;
图29示出了控制信道和共享信道之间的资源共享的另一示例;并且
图30示出了控制信道和共享信道之间的资源共享的另一示例。
具体实施方式
第3代合作伙伴项目(也称为“3GPP”)是旨在为第三代和第四代无线通信系统制定全球适用的技术规范和技术报告的合作协议。3GPP可为下一代移动网络、系统和设备制定规范。
3GPP长期演进(Long Term Evolution,LTE)是授予用来改善通用移动通信系统(Universal Mobile Telecommunication System,UMTS)移动电话或设备标准以应付未来需求的项目的名称。在一个方面,已对UMTS进行修改,以便为演进的通用陆地无线电接入(Evolved Universal Terrestrial Radio Access,E-UTRA)和演进的通用陆地无线电接入网络(Evolved Universal Terrestrial Radio Access Network,E-UTRAN)提供支持和规范。
本文所公开的系统和方法的至少一些方面可结合3GPP LTE、高级LTE(LTE-Advanced,LTE-A)和包括新无线电(New Radio,NR)的其他标准(例如,3GPP第8、9、10、11、12、13、14和/或15版)进行描述,新无线电(NR)也称为5G。然而,本公开的范围不应在这方面受到限制。本文所公开的系统和方法的至少一些方面可用于其他类型的无线通信系统。
无线通信设备可以是如下电子设备,其用于向基站传送语音和/或数据,基站进而可与设备的网络(例如,公用交换电话网(Public Switched Telephone Network,PSTN)、互联网等)进行通信。在描述本文的系统和方法时,无线通信设备可另选地称为移动站、UE、接入终端、订户站、移动终端、远程站、用户终端、终端、订户单元、移动设备等。无线通信设备的示例包括蜂窝电话、智能电话、个人数字助理(Personal Digital Assistant,PDA)、膝上型计算机、上网本、电子阅读器、无线调制解调器等。在3GPP规范中,无线通信设备通常被称为UE。然而,由于本公开的范围不应限于3GPP标准,因此术语“UE”和“无线通信设备”在本文中可互换使用,以表示更通用的术语“无线通信设备”。UE还可更通用地称为终端设备。
在3GPP规范中,基站通常称为节点B、演进节点B(Evolved Node B,eNB)、家庭增强或演进节点B(Home evolved Node B,HeNB)、下一代节点B(Next Generation Node B,gNB)或者一些其他类似术语。由于本公开的范围不应限于3GPP标准,因此术语“基站”、“节点B”、“eNB”、“HeNB”和“gNB”在本文中可互换使用,以表示更一般的术语“基站”。此外,术语“基站”可用来表示接入点。接入点可以是为无线通信设备提供对网络(例如,局域网(LocalArea Network,LAN)、互联网等)的接入的电子设备。术语“通信设备”可用来表示无线通信设备和/或基站。eNB和gNB还可更通用地称为基站设备。
应当指出的是,如本文所用,“小区”可以是由标准化或监管机构指定用于高级国际移动通信(International Mobile Telecommunication-Advanced,IMT-Advanced)的任何通信信道,并且其全部或其子集可被3GPP采用为用于eNB与UE之间的通信的授权频带(例如,频带)。还应当指出的是,在E-UTRA和E-UTRAN总体描述中,如本文所用,“小区”可以被限定为“下行链路资源和可选的上行链路资源的组合”。下行链路资源的载波频率与上行链路资源的载波频率之间的链接,可以在下行链路资源上传输的系统信息中得到指示。
“配置的小区”是UE知晓并得到eNB准许以传输或接收信息的那些小区。“配置的小区”可以是服务小区。UE可接收系统信息并对所有配置的小区执行所需的测量。用于无线电连接的“配置的小区”可包括主小区和/或无、一个或多个辅小区。“激活的小区”是UE正在其上进行传输和接收的那些配置的小区。也就是说,激活的小区是UE为其监视物理下行链路控制信道(Physical Downlink Control Channel,PDCCH)的那些小区,并且是在下行链路传输的情况下,UE为其解码物理下行链路共享信道(PDSCH)的那些小区。“去激活的小区”是UE未监视传输PDCCH的那些配置的小区。应当指出的是,可以根据不同的维度来描述“小区”。例如,“小区”可具有时间、空间(例如,地理)和频率特性。
被3GPP称为NR(新无线电技术)的第五代通信系统设想使用时间/频率/空间资源来允许服务,诸如eMBB(增强型移动宽带)传输、URLLC(超可靠和低延迟通信)传输和eMTC(大规模机器类型通信)传输。此外,在NR中,考虑单波束和/或多波束操作用于下行链路和/或上行链路传输。
为了使服务有效地使用时间/频率/空间资源,能够有效地控制上行链路传输将是有用的。因此,应该设计用于有效控制上行链路传输的过程。然而,尚未研究用于上行链路传输的过程的详细设计。
根据本文描述的系统和方法,UE可以在UL天线端口上传输与一个或多个传输接收点(Transmission Reception Point,TRP)相关联的多个参考信号(Reference Signal,RS)。例如,可在UL天线端口上传输相应地与一个或多个TRP相关联的多个UL RS。即,每个UL天线端口可传输一个或多个UL RS。另外,每个TRP可传输一个或多个UL RS。
在一个示例中,一个TRP可与一个UL天线端口相关联。在另一示例中,一个TRP可与多个UL天线端口相关联。在另一示例中,多个TRP可与多个UL天线端口相关联。在又一示例中,多个天线端口可与一个UL天线端口相关联。为了简化描述,假设本文所述的TRP被包括在天线端口中。
在此,例如,在UL天线端口上传输的多个UL RS可以由相同的序列(例如,解调参考信号序列和/或参考信号序列)来限定。例如,可以基于由高层配置的第一参数来生成相同的序列。第一参数可以与循环移位相关联,并且/或者是与波束索引相关联的信息。
或者,可以通过不同的序列来识别在UL天线端口上传输的多个UL RS。可以基于由高层配置的不止一个的第二参数中的每一者来生成不同的信号序列中的每一者。DCI可以指示多于一个的第二参数中的一个第二参数。第二参数中的每一者可与循环移位相关联,并且/或者是与波束索引相关联的信息。
此外,在UL天线端口上传输的多个UL RS所映射到的资源元素可由相同的频移值限定。例如,频移的相同值可由高层配置的第三参数给出。第三信息可以与波束索引相关联。
另选地,可以通过不同的频移值来识别在UL天线端口上传输的多个UL RS所映射到的资源元素。频移的每个不同值可以由高层配置的不止一个的第四参数中的每一者给出。DCI可以指示不止一个的参数中的一个第四参数。第四参数中的每一者可与波束索引相关联。
现在将参考附图来描述本文所公开的系统和方法的各种示例,其中相同的参考标号可指示功能相似的元件。如在本文附图中一般性描述和说明的系统和方法能够以各种不同的具体实施来布置和设计。因此,下文对附图呈现的几种具体实施进行更详细的描述并非意图限制要求保护的范围,而是仅仅代表所述系统和方法。
图1是示出可在其中实施用于下行链路和上行链路传输的系统和方法的一个或多个gNB 160以及一个或多个UE 102的一种具体实施的框图。一个或多个UE 102使用一个或多个物理天线122a-n与一个或多个gNB160进行通信。例如,UE 102使用该一个或多个物理天线122a-n将电磁信号传输到gNB 160并且从gNB 160接收电磁信号。gNB 160使用一个或多个物理天线180a-n来与UE 102进行通信。
UE 102和gNB 160可使用一个或多个信道和/或一个或多个信号119、121来彼此通信。例如,UE 102可使用一个或多个上行链路信道121将信息或数据传输到gNB 160。上行链路信道121的示例包括物理共享信道(例如,Physical Uplink Shared Channel,PUSCH(物理上行链路共享信道))和/或物理控制信道(例如,Physical Uplink Control Channel,PUCCH(物理上行链路控制信道))等。例如,一个或多个gNB 160还可以使用一个或多个下行链路信道119向一个或多个UE 102传输信息或数据。下行链路信道119的物理共享信道(例如,PDSCH(物理下行链路共享信道))和/或物理控制信道(PDCCH(物理下行链路控制信道))等的示例可以使用其他种类的信道和/或信号。
一个或多个UE 102中的每一者可包括一个或多个收发器118、一个或多个解调器114、一个或多个解码器108、一个或多个编码器150、一个或多个调制器154、数据缓冲器104和UE操作模块124。例如,可在UE 102中实现一个或多个接收路径和/或传输路径。为方便起见,UE 102中仅示出了单个收发器118、解码器108、解调器114、编码器150和调制器154,但可实现多个并行元件(例如,多个收发器118、解码器108、解调器114、编码器150和调制器154)。
收发器118可包括一个或多个接收器120以及一个或多个发射器158。一个或多个接收器120可使用一个或多个天线122a-n从gNB 160接收信号。例如,接收器120可接收并降频转换信号,以产生一个或多个接收的信号116。可将一个或多个接收的信号116提供给解调器114。一个或多个发射器158可使用一个或多个物理天线122a-n将信号传输到gNB 160。例如,一个或多个发射器158可升频转换并传输一个或多个调制的信号156。
解调器114可解调一个或多个接收的信号116,以产生一个或多个解调的信号112。可将一个或多个解调的信号112提供给解码器108。UE 102可使用解码器108来解码信号。解码器108可以产生解码的信号110,其可以包括UE解码的信号106(也被称为第一UE解码的信号106)。例如,该第一UE解码的信号106可包括接收的有效载荷数据,该有效载荷数据可存储在数据缓冲器104中。解码的信号110(也被称为第二UE解码的信号110)中的另一个信号可以包括开销数据和/或控制数据。例如,第二UE解码的信号110可提供UE操作模块124可用来执行一个或多个操作的数据。
一般来讲,UE操作模块124可使UE 102能够与一个或多个gNB 160进行通信。UE操作模块124可以包括调度模块126中的一者或多者。
UE调度模块126可执行上行链路传输。上行链路传输包括数据传输传输)和/或上行链路参考信号传输。
在无线电通信系统中,可限定物理信道(上行链路物理信道和/或下行链路物理信道)。物理信道(上行链路物理信道和/或下行链路物理信道)可用于传输从高层递送的信息。例如,可限定PCCH(物理控制信道)。PCCH用于传输控制信息。
在上行链路中,PCCH(例如,物理上行链路控制信道(PUCCH))用于传输上行链路控制信息(Uplink Control Information,UCI)。UCI可以包括混合自动重传请求(HybridAutomatic Repeat Request Acknowledgement,HARQ ACK)、信道状态信息(Channel StateInformation,CSI)和/或调度请求(Service Request,SR)。HARQ-ACK用于指示下行链路数据(例如,传输块、媒体访问控制协议数据单元(Media Access Control Protocol DataUnit,MAC PDU)和/或下行链路共享信道(Downlink-Shared Channel,DL-SCH))的肯定确认(Acknowledgement,ACK)或否定确认(Negative Acknowledgement,NACK)。CSI用于指示下行链路信道的状态。另外,SR用于请求上行链路数据(例如,传输块、MAC PDU和/或上行链路共享信道(Uplink-Shared Channel,UL-SCH))的资源。
在下行链路中,PCCH(例如,物理下行链路控制信道(PDCCH))可以用于传输下行链路控制信息(DCI)。在此,可为PDCCH上的DCI传输限定多于一种的DCI格式。即,可以DCI格式限定字段,并且将字段映射到信息位(例如,DCI位)。例如,用于在小区中调度一个物理共享信道(Physical Shared Channel,PSCH)(例如,PDSCH、一个下行链路传输块的传输)的DCI格式1A被限定为用于下行链路的DCI格式。用于PDSCH调度的DCI格式可以包括多个信息字段,例如,载波指示符字段、频域PDSCH资源分配字段、时域PDSCH资源分配字段、捆绑大小字段、MCS字段、新数据指示符字段、冗余版本字段、HARQ进程号字段、代码块组刷新指示符(Code Block Group Flushing out Information,CBGFI)字段、代码块组传输指示符(CodeBlock Group Transmission Information,CBGTI)字段、PUCCH功率控制字段、PUCCH资源指示符字段、天线端口字段、层数字段、准协同定位(Quasi Co-Location,QCL)指示字段、SRS触发请求字段和RNTI字段。多于一条的以上信息中可共同编码,并且在这种情况下,可在单个信息字段中指示共同编码的信息。
此外,例如,用于在小区中调度一个PSCH(例如,PUSCH、一个上行链路传输块的传输)的DCI格式0被限定为用于上行链路的DCI格式。例如,与PSCH(PDSCH资源、PUSCH资源)分配相关联的信息、与用于PSCH的调制和编码方案(Modulation and Coding Scheme,MCS)相关联的信息,以及DCI诸如用于PUSCH和/或PUCCH的传输功率控制(Transmission PowerControl,TPC)命令均被包括在DCI格式中。此外,DCI格式可包括与波束索引和/或天线端口相关联的信息。波束索引可指示用于下行链路传输和上行链路传输的波束。天线端口可包括DL天线端口和/或UL天线端口。用于PDSCH调度的DCI格式可以包括多个信息字段,例如,载波指示符字段、频域PUSCH资源分配字段、时域PUSCH资源分配字段、MCS字段、新数据指示符字段、冗余版本字段、HARQ进程号字段、代码块组刷新指示符(CBGFI)字段、代码块组传输指示符(CBGTI)字段、PUSCH功率控制字段、SRS资源指示符(SRI)字段、宽带和/或子带传输预编码矩阵指示符(Transmitted Precoding Matrix Indicator,TPMI)字段、天线端口字段、加扰标识字段、层数字段、CSI报告触发请求字段、CSI管理请求字段、SRS触发请求字段和RNTI字段。多于一条的以上信息中可共同编码,并且在这种情况下,可在单个信息字段中指示共同编码的信息。
此外,例如,可限定PSCH。例如,在通过使用DCI格式调度下行链路PSCH资源(例如,PDSCH资源)的情况下,UE 102可以在调度的下行链路PSCH资源上接收下行链路数据。此外,在通过使用DCI格式调度上行链路PSCH资源(例如,PUSCH资源)的情况下,UE 102在调度的上行链路PSCH资源上传输上行链路数据。即,下行链路PSCH用于传输下行链路数据。并且,上行链路PSCH用于传输上行链路数据。
此外,下行链路PSCH和上行链路PSCH用于传输更高层(例如,无线电资源控制(RRC))层和/或MAC层的信息。例如,下行链路PSCH和上行链路PSCH用于传输RRC消息(RRC信号)和/或MAC控制元素(Media Access Control Control Element,MAC CE)。在此,在下行链路中从gNB 160传输的RRC消息对于小区内的多个UE 102是公共的(称为公共RRC消息)。此外,从gNB 160传输的RRC消息可以专用于某个UE 102(称为专用RRC消息)。RRC消息和/或MAC CE也被称为高层信号。
此外,在用于上行链路的无线电通信中,UL RS被用作上行链路物理信号。上行链路物理信号不用于传输从高层提供的信息,而是由物理层使用。例如,UL RS可以包括解调参考信号、UE特定参考信号、探测参考信号和/或波束特定参考信号。解调参考信号可包括与上行链路物理信道(例如,PUSCH和/或PUCCH)的传输相关联的解调参考信号。
此外,UE特定参考信号可以包括与上行链路物理信道(例如,PUSCH和/或PUCCH)的传输相关联的参考信号。例如,仅当上行链路物理信道传输与对应的天线端口相关联时,解调参考信号和/或UE特定参考信号可以是用于解调上行链路物理信道的有效参考。gNB 160可以使用解调参考信号和/或UE特定参考信号来执行(重新)上行链路物理信道的配置。探测参考信号可用于测量上行链路信道状态。
UE操作模块124可将信息148提供给一个或多个接收器120。例如,UE操作模块124可通知接收器120何时接收重传。
UE操作模块124可将信息138提供给解调器114。例如,UE操作模块124可通知解调器114针对来自gNB 160的传输所预期的调制图案。
UE操作模块124可将信息136提供给解码器108。例如,UE操作模块124可通知解码器108针对来自gNB 160的传输所预期的编码。
UE操作模块124可将信息142提供给编码器150。信息142可包括待编码的数据和/或用于编码的指令。例如,UE操作模块124可指示编码器150编码传输数据146和/或其他信息142。其他信息142可包括PDSCH HARQ-ACK信息。
编码器150可编码由UE操作模块124提供的传输数据146和/或其他信息142。例如,对传输数据146和/或其他信息142进行编码可涉及错误检测和/或纠正编码,将数据映射到空间、时间和/或频率资源以便传输,多路复用等。编码器150可将编码的数据152提供给调制器154。
UE操作模块124可将信息144提供给调制器154。例如,UE操作模块124可通知调制器154将用于向gNB 160进行传输的调制类型(例如,星座映射)。调制器154可调制编码的数据152,以将一个或多个调制的信号156提供给一个或多个发射器158。
UE操作模块124可将信息140提供给一个或多个发射器158。该信息140可包括用于一个或多个发射器158的指令。例如,UE操作模块124可指示一个或多个发射器158何时将信号传输到gNB 160。例如,一个或多个发射器158可在UL子帧期间进行传输。一个或多个发射器158可升频转换调制的信号156并将该信号传输到一个或多个gNB 160。
一个或多个gNB 160中的每一者可包括一个或多个收发器176、一个或多个解调器172、一个或多个解码器166、一个或多个编码器109、一个或多个调制器113、数据缓冲器162和gNB操作模块182。例如,可在gNB 160中实施一个或多个接收路径和/或传输路径。为方便起见,gNB160中仅示出了单个收发器176、解码器166、解调器172、编码器109和调制器113,但可实现多个并行元件(例如,多个收发器176、解码器166、解调器172、编码器109和调制器113)。
收发器176可包括一个或多个接收器178和一个或多个发射器117。一个或多个接收器178可使用一个或多个物理天线180a-n从UE 102接收信号。例如,接收器178可接收并降频转换信号,以产生一个或多个接收的信号174。可将一个或多个接收的信号174提供给解调器172。一个或多个发射器117可使用一个或多个物理天线180a-n将信号传输到UE102。例如,一个或多个发射器117可升频转换并传输一个或多个调制的信号115。
解调器172可解调该一个或多个接收的信号174,以产生一个或多个解调的信号170。可将该一个或多个解调的信号170提供给解码器166。gNB 160可使用解码器166来解码信号。解码器166可产生一个或多个解码的信号164、168。例如,第一eNB解码的信号164可包括接收的有效载荷数据,该有效载荷数据可存储在数据缓冲器162中。第二eNB解码的信号168可包括开销数据和/或控制数据。例如,第二eNB解码的信号168可提供gNB操作模块182可用来执行一个或多个操作的数据(例如,PDSCH HARQ-ACK信息)。
一般来讲,gNB操作模块182可使gNB 160能够与一个或多个UE 102进行通信。gNB操作模块182可包括gNB调度模块194中的一个或多个。gNB调度模块194可以执行如本文所述的上行链路传输的调度。
gNB操作模块182可将信息188提供给解调器172。例如,gNB操作模块182可通知解调器172针对来自UE 102的传输所预期的调制图案。
gNB操作模块182可将信息186提供给解码器166。例如,gNB操作模块182可通知解码器166针对来自UE 102的传输所预期的编码。
gNB操作模块182可将信息101提供给编码器109。信息101可包括待编码的数据和/或用于编码的指令。例如,gNB操作模块182可指示编码器109编码信息101,包括传输数据105。
编码器109可编码由gNB操作模块182提供的传输数据105和/或信息101中包括的其他信息。例如,对传输数据105和/或信息101中包括的其他信息进行编码可涉及错误检测和/或纠正编码,将数据映射到空间、时间和/或频率资源以便传输,多路复用等。编码器109可将编码的数据111提供给调制器113。传输数据105可包括要中继到UE 102的网络数据。
gNB操作模块182可将信息103提供给调制器113。该信息103可包括用于调制器113的指令。例如,gNB操作模块182可通知调制器113将用于向UE 102进行传输的调制类型(例如,星座映射)。调制器113可调制编码的数据111,以将一个或多个调制的信号115提供给该一个或多个发射器117。
gNB操作模块182可将信息192提供给一个或多个发射器117。该信息192可包括用于该一个或多个发射器117的指令。例如,gNB操作模块182可指示一个或多个发射器117何时(何时不)将信号传输到UE 102。一个或多个发射器117可升频转换调制的信号115并将该信号传输到一个或多个UE 102。
应当指出的是,DL子帧可从gNB 160传输到一个或多个UE 102,并且UL子帧可从一个或多个UE 102传输到gNB 160。此外,gNB 160以及一个或多个UE 102均可在标准特殊子帧中传输数据。
还应当指出的是,被包括在gNB 160和UE 102中的元件或其部件中的一者或多者可在硬件中实施。例如,这些元件或其部件中的一者或多者可被实现为芯片、电路或硬件部件等。还应当指出的是,本文所述功能或方法中的一者或多者可在硬件中实现和/或使用硬件执行。例如,本文所述方法中的一者或多者可在芯片组、专用集成电路(ApplicationSpecific Integrated Circuit,ASIC)、大规模集成电路(Large Scale Integration,LSI)或集成电路等中实现,并且/或者使用芯片组、专用集成电路(ASIC)、大规模集成电路(LSI)或集成电路等实现。
图2示出了可在UE 1002中使用的各种部件。结合图2描述的UE1002可根据结合图1描述的UE 102来实施。UE 1002包括控制UE 1002的操作的处理器1003。
处理器1003也可称为中央处理单元(Central Processing Unit,CPU)。存储器1005(可包括只读存储器(Read Only Memory,ROM)、随机存取存储器(Random AccessMemory,RAM)、这两种存储器的组合或可存储信息的任何类型的设备)将指令1007a和数据1009a提供给处理器1003。存储器1005的一部分还可包括非易失性随机存取存储器(Non-Volatile Random Access Memory,NVRAM)。指令1007b和数据1009b还可驻留在处理器1003中。加载到处理器1003中的指令1007b和/或数据1009b还可包括来自存储器1005的指令1007a和/或数据1009a,这些指令和/或数据被加载以供处理器1003执行或处理。指令1007b可由处理器1003执行,以实施上述方法。
UE 1002还可包括外壳,该外壳容纳一个或多个发射器1058和一个或多个接收器1020以允许传输和接收数据。发射器1058和接收器1020可合并为一个或多个收发器1018。一个或多个天线1022a-n附接到外壳并且电耦合到收发器1018。
UE 1002的各种部件通过总线系统1011(除了数据总线之外,还可包括电源总线、控制信号总线和状态信号总线)耦合在一起。然而,为了清楚起见,各种总线在图2中均被示出为总线系统1011。UE 1002还可包括用于处理信号的数字信号处理器(Digital SignalProcessor,DSP)1013。UE 1002还可包括对UE 1002的功能提供用户接入的通信接口1015。图2所示的UE 1002是功能框图而非具体部件的列表。
图3示出可在gNB 1160中使用的各种部件。结合图3描述的gNB1160可根据结合图1描述的gNB 160来实施。gNB 1160包括控制gNB1160的操作的处理器1103。处理器1103也可称为中央处理单元(CPU)。存储器1105(可包括只读存储器(ROM)、随机存取存储器(RAM)、这两种存储器的组合或可存储信息的任何类型的设备)将指令1107a和数据1109a提供给处理器1103。存储器1105的一部分还可包括非易失性随机存取存储器(NVRAM)。指令1107b和数据1109b还可驻留在处理器1103中。加载到处理器1103中的指令1107b和/或数据1109b还可包括来自存储器1105的指令1107a和/或数据1109a,这些指令和/或数据被加载以供处理器1103执行或处理。指令1107b可由处理器1103执行,以实施上述方法。
gNB 1160还可包括外壳,该外壳容纳一个或多个发射器1117和一个或多个接收器1178以允许传输和接收数据。发射器1117和接收器1178可合并为一个或多个收发器1176。一个或多个天线1180a-n附接到外壳并且电耦合到收发器1176。
gNB 1160的各种部件通过总线系统1111(除了数据总线之外,还可包括电源总线、控制信号总线和状态信号总线)耦合在一起。然而,为了清楚起见,各种总线在图3中被示出为总线系统1111。gNB 1160还可包括用于处理信号的数字信号处理器(DSP)1113。gNB 1160还可包括对gNB1160的功能提供用户接入的通信接口1115。图3所示的gNB 1160是功能框图而非具体部件的列表。
图4是示出可在其中实施用于执行上行链路传输的系统和方法的UE402的一个具体实施的框图。UE 402包括发射装置458、接收装置420和控制装置424。发射装置458、接收装置420和控制装置424可被配置为执行结合上图1描述的功能中的一者或多者。上图2示出了图4的具体装置结构的一个示例。可实施其他各种结构,以实现图1的功能中的一者或多者。例如,DSP可通过软件实现。
图5是示出可在其中实施用于执行上行链路传输的系统和方法的gNB 1360的一个具体实施的框图。gNB 560包括发射装置517、接收装置578和控制装置582。发射装置517、接收装置578和控制装置582可被配置为执行结合上图1描述的功能中的一者或多者。上图3示出图5的具体装置结构的一个示例。可实施其他各种结构,以实现图1的功能中的一者或多者。例如,DSP可通过软件实现。
图6是示出资源网格的一个示例的图示。图6所示的资源网格可适用于下行链路和上行链路,并且可用于本文所公开的系统和方法的一些具体实施中。结合图1给出了关于资源网格的更多细节。
在图6中,一个子帧269可包括一个或数个时隙。对于给定的参数μ,Nμ RB为服务小区的带宽配置,以NRB sc的倍数表示,其中NRB sc为频域中的资源块289的大小,表示为子载波的个数,并且NSF,μ 符号为子帧269中的正交频分复用(Orthogonal Frequency DivisionMultiplexing,OFDM)符号287的个数。换句话讲,针对每个参数μ以及下行链路和上行链路中的每一者,可限定Nμ RB*NRB sc个子载波和NSF,μ 符号个OFDM符号的资源网格。每个天线端口p、每个子载波间隔配置(例如,参数)μ和每个传输方向(上行链路或下行链路)可存在一个资源网格。资源块289可包括多个资源元素(Resource Element,RE)291。
如表X1所示,支持多种OFDM参数(也可仅称为参数)。每个参数可与其自身的子载波间隔Δf绑定。
表X1
μ <![CDATA[Δf=2<sup>μ</sup>·15[kHz]]]> 循环前缀
0 15 正常
1 30 正常
2 60 正常、扩展
3 120 正常
4 240 正常
5 480 正常
针对子载波间隔配置μ,在子帧内,以递增顺序将时隙编号为nμ s∈{0,…,NSF,μ时隙-1},并且在帧中,以递增顺序将时隙编号为nμ s,f∈{0,…,Nframe,μ 时隙-1}。时隙中存在N时隙,μ 符号个连续的OFDM符号,其中N时隙,μ 符号取决于所使用的子载波间隔,以及表X2针对正常循环前缀和表X3针对扩展循环前缀给出的时隙配置。每个子帧的连续OFDM符号的个数为NSF 符号=N时隙,μ 符号·NSF,μ 时隙。子帧中时隙nμ s的起点在时间上与同一子帧中的OFDM符号nμ sN时隙,μ 符号的起点对齐。并非所有UE均能够同时进行传输和接收,这意味着并非下行链路时隙或上行链路时隙中的所有OFDM符号均可以使用。
表X2
Figure GDA0004077440850000171
表X3
Figure GDA0004077440850000181
对于PCell,Nμ RB作为系统信息的一部分被广播。对于SCell(包括许可辅助接入(Licensed Assisted Access,LAA)SCell),Nμ RB通过专用于UE 102的RRC消息进行配置。对于PDSCH映射,可用RE 291可以是RE 291,其索引1在子帧中满足1≥1数据,开始并且/或者1数据,结束≥1。
可采用具有循环前缀(Cyclic Prefix,CP)的OFDM接入方案,该方案也可称为CP-OFDM。在下行链路中,可传输PDCCH、EPDCCH(增强物理下行链路控制信道)、PDSCH等。无线电帧可包括一组子帧269(例如,10个子帧)。RB是用于分配由预定带宽(RB带宽)和一个或多个OFDM符号限定的下行链路无线电资源的单元。
物理资源块被限定为频域中的NRB sc=12个连续子载波。物理资源块在频域中被编号为从0到Nμ RB-1。频域中的物理资源块编号nPRB与资源元素(k,l)之间的关系以nPRB=floor(k/NRB sc)给出。RB包括频域中的十二个子载波和时域中的一个或多个OFDM符号。由频域中的一个子载波和时域中的一个OFDM符号限定的区域被称为资源元素(RE),并且由资源网格中的索引对(k,lRG)唯一地标识,其中k=0,…,Nμ RBNRB sc-1和lRG=0,…,NSF,μ 符号-1分别是频域和时域中的索引。此外,RE由RB中的索引对(k,l)唯一地标识,其中l是时域中的索引。当引用时隙中的资源元素时,使用索引对(k,l),其中l=0,…,N时隙,μ 符号-1。尽管在本文中讨论了一个分量载波(Component Carrier,CC)中的子帧,但针对每个CC限定了子帧,并且子帧在CC之间基本上彼此同步。
在上行链路中,除了CP-OFDM之外,还可采用单载波频分多址(Single-CarrierFrequency-Division Multiple Access,SC-FDMA)接入方案,该方案也被称为离散傅里叶变换扩频OFDM(Discrete Fourier Transform-Spread OFDM,DFT-S-OFDM)。在上行链路中,可传输PUCCH、PDSCH、物理随机接入信道(Physical Random Access Channel,PRACH)等。
可指示UE 102仅使用资源网格的子集来进行接收或传输。UE的资源块集称为载波带宽部分,可被配置为在频域中从0到Nμ RB-1的编号进行接收或传输。UE可被配置为具有一个或多个载波带宽部分,每个载波带宽部分可具有相同或不同的参数。
一组或多组PRB可被配置用于DL控制信道监视。换句话讲,控制资源集在频域中是一组PRB,在这组PRB内,UE 102尝试盲解码下行链路控制信息(例如,监视下行链路控制信息(DCI)),其中PRB可以是或可以不是频率连续的,UE 102可具有一个或多个控制资源集,并且一个DCI消息可位于一个控制资源集内。在频域中,PRB是控制信道的资源单位大小(可包括或可不包括Demodulation Reference Signal,DMRS)。DL共享信道可在比携带所检测的DL控制信道的符号更晚的OFDM符号处开始。另选地,DL共享信道可在携带所检测的DL控制信道的最后一个OFDM符号处开始(或在比该最后一个OFDM符号更早的符号处开始)。换句话讲,可支持至少在频域中对相同或不同UE 102的数据的控制资源组中的至少一部分资源进行动态重用。
即,UE 102可监视一组PDCCH候选。在此,PDCCH候选可以是可能被分配和/或传输PDCCH的候选。PDCCH候选由一个或多个控制信道元素(Control Channel Element,CCE)组成。术语“监视器”意味着UE 102尝试根据要监视的所有DCI格式来解码这组PDCCH候选中的每个PDCCH。
UE 102监视的PDCCH候选集也可以称为搜索空间。也就是说,搜索空间是可能用于PDCCH传输的一组资源。
此外,在PDCCH资源区域中设置(或限定、配置)公共搜索空间(Common SearchSpace,CSS)和用户设备搜索空间(UE specific Search Space,USS)。例如,CSS可以用于将DCI传输到多个UE 102。也就是说,CSS可以由多个UE 102共用的资源来限定。例如,CSS由具有在gNB 160和UE 102之间预先确定的数量的CCE组成。例如,CSS由具有索引0到15的CCE组成。
在此,CSS可以用于将DCI传输到特定UE 102。也就是说,gNB 160可以在CSS中传输旨在用于多个UE 102的DCI格式和/或针对特定UE102的DCI格式。可存在一种或多种类型的CSS。例如,可为PCell上由系统信息-无线电网络临时标识符(System Information-RadioNetwork Temporary Identifier,SI-RNTI)加扰的DCI格式限定0类PDCCH CSS。可为由间隔-(INT-)RNTI加扰的DCI格式限定1类PDCCH CSS,其中如果UE 102被高层配置为利用由INT-RNTI加扰的CRC来解码DCI格式,并且如果UE 102检测到具有由INT-RNTI加扰的CRC的DCI格式,则UE102可以假设在由该DCI格式指示的OFDM符号和资源块中不存在向UE102的传输。可为由随机接入-(RA-)RNTI加扰的DCI格式限定2类PDCCH CSS。可为由寻呼-(P-)RNTI加扰的DCI格式限定3类PDCCH CSS。可为由其他RNTI(例如,传输功率控制-(TPC-)RNTI、抢占指示-(PI-)RNTI、时隙格式-(SF-)RNTI)加扰的DCI格式限定4类PDCCH CSS。
USS可用于将DCI传输到特定UE 102。也就是说,USS由专用于某个UE 102的资源限定。也就是说,可以为每个UE 102独立地限定USS。例如,USS可由具有基于由gNB 160分配的RNTI、无线电帧中的时隙号、聚合等级等确定的数量的CCE组成。
在此,RNTI可包括C-RNTI(小区-RNTI)、临时C-RNTI。此外,USS(USS的位置)可以由gNB 160配置。例如,gNB 160可以通过使用RRC消息来配置USS。也就是说,基站可以在USS中传输旨在用于特定UE 102的DCI格式。[00121]在此,分配给UE 102的RNTI可以用于DCI的传输(PDCCH的传输)。具体地,基于DCI(或DCI格式)生成的CRC(循环冗余校验)奇偶校验位(也简称为CRC)附接到DCI,并且在附接之后,CRC奇偶校验位由RNTI加扰。UE 102可尝试解码附接由RNTI加扰的CRC奇偶校验位的DCI,并且检测PDCCH(例如,DCI、DCI格式)。也就是说,UE102可以利用由RNTI加扰的CRC来解码PDCCH。
当控制资源集跨越多个OFDM符号时,控制信道候选可被映射至多个OFDM符号或可被映射至单个OFDM符号。一个DL控制信道元素可被映射在由单个PRB和单个OFDM符号限定的RE上。如果多于一个DL控制信道元素用于单个DL控制信道传输,则可执行DL控制信道元素聚合。
聚合的DL控制信道元素的数量被称为DL控制信道元素聚合等级。DL控制信道元素聚合等级可为1或2到整数幂。gNB 160可通知UE 102哪些控制信道候选被映射到控制资源组中的OFDM符号的每个子组。如果一个DL控制信道被映射到单个OFDM符号且不跨越多个OFDM符号,则DL控制信道元素聚合在一个OFDM符号内执行,即多个DL控制信道元素在一个OFDM符号内聚合。否则,可在不同OFDM符号中聚合DL控制信道元素。
图7A、图7B、图7C和图7D示出了几个参数的示例。参数#1(μ=0)可以是基本的参数。例如,该基础参数的RE被限定为在频域中具有15kHz的子载波间隔,并且在时域中具有2048κTs+CP长度(例如,512κTs、160κTs或144κTs),其中Ts表示限定为1/(15000*2048)秒的基带采样时间单位。对于第μ个参数,子载波间隔可等于15*2μ,并且有效OFDM符号长度NuTs=2048*2-μκTs。这可使得符号长度为2048*2κTs+CP长度(例如,512*2κTs、160*2κTs或144*2κTs)。需注意,κ=64,Ts=1/(Δfmax·Nf),Δfmax=480·103Hz(例如,μ=5时的Δf),以及Nf=4096。换句话讲,第μ+1个参数的子载波间隔是第μ个参数的子载波间隔的两倍,并且第μ+1个参数的符号长度是第μ个参数的符号长度的一半。图7A、图7B、图7C和图7D示出了四个参数,但是系统可支持另一个数量的参数。
图8A、图8B和图8C示出了用于在相应的图7A、图7B和图7D中所示的参数的子帧结构的一组示例。这些示例基于设置为0的时隙配置。时隙包括14个符号,第μ+1个参数的时隙长度是第μ个参数的时隙长度的一半,并且最终子帧(例如,1ms)中的时隙数量会翻倍。可以指出的是,无线帧可包括10个子帧,并且无线帧长度可等于10ms。
图9A、图9B和图9C示出了用于在相应的图7A、图7B和图7D中所示的参数的子帧结构的另一组示例。这些示例基于设置为1的时隙配置。时隙包括7个符号,第μ+1个参数的时隙长度是第μ个参数的时隙长度的一半,并且最终子帧(例如,1ms)中的时隙数量会翻倍。
图10A、图10B、图10C、图10D、图10E和图10F示出了时隙和子时隙的示例。如果子时隙(例如,以OFDM符号或一组数个OFDM符号为单位的时域资源分配)不由高层配置,则UE102和gNB 160可以仅将时隙用作调度单元。更具体地,可将给定传输块分配给时隙。如果子时隙由高层配置,则UE 102和gNB 160可使用该子时隙以及时隙。子时隙可包括一个或多个OFDM符号。构成子时隙的OFDM符号的最大数量可为NSF,μ 符号-1。子时隙长度可由高层信令配置。另选地,子时隙长度可由物理层控制信道(例如,通过DCI格式)来指示。子时隙可以从时隙内的任何符号开始,除非它与控制信道冲突。基于起始位置的限制,微时隙长度可存在限制。例如,长度为NSF,μ 符号-1的子时隙可从时隙中的第二符号开始。子时隙的起始位置可由物理层控制信道(例如,通过DCI格式)来指示。另选地,子时隙的起始位置可来源于调度有关子时隙中的数据的物理层控制信道的信息(例如,搜索空间索引、盲解码候选索引、频率和/或时间资源索引、PRB索引、控制信道元素索引、控制信道元素聚合等级、天线端口索引等)。在配置子时隙的情况下,可将给定传输块分配给时隙、子时隙、聚合的子时隙或聚合的子时隙和时隙。该单元也可以是用于HARQ-ACK位生成的单元。
图11A、图11B、图11C和图11D示出了调度时间线的示例。对于正常的DL调度时间线,DL控制信道被映射到时隙的初始部分。DL控制信道调度同一时隙中的DL共享信道。用于DL共享信道的HARQ-ACK(例如,指示是否成功地检测到每个DL共享信道中的传输块的每一个HARQ-ACK)经由在后一时隙中的UL控制信道被报告。在这种情况下,给定时隙可包含DL传输和UL传输中的一者。对于正常的UL调度时间线,DL控制信道被映射到时隙的初始部分。DL控制信道调度后一时隙中的UL共享信道。对于这些情况,DL时隙和UL时隙之间的关联定时(时间偏移)可由高层信令来固定或配置。另选地,其可由物理层控制信道(例如,DL分配DCI格式、UL授权DCI格式或另一DCI格式,诸如可在公共搜索空间中被监视的UE公共信令DCI格式)来指示。
对于自给式基础DL调度时间线,DL控制信道被映射到时隙的初始部分。DL控制信道调度同一时隙中的DL共享信道。用于DL共享信道的HARQ-ACK被报告为映射在时隙的结束部分处的UL控制信道。对于自给式基础UL调度时间线,DL控制信道被映射到时隙的初始部分。DL控制信道调度同一时隙中的UL共享信道。
对于这些情况,时隙可包含DL部分和UL部分,并且DL传输和UL传输之间可存在保护时段。自给式时隙的使用可基于自给式时隙的配置。另选地,自给式时隙的使用可基于子时隙的配置。还另选地,自给式时隙的使用可基于缩短的物理信道(例如,PDSCH、PUSCH、PUCCH等)的配置。
可限定时隙格式指示符(Slot Format Indicator,SFI)以指定一个或多个时隙的格式。利用SFI,UE 102可能能够至少分别导出给定时隙中为“DL”、“UL”、“未知”和“保留”的那些符号。利用SFI,UE 102还可能能够导出SFI指示其格式的时隙的数量。SFI可通过专用RRC配置消息来进行配置。另选地和/或除此之外,SFI可由组公共PDCCH(例如,具有SF-RNTI的PDCCH)发送信号通知。还另选地和/或除此之外,SFI可经由主信息块(MasterInformation Block,MIB)或剩余的最小系统信息(Remaining Minimum SystemInformation,RMSI)被广播。
例如,3位SFI可表达高达8个的“DL”、“UL”、“未知”和“保留”的组合,每个组合由N时隙,μ 符号条符号类型组成。更具体地,鉴于N时隙,μ 符号=14,一个组合可以是“未知”、“未知”“未知”“未知”“未知”“未知”“未知”“未知”“未知”“未知”“未知”“未知”“未知”“未知”。另一组合可以是全“DL”,即,“DL”“DL”“DL”“DL”“DL”“DL”“DL”“DL”“DL”“DL”“DL”“DL”“DL”“DL”。另一组合可以是全“UL”,即,“UL”“UL”“UL”“UL”“UL”“UL”“UL”“UL”“UL”“UL”“UL”“UL”“UL”“UL”。另一组合可以是“DL”、“UL”和“保留”的组合,诸如“DL”“DL”“DL”“DL”“DL”“DL”“DL”“DL”“保留”“保留”“保留”“保留”“UL”。
“DL”符号可用于在UE 102侧处进行的DL接收和CSI/RRM测量。“UL”符号可用于在UE 102侧处进行的UL传输。“未知”资源可以是“灵活的”并且可至少被DCI指示覆盖。如果未被DCI和/或SFI指示覆盖,则“未知”可用于实现与“保留”相同的效果。“保留”资源可以是“未传输”和“未接收”,但不能被DCI/SFI指示覆盖。在“未知”符号上,UE 102可能不被允许假设由高层配置但不由DCI/SFI指示指示的任何DL和UL传输,例如,周期性CSI-RS、周期性CSI-IM、半持久调度CSI-RS、周期性CSI报告、半持久调度CSI报告、周期性SRS传输、高层配置的PSS/SSS/PBCH。
由DCI覆盖“未知”符号意味着UE 102可能必须仅假设由DCI指示指示的DL和UL传输(PDSCH传输、PUSCH传输、非周期性CSI-RS传输、非周期性CSI-IM资源、非周期性SRS传输)。由SFI覆盖“未知”符号意味着UE 102可能必须根据SFI指示将符号假设为“DL”、“UL”或“保留”。如果UE 102假设非周期性CSI-RS传输和/或非周期性CSI-IM资源,则UE 102可基于非周期性CSI-RS传输和/或非周期性CSI-IM资源执行CSI和/或RRM测量。如果UE 102不假设非周期性CSI-RS传输和/或非周期性CSI-IM资源,则UE 102可不使用非周期性CSI-RS传输和/或非周期性CSI-IM资源进行CSI和/或RRM测量。
如果服务小区是TDD小区并且是仅DL小区(具有下行链路部件载波但不具有上行链路部件载波的服务小区),则UE 102可将由SFI指示的“UL”解释为“未知”。另选地,如果服务小区是TDD小区并且是仅DL小区,则UE 102可将由SFI指示的“UL”解释为“保留”。如果服务小区是TDD小区并且是仅UL小区(不具有下行链路部件载波但具有上行链路部件载波的服务小区),则UE 102可将由SFI指示的“DL”解释为“未知”。另选地,如果服务小区是TDD小区并且是仅UL小区,则UE 102可将由SFI指示的“DL”解释为“保留”。
如果UE 102检测到指示用于调度PDSCH的时域资源分配包括“未知”符号的PDCCH,则UE 102可假设PDSCH映射在“未知”符号上。在这种情况下,存在用于处理“未知”符号上的其他DL传输(例如,非周期性CSI-RS传输、非周期性CSI-IM资源)的几个选项。第一选项是,除了调度的PDSCH之外,UE 102在“未知”符号上不假设任何其他DL传输。第二选项是,在分配用于调度的PDSCH的资源内,UE 102在“未知”符号上假设其他DL传输。在分配用于调度的PDSCH的资源之外,UE 102在“未知”符号上不假设任何其他DL传输。第三选项是,无论PDSCH的资源分配如何,UE 102均在“未知”符号上假设其他DL传输。换句话讲,“未知”符号被解释为“DL”。
UE 102可能必须监视“未知”符号上的PDCCH。可存在用于监视PDCCH的几个选项。如果为给定CORESET分配的所有OFDM符号均为“DL”,则UE 102可假设所有OFDM符号对于监视与给定CORESET相关联的PDCCH是有效的。在这种情况下,UE 102可假设CORESET中的每个PDCCH候选映射到所有OFDM符号以用于时间优先的REG到CCE映射。如果为给定CORESET分配的所有OFDM符号均为“未知”,则UE 102可假设所有OFDM符号对于监视与给定CORESET相关联的PDCCH是有效的。在这种情况下,UE 102可假设CORESET中的每个PDCCH候选映射到所有OFDM符号以用于时间优先的REG到CCE映射。
如果为给定CORESET分配的每个OFDM符号均为“UL”或“保留”,则UE 102可假设那些OFDM符号对于监视与给定CORESET相关联的PDCCH是无效的。如果为给定CORESET分配的OFDM符号中的一些OFDM符号为“DL”并且其余OFDM符号为“UL”或“保留”,或者如果为给定CORESET分配的OFDM符号中的一些OFDM符号为“未知”并且其余OFDM符号为“UL”或“保留”,则UE 102可假设仅“DL”或“未知”OFDM符号对于监视与给定CORESET相关联的PDCCH是有效的。在这种情况下,UE 102可假设CORESET持续时间中的每个PDCCH候选映射到所有“DL”OFDM符号但不映射到“UL”和“保留”符号。
换句话讲,UE 102可假设比由高层配置的CORESET持续时间短的CORESET持续时间。
如果为给定CORESET分配的OFDM符号中的一些OFDM符号为“DL”并且其余OFDM符号为“未知”,则UE 102可假设所有“DL”/“未知”OFDM符号对于监视与给定CORESET相关联的PDCCH均是有效的。在这种情况下,UE 102可假设CORESET持续时间中的每个PDCCH候选映射到所有“DL”/“未知”OFDM符号,并且可允许单个PDCCH候选跨“DL”和“未知”OFDM符号映射。另选地,如果为给定CORESET分配的OFDM符号中的一些OFDM符号为“DL”并且其余OFDM符号为“未知”,则UE 102可假设仅“DL”OFDM符号对于监视与给定CORESET相关联的PDCCH是有效的。在这种情况下,UE 102可假设CORESET持续时间中的每个PDCCH候选仅映射到“DL”OFDM符号而不映射到“未知”符号。换句话讲,UE 102可不假设单个PDCCH候选跨“DL”和“未知”OFDM符号映射。还另选地,可根据CORESET来设置UE 102遵循的假设。另选地和/或除此之外,如果在给定CORESET内通过“未知”将“DL”符号分成多于一个的符号集,则UE 102可假设仅第一(例如,最早的)“DL”OFDM符号集对于监视与给定CORESET相关联的PDCCH是有效的。
图12A是示出gNB 160的一个具体实施的框图。eNB 160可包括高层处理器1282、DL发射器(DL发射电路)1277、UL接收器(UL接收电路)1278和天线1280。DL发射器1277可包括PDCCH发射器(PDCCH传输电路)1271和PDSCH发射器(PDSCH传输电路)1272。UL接收器1278可包括PUCCH接收器(PUCCH接收电路)1273和PUSCH接收器(PUSCH接收电路)1274。高层处理器器1282可管理物理层的行为(DL发射器1277和UL接收器1278的行为),并且向物理层提供高层参数。高层处理器1282可从物理层获得传输块。高层处理器1282可向UE的高层发送/从UE的高层获取高层消息,诸如RRC消息和MAC消息。高层处理器1282可提供PDSCH发射器1272传输块,并且提供与传输块有关的PDCCH发射器1271传输参数。UL接收器1278可经由接收天线接收多路复用的上行链路物理信道和上行链路物理信号并对它们进行解复用。PUCCH接收器1273可提供高层处理器UCI。PUSCH接收器1274可向高层处理器1282提供接收的传输块。
图12B是由图12A中的gNB 160执行的方法的流程图。如流程图1200中所示,动作1202包括发送用于控制资源集(Control Resource Set,CORESET)的专用无线电资源控制(RRC)配置,该专用RRC配置包括用于指示是否将多时隙调度应用于CORESET中的物理下行链路控制信道(PDCCH)的信息。动作1204包括传输携带调度物理下行链路共享信道(PDSCH)的下行链路控制信息(DCI)格式的PDCCH,该DCI格式包括用于指示针对PDSCH的时域资源分配的信息字段。动作1206包括传输PDSCH。动作1208包括确定DCI格式的信息字段是否指示将多时隙调度应用于PDCCH。如果该信息指示应用多时隙调度,则流程图1200前进至动作1210,在该动作中,信息字段被解释为使得针对PDSCH的时域资源分配指定一个或多个聚合时隙。如果该信息指示不应用多时隙调度,则流程图1200前进至动作1212,在该动作中,信息字段被解释为使得针对PDSCH的时域资源分配指定单个时隙。
应当指出的是,在流程图1200中,在不脱离本专利申请的范围的情况下,可修改动作1202、1204、1206、1208、1210和1212的顺序和/或使用。此外,将参考本专利申请的图14至图30中的至少一者讨论动作1202、1204、1206、1208、1210和1212中的一者或多者的更多细节。
图12C是由图12A中的gNB 160执行的方法的流程图。如流程图1220中所示,动作1222包括(例如,通过上层处理器1282)发送用于下行链路时隙聚合的专用RRC配置。动作1224包括(例如,通过PDCCH传输电路1271)传输携带用于调度PDSCH的DCI格式的PDCCH。动作1226包括(例如,通过PDSCH传输电路1272)传输PDSCH。动作1228包括确定PDCCH是具有第一RNTI还是具有第二RNTI。如果PDCCH具有第一RNTI,则流程图1220前进至动作1230,在该动作中,下行链路时隙聚合应用于PDSCH。如果PDCCH具有第二RNTI,则流程图1220前进至动作1232,在该动作中,下行链路时隙聚合不应用于PDSCH。
应当指出的是,在流程图1220中,在不脱离本专利申请的范围的情况下,可修改动作1222、1224、1226、1228、1230和1232的顺序和/或使用。此外,将参考本专利申请的图14至图30中的至少一者讨论动作1222、1224、1226、1228、1230和1232中的一者或多者的更多细节。
图13A是示出UE 102的一个具体实施的框图。UE 102可包括高层处理器1324、UL发射器1358、DL接收器1320和天线1322。UL发射器1358可包括PUCCH发射器(PUCCH传输电路)1351和PUSCH发射器(PUSCH传输电路)1353。DL接收器1320可包括PDCCH接收器(PDCCH接收电路)1321和PDSCH接收器(PDSCH接收电路)1323。高层处理器1324可管理物理层的行为(UL发射器1358和DL接收器1320的行为),并且向物理层提供高层参数。高层处理器1324可从物理层获得传输块。高层处理器1324可向UE的高层发送/从UE的高层获取高层消息,诸如RRC消息和MAC消息。
高层处理器1324可向PUSCH发射器1353提供传输块并向PUCCH发射器1351提供UCI。DL接收器1320可经由接收天线接收多路复用的下行链路物理信道和下行链路物理信号并对它们进行解复用。PDCCH接收器1321可向高层处理器1324提供DCI。PDSCH接收器1323可向高层处理器1324提供接收的传输块。
对于下行链路数据传输,UE 102可尝试对一个或多个PDCCH(也称为控制信道)候选进行盲解码。该过程也称为对PDCCH的监视。PDCCH可携带调度PDSCH(也称为共享信道或数据信道)的DCI格式。gNB 160可在下行链路时隙中传输PDCCH和对应的PDSCH。在下行链路时隙中检测到PDCCH时,UE 102可在下行链路时隙中接收对应的PDSCH。否则,UE 102可不在下行链路时隙中执行PDSCH接收。
图13B是由图13A中的UE 102执行的方法的流程图。如流程图1300中所示,动作1362包括获取用于控制资源集(CORESET)的专用无线电资源控制(RRC)配置,该专用RRC配置包括用于指示是否将多时隙调度应用于CORESET中的物理下行链路控制信道(PDCCH)的信息。动作1364包括监视携带调度物理下行链路共享信道(PDSCH)的下行链路控制信息(DCI)格式的PDCCH,该DCI格式包括用于指示针对PDSCH的时域资源分配的信息字段。动作1366包括接收PDSCH。动作1368包括确定DCI格式的信息字段是否指示将多时隙调度应用于PDCCH。如果该信息指示应用多时隙调度,则流程图1300前进至动作1370,在该动作中,信息字段被解释为使得针对PDSCH的时域资源分配指定一个或多个聚合时隙。如果该信息指示不应用多时隙调度,则流程图1300前进至动作1372,在该动作中,信息字段被解释为使得针对PDSCH的时域资源分配指定单个时隙。
应当指出的是,在流程图1300中,在不脱离本专利申请的范围的情况下,可修改动作1362、1364、1366、1368、1370和1372的顺序和/或使用。此外,将参考本专利申请的图14至图30中的至少一者讨论动作1362、1364、1366、1368、1370和1372中的一者或多者的更多细节。
图13C是由图13A中的UE 102执行的方法的流程图。如流程图1380中所示,动作1382包括(例如,通过上层处理器1324)获取用于下行链路时隙聚合的专用RRC配置。动作1384包括(例如,通过PDCCH接收电路1321)监视携带用于调度PDSCH的DCI格式的PDCCH。动作1386包括(例如,通过PDSCH接收电路1323)接收PDSCH。动作1388包括(例如,通过上层处理器1324)确定DCI格式的信息字段是否指示将多时隙调度应用于PDCCH。如果PDCCH具有第一RNTI,则流程图1380前进至动作1390,在该动作中,下行链路时隙聚合应用于PDSCH。如果PDCCH具有第二RNTI,则流程图1380前进至动作1392,在该动作中,下行链路时隙聚合不应用于PDSCH。
应当指出的是,在流程图1380中,在不脱离本专利申请的范围的情况下,可修改动作1382、1384、1386、1388、1390和1392的顺序和/或使用。此外,将参考本专利申请的图14至图30中的至少一者讨论动作1382、1384、1386、1388、1390和1392中的一者或多者的更多细节。
图14示出了控制资源单元和参考信号结构的示例。在频域中,控制资源集(CORESET)可被限定为一组物理资源块(Physical Resource Block,PRB)。例如,控制资源集可包括频域中的PRB#i、PRB#i+1、PRB#i+2和PRB#i+3。控制资源集在时域中也可被限定为一组OFDM符号。控制资源集还可被称为控制资源集的持续时间或仅被称为控制资源集持续时间。例如,控制资源集在时域中可包括三个OFDM符号,即,OFDM符号#0、OFDM符号#1和OFDM符号#2。UE 102可监视一个或多个控制资源集中的PDCCH。可通过专用RRC信令(例如,经由专用RRC重新配置)相对于每个控制资源集来配置PRB集。控制资源集持续时间还可通过专用RRC信令相对于每个控制资源集来进行配置。
在图14所示的控制资源单元和参考信号结构中,控制资源单元被限定为一组资源元素(RE)。每个控制资源单元包括单个OFDM符号内和单个PRB(例如,连续12个子载波)内的所有RE(例如,12个RE)。参考信号(RS)映射到的RE可计为那些RE,但RS的RE不可用于PDCCH传输,并且PDCCH未映射在RS的RE上。
多个控制资源单元可用于单个PDCCH的传输。换句话讲,可将一个PDCCH映射到被包括在多个控制资源单元中的RE。图14示出一个示例,其中,假设位于相同频率下的多个控制资源单元携带一个PDCCH时,UE102对PDCCH候选执行盲解码。然而,用于PDCCH解调的RS可以被包含在PDCCH映射到的所有资源单元中。可以不允许UE 102假设在给定资源单元中包含的RS可用于对不同资源单元进行解调。这可增加PDCCH传输的分集增益,因为gNB 160可针对不同的资源单元应用不同的预编码器。另选地,可以允许UE 102假设在给定资源单元中包含的RS可用于对相同PRB内的不同资源单元进行解调。这可提高信道估计准确性,因为gNB 160可对PRB内的更多RS应用相同的预编码器。
图15示出了控制信道和共享信道复用的示例。存在用于确定PDSCH的起始位置(例如,起始OFDM符号的索引)的几种方法。
第一种方法是经由调度PDCCH指示PDSCH的起始位置。更具体地,调度PDSCH的DCI格式可包括用于指示调度的PDSCH的起始位置的信息字段。该选项提供最灵活的数据起始位置调整。
第二种方法是除PDCCH之外的信道指示调度的PDSCH的起始位置。例如,一些公共控制信道可在时隙中的OFDM符号#0上传输,并且公共控制信道可包括用于指示PDSCH在相同时隙中的起始位置的信息字段。鉴于该公共控制信道由多个UE 102监视,该方法减少了相同控制信息的传输的重复,并带来更有效的信令。
第三种方法是根据用于调度PDCCH传输的控制信道资源隐式地确定PDSCH起始位置。例如,PDSCH可在紧接调度PDCCH映射到的最后一个符号之后的符号上开始。该选项不会导致附加的控制信令开销。
UE 102可包括被配置为获取专用RRC消息的高层处理器。专用RRC消息可包括指示控制资源集持续时间和/或下行链路时隙聚合的信息。UE102还可包括PDCCH接收电路,该PDCCH接收电路被配置为基于控制资源集持续时间来监视PDCCH。PDCCH可携带DCI格式,该DCI格式在相同的时隙中调度PDSCH。PDCCH可携带RNTI,用于指示下行链路时隙聚合是否应用于PDSCH。DCI格式还可包括指示PDSCH起始位置的信息字段。UE 102还可包括PDSCH接收电路,该PDSCH接收电路被配置为在检测到对应PDCCH时基于PDSCH起始位置来接收PDSCH。
gNB 160可包括被配置为发送专用RRC消息的高层处理器。专用RRC消息可包括指示控制资源集持续时间和/或下行链路时隙聚合的信息。gNB 160还可包括PDCCH传输电路,该PDCCH传输电路被配置为基于控制资源集持续时间来传输PDCCH。
PDCCH可携带DCI格式,该DCI格式在相同的时隙中调度PDSCH。PDCCH可携带RNTI,用于指示下行链路时隙聚合是否应用于PDSCH。DCI格式还可包括指示PDSCH起始位置的信息字段。gNB 160还可包括PDSCH传输电路,该PDSCH传输电路被配置为在传输对应PDCCH时基于PDSCH起始位置来传输PDSCH。
图16示出了控制信道和共享信道复用的示例。更具体地,UE 102可监视控制资源集中的PDCCH候选。PDCCH候选集也可以称为搜索空间。控制资源集可由频域中的PRB集和时域中以OFDM符号为单位的持续时间来限定。
对于每个服务小区,高层信令(诸如公共RRC消息或UE专用RRC消息)可为UE 102配置用于PDCCH监视的一个或多个PRB集。对于每个服务小区,高层信令(诸如公共RRC消息或UE专用RRC消息)还可为UE 102配置用于PDCCH监视的控制资源集持续时间。
每个控制资源集可包括一组控制信道元素(CCE)。每个CCE可映射到包括多个RE的一组资源元素组(Resource Element Group,REG)。在控制资源集中,组公共PDCCH可由gNB160传输。如果UE 102被配置为通过高层信令来监视组公共PDCCH,则UE 102可监视组公共PDCCH。组公共PDCCH可以是具有由某些RNTI加扰的CRC的PDCCH,其可以是固定的或独立于C-RNTI配置的。另选地,组公共PDCCH可以是具有DCI格式的PDCCH,其中RNTI字段值被设置为特定的RNTI。
在控制资源集中,UE特定的PDCCH可由gNB 160传输。UE 102可监视PDCCH。UE特定的PDCCH可以是具有由UE 102的C-RNTI加扰的CRC的PDCCH。另选地,UE特定的PDCCH可以是具有DCI格式的PDCCH,其中RNTI字段值被设置为UE 102的C-RNTI。PDCCH的监视可能意指尝试根据受监视的DCI格式对集中的每个PDCCH候选进行解码。UE 102可监视控制资源集内的公共搜索空间。UE 102还可监视控制资源集内的UE特定搜索空间。可在公共搜索空间和UE特定搜索空间两者中监视UE特定PDCCH,而可仅在公共搜索空间中监视组公共PDCCH。UE特定PDCCH可调度PDSCH。UE 102可能不需要监视时隙中的组公共PDCCH,其中UE102将至少使用时隙的第一OFDM符号来进行调度的上行链路传输。
在检测到UE特定PDCCH时,UE 102可接收对应的PDSCH。UE特定PDCCH的DCI格式可包括一个或多个信息字段,例如,用于指示PDSCH的资源块分配的字段、用于指示PDSCH的起始位置(携带PDSCH的第一OFDM符号的索引)的字段、用于指示PDSCH的调制阶数和传输块大小的字段等。组公共PDCCH、UE特定PDCCH和PDSCH可映射到不同的RE集,使得它们彼此不会发生冲突。
组公共PDCCH可包括一个或多个信息字段。该字段的示例是用于指示UE特定PDCCH盲解码尝试减少的字段。更具体地,该信息字段可指示控制资源集持续时间,该控制资源集持续时间覆盖由高层信令配置的控制资源集持续时间。由组公共PDCCH指示的控制资源集持续时间可能必须等于或短于由高层信令配置的控制资源集持续时间。另选地,该信息字段可指示该控制资源集持续时间比由高层信令配置的控制资源集持续时间短多少。在这种情况下,由组公共PDCCH指示的偏移和由高层信令配置的初始控制资源集持续时间来导出更新的控制资源集持续时间。还另选地,PDCCH候选的减少可通过使用占PDCCH候选总数的百分比a来指示。更具体地,如果该组公共PDCCH指示用于服务小区的聚合等级L的值a,则PDCCH候选的对应数量可由以下公式给出:M(L)=round(a×M(L) full),其中,M(L) full为用于聚合等级L的PDCCH候选的原始(例如,最大)数量。
该字段的另一个示例是用于指示UE 102不为其假设任何信号的频率和/或时间资源的字段。更具体地,对于这些资源,UE 102可不监视PDCCH,UE 102可不接收PDSCH,UE 102可假设用于CSI测量的有效CSI-RS传输,UE 102可假设有效的主同步信号(PrimarySynchronization Signal,PSS)/辅同步信号(Secondary Synchronization Signal,SSS)/物理广播信道(Physical Broadcast Channel,PBCH)传输,并且UE 102可不传输包括PUCCH、PUSCH和SRS的任何上行链路信号/信道。
检测组公共PDCCH的UE 102可遵循由组公共PDCCH指示的子时隙结构。例如,如果UE 102被配置为具有基于子时隙的通信,则UE 102可监视由所指示的子时隙结构限定的每个子时隙的第一OFDM符号上的PDCCH。换句话讲,组公共PDCCH可指示OFDM符号集,在该符号集上,UE 102监视用于基于子时隙的通信的PDCCH候选。如果UE 102被配置为具有基于子时隙的通信,并且UE 102已检测到PDCCH,则UE 102可接收映射到由所指示的子时隙结构限定的一个或多个子时隙的对应PDSCH。如果UE 102被配置为具有基于子时隙的通信并且UE102已接收到PDSCH,则UE 102可在映射到由所指示的子时隙结构限定的一个或多个子时隙的PUCCH上传输对应的HARQ-ACK。子时隙结构还可能能够限定每个子时隙是下行链路子时隙,还是上行链路子时隙,亦或是GP子时隙。
如果UE 102在时隙i中检测到组公共PDCCH,并且UE 102在时隙i之前已接收到在时隙i中调度PDSCH接收、CSI-RS接收、PUSCH传输或SRS传输的PDCCH,则用于PDSCH接收、CSI-RS接收、PUSCH传输或SRS传输的分配资源(例如,OFDM符号)与组公共PDCCH所指示的子时隙结构不一致时,UE 102可丢弃时隙i中的PDSCH接收、CSI-RS接收、PUSCH传输或SRS传输。例如,UE 102将使用给定时隙中的给定子时隙来接收PDSCH,但该时隙中的组公共PDCCH可指示其中在该时隙中不存在此类子时隙的子时隙结构。在这种情况下,UE 102可假设PUSCH未被传输。又如,UE 102将在给定时隙中传输基于子时隙的PUSCH,但该时隙中的组公共PDCCH可指示其中在该时隙中不存在子时隙的子时隙结构。在这种情况下,UE 102可丢弃基于子时隙的PUSCH传输。
图17示出了控制信道和共享信道复用的另一示例。在这种情况下,PDSCH的起始位置被设置为时隙的第一OFDM符号,并且分配给PDSCH的PRB与已由UE 102检测到的PDCCH部分重叠。
对于与调度PDSCH的PDCCH重叠的PRB,PDSCH的起始位置下降到紧接PDCCH映射到的最后一个符号之后的OFDM符号或紧接原始控制资源集持续时间之后的OFDM符号。在这种情况下,当RB对的第一几个OFDM符号用于任何天线端口上的PDCCH传输时,PDSCH可能未映射到任何天线端口上的RB对的第一几个OFDM符号中的任何资源元素,并且PDCCH所占用的资源元素可不计入到PDSCH映射中并且不用于PDSCH的传输。
对于与组公共PDCCH重叠的PRB,PDSCH的起始位置下降到紧接PDCCH映射到的符号(例如,第一OFDM符号)之后的OFDM符号(例如,第二OFDM符号)或紧接原始控制资源集持续时间之后的OFDM符号。在这种情况下,当RB对的第一几个OFDM符号用于任何天线端口上的PDCCH传输时,PDSCH可能未映射到任何天线端口上的RB对的第一几个OFDM符号中的任何资源元素,并且该组公共PDCCH所占用的资源元素可计入PDSCH映射中,但不用于PDSCH的传输。另选地,那些资源元素可计入PDSCH映射中,并且不用于PDSCH的传输。
图18示出了控制信道映射的示例。对于每个服务小区,高层信令可以为UE配置Q个控制资源集。对于控制资源集q(0≤q<Q),该配置可以包括(a)高层参数提供的第一OFDM符号,(b)高层参数提供的多个连续OFDM符号,(c)高层参数提供的一组资源块,(d)高层参数提供的CCE到REG的映射,(e)高层参数提供的交织CCE到REG映射的情况下的REG束大小,以及(f)高层参数提供的天线端口准协同定位。在图18示出的示例中,gNB 160为UE 102配置多于一个的控制资源集,并且至少两个所配置的控制资源集(例如,控制资源集#0和控制资源集#1)完全或部分重叠。这可造成控制资源集#0中的PDCCH候选与控制资源集#1中的PDCCH候选完全重叠的情况。
在这种情况下,如果UE 102对此类PDCCH候选成功地进行了解码,则UE 102可假设检测到的PDCCH候选属于控制资源集#0(例如,具有较小控制资源集索引的控制资源集)。如果UE 102被配置为监视控制资源集#0中的公共搜索空间,则公共搜索空间中的候选可与控制资源集#1的UE特定搜索空间中的PDCCH候选完全重叠。在这种情况下,如果UE102对此类PDCCH候选成功地进行了解码,则UE 102可假设检测到的PDCCH候选是公共搜索空间的PDCCH。另选地,UE 102可假设检测到的PDCCH候选是UE特定搜索空间的PDCCH。
如果UE 102被配置为监视控制资源集#0中的组公共PDCCH,则组公共PDCCH的候选可与控制资源集#1中的PDCCH候选完全重叠。在这种情况下,如果UE 102对此类PDCCH候选成功地进行了解码,则UE102可假设检测到的PDCCH候选是组公共PDCCH。另选地,UE 102可假设检测到的PDCCH候选是控制资源集#1的PDCCH(例如,除组公共PDCCH之外的其他PDCCH)。
UE 102可包括被配置为获取专用RRC消息的高层处理器。专用RRC消息可包括指示子时隙配置的信息。UE 102还可包括被配置为监视时隙中的第一PDCCH的第一PDCCH接收电路。第一PDCCH可指示时隙中的子时隙结构。UE 102还可包括第二PDCCH接收电路,该第二PDCCH接收电路被配置为基于子时隙结构来监视时隙中的第二PDCCH。第二PDCCH可调度基于子时隙的PDSCH。
gNB 160可包括被配置为发送专用RRC消息的高层处理器。专用RRC消息可包括指示子时隙配置的信息。gNB 160还可包括被配置为在时隙中传输第一PDCCH的第一PDCCH传输电路。第一PDCCH可指示时隙中的子时隙结构。gNB 160还可包括第二PDCCH传输电路,该第二PDCCH传输电路被配置为基于子时隙结构在时隙中传输第二PDCCH。第二PDCCH可调度基于子时隙的PDSCH。
DL分配和对应的DL数据传输之间的定时可由来自一组值的DCI中的字段来指示,UL分配和对应的UL数据传输之间的定时可以由来自一组值的DCI中的字段来指示,并且DL数据接收和对应确认之间的定时可以由来自一组值的DCI中的字段来指示。这些组的值可通过高层信令来配置。可至少在UE 102不知道定时的情况下预先限定默认定时。
图19示出了下行链路调度和HARQ时间线的示例。在时隙n中由gNB 160传输的PDCCH可携带调度PDSCH的DCI格式,该DCI格式包括至少两个字段,其中第一字段可指示k1,并且第二字段可指示k2
在时隙n中检测PDCCH的UE 102可在时隙n+k1中接收调度的PDSCH,并且然后在时隙n+k1+k2中,UE 102可报告与PDSCH对应的HARQ-ACK。另选地,第二字段可指示m,并且UE102可在时隙n+m中报告HARQ-ACK。换句话讲,在时隙i-k1中检测到对应PDCCH时,UE 102可在时隙i中接收PDSCH,并且UE 102可在时隙j中传输HARQ-ACK,用于在时隙j-k2中进行PDSCH传输。另选地,UE 102可在时隙j中传输HARQ-ACK,用于由时隙j-m中的对应PDCCH调度的PDSCH传输。
图20示出了上行链路调度时间线的示例。由gNB 160在时隙n中传输的PDCCH可携带调度PUSCH的DCI格式,该DCI格式包括至少可指示k3的字段。检测时隙n中的PDCCH的UE102可在时隙n+k3中传输调度的PUSCH。换句话讲,在时隙i-k3中检测到对应的PDCCH时,UE102可在时隙i中传输PUSCH,
图21示出了下行链路非周期性CSI-RS传输时间线的示例。由gNB160在时隙n中传输的PDCCH可携带指示非周期性CSI-RS的存在的DCI格式,该DCI格式至少包括可指示k4的字段。在时隙n中检测到PDCCH的UE 102可假设时隙n+k4中存在非周期性CSI-RS,用于CSI测量和/或无线电资源管理(RRM)测量。
图22示出了上行链路非周期性SRS传输时间线的示例。由gNB 160在时隙n中传输的PDCCH可携带调度非周期性SRS的DCI格式,该DCI格式至少包括可指示k5的字段。在时隙n中检测到PDCCH的UE 102可在时隙n+k5中传输调度的非周期性SRS。换句话讲,在时隙i-k5中检测到对应的PDCCH时,UE 102可在时隙i中传输非周期性SRS。
上述字段中每一者的存在/禁用可通过高层信令来配置。存在/禁用的配置在那些字段中可能很常见。另选地,可单独地配置存在/禁用。如果字段中的至少一者不存在或被禁用,则可替代性地使用默认值(例如,预定义的固定值或系统信息中包含的值)。例如,k1的默认值(例如,在图19中)可以是0,并且k2或k3的默认值(例如,在图19和图20中)可以是4。
图23示出了指定显式定时指示的值的表。如果该字段存在,则UE102可通过高层信令被配置为具有多个值(例如,第一值至第四值)。该字段的可能值中的每一者(例如,2位字段)可与所配置的值中的不同值对应。UE 102可使用作为k值的值,该值与在所检测的PDCCH中的相关联字段中的字段值集对应。
图24示出了指定显式定时指示的值的另一个表。UE 102可通过高层信令被配置为具有多个值(例如,第一值至第三值)。该字段的至少一个可能值(例如,2位字段)可与预定义的固定值对应。该字段的可能值中的其余值中的每一者(例如,2位字段)可与所配置的值中的不同值对应。
UE 102可使用作为k值的值,该值与在所检测的PDCCH中的相关联字段中的字段值集对应。在这种情况下,在该字段的存在不可配置的情况下,gNB 160可使用预定义的固定值,使得即使在用于那些高层配置的值的RRC(重新)配置期间,gNB 160和UE 102也共享相同的k值。预定义的固定值可取决于定时偏移类型。例如,k1的值可以是0,并且k2或k3的值可以是4。另选地,可以使用通过系统信息指示的值,而不是预定义的固定值。
UE 102可包括被配置为获取专用RRC消息的高层处理器。专用RRC消息可包括指示第一值的信息。UE 102还可包括PDCCH接收电路,该PDCCH接收电路被配置为在时隙n中监视具有DCI格式的PDCCH。该DCI格式可包括指示至少两个值、与固定值对应的一个值、与第一值对应的另一值中的一者的信息字段。UE 102可将k设置为所指示的值。UE 102还可包括PDSCH接收电路,该PDSCH接收电路被配置为在检测到PDCCH时接收时隙n+k中的PDSCH。
gNB 160可包括被配置为发送专用RRC消息的高层处理器。gNB 160还可包括PDCCH传输电路,该PDCCH传输电路被配置为在时隙n中传输具有DCI格式的PDCCH。该DCI格式可包括指示至少两个值、与固定值对应的一个值、与第一值对应的另一值中的一者的信息字段。gNB 160可将k设置为所指示的值。gNB 160还可包括PDSCH传输电路,该PDSCH传输电路被配置为在传输PDCCH时在时隙n+k中传输PDSCH。
在一些情况下,UE 102可能不需要监视组公共PDCCH。组公共PDCCH可以被限定为携带具有由某个RNTI(例如,组公共-(GC-)RNTI)加扰的CRC的DCI格式的PDCCH。可能存在几种类型的GC-RNTI。GC-RNTI中的一者可以通过专用RRC配置进行配置。GC-RNTI中的另一者可由系统信息(例如,MIB、最小SIB)从预定的RNTI集中指示。例如,在建立RRC连接之前,UE102可能不监视组公共PDCCH。在这种情况下,UE 102可能够接收PDCCH以及由PDCCH调度的PDSCH。此外,UE 102可能能够传输对应于PDSCH的PUCCH并传输由PDCCH调度的PUSCH。可将该行为称为默认行为。另一方面,可能存在这样的情况:即使UE 102被配置为监视组公共PDCCH,UE 102也不接收(例如,未能接收)所配置的组公共PDCCH。在该实例中,当UE 102可不监视组公共PDCCH时,UE 102可遵循针对该情况所限定的UE行为。另选地,UE102可遵循不同的UE行为,例如,UE 102不监视UE特定PDCCH,也不接收PDSCH。此外,UE 102可不传输PUCCH或PUSCH。还另选地,gNB 160可向UE 102发送指示用于该实例的UE行为的专用RRC信令。
例如,专用RRC信令可指示上述行为中的一者。
如图10和图11中所述,UE 102和gNB 160可以支持灵活的时域资源分配方案,包括灵活的调度和/或HARQ-ACK定时,以及灵活的下行链路(例如,PDSCH)和/或上行链路(PUSCH)持续时间。UE 102和gNB 160可支持至少三个时域资源分配方案(例如,基于单时隙的方案、基于多时隙的方案和基于非时隙的方案)。
对于基于单时隙的方案,gNB 160可至少向UE 102通知该时隙中的起始符号和结束符号以及其应用于哪个时隙(例如,时隙偏移)。
利用基于多时隙的方案,可使用聚合时隙多次传输单个传输块(TB)。对于基于多时隙的方案,就gNB 160通知UE 102的信息而言,可存在三个选项。选项1是,gNB 160向UE102通知聚合时隙中的每个时隙的起始符号和结束符号,以及其应用于的起始时隙和结束时隙(例如,时隙偏移)。在选项1中,在聚合时隙中,可单独地和/或独立地设置每个时隙的起始符号和结束符号。选项2是,gNB 160向UE 102通知时隙的起始符号和结束符号,以及其应用于的起始时隙和结束时隙(例如,时隙偏移)。在选项2中,同一组的起始符号和结束符号应用于所有聚合时隙。选项3是,gNB160向UE 102通知起始符号和起始时隙以及结束符号和结束时隙。专用RRC配置消息可包括用于指示选项1至选项3中的一者的信息(例如,用于基于多时隙的调度配置的信息元素)。在这种情况下,gNB 160可为UE102配置选项1至选项3中的一者,并且UE 102可假设所配置的选项。
传输块大小(Transport Block Size,TBS)可至少由包括以下各项的参数确定:码字映射到其上的层的数量、调度PDSCH/PUSCH的时间/频率资源、调制顺序和编码率。
调度PDSCH/PUSCH的时间/频率资源可为可用于PDSCH/PUSCH的RE的总数量。另选地,其可由每个PRB的每个时隙的RE的参考数量和用于携带PDSCH/PUSCH的PRB的数量给出。对于多时隙调度,TBS可由第一时隙的参数确定,并且TBS可应用于第二时隙和之后的时隙。另选地,TBS可由聚合时隙的参数集确定,并且TBS可应用于所有聚合时隙。
对于基于单时隙的调度,物理层可针对每个时隙将HARQ-ACK递送至MAC层。对于基于多时隙的调度,物理层还可以每时隙一次的速度将HARQ-ACK递送至MAC层。另选地,对于基于多时隙的调度,物理层还可以每聚合时隙一次的速度将HARQ-ACK递送至MAC层。
利用基于非时隙的方案,可在PDSCH/PUSCH中传输单个传输块(Transport Block,TB),允许跨时隙边界将该PDSCH/PUSCH映射到资源网格。对于基于非时隙的方案,可向UE102通知起始符号和结束符号。就gNB 160向UE 102通知关于起始符号的信息而言,可存在两个选项。选项S1是,gNB 160向UE 102通知时隙的起始符号,并且UE 102还被通知其应用于哪个时隙(例如,时隙偏移)。选项S2是,gNB 160向UE102通知来自PDCCH的起始的符号编号,其中包括调度PDCCH。专用RRC配置消息可包括用于指示选项S1和选项S2中的一者的信息(例如,用于基于非时隙的调度配置的信息元素)。在这种情况下,gNB 160可为UE 102配置选项S1和选项S2中的一者,并且UE 102可假设所配置的选项。类似地,就gNB 160向UE102通知关于结束符号的信息而言,可存在两个选项。选项E1是,gNB 160向UE 102通知时隙的结束符号,并且UE 102还被通知其应用于哪个时隙。选项E2是,gNB 160向UE 102通知来自起始符号的符号的数量(例如,PDSCH/PUSCH持续时间)。专用RRC配置消息可包括用于指示选项E1和选项E2中的一者的信息(例如,用于基于非时隙的调度配置的信息元素)。在这种情况下,gNB 160可为UE 102配置选项E1和选项E2中的一者,并且UE 102可假设所配置的选项。
应当指出的是,起始符号是包括DMRS符号的PDSCH或PUSCH的最早符号。此外,结束符号是时隙中PDSCH或PUSCH的最新符号。
当由RRC信令(例如,经由专用RRC配置消息)来配置时隙偏移时,单个偏移值可应用于那些方案。另选地,时隙偏移是否由RRC信令来配置,并且如果是,则在那些方案之间,为时隙偏移配置哪个值可彼此无关。此外,基于单时隙的方案的时隙偏移值范围或基于非时隙的方案的时隙偏移值范围可不同于基于多时隙方案的时隙偏移值范围(例如,相对较小)。基于单时隙的方案的时隙偏移值范围可不同于基于非时隙的方案的时隙偏移值范围。
调度方案可动态地变化。DCI格式可包括用于指示使用哪个方案的信息字段。UE102可假设所指示的方案根据时域PDSCH/PUSCH资源分配字段导出时域PDSCH/PUSCH资源分配。另选地,那些调度方案可对应于不同的DCI格式。例如,DCI格式1A、1B和1C可分别使用基于单时隙的方案、基于多时隙的方案和基于非时隙的方案。UE 102可假设与检测到的DCI格式对应的方案根据时域PDSCH/PUSCH资源分配字段导出时域PDSCH/PUSCH资源分配。
可半静态地配置调度方案。专用RRC配置消息可包括用于指示是否启用基于多时隙的方案的信息以及/或用于指示是否启用基于非时隙的方案的信息。可以指出的是,无论RRC配置如何,均可始终启用基于单时隙的方案。
是否启用基于多时隙的方案和/或是否启用基于非时隙的方案的配置可以根据CORESET进行配置(例如,可将该配置包括在CORESET配置中)。在这种情况下,UE 102可假设所配置的方案根据CORESET中的PDCCH中的时域PDSCH/PUSCH资源分配字段导出时域PDSCH/PUSCH资源分配(如果配置了的话)。否则,UE 102可假设基于单时隙的调度方案。在CORESET中监视的时域PDSCH/PUSCH资源分配字段的位大小和PDCCH候选的DCI格式大小可根据该配置而变化。
是否启用基于多时隙的方案和/或是否启用基于非时隙的方案的配置可针对PDSCH和PUSCH分开进行配置。另选地,单个配置可应用于PDSCH和PUSCH两者。
是否启用基于多时隙的方案和/或是否启用基于非时隙的方案的配置可以根据DCI格式进行配置(例如,可将该配置包括在DCI格式配置中)。在这种情况下,UE 102可假设所配置的方案根据DCI格式中的时域PDSCH/PUSCH资源分配字段导出时域PDSCH/PUSCH资源分配(如果配置了的话)。否则,UE 102可假设基于单时隙的调度方案。时域PDSCH/PUSCH资源分配字段的位大小和DCI格式的总大小可根据该配置而变化。
是否启用基于多时隙的方案和/或是否启用基于非时隙的方案的配置可以根据RNTI进行配置(例如,可将该配置包括在RNTI配置中)。在这种情况下,该配置可应用于具有特定RNTI(例如,C-RNTI)的DCI格式,而另一种配置可应用于具有另一特定RNTI(例如,SPSC-RNTI)的DCI格式。
上述配置可仅应用于USS中的DCI格式。在CSS(例如,一种或多种类型的CSS)中监视的DCI格式可始终使用基于单时隙的调度方案。上述配置可仅应用于具有某RNTI(例如,C-RNTI)的DCI格式。
具有其他RNTI(例如,SI-RNTI、P-RNTI)的DCI格式可始终使用基于单时隙的调度方案。
PDCCH可在频率上连续地或非连续地映射,其中,REG局部地或分布式地映射到CCE(在物理域中)。CCE可映射到在一个或多个控制资源组(也称为CORESET)内具有交织或非交织REG索引的REG。CCE可映射到控制资源集内具有交织或非交织REG索引的REG。UE 102可假设预编码粒度是频域中的多个RB(如果配置了的话)。此外,UE 102可假设预编码粒度是时域中的多个OFDM符号(如果配置了的话)。为了增大这些预编码粒度,可限定REG捆绑。UE102可假设将同一预编码器用于REG束中的REG,并假设REG束中的REG在频率和/或时间上是连续的。PDCCH可支持每个CCE的REG捆绑。频域和/或时域中的REG束大小可通过专用RRC信令来配置。CSS上PDCCH的REG束大小可以是固定的,也可以由可由MIB或SIB携带的系统信息指示。REG束大小可以是1(例如,频域中的1RB,时域中的1OFDM符号),其中,这可以是默认REG束大小配置(例如,UE 102未被配置为具有任何REG束大小时的REG束大小),或者这种情况也可以通过REG捆绑禁用的配置来实现。
UE 102可监视一个或多个控制资源集(也称为CORESET)内的一组PDCCH候选。gNB160可传输用于控制资源集中的UE 102的PDCCH。单个控制资源集可由频域中的资源块(RB)集(例如,控制资源RB集)和时间域中的控制资源集持续时间来限定。RB集包含的RB可以是连续的或可以是不连续的。如果RB集被限制为是连续的,则RB集可由RB集中包括的起始RB索引(例如,频域中的起始位置)和RB数量(例如,带宽,也称为频域中的长度)来确定。如果RB集未被限制为是连续的,则RB集可由位图信息表示,其中“1”指示RB集中包括对应的RB,并且“0”指示RB集中不包括对应的RB。位图序列的长度可取决于用于RB集的RB分配的粒度。例如,如果位图序列的每个位与不同的RB对应,则该长度可等于M,即,服务小区的系统带宽内的RB的数量。如果位图序列的每个位与由N个连续的RB组成的不同RB组对应,则该长度可等于ceiing(M/N)。
PDCCH可包括一个或多个控制信道元件(CCE)。控制资源集由频域中的NCORESET RB资源块和时域中的NCORESET 符号∈{1,2,3}符号组成,其中仅当服务小区的下行链路系统带宽大于或等于阈值时才可以支持NCORESET 符号=3。控制信道元素可包括6个资源元素组(REG),其中一个资源元素组等于一个资源块。以时间优先的方式,从控制资源集中的第一OFDM符号和编号最小的资源块为0开始,对控制资源集内的资源元素组按递增顺序进行编号。每个控制资源集可以仅与一个CCE到REG映射相关联。控制资源集的CCE到REG映射可以是交织的或非交织的。CCE到REG的映射可由REG束描述。REG束i可以被限定为REG{i,i+1,…,i+L-1},其中L是REG束大小。CCE j由REG束{f(j),f(j+1),…,f(j+6/L-1)}组成,其中f(·)是交织器。对于非交织的CCE到REG映射,L=6且f(i)=i。对于交织的CCE到REG映射,当NCORESET 符号=1时,L∈{2,6},且当NCORESET 符号={2,3}时,L∈{NCORESET 符号,6}。UE可假设跨REG束使用相同的预编码。
图25A、图25B和图25C示出了在控制信道和共享信道之间的控制信道资源集内资源共享的示例。用于UE1和UE2的PDCCH(例如,PDCCH1和PDCCH2)分别为UE1和UE2调度PDSCH(例如,PDSCH1和PDSCH2)。在该示例中,UE1和UE2被配置为具有相同的控制资源RB集。此外,用于UE1和UE2两者的控制资源集持续时间被设置为2个OFDM符号。由PDCCH1携带的DCI格式可包括指示PDSCH1的起始位置(例如,起始OFDM符号的索引)的信息字段。由PDCCH2携带的DCI格式还可包括指示PDSCH2的起始位置的信息字段。
gNB 160可为PDSCH设置适当的起始位置,使得PDSCH不与PDCCH发生冲突。在图25A的情况下,PDSCH1被设置为在OFDM符号#2处开始,使得即使PDSCH1被分配与用于PDCCH1的PRB相同的PRB,它也不会与PDCCH2发生冲突。如果PDCCH1未被分配如图25B所示的另一UE的PDCCH,则PDSCH1可能能够以较早的定时开始。如图25C所示,PDCCH1可指示PDSCH1的起始位置,使得PDSCH1将部分地映射到在其上检测到PDCCH1的RE上。在这种情况下,当RB的OFDM符号用于由UE 102检测到的PDCCH传输时,UE 102可假设PDSCH未映射到RB的OFDM符号中的任何资源元素。在另一RB中,UE 102可假设PDSCH从由调度PDCCH指示的起始位置开始。换句话讲,PDCCH传输所使用的RB和PDCCH传输未使用的另一RB的PDSCH起始位置可以是不同的。
图26A、图26B和图26C示出了控制信道和共享信道之间的资源共享的示例。该图示出由控制资源集限定的带外部的信道以及带内部的信道。用于UE1的PDCCH(例如,PDCCH1)调度用于UE1的PDSCH(例如,PDSCH1)。在该示例中,其他UE(例如,UE2和UE3)被配置为具有与UE1的控制资源RB集不同的控制资源RB集。由PDCCH1携带的DCI格式可包括指示PDSCH1的起始位置的信息字段。该信息字段可以是与控制资源集内部的RB的信息字段不同的信息字段,并且该起始位置可以应用于控制资源集外部的RB,但不可以应用于控制资源集内部的RB。该信息字段还可指示另一起始位置以及每个起始位置应用于哪个RB。
另选地,可针对控制资源集内部和外部两者的RB共享信息字段。在这种情况下,由单个字段指示的起始位置可应用于控制资源集内部和外部两者的RB。还另选地,是否共享信息字段可通过高层信令(例如,专用RRC信令)来配置。
如图26A所示,如果不存在与PDSCH1相冲突的其他UE的PDCCH,则gNB 160可将起始位置设置为OFDM符号#0。gNB 160可将起始位置设置为合适的值,使得PDSCH1不与其他UE的PDCCH发生冲突,如图26B和图26C中所示。
图27A、图27B和图27C示出了控制信道和共享信道之间的资源共享的示例。gNB160可向UE 102发送配置一个或多个资源集(例如,R个资源集)的专用RRC配置。在下文中,资源集也被称为区域。对于资源集r(0≤r<R),该配置可包括(a)由高层参数提供的第一OFDM符号,(b)由高层参数提供的多个连续OFDM符号,以及(c)由高层参数提供的一组资源块。这些参数中每个参数的粒度均可以与CORESET配置的粒度相同。这些参数中每个参数的一组可能的值可与CORESET配置的一组可能的值相同或者可以是CORESET配置的一组可能的值的子集。用于CORESET的信息元素可重新用于资源集r的配置。另选地或除此之外,Q个CORESET可被算作R个资源集的一部分,其中Q≤R。对于资源集r,该配置还可包括指示可用性指示字段的相关联值的信息。资源集可覆盖为UE 102配置的CORESET。资源集r可用于或不可用于PDSCH传输。gNB 160可能能够确定R个资源集的可用性,并且UE 102可能能够通过来自gNB 160的信令了解R个资源集的可用性。如果资源集r的一部分用于将PDCCH传输到另一UE,则gNB 160可以确定资源集r不可用于将PDSCH传输到UE102。如果资源集r的任何部分均未用于将PDCCH传输到另一UE,则gNB160可以确定资源集r可用于将PDSCH传输到UE 102。图27A、图27B和图27C示出了具有三个区域(区域#0至#2)的情况。就图27A而言,所有区域均可用于UE 102的PDSCH传输。就图27B而言,除了区域#2之外的所有区域均可用。就图27C而言,仅区域#0可用。如果覆盖CORESET的区域可用于PDSCH传输,并且如果在CORESET中检测到调度PDSCH的PDCCH,则UE 102可以假设该区域中除了由PDCCH占用的RE以外的所有RE均可用。UE 102还可假设即使在可用于PDSCH传输的区域中,另一信号(例如,CSI-RS、CSI-IM、PSS、SSS、PTRS)占用的RE也不可用。
调度PDSCH的DCI格式可用于可用性的信令。例如,调度PDSCH的DCI格式可以包含指示用于PDSCH传输的R个资源集的可用性的信息字段(例如,可用性指示字段)。为了具有完全的灵活性,信息字段可包括R个位,并且每个位可对应于每个资源集r,且可指示对应的资源集是否可用于由DCI调度的PDSCH(例如,PDCCH)。然而,信息字段不必包括R个位。其可包括x个位,其中x<R。由x个位表示的2x个状态或值中的每一者(或一部分)可对应于R个资源集的可用性的组合。资源集r(如果它是R个资源集的一部分,则还包括CORESET q)的RRC配置可能包含2x位(或更少)布尔信息,并且每个位可对应于由可用性指示字段指示的不同的值(例如,在x=2时的01、10、11)。更具体地,如果可用性指示字段指示可用性指示字段的第k个值,则用于资源集r的第k个位(例如,第k个布尔信息)可指示资源集r是否可用。映射到USS的DCI格式仅可在配置后才具有可用性指示字段。例如,专用RRC配置可以包括指示USS中的DCI格式是否包含可用性指示字段的信息。映射到CSS的DCI格式可不具有与RRC配置无关的可用性指示字段。包含CSS的CORESET对于与可用性配置和/或可用性指示无关的PDSCH传输可以始终不可用。由x个位表示的2x个状态或值中的一者(例如,在x=2时的00)可指示R个资源集中的所有资源集均可用。由x个位表示的2x个状态或值中的另一者可指示R个资源集中的所有资源集均不可用。
值R可以是恒定值。另选地,值R可经由专用RRC消息配置。在这种情况下,可用性指示字段的位大小x可以是固定的。另选地,可根据值R给出x。
在图27所示的示例中,DCI格式可使用单个起始位置指示字段来指示单个PDSCH起始位置。PDSCH起始位置可应用于CORESET的内部和外部。在图27中,假设该字段指示PDSCH起始位置是子帧的第一OFDM符号。
图28示出控制信道和共享信道之间的资源共享的另一示例。就时隙聚合而言,图28中的示例可以是图27A、图27B和图27C中的示例的延伸。在该示例中,UE 102被配置为具有7个区域,区域#0至区域#6。PDCCH调度映射到多个时隙的PDSCH。另选地,可以说,PDCCH调度跨多个时隙的PDSCH集。通过PDCCH的可用性配置和/或可用性指示可应用于映射了调度的PDSCH的每个时隙。例如,根据可用性配置,可在每一个聚合时隙中限定区域#0至#6。如果PDCCH中的可用性指示指示区域#2、#3和#6可用,且区域#0、#2、#4和#5不可用,则这一点适用于在每一个聚合时隙中的区域#0至#6。另选地,通过PDCCH的可用性配置和/或可用性指示可应用于第一时隙,但是可不应用于聚合时隙中的其他时隙。又另选地,专用RRC配置或PDCCH可指示以上另选方案中的一者。更具体地,专用RRC配置或PDCCH可包括指示通过PDCCH的可用性配置和/或可用性指示是应用于所有聚合时隙还是应用于聚合时隙中的仅一些时隙(例如,第一时隙)的信息。
如果该信息被包括在专用RRC配置中,则优选地时隙聚合的信息元素包含该信息。
图29示出了控制信道和共享信道之间的资源共享的另一示例。就灵活的PDSCH持续时间调度而言,图29中的示例可以是图27A、图27B和图27C中的示例的延伸。在该示例中,UE 102被配置为具有7个区域,区域#0至区域#6。这些区域可限定在时隙中。PDCCH通过指示PDSCH起始位置和持续时间来调度PDSCH。最终,PDSCH在一个时隙的某处(例如,在中间)开始并在另一时隙的某处(例如,在中间)结束。类似于图28中的示例,通过PDCCH的可用性配置和/或可用性指示可应用于映射了调度的PDSCH的每个时隙。另选地,可以相对于PDSCH起始位置限定区域。图30示出了控制信道和共享信道之间的资源共享的另一示例。在这种情况下,给定区域的实际起始位置可由至少给定区域的第一OFDM符号和PDSCH的第一OFDM符号给出。
在图27A、图27B、图27C、图28和图29所示的示例中,资源集不相互重叠。然而,资源集可能能够相互重叠。在这种情况下,如果覆盖RE的所有区域均可用,则UE 102可假设该RE可用,并且如果覆盖RE的至少一个区域不可用,则UE 102可假设该RE不可用。应当指出的是,潜在的可用RE取决于资源分配信息(例如,通过调度DCI格式发信号通知的频域资源块分配,通过调度DCI格式发信号通知的时域PDSCH持续时间分配,通过调度DCI格式发信号通知的时域PDSCH起始位置,或那些信息的组合。)因此,UE 102可以假设未指示为被分配的资源的一部分的RE对于对应的PDSCH传输不可用。应当指出的是,用于PDSCH传输的资源可用可意味着UE 102和gNB 160假设PDSCH被映射到该资源。
本发明描述了UE 102。UE 102可包括被配置为获取RRC配置的高层处理器。专用RRC配置可包括指示R个资源集的第一信息。R可为正整数。专用RRC配置还可包括指示R个资源集中的第r个资源集的配置的第二信息。1≤r≤R。UE 102还可包括PDCCH接收电路,该PDCCH接收电路被配置为监视携带调度PDSCH的DCI格式的PDCCH。UE 102还可包括被配置为接收PDSCH的PDSCH接收电路。DCI格式可包括指示包括K个值的多个值中的一者的信息字段。K可为正整数。第r个资源集的配置可包括K条布尔信息。在信息字段指示K个值中的第k个值的情况下,K条布尔信息中的第k条布尔信息可指示在第r个资源集内的资源元素对PDSCH是否可用。
本发明描述了gNB 160。gNB 160可包括被配置为发送专用RRC配置的高层处理器。专用RRC配置可包括指示R个资源集的第一信息。R可为正整数。专用RRC配置还可包括指示R个资源集中的第r个资源集的配置的第二信息。1≤r≤R。gNB 160还可包括PDCCH传输电路,该PDCCH传输电路被配置为传输携带调度PDSCH的DCI格式的PDCCH。gNB 160还可包括被配置为传输PDSCH的PDSCH传输电路。DCI格式可包括指示包括K个值的多个值中的一者的信息字段。K可为正整数。第r个资源集的配置可包括K条布尔信息。在信息字段指示K个值中的第k个值的情况下,K条布尔信息中的第k条布尔信息可指示在第r个资源集内的资源元素对PDSCH是否可用。
应当指出的是,在由权利要求限定的本发明范围内,各种修改是可能的,并且通过适当地组合根据不同实施方案所公开的技术手段得到的实施方案也被包括在本发明的技术范围内。
应当指出的是,本文所述的物理信道的名称是示例。可使用其他名称,诸如“NRPDCCH、NRPDSCH、NRPUCCH和NRPUSCH”、“新一代(G)PDCCH、GPDSCH、GPUCCH和GPUSCH”等。
术语“计算机可读介质”是指可由计算机或处理器访问的任何可用介质。如本文所用,术语“计算机可读介质”可表示非暂态性且有形的计算机可读介质和/或处理器可读介质。以举例而非限制的方式,计算机可读介质或处理器可读介质可包括RAM、ROM、EEPROM、CD-ROM或其他光盘存储设备、磁盘存储设备或其他磁存储设备,或者可用于携带或存储指令或数据结构形式的所需程序代码并且可由计算机或处理器访问的任何其他介质。如本文所用,磁盘和光盘包括压缩光盘(Compact Disc,CD)、激光盘、光学光盘、数字通用光盘(Digital Versatile Disc,DVD)、软磁盘及
Figure GDA0004077440850000471
光盘,其中磁盘通常以磁性方式复制数据,而光盘则利用激光以光学方式复制数据。
应当指出的是,本文所述方法中的一者或多者可在硬件中实现并且/或者使用硬件执行。例如,本文所述方法中的一者或多者可在芯片组、专用集成电路(ASIC)、大规模集成电路(LSI)或集成电路等中实现,并且/或者使用芯片组、专用集成电路(ASIC)、大规模集成电路(LSI)或集成电路等实现。
本文所公开方法中的每一者包括用于实现所述方法的一个或多个步骤或动作。在不脱离权利要求书的范围的情况下,这些方法步骤和/或动作可彼此互换并且/或者合并为单个步骤。换句话讲,除非所述方法的正确操作需要特定顺序的步骤或动作,否则在不脱离权利要求书的范围的情况下,可对特定步骤和/或动作的顺序和/或用途进行修改。
应当理解,权利要求书不限于上文所示的精确配置和部件。在不脱离权利要求书的范围的情况下,可对本文所述系统、方法和装置的布置、操作和细节进行各种修改、改变和变更。
根据所述系统和方法在gNB 160或UE 102上运行的程序是以实现根据所述系统和方法的功能的方式控制CPU等的程序(使得计算机操作的程序)。然后,在这些装置中处理的信息在被处理的同时被暂时存储在RAM中。随后,该信息被存储在各种ROM或HDD中,每当需要时,由CPU读取以便进行修改或写入。作为其上存储有程序的记录介质,半导体(例如,ROM、非易失性存储卡等)、光学存储介质(例如,DVD、MO、MD、CD、BD等)、磁存储介质(例如,磁带、软磁盘等)等中的任一者都是可能的。此外,在一些情况下,通过运行所加载的程序来实现上述根据所述系统和方法的功能,另外,基于来自程序的指令并结合操作系统或其他应用程序来实现根据所述系统和方法的功能。
此外,在程序在市场上有售的情况下,可分发存储在便携式记录介质上的程序,或可将该程序传输到通过网络诸如互联网连接的服务器计算机。在这种情况下,还包括服务器计算机中的存储设备。此外,根据上述系统和方法的gNB 160和UE 102中的一些或全部可实现为作为典型集成电路的LSI。gNB 160和UE 102的每个功能块可单独地内置到芯片中,并且一些或全部功能块可集成到芯片中。此外,集成电路的技术不限于LSI,并且用于功能块的集成电路可利用专用电路或通用处理器实现。此外,如果随着半导体技术不断进步,出现了替代LSI的集成电路技术,则也可使用应用该技术的集成电路。
此外,每个上述实施方案中所使用的基站设备和终端设备的每个功能块或各种特征可通过电路(通常为一个集成电路或多个集成电路)实施或执行。被设计为执行本说明书中所述的功能的电路可包括通用处理器、数字信号处理器(DSP)、专用或通用集成电路(ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA),或其他可编程逻辑设备、分立栅极或晶体管逻辑器,或分立硬件部件,或它们的组合。通用处理器可为微处理器,或另选地,该处理器可为常规处理器、控制器、微控制器或状态机。通用处理器或上述每种电路可由数字电路进行配置,或可由模拟电路进行配置。此外,当由于半导体技术的进步而出现制成取代当前集成电路的集成电路的技术时,也能够使用通过该技术生产的集成电路。

Claims (16)

1.一种用于基于无线电网络临时标识符RNTI的物理下行链路共享信道PDSCH下行链路时隙聚合的用户设备,包括:
高层处理器,所述高层处理器被配置为获取用于下行链路时隙聚合的专用无线电资源控制RRC配置,并且,
被配置为监视携带用于调度PDSCH的下行链路控制信息DCI格式的物理下行链路控制信道PDCCH;和
接收部,所述接收部被配置为接收所述PDSCH;
其中:
基于所述PDCCH是(i)携带由第一类型的无线电网络临时标识符RNTI加扰的循环冗余校验CRC的PDCCH还是(ii)携带由与所述第一类型的RNTI不同的第二类型的RNTI加扰的CRC的PDCCH,来确定所述PDSCH是(a)应用下行链路时隙聚合的PDSCH还是(b)不应用下行链路时隙聚合的PDSCH。
2.根据权利要求1所述的用户设备,其中所述第一类型的RNTI为小区-RNTI,并且所述第二类型的RNTI为系统信息-RNTI和寻呼-RNTI中的一者。
3.根据权利要求1所述的用户设备,其中在用户设备搜索空间USS中监视携带由所述第一类型的RNTI加扰的CRC的所述PDCCH。
4.根据权利要求1所述的用户设备,其中所述第一类型的RNTI至少包括小区-RNTI。
5.一种由用户设备执行的用于基于无线电网络临时标识符RNTI的物理下行链路共享信道PDSCH下行链路时隙聚合的方法,所述方法包括:
通过高层处理器获取用于下行链路时隙聚合的专用无线电资源控制RRC配置;
通过所述高层处理器来监视携带用于调度PDSCH的下行链路控制信息DCI格式的物理下行链路控制信道PDCCH;以及
通过接收部来接收所述PDSCH;
其中:
基于所述PDCCH是(i)携带由第一类型的无线电网络临时标识符RNTI加扰的循环冗余校验CRC的PDCCH还是(ii)携带由与所述第一类型的RNTI不同的第二类型的RNTI加扰的CRC的PDCCH,来确定所述PDSCH是(a)应用下行链路时隙聚合的PDSCH还是(b)不应用下行链路时隙聚合的PDSCH。
6.根据权利要求5所述的方法,其中所述第一类型的RNTI为小区-RNTI,并且所述第二类型的RNTI为系统信息-RNTI和寻呼-RNTI中的一者。
7.根据权利要求5所述的方法,其中在用户设备搜索空间USS中监视携带由所述第一类型的RNTI加扰的CRC的所述PDCCH。
8.根据权利要求5所述的方法,其中所述第一类型的RNTI至少包括小区-RNTI。
9.一种用于基于无线电网络临时标识符RNTI的物理下行链路共享信道PDSCH下行链路时隙聚合的基站,包括:
高层处理器,所述高层处理器被配置为发送用于下行链路时隙聚合的专用无线电资源控制RRC配置;
传输部,所述传输部被配置为传输携带用于调度PDSCH的下行链路控制信息DCI格式的物理下行链路控制信道PDCCH,并且,
被配置为传输所述PDSCH;
其中:
基于所述PDCCH是(i)携带由第一类型的无线电网络临时标识符RNTI加扰的循环冗余校验CRC的PDCCH还是(ii)携带由与所述第一类型的RNTI不同的第二类型的RNTI加扰的CRC的PDCCH,来确定所述PDSCH是(a)应用下行链路时隙聚合的PDSCH还是(b)不应用下行链路时隙聚合的PDSCH。
10.根据权利要求9所述的基站,其中所述第一类型的RNTI为小区-RNTI,并且所述第二类型的RNTI为系统信息-RNTI和寻呼-RNTI中的一者。
11.根据权利要求9所述的基站,其中在用户设备搜索空间USS中通过所述传输部传输携带由所述第一类型的RNTI加扰的CRC的所述PDCCH。
12.根据权利要求9所述的基站,其中所述第一类型的RNTI至少包括小区-RNTI。
13.一种由基站执行的用于基于无线电网络临时标识符RNTI的物理下行链路共享信道PDSCH下行链路时隙聚合的方法,所述方法包括:
通过高层处理器发送用于下行链路时隙聚合的专用无线电资源控制RRC配置;
通过传输部来传输携带用于调度PDSCH的下行链路控制信DCI格式的物理下行链路控制信道PDCCH;以及
通过所述传输部传输所述PDSCH;
其中:
基于所述PDCCH是(i)携带由第一类型的无线电网络临时标识符RNTI加扰的循环冗余校验CRC的PDCCH还是(ii)携带由与所述第一类型的RNTI不同的第二类型的RNTI加扰的CRC的PDCCH,来确定所述PDSCH是(a)应用下行链路时隙聚合的PDSCH还是(b)不应用下行链路时隙聚合的PDSCH。
14.根据权利要求13所述的方法,其中所述第一类型的RNTI为小区-RNTI,并且所述第二类型的RNTI为系统信息-RNTI和寻呼-RNTI中的一者。
15.根据权利要求13所述的方法,其中在用户设备搜索空间USS中通过所述传输部传输携带由所述第一类型的RNTI加扰的CRC的所述PDCCH。
16.根据权利要求13所述的方法,其中所述第一类型的RNTI至少包括小区-RNTI。
CN201880057794.1A 2017-09-08 2018-09-06 用于基于rnti的pdsch下行链路时隙聚合的用户设备、基站和方法 Active CN111096035B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201762556189P 2017-09-08 2017-09-08
US62/556189 2017-09-08
PCT/US2018/049765 WO2019051096A1 (en) 2017-09-08 2018-09-06 USER EQUIPMENT, BASE STATIONS AND METHODS FOR PDSCH DOWNLINK CREATION AGGREGATION BASED ON RNTI

Publications (2)

Publication Number Publication Date
CN111096035A CN111096035A (zh) 2020-05-01
CN111096035B true CN111096035B (zh) 2023-04-28

Family

ID=63832481

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880057794.1A Active CN111096035B (zh) 2017-09-08 2018-09-06 用于基于rnti的pdsch下行链路时隙聚合的用户设备、基站和方法

Country Status (4)

Country Link
EP (1) EP3679758B1 (zh)
CN (1) CN111096035B (zh)
AU (1) AU2018328285B2 (zh)
WO (1) WO2019051096A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108282315B (zh) * 2017-01-06 2020-11-10 华为技术有限公司 一种时隙类型指示方法、确定方法及装置
KR20190116927A (ko) * 2018-04-05 2019-10-15 한국전자통신연구원 통신 시스템에서 상향링크 전송을 위한 방법 및 장치
DE112020001341T5 (de) * 2019-03-20 2021-12-16 Apple Inc. Bündelung von physikalischen Ressourcen-Blöcken im Multi-TRP-Betrieb
KR20210143304A (ko) * 2019-03-28 2021-11-26 애플 인크. 다중-trp 동작을 위한 업링크 송신 핸들링
US11233601B2 (en) * 2019-04-15 2022-01-25 Mediatek Singapore Pte. Ltd. Method and apparatus for downlink control information size alignment in mobile communications
US11540290B2 (en) * 2020-01-09 2022-12-27 Qualcomm Incorporated Modified downlink control information to support low tier user equipment
CN112544114B (zh) * 2020-11-19 2023-10-10 北京小米移动软件有限公司 下行控制信息加扰方法、装置、通信设备和存储介质
US20240114490A1 (en) * 2021-01-15 2024-04-04 Lenovo (Singapore) Pte. Ltd. Configuring demodulation reference signal bundling and transport block scheduling
CN113473627B (zh) * 2021-07-13 2023-04-07 上海中兴易联通讯股份有限公司 一种用于nr系统资源复用的方法和实现资源复用的nr系统
WO2023151035A1 (en) * 2022-02-11 2023-08-17 Apple Inc. Multi-slot pdcch monitoring search space configuration
CN114900899B (zh) * 2022-06-15 2024-01-23 中国电信股份有限公司 Pdcch资源分配方法、装置、电子设备及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104067552A (zh) * 2012-01-27 2014-09-24 夏普株式会社 基站装置、用户设备、通信方法、集成电路以及通信系统
CN104662827A (zh) * 2012-09-21 2015-05-27 Lg电子株式会社 在无线通信系统中接收或发送下行链路控制信号的方法和装置
EP3032904A1 (en) * 2013-08-09 2016-06-15 Sharp Kabushiki Kaisha Terminal, base station, integrated circuit, and communications method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7352714B2 (en) * 2002-09-24 2008-04-01 Lucent Technologies Inc. Methods and apparatuses for allocating time slots to half duplex wireless mobile stations
KR101876230B1 (ko) * 2011-06-16 2018-07-10 주식회사 팬택 다중 요소 반송파 시스템에서 제어채널의 수신장치 및 방법
US9338774B2 (en) * 2011-11-04 2016-05-10 Lg Electronics Inc. Method and apparatus for user equipment searching control channel in wireless communication system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104067552A (zh) * 2012-01-27 2014-09-24 夏普株式会社 基站装置、用户设备、通信方法、集成电路以及通信系统
CN104662827A (zh) * 2012-09-21 2015-05-27 Lg电子株式会社 在无线通信系统中接收或发送下行链路控制信号的方法和装置
EP3032904A1 (en) * 2013-08-09 2016-06-15 Sharp Kabushiki Kaisha Terminal, base station, integrated circuit, and communications method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
WILUS Inc.. "Discussion on UE behavior for group-common PDCCH for NR".《3GPP TSG RAN WG1 Meeting#90 R1-1714389》.2017,全文. *
WILUS Inc.."Discussion on UE behavior for group-common PDCCH for NR".《3GPP TSG RAN WG1 NR Ad-Hoc#2 R1-1711357》.2017,(TSGR1_AH),全文. *

Also Published As

Publication number Publication date
AU2018328285A1 (en) 2020-04-16
AU2018328285B2 (en) 2023-04-20
EP3679758B1 (en) 2024-05-08
EP3679758A1 (en) 2020-07-15
WO2019051096A8 (en) 2020-05-14
AU2018328285A8 (en) 2020-06-25
CN111096035A (zh) 2020-05-01
WO2019051096A1 (en) 2019-03-14

Similar Documents

Publication Publication Date Title
CN111010889B (zh) 终端装置、基站和方法
US10820338B2 (en) User equipments, base stations and methods for RNTI-based PDSCH downlink slot aggregation
CN111096035B (zh) 用于基于rnti的pdsch下行链路时隙聚合的用户设备、基站和方法
CN111989965B (zh) 用户设备、基站和方法
US10973013B2 (en) User equipments, base stations and methods
US10945251B2 (en) User equipments, base stations and methods
US20190158205A1 (en) User equipments, base stations and methods
CN110612690B (zh) 用户设备、基站和方法
US20180324770A1 (en) User equipments, base stations and methods
CN111512575B (zh) 用户设备、基站和方法
CN110999183A (zh) 第五代(5g)新无线电(nr)的长物理上行链路控制信道(pucch)设计的时隙结构
CN110291745B (zh) 用于第五代(5g)新无线电(nr)的短物理上行链路控制信道(pucch)设计
US10616888B2 (en) Multiple slot long physical uplink control channel (PUCCH) design for 5th generation (5G) new radio (NR)
WO2019099738A1 (en) User equipments, base stations and methods
CN111713039A (zh) 用于下行链路半持久调度的用户设备、基站和方法
CN111066273B (zh) 用户设备、基站和方法
CN114600537A (zh) 用于pdsch的传输配置指示的用户装备、基站和方法
CN113796143A (zh) 用于微时隙pusch的传输块确定的用户设备、基站和方法
WO2019099388A1 (en) User equipments, base stations and methods
CN111869283A (zh) 用户设备、基站和方法
CN111972017A (zh) 第五代(5g)新无线电(nr)的多时隙长物理上行链路控制信道(pucch)设计
CN113796139A (zh) 用于中断传输指示中的上行链路传输的用户设备、基站和方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant