KR20180053631A - The novel Lysine Decarboxylase and Process for producing cadeverine using the same - Google Patents

The novel Lysine Decarboxylase and Process for producing cadeverine using the same Download PDF

Info

Publication number
KR20180053631A
KR20180053631A KR1020180055631A KR20180055631A KR20180053631A KR 20180053631 A KR20180053631 A KR 20180053631A KR 1020180055631 A KR1020180055631 A KR 1020180055631A KR 20180055631 A KR20180055631 A KR 20180055631A KR 20180053631 A KR20180053631 A KR 20180053631A
Authority
KR
South Korea
Prior art keywords
ala
leu
gly
val
glu
Prior art date
Application number
KR1020180055631A
Other languages
Korean (ko)
Other versions
KR101940647B1 (en
Inventor
이재헌
양영렬
박보성
박연희
박진승
안벼리
오린석
이나훔
Original Assignee
씨제이제일제당 (주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 씨제이제일제당 (주) filed Critical 씨제이제일제당 (주)
Priority to KR1020180055631A priority Critical patent/KR101940647B1/en
Publication of KR20180053631A publication Critical patent/KR20180053631A/en
Application granted granted Critical
Publication of KR101940647B1 publication Critical patent/KR101940647B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/001Amines; Imines
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y401/00Carbon-carbon lyases (4.1)
    • C12Y401/01Carboxy-lyases (4.1.1)
    • C12Y401/01018Lysine decarboxylase (4.1.1.18)

Abstract

The present invention relates to a novel lysine decarboxylase, a microorganism transformed with a gene coding the activity and a method for producing a cadaverine using the same. The method for producing a cadaverine comprises the following steps of: converting a lysine to a cadaverine; and recovering the converted cadaverine.

Description

신규 라이신 디카르복실라제 및 이를 이용하여 카다베린을 생산하는 방법{The novel Lysine Decarboxylase and Process for producing cadeverine using the same}The novel Lysine Decarboxylase and Process for producing cadeverine using the same}

본 발명은 신규 라이신 디카르복실라제, 당해 활성을 코딩하는 유전자로 형질전환된 미생물 및 이를 이용하여 카다베린을 생산하는 방법에 관한 것이다.The present invention relates to a novel lysine decarboxylase, a microorganism transformed with a gene encoding the activity, and a method for producing cadaverine using the same.

다이아민 (diamine)을 이용한 나일론의 일반적인 생산 방법은 1,4-다이아미노부탄 (1,4-diaminobutane)과 헥사메틸렌다이아민 (hexamethylenediamine)을 원료로 하는 화학적 공정에 의한다. 이 원료 물질들은 석유기반 유기화합물로부터 만들어지기 때문에 환경 규제가 강화되면서 생물 기반 경로를 통한 대체물질에 대한 시장 요구가 커지고 있다.The general production method of nylon using diamine is by a chemical process using 1,4-diaminobutane and hexamethylenediamine as raw materials. Since these raw materials are made from petroleum-based organic compounds, as environmental regulations are strengthened, the market demand for alternative materials through bio-based pathways is increasing.

한편 카다베린은 NH2(CH2)5NH2의 분자식을 가지는 5개의 탄소로 구성된 다이아민 (diamine) 유기화합물로, 나일론 5,6의 원료 물질이 될 수 있다. 바이오 기반의 카다베린을 제조한다면, 생물 기반의 시장 요구를 만족시키면서 다양한 나일론 생산이 가능할 것으로 예상된다. Meanwhile, cadaverine is a diamine organic compound composed of five carbons having a molecular formula of NH 2 (CH 2 ) 5 NH 2, and may be a raw material for nylon 5,6. If bio-based cadaverine is manufactured, it is expected that various nylon production will be possible while satisfying the bio-based market demand.

카다베린의 바이오 기반 생산과 관련하여, 라이신을 생전환시키는 연구는 1940년대 이전에 널리 알려졌다 (Gale E.F., Epps H.M. 1944. Studies on bacterial amino-acid decarboxylases. Biochem J. 38, 232-242). 생전환의 핵심 단계인 라이신 디카르복실라제는 라이신으로부터 카다베린을 생성시키는 효소이다 (도 1). 다양한 미생물에서 라이신 디카르복실라제의 활성이 보고된 바 있으며, 효소의 특이적 활성 (specific activity, mmol/min/mg)이 알려진 라이신 디카르복실라제는 4종 (대장균(Escherichia coli), 박테리움 카다베리스(Bacterium cadaveris), 글리신 맥스(Glycine max), 셀레노모나스 루미난티움(Selenomonas ruminantium))이다. 이 중 대장균 유래의 라이신 디카르복실라제가 가장 높은 활성을 보이는 라이신 디카르복실라제로 평가되며, 실제 생산에 활용되는 효소도 대장균 유래 CadA에 국한되어 있다 (일본특허 제2005-147171호, 유럽특허 제2004-010711호, 및 일본특허 제2002-257374호). 그러나 라이신 디카르복실라제를 라이신에 반응시켜 카다베린을 생성하는 경우, 라이신의 탈탄산에 의해 이산화탄소가 발생하고, 1가의 양이온인 라이신으로부터 2가의 양이온인 카다베린이 생성됨으로 인해, 반응 중에 pH가 상승한다. 이에 따라 상기 라이신 디카르복실라제는 효소 반응 진행시에 pH가 변화함에 따라, 효율이 저하되는 문제점이 나타난다. 또한, 반응 용액 중에 생성된 산, 또는 염기에 의해 효소가 변성되어 활성을 상실할 수도 있다.With regard to the bio-based production of cadaverine, studies on bioconversion of lysine were widely known before the 1940s (Gale EF, Epps HM 1944. Studies on bacterial amino-acid decarboxylases. Biochem J. 38, 232-242). Lysine decarboxylase, a key step in biotransformation, is an enzyme that produces cadaverine from lysine (FIG. 1). The activity of lysine decarboxylase has been reported in various microorganisms, and four types of lysine decarboxylase with known specific activity (mmol/min/mg) of the enzyme ( Escherichia coli ), Bacterium cadaveris , Glycine max , Selenomonas ruminantium ). Among them, E. coli-derived lysine decarboxylase is evaluated as a lysine decarboxylase showing the highest activity, and the enzyme used in actual production is also limited to CadA derived from E. coli (Japanese Patent No. 2005-147171, European Patent 2004-010711, and Japanese Patent 2002-257374). However, when lysine decarboxylase is reacted with lysine to produce cadaverine, carbon dioxide is generated by decarboxylation of lysine, and cadaverine, a divalent cation, is generated from lysine, a monovalent cation, so that the pH is increased during the reaction. Rises. Accordingly, as the pH of the lysine decarboxylase changes during the enzymatic reaction, the efficiency decreases. In addition, the enzyme may be denatured by an acid or a base generated in the reaction solution, resulting in loss of activity.

이에 본 발명자들은 고온 및 pH에 대한 안정성을 가지는 신규 라이신 디카르복실라제를 발굴하고 당해 라이신 디카르복실라제가 에스케리키아 속 균주에서 발현 가능함을 확인하여, 본 발명을 완성하게 되었다. Accordingly, the present inventors discovered a novel lysine decarboxylase having stability against high temperature and pH, and confirmed that the lysine decarboxylase can be expressed in a strain of the genus Escherichia, thereby completing the present invention.

본 발명의 목적은 신규 라이신 디카르복실라제 및 당해 활성을 가지는 단백질을 코딩하는 폴리뉴클레오티드를 제공하는 것이다.An object of the present invention is to provide a novel lysine decarboxylase and a polynucleotide encoding a protein having the activity.

본 발명의 다른 목적은 상기 라이신 디카르복실라제를 발현하도록 형질전환된 미생물을 제공하는 것이다.Another object of the present invention is to provide a microorganism transformed to express the lysine decarboxylase.

본 발명의 또 다른 목적은 상기 효소 및 이를 포함하는 미생물을 이용하여 카다베린을 생산하는 방법을 제공하는 것이다.Another object of the present invention is to provide a method for producing cadaverine using the enzyme and a microorganism containing the same.

본 발명의 구체적인 일 양태에서, 서열번호 1의 아미노산 서열 또는 이와 75% 이상의 서열 상동성을 가지는 아미노산 서열을 포함하는, 신규 라이신 디카르복실라제 활성을 가지는 단백질을 제공한다.In a specific aspect of the present invention, there is provided a protein having a novel lysine decarboxylase activity, comprising the amino acid sequence of SEQ ID NO: 1 or an amino acid sequence having 75% or more sequence homology thereto.

본 발명에서 용어 "라이신 디카르복실라제(lysine decarboxylase) 활성을 가지는 단백질"은 피리독살-5'-인산(pyridoxal-5'-phosphate)을 보조효소로 이용하여 라이신의 탈카복실화 반응을 촉매함으로써, 라이신을 탈탄산시켜 카다베린(cadaverine)과 이산화탄소를 생성할 수 있는 활성을 갖는 단백질을 의미한다. In the present invention, the term "protein having lysine decarboxylase activity" refers to a decarboxylation reaction of lysine by using pyridoxal-5'-phosphate as a coenzyme. , It refers to a protein that has the activity of decarboxylating lysine to produce cadaverine and carbon dioxide.

상기 서열번호 1 또는 이와 75% 이상의 서열 상동성을 가지는 아미노산 서열을 포함하는 라이신 디카르복실라제 활성을 가지는 단백질은 슈도모나스 속 유래의 미생물로부터 신규 발굴한 라이신 디카르복실라제 활성을 가지는 단백질일 수 있으며, 당해 활성을 가지는 단백질이라면 슈도모나스 속 유래 미생물로부터 발굴한 미생물은 모두 포함될 수 있다. 예를 들어, 상기 슈도모나스 속 균주는 슈도모나스 써모톨러란스 (Pseuodomonas thermotolerans), 슈도모나스 알칼리제네스 (Pseuodomonas alcaligenes), 슈도모나스 레지노보란스 (Pseuodomonas resinovorans), 슈도모나스 푸티다 (Pseuodomonas putida), 및 슈도모나스 신싼싸 (Pseuodomonas synxantha) 일 수 있다.The protein having lysine decarboxylase activity comprising an amino acid sequence having 75% or more sequence homology thereto or SEQ ID NO: 1 may be a protein having lysine decarboxylase activity newly discovered from microorganisms derived from the genus Pseudomonas, and As long as it is a protein having the activity, all microorganisms discovered from microorganisms derived from Pseudomonas genus may be included. For example, the strains of the genus Pseudomonas are Pseuodomonas thermotolerans, Pseuodomonas alcaligenes, Pseuodomonas resinovorans, Pseuodomonas resinovorans, Pseuodomonas putida and Pseuodomonas synsa, Pseuodomonas synsa, and Pseuodomonas synsa, Pseuodomonas alcaligenes. ) Can be.

구체적으로 슈도모나스 써모톨러란스 미생물 유래의 신규 라이신 디카르복실라제 활성을 가지는 단백질은 서열번호 1의 아미노산 서열 또는 이와 서열 상동성이 75% 이상, 80% 이상, 85% 이상, 90% 이상, 또는 95% 이상인 아미노산 서열을 가질 수 있다. 상기 슈도모나스 알칼리제네스 균주 유래의 라이신 디카르복실라제 활성을 가지는 단백질은 서열번호 3의 아미노산 서열 또는 이와 서열 상동성이 75% 이상, 80% 이상, 90% 이상, 또는 95% 이상인 아미노산 서열을 가질 수 있다. 상기 슈도모나스 레지노보란스 균주 유래의 라이신 디카르복실라제 활성을 가지는 단백질은 서열번호 5의 아미노산 서열 또는 이와 서열 상동성이 75% 이상, 80% 이상, 90% 이상, 또는 95% 이상인 아미노산 서열을 가질 수 있다. 상기 슈도모나스 푸티다 균주 유래의 라이신 디카르복실라제는 서열번호 7의 아미노산 서열 또는 이와 서열 상동성이 75% 이상, 80% 이상, 90% 이상, 또는 95% 이상인 아미노산 서열을 가질 수 있다. 상기 슈도모나스 신싼싸 균주 유래의 라이신 디카르복실라제 활성을 가지는 단백질은 서열번호 9의 아미노산 서열 또는 이와 서열 상동성이 75% 이상, 80% 이상, 90% 이상, 또는 95% 이상인 아미노산 서열을 가질 수 있다. 그러나 상기의 아미노산 서열에 한정되는 것은 아니며, 라이신 디카르복실라제 활성을 유지하는 한 가능한 아미노산 서열을 모두 포함할 수 있다.Specifically, the protein having novel lysine decarboxylase activity derived from Pseudomonas thermotolerance microorganisms has an amino acid sequence of SEQ ID NO: 1 or a sequence homology thereof of 75% or more, 80% or more, 85% or more, 90% or more, or 95 It may have an amino acid sequence greater than or equal to %. The protein having lysine decarboxylase activity derived from the Pseudomonas alkaline genes strain may have an amino acid sequence of SEQ ID NO: 3 or an amino acid sequence having a sequence homology thereof of 75% or more, 80% or more, 90% or more, or 95% or more. have. The protein having lysine decarboxylase activity derived from the Pseudomonas reginoborans strain has an amino acid sequence of SEQ ID NO: 5 or an amino acid sequence having a sequence homology thereof of 75% or more, 80% or more, 90% or more, or 95% or more. I can. The lysine decarboxylase derived from the Pseudomonas putida strain may have an amino acid sequence of SEQ ID NO: 7 or an amino acid sequence having a sequence homology thereof of 75% or more, 80% or more, 90% or more, or 95% or more. The protein having lysine decarboxylase activity derived from the Pseudomonas sinsansa strain may have an amino acid sequence of SEQ ID NO: 9 or an amino acid sequence having a sequence homology thereof of 75% or more, 80% or more, 90% or more, or 95% or more. have. However, it is not limited to the above amino acid sequence, and may include all possible amino acid sequences as long as it maintains lysine decarboxylase activity.

또한, 본 발명의 다른 구체적인 일 양태에서, 상기 신규 발굴한 라이신 디카르복실라제 활성을 가지는 단백질을 코딩하는 폴리뉴클레오티드, 구체적으로는 서열번호 2의 염기 서열과 75% 이상의 서열 상동성을 가지는 폴리뉴클레오티드를 제공한다. In addition, in another specific aspect of the present invention, a polynucleotide encoding a protein having the newly discovered lysine decarboxylase activity, specifically, a polynucleotide having 75% or more sequence homology with the nucleotide sequence of SEQ ID NO: 2 Provides.

상기 라이신 디카르복실라제 활성을 가지는 단백질을 코딩하는 폴리뉴클레오티드 서열은 공개된 슈도모나스 속 유래의 균주의 게놈 서열로부터 얻을 수 있다. 구체적으로 슈도모나스 써모톨러란스 슈도모나스 알칼리제네스, 슈도모나스 레지노보란스, 슈도모나스 푸티다 (Pseuodomonas putida), 및 슈도모나스 신싼싸로 이루어진 군으로부터 선택되는 하나 이상의 균주의 게놈 서열에서 유래할 수 있다. 상기 슈도모나스 써모톨러란스 균주 유래의 라이신 디카르복실라제 유전자 서열은 서열번호 2의 염기 서열을 가질 수 있으며, 또한 서열번호 2의 염기 서열과 상동성이 75% 이상, 80% 이상, 90% 이상, 또는 95% 이상인 염기 서열을 가질 수 있다. 상기 슈도모나스 알칼리제네스 균주 유래의 라이신 디카르복실라제 유전자 서열은 서열번호 4의 염기 서열을 가질 수 있으며, 또한 서열번호 4의 염기 서열과 상동성이 75% 이상, 80% 이상, 90% 이상, 또는 95% 이상인 아미노산 서열을 가질 수 있다. 상기 슈도모나스 레지노보란스 균주 유래의 라이신 디카르복실라제 유전자 서열은 공개된 슈도모나스 레지노보란스의 게놈 서열로부터 얻을 수 있으며, 구체적으로는 서열번호 6의 염기 서열을 가질 수 있다. 또한 서열번호 6의 염기 서열과 상동성이 75%이상, 80% 이상, 90% 이상 또는 95% 이상인 염기 서열을 가질 수 있다. 상기 슈도모나스 푸티다 균주 유래의 라이신 디카르복실라제 유전자 서열은 서열번호 8의 염기 서열을 가질 수 있으며, 또한 서열번호 8의 염기 서열과 상동성이 75% 이상, 80% 이상, 90% 이상, 또는 95% 이상인 염기 서열을 가질 수 있다. 상기 슈도모나스 신싼싸 균주 유래의 L-라이신 디카르복실라제 유전자 서열은 서열번호 10의 염기 서열을 가질 수 있으며, 또한 서열번호 10의 염기 서열과 상동성이 75% 이상, 80% 이상, 90% 이상, 또는 95% 이상인 염기 서열을 가질 수 있다. 그러나 라이신 디카르복실라제 활성을 가지는 단백질을 코딩하는 폴리뉴클레오티드는 이에 한정되는 것은 아니며, 본 발명의 신규 발굴한 라이신 디카르복실라제 활성을 가지는 단백질을 코딩할 수 있는 폴리뉴클레오티드라면 제한 없이 포함할 수 있다.The polynucleotide sequence encoding the protein having the lysine decarboxylase activity can be obtained from the published genomic sequence of a strain derived from the genus Pseudomonas. Specifically, it may be derived from the genomic sequence of one or more strains selected from the group consisting of Pseudomonas thermotolerance Pseudomonas Alkaline Genes, Pseudomonas reginovo lance, Pseuodomonas putida, and Pseudomonas synsansa. The lysine decarboxylase gene sequence derived from the Pseudomonas thermotolerance strain may have the nucleotide sequence of SEQ ID NO: 2, and also have 75% or more, 80% or more, 90% or more, homology with the nucleotide sequence of SEQ ID NO: 2, Or it may have a base sequence of 95% or more. The lysine decarboxylase gene sequence derived from the Pseudomonas alkaline genes strain may have the nucleotide sequence of SEQ ID NO: 4, and also have 75% or more, 80% or more, 90% or more, or It may have an amino acid sequence that is 95% or more. The lysine decarboxylase gene sequence derived from the Pseudomonas reginoborans strain can be obtained from the published genomic sequence of Pseudomonas reginoborans, and specifically may have a nucleotide sequence of SEQ ID NO: 6. In addition, it may have a nucleotide sequence having 75% or more, 80% or more, 90% or more, or 95% or more homology with the nucleotide sequence of SEQ ID NO: 6. The lysine decarboxylase gene sequence derived from the Pseudomonas putida strain may have the nucleotide sequence of SEQ ID NO: 8, and also have 75% or more, 80% or more, 90% or more, or It may have a base sequence of 95% or more. The L-lysine decarboxylase gene sequence derived from the Pseudomonas sinsansa strain may have the nucleotide sequence of SEQ ID NO: 10, and also has 75% or more, 80% or more, 90% or more homology with the nucleotide sequence of SEQ ID NO: 10 , Or may have a base sequence of 95% or more. However, the polynucleotide encoding the protein having lysine decarboxylase activity is not limited thereto, and any polynucleotide capable of encoding the protein having the newly discovered lysine decarboxylase activity of the present invention may be included without limitation. have.

본 발명에서 용어, "상동성"은 주어진 아미노산 서열 또는 염기 서열과 일치하는 정도를 의미하며 백분율로 표시될 수 있다. 본 명세서에서, 주어진 아미노산 서열 또는 염기 서열과 동일하거나 유사한 활성을 갖는 그의 상동성 서열이 "% 상동성"으로 표시된다. 예를 들면, 점수(score), 동일성(identity) 및 유사도(similarity) 등의 매개 변수(parameter)들을 계산하는 표준 소프트웨어, 구체적으로 BLAST 2.0를 이용하거나, 정의된 엄격한 조건하에서 써던 혼성화 실험에 의해 서열을 비교함으로써 확인할 수 있으며, 정의되는 적절한 혼성화 조건은 당업자에게 잘 알려진 방법으로 결정될 수 있다 (예. Sambrook et al., 1989, infra 참고).In the present invention, the term "homology" means the degree to which a given amino acid sequence or nucleotide sequence matches, and may be expressed as a percentage. In the present specification, a homologous sequence thereof having the same or similar activity as a given amino acid sequence or base sequence is indicated as "% homology". For example, using standard software that calculates parameters such as score, identity, and similarity, specifically BLAST 2.0, or by using hybridization experiments under defined stringent conditions. It can be confirmed by comparing and defined appropriate hybridization conditions can be determined by a method well known to those skilled in the art (eg, see Sambrook et al., 1989, infra).

더욱 구체적으로는 상기 라이신 디카르복실라제는 서열번호 1, 서열번호 3, 서열번호 5, 서열번호 7, 및 서열번호 9의 아미노산 서열로 이루어진 군으로부터 선택되는 하나 이상일 수 있다. 또한, 상기 L-라이신 디카르복실라제 활성을 가지는 단백질을 코딩하는 폴리뉴클레오티드는 서열번호 2, 서열번호 4, 서열번호 6, 서열번호 8 및 서열번호 10의 염기 서열로 이루어진 군으로부터 선택되는 하나 이상일 수 있다. More specifically, the lysine decarboxylase may be at least one selected from the group consisting of the amino acid sequence of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, and SEQ ID NO: 9. In addition, the polynucleotide encoding the protein having L-lysine decarboxylase activity is at least one selected from the group consisting of the nucleotide sequences of SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, and SEQ ID NO: 10 I can.

본 발명의 일 실시예에서, 상기 슈도모나스 속 균주들 유래의 라이신 디카르복실라제는 높은 pH에서도 활성 변화가 크게 일어나지 않아 pH 변화에 안정성을 갖는 것을 확인하였다.In an embodiment of the present invention, it was confirmed that the lysine decarboxylase derived from strains of the genus Pseudomonas has stability against changes in pH since the activity does not change significantly even at high pH.

본 발명의 다른 구체적인 일 양태에서, 상기 신규 라이신 디카르복실라제 활성을 가지는 단백질을 발현하도록 형질전환된 미생물을 제공한다. 상기 형질전환된 미생물은 당해 디카르복실라제 활성을 가지는 단백질이 발현되도록 형질전환이 된다면 원핵 미생물 및 진핵 미생물 어느 것이나 포함한다. 예를 들면, 에스케리키아 (Escherichia) 속, 어위니아 (Erwinia) 속, 세라티아 (Serratia) 속, 프로비덴시아 (Providencia) 속, 코리네형 미생물 균주가 포함될 수 있다. 상기 미생물은 구체적으로 에스케리키아 속 또는 코리네박테리움 속에 속하는 미생물일 수 있으며, 더욱 구체적으로는 대장균 또는 코리네박테리움 글루타미쿰일 수 있으나, 이에 한정되지 않는다. In another specific aspect of the present invention, there is provided a microorganism transformed to express the protein having the novel lysine decarboxylase activity. The transformed microorganism includes both prokaryotic microorganisms and eukaryotic microorganisms as long as it is transformed so that the protein having the decarboxylase activity is expressed. For example, Escherichia genus, Erwinia genus, Serratia genus, Providencia genus, Coryneform microorganism strains may be included. The microorganism may specifically be a microorganism belonging to the genus Escherichia or the genus Corynebacterium, and more specifically, may be E. coli or Corynebacterium glutamicum, but is not limited thereto.

또한 상기 형질전환된 미생물의 모균주는 야생형에 비하여 향상된 라이신 생산능을 가지는 미생물일 수 있다. 그러나 이에 한정되는 것은 아니다. 본 발명의 용어 "야생형에 비하여 향상된 라이신 생산능을 가지는 미생물"이란, 천연 상태의 미생물 또는 모균주 대비 라이신의 생산능이 증가된 미생물을 의미하는데, 상기 라이신 생산능이 향상된 미생물은 모균주 대비 라이신 생산능이 향상된 미생물이라면 특별히 제한되지 않는다. In addition, the parent strain of the transformed microorganism may be a microorganism having improved lysine-producing ability compared to the wild type. However, it is not limited thereto. The term "microorganisms having improved lysine-producing ability compared to the wild type" of the present invention means a microorganism in a natural state or a microorganism having an increased lysine-producing ability compared to the parent strain, and the microorganism having improved lysine-producing ability is It is not particularly limited as long as it is an improved microorganism.

상기와 같이 야생형에 비하여 향상된 라이신 생산능을 부여하기 위해, 영양요구성 돌연변이주, 유사체에 내성을 갖는 균주 또는 라이신을 생산하는 능력을 갖는 대사 제어 돌연변이주를 수득하는 방법 및 라이신 생합성 효소 활성을 증가시킨 재조합 균주를 생산하는 방법과 같은 미생물을 생육하는 통상적인 방법을 사용할 수 있다. 라이신 생산 미생물의 생육시, 영양요구성, 유사체 내성 및 대사 제어 돌연변이와 같은 특성은 단독으로 또는 조합하여 부여될 수 있다. 증가시킨 라이신 생합성 효소 활성은 단독이거나 조합적일 수 있다. 추가로, 영양요구성, 유사체 내성 및 대사 제어 돌연변이와 같은 특성을 부여하면서 라이신 생합성 효소 활성을 함께 증가시킬 수도 있다. 구체적으로, 라이신 생합성 효소를 암호화하는 유전자는 디하이드로다이피콜리네이트 신타제 유전자(dapA), 아스파르토키나제 유전자(lysC), 디하이드로다이피콜리네이트 환원효소 유전자(dapB), 디아미노피멜레이트 탈탄산효소 유전자(lysA), 디아미노피멜레이트 탈수소효소 유전자(ddh), 포스포에놀피루브산 카복실라제 유전자(ppc, 아스파르테이트 아미노전이효소 유전자(aspC), 및 아스파르트산 세미알데하이드 탈수소효소 유전자(asd) 등의 효소를 포함하지만, 이에 제한되지는 않는다. 라이신 생합성 효소 활성을 증가시킴으로써 라이신을 생산하는 능력을 부여 또는 증가시키는 방법은 당해 효소를 암호화하는 유전자에 돌연변이를 유도하거나 당해 유전자를 증폭시켜 효소의 세포내 활성을 증가시킴으로써 수행될 수 있다. 이들은 유전자 재조합에 의해 수행될 수 있으나, 이에 제한되지 않는다. In order to impart improved lysine-producing ability compared to wild-type as described above, a method of obtaining an auxotrophic mutant, a strain resistant to analogs, or a metabolic control mutant having the ability to produce lysine, and lysine biosynthetic enzyme activity Conventional methods for growing microorganisms, such as a method for producing the recombinant strain prepared, can be used. Upon growth of lysine producing microorganisms, properties such as auxotrophic, analog resistance and metabolic control mutations may be imparted alone or in combination. The increased lysine biosynthetic enzyme activity may be alone or in combination. In addition, it is also possible to increase lysine biosynthetic enzyme activity together while conferring properties such as auxotrophic, analog resistance and metabolic control mutations. Specifically, the gene encoding the lysine biosynthetic enzyme is dihydrodipicolinate synthase gene (dapA), aspartokinase gene (lysC), dihydrodipicolinate reductase gene (dapB), diaminopimelate Decarboxylase gene (lysA), diaminopimelate dehydrogenase gene (ddh), phosphoenolpyruvate carboxylase gene (ppc, aspartate aminotransferase gene (aspC), and aspartate semialdehyde dehydrogenase gene ( asd), etc. The method of conferring or increasing the ability to produce lysine by increasing the lysine biosynthetic enzyme activity is by inducing a mutation in the gene encoding the enzyme or amplifying the gene. It can be carried out by increasing the intracellular activity of the enzyme These can be carried out by genetic recombination, but are not limited thereto.

상기 야생형에 비하여 향상된 라이신 생산능을 가지는 미생물이라면 원핵 미생물 및 진핵 미생물 어느 것이나 포함할 수 있다. 구체적으로 에스케리키아 속 미생물 또는 코리네형 미생물일 수 있다. 상기 에스케리키아 미생물은 대장균(Escherichia coli), 에스케리키아 알베르티(Escherichia albertii), 에스케리키아 블라태(Escherichia blattae), 에스케리키아 퍼구소니 (Escherichia fergusonii), 에스케리키아 헤르만니(Escherichia hermannii) 또는 에스케리아 불너리스(Escherichia vulneris)일 수 있으나, 이에 한정되지 않는다. 더욱 구체적으로는 상기 에스케리키아 속 균주는 대장균일 수 있다. 상기 코리네형 미생물은 코리네박테리움(Corynebacterium) 또는 브레비박테리움(Brevibacterium) 속의 미생물을 포함한다. 또한 상기 코리네형 미생물은 구체적으로 코리네박테리움 글루타미쿰 (Corynebacterium glutamicum), 코리네박테리움 써모아미노게네스 (Corynebacterium thermoaminogenes), 브레비박테리움 플라붐 (Brevibacterium flavum), 브레비박테리움 락토페르멘툼 (Brevibacterium lactofermentum)를 포함할 수 있으나, 이에 제한되지 않는다. Any microorganism having an improved lysine-producing ability compared to the wild type may include both prokaryotic microorganisms and eukaryotic microorganisms. Specifically, it may be a microorganism of the genus Escherichia or a coryneform microorganism. The Escherichia microorganisms are Escherichia coli, Escherichia albertii, Escherichia blattae, Escherichia fergusonii, Escherichia hermannii Or it may be Escherichia vulneris (Escherichia vulneris), but is not limited thereto. More specifically, the strain of the genus Escherichia may be E. coli. The coryneform microorganisms include microorganisms of the genus Corynebacterium or Brevibacterium. Further, the coryneform microorganism Specifically Corynebacterium glutamicum (Corynebacterium glutamicum), Corynebacterium thermo amino to Ness (Corynebacterium thermoaminogenes), Brevibacterium Plastic boom (Brevibacterium flavum), Brevibacterium Menthum ( Brevibacterium lactofermentum ), but is not limited thereto.

미생물이 상기 라이신 디카르복실라제 활성을 가지는 단백질을 발현하도록 형질전환되기 위해, 본 발명의 라이신 디카르복실라제 유전자가 형질전환의 목적이 되는 미생물 내에 라이신 디카르복실라제 단백질 또는 유전자 발현단위로 포함될 수 있다. 상기 라이신 디카르복실라제의 유전자 발현단위는 벡터에 작동가능하게 연결되어 상기 미생물에 형질전환되어 포함되거나 상기 미생물의 염색체 내에 삽입되는 것 일 수 있다. 구체적으로, 상기 라이신 디카르복실라제 유전자가 개시코돈의 상류에 연결된 프로모터에 의해 과발현되도록 작동가능하게 연결되는 것일 수 있다.In order for the microorganism to be transformed to express the protein having the lysine decarboxylase activity, the lysine decarboxylase gene of the present invention is included as a lysine decarboxylase protein or a gene expression unit in the microorganism intended for transformation. I can. The gene expression unit of the lysine decarboxylase may be operably linked to a vector to be transformed and included in the microorganism, or may be inserted into the chromosome of the microorganism. Specifically, the lysine decarboxylase gene may be operably linked to be overexpressed by a promoter linked upstream of an initiation codon.

본 발명에서, 용어 "발현단위"는 프로모터와 단백질을 코딩하는 폴리뉴클레오티드가 작동가능하게 연결된 단편을 의미하며, 이에 3'-UTL, 5'-UTL, poly A tail 등이 추가로 포함될 수도 있다. 본 발명에서 용어 "발현단위"는 "발현카세트"와 혼용될 수 있다. In the present invention, the term "expression unit" refers to a fragment in which a promoter and a polynucleotide encoding a protein are operably linked, and 3'-UTL, 5'-UTL, poly A tail, and the like may be additionally included. In the present invention, the term "expression unit" may be used interchangeably with "expression cassette".

본 발명에서, 용어 “작동가능하게 연결”이란 라이신 디카르복실라제를 암호화하는 유전자의 전사를 개시 및 매개하도록, 상기 유전자 서열과 프로모터 활성을 갖는 핵산 서열이 기능적으로 연결되어 있는 것을 의미한다. 이는 프로모터 활성을 갖는 핵산 서열이 라이신 디카르복실라제 유전자와 작동가능하게 연결되어, 상기 라이신 디카르복실라제 유전자의 전사 활성을 조절할 수 있음을 의미하는 것이다.In the present invention, the term "operably linked" means that the gene sequence and a nucleic acid sequence having promoter activity are functionally linked to initiate and mediate transcription of a gene encoding a lysine decarboxylase. This means that the nucleic acid sequence having promoter activity is operably linked to the lysine decarboxylase gene, and thus the transcriptional activity of the lysine decarboxylase gene can be regulated.

본 발명에서 용어 "형질전환"은 상기 슈도모나스 속 균주에서 유래된 라이신 디카르복실라제 유전자를 숙주세포, 구체적으로 에스케리키아 속 균주 또는 코리네형 미생물 내로 도입하여 상기 숙주세포 내에서 발현될 수 있도록 하는 전반적인 행위를 의미한다. 이때, 상기 라이신 디카르복실라제 유전자는 라이신 디카르복실라제를 코딩할 수 있는 폴리뉴클레오티드로서 DNA 및 RNA를 포함한다. 상기 유전자는 숙주세포 내로 도입되어 발현될 수 있는 것이면, 어떠한 형태로도 도입될 수 있다. 예를 들면, 상기 유전자는, 자체적으로 상기 유전자의 발현에 필요한 모든 요소(element)를 포함하는 폴리뉴클레오티드 구조체인 발현 카세트 (expression cassette)의 형태로 숙주세포 내로 도입될 수 있다. 상기 발현 카세트는 통상 상기 유전자에 작동 가능하게 연결된 프로모터, 전사종결 신호, 리보좀 결합 부위 및 번역 종결 신호를 포함한다. 상기 발현 카세트는 자체 복제가 가능한 발현 벡터의 형태일 수 있다. 또한, 상기 유전자는 그 자체 또는 폴리뉴클레오티드 구조체의 형태로 숙주세포로 도입되어, 숙주세포의 발현에 필요한 서열과 작동가능하게 연결되는 것일 수도 있다. 상기 재조합 벡터는 숙주세포에 DNA를 도입하여 단백질을 발현시키기 위한 수단으로서, 플라스미드 벡터, 코즈미드 벡터, 박테리오파아지 벡터 등 공지의 발현 벡터를 사용할 수 있다. 상기 벡터는 DNA 재조합 기술을 이용한 임의의 공지된 방법에 따라 당업자가 용이하게 제조할 수 있으며, 이에 한정되지 않는다. In the present invention, the term "transformation" refers to the introduction of a lysine decarboxylase gene derived from the Pseudomonas sp. strain into a host cell, specifically a strain of the genus Escherichia or a coryneform microorganism to be expressed in the host cell. It refers to the overall action. At this time, the lysine decarboxylase gene is a polynucleotide capable of encoding lysine decarboxylase, and includes DNA and RNA. The gene may be introduced in any form as long as it can be introduced and expressed into a host cell. For example, the gene may be introduced into a host cell in the form of an expression cassette, which is a polynucleotide construct that itself contains all elements necessary for expression of the gene. The expression cassette usually includes a promoter operably linked to the gene, a transcription termination signal, a ribosome binding site, and a translation termination signal. The expression cassette may be in the form of an expression vector capable of self-replicating. In addition, the gene may be introduced into a host cell by itself or in the form of a polynucleotide structure, and may be operably linked to a sequence required for expression of the host cell. The recombinant vector is a means for expressing a protein by introducing DNA into a host cell, and a known expression vector such as a plasmid vector, a cozmid vector, or a bacteriophage vector can be used. The vector can be easily prepared by a person skilled in the art according to any known method using DNA recombination technology, but is not limited thereto.

상기 형질전환의 방법은 폴리뉴클레오티드를 세포 내로 도입하는 어떠한 방법도 포함되며, 당 분야에서 공지된 적합한 표준 기술을 선택하여 수행할 수 있다. 그 예로, 일렉트로포레이션 (electroporation), 칼슘 포스페이트 공동-침전 (calcium phosphate co-precipitation), 레트로바이러스 감염 (retroviral infection), 미세주입법 (microinjection), DEAE-덱스트란 (DEAE-dextran), 양이온 리포좀 (cationic liposome) 법 등이 있고, 이로 제한되지 않는다.The method of transformation includes any method of introducing a polynucleotide into a cell, and can be performed by selecting a suitable standard technique known in the art. For example, electroporation, calcium phosphate co-precipitation, retroviral infection, microinjection, DEAE-dextran, cationic liposome ( cationic liposome) method, etc., but is not limited thereto.

일 구체예에서 향상된 라이신 생산능을 가지는 미생물이 본 발명의 라이신 디카르복실라제 활성을 가지는 단백질을 발현하도록 형질전환됨으로써, 우수한 카다베린 생산능을 가질 수 있다.In one embodiment, the microorganism having the improved lysine-producing ability is transformed to express the protein having the lysine decarboxylase activity of the present invention, thereby having excellent cadaverine-producing ability.

본 발명의 또 다른 구체적인 일 양태는 카다베린을 생산하기 위한 신규 라이신 디카르복실라제, 또는 신규 라이신 디카르복실라제 활성을 가지는 단백질을 발현하도록 형질전환된 미생물의 용도를 제공한다.Another specific aspect of the present invention provides the use of a microorganism transformed to express a protein having novel lysine decarboxylase or novel lysine decarboxylase activity for producing cadaverine.

상기 신규 라이신 디카르복실라제 및 상기 신규 라이신 디카르복실라제 활성을 가지는 단백질을 발현하도록 형질전환된 미생물은 각각 상기한 바와 같다. 일 구체예에서 본 발명의 라이신 디카르복실라제는 온도 또는 pH의 변화에 대해서 종래 카다베린의 생산에 이용되었던 대장균 유래의 라이신 디카르복실라제보다 더 안정성이 높은 것을 확인하였다. 특히 본 발명의 신규 라이신 디카르복실라제는 pH 안정성이 대장균 유래의 라이신 디카르복실라제보다 상대적으로 높아, 라이신으로부터 카다베린으로의 전환 반응에서 유리하다. 따라서 본 발명의 신규 라이신 디카르복실라제 및 상기 신규 라이신 디카르복실라제 활성을 가지는 단백질을 발현하도록 형질전환된 미생물은 카다베린의 생산에 활용할 수 있다.The novel lysine decarboxylase and the microorganism transformed to express a protein having the novel lysine decarboxylase activity are as described above, respectively. In one embodiment, it was confirmed that the lysine decarboxylase of the present invention has higher stability than the E. coli-derived lysine decarboxylase that was used for the production of cadaverine conventionally with respect to changes in temperature or pH. In particular, the novel lysine decarboxylase of the present invention has relatively higher pH stability than that of E. coli-derived lysine decarboxylase, and is advantageous in the conversion reaction from lysine to cadaverine. Accordingly, the novel lysine decarboxylase of the present invention and the microorganism transformed to express a protein having the novel lysine decarboxylase activity can be utilized for the production of cadaverine.

본 발명의 또 다른 일 양태는 카다베린 제조방법을 제공한다. Another aspect of the present invention provides a method for producing cadaverine.

본 발명의 카다베린 제조방법의 구체적인 일 양태는 신규 라이신 디카르복실라제 활성을 가지는 단백질 또는 상기 활성을 가지는 단백질을 발현하도록 형질전환된 미생물을 이용하여 라이신으로부터 카다베린으로 전환하는 단계; 및 상기 전환된 카다베린을 회수하는 단계를 포함하는 카다베린의 제조방법이다. A specific aspect of the method for producing cadaverine of the present invention includes the steps of converting from lysine to cadaverine using a protein having a novel lysine decarboxylase activity or a microorganism transformed to express the protein having the activity; And recovering the converted cadaverine.

상기 신규 라이신 디카르복실라제 활성을 가지는 단백질 및 상기 형질전환된 미생물은 각각 상기한 바와 같다. 상기 형질전환된 미생물은 구체적으로 에스케리키아속 미생물일 수 있다.The protein having the novel lysine decarboxylase activity and the transformed microorganism are as described above, respectively. Specifically, the transformed microorganism may be a microorganism of the genus Escherichia.

상기 라이신을 카다베린으로 전환하는 단계는 신규 라이신 디카르복실라제 활성을 가지는 단백질을 발현하는 미생물로부터 추출하여 정제된 효소를 이용하여 라이신을 탈탄산시킴으로써 카다베린을 생산할 수 있다. 또는 상기 형질전환된 미생물을 배양한 배지에 라이신을 첨가함으로써 미생물 자체를 이용하여 라이신을 탈탄산시킴으로써 카다베린으로 전환시킬 수 있다. In the step of converting lysine to cadaverine, cadaverine can be produced by decarboxylating lysine using an enzyme extracted from a microorganism expressing a protein having novel lysine decarboxylase activity and purified. Alternatively, by adding lysine to a culture medium in which the transformed microorganism is cultured, lysine can be converted to cadaverine by decarboxylating lysine using the microorganism itself.

또한 본 발명의 카다베린 제조방법의 또 다른 구체적인 일 양태는 야생형에 비하여 향상된 라이신 생산능을 가지는 미생물이 신규 라이신 디카르복실라제 활성을 가지는 단백질이 발현되도록 형질전환된 카다베린 생산능을 가지는 미생물을 배지에서 배양하는 단계; 및 상기 미생물 또는 배지에서 카다베린을 회수하는 단계를 포함하는 카다베린의 제조방법을 제공한다.In addition, another specific aspect of the cadaverine production method of the present invention is a microorganism having a cadaverine-producing ability transformed so that a microorganism having an improved lysine-producing ability compared to the wild-type expresses a protein having a novel lysine decarboxylase activity. Culturing in a medium; And it provides a method for producing cadaverine comprising the step of recovering cadaverine from the microorganism or medium.

상기 신규 L-라이신 디카르복실라제 활성을 가지는 단백질 및 상기 야생형에 비하여 향상된 라이신 생산능을 가지는 미생물은 각각 상기한 바와 같다.The protein having the novel L-lysine decarboxylase activity and the microorganism having an improved lysine-producing ability compared to the wild-type are as described above.

상기 배양은 당업계에 알려진 적당한 배지와 배양조건에 따라 이루어질 수 있다. 통상의 기술자라면 선택되는 미생물에 따라 배지 및 배양조건을 용이하게 조정하여 사용할 수 있다. 배양 방법은 회분식, 연속식, 유가식, 또는 이들의 조합 배양을 포함할 수 있으나, 이에 한정되지 않는다.The culture may be performed according to a suitable medium and culture conditions known in the art. Those of ordinary skill in the art can easily adjust and use the medium and culture conditions according to the selected microorganism. The culture method may include, but is not limited to, a batch type, continuous type, fed-batch type, or a combination culture thereof.

상기 배지는 다양한 탄소원, 질소원 및 미량원소 성분을 포함할 수 있다. The medium may contain various carbon sources, nitrogen sources, and trace element components.

구체적인 예로, 상기 탄소원은 포도당, 자당, 유당, 과당, 말토오스, 전분, 셀룰로오스와 같은 탄수화물, 대두유, 해바라기유, 피마자유, 코코넛유와 같은 지방, 팔미트산, 스테아린산, 리놀레산과 같은 지방산, 글리세롤 및 에탄올과 같은 알코올, 아세트산과 같은 유기산, 또는 이들의 조합을 포함할 수 있으며, 구체적으로는 글루코스를 탄소원으로 하여 수행될 수 있으나, 이에 제한되지 않는다. 상기 질소원은, 펩톤, 효모 추출물, 육즙, 맥아 추출물, 옥수수 침지액(CSL), 및 대두밀과 같은 유기 질소원 및 요소, 황산암모늄, 염화암모늄, 인산암모늄, 탄산암모늄 및 질산암모늄과 같은 무기 질소원, 또는 이들의 조합을 포함할 수 있으나, 이에 제한되지 않는다. 상기 배지는 인의 공급원으로서, 예를 들면, 인산이수소칼륨, 인산수소이칼륨 및 상응하는 소듐-함유 염, 황산마그네슘 또는 황산철과 같은 금속염을 포함할 수 있으나, 이에 제한되지 않는다. 또한, 아미노산, 비타민, 및 적절한 전구체 등이 배지에 포함될 수 있다. 상기 배지 또는 개별 성분은 배지에 회분식 또는 연속식으로 첨가될 수 있으며, 상기 예는 예시일 뿐 이에 한정되지 않는다.In a specific example, the carbon source is glucose, sucrose, lactose, fructose, maltose, starch, carbohydrates such as cellulose, soybean oil, sunflower oil, castor oil, fats such as coconut oil, palmitic acid, stearic acid, fatty acids such as linoleic acid, glycerol, and An alcohol such as ethanol, an organic acid such as acetic acid, or a combination thereof may be included, and specifically, it may be performed using glucose as a carbon source, but is not limited thereto. The nitrogen source is an organic nitrogen source and urea such as peptone, yeast extract, broth, malt extract, corn steep liquor (CSL), and soybean meal, an inorganic nitrogen source such as ammonium sulfate, ammonium chloride, ammonium phosphate, ammonium carbonate and ammonium nitrate, or It may include a combination of these, but is not limited thereto. The medium as a source of phosphorus may include, for example, potassium dihydrogen phosphate, dipotassium hydrogen phosphate, and a corresponding sodium-containing salt, a metal salt such as magnesium sulfate or iron sulfate, but is not limited thereto. In addition, amino acids, vitamins, and suitable precursors may be included in the medium. The medium or individual components may be added to the medium in a batch or continuous manner, and the examples are not limited thereto.

또한, 배양 중에 수산화암모늄, 수산화칼륨, 암모니아, 인산 및 황산과 같은 화합물을 미생물 배지에 적절한 방식으로 첨가하여 배지의 pH를 조정할 수 있다. 또한, 배양 중에 지방산 폴리글리콜 에스테르와 같은 소포제를 사용하여 기포 생성을 억제할 수 있다. 배지의 호기 상태를 유지하기 위하여, 배양액 내로 산소 또는 산소-함유 기체 (예, 공기)를 주입할 수 있다. 배양액의 온도는 통상 20℃ 내지 45℃, 예를 들면 25℃ 내지 40℃일 수 있다. 배양기간은 원하는 라이신 디카르복실라제의 생성량이 얻어질 때까지 지속될 수 있으며, 예를 들면 10 내지 160 시간일 수 있다.In addition, the pH of the medium can be adjusted by adding compounds such as ammonium hydroxide, potassium hydroxide, ammonia, phosphoric acid and sulfuric acid to the microbial medium in an appropriate manner during the cultivation. In addition, the generation of air bubbles can be suppressed by using an antifoaming agent such as fatty acid polyglycol ester during culture. In order to maintain the aerobic state of the medium, oxygen or an oxygen-containing gas (eg, air) may be injected into the culture medium. The temperature of the culture medium may be usually 20°C to 45°C, for example 25°C to 40°C. The incubation period may be continued until a desired amount of lysine decarboxylase is obtained, and may be, for example, 10 to 160 hours.

상기 카다베린을 회수하는 방법은, 예를 들어 회분식, 연속식 또는 유가식 배양 방법 등에 따라 당해 분야에 공지된 적합한 방법을 이용하여 배지로부터 생산된 카다베린을 수집 또는 회수할 수 있다. 또한 이러한 회수 방법에는, 원심분리, 여과, 이온 교환 크로마토그래피, 및 결정화 등의 방법이 이용될 수 있다. 예를 들면, 배지를 저속 원심분리하여 바이오매스를 제거하고 얻어진 상등액을, 이온 교환 크로마토그래피를 통하여 분리할 수 있다.The method for recovering cadaverine may be, for example, a batch, continuous, or fed-batch culture method, using a suitable method known in the art to collect or recover cadaverine produced from the medium. In addition, methods such as centrifugation, filtration, ion exchange chromatography, and crystallization may be used for such a recovery method. For example, the medium may be centrifuged at low speed to remove biomass, and the obtained supernatant may be separated through ion exchange chromatography.

또한 상기 카다베린의 제조방법은 상기 미생물 또는 배지로부터 라이신 디카르복실라제를 회수하는 단계를 추가로 포함할 수 있다. In addition, the method for producing cadaverine may further include the step of recovering lysine decarboxylase from the microorganism or medium.

상기 미생물 또는 배지로부터 라이신 디카르복실라제를 회수하는 방법은 배양방법, 예를 들어 회분식, 연속식 또는 유가식 배양 방법 등에 따라 당해 분야에 공지된 적합한 방법을 이용하여 미생물 또는 배지로부터 생산된 라이신 디카르복실라제를 수집 또는 회수할 수 있다. 또한 이러한 회수 방법에는, 원심분리, 여과, 이온 교환 크로마토그래피, 및 결정화 등의 방법이 이용될 수 있다. 예를 들면, 배양물을 저속 원심분리하여 바이오매스를 제거하고 얻어진 상등액을, 이온 교환 크로마토그래피를 통하여 분리할 수 있다. 또한 배지 중 미생물을 파괴하여 얻은 세포 분쇄액(cell lysate)로부터 라이신 디카르복실라제을 회수할 수 있다. 상기 세포 분쇄액은 당해 분야에 공지된 적절한 방법을 이용하여 얻을 수 있다. 예를 들면 물리적인 분쇄기나, 적절한 상업적으로 입수가능한 세포 용해 버퍼(cell lysis buffer)를 이용할 수 있다. 이러한 세포 분쇄액로부터 원심분리 등 적절한 당해 분야에서 공지된 방법을 통해 라이신 디카르복실라제를 회수할 수 있다.The method for recovering lysine decarboxylase from the microorganism or medium is a lysine decarboxylase produced from a microorganism or medium using a suitable method known in the art according to a culture method, for example, a batch, continuous, or fed-batch culture method. Reboxylase can be collected or recovered. In addition, methods such as centrifugation, filtration, ion exchange chromatography, and crystallization may be used for such a recovery method. For example, the culture medium may be centrifuged at a low speed to remove biomass, and the obtained supernatant may be separated through ion exchange chromatography. In addition, lysine decarboxylase can be recovered from cell lysate obtained by destroying microorganisms in the medium. The cell lysate can be obtained using an appropriate method known in the art. For example, a physical grinder or a suitable commercially available cell lysis buffer can be used. Lysine decarboxylase can be recovered from such cell pulverization solution through a method known in the art such as centrifugation.

본 발명에서 제공하는 슈도모나스(Psuedomonas) 속 균주 유래의 신규 라이신 디카르복실라제 활성을 가지는 단백질은 pH 상승 변화에도 안정된 활성을 가질 수 있어, 라이신으로부터 카다베린으로의 전환 반응에 효율적으로 이용될 수 있으므로, 카다베린의 생산에 널리 활용될 수 있다. The protein having a novel lysine decarboxylase activity derived from a strain of the genus Psuedomonas provided by the present invention can have a stable activity even with a change in pH increase, and thus can be efficiently used in the conversion reaction from lysine to cadaverine. , It can be widely used in the production of cadaverine.

도 1은 라이신 디카르복실라제가 라이신으로부터 카다베린을 생성시키는 반응 메카니즘을 나타낸다.
도 2는 PtLDC 및 N-말단에 his-tag을 가지는 PtLDC의 발현 결과를 보여주는 SDS-PAGE 젤 사진이다.
도 3은 PtLDC의 라이신을 카다베린으로 전환시키는 반응성을 나타낸다.
도 4는 다양한 온도에 따른 PtLDC의 상대적인 효소활성을 나타낸다.
도 5는 다양한 pH에 따른 PtLDC의 상대적인 효소활성을 나타낸다.
도 6은 PaLDC 및 PrLDC의 발현을 보여주는 SDS-PAGE 젤 사진이다.
도 7은 PaLDC의 라이신을 카다베린으로 전환시키는 반응성을 나타낸다.
도 8은 다양한 온도에 따른 PaLDC의 상대적인 효소활성을 나타낸다.
도 9는 다양한 pH에 따른 PaLDC의 상대적인 효소활성을 나타낸다.
도 10은 PrLDC의 라이신을 카다베린으로 전환시키는 반응성을 나타낸다.
도 11은 다양한 온도에 따른 PrLDC의 상대적인 효소활성을 나타낸다.
도 12는 다양한 pH에 따른 PrLDC의 상대적인 효소활성을 나타낸다.
도 13은 EcLDC, PpLDC, PtLDC 및 PxLDC의 발현 결과를 보여주는 SDS-PAGE 젤 사진이다.
도 14는 PpLDC의 라이신을 카다베린으로 전환시키는 반응성을 나타낸다.
도 15는 다양한 온도에 따른 PpLDC의 상대적인 효소활성을 나타낸다.
도 16은 다양한 pH에 따른 PpLDC의 상대적인 효소활성을 나타낸다.
도 17은 PxLDC의 라이신을 카다베린으로 전환시키는 반응성을 나타낸다.
도 18은 다양한 pH에 따른 PxLDC의 상대적인 효소활성을 나타낸다.
도 19는 다양한 온도에 따른 EcLDC와 PtLDC의 각 상대적인 활성을 나타낸다.
도 20은 다양한 pH에 따른 EcLDC와 PtLDC의 각 상대적인 활성을 나타낸다.
1 shows the reaction mechanism by which lysine decarboxylase produces cadaverine from lysine.
2 is an SDS-PAGE gel photograph showing the expression results of PtLDC and PtLDC having his-tag at the N-terminus.
Figure 3 shows the reactivity of converting PtLDC lysine to cadaverine.
4 shows the relative enzymatic activity of PtLDC according to various temperatures.
5 shows the relative enzymatic activity of PtLDC according to various pHs.
6 is an SDS-PAGE gel photograph showing the expression of PaLDC and PrLDC.
7 shows the reactivity of converting PaLDC lysine to cadaverine.
8 shows the relative enzymatic activity of PaLDC according to various temperatures.
9 shows the relative enzymatic activity of PaLDC according to various pHs.
Figure 10 shows the reactivity of converting lysine of PrLDC to cadaverine.
11 shows the relative enzymatic activity of PrLDC according to various temperatures.
12 shows the relative enzymatic activity of PrLDC according to various pHs.
13 is an SDS-PAGE gel photograph showing the expression results of EcLDC, PpLDC, PtLDC and PxLDC.
14 shows the reactivity of PpLDC to convert lysine to cadaverine.
15 shows the relative enzymatic activity of PpLDC according to various temperatures.
16 shows the relative enzymatic activity of PpLDC according to various pHs.
Figure 17 shows the reactivity of converting lysine of PxLDC to cadaverine.
18 shows the relative enzymatic activity of PxLDC according to various pHs.
19 shows the relative activities of EcLDC and PtLDC according to various temperatures.
20 shows the relative activities of EcLDC and PtLDC according to various pHs.

이하 본 발명을 실시예에 의해 보다 상세하게 설명한다. 그러나 이들 실시예는 본 발명을 예시적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것은 아니다.Hereinafter, the present invention will be described in more detail by examples. However, these examples are for illustrative purposes only, and the scope of the present invention is not limited by these examples.

실시예Example 1. One. 카다베린Cadaverine 생산용 신규 라이신 New lysine for production 디카르복실라제의Decarboxylase 선별 Selection

1-1. 슈도모나스 1-1. Pseudomonas 써모톨러란스Thermotolerance 유래 라이신 Derived lysine 디카르복실라제의Decarboxylase 선별 Selection

카다베린 생산에 활용하기 위한 신규 라이신 디카르복실라제를 선별하기 위해, 미국 국립생물정보센터 (NCBI)에서 제공되는 BLAST 프로그램 (http://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome)을 이용하여, 대장균 유래 라이신 디카르복실라제의 활성부위 펩타이드 서열과 높은 유사도를 가지는 호열성 균주 유래 라이신 디카르복실라제를 검색하였다. 구체적으로 대장균 유래 라이신 디카르복실라제의 주요 아미노산인 367번째 라이신을 중심으로 N-말단과 C-말단 각 15개의 아미노산을 포함하는, 총 31개의 펩타이드 서열 (GRVEGKVIYETQSTHKLLAAFSQASMIHVKG: 서열번호 12)을 기반으로, BLAST 서치를 진행하였다. 검색 결과 에스케리키아 (Escherichia), 쉬겔라 (Shigella), 엔테로박테리아 (Enterobacteria), 에드워지엘라 (Edwardsiella), 클렙시엘라 (Klebsiella), 세라티아 (Serratia), 예르시니아 (Yersinia), 요케넬라 (Yokenella), 라울텔라 (Raoultella), 세라티티스 (Ceratitis), 살모넬라 (Salmonella), 수테렐라 (Sutterella), 쉽웰리아 (Shimwellia), 비브리오 (Vibrio), 슈도모나스 (Pseudomonas) 속 미생물 등이 높은 상동성을 가지는 것으로 확인되었다. 그 중, 대장균의 라이신 디카르복실라제 정도의 활성을 가지면서, 동시에 높은 열안정성을 가질 수 있는 라이신 디카르복실라제를 탐색하는 것을 목적으로 하였다. 일반적으로 호열성 균주 안에 존재하는 단백질들이 열안정성이 높은 것으로 알려져 있으므로, 탐색된 균주 중에서 호열성 (46~60℃) 미생물로 알려진 슈도모나스 써모톨러란스를 선택하였다. To screen for novel lysine decarboxylase for use in cadaverine production, the BLAST program (http://blast.ncbi.nlm.nih.gov/Blast.cgi?) provided by the National Center for Biological Information (NCBI) PROGRAM=blastn&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome) was used to search for a lysine decarboxylase derived from a thermophilic strain having a high similarity to the active site peptide sequence of E. coli-derived lysine decarboxylase. Specifically, based on a total of 31 peptide sequences (GRVEGKVIYETQSTHKLLAAFSQASMIHVKG: SEQ ID NO: 12), containing 15 amino acids at each of the N-terminal and C-terminus around the 367th lysine, which is the main amino acid of E. coli-derived lysine decarboxylase, BLAST search was conducted. Results Escherichia (Escherichia), Shh Gela (Shigella), Enterobacter bacteria (Enterobacteria), Ed woji Ella (Edwardsiella), keulrep when Ella (Klebsiella), Serratia marcescens (Serratia), Yersinia (Yersinia), yoke Nella (Yokenella), Raul telra (Raoultella), ceramide entity's (Ceratitis), Salmonella (Salmonella), sute Pasteurella (Sutterella), swipwel Liao (Shimwellia), Vibrio (Vibrio), Pseudomonas (Pseudomonas) in microorganisms, such as a high homology Was confirmed to have. Among them, the purpose of the study was to search for a lysine decarboxylase capable of having an activity comparable to that of E. coli lysine decarboxylase and at the same time having high thermal stability. In general, since proteins present in thermophilic strains are known to have high thermal stability, Pseudomonas thermotolerance, known as thermophilic (46-60° C.) microorganisms, was selected from among the searched strains.

1-2. 다양한 슈도모나스 속 균주 유래 라이신 1-2. Lysine from various Pseudomonas genus strains 디카르복실라제의Decarboxylase 선별 Selection

슈도모나스 써모톨러란스 균주 이외에 다른 슈도모나스 속 균주 유래 라이신 다카르복실라제를 선별하기 위해, 슈도모나스 종간의 상동성이 낮은 4 개의 균주 (슈도모나스 알칼리제네스, 슈도모나스 레지노보란스, 슈도모나스 푸티다, 슈도모나스 신싼싸)를 선정하였다. 미국 국립생물정보센터 (http://www.ncbi.nlm.nih.gov/)에서 제공하는 nucleotide 및 genome 프로그램을 이용하여, 상기 선정된 4개의 슈도모나스 종 유래의 라이신 디카르복실라제의 유전자와 아미노산 서열을 확인하였다. In order to select lysine polycarboxylase derived from strains of the genus Pseudomonas in addition to Pseudomonas thermotolerance strains, four strains with low homology between Pseudomonas species (Pseudomonas Alkaline Genes, Pseudomonas Reginovorans, Pseudomonas Putida, Pseudomonas Synsssa) were selected. I did. Genes and amino acids of lysine decarboxylase derived from the four selected Pseudomonas species using nucleotide and genome programs provided by the US National Center for Biological Information (http://www.ncbi.nlm.nih.gov/) The sequence was confirmed.

하기 표 1은 각각 슈도모나스 종 유래 라이신 디카르복실라제에 대한 아미노산 서열 상동성을 나타낸다.Table 1 below shows amino acid sequence homology to lysine decarboxylase derived from Pseudomonas species, respectively.

PtLDCPtLDC PaLDCPaLDC PrLDCPrLDC PpLDCPpLDC PxLDCPxLDC PtLDCPtLDC 87 %87% 86 %86% 81 %81% 84 %84% PaLDCPaLDC 87 %87% 89 %89% 80 %80% 85 %85% PrLDCPrLDC 86 %86% 89 %89% 77 %77% 83 %83% PpLDCPpLDC 81 %81% 80 %80% 77 %77% 84 %84% PxLDCPxLDC 84 %84% 85 %85% 83 %83% 84 %84%

PtLDC: 슈도모나스 써모톨러란스(P. thermotolerans) 유래 라이신 디카르복실라제PtLDC: Lysine decarboxylase derived from P. thermotolerans

PaLDC: 슈도모나스 알칼리제네스(P. alcaligenes) 유래 라이신 디카르복실라제PaLDC: Lysine decarboxylase derived from P. alcaligenes

PrLDC: 슈도모나스 레지노보란스(P. resinovorans) 유래 라이신 디카르복실라제PrLDC: Lysine decarboxylase derived from P. resinovorans

PpLDC: 슈도모나스 푸티다(P. putida) 유래 라이신 디카르복실라제PpLDC: Lysine decarboxylase derived from P. putida

PxLDC: 슈도모나스 신싼싸(P. synxantha) 유래 라이신 디카르복실라제PxLDC: Lysine decarboxylase derived from P. synxantha

실시예 2. 슈도모나스 써모톨러란스 유래 라이신 디카르복실라제 유전자가 도입된 대장균 제조 및 그로부터 발현된 라이신 디카르복실라제 활성 분석 Example 2. Preparation of Escherichia coli into which the Pseudomonas thermotolerance- derived lysine decarboxylase gene was introduced and analysis of lysine decarboxylase activity expressed therefrom

2-1. 슈도모나스 써모톨러란스 유래 라이신 디카르복실라제 유전자에 의한 대장균의 형질전환 2-1. Transformation of Escherichia coli by lysine decarboxylase gene derived from Pseudomonas thermotolerance

슈도모나스 써모톨러란스 유래 라이신 디카르복실라제 유전자의 대장균으로의 도입 및 대장균에서의 발현을 위한 재조합 유전자의 클로닝을 진행하였다. 슈도모나스 써모톨러란스에 대한 유전정보는 NCBI의 Genome (http://www.ncbi.nlm.nih.gov/genome/) 데이터 정보로부터 확보하였다.The lysine decarboxylase gene derived from Pseudomonas thermotolerance was introduced into E. coli and the recombinant gene was cloned for expression in E. coli. Genetic information about Pseudomonas thermotolerance was obtained from NCBI's Genome (http://www.ncbi.nlm.nih.gov/genome/) data information.

슈도모나스 써모톨러란스의 유전체(genomic) DNA를 확보한 후 이를 주형으로 한 중합연쇄반응 (PCR)을 통해 슈도모나스 써모톨러란스 유래 라이신 디카르복실라제 유전자 (ptldc)를 증폭하였다. PCR 수행을 위해, 5_LDC_NdeI (AATATACATATGTACAAAGACCTCCAATTCCCC)(서열번호 13)와 3_LDC_XhoI (AATATACTCGAGTCAGATCTTGATGCAGTCCACCG)(서열번호 14) 프라이머를 이용하였으며, PfuUltraTM DNA 폴리머라제 (Stratagene사, 미국)를 사용하여 94℃: 30초, 55℃: 30초, 72℃: 2분 조건을 30회 반복한 결과, 증폭된 ptldc (서열번호 2)를 확보하였다. 또한 N-말단에 His-tag을 갖는 슈도모나스 써모톨러란스 유래 라이신 디카르복실라제 발현을 위해, 프라이머로 5_LDC_BamHI (AATATAGGATCCGTACAAAGACCTCCAATTCCCC)(서열번호 15)와 3_LDC_SacI (AATATAGAGCTCTCAGATCTTGATGCAGTCCACCG)(서열번호 16)을 이용하여, 상기 PCR 수행 방법과 동일한 방법으로 PCR을 수행하였다. 그 다음 PCR 수행으로부터 얻어진 각 ptldc 유전자를 대장균 발현 벡터인 pET-Deut1에 각각 삽입하였다. 그 후 ptldc 유전자가 클로닝된 플라스미드를 열 충격 형질변환 방법에 의해 대장균 Rosetta에 삽입하였다. 형질전환된 균주를 50ml 액체 LB 배지 (50mg/ml 암피실린 포함)를 이용하여 37℃ 온도 조건에서 배양하였으며, OD600 값이 0.8에 도달하였을 때, 0.4 mM 농도의 이소프로필 β-D-1-티오갈락토피라노시드 (IPTG)를 넣고 18 ℃에서 48시간 동안 배양하여 발현을 유도하였다. 발현이 완료된 각 슈도모나스 써모톨러란스 유래 라이신 디카르복실라제(PtLDC)들은 SDS-PAGE 젤 결과를 통해서 확인하였다 (도 2). 상기 SDS-PAGE 젤 결과를 통해, 저온에서 발현된 PtLDC와 His-tag이 포함된 PtLDC가 가용성 단백질로 과발현된 것을 확인할 수 있었다 (도 2의 레인 2 및 4). After securing the genomic DNA of Pseudomonas thermotolerance, the lysine decarboxylase gene (ptldc) derived from Pseudomonas thermotolerance was amplified through polymerization chain reaction (PCR) using this as a template. To perform PCR, 5_LDC_NdeI (AATATACATATGTACAAAGACCTCCAATTCCCC) (SEQ ID NO: 13) and 3_LDC_XhoI (AATATACTCGAGTCAGATCTTGATGCAGTCCACCG) (SEQ ID NO: 14) primers were used, and PfuUltraTM DNA polymerase (Stratagene Corporation, US for 30 seconds, 94° C., US) : 30 seconds, 72° C.: As a result of repeating the conditions for 2 minutes 30 times, amplified ptldc (SEQ ID NO: 2) was obtained. In addition, for the expression of Pseudomonas thermotolerance-derived lysine decarboxylase having a His-tag at the N-terminus, using 5_LDC_BamHI (AATATAGGATCCGTACAAAGACCTCCAATTCCCC) (SEQ ID NO: 15) and 3_LDC_SacI (AATATAGAGCTCTCAGATCTTGATGCAGTCTCAGATCTTGATGCAGTCTCAGATTGATGCAGTC) as primers. PCR was performed in the same manner as the PCR method. Then, each ptldc gene obtained from PCR was inserted into pET-Deut1, an E. coli expression vector. Thereafter, the plasmid in which the ptldc gene was cloned was inserted into E. coli Rosetta by a heat shock transformation method. The transformed strain was cultured at 37° C. using 50 ml liquid LB medium (including 50 mg/ml ampicillin), and when the OD600 value reached 0.8, isopropyl β-D-1-thiogal at a concentration of 0.4 mM Lactopyranoside (IPTG) was added and incubated at 18° C. for 48 hours to induce expression. Each Pseudomonas thermotolerance-derived lysine decarboxylase (PtLDC) whose expression was completed was confirmed through SDS-PAGE gel results (FIG. 2). Through the SDS-PAGE gel results, it was confirmed that PtLDC expressed at low temperature and PtLDC containing His-tag were overexpressed as soluble proteins (lanes 2 and 4 of FIG. 2).

상기 ptldc (서열번호 2)를 포함하는 플라스미드로 형질전환된 대장균 Rosetta 균주를 'Escherichia coli CC04-0055'로 명명하고, 2014년 7월 24일자로 한국미생물보존센터(KCCM)에 기탁하여 수탁번호 KCCM11559P를 부여받았다.The ptldc (SEQ ID NO: 2) an E. coli Rosetta strain transformed with a plasmid containing the 'Escherichia coli It was named'CC04-0055' and was deposited with the Korea Microbial Conservation Center (KCCM) on July 24, 2014, and was given the accession number KCCM11559P.

2-2. 대장균에서 발현된 슈도모나스 써모톨러란스 유래 라이신 디카르복실라제의 활성 분석 2-2. Analysis of the activity of lysine decarboxylase derived from Pseudomonas thermotolerance expressed in E. coli

(1) 라이신 디카르복실라제의 반응성 확인(1) Confirmation of reactivity of lysine decarboxylase

PtLDC와 His-tag이 포함된 PtLDC의 반응성을 검증하기 위하여 가용성 단백질(soluble protein) 50 ml, 100 mM 피리독살-포스페이트 (pyridoxal-phosphate, PLP), 250 mM 라이신을 넣고 200 ml의 부피로 46 ℃에서 2시간 반응하였다. 반응 완충용액은 50 mM 소듐 포스페이트, pH 6.2를 사용하였다. 공벡터가 도입된 균주를 대조군(control)으로 하여 라이신과 카다베린의 양을 분석하였다 (도 3). 고성능 액체 크로마토그래피 (Waters, Milford, MA)를 이용하여 라이신과 카다베린의 정확한 양을 2414 Refractive Indes Detector (Waters, Milford, MA) 로 분석하였다. Lysine?HCl 시약과 1,5-디아미노 펜탄(카다베린) 시약을 Sigma (St. Louis, MO) 에서 구매하고, 1mM 시트르산, 10mM 타르타르산, 24mM 에틸렌 디아민, 5% 아세토니트릴로 구성된 이동상 (mobile phase)을 이용하여 IonoSpher C3-100mm, 5mm 컬럼 (column)에서 분리하여 두 물질을 분리 및 정량하였다. 대조군의 경우는 카다베린이 전혀 생성되지 않는 것을 확인할 수 있었다. N-말단에 His-tag이 삽입된 PtLDC의 경우에는 72%의 라이신을, PtLDC는 100%의 라이신을 전환시켜 카다베린을 생성되는 것을 확인할 수 있었다. In order to verify the reactivity of PtLDC and PtLDC containing His-tag, 50 ml of soluble protein, 100 mM pyridoxal-phosphate (PLP), and 250 mM lysine were added, and a volume of 200 ml was 46 ℃. Reacted for 2 hours. As the reaction buffer solution, 50 mM sodium phosphate, pH 6.2 was used. The amount of lysine and cadaverine was analyzed using the strain into which the empty vector was introduced as a control (FIG. 3). The exact amount of lysine and cadaverine was analyzed by 2414 Refractive Indes Detector (Waters, Milford, MA) using high performance liquid chromatography (Waters, Milford, MA). Lysine® HCl reagent and 1,5-diamino pentane (cadaverine) reagent were purchased from Sigma (St. Louis, MO) and a mobile phase consisting of 1 mM citric acid, 10 mM tartaric acid, 24 mM ethylene diamine, 5% acetonitrile. ) By using IonoSpher C3-100mm, 5mm column (column) to separate and quantify the two materials. In the case of the control group, it was confirmed that cadaverine was not produced at all. In the case of PtLDC having a His-tag inserted at the N-terminus, it was confirmed that 72% of lysine was converted, and in PtLDC, 100% of lysine was converted to produce cadaverine.

(2) 온도 및 pH에 따른 라이신 디카르복실라제의 활성 분석(2) Analysis of lysine decarboxylase activity according to temperature and pH

PtLDC의 다양한 온도 조건 (30, 42, 50, 60, 70, 80 ℃)에서 효소적 특성을 파악하기 위해서 상대적인 효소 활성 (relative activity)을 비교하였다. PtLDC를 희석하여 250mM의 라이신 기질을 사용하여 60℃에서 30분간 반응시킬 때, 42mM 카다베린이 생성되는 것을 확인하였다. 이때 사용된 완충액은 50mM 소듐 포스페이트 버퍼 (pH6.2)였으며, 동량의 효소와 동일한 반응조건으로 온도 조건만 30, 42, 50, 70, 80 ℃로 처리하여 카다베린의 농도를 분석하였다. 그리고 60℃ 온도 반응에서 생성된 카다베린 양과 상대적으로 비교하였다 (도 4). 도 4에서 확인할 수 있는 바와 같이 PtLDC는 60 ℃에서 가장 높은 활성을 보였다. 또한 55~65℃의 온도 조건에서는 80% 이상의 활성을 유지하는 것으로 평가되었다.In order to determine the enzymatic properties of PtLDC under various temperature conditions (30, 42, 50, 60, 70, 80 ℃), the relative activity was compared. When PtLDC was diluted and reacted at 60° C. for 30 minutes using a 250 mM lysine substrate, it was confirmed that 42 mM cadaverine was produced. At this time, the buffer solution used was 50mM sodium phosphate buffer (pH6.2), and the concentration of cadaverine was analyzed by treating only the temperature conditions at 30, 42, 50, 70, 80 °C under the same reaction conditions as the enzyme of the same amount. And it was compared relatively with the amount of cadaverine produced in the temperature reaction at 60 ℃ (Fig. 4). As can be seen in Figure 4, PtLDC showed the highest activity at 60 ℃. In addition, it was evaluated to maintain 80% or more activity under the temperature condition of 55 to 65°C.

추가적으로 다양한 pH (6.2, 7.0, 8.0, 9.0) 에 대한 라이신 디카르복실라제의 활성 평가를 수행하였다. 온도 조건을 60℃로 고정하고 동량의 효소와 동일한 반응조건으로 50mM 소듐 포스페이트 버퍼 (pH6.2), 50mM 트리스 버퍼 (pH 7.0), 100mM 포타슘 포스페이트 버퍼 (pH 8.0), 50 mM 트리스 버퍼 (pH 9.0) 를 이용하여 각각 다른 pH에서 반응성을 비교하였다 (도 5). pH 8.0에서 PtLDC가 가장 높은 활성을 보였으나, pH 6 내지 pH 9의 조건에서도 90% 이상의 활성이 유지되는 것으로 확인되었다. 각 pH 조건에서 생성되는 카다베린 양을 pH 8.0 조건에서 생성되는 카다베린 양과 상대적으로 비교하였다 (도5). 실험 결과를 통해서 PtLDC는 pH 변화 또는 높은 pH에 대해 높은 안정성을 가지는 것으로 평가된다. Additionally, evaluation of the activity of lysine decarboxylase for various pHs (6.2, 7.0, 8.0, 9.0) was performed. The temperature conditions were fixed at 60° C. and 50 mM sodium phosphate buffer (pH6.2), 50 mM Tris buffer (pH 7.0), 100 mM potassium phosphate buffer (pH 8.0), 50 mM Tris buffer (pH 9.0) under the same reaction conditions as the enzyme. ) Was used to compare the reactivity at different pHs (FIG. 5). PtLDC showed the highest activity at pH 8.0, but it was confirmed that more than 90% activity was maintained even under the conditions of pH 6 to pH 9. The amount of cadaverine produced under each pH condition was compared with the amount of cadaverine produced under the pH 8.0 condition (FIG. 5). Through the experimental results, PtLDC is evaluated to have high stability against a change in pH or a high pH.

실시예 3. 슈도모나스 알칼리제네스 유래 라이신 디카르복실라제 유전자가 도입된 대장균 제조 및 그로부터 발현된 라이신 디카르복실라제 활성 분석 Example 3. Preparation of Escherichia coli into which Pseudomonas Alkaline Genes- derived lysine decarboxylase gene was introduced and analysis of lysine decarboxylase activity expressed therefrom

3-1. 슈도모나스 알칼리제네스 유래 라이신 디카르복실라제 유전자에 의한 대장균의 형질전환 3-1. Transformation of Escherichia coli by the lysine decarboxylase gene derived from Pseudomonas Alkaline Genes

슈도모나스 알칼리제네스 유래 라이신 디카르복실라제 유전자 (paldc)를 클로닝하기 위해, 5_PaLDC_NdeI (AATATACATATGTACAAAGACCTGAA GTTCCCCATCC)(서열번호 17)와 3_PaLDC_XhoI (AATATACTCGAGTCACTCCCTTATGCAATCAACGGTATAGC)(서열번호 18) 프라이머를 이용하였으며, 정제된 슈도모나스 알칼리제네스의 유전체 DNA를 주형으로 PCR을 수행하였다. 중합효소로 Pfu DNA 폴리머라제를 사용하였으며, 94℃: 30초, 55℃: 30초, 72℃: 2분 조건을 30회 반복하여 PCR을 수행한 결과, 증폭된 paldc 유전자 (서열번호 4)를 확보하였다. To clone the lysine decarboxylase gene (paldc) derived from Pseudomonas alkaline genes, 5_PaLDC_NdeI (AATATACATATGTACAAAGACCTGAA GTTCCCCATCC) (SEQ ID NO: 17) and 3_PaLDC_XhoI (AATATACTCGAGTCACTCCCTTATGCAATCAACGGTTATGCAATCAACGGT) PCR was performed using DNA as a template. Pfu DNA polymerase was used as the polymerase, and PCR was carried out by repeating the conditions of 94° C.: 30 seconds, 55° C.: 30 seconds, 72° C.: 2 minutes 30 times, resulting in the amplified paldc gene (SEQ ID NO: 4). Secured.

얻어진 paldc 유전자는 상기 실시예 2-1과 동일한 방법에 의해 대장균에서 저온 발현시킨 후, SDS-PAGE 젤에 의해 그 결과를 확인하였다 (도 6). 도 6에서 볼 수 있는 바와 같이, 슈도모나스 알칼리제네스 유래 라이신 디카르복실라제 (PaLDC)는 불용성 단백질로서 대부분 발현되었으며, 가용성 단백질은 SDS-PAGE 젤 상에서 확인되지 않았다 (도 6, 레인 1, 2 참조). The obtained paldc gene was expressed at low temperature in E. coli by the same method as in Example 2-1, and the results were confirmed by SDS-PAGE gel (FIG. 6). As can be seen in Figure 6, Pseudomonas Alkaline Genes-derived lysine decarboxylase (PaLDC) was mostly expressed as an insoluble protein, and the soluble protein was not identified on the SDS-PAGE gel (see Figure 6, lanes 1 and 2). .

3-2. 대장균에서 발현된 슈도모나스 알칼리제네스 유래 라이신 디카르복실라제의 활성 분석 3-2. Analysis of the Activity of Lysine Decarboxylase Derived from Pseudomonas Alkaline Genes Expressed in E. coli

(1) 라이신 디카르복실라제의 반응성 확인(1) Confirmation of reactivity of lysine decarboxylase

PaLDC의 반응성을 검증하기 위하여, 상기 실시예 3-1에 얻은 PaLDC의 세포분쇄액(cell lysate)을 13,000 rpm에서 15 분간 원심분리시켜서 얻은 상등액(가용성 단백질)을 이용하여 라이신 전환반응을 수행하였다. 가용성 단백질 50 μl, 100 mM PLP, 250 mM 라이신을 50 mM 소듐 포스페이트 (pH 6.2) 완충용액으로 채워서 200 μl의 반응 부피로 46 ℃에서 2시간 반응하였다. 그 결과 70 % 라이신이 PaLDC에 의해 카다베린으로 전환된 것을 확인할 수 있었다 (도 7). In order to verify the reactivity of PaLDC, the cell lysate of PaLDC obtained in Example 3-1 was centrifuged at 13,000 rpm for 15 minutes to perform a lysine conversion reaction using a supernatant (soluble protein) obtained. 50 μl of soluble protein, 100 mM PLP, and 250 mM lysine were filled with 50 mM sodium phosphate (pH 6.2) buffer, and reacted at 46° C. for 2 hours in a reaction volume of 200 μl. As a result, it was confirmed that 70% lysine was converted to cadaverine by PaLDC (FIG. 7).

(2) 온도 및 pH에 따른 라이신 디카르복실라제의 활성 분석(2) Analysis of lysine decarboxylase activity according to temperature and pH

슈도모나스 알칼리제네스 유래 라이신 디카르복실라제의 활성을 위한 최적 온도 조건을 찾기 위하여, 실시예 2-2와 같은 방법으로 30, 40, 46, 60 ℃ 온도 조건에서 효소 활성을 평가하였다. 그 결과, PaLDC는 50 ℃에서 가장 좋은 활성을 가지는 것으로 확인되었다 (도 8). In order to find the optimum temperature conditions for the activity of Pseudomonas Alkaline Genes-derived lysine decarboxylase, the enzyme activity was evaluated at 30, 40, 46, and 60 ℃ temperature conditions in the same manner as in Example 2-2. As a result, it was confirmed that PaLDC has the best activity at 50°C (FIG. 8).

또한 실시예 2-2와 같은 방법으로 슈도모나스 알칼리제네스 유래 라이신 디카르복실라제의 pH에 대한 활성 조건을 평가하였다. 그 결과, PaLDC는 pH 8 및 pH 9에서 높은 안정성을 보였으며, pH 6에서도 95% 이상의 활성이 유지되는 것을 확인하였다(도 9). In addition, the active conditions for the pH of the lysine decarboxylase derived from Pseudomonas Alkaline Genes were evaluated in the same manner as in Example 2-2. As a result, it was confirmed that PaLDC exhibited high stability at pH 8 and pH 9, and maintained 95% or more activity even at pH 6 (FIG. 9).

실시예 4. 슈도모나스 레지노보란스 유래 라이신 디카르복실라제 유전자가 도입된 대장균 제조 및 그로부터 발현된 라이신 디카르복실라제 활성 분석 Example 4. Preparation of E. coli into which Pseudomonas reginoborans- derived lysine decarboxylase gene was introduced and analysis of lysine decarboxylase activity expressed therefrom

4-1. 슈도모나스 레지노보란스 유래 라이신 디카르복실라제 유전자에 의한 대장균의 형질전환 4-1. Transformation of Escherichia coli by the lysine decarboxylase gene derived from Pseudomonas reginoborans

슈도모나스 레지노보란스 유래 라이신 디카르복실라제 유전자(prldc)를 클로닝하기 위해서 5_PrLDC_NdeI (AATATACATATGTACAAAGAGCTC AAGTTCCCCGTCCTC))(서열번호 19) 와 3_PrLDC_XhoI (AATATACTCGAG TTATTCCCTGATGCAGTCCACTGTA TAGC))(서열번호 20)의 프라이머를 이용하였으며, 정제된 슈도모나스 레지노보란스 유전체 DNA를 주형으로 PCR을 수행하였다. 실시예 3-1과 동일한 중합효소 및 PCR 수행 조건으로 PCR을 수행하여, 증폭된 prldc(서열번호 6)를 확보할 수 있었다.5_PrLDC_NdeI (AATATACATATGTACAAAGAGCTC AAGTTCCCCGTCCTC)) (SEQ ID NO: 19) and 3_PrLDC_XhoI (AATATACTCGAG TTATTCCCTGAG) in order to clone the lysine decarboxylase gene (prldc) derived from Pseudomonas reginoborance PCR was performed using Pseudomonas reginoborans genomic DNA as a template. By performing PCR under the same polymerase and PCR conditions as in Example 3-1, amplified prldc (SEQ ID NO: 6) could be obtained.

얻어진 prldc 유전자는 상기 실시예 2-1과 동일한 방법에 의해 대장균에서 저온 발현시킨 다음, SDS-PAGE 젤에 의해 그 결과를 확인하였다 (도 6; 레인 3,4). 그 결과, PrLDC는 저온 발현조건에서도 거의 발현되지 않는 것을 확인하였다. The obtained prldc gene was expressed at low temperature in E. coli by the same method as in Example 2-1, and the results were confirmed by SDS-PAGE gel (FIG. 6; lanes 3 and 4). As a result, it was confirmed that PrLDC was hardly expressed even under low temperature expression conditions.

4-2. 대장균에서 발현된 슈도모나스 레지노보란스 유래 라이신 디카르복실라제의 활성 분석 4-2. Analysis of the activity of lysine decarboxylase derived from Pseudomonas reginoborans expressed in E. coli

(1) 라이신 디카르복실라제의 반응성 확인(1) Confirmation of reactivity of lysine decarboxylase

슈도모나스 레지노보란스 유래 라이신 디카르복실라제 (PrLDC)의 반응성을 검증하기 위하여, 상기 4-1에 얻은 PrLDC의 세포분쇄액을 13,000 rpm에서 15 분간 원심분리시키고 상등액을 이용하여 라이신 전환반응을 수행하였다. 가용성 단백질 50 μl, 100 mM PLP, 250 mM 라이신을 50 mM 소듐 포스페이트 (pH 6.2) 완충용액으로 채워서 200 μl의 반응 부피로 46 ℃에서 2시간 반응하였다. 라이신 전환 반응결과, PrLDC에 의해 66 % 카다베린이 생성되었다 (도 10).In order to verify the reactivity of Pseudomonas reginoborans-derived lysine decarboxylase (PrLDC), the cell lysate of PrLDC obtained in 4-1 was centrifuged at 13,000 rpm for 15 minutes, and lysine conversion reaction was performed using the supernatant. . 50 μl of soluble protein, 100 mM PLP, and 250 mM lysine were filled with 50 mM sodium phosphate (pH 6.2) buffer, and reacted at 46° C. for 2 hours in a reaction volume of 200 μl. As a result of the lysine conversion reaction, 66% cadaverine was produced by PrLDC (FIG. 10).

(2) 온도 및 pH에 따른 라이신 디카르복실라제의 활성 분석(2) Analysis of lysine decarboxylase activity according to temperature and pH

PrLDC의 활성을 위한 최적 온도 조건을 찾기 위하여, 실시예 2-2와 같은 방법으로 30, 40, 46, 60 ℃ 온도 조건에서 효소 활성을 평가하였다. 그 결과, PrLDC는 60 ℃에서 가장 좋은 활성을 가지는 것으로 확인되었다 (도 11). In order to find the optimum temperature condition for the activity of PrLDC, the enzyme activity was evaluated at 30, 40, 46, 60 ℃ temperature conditions in the same manner as in Example 2-2. As a result, it was confirmed that PrLDC has the best activity at 60°C (FIG. 11).

또한 실시예 2-2와 같은 방법으로 PrLDC의 pH에 따른 활성을 평가하였다. 그 결과, PrLDC는 pH 6에서 가장 높은 활성을 보였으나, pH 9에서도 90% 이상의 활성을 보유하는 것을 확인할 수 있었다.(도 12).In addition, the activity according to the pH of PrLDC was evaluated in the same manner as in Example 2-2. As a result, it was confirmed that PrLDC exhibited the highest activity at pH 6, but retained 90% or more activity even at pH 9. (FIG. 12).

실시예 5. 슈도모나스 푸티다 유래 라이신 디카르복실라제 유전자가 도입된 대장균 제조 및 그로부터 발현된 라이신 디카르복실라제 활성 분석 Example 5. Preparation of Escherichia coli into which Pseudomonas putida- derived lysine decarboxylase gene was introduced and analysis of lysine decarboxylase activity expressed therefrom

5-1. 슈도모나스 푸티다 유래 라이신 디카르복실라제 유전자에 의한 대장균의 형질전환 5-1. Transformation of Escherichia coli by Pseudomonas putida- derived lysine decarboxylase gene

슈도모나스 푸티다 유래 라이신 디카르복실라제 유전자 (ppldc)를 클로닝하기 위해, 5_PpLDC_NdeI (AATATACATATGTACAAAGACCTCCAA TTCCCC))(서열번호 21)와 3_PpLDC_XhoI (AATATACTCGAGTCACTCCCTTATGCAATCAACGGTATAGC)(서열번호 22)의 프라이머를 이용하여 정제된 슈도모나스 푸티다 유전체 DNA를 주형으로 PCR을 수행하였다. 중합효소로 Pfu DNA 폴리머라제를 사용하였으며, 94℃: 30초, 55℃: 30초, 72℃: 2분 조건을 30회 반복하여 PCR을 수행한 결과, 증폭된 ppldc 유전자 (서열번호 8)를 확보하였다.In order to clone the lysine decarboxylase gene (ppldc) derived from Pseudomonas putida, 5_PpLDC_NdeI (AATATACATATGTACAAAGACCTCCAA TTCCCC)) (SEQ ID NO: 21) and 3_PpLDC_XhoI (AATATACTCGAGTCACTCCCTTATGCAATCAACGGT) were purified using primers of Pseudomonas putida (AATATACTCGAGTCACTCCCTTATGCAATCAACGGT). PCR was performed using DNA as a template. Pfu DNA polymerase was used as the polymerase, and PCR was performed by repeating the conditions of 94° C.: 30 seconds, 55° C.: 30 seconds, 72° C.: 2 minutes 30 times, resulting in the amplified ppldc gene (SEQ ID NO: 8). Secured.

얻어진 ppldc 유전자를 상기 실시예 2-1과 동일한 방법에 의해 대장균에서 저온 발현시킨 다음, SDS-PAGE 젤에 의해 그 결과를 확인하였다 (도 13). 도 13의 레인 3, 및 4에서 볼 수 있는 바와 같이, 슈도모나스 푸티다 유래 라이신 디카르복실라제 (PpLDC)는 저온 발현조건에서도 거의 발현되지 않는 것을 확인하였다. The obtained ppldc gene was expressed at low temperature in E. coli by the same method as in Example 2-1, and the result was confirmed by SDS-PAGE gel (FIG. 13). As can be seen in lanes 3 and 4 of FIG. 13, it was confirmed that Pseudomonas putida-derived lysine decarboxylase (PpLDC) was hardly expressed even under low temperature expression conditions.

세포분쇄액을 13,000 rpm에서 15 분간 원심분리시키고 상등액을 이용하여 라이신 전환반응을 수행하였다. The cell lysate was centrifuged at 13,000 rpm for 15 minutes, and a lysine conversion reaction was performed using the supernatant.

5-2. 대장균에서 발현된 슈도모나스 푸티다 유래 라이신 디카르복실라제의 활성 분석 5-2. Lysine decarboxylase derived from Pseudomonas putida expressed in E. coli Activity assay

(1) 라이신 디카르복실라제의 반응성 확인(1) Confirmation of reactivity of lysine decarboxylase

PpLDC의 반응성을 검증하기 위하여, 상기 5-1에 얻은 PpLDC의 세포분쇄액(cell lysate)을 13,000 rpm에서 15 분간 원심분리시키고 상등액을 이용하여 라이신 전환반응을 수행하였다. 가용성 단백질 50 μl, 100 mM PLP, 250 mM 라이신을 50 mM 소듐 포스페이트 (pH 6.2) 완충용액으로 채워서 200 μl의 반응 부피로 46 ℃에서 2시간 반응하였다. 그 결과 16 % 카다베린이 생성되었다 (도 14).In order to verify the reactivity of PpLDC, the cell lysate of PpLDC obtained in 5-1 was centrifuged at 13,000 rpm for 15 minutes, and lysine conversion reaction was performed using the supernatant. 50 μl of soluble protein, 100 mM PLP, and 250 mM lysine were filled with 50 mM sodium phosphate (pH 6.2) buffer, and reacted at 46° C. for 2 hours in a reaction volume of 200 μl. As a result, 16% cadaverine was produced (Fig. 14).

(2) 온도 및 pH에 따른 라이신 디카르복실라제의 활성 분석(2) Analysis of lysine decarboxylase activity according to temperature and pH

PpLDC의 활성을 위한 최적 온도 조건을 찾기 위하여, 실시예 2-2와 같은 방법으로 50, 60, 70 ℃ 의 온도 조건에서 효소 활성을 평가하였다. 그 결과, PpLDC는 50 ℃ 에서 가장 좋은 활성을 가지는 것으로 확인되었다 (도 15). In order to find the optimum temperature condition for the activity of PpLDC, the enzyme activity was evaluated under the temperature conditions of 50, 60, 70 ℃ in the same manner as in Example 2-2. As a result, it was confirmed that PpLDC has the best activity at 50°C (FIG. 15).

또한 실시예 2-2와 같은 방법으로 PpLDC의 pH에 대한 활성 조건을 평가하였다. 그 결과,pH 6에서 가장 높은 활성을 보였으며, pH가 높아지면 반응성이 낮게 평가되었다 (도 16).In addition, the activity conditions for the pH of PpLDC were evaluated in the same manner as in Example 2-2. As a result, it showed the highest activity at pH 6, and the reactivity was evaluated to be low when the pH was increased (FIG. 16).

실시예 6. 슈도모나스 신싼싸 유래 라이신 디카르복실라제 유전자가 도입된 대장균 제조 및 그로부터 발현된 라이신 디카르복실라제 활성 분석 Example 6. Preparation of Escherichia coli into which the Pseudomonas sinsansa- derived lysine decarboxylase gene was introduced and analysis of lysine decarboxylase activity expressed therefrom

6-1. 슈도모나스 신싼싸 유래 라이신 디카르복실라제 유전자에 의한 대장균의 형질전환 6-1. Transformation of Escherichia coli by the lysine decarboxylase gene derived from Pseudomonas sinsansa

슈도모나스 신싼싸 유래 라이신 디카르복실라제 유전자 (pxldc)를 클로닝하기 위해, 5_PxLDC_NdeI (AATATACATATGTACAAAGACCTCCAA TTCCCC)(서열번호 23)와 3_PxLDC_XhoI (AATATACTCGAGTCACTCCCTTATGCAATCAACGGTATAGC)(서열번호 24)의 프라이머를 이용하고, 정제된 슈도모나스 신싼싸 유전체 DNA를 주형으로 하여 PCR을 수행하였다. 유전자 증폭을 위해서 Pfu DNA polymerase를 사용하였으며, 94℃: 30초, 45℃: 30초, 72℃: 2분 조건을 30회 반복하여 증폭된 pxldc를 확보할 수 있었다 (서열번호 10).In order to clone the lysine decarboxylase gene (pxldc) derived from Pseudomonas sinsantha, 5_PxLDC_NdeI (AATATACATATGTACAAAGACCTCCAA TTCCCC) (SEQ ID NO: 23) and 3_PxLDC_XhoI (AATATACTCGAGTCACTCCCTTATGCAATCAACGGTATA) were used and the genome of the purified pseudomonas (Sinsadomonas 24) was used. PCR was performed using DNA as a template. Pfu DNA polymerase was used for gene amplification, and the amplified pxldc was obtained by repeating the conditions of 94° C.: 30 seconds, 45° C.: 30 seconds, and 72° C.: 2 minutes 30 times (SEQ ID NO: 10).

얻어진 pxldc 유전자는 상기 실시예 2-1과 동일한 방법에 의해 대장균에서 저온 발현시킨 다음, SDS-PAGE 젤에 의해 그 결과를 확인하였다 (도 13). 도 13의 레인 7 및 8에서 볼 수 있는 바와 같이, 슈도모나스 신싼싸 유래 라이신 디카르복실라제 (PxLDC)는 저온 발현조건에서 가용성단백질로 과발현되는 것을 확인할 수 있었다.The obtained pxldc gene was expressed at low temperature in E. coli by the same method as in Example 2-1, and the result was confirmed by SDS-PAGE gel (FIG. 13). As can be seen in lanes 7 and 8 of FIG. 13, it was confirmed that Pseudomonas sinsansa-derived lysine decarboxylase (PxLDC) was overexpressed as a soluble protein under low temperature expression conditions.

6-2. 대장균에서 발현된 슈도모나스 신싼싸 유래 라이신 디카르복실라제의 활성 분석 6-2. Lysine decarboxylase derived from Pseudomonas sinsanssa expressed in E. coli Activity assay

(1) PxLDC의 반응성 확인(1) Confirmation of reactivity of PxLDC

PxLDC의 반응성을 검증하기 위하여, 상기 6-1에 얻은 PxLDC의 세포분쇄액을 13,000 rpm에서 15 분간 원심분리시키고 상등액을 이용하여 라이신 전환반응을 수행하였다. 가용성 단백질 50 μl, 100 mM PLP, 250 mM 라이신을 50 mM 소듐 포스페이트 (pH 6.2) 완충용액으로 채워서 200 μl의 반응 부피로 46 ℃에서 2시간 반응하였다. 그 결과 25 % 카다베린이 생성되었다 (도 17). In order to verify the reactivity of PxLDC, the cell lysate of PxLDC obtained in 6-1 was centrifuged at 13,000 rpm for 15 minutes, and a lysine conversion reaction was performed using the supernatant. 50 μl of soluble protein, 100 mM PLP, and 250 mM lysine were filled with 50 mM sodium phosphate (pH 6.2) buffer, and reacted at 46° C. for 2 hours in a reaction volume of 200 μl. As a result, 25% cadaverine was produced (Fig. 17).

(2) pH에 따른 라이신 디카르복실라제의 활성 분석(2) Analysis of lysine decarboxylase activity according to pH

PxLDC의 최적 pH 조건을 찾기 위하여, 실시예 2-2와 같은 방법으로 다양한 pH 효소 활성을 평가하였다 (도 18). 그 결과, PxLDC는 pH 6에서 가장 높은 활성을 보였으며, pH가 높아질수록 반응성이 낮게 평가되었다. In order to find the optimum pH condition for PxLDC, various pH enzyme activities were evaluated in the same manner as in Example 2-2 (FIG. 18). As a result, PxLDC showed the highest activity at pH 6, and the higher the pH, the lower the reactivity was evaluated.

실시예 7. 대장균 유래 라이신 디카르복실라제와 슈도모나스 써모톨러란스 유래 라이신 디카르복실라제의 활성 비교 분석 Example 7. Lysine decarboxylase derived from E. coli and Pseudomonas thermotolerance Comparative analysis of the activity of derived lysine decarboxylase

7-1. 대장균 유래 라이신 7-1. Lysine from E. coli 디카르복실라제Decarboxylase 클로닝Cloning 및 발현 And expression

대장균 라이신 디카르복실라제 유전자인 cadA를 클로닝하여 EcLDC (서열번호 11)를 발현하였다. PtLDC와 EcLDC의 아미노산 서열의 상동성은 36%이다. cadA 유전자가 클로닝된 플라스미드를 대장균 K-12 BL21를 삽입하고 37℃ 온도 조건에서 배양하여 4시간 발현을 유도하였다. 발현이 완료된 EcLDC는 SDS-PAGE 젤을 통해서 확인한 결과 (도 13; 레인 1, 2), EcLDC가 가용성 단백질로 과발현되는 것을 확인하였다. EcLDC (SEQ ID NO: 11) was expressed by cloning cadA, an E. coli lysine decarboxylase gene. The homology of the amino acid sequence of PtLDC and EcLDC is 36%. The plasmid in which the cadA gene was cloned was inserted into E. coli K-12 BL21 and incubated at 37°C to induce expression for 4 hours. As a result of confirming the EcLDC having completed expression through an SDS-PAGE gel (FIG. 13; lanes 1 and 2), it was confirmed that EcLDC was overexpressed as a soluble protein.

7-2. 7-2. EcLDCEcLDC And PtLDCPtLDC 의 상대적인 효소 활성 비교 분석Comparative analysis of the relative enzyme activity of

(1) 온도에 따른 활성 비교(1) Comparison of activity according to temperature

실시예 2-2와 같은 방법으로, 다양한 온도 조건 (37, 42, 50, 60, 70, 80 ℃) 에서 EcLDC와 PtLDC의 상대적인 효소 활성 (relative activity)을 비교하였다 (도 19).In the same manner as in Example 2-2, the relative activity of EcLDC and PtLDC was compared under various temperature conditions (37, 42, 50, 60, 70, 80°C) (Fig. 19).

그 결과, EcLDC와 PtLDC 모두 60 ℃에서 가장 높은 활성을 보이는 것으로 확인되었다. 50 ℃에서 EcLDC는 54 %의 상대적 활성 (60 ℃에서 EcLDC의 활성을 100 %로 고정)을 가지며, 80 ℃ 에서는 12 %의 상대적 활성을 가지는 것으로 평가되었다. PtLDC의 경우 50 ℃에서 76 %의 상대적 활성 (60 ℃ 에서 PtLDC 의 활성을 100 %으로 고정)을 가지며, 80 ℃에서는 19 %의 상대적 활성을 가지는 것으로 평가되었다. 고온 조건에서 PtLDC가 활성을 더 잘 유지하는 것으로 확인되었다. 결론적으로 두 효소 모두 온도에 따른 활성의 차이가 크게 나타났으며, 상대적인 활성은 PtLDC가 더 잘 유지되는 것으로 평가되었다.As a result, it was confirmed that both EcLDC and PtLDC showed the highest activity at 60°C. At 50 °C, EcLDC was evaluated to have a relative activity of 54% (the activity of EcLDC is fixed at 100% at 60 °C), and at 80 °C, it was evaluated to have a relative activity of 12%. PtLDC was evaluated to have a relative activity of 76% at 50°C (fixing the activity of PtLDC to 100% at 60°C) and 19% at 80°C. It was found that PtLDC better retains the activity under high temperature conditions. In conclusion, both enzymes showed a large difference in activity according to temperature, and the relative activity was evaluated to maintain PtLDC better.

(2) pH에 따른 활성 비교(2) Comparison of activity according to pH

추가적으로, 실시예 2-2와 같은 방법으로 다양한 pH (6.2, 7.4, 8.0, 9.0) 에 대한 평가를 진행하였다 (도 20). 그 결과, EcLDC는 pH 6에서 가장 높은 활성을 보이는 것으로 평가되었으며, pH가 증가될수록 EcLDC 효소 활성이 크게 감소하였다. pH 9에서 EcLDC는 50 % 정도의 활성이 유지되었다. 반면에 PtLDC는 pH에 의한 활성 변화가 크게 관찰되지 않았으며, pH 6.2~9 사이의 pH에서 90 % 이상의 활성이 유지되는 것을 확인할 수 있었다. 이에 따라 온도와 pH에 대해서 PtLDC의 안정성이 EcLDC 보다 높은 것으로 평가되었다. In addition, evaluation for various pHs (6.2, 7.4, 8.0, 9.0) was performed in the same manner as in Example 2-2 (FIG. 20). As a result, EcLDC was evaluated to exhibit the highest activity at pH 6, and as the pH increased, the EcLDC enzyme activity significantly decreased. At pH 9, EcLDC maintained 50% activity. On the other hand, PtLDC showed no significant change in activity due to pH, and it was confirmed that more than 90% activity was maintained at a pH between pH 6.2 and 9. Accordingly, it was evaluated that the stability of PtLDC was higher than that of EcLDC with respect to temperature and pH.

(3) PtLDC와 EcLDC의 활성 비교(3) Comparison of the activities of PtLDC and EcLDC

PtLDC와 EcLDC의 단백질량을 정량하여 특이적 활성(specific activity) (unit/mg)을 평가하였을 때, PtLDC는 10060 (unit/mg), EcLDC는 36335 (unit/mg)의 값을 가졌다. 반응성을 비교해 볼 때, EcLDC가 PtLDC보다 약 3.6배 높은 활성을 보였다. 또한 최적 온도를 비교하면 두 효소 모두 60 ℃에서 최적 반응을 하였으며, 온도가 변화됨에 따라서 활성이 크게 떨어지는 것을 확인할 수 있었다. 그러나 최적 pH 조건을 비교하면, EcLDC의 경우 pH가 높아짐에 따라 비활율이 높아지지만, PtLDC의 경우 pH 변화에 대해서는 효소 활성 변화가 크게 일어나지 않는 것으로 관찰되었다. When the protein amounts of PtLDC and EcLDC were quantified to evaluate specific activity (unit/mg), PtLDC had a value of 10060 (unit/mg) and EcLDC had a value of 36335 (unit/mg). When comparing the reactivity, EcLDC showed about 3.6 times higher activity than PtLDC. In addition, when comparing the optimum temperature, it was confirmed that both enzymes reacted optimally at 60° C., and the activity significantly decreased as the temperature was changed. However, comparing the optimal pH conditions, in the case of EcLDC, the specific activity increases as the pH increases, but in the case of PtLDC, it was observed that the enzyme activity did not change significantly with respect to the pH change.

EcLDC가 PtLDC보다 높은 활성을 가지고 있으나, 라이신 디카르복실라제의 반응으로 pH가 증가하게 되면 EcLDC의 활성이 pH 변화에 의해서 크게 영향을 받을 수 있다. PtLDC는 상대적 pH 안정성이 EcLDC보다 높게 평가되며, 라이신 전환 반응에서 유리한 점을 가지고 있다. 또한 라이신을 생전환하여 카다베린을 상업적으로 생산할 때 산 처리를 통해서 pH 조정이 필요하지만 PtLDC는 pH 적정부분을 완화할 수 있으며, 이 부분은 카다베린 생전환에서 생산 단가를 낮추는 효과를 기대할 수 있을 것으로 평가된다.Although EcLDC has a higher activity than PtLDC, if the pH increases due to the reaction of lysine decarboxylase, the activity of EcLDC can be greatly affected by the pH change. PtLDC is evaluated to have a higher relative pH stability than EcLDC, and has an advantage in lysine conversion reaction. In addition, when lysine is bioconverted to commercially produce cadaverine, pH adjustment is necessary through acid treatment, but PtLDC can alleviate the pH titration part, and this part can be expected to lower the production cost in the bioconversion of cadaverine. It is evaluated as.

한국미생물보존센터(국외)Korea Microorganism Conservation Center (overseas) KCCM11559PKCCM11559P 2014072420140724

<110> CJ CheilJedang Corporation <120> The novel Lysine Decarboxylase and Process for producing cadeverine using the same <130> PN122256 <160> 24 <170> KopatentIn 2.0 <210> 1 <211> 751 <212> PRT <213> Pseudomonas thermotolerans <220> <221> PEPTIDE <222> (1)..(751) <223> Lysine decarboxylase from Pseudomonas thermotolerans (PtLDC) <400> 1 Met Tyr Lys Asp Leu Gln Phe Pro Ile Leu Ile Val His Arg Asp Ile 1 5 10 15 Lys Ala Asp Thr Val Ala Gly Asn Arg Val Arg Glu Ile Ala Arg Glu 20 25 30 Leu Glu Gln Asp Gly Phe Ala Ile Leu Ser Thr Ala Ser Ala Ser Glu 35 40 45 Gly Arg Ile Val Ala Ser Thr His His Gly Leu Ala Cys Ile Leu Val 50 55 60 Ala Ala Glu Gly Ala Gly Glu Asn Arg Ser Leu Leu Gln Asp Val Val 65 70 75 80 Glu Leu Ile Arg Val Ala Arg Val Arg Ala Pro Gln Leu Pro Ile Phe 85 90 95 Ala Leu Gly Glu Gln Val Thr Ile Glu Asn Ala Pro Ala Glu Ala Met 100 105 110 Ala Asp Leu Asn Gln Leu Arg Gly Leu Leu Tyr Leu Phe Glu Asp Thr 115 120 125 Val Pro Phe Leu Ala Arg Gln Val Ala Arg Ala Ala Arg Gly Tyr Leu 130 135 140 Glu Gly Leu Leu Pro Pro Phe Phe Arg Ala Leu Val Glu His Thr Ala 145 150 155 160 Gln Ser Asn Tyr Ser Trp His Thr Pro Gly His Gly Gly Gly Val Ala 165 170 175 Tyr Arg Lys Ser Pro Val Gly Gln Ala Phe His Gln Phe Phe Gly Glu 180 185 190 Asn Thr Leu Arg Ser Asp Leu Ser Val Ser Val Pro Glu Leu Gly Ser 195 200 205 Leu Leu Asp His Thr Gly Pro Leu Ala Glu Ala Glu Thr Arg Ala Ala 210 215 220 Arg Asn Phe Gly Ala Asp His Thr Tyr Phe Val Ile Asn Gly Thr Ser 225 230 235 240 Thr Ala Asn Lys Ile Val Trp His Ser Met Val Gly Arg Asp Asp Leu 245 250 255 Val Leu Val Asp Arg Asn Cys His Lys Ser Ile Leu His Ala Ile Ile 260 265 270 Met Thr Gly Ala Ile Pro Leu Tyr Leu Cys Pro Glu Arg Asn Glu Leu 275 280 285 Gly Ile Ile Gly Pro Ile Pro Leu Ser Glu Phe Ser Lys Glu Ala Ile 290 295 300 Gln Ala Lys Ile Ala Ala Ser Pro Leu Ala Arg Gly Arg Glu Pro Arg 305 310 315 320 Val Lys Leu Ala Val Val Thr Asn Ser Thr Tyr Asp Gly Leu Cys Tyr 325 330 335 Asn Ala Glu Met Val Lys Gln Ala Leu Gly Asp Ser Val Glu Val Leu 340 345 350 His Phe Asp Glu Ala Trp Tyr Ala Tyr Ala Ala Phe His Glu Phe Tyr 355 360 365 Ala Gly Arg Tyr Gly Met Gly Thr Arg Leu Glu Ala Asp Ser Pro Leu 370 375 380 Val Phe Ala Thr His Ser Thr His Lys Leu Leu Ala Ala Phe Ser Gln 385 390 395 400 Ala Ser Met Ile His Val Arg Asp Gly Gly Ser Arg Lys Leu Asp Arg 405 410 415 Tyr Arg Phe Asn Glu Ala Phe Met Met His Ile Ser Thr Ser Pro Gln 420 425 430 Tyr Ser Ile Leu Ala Ser Leu Asp Val Ala Ser Ala Met Met Glu Gly 435 440 445 Pro Ala Gly Arg Ser Leu Ile Gln Glu Thr Phe Asp Glu Ala Leu Ser 450 455 460 Phe Arg Arg Ala Leu Ala Asn Leu Arg Gln Asn Leu Pro Ala Asp Asp 465 470 475 480 Trp Trp Phe Asp Ile Trp Gln Pro Pro Arg Ala Ala Gly Val Glu Glu 485 490 495 Val Ala Thr Arg Asp Trp Leu Leu Glu Pro Asn Ala Glu Trp His Gly 500 505 510 Phe Gly Glu Val Asn Asp Asp Tyr Val Leu Leu Asp Pro Val Lys Val 515 520 525 Thr Leu Val Thr Pro Gly Leu Ser Ala Gly Gly Arg Leu Asp Glu His 530 535 540 Gly Ile Pro Ala Ala Val Val Ser Lys Phe Leu Trp Glu Arg Gly Leu 545 550 555 560 Val Val Glu Lys Thr Gly Leu Tyr Ser Phe Leu Val Leu Phe Ser Met 565 570 575 Gly Ile Thr Lys Gly Lys Trp Ser Thr Leu Leu Thr Glu Leu Leu Glu 580 585 590 Phe Lys Arg Leu Tyr Asp Ala Asn Val Ala Leu Ala Glu Ala Leu Pro 595 600 605 Ser Ile Ala Arg Ala Gly Gly Thr Arg Tyr Ala Gly Met Gly Leu Arg 610 615 620 Asp Leu Cys Asp Glu Leu His Ala Cys Tyr Arg Glu Asn Ala Thr Ala 625 630 635 640 Lys Ala Leu Lys Arg Met Tyr Thr Thr Leu Pro Glu Val Val Met Lys 645 650 655 Pro Ala Asp Ala Tyr Asp Arg Leu Val Arg Gly Glu Val Glu Ala Val 660 665 670 Pro Ile Asp Arg Leu Glu Gly Arg Ile Ala Ala Val Met Leu Val Pro 675 680 685 Tyr Pro Pro Gly Ile Pro Leu Ile Met Pro Gly Glu Arg Phe Thr Gln 690 695 700 Ala Thr Arg Ser Ile Ile Asp Tyr Leu Gly Phe Ala Arg Asp Phe Asp 705 710 715 720 Arg Arg Phe Pro Gly Phe Asp Ala Asp Val His Gly Leu Gln Ser Glu 725 730 735 Glu Arg Gly Gly Glu Arg Cys Tyr Thr Val Asp Cys Ile Lys Ile 740 745 750 <210> 2 <211> 2256 <212> DNA <213> Pseudomonas thermotolerans <220> <221> gene <222> (1)..(2256) <223> Lysine decarboxylase gene from Pseudomonas thermotolerans (ptldc) <400> 2 atgtacaaag acctccaatt ccccattctc atcgtccatc gcgacatcaa ggccgatacc 60 gtggccggca accgcgtccg tgagatcgcc cgcgaactgg aacaggacgg cttcgccatc 120 ctctccacgg caagtgccag cgaagggcgc atcgtcgctt ccacccacca tggtctggcc 180 tgcatcctgg tcgccgccga gggagcggga gagaatcgaa gcctgctgca ggacgtggtg 240 gagctgatcc gcgtggccag ggtccgtgcg ccgcagctgc cgatcttcgc tctcggcgag 300 caggtgacca tcgagaacgc tccggccgag gccatggccg acctcaacca actgcgcggg 360 ctgctctacc tgttcgagga caccgtgccc ttcctcgccc gtcaggtggc gcgggccgcg 420 cgtggctacc tggaggggct gctgccgccg ttcttccgcg ccctggtgga gcacaccgcg 480 cagtccaact attcctggca caccccgggg cacggcggcg gtgtggctta ccgcaagagc 540 ccggtggggc aggcctttca ccagttcttc ggcgagaaca ccctgcgctc cgacttgtcg 600 gtttccgtac cggagctggg ttcgctgctg gatcacaccg ggccgctggc cgaggcggaa 660 acccgcgcgg cgcgcaactt cggcgccgac catacctatt tcgtgatcaa cggcacctcg 720 acggccaaca agatcgtctg gcactccatg gtcggccgcg acgatctggt gttggtggac 780 cgcaactgcc acaagtcgat cctccacgcc atcatcatga ccggtgccat ccccctgtac 840 ctgtgcccgg agcgcaacga gctgggcatc atcgggccga ttccgctctc cgagttcagc 900 aaggaggcga tccaggcgaa gatcgccgcc agcccgctgg ccagagggcg cgagccgcgg 960 gtcaagctgg cggtggtgac caattccacc tacgacggcc tctgttacaa cgccgagatg 1020 gtcaagcagg ccctcggcga cagcgtcgag gtgctgcact tcgacgaggc ctggtacgcc 1080 tacgcggcct tccacgagtt ctacgcgggg cgttacggca tgggcactcg cctggaggcg 1140 gactcgcctc tggtctttgc cacccattcc acccacaagc tgctggctgc cttcagccag 1200 gcctcgatga ttcacgtgcg cgacggcggt agccgcaagc tggaccggta ccgcttcaac 1260 gaggccttca tgatgcacat ctccacctcg ccgcagtaca gcatcctcgc ctcgctggac 1320 gtggcctcgg cgatgatgga gggaccggcc gggcgctcgc tgatccagga aaccttcgat 1380 gaagcgctga gcttccgccg tgctctggcc aacctgcgcc agaacctgcc ggcggacgac 1440 tggtggttcg acatctggca gccgccgcgc gctgctggtg tcgaggaggt ggcgacccgc 1500 gactggctgc tggagccgaa tgccgagtgg cacggcttcg gcgaggtgaa cgacgactac 1560 gtgctgctcg atccggtcaa ggtcaccctg gtcaccccgg ggctgagcgc cggcgggcgc 1620 ctggacgagc acggcattcc cgccgcggtg gtcagcaagt tcctctggga acgcggcctg 1680 gtggtggaga agaccggcct gtactccttc ctggtgttgt tctccatggg gatcaccaag 1740 ggcaagtgga gcaccctgct caccgagctg ctggagttca agcgcctcta cgacgccaac 1800 gtggcgcttg ccgaggcgtt gccgagcatc gcccgcgccg gtggcacccg ctatgccggc 1860 atgggcctgc gcgacctgtg cgacgagctg cacgcctgct accgggagaa cgccaccgcc 1920 aaggccctca agcgcatgta caccacgctc cccgaggtgg tgatgaagcc tgccgatgcc 1980 tacgaccggc tggtccgcgg agaggtggag gcggtgccca tcgaccgtct ggaaggacga 2040 atcgccgcgg tgatgctggt gccctatccg ccgggcattc cgctgatcat gccgggcgag 2100 cgcttcaccc aggcgacccg ttcgatcatc gactacctgg gtttcgcccg cgatttcgat 2160 cgccgcttcc ccggcttcga cgcggacgtg cacggcctgc agagcgagga gcgcggcggc 2220 gagcgatgct acacggtgga ctgcatcaag atctga 2256 <210> 3 <211> 751 <212> PRT <213> Pseudomonas alcaligenes <220> <221> PEPTIDE <222> (1)..(751) <223> Lysine decarboxylase from Pseudomonas alcaligenes (PaLDC) <400> 3 Met Tyr Lys Asp Leu Lys Phe Pro Ile Leu Ile Val His Arg Asp Ile 1 5 10 15 Lys Ala Asp Thr Val Ala Gly Asp Arg Val Arg Gly Ile Ala Arg Glu 20 25 30 Leu Glu Gln Asp Gly Phe Val Ile Leu Ser Thr Ala Ser Ser Ala Glu 35 40 45 Gly Arg Ile Val Ala Ser Thr His His Gly Leu Ala Cys Ile Leu Val 50 55 60 Ala Ala Glu Gly Ala Gly Glu Asn Gln Arg Leu Leu Gln Asp Val Val 65 70 75 80 Glu Leu Ile Arg Val Ala Arg Val Arg Ala Pro Gln Leu Pro Ile Phe 85 90 95 Ala Leu Gly Glu Gln Val Thr Ile Glu Asn Ala Pro Ala Glu Ala Met 100 105 110 Ala Asp Leu Asn Gln Leu Arg Gly Leu Leu Tyr Leu Phe Glu Asp Thr 115 120 125 Val Pro Phe Leu Ala Arg Gln Val Ala Arg Ala Ala Arg Asn Tyr Leu 130 135 140 Glu Gly Leu Leu Pro Pro Phe Phe Arg Ala Leu Val Glu His Thr Ala 145 150 155 160 Gln Ser Asn Tyr Ser Trp His Thr Pro Gly His Gly Gly Gly Val Ala 165 170 175 Tyr Arg Lys Ser Pro Val Gly Gln Ala Phe His Gln Phe Phe Gly Glu 180 185 190 Asn Thr Leu Arg Ser Asp Leu Ser Val Ser Val Pro Glu Leu Gly Ser 195 200 205 Leu Leu Asp His Thr Gly Pro Leu Ala Glu Ala Glu Ala Arg Ala Ala 210 215 220 Arg Asn Phe Gly Ala Asp His Thr Phe Phe Val Ile Asn Gly Thr Ser 225 230 235 240 Thr Ala Asn Lys Ile Val Trp His Ser Met Val Ala Arg Asp Asp Leu 245 250 255 Val Leu Val Asp Arg Asn Cys His Lys Ser Ile Leu His Ser Ile Ile 260 265 270 Met Thr Gly Ala Ile Pro Leu Tyr Leu Ser Pro Glu Arg Asn Glu Leu 275 280 285 Gly Ile Ile Gly Pro Ile Pro Leu Ser Glu Phe Ser Arg Glu Ser Ile 290 295 300 Gln Ala Lys Ile Asp Ala Ser Pro Leu Ala Arg Gly Arg Ala Pro Lys 305 310 315 320 Val Lys Leu Ala Val Val Thr Asn Ser Thr Tyr Asp Gly Leu Cys Tyr 325 330 335 Asn Ala Glu Leu Ile Lys Gln Ala Leu Gly Asp Thr Val Glu Val Leu 340 345 350 His Phe Asp Glu Ala Trp Tyr Ala Tyr Ala Ala Phe His Glu Phe Tyr 355 360 365 Asp Gly Arg Tyr Gly Met Gly Thr Ala Arg Ser Glu Glu Gly Pro Leu 370 375 380 Val Phe Thr Thr His Ser Thr His Lys Leu Leu Ala Ala Phe Ser Gln 385 390 395 400 Ala Ser Met Ile His Val Gln Asp Gly Gly Ala Arg Gln Leu Asp Arg 405 410 415 Asp Arg Phe Asn Glu Ala Phe Met Met His Ile Ser Thr Ser Pro Gln 420 425 430 Tyr Gly Ile Ile Ala Ser Leu Asp Val Ala Ser Ala Met Met Glu Gly 435 440 445 Pro Ala Gly Arg Ser Leu Ile Gln Glu Thr Phe Asp Glu Ala Leu Ser 450 455 460 Phe Arg Arg Ala Leu Ala Asn Val Trp Gln Thr Leu Asp Ala Lys Asp 465 470 475 480 Trp Trp Phe Asp Ile Trp Glu Pro Pro Gln Val Glu Gly Ala Glu Ala 485 490 495 Val Ala Thr Gly Asp Trp Val Leu Glu Pro Gly Ala Asp Trp His Gly 500 505 510 Phe Gly Glu Val Ala Asp Asp Tyr Val Leu Leu Asp Pro Ile Lys Val 515 520 525 Thr Leu Val Thr Pro Gly Leu Ser Ala Asp Gly Lys Leu Gly Glu Gln 530 535 540 Gly Ile Pro Ala Ala Val Val Gly Lys Phe Leu Trp Glu Arg Gly Leu 545 550 555 560 Val Val Glu Lys Thr Gly Leu Tyr Ser Phe Leu Val Leu Phe Ser Met 565 570 575 Gly Ile Thr Lys Gly Lys Trp Ser Thr Leu Leu Thr Glu Leu Leu Glu 580 585 590 Phe Lys Arg Ser Tyr Asp Ala Asn Ala Pro Leu Thr Ser Ala Leu Pro 595 600 605 Ser Val Ala Arg Ala Asp Ala Ala Arg Tyr Gln Gly Leu Gly Leu Arg 610 615 620 Asp Leu Cys Asp Gln Leu His Ala Cys Tyr Arg Asp Asn Ala Thr Ala 625 630 635 640 Lys Ala Met Arg Arg Met Tyr Thr Ala Leu Pro Glu Leu Ala Ile Lys 645 650 655 Pro Ser Glu Ala Tyr Asp Lys Leu Val Arg Gly Glu Val Glu Ala Val 660 665 670 Pro Ile Glu Gln Leu Gln Gly Arg Ile Ala Ala Val Met Leu Val Pro 675 680 685 Tyr Pro Pro Gly Ile Pro Leu Ile Met Pro Gly Glu Arg Phe Thr Ala 690 695 700 Gln Thr Arg Ser Ile Ile Asp Tyr Leu Ala Phe Ala Arg Thr Phe Asp 705 710 715 720 Ser Ala Phe Pro Gly Phe Asp Ser Asp Val His Gly Leu Gln His Asp 725 730 735 Asp Ser Pro Met Gly Arg Cys Tyr Thr Val Asp Cys Ile Arg Glu 740 745 750 <210> 4 <211> 2256 <212> DNA <213> Pseudomonas alcaligenes <220> <221> gene <222> (1)..(2256) <223> Lysine decarboxylase gene from Pseudomonas alcaligenes (paldc) <400> 4 atgtacaaag acctgaagtt ccccatcctc atcgtccacc gcgacatcaa ggccgatacg 60 gtcgccggtg atcgcgtgcg cggcatcgcc cgcgaactgg agcaggacgg tttcgtcatc 120 ctctccaccg ccagttccgc cgaagggcgc atcgtcgcct ccacccacca cggcttggcc 180 tgcatcctcg tcgccgccga aggggcgggc gagaaccagc gcctgctgca ggacgtggtc 240 gagctgatcc gcgtggcccg ggtgcgtgcg ccgcaactgc cgatcttcgc cctgggcgaa 300 caggtgacca tcgagaacgc cccggccgaa gccatggccg acctcaacca gctgcgcggc 360 ctgctctacc tcttcgaaga caccgtgccc ttcctcgccc gccaggtcgc ccgcgccgcg 420 cgcaactacc tcgaaggcct gctgccgccg ttcttccgtg ccctggtgga gcacaccgcg 480 caatccaact actcctggca cacgcccggt cacggcggtg gcgtcgccta ccgcaagagc 540 ccggtggggc aggccttcca ccagttcttc ggcgaaaaca ccctgcgctc ggacctctcc 600 gtctcggtgc ccgagctggg ctcgctgctg gatcacaccg gccccctggc cgaagccgag 660 gcccgcgccg cgcgcaactt cggtgctgac cacaccttct tcgtgatcaa cggcacctcc 720 accgcgaaca agatcgtctg gcactccatg gtcgcccgcg acgacctggt gctggtggac 780 cgcaactgcc acaagtcgat cctccactcg atcatcatga ccggcgccat cccgctctac 840 ctgagccccg agcgcaacga actgggcatc atcgggccca tccccctgag cgagttcagt 900 cgcgaatcga tccaggccaa gatcgacgcc agcccactgg cccggggccg cgcgcccaag 960 gtcaagctgg cggtggtgac caactccacc tacgacggcc tctgctacaa cgccgagctg 1020 atcaagcagg cgctgggcga caccgttgag gtgctgcact tcgacgaagc ctggtacgcc 1080 tacgccgcct tccacgagtt ctacgacggc cgctacggca tgggtacggc gcgcagcgaa 1140 gaaggcccgc tggtgttcac cacccactcc acccacaagc tgctggcggc cttcagtcag 1200 gcctcgatga tccatgtgca ggacggcggc gcccgccagc tggaccggga tcgcttcaac 1260 gaggcgttca tgatgcacat ctccacttcg ccccagtacg gcatcatcgc ctcgctggac 1320 gtcgcctcgg cgatgatgga aggccccgcc gggcgctcgc tgatccagga aaccttcgac 1380 gaggccctga gcttccgccg tgccctggcc aacgtctggc agaccctgga tgccaaggat 1440 tggtggttcg atatctggga gccgccccag gtggaaggcg ccgaggcggt ggccaccggc 1500 gactgggtgc tggagcccgg cgccgactgg cacggcttcg gcgaggtggc ggacgactac 1560 gtgctgctcg acccgatcaa ggtcaccctg gtcacccccg ggctcagtgc cgacggcaag 1620 ctcggcgagc agggcatccc ggcggcggtg gtgggcaagt tcctctggga gcgtggcctg 1680 gtggtggaga agaccggtct ctactccttc ctcgtgctgt tctccatggg catcaccaag 1740 ggcaaatgga gcaccctgct caccgagctg ctggagttca aacgctccta cgacgccaac 1800 gccccgctga ccagtgcact gccctcggtg gcccgggccg atgccgcccg ctaccagggg 1860 ctgggcctgc gcgacctctg cgaccagctg cacgcctgct accgcgacaa cgccacggcc 1920 aaggccatgc ggcgcatgta caccgcgctt ccggagctgg ccatcaagcc gtcggaggct 1980 tacgacaagc tggtgcgtgg cgaggtcgag gcggtgccca tcgagcagct gcaagggcgc 2040 attgccgcgg tgatgctggt gccgtacccg ccgggcatcc cgctgatcat gccgggggag 2100 cgtttcactg cgcagacccg ctcgatcatt gactacctgg ccttcgcccg gaccttcgac 2160 agcgccttcc ccggcttcga ttccgatgtc cacggcctgc agcacgacga cagcccaatg 2220 gggcgctgct ataccgttga ttgcataagg gagtga 2256 <210> 5 <211> 751 <212> PRT <213> Pseudomonas resinovorans <220> <221> PEPTIDE <222> (1)..(751) <223> Lysine decarboxylase from Pseudomonas resinovorans (PrLDC) <400> 5 Met Tyr Lys Glu Leu Lys Phe Pro Val Leu Ile Val His Arg Asp Ile 1 5 10 15 Lys Ala Asp Thr Val Ala Gly Glu Arg Val Arg Ser Ile Ala Arg Glu 20 25 30 Leu Glu Gln Asp Gly Phe Thr Ile Leu Pro Thr Ala Ser Ser Ala Glu 35 40 45 Gly Arg Ile Val Ala Ser Thr His His Gly Leu Ala Cys Ile Leu Val 50 55 60 Ala Ala Glu Gly Ala Gly Glu Asn Gln Arg Leu Leu Gln Asp Met Val 65 70 75 80 Glu Leu Ile Arg Val Ala Arg Val Arg Ala Pro Gln Leu Pro Ile Phe 85 90 95 Ala Leu Gly Glu Gln Val Thr Ile Glu Asn Ala Pro Ala Glu Ala Met 100 105 110 Ala Asp Leu Asn Gln Leu Arg Gly Leu Leu Tyr Leu Tyr Glu Asp Thr 115 120 125 Val Pro Phe Leu Ala Arg Gln Val Ala Arg Ala Ala Arg Gly Tyr Leu 130 135 140 Glu Ala Leu Leu Pro Pro Phe Phe Arg Ala Leu Val Glu His Thr Ala 145 150 155 160 Gln Ser Asn Tyr Ser Trp His Thr Pro Gly His Gly Gly Gly Val Ala 165 170 175 Tyr Arg Lys Ser Pro Val Gly Gln Ala Phe His Gln Phe Phe Gly Glu 180 185 190 Asn Thr Leu Arg Ser Asp Leu Ser Val Ser Val Pro Glu Leu Gly Ser 195 200 205 Leu Leu Asp His Thr Gly Pro Leu Ala Glu Ala Glu Ala Arg Ala Ala 210 215 220 Gln Asn Phe Gly Ala Asp His Thr Phe Phe Val Ile Asn Gly Thr Ser 225 230 235 240 Thr Ala Asn Lys Ile Val Trp His Ser Met Val Gly Arg Asp Asp Leu 245 250 255 Val Leu Val Asp Arg Asn Cys His Lys Ser Ile Val His Ser Ile Ile 260 265 270 Met Thr Gly Ala Ile Pro Leu Tyr Leu Thr Pro Glu Arg Asn Glu Leu 275 280 285 Gly Ile Ile Gly Pro Ile Pro Leu Ala Glu Phe Ser Arg Glu Ser Ile 290 295 300 Gln Ala Lys Ile Asp Ala Ser Pro Leu Ala Lys Gly Arg Ala Ala Lys 305 310 315 320 Val Lys Leu Ala Val Val Thr Asn Ser Thr Tyr Asp Gly Leu Cys Tyr 325 330 335 Asn Ala Glu Leu Ile Lys Gln Ala Leu Gly Asp Ser Val Glu Val Leu 340 345 350 His Phe Asp Glu Ala Trp Tyr Ala Tyr Ala Ala Phe His Glu Phe Tyr 355 360 365 Ala Gly Arg Tyr Gly Met Cys Thr His Arg Glu Ala His Ser Pro Leu 370 375 380 Val Phe Thr Thr His Ser Thr His Lys Leu Leu Ala Ala Phe Ser Gln 385 390 395 400 Ala Ser Met Ile His Val Gln Asp Gly Gly Ala Arg Gln Leu Asp Arg 405 410 415 His Arg Phe Asn Glu Ala Phe Met Met His Ile Ser Thr Ser Pro Gln 420 425 430 Tyr Gly Ile Ile Ala Ser Leu Asp Val Ala Ser Ala Met Met Glu Gly 435 440 445 Pro Ala Gly Arg Ser Leu Ile Gln Glu Thr Phe Asp Glu Ala Leu Arg 450 455 460 Phe Arg Arg Ala Leu Ala Asn Leu Arg Gln Asn Leu Ala Ala Asp Asp 465 470 475 480 Trp Trp Phe Asp Ile Trp Gln Ser His Leu Ala Glu Gly Ala Asp Thr 485 490 495 Val Ala Thr Glu Asp Trp Leu Leu Arg Pro Asp Ala Asp Trp His Gly 500 505 510 Phe Gly Asp Val Ala Glu Asp Tyr Val Leu Leu Asp Pro Ile Lys Val 515 520 525 Thr Leu Val Thr Pro Gly Leu Thr Ala Asp Gly Lys Leu Gly Glu Arg 530 535 540 Gly Ile Pro Ala Ala Val Val Ser Lys Phe Leu Trp Glu Arg Gly Val 545 550 555 560 Val Val Glu Lys Thr Gly Leu Tyr Ser Phe Leu Val Leu Phe Ser Met 565 570 575 Gly Ile Thr Lys Gly Lys Trp Ser Thr Leu Leu Thr Glu Leu Leu Glu 580 585 590 Phe Lys Arg Gly Tyr Asp Thr Asn Leu Pro Leu Ala Glu Ala Leu Pro 595 600 605 Ser Ile Ala Arg Asp His Gly Ala Arg Tyr Ala Gly Met Gly Leu Arg 610 615 620 Asp Leu Cys Asp Ala Leu His Gly Cys Tyr Arg Asn Ser Ala Thr Pro 625 630 635 640 Lys Ala Leu Arg Arg Met Tyr Thr Gln Leu Pro Glu Leu Ala Met Lys 645 650 655 Pro Ala Asp Ala Tyr Asp Lys Leu Val Arg Gly Glu Val Glu Pro Val 660 665 670 Ser Leu Asp Leu Leu Gln Gly Arg Ile Ala Ala Val Met Leu Val Pro 675 680 685 Tyr Pro Pro Gly Ile Pro Leu Ile Met Pro Gly Glu Arg Phe Thr Ala 690 695 700 Glu Thr Arg Ala Ile Ile Asp Tyr Leu Glu Phe Ala Arg Thr Phe Asp 705 710 715 720 Leu Ser Phe Pro Gly Phe Asp Ile Asp Val His Gly Leu Asn Cys Gln 725 730 735 Glu Ser Pro Thr Gly Arg Cys Tyr Thr Val Asp Cys Ile Arg Glu 740 745 750 <210> 6 <211> 2256 <212> DNA <213> Pseudomonas resinovorans <220> <221> gene <222> (1)..(2256) <223> Lysine decarboxylase gene from Pseudomonas resinovorans (prldc) <400> 6 atgtacaaag agctcaagtt ccccgtcctc atcgtccatc gtgacatcaa ggccgatacc 60 gtcgccggcg agcgggtccg cagcatcgcc cgcgagctgg agcaggacgg cttcaccatc 120 ctccccaccg ccagctccgc cgaaggccgt atcgtcgcct ccacccacca tggcctcgcc 180 tgcatcctgg tggccgccga aggcgccggg gaaaaccagc ggctgctgca ggacatggtg 240 gagctgatcc gcgtggcgcg ggtgcgcgcg ccgcagttgc cgatcttcgc cctgggggaa 300 caggtcacca tcgagaacgc gccggccgag gccatggccg acctcaacca gttgcgcggc 360 ctgctctatc tctacgaaga caccgtgcct ttcctcgccc gccaggtggc ccgagccgcc 420 cgcggctacc tggaagccct gttgccgcca ttcttccgcg ccctggtcga gcacaccgcg 480 cagtccaact actcctggca caccccgggc cacggcggtg gcgtggccta ccgcaagagt 540 ccggtggggc aggccttcca ccagttcttc ggggaaaaca ccctgcgctc ggacctctcg 600 gtatcggtgc cggaactggg ctcgctgctg gaccacaccg ggcccctggc cgaagccgag 660 gcgcgtgcgg cgcagaactt cggcgccgac cacaccttct tcgtgatcaa tggcacttcc 720 accgccaaca agatcgtctg gcactccatg gtcggccgcg atgacctggt gctggtggac 780 cgcaactgcc acaagtccat cgtccactcg atcatcatga ccggcgccat ccccctgtac 840 ctgacgccgg agcgcaacga actgggcatc atcggaccca tccccctcgc cgaattcagc 900 cgtgagtcga tccaggcgaa gatcgacgcc agccccctgg ccaaggggcg agccgccaag 960 gtcaagctgg cggtggtgac caactccacc tacgacggcc tctgctacaa cgccgagctg 1020 atcaagcagg cactgggcga ctcggtggag gtgctgcact tcgacgaggc ctggtacgcc 1080 tacgctgcct tccacgagtt ctatgccggg cgctacggca tgtgcaccca ccgcgaggcg 1140 cactcgccgc tggtcttcac cacccattcc acccacaagc tgctggccgc cttcagccag 1200 gcctcgatga tccatgtgca ggacggcggc gcgcgccagc tcgaccggca ccgcttcaac 1260 gaagccttca tgatgcacat ctccacctcg ccgcagtacg gcatcatcgc ttccctggac 1320 gtggcctcgg ccatgatgga ggggcccgcc gggcgctcgt tgatccagga gactttcgac 1380 gaggcgctgc gttttcgccg cgccctggcc aacctgcggc agaacctggc ggcggacgac 1440 tggtggttcg atatctggca gtcgcacctg gcggaaggcg ccgacacggt cgccaccgag 1500 gattggctgt tgcgtcccga cgccgactgg cacggattcg gcgatgtggc cgaggactac 1560 gtgctgctcg atccgatcaa ggtcaccctg gtgacgccgg gcctgaccgc cgatggcaag 1620 ctgggggagc ggggcattcc cgcggcggtg gtcagcaagt tcctctggga gcgtggggtg 1680 gtggtggaga agaccggcct ctattccttc ctggtgctgt tctccatggg tatcaccaag 1740 ggcaagtgga gcaccctgct caccgagttg ctggagttca agcgcggcta tgacaccaac 1800 ctgcccctgg ccgaggcgct gccctccatc gcccgggacc acggcgcgcg gtacgccggc 1860 atgggcctgc gcgatctctg cgacgccctg catggctgct accgcaacag cgccacgccc 1920 aaggccctgc ggcgcatgta cacacagctg ccggaactgg cgatgaagcc cgccgacgct 1980 tacgacaagc tggtgcgcgg cgaggtggaa ccggtgtccc tggacctgct gcaagggcgg 2040 atcgcggcgg tgatgctggt gccctatcca ccgggcatac cgctgatcat gccgggggag 2100 cgcttcaccg ccgagactcg cgcgatcatc gattacctgg aattcgcccg caccttcgac 2160 ctgagcttcc ccggcttcga tatcgatgtg catggcctca actgtcagga aagtcctacc 2220 gggcgctgct atacagtgga ctgcatcagg gaataa 2256 <210> 7 <211> 749 <212> PRT <213> Pseudomonas putida <220> <221> PEPTIDE <222> (1)..(749) <223> Lysine decarboxylase from Pseudomonas putida (PpLDC) <400> 7 Met Tyr Lys Asp Leu Lys Phe Pro Ile Leu Ile Val His Arg Ala Ile 1 5 10 15 Lys Ala Asp Ser Val Ala Gly Glu Arg Val Arg Gly Ile Ala Glu Glu 20 25 30 Leu Arg Gln Asp Gly Phe Ala Ile Leu Ala Ala Ala Asp His Ala Glu 35 40 45 Ala Arg Leu Val Ala Ala Thr His His Gly Leu Ala Cys Met Leu Ile 50 55 60 Ala Ala Glu Gly Val Gly Glu Asn Thr His Leu Leu Gln Asn Met Ala 65 70 75 80 Glu Leu Ile Arg Leu Ala Arg Leu Arg Ala Pro Asp Leu Pro Ile Phe 85 90 95 Ala Leu Gly Glu Gln Val Thr Leu Glu Asn Ala Pro Ala Glu Ala Met 100 105 110 Ser Glu Leu Asn Gln Leu Arg Gly Ile Leu Tyr Leu Phe Glu Asp Thr 115 120 125 Val Pro Phe Leu Ala Arg Gln Val Ala Arg Ala Ala His Thr Tyr Leu 130 135 140 Asp Gly Leu Leu Pro Pro Phe Phe Lys Ala Leu Val Gln His Thr Ala 145 150 155 160 Gln Ser Asn Tyr Ser Trp His Thr Pro Gly His Gly Gly Gly Val Ala 165 170 175 Tyr His Lys Ser Pro Val Gly Gln Ala Phe His Gln Phe Phe Gly Glu 180 185 190 Asn Thr Leu Arg Ser Asp Leu Ser Val Ser Val Pro Glu Leu Gly Ser 195 200 205 Leu Leu Asp His Thr Gly Pro Leu Ala Glu Ala Glu Ala Arg Ala Ala 210 215 220 Arg Asn Phe Gly Ala Asp His Thr Phe Phe Val Ile Asn Gly Thr Ser 225 230 235 240 Thr Ala Asn Lys Ile Val Trp His Ala Met Val Gly Arg Asp Asp Leu 245 250 255 Val Leu Val Asp Arg Asn Cys His Lys Ser Val Val His Ala Ile Ile 260 265 270 Met Thr Gly Ala Val Pro Leu Tyr Leu Cys Pro Glu Arg Asn Glu Leu 275 280 285 Gly Ile Ile Gly Pro Ile Pro Leu Ser Glu Phe Ser Pro Glu Ala Ile 290 295 300 Glu Ala Lys Ile Gln Ala Asn Pro Leu Ala Arg Asp Arg Gly Arg Arg 305 310 315 320 Ile Lys Leu Ala Val Val Thr Asn Ser Thr Tyr Asp Gly Leu Cys Tyr 325 330 335 His Ala Gly Met Ile Lys Gln Cys Leu Gly Ala Ser Val Glu Val Leu 340 345 350 His Phe Asp Glu Ala Trp Phe Ala Tyr Ala Ala Phe His Asp Phe Phe 355 360 365 Thr Gly Arg Tyr Ala Met Gly Thr Ala Cys Thr Ala Gly Ser Pro Leu 370 375 380 Val Phe Ser Thr His Ser Thr His Lys Leu Leu Ala Ala Phe Ser Gln 385 390 395 400 Ala Ser Met Ile His Val Gln Asp Gly Ala Arg Arg Gln Leu Asp Arg 405 410 415 Asp Arg Phe Asn Glu Ala Phe Met Met His Ile Ser Thr Ser Pro Gln 420 425 430 Tyr Ser Ile Leu Ala Ser Leu Asp Val Ala Ser Ser Met Met Glu Gly 435 440 445 Pro Ala Gly His Ser Leu Leu Gln Glu Met Phe Asp Glu Ala Leu Ser 450 455 460 Phe Arg Arg Ala Leu Ala Asn Leu Arg Glu His Ile Ala Ala Asp Asp 465 470 475 480 Trp Trp Phe Ser Ile Trp Gln Pro Pro Gly Thr Glu Gly Ile Gln Arg 485 490 495 Leu Ala Ala Gln Asp Trp Leu Leu Gln Pro Gly Ala Glu Trp His Gly 500 505 510 Phe Gly Glu Val Val Asp Asp Tyr Val Leu Leu Asp Pro Leu Lys Val 515 520 525 Thr Leu Val Met Pro Gly Leu Ser Ala Gly Gly Val Leu Gly Glu His 530 535 540 Gly Ile Pro Ala Ala Val Val Ser Lys Phe Leu Trp Glu Arg Gly Leu 545 550 555 560 Val Val Glu Lys Thr Gly Leu Tyr Ser Phe Leu Val Leu Phe Ser Met 565 570 575 Gly Ile Thr Lys Gly Lys Trp Ser Thr Leu Leu Thr Glu Leu Leu Glu 580 585 590 Phe Lys Arg His Tyr Asp Gly Asn Thr Ala Leu Ser Ser Cys Leu Pro 595 600 605 Ser Val Val Ala Ala Asp Ala Ser Arg Tyr Gln Arg Met Gly Leu Arg 610 615 620 Asp Leu Cys Asp Gln Leu His Asp Cys Tyr Arg Ala Asn Ala Thr Ala 625 630 635 640 Lys Gln Leu Lys Arg Leu Phe Thr Arg Leu Pro Glu Val Ala Val Ser 645 650 655 Pro Ala Arg Ala Tyr Asp Gln Met Val Arg Gly Asp Val Glu Ala Val 660 665 670 Pro Ile Glu Ala Leu Leu Gly Arg Val Ala Ala Val Met Leu Val Pro 675 680 685 Tyr Pro Pro Gly Ile Pro Leu Ile Met Pro Gly Glu Arg Phe Thr Glu 690 695 700 Ala Thr Arg Ser Ile Leu Asp Tyr Leu Ala Phe Ala Arg Ala Phe Asn 705 710 715 720 Gln Gly Phe Pro Gly Phe Val Ala Asp Val His Gly Leu Gln Asn Glu 725 730 735 Ser Gly Arg Tyr Thr Val Asp Cys Ile Thr Glu Cys Glu 740 745 <210> 8 <211> 2250 <212> DNA <213> Pseudomonas putida <220> <221> gene <222> (1)..(2250) <223> Lysine decarboxylase gene from Pseudomonas putida (ppldc) <400> 8 atgtacaagg acctcaagtt cccgatcctc atcgtccacc gggctatcaa ggctgacagt 60 gtcgccgggg agcgcgtgcg gggcatcgcc gaggaactgc gccaggacgg tttcgccatt 120 ctggccgccg ccgaccacgc cgaagcgcgc ctggttgccg ccactcacca cggcctggcc 180 tgcatgctga ttgccgccga aggagttggc gaaaacaccc acctgctgca gaacatggcc 240 gagctgatcc gcctggcgcg catgcgcgcg cccgacttgc cgatcttcgc cttgggcgag 300 caggtgaccc tggaaaacgc ccctgccgaa gccatgagcg agctcaacca actgcgtggc 360 atcctttacc tgttcgaaga caccgtgccg tttctcgccc gccaggtggc gcgtgccgca 420 cacacctacc ttgacggtct gctgccaccg ttcttcaagg ccctggtgca gcataccgcg 480 cagtccaact attcctggca taccccgggc catggcggtg gcgtggccta tcataaaagc 540 ccggtaggcc aggccttcca ccagttcttc ggggaaaaca ccctgcgctc ggacctgtct 600 gtttcagtgc cggagctggg ctcgctgctc gaccacacag gccccttggc cgaagccgag 660 gccagggcgg cgcgcaactt cggtgccgac cacaccttct tcgtcatcaa tggcacctcc 720 acagccaaca agattgtctg gcacgccatg gtcggtcgcg acgacctggt gttggtggac 780 cgcaactgcc ataagtcagt ggtgcacgcg atcatcatga ccggcgccat tccgctgtac 840 ctgtgcccag agcgcaacga gctgggcatc atcggcccga tcccgctcag cgagttcagc 900 cccgaggcaa tcgaggcgaa gatccaggcc aacccccttg cccatggccg tgggcaacgt 960 atcaagctgg cggtagtgac caactccacc tatgacgggc tgtgctacca cgccgggatg 1020 atcaagcagg ccctgggtgc cagcgtggaa gtactgcact tcgacgaggc ctggttcgct 1080 tatgcggcgt ttcacggctt cttcaccggg cgctatgcca tgggcactgc ctgcgcagcc 1140 gacagcccgt tggtgttcag cacccattcc acccacaagc tgctggcggc gttcagccag 1200 gcctcgatga tccatgtgca ggacggggcc aggcggcagc tggaccggga ccgcttcaac 1260 gaagcgttca tgatgcatat ctcgacttcg ccgcagtaca gcatccttgc ctcgctggac 1320 gtggcctcga ccatgatgga agggcaggcc gggcattcgc tgttgcaaga aatgttcgat 1380 gaggcgctga gttttcgtcg tgccctggcc aacctgcgcg agcacattgc tgcggatgac 1440 tggtggttca gtatttggca gccgcccagc actgaaggca tccagccctt ggccgcgcag 1500 gactggctgc tgcagccggg ggcgcagtgg catggctttg gtgaggtggc ggacggctac 1560 gtgttgctcg accctctgaa ggtgaccctg gtaatgccgg ggctgagtgc gggcggtgtg 1620 ctgggtgagc gtggcatccc ggcggcggtg gtcagcaagt ttctctggga gcgcgggctg 1680 gtggtggaaa aaaccggctt gtacagcttc ctggtgctgt tttccatggg catcaccaag 1740 ggcaagtgga gcaccttgct caccgaactg ctggagttca agcgccacta tgacggcaat 1800 acaccgctga gcagttgcct gccgagtgtg ggggttgccg atgcctcacg ctaccggggc 1860 atgggcctgc gcgacctgtg tgaacagttg catgactgct accgtgccaa tgccacggcc 1920 aagcagctga agcgggtgtt cacgcgtttg ccggaggtgg ccgtgagccc cgctcgggct 1980 tatgaccaga tggtacgtgg cgaggtggaa gcggtgccga tcgaagcttt gctgggccgt 2040 gtggccgcgg tgatgctggt gccgtacccg cccggtattc cgttgatcat gccgggagag 2100 cggttcaccg aggcgacccg ctcgatactt gactacttgg ccttcgcccg agccttcaac 2160 caaggctttc cggggtttgt cgcggatgtt cacggcctgc agaacgaaaa tggccgctac 2220 accgtggatt gcatcatgga atgcgagtga 2250 <210> 9 <211> 751 <212> PRT <213> Pseudomonas synxantha <220> <221> PEPTIDE <222> (1)..(751) <223> Lysine decarboxylase from Pseudomonas synxantha (PxLDC) <400> 9 Met Tyr Lys Asp Leu Lys Phe Pro Ile Leu Ile Val His Arg Asp Ile 1 5 10 15 Lys Ala Asp Thr Val Ala Gly Asp Arg Val Arg Gly Ile Ala Arg Glu 20 25 30 Leu Glu Gln Glu Gly Phe Ser Ile Phe Ser Ala Val Asp Tyr Ala Glu 35 40 45 Gly Arg Leu Val Ala Ser Thr His His Gly Leu Ala Cys Met Leu Ile 50 55 60 Ala Ala Glu Gly Ala Gly Glu Asn Thr His Leu Leu Gln Asn Met Val 65 70 75 80 Glu Leu Ile Arg Leu Ala Arg Val Arg Ala Pro Asn Leu Pro Ile Phe 85 90 95 Ala Leu Gly Glu Gln Val Thr Leu Glu Asn Ala Pro Ala Asp Ala Met 100 105 110 Ser Glu Leu Asn Gln Leu Arg Gly Ile Leu Tyr Leu Phe Glu Asp Thr 115 120 125 Val Pro Phe Leu Ala Arg Gln Val Ala Arg Ser Ala Arg Thr Tyr Leu 130 135 140 Asp Gly Leu Leu Pro Pro Phe Phe Lys Ala Leu Val Gln His Thr Ala 145 150 155 160 Asp Ser Asn Tyr Ser Trp His Thr Pro Gly His Gly Gly Gly Val Ala 165 170 175 Tyr Arg Lys Ser Pro Val Gly Gln Ala Phe His Gln Phe Phe Gly Glu 180 185 190 Asn Thr Leu Arg Ser Asp Leu Ser Val Ser Val Pro Glu Leu Gly Ser 195 200 205 Leu Leu Asp His Thr Gly Pro Leu Ala Glu Ala Glu Ala Arg Ala Ala 210 215 220 Arg Asn Phe Gly Ala Asp His Thr Phe Phe Val Ile Asn Gly Thr Ser 225 230 235 240 Thr Ala Asn Lys Ile Val Trp His Ser Met Val Gly Arg Asp Asp Leu 245 250 255 Val Leu Val Asp Arg Asn Cys His Lys Ser Val Leu His Ser Ile Ile 260 265 270 Met Thr Gly Ala Ile Pro Leu Tyr Leu Cys Pro Glu Arg Asn Glu Leu 275 280 285 Gly Ile Ile Gly Pro Ile Pro Leu Ser Glu Phe Ser Pro Glu Ser Ile 290 295 300 Arg Ala Lys Ile Asp Ala Ser Pro Leu Ala Tyr Gly Arg Pro Pro Lys 305 310 315 320 Val Lys Leu Ala Val Val Thr Asn Ser Thr Tyr Asp Gly Leu Cys Tyr 325 330 335 Asn Ala Glu Leu Ile Lys Gln Gln Leu Gly Asn Ser Val Glu Val Leu 340 345 350 His Phe Asp Glu Ala Trp Tyr Ala Tyr Ala Ala Phe His Glu Phe Phe 355 360 365 Ala Gly Arg Tyr Gly Met Gly Thr Ser Arg Thr Pro Asp Ser Pro Leu 370 375 380 Val Phe Thr Thr His Ser Thr His Lys Leu Leu Ala Ala Phe Ser Gln 385 390 395 400 Ala Ser Met Ile His Val Gln Asp Gly Gly Ala Arg Gln Leu Asp Arg 405 410 415 Asp Arg Phe Asn Glu Ala Phe Met Met His Ile Ser Thr Ser Pro Gln 420 425 430 Tyr Ser Ile Ile Ala Ser Leu Asp Val Ala Ser Ala Met Met Glu Gly 435 440 445 Pro Ala Gly Arg Ser Leu Leu Gln Glu Met Phe Asp Glu Ala Leu Ser 450 455 460 Phe Arg Arg Ala Leu Ala Asn Leu Arg Gln His Ile Ala Ala Glu Asp 465 470 475 480 Trp Trp Phe Ser Ile Trp Gln Pro Gln Ser Val Ala Gly Ile Asp Arg 485 490 495 Val Ala Thr Ala Asp Trp Leu Leu His Pro Gln Asp Asp Trp His Gly 500 505 510 Phe Gly Asp Val Ala Glu Asp Tyr Val Leu Leu Asp Pro Ile Lys Val 515 520 525 Thr Leu Val Met Pro Gly Leu Asn Ala Gly Gly Ala Leu Ser Asp Cys 530 535 540 Gly Ile Pro Ala Ala Val Val Ser Lys Phe Leu Trp Glu Arg Gly Leu 545 550 555 560 Val Val Glu Lys Thr Gly Leu Tyr Ser Phe Leu Val Leu Phe Ser Met 565 570 575 Gly Ile Thr Lys Gly Lys Trp Ser Thr Leu Leu Thr Glu Leu Leu Glu 580 585 590 Phe Lys Arg Ser Tyr Asp Ala Asn Val Ser Leu Ala Ser Cys Leu Pro 595 600 605 Ser Val Tyr Ala Gln Gly Pro Val Arg Tyr Gln Gly Leu Gly Leu Arg 610 615 620 Asp Leu Cys Asp Gln Leu His Ser Cys Tyr Arg Ser Asn Ala Thr Ala 625 630 635 640 Lys His Leu Lys Arg Met Tyr Thr Val Leu Pro Gln Ile Ala Met Lys 645 650 655 Pro Ala Asp Ala Tyr Asp Gln Leu Val Arg Gly Glu Val Glu Ala Val 660 665 670 Ser Ile Asp Ala Leu Pro Gly Arg Ile Ala Ala Val Met Leu Val Pro 675 680 685 Tyr Pro Pro Gly Ile Pro Leu Ile Met Pro Gly Glu Arg Phe Thr Glu 690 695 700 Ser Thr Arg Ser Ile Ile Asp Tyr Leu Ala Phe Ala Arg Thr Phe Asp 705 710 715 720 Ser Ser Phe Pro Gly Phe Val Ala Asp Val His Gly Leu Gln His Glu 725 730 735 Asp Asp Gly Ser Gly Arg Arg Tyr Thr Val Asp Cys Ile Lys Gly 740 745 750 <210> 10 <211> 2256 <212> DNA <213> Pseudomonas synxantha <220> <221> gene <222> (1)..(2256) <223> Lysine decarboxylase gene from Pseudomonas synxantha (pxldc) <400> 10 atgtacaaag acctcaagtt ccctattctt atcgtgcacc gtgacatcaa ggccgacacc 60 gttgccggtg accgggttcg aggcatcgcc agggagttgg aacaagaggg cttcagtata 120 ttttctgcgg tggattacgc cgaagggcgg ttggtggcct ccacccatca tggtttggcg 180 tgcatgttga tcgcagcaga aggcgccggg gaaaataccc acctgctgca aaacatggtc 240 gagctgatcc gcctggcgcg ggtaagggca cccaacctgc cgatctttgc cctgggtgag 300 caagtcaccc ttgaaaacgc gccggccgat gcgatgagcg agcttaacca gctacgcggc 360 attctttatc tgttcgaaga caccgtgccg ttcctggcgc gccaggtcgc ccgctctgcc 420 cgcacttacc tggacggcct gttaccgccg ttcttcaagg ccttggtgca gcacaccgcc 480 gattccaatt attcctggca cacccctggc catggcggtg gcgtggcgta tcgtaaaagc 540 ccggtggggc aggcgtttca ccagttcttc ggggagaaca ccctgcgctc ggacttgtct 600 gtttctgtcc ctgaactggg ctcgctgctc gatcataccg ggcccctggc cgaagccgag 660 gcccgcgccg cgcgcaactt tggcgccgac cataccttct tcgtcatcaa tggcacctcc 720 accgccaaca agatcgtctg gcattccatg gtcggtcgcg acgacctggt gttggtggac 780 cgcaactgcc acaagtcagt gctgcactcg atcatcatga ccggcgcgat cccgctgtat 840 ctgtgcccgg agcgcaacga actggggatc atcggcccga tccccttgag tgaattcagc 900 cccgaatcaa tccgcgccaa gatcgacgcc agcccgttgg catatggccg gccacccaag 960 gtgaagctgg cggtggtgac caattccacc tacgacggcc tgtgctacaa cgccgaactg 1020 atcaagcagc aattgggtaa tagcgtagag gtgctgcact tcgacgaagc ctggtatgcc 1080 tatgcggcat ttcacgagtt tttcgccggg cgctatggca tgggcacctc gcgcacaccg 1140 gacagcccgc tggtatttac cacccactcc acccacaaac tgctggccgc attcagccag 1200 gcatcgatga ttcatgtgca ggatggcggc gcacggcagc tggaccgtga ccgtttcaac 1260 gaagccttca tgatgcacat ctcgacttca ccgcaataca gcatcatcgc ttcgctggat 1320 gtcgcttcgg cgatgatgga aggccccgcc gggcgctcgc tgttgcagga aatgttcgac 1380 gaggccctga gtttccgccg cgcgctggcc aacctgcgcc agcatatcgc tgccgaggat 1440 tggtggtttt cgatctggca gccacaatcg gtggcgggta tcgaccgcgt tgccacggcg 1500 gactggctat tgcatcccca ggatgattgg cacggctttg gcgatgtggc tgaagattat 1560 gtcttgctgg acccgatcaa agtcaccctg gtgatgcctg gcctcaatgc aggtggcgcc 1620 ttgagcgatt gtgggattcc cgccgcggtg gtcagcaagt ttctctggga gcgcggcctc 1680 gtggtggaaa aaaccgggct ttattcgttc ctcgtgttgt tttccatggg gatcaccaaa 1740 ggcaagtgga gcaccttgct caccgagttg ctggagttca agcgcagtta cgatgccaac 1800 gtcagcctgg ccagttgttt gccctcggtg tacgcccagg ggccggtacg ttatcagggc 1860 ttgggcctgc gcgatctttg cgaccagttg cacagctgtt accgtagcaa cgccaccgcc 1920 aagcatctca agcgcatgta cacagtattg ccgcagatcg cgatgaaacc cgccgatgcc 1980 tacgaccaac tggtcagagg cgaagttgaa gcggtatcca tcgatgcctt gccaggacgc 2040 atcgcagccg taatgctggt gccttatcca ccgggcattc cattgataat gcccggcgag 2100 cgctttactg aatcaacgcg ttcaatcatc gactacctgg catttgcccg cacgttcgat 2160 agcagtttcc ccggttttgt cgccgatgtt catgggctgc aacacgaaga tgatggcagt 2220 ggccgtcgtt acaccgtcga ttgcatcaag ggttaa 2256 <210> 11 <211> 715 <212> PRT <213> Escherichia coli <220> <221> PEPTIDE <222> (1)..(715) <223> Lysine decarboxylase from Escherichia coli (EcLDC) <400> 11 Met Asn Val Ile Ala Ile Leu Asn His Met Gly Val Tyr Phe Lys Glu 1 5 10 15 Glu Pro Ile Arg Glu Leu His Arg Ala Leu Glu Arg Leu Asn Phe Gln 20 25 30 Ile Val Tyr Pro Asn Asp Arg Asp Asp Leu Leu Lys Leu Ile Glu Asn 35 40 45 Asn Ala Arg Leu Cys Gly Val Ile Phe Asp Trp Asp Lys Tyr Asn Leu 50 55 60 Glu Leu Cys Glu Glu Ile Ser Lys Met Asn Glu Asn Leu Pro Leu Tyr 65 70 75 80 Ala Phe Ala Asn Thr Tyr Ser Thr Leu Asp Val Ser Leu Asn Asp Leu 85 90 95 Arg Leu Gln Ile Ser Phe Phe Glu Tyr Ala Leu Gly Ala Ala Glu Asp 100 105 110 Ile Ala Asn Lys Ile Lys Gln Thr Thr Asp Glu Tyr Ile Asn Thr Ile 115 120 125 Leu Pro Pro Leu Thr Lys Ala Leu Phe Lys Tyr Val Arg Glu Gly Lys 130 135 140 Tyr Thr Phe Cys Thr Pro Gly His Met Gly Gly Thr Ala Phe Gln Lys 145 150 155 160 Ser Pro Val Gly Ser Leu Phe Tyr Asp Phe Phe Gly Pro Asn Thr Met 165 170 175 Lys Ser Asp Ile Ser Ile Ser Val Ser Glu Leu Gly Ser Leu Leu Asp 180 185 190 His Ser Gly Pro His Lys Glu Ala Glu Gln Tyr Ile Ala Arg Val Phe 195 200 205 Asn Ala Asp Arg Ser Tyr Met Val Thr Asn Gly Thr Ser Thr Ala Asn 210 215 220 Lys Ile Val Gly Met Tyr Ser Ala Pro Ala Gly Ser Thr Ile Leu Ile 225 230 235 240 Asp Arg Asn Cys His Lys Ser Leu Thr His Leu Met Met Met Ser Asp 245 250 255 Val Thr Pro Ile Tyr Phe Arg Pro Thr Arg Asn Ala Tyr Gly Ile Leu 260 265 270 Gly Gly Ile Pro Gln Ser Glu Phe Gln His Ala Thr Ile Ala Lys Arg 275 280 285 Val Lys Glu Thr Pro Asn Ala Thr Trp Pro Val His Ala Val Ile Thr 290 295 300 Asn Ser Thr Tyr Asp Gly Leu Leu Tyr Asn Thr Asp Phe Ile Lys Lys 305 310 315 320 Thr Leu Asp Val Lys Ser Ile His Phe Asp Ser Ala Trp Val Pro Tyr 325 330 335 Thr Asn Phe Ser Pro Ile Tyr Glu Gly Lys Cys Gly Met Ser Gly Gly 340 345 350 Arg Val Glu Gly Lys Val Ile Tyr Glu Thr Gln Ser Thr His Lys Leu 355 360 365 Leu Ala Ala Phe Ser Gln Ala Ser Met Ile His Val Lys Gly Asp Val 370 375 380 Asn Glu Glu Thr Phe Asn Glu Ala Tyr Met Met His Thr Thr Thr Ser 385 390 395 400 Pro His Tyr Gly Ile Val Ala Ser Thr Glu Thr Ala Ala Ala Met Met 405 410 415 Lys Gly Asn Ala Gly Lys Arg Leu Ile Asn Gly Ser Ile Glu Arg Ala 420 425 430 Ile Lys Phe Arg Lys Glu Ile Lys Arg Leu Arg Thr Glu Ser Asp Gly 435 440 445 Trp Phe Phe Asp Val Trp Gln Pro Asp His Ile Asp Thr Thr Glu Cys 450 455 460 Trp Pro Leu Arg Ser Asp Ser Thr Trp His Gly Phe Lys Asn Ile Asp 465 470 475 480 Asn Glu His Met Tyr Leu Asp Pro Ile Lys Val Thr Leu Leu Thr Pro 485 490 495 Gly Met Glu Lys Asp Gly Thr Met Ser Asp Phe Gly Ile Pro Ala Ser 500 505 510 Ile Val Ala Lys Tyr Leu Asp Glu His Gly Ile Val Val Glu Lys Thr 515 520 525 Gly Pro Tyr Asn Leu Leu Phe Leu Phe Ser Ile Gly Ile Asp Lys Thr 530 535 540 Lys Ala Leu Ser Leu Leu Arg Ala Leu Thr Asp Phe Lys Arg Ala Phe 545 550 555 560 Asp Leu Asn Leu Arg Val Lys Asn Met Leu Pro Ser Leu Tyr Arg Glu 565 570 575 Asp Pro Glu Phe Tyr Glu Asn Met Arg Ile Gln Glu Leu Ala Gln Asn 580 585 590 Ile His Lys Leu Ile Val His His Asn Leu Pro Asp Leu Met Tyr Arg 595 600 605 Ala Phe Glu Val Leu Pro Thr Met Val Met Thr Pro Tyr Ala Ala Phe 610 615 620 Gln Lys Glu Leu His Gly Met Thr Glu Glu Val Tyr Leu Asp Glu Met 625 630 635 640 Val Gly Arg Ile Asn Ala Asn Met Ile Leu Pro Tyr Pro Pro Gly Val 645 650 655 Pro Leu Val Met Pro Gly Glu Met Ile Thr Glu Glu Ser Arg Pro Val 660 665 670 Leu Glu Phe Leu Gln Met Leu Cys Glu Ile Gly Ala His Tyr Pro Gly 675 680 685 Phe Glu Thr Asp Ile His Gly Ala Tyr Arg Gln Ala Asp Gly Arg Tyr 690 695 700 Thr Val Lys Val Leu Lys Glu Glu Ser Lys Lys 705 710 715 <210> 12 <211> 31 <212> PRT <213> Artificial Sequence <220> <223> 15 amino acid of Lysine decarboxylase from Escherichia coli <400> 12 Gly Arg Val Glu Gly Lys Val Ile Tyr Glu Thr Gln Ser Thr His Lys 1 5 10 15 Leu Leu Ala Ala Phe Ser Gln Ala Ser Met Ile His Val Lys Gly 20 25 30 <210> 13 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> 5 LDC NdeI <400> 13 aatatacata tgtacaaaga cctccaattc ccc 33 <210> 14 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> 3 LDC XhoI <400> 14 aatatactcg agtcagatct tgatgcagtc caccg 35 <210> 15 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> 5 LDC BamHI <400> 15 aatataggat ccgtacaaag acctccaatt cccc 34 <210> 16 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> 3 LDC SacI <400> 16 aatatagagc tctcagatct tgatgcagtc caccg 35 <210> 17 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> 5 PaLDC NdeI <400> 17 aatatacata tgtacaaaga cctgaagttc cccatcc 37 <210> 18 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> 3 PaLDC XhoI <400> 18 aatatactcg agtcactccc ttatgcaatc aacggtatag c 41 <210> 19 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> 5 PrLDC NdeI <400> 19 aatatacata tgtacaaaga gctcaagttc cccgtcctc 39 <210> 20 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> 3 PrLDC XhoI <400> 20 aatatactcg agttattccc tgatgcagtc cactgtatag c 41 <210> 21 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> 5_LDC_NdeI_ppldc <400> 21 aatatacata tgtacaaaga cctccaattc ccc 33 <210> 22 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> 3_PaLDC_XhoI_ppldc <400> 22 aatatactcg agtcactccc ttatgcaatc aacggtatag c 41 <210> 23 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> 5_LDC_NdeI_pxldc <400> 23 aatatacata tgtacaaaga cctccaattc ccc 33 <210> 24 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> 3_PaLDC_XhoI_pxldc <400> 24 aatatactcg agtcactccc ttatgcaatc aacggtatag c 41 <110> CJ CheilJedang Corporation <120> The novel Lysine Decarboxylase and Process for producing cadeverine using the same <130> PN122256 <160> 24 <170> KopatentIn 2.0 <210> 1 <211> 751 <212> PRT <213> Pseudomonas thermotolerans <220> <221> PEPTIDE <222> (1)..(751) <223> Lysine decarboxylase from Pseudomonas thermotolerans (PtLDC) <400> 1 Met Tyr Lys Asp Leu Gln Phe Pro Ile Leu Ile Val His Arg Asp Ile 1 5 10 15 Lys Ala Asp Thr Val Ala Gly Asn Arg Val Arg Glu Ile Ala Arg Glu 20 25 30 Leu Glu Gln Asp Gly Phe Ala Ile Leu Ser Thr Ala Ser Ala Ser Glu 35 40 45 Gly Arg Ile Val Ala Ser Thr His His Gly Leu Ala Cys Ile Leu Val 50 55 60 Ala Ala Glu Gly Ala Gly Glu Asn Arg Ser Leu Leu Gln Asp Val Val 65 70 75 80 Glu Leu Ile Arg Val Ala Arg Val Arg Ala Pro Gln Leu Pro Ile Phe 85 90 95 Ala Leu Gly Glu Gln Val Thr Ile Glu Asn Ala Pro Ala Glu Ala Met 100 105 110 Ala Asp Leu Asn Gln Leu Arg Gly Leu Leu Tyr Leu Phe Glu Asp Thr 115 120 125 Val Pro Phe Leu Ala Arg Gln Val Ala Arg Ala Ala Arg Gly Tyr Leu 130 135 140 Glu Gly Leu Leu Pro Pro Phe Phe Arg Ala Leu Val Glu His Thr Ala 145 150 155 160 Gln Ser Asn Tyr Ser Trp His Thr Pro Gly His Gly Gly Gly Val Ala 165 170 175 Tyr Arg Lys Ser Pro Val Gly Gln Ala Phe His Gln Phe Phe Gly Glu 180 185 190 Asn Thr Leu Arg Ser Asp Leu Ser Val Ser Val Pro Glu Leu Gly Ser 195 200 205 Leu Leu Asp His Thr Gly Pro Leu Ala Glu Ala Glu Thr Arg Ala Ala 210 215 220 Arg Asn Phe Gly Ala Asp His Thr Tyr Phe Val Ile Asn Gly Thr Ser 225 230 235 240 Thr Ala Asn Lys Ile Val Trp His Ser Met Val Gly Arg Asp Asp Leu 245 250 255 Val Leu Val Asp Arg Asn Cys His Lys Ser Ile Leu His Ala Ile Ile 260 265 270 Met Thr Gly Ala Ile Pro Leu Tyr Leu Cys Pro Glu Arg Asn Glu Leu 275 280 285 Gly Ile Ile Gly Pro Ile Pro Leu Ser Glu Phe Ser Lys Glu Ala Ile 290 295 300 Gln Ala Lys Ile Ala Ala Ser Pro Leu Ala Arg Gly Arg Glu Pro Arg 305 310 315 320 Val Lys Leu Ala Val Val Thr Asn Ser Thr Tyr Asp Gly Leu Cys Tyr 325 330 335 Asn Ala Glu Met Val Lys Gln Ala Leu Gly Asp Ser Val Glu Val Leu 340 345 350 His Phe Asp Glu Ala Trp Tyr Ala Tyr Ala Ala Phe His Glu Phe Tyr 355 360 365 Ala Gly Arg Tyr Gly Met Gly Thr Arg Leu Glu Ala Asp Ser Pro Leu 370 375 380 Val Phe Ala Thr His Ser Thr His Lys Leu Leu Ala Ala Phe Ser Gln 385 390 395 400 Ala Ser Met Ile His Val Arg Asp Gly Gly Ser Arg Lys Leu Asp Arg 405 410 415 Tyr Arg Phe Asn Glu Ala Phe Met Met His Ile Ser Thr Ser Pro Gln 420 425 430 Tyr Ser Ile Leu Ala Ser Leu Asp Val Ala Ser Ala Met Met Glu Gly 435 440 445 Pro Ala Gly Arg Ser Leu Ile Gln Glu Thr Phe Asp Glu Ala Leu Ser 450 455 460 Phe Arg Arg Ala Leu Ala Asn Leu Arg Gln Asn Leu Pro Ala Asp Asp 465 470 475 480 Trp Trp Phe Asp Ile Trp Gln Pro Pro Arg Ala Ala Gly Val Glu Glu 485 490 495 Val Ala Thr Arg Asp Trp Leu Leu Glu Pro Asn Ala Glu Trp His Gly 500 505 510 Phe Gly Glu Val Asn Asp Asp Tyr Val Leu Leu Asp Pro Val Lys Val 515 520 525 Thr Leu Val Thr Pro Gly Leu Ser Ala Gly Gly Arg Leu Asp Glu His 530 535 540 Gly Ile Pro Ala Ala Val Val Ser Lys Phe Leu Trp Glu Arg Gly Leu 545 550 555 560 Val Val Glu Lys Thr Gly Leu Tyr Ser Phe Leu Val Leu Phe Ser Met 565 570 575 Gly Ile Thr Lys Gly Lys Trp Ser Thr Leu Leu Thr Glu Leu Leu Glu 580 585 590 Phe Lys Arg Leu Tyr Asp Ala Asn Val Ala Leu Ala Glu Ala Leu Pro 595 600 605 Ser Ile Ala Arg Ala Gly Gly Thr Arg Tyr Ala Gly Met Gly Leu Arg 610 615 620 Asp Leu Cys Asp Glu Leu His Ala Cys Tyr Arg Glu Asn Ala Thr Ala 625 630 635 640 Lys Ala Leu Lys Arg Met Tyr Thr Thr Leu Pro Glu Val Val Met Lys 645 650 655 Pro Ala Asp Ala Tyr Asp Arg Leu Val Arg Gly Glu Val Glu Ala Val 660 665 670 Pro Ile Asp Arg Leu Glu Gly Arg Ile Ala Ala Val Met Leu Val Pro 675 680 685 Tyr Pro Pro Gly Ile Pro Leu Ile Met Pro Gly Glu Arg Phe Thr Gln 690 695 700 Ala Thr Arg Ser Ile Ile Asp Tyr Leu Gly Phe Ala Arg Asp Phe Asp 705 710 715 720 Arg Arg Phe Pro Gly Phe Asp Ala Asp Val His Gly Leu Gln Ser Glu 725 730 735 Glu Arg Gly Gly Glu Arg Cys Tyr Thr Val Asp Cys Ile Lys Ile 740 745 750 <210> 2 <211> 2256 <212> DNA <213> Pseudomonas thermotolerans <220> <221> gene <222> (1)..(2256) <223> Lysine decarboxylase gene from Pseudomonas thermotolerans (ptldc) <400> 2 atgtacaaag acctccaatt ccccattctc atcgtccatc gcgacatcaa ggccgatacc 60 gtggccggca accgcgtccg tgagatcgcc cgcgaactgg aacaggacgg cttcgccatc 120 ctctccacgg caagtgccag cgaagggcgc atcgtcgctt ccacccacca tggtctggcc 180 tgcatcctgg tcgccgccga gggagcggga gagaatcgaa gcctgctgca ggacgtggtg 240 gagctgatcc gcgtggccag ggtccgtgcg ccgcagctgc cgatcttcgc tctcggcgag 300 caggtgacca tcgagaacgc tccggccgag gccatggccg acctcaacca actgcgcggg 360 ctgctctacc tgttcgagga caccgtgccc ttcctcgccc gtcaggtggc gcgggccgcg 420 cgtggctacc tggaggggct gctgccgccg ttcttccgcg ccctggtgga gcacaccgcg 480 cagtccaact attcctggca caccccgggg cacggcggcg gtgtggctta ccgcaagagc 540 ccggtggggc aggcctttca ccagttcttc ggcgagaaca ccctgcgctc cgacttgtcg 600 gtttccgtac cggagctggg ttcgctgctg gatcacaccg ggccgctggc cgaggcggaa 660 acccgcgcgg cgcgcaactt cggcgccgac catacctatt tcgtgatcaa cggcacctcg 720 acggccaaca agatcgtctg gcactccatg gtcggccgcg acgatctggt gttggtggac 780 cgcaactgcc acaagtcgat cctccacgcc atcatcatga ccggtgccat ccccctgtac 840 ctgtgcccgg agcgcaacga gctgggcatc atcgggccga ttccgctctc cgagttcagc 900 aaggaggcga tccaggcgaa gatcgccgcc agcccgctgg ccagagggcg cgagccgcgg 960 gtcaagctgg cggtggtgac caattccacc tacgacggcc tctgttacaa cgccgagatg 1020 gtcaagcagg ccctcggcga cagcgtcgag gtgctgcact tcgacgaggc ctggtacgcc 1080 tacgcggcct tccacgagtt ctacgcgggg cgttacggca tgggcactcg cctggaggcg 1140 gactcgcctc tggtctttgc cacccattcc acccacaagc tgctggctgc cttcagccag 1200 gcctcgatga ttcacgtgcg cgacggcggt agccgcaagc tggaccggta ccgcttcaac 1260 gaggccttca tgatgcacat ctccacctcg ccgcagtaca gcatcctcgc ctcgctggac 1320 gtggcctcgg cgatgatgga gggaccggcc gggcgctcgc tgatccagga aaccttcgat 1380 gaagcgctga gcttccgccg tgctctggcc aacctgcgcc agaacctgcc ggcggacgac 1440 tggtggttcg acatctggca gccgccgcgc gctgctggtg tcgaggaggt ggcgacccgc 1500 gactggctgc tggagccgaa tgccgagtgg cacggcttcg gcgaggtgaa cgacgactac 1560 gtgctgctcg atccggtcaa ggtcaccctg gtcaccccgg ggctgagcgc cggcgggcgc 1620 ctggacgagc acggcattcc cgccgcggtg gtcagcaagt tcctctggga acgcggcctg 1680 gtggtggaga agaccggcct gtactccttc ctggtgttgt tctccatggg gatcaccaag 1740 ggcaagtgga gcaccctgct caccgagctg ctggagttca agcgcctcta cgacgccaac 1800 gtggcgcttg ccgaggcgtt gccgagcatc gcccgcgccg gtggcacccg ctatgccggc 1860 atgggcctgc gcgacctgtg cgacgagctg cacgcctgct accgggagaa cgccaccgcc 1920 aaggccctca agcgcatgta caccacgctc cccgaggtgg tgatgaagcc tgccgatgcc 1980 tacgaccggc tggtccgcgg agaggtggag gcggtgccca tcgaccgtct ggaaggacga 2040 atcgccgcgg tgatgctggt gccctatccg ccgggcattc cgctgatcat gccgggcgag 2100 cgcttcaccc aggcgacccg ttcgatcatc gactacctgg gtttcgcccg cgatttcgat 2160 cgccgcttcc ccggcttcga cgcggacgtg cacggcctgc agagcgagga gcgcggcggc 2220 gagcgatgct acacggtgga ctgcatcaag atctga 2256 <210> 3 <211> 751 <212> PRT <213> Pseudomonas alcaligenes <220> <221> PEPTIDE <222> (1)..(751) <223> Lysine decarboxylase from Pseudomonas alcaligenes (PaLDC) <400> 3 Met Tyr Lys Asp Leu Lys Phe Pro Ile Leu Ile Val His Arg Asp Ile 1 5 10 15 Lys Ala Asp Thr Val Ala Gly Asp Arg Val Arg Gly Ile Ala Arg Glu 20 25 30 Leu Glu Gln Asp Gly Phe Val Ile Leu Ser Thr Ala Ser Ser Ala Glu 35 40 45 Gly Arg Ile Val Ala Ser Thr His His Gly Leu Ala Cys Ile Leu Val 50 55 60 Ala Ala Glu Gly Ala Gly Glu Asn Gln Arg Leu Leu Gln Asp Val Val 65 70 75 80 Glu Leu Ile Arg Val Ala Arg Val Arg Ala Pro Gln Leu Pro Ile Phe 85 90 95 Ala Leu Gly Glu Gln Val Thr Ile Glu Asn Ala Pro Ala Glu Ala Met 100 105 110 Ala Asp Leu Asn Gln Leu Arg Gly Leu Leu Tyr Leu Phe Glu Asp Thr 115 120 125 Val Pro Phe Leu Ala Arg Gln Val Ala Arg Ala Ala Arg Asn Tyr Leu 130 135 140 Glu Gly Leu Leu Pro Pro Phe Phe Arg Ala Leu Val Glu His Thr Ala 145 150 155 160 Gln Ser Asn Tyr Ser Trp His Thr Pro Gly His Gly Gly Gly Val Ala 165 170 175 Tyr Arg Lys Ser Pro Val Gly Gln Ala Phe His Gln Phe Phe Gly Glu 180 185 190 Asn Thr Leu Arg Ser Asp Leu Ser Val Ser Val Pro Glu Leu Gly Ser 195 200 205 Leu Leu Asp His Thr Gly Pro Leu Ala Glu Ala Glu Ala Arg Ala Ala 210 215 220 Arg Asn Phe Gly Ala Asp His Thr Phe Phe Val Ile Asn Gly Thr Ser 225 230 235 240 Thr Ala Asn Lys Ile Val Trp His Ser Met Val Ala Arg Asp Asp Leu 245 250 255 Val Leu Val Asp Arg Asn Cys His Lys Ser Ile Leu His Ser Ile Ile 260 265 270 Met Thr Gly Ala Ile Pro Leu Tyr Leu Ser Pro Glu Arg Asn Glu Leu 275 280 285 Gly Ile Ile Gly Pro Ile Pro Leu Ser Glu Phe Ser Arg Glu Ser Ile 290 295 300 Gln Ala Lys Ile Asp Ala Ser Pro Leu Ala Arg Gly Arg Ala Pro Lys 305 310 315 320 Val Lys Leu Ala Val Val Thr Asn Ser Thr Tyr Asp Gly Leu Cys Tyr 325 330 335 Asn Ala Glu Leu Ile Lys Gln Ala Leu Gly Asp Thr Val Glu Val Leu 340 345 350 His Phe Asp Glu Ala Trp Tyr Ala Tyr Ala Ala Phe His Glu Phe Tyr 355 360 365 Asp Gly Arg Tyr Gly Met Gly Thr Ala Arg Ser Glu Glu Gly Pro Leu 370 375 380 Val Phe Thr Thr His Ser Thr His Lys Leu Leu Ala Ala Phe Ser Gln 385 390 395 400 Ala Ser Met Ile His Val Gln Asp Gly Gly Ala Arg Gln Leu Asp Arg 405 410 415 Asp Arg Phe Asn Glu Ala Phe Met Met His Ile Ser Thr Ser Pro Gln 420 425 430 Tyr Gly Ile Ile Ala Ser Leu Asp Val Ala Ser Ala Met Met Glu Gly 435 440 445 Pro Ala Gly Arg Ser Leu Ile Gln Glu Thr Phe Asp Glu Ala Leu Ser 450 455 460 Phe Arg Arg Ala Leu Ala Asn Val Trp Gln Thr Leu Asp Ala Lys Asp 465 470 475 480 Trp Trp Phe Asp Ile Trp Glu Pro Pro Gln Val Glu Gly Ala Glu Ala 485 490 495 Val Ala Thr Gly Asp Trp Val Leu Glu Pro Gly Ala Asp Trp His Gly 500 505 510 Phe Gly Glu Val Ala Asp Asp Tyr Val Leu Leu Asp Pro Ile Lys Val 515 520 525 Thr Leu Val Thr Pro Gly Leu Ser Ala Asp Gly Lys Leu Gly Glu Gln 530 535 540 Gly Ile Pro Ala Ala Val Val Gly Lys Phe Leu Trp Glu Arg Gly Leu 545 550 555 560 Val Val Glu Lys Thr Gly Leu Tyr Ser Phe Leu Val Leu Phe Ser Met 565 570 575 Gly Ile Thr Lys Gly Lys Trp Ser Thr Leu Leu Thr Glu Leu Leu Glu 580 585 590 Phe Lys Arg Ser Tyr Asp Ala Asn Ala Pro Leu Thr Ser Ala Leu Pro 595 600 605 Ser Val Ala Arg Ala Asp Ala Ala Arg Tyr Gln Gly Leu Gly Leu Arg 610 615 620 Asp Leu Cys Asp Gln Leu His Ala Cys Tyr Arg Asp Asn Ala Thr Ala 625 630 635 640 Lys Ala Met Arg Arg Met Tyr Thr Ala Leu Pro Glu Leu Ala Ile Lys 645 650 655 Pro Ser Glu Ala Tyr Asp Lys Leu Val Arg Gly Glu Val Glu Ala Val 660 665 670 Pro Ile Glu Gln Leu Gln Gly Arg Ile Ala Ala Val Met Leu Val Pro 675 680 685 Tyr Pro Pro Gly Ile Pro Leu Ile Met Pro Gly Glu Arg Phe Thr Ala 690 695 700 Gln Thr Arg Ser Ile Ile Asp Tyr Leu Ala Phe Ala Arg Thr Phe Asp 705 710 715 720 Ser Ala Phe Pro Gly Phe Asp Ser Asp Val His Gly Leu Gln His Asp 725 730 735 Asp Ser Pro Met Gly Arg Cys Tyr Thr Val Asp Cys Ile Arg Glu 740 745 750 <210> 4 <211> 2256 <212> DNA <213> Pseudomonas alcaligenes <220> <221> gene <222> (1)..(2256) <223> Lysine decarboxylase gene from Pseudomonas alcaligenes (paldc) <400> 4 atgtacaaag acctgaagtt ccccatcctc atcgtccacc gcgacatcaa ggccgatacg 60 gtcgccggtg atcgcgtgcg cggcatcgcc cgcgaactgg agcaggacgg tttcgtcatc 120 ctctccaccg ccagttccgc cgaagggcgc atcgtcgcct ccacccacca cggcttggcc 180 tgcatcctcg tcgccgccga aggggcgggc gagaaccagc gcctgctgca ggacgtggtc 240 gagctgatcc gcgtggcccg ggtgcgtgcg ccgcaactgc cgatcttcgc cctgggcgaa 300 caggtgacca tcgagaacgc cccggccgaa gccatggccg acctcaacca gctgcgcggc 360 ctgctctacc tcttcgaaga caccgtgccc ttcctcgccc gccaggtcgc ccgcgccgcg 420 cgcaactacc tcgaaggcct gctgccgccg ttcttccgtg ccctggtgga gcacaccgcg 480 caatccaact actcctggca cacgcccggt cacggcggtg gcgtcgccta ccgcaagagc 540 ccggtggggc aggccttcca ccagttcttc ggcgaaaaca ccctgcgctc ggacctctcc 600 gtctcggtgc ccgagctggg ctcgctgctg gatcacaccg gccccctggc cgaagccgag 660 gcccgcgccg cgcgcaactt cggtgctgac cacaccttct tcgtgatcaa cggcacctcc 720 accgcgaaca agatcgtctg gcactccatg gtcgcccgcg acgacctggt gctggtggac 780 cgcaactgcc acaagtcgat cctccactcg atcatcatga ccggcgccat cccgctctac 840 ctgagccccg agcgcaacga actgggcatc atcgggccca tccccctgag cgagttcagt 900 cgcgaatcga tccaggccaa gatcgacgcc agcccactgg cccggggccg cgcgcccaag 960 gtcaagctgg cggtggtgac caactccacc tacgacggcc tctgctacaa cgccgagctg 1020 atcaagcagg cgctgggcga caccgttgag gtgctgcact tcgacgaagc ctggtacgcc 1080 tacgccgcct tccacgagtt ctacgacggc cgctacggca tgggtacggc gcgcagcgaa 1140 gaaggcccgc tggtgttcac cacccactcc acccacaagc tgctggcggc cttcagtcag 1200 gcctcgatga tccatgtgca ggacggcggc gcccgccagc tggaccggga tcgcttcaac 1260 gaggcgttca tgatgcacat ctccacttcg ccccagtacg gcatcatcgc ctcgctggac 1320 gtcgcctcgg cgatgatgga aggccccgcc gggcgctcgc tgatccagga aaccttcgac 1380 gaggccctga gcttccgccg tgccctggcc aacgtctggc agaccctgga tgccaaggat 1440 tggtggttcg atatctggga gccgccccag gtggaaggcg ccgaggcggt ggccaccggc 1500 gactgggtgc tggagcccgg cgccgactgg cacggcttcg gcgaggtggc ggacgactac 1560 gtgctgctcg acccgatcaa ggtcaccctg gtcacccccg ggctcagtgc cgacggcaag 1620 ctcggcgagc agggcatccc ggcggcggtg gtgggcaagt tcctctggga gcgtggcctg 1680 gtggtggaga agaccggtct ctactccttc ctcgtgctgt tctccatggg catcaccaag 1740 ggcaaatgga gcaccctgct caccgagctg ctggagttca aacgctccta cgacgccaac 1800 gccccgctga ccagtgcact gccctcggtg gcccgggccg atgccgcccg ctaccagggg 1860 ctgggcctgc gcgacctctg cgaccagctg cacgcctgct accgcgacaa cgccacggcc 1920 aaggccatgc ggcgcatgta caccgcgctt ccggagctgg ccatcaagcc gtcggaggct 1980 tacgacaagc tggtgcgtgg cgaggtcgag gcggtgccca tcgagcagct gcaagggcgc 2040 attgccgcgg tgatgctggt gccgtacccg ccgggcatcc cgctgatcat gccgggggag 2100 cgtttcactg cgcagacccg ctcgatcatt gactacctgg ccttcgcccg gaccttcgac 2160 agcgccttcc ccggcttcga ttccgatgtc cacggcctgc agcacgacga cagcccaatg 2220 gggcgctgct ataccgttga ttgcataagg gagtga 2256 <210> 5 <211> 751 <212> PRT <213> Pseudomonas resinovorans <220> <221> PEPTIDE <222> (1)..(751) <223> Lysine decarboxylase from Pseudomonas resinovorans (PrLDC) <400> 5 Met Tyr Lys Glu Leu Lys Phe Pro Val Leu Ile Val His Arg Asp Ile 1 5 10 15 Lys Ala Asp Thr Val Ala Gly Glu Arg Val Arg Ser Ile Ala Arg Glu 20 25 30 Leu Glu Gln Asp Gly Phe Thr Ile Leu Pro Thr Ala Ser Ser Ala Glu 35 40 45 Gly Arg Ile Val Ala Ser Thr His His Gly Leu Ala Cys Ile Leu Val 50 55 60 Ala Ala Glu Gly Ala Gly Glu Asn Gln Arg Leu Leu Gln Asp Met Val 65 70 75 80 Glu Leu Ile Arg Val Ala Arg Val Arg Ala Pro Gln Leu Pro Ile Phe 85 90 95 Ala Leu Gly Glu Gln Val Thr Ile Glu Asn Ala Pro Ala Glu Ala Met 100 105 110 Ala Asp Leu Asn Gln Leu Arg Gly Leu Leu Tyr Leu Tyr Glu Asp Thr 115 120 125 Val Pro Phe Leu Ala Arg Gln Val Ala Arg Ala Ala Arg Gly Tyr Leu 130 135 140 Glu Ala Leu Leu Pro Pro Phe Phe Arg Ala Leu Val Glu His Thr Ala 145 150 155 160 Gln Ser Asn Tyr Ser Trp His Thr Pro Gly His Gly Gly Gly Val Ala 165 170 175 Tyr Arg Lys Ser Pro Val Gly Gln Ala Phe His Gln Phe Phe Gly Glu 180 185 190 Asn Thr Leu Arg Ser Asp Leu Ser Val Ser Val Pro Glu Leu Gly Ser 195 200 205 Leu Leu Asp His Thr Gly Pro Leu Ala Glu Ala Glu Ala Arg Ala Ala 210 215 220 Gln Asn Phe Gly Ala Asp His Thr Phe Phe Val Ile Asn Gly Thr Ser 225 230 235 240 Thr Ala Asn Lys Ile Val Trp His Ser Met Val Gly Arg Asp Asp Leu 245 250 255 Val Leu Val Asp Arg Asn Cys His Lys Ser Ile Val His Ser Ile Ile 260 265 270 Met Thr Gly Ala Ile Pro Leu Tyr Leu Thr Pro Glu Arg Asn Glu Leu 275 280 285 Gly Ile Ile Gly Pro Ile Pro Leu Ala Glu Phe Ser Arg Glu Ser Ile 290 295 300 Gln Ala Lys Ile Asp Ala Ser Pro Leu Ala Lys Gly Arg Ala Ala Lys 305 310 315 320 Val Lys Leu Ala Val Val Thr Asn Ser Thr Tyr Asp Gly Leu Cys Tyr 325 330 335 Asn Ala Glu Leu Ile Lys Gln Ala Leu Gly Asp Ser Val Glu Val Leu 340 345 350 His Phe Asp Glu Ala Trp Tyr Ala Tyr Ala Ala Phe His Glu Phe Tyr 355 360 365 Ala Gly Arg Tyr Gly Met Cys Thr His Arg Glu Ala His Ser Pro Leu 370 375 380 Val Phe Thr Thr His Ser Thr His Lys Leu Leu Ala Ala Phe Ser Gln 385 390 395 400 Ala Ser Met Ile His Val Gln Asp Gly Gly Ala Arg Gln Leu Asp Arg 405 410 415 His Arg Phe Asn Glu Ala Phe Met Met His Ile Ser Thr Ser Pro Gln 420 425 430 Tyr Gly Ile Ile Ala Ser Leu Asp Val Ala Ser Ala Met Met Glu Gly 435 440 445 Pro Ala Gly Arg Ser Leu Ile Gln Glu Thr Phe Asp Glu Ala Leu Arg 450 455 460 Phe Arg Arg Ala Leu Ala Asn Leu Arg Gln Asn Leu Ala Ala Asp Asp 465 470 475 480 Trp Trp Phe Asp Ile Trp Gln Ser His Leu Ala Glu Gly Ala Asp Thr 485 490 495 Val Ala Thr Glu Asp Trp Leu Leu Arg Pro Asp Ala Asp Trp His Gly 500 505 510 Phe Gly Asp Val Ala Glu Asp Tyr Val Leu Leu Asp Pro Ile Lys Val 515 520 525 Thr Leu Val Thr Pro Gly Leu Thr Ala Asp Gly Lys Leu Gly Glu Arg 530 535 540 Gly Ile Pro Ala Ala Val Val Ser Lys Phe Leu Trp Glu Arg Gly Val 545 550 555 560 Val Val Glu Lys Thr Gly Leu Tyr Ser Phe Leu Val Leu Phe Ser Met 565 570 575 Gly Ile Thr Lys Gly Lys Trp Ser Thr Leu Leu Thr Glu Leu Leu Glu 580 585 590 Phe Lys Arg Gly Tyr Asp Thr Asn Leu Pro Leu Ala Glu Ala Leu Pro 595 600 605 Ser Ile Ala Arg Asp His Gly Ala Arg Tyr Ala Gly Met Gly Leu Arg 610 615 620 Asp Leu Cys Asp Ala Leu His Gly Cys Tyr Arg Asn Ser Ala Thr Pro 625 630 635 640 Lys Ala Leu Arg Arg Met Tyr Thr Gln Leu Pro Glu Leu Ala Met Lys 645 650 655 Pro Ala Asp Ala Tyr Asp Lys Leu Val Arg Gly Glu Val Glu Pro Val 660 665 670 Ser Leu Asp Leu Leu Gln Gly Arg Ile Ala Ala Val Met Leu Val Pro 675 680 685 Tyr Pro Pro Gly Ile Pro Leu Ile Met Pro Gly Glu Arg Phe Thr Ala 690 695 700 Glu Thr Arg Ala Ile Ile Asp Tyr Leu Glu Phe Ala Arg Thr Phe Asp 705 710 715 720 Leu Ser Phe Pro Gly Phe Asp Ile Asp Val His Gly Leu Asn Cys Gln 725 730 735 Glu Ser Pro Thr Gly Arg Cys Tyr Thr Val Asp Cys Ile Arg Glu 740 745 750 <210> 6 <211> 2256 <212> DNA <213> Pseudomonas resinovorans <220> <221> gene <222> (1)..(2256) <223> Lysine decarboxylase gene from Pseudomonas resinovorans (prldc) <400> 6 atgtacaaag agctcaagtt ccccgtcctc atcgtccatc gtgacatcaa ggccgatacc 60 gtcgccggcg agcgggtccg cagcatcgcc cgcgagctgg agcaggacgg cttcaccatc 120 ctccccaccg ccagctccgc cgaaggccgt atcgtcgcct ccacccacca tggcctcgcc 180 tgcatcctgg tggccgccga aggcgccggg gaaaaccagc ggctgctgca ggacatggtg 240 gagctgatcc gcgtggcgcg ggtgcgcgcg ccgcagttgc cgatcttcgc cctgggggaa 300 caggtcacca tcgagaacgc gccggccgag gccatggccg acctcaacca gttgcgcggc 360 ctgctctatc tctacgaaga caccgtgcct ttcctcgccc gccaggtggc ccgagccgcc 420 cgcggctacc tggaagccct gttgccgcca ttcttccgcg ccctggtcga gcacaccgcg 480 cagtccaact actcctggca caccccgggc cacggcggtg gcgtggccta ccgcaagagt 540 ccggtggggc aggccttcca ccagttcttc ggggaaaaca ccctgcgctc ggacctctcg 600 gtatcggtgc cggaactggg ctcgctgctg gaccacaccg ggcccctggc cgaagccgag 660 gcgcgtgcgg cgcagaactt cggcgccgac cacaccttct tcgtgatcaa tggcacttcc 720 accgccaaca agatcgtctg gcactccatg gtcggccgcg atgacctggt gctggtggac 780 cgcaactgcc acaagtccat cgtccactcg atcatcatga ccggcgccat ccccctgtac 840 ctgacgccgg agcgcaacga actgggcatc atcggaccca tccccctcgc cgaattcagc 900 cgtgagtcga tccaggcgaa gatcgacgcc agccccctgg ccaaggggcg agccgccaag 960 gtcaagctgg cggtggtgac caactccacc tacgacggcc tctgctacaa cgccgagctg 1020 atcaagcagg cactgggcga ctcggtggag gtgctgcact tcgacgaggc ctggtacgcc 1080 tacgctgcct tccacgagtt ctatgccggg cgctacggca tgtgcaccca ccgcgaggcg 1140 cactcgccgc tggtcttcac cacccattcc acccacaagc tgctggccgc cttcagccag 1200 gcctcgatga tccatgtgca ggacggcggc gcgcgccagc tcgaccggca ccgcttcaac 1260 gaagccttca tgatgcacat ctccacctcg ccgcagtacg gcatcatcgc ttccctggac 1320 gtggcctcgg ccatgatgga ggggcccgcc gggcgctcgt tgatccagga gactttcgac 1380 gaggcgctgc gttttcgccg cgccctggcc aacctgcggc agaacctggc ggcggacgac 1440 tggtggttcg atatctggca gtcgcacctg gcggaaggcg ccgacacggt cgccaccgag 1500 gattggctgt tgcgtcccga cgccgactgg cacggattcg gcgatgtggc cgaggactac 1560 gtgctgctcg atccgatcaa ggtcaccctg gtgacgccgg gcctgaccgc cgatggcaag 1620 ctgggggagc ggggcattcc cgcggcggtg gtcagcaagt tcctctggga gcgtggggtg 1680 gtggtggaga agaccggcct ctattccttc ctggtgctgt tctccatggg tatcaccaag 1740 ggcaagtgga gcaccctgct caccgagttg ctggagttca agcgcggcta tgacaccaac 1800 ctgcccctgg ccgaggcgct gccctccatc gcccgggacc acggcgcgcg gtacgccggc 1860 atgggcctgc gcgatctctg cgacgccctg catggctgct accgcaacag cgccacgccc 1920 aaggccctgc ggcgcatgta cacacagctg ccggaactgg cgatgaagcc cgccgacgct 1980 tacgacaagc tggtgcgcgg cgaggtggaa ccggtgtccc tggacctgct gcaagggcgg 2040 atcgcggcgg tgatgctggt gccctatcca ccgggcatac cgctgatcat gccgggggag 2100 cgcttcaccg ccgagactcg cgcgatcatc gattacctgg aattcgcccg caccttcgac 2160 ctgagcttcc ccggcttcga tatcgatgtg catggcctca actgtcagga aagtcctacc 2220 gggcgctgct atacagtgga ctgcatcagg gaataa 2256 <210> 7 <211> 749 <212> PRT <213> Pseudomonas putida <220> <221> PEPTIDE <222> (1)..(749) <223> Lysine decarboxylase from Pseudomonas putida (PpLDC) <400> 7 Met Tyr Lys Asp Leu Lys Phe Pro Ile Leu Ile Val His Arg Ala Ile 1 5 10 15 Lys Ala Asp Ser Val Ala Gly Glu Arg Val Arg Gly Ile Ala Glu Glu 20 25 30 Leu Arg Gln Asp Gly Phe Ala Ile Leu Ala Ala Ala Asp His Ala Glu 35 40 45 Ala Arg Leu Val Ala Ala Thr His His Gly Leu Ala Cys Met Leu Ile 50 55 60 Ala Ala Glu Gly Val Gly Glu Asn Thr His Leu Leu Gln Asn Met Ala 65 70 75 80 Glu Leu Ile Arg Leu Ala Arg Leu Arg Ala Pro Asp Leu Pro Ile Phe 85 90 95 Ala Leu Gly Glu Gln Val Thr Leu Glu Asn Ala Pro Ala Glu Ala Met 100 105 110 Ser Glu Leu Asn Gln Leu Arg Gly Ile Leu Tyr Leu Phe Glu Asp Thr 115 120 125 Val Pro Phe Leu Ala Arg Gln Val Ala Arg Ala Ala His Thr Tyr Leu 130 135 140 Asp Gly Leu Leu Pro Pro Phe Phe Lys Ala Leu Val Gln His Thr Ala 145 150 155 160 Gln Ser Asn Tyr Ser Trp His Thr Pro Gly His Gly Gly Gly Val Ala 165 170 175 Tyr His Lys Ser Pro Val Gly Gln Ala Phe His Gln Phe Phe Gly Glu 180 185 190 Asn Thr Leu Arg Ser Asp Leu Ser Val Ser Val Pro Glu Leu Gly Ser 195 200 205 Leu Leu Asp His Thr Gly Pro Leu Ala Glu Ala Glu Ala Arg Ala Ala 210 215 220 Arg Asn Phe Gly Ala Asp His Thr Phe Phe Val Ile Asn Gly Thr Ser 225 230 235 240 Thr Ala Asn Lys Ile Val Trp His Ala Met Val Gly Arg Asp Asp Leu 245 250 255 Val Leu Val Asp Arg Asn Cys His Lys Ser Val Val His Ala Ile Ile 260 265 270 Met Thr Gly Ala Val Pro Leu Tyr Leu Cys Pro Glu Arg Asn Glu Leu 275 280 285 Gly Ile Ile Gly Pro Ile Pro Leu Ser Glu Phe Ser Pro Glu Ala Ile 290 295 300 Glu Ala Lys Ile Gln Ala Asn Pro Leu Ala Arg Asp Arg Gly Arg Arg 305 310 315 320 Ile Lys Leu Ala Val Val Thr Asn Ser Thr Tyr Asp Gly Leu Cys Tyr 325 330 335 His Ala Gly Met Ile Lys Gln Cys Leu Gly Ala Ser Val Glu Val Leu 340 345 350 His Phe Asp Glu Ala Trp Phe Ala Tyr Ala Ala Phe His Asp Phe Phe 355 360 365 Thr Gly Arg Tyr Ala Met Gly Thr Ala Cys Thr Ala Gly Ser Pro Leu 370 375 380 Val Phe Ser Thr His Ser Thr His Lys Leu Leu Ala Ala Phe Ser Gln 385 390 395 400 Ala Ser Met Ile His Val Gln Asp Gly Ala Arg Arg Gln Leu Asp Arg 405 410 415 Asp Arg Phe Asn Glu Ala Phe Met Met His Ile Ser Thr Ser Pro Gln 420 425 430 Tyr Ser Ile Leu Ala Ser Leu Asp Val Ala Ser Ser Met Met Glu Gly 435 440 445 Pro Ala Gly His Ser Leu Leu Gln Glu Met Phe Asp Glu Ala Leu Ser 450 455 460 Phe Arg Arg Ala Leu Ala Asn Leu Arg Glu His Ile Ala Ala Asp Asp 465 470 475 480 Trp Trp Phe Ser Ile Trp Gln Pro Pro Gly Thr Glu Gly Ile Gln Arg 485 490 495 Leu Ala Ala Gln Asp Trp Leu Leu Gln Pro Gly Ala Glu Trp His Gly 500 505 510 Phe Gly Glu Val Val Asp Asp Tyr Val Leu Leu Asp Pro Leu Lys Val 515 520 525 Thr Leu Val Met Pro Gly Leu Ser Ala Gly Gly Val Leu Gly Glu His 530 535 540 Gly Ile Pro Ala Ala Val Val Ser Lys Phe Leu Trp Glu Arg Gly Leu 545 550 555 560 Val Val Glu Lys Thr Gly Leu Tyr Ser Phe Leu Val Leu Phe Ser Met 565 570 575 Gly Ile Thr Lys Gly Lys Trp Ser Thr Leu Leu Thr Glu Leu Leu Glu 580 585 590 Phe Lys Arg His Tyr Asp Gly Asn Thr Ala Leu Ser Ser Cys Leu Pro 595 600 605 Ser Val Val Ala Ala Asp Ala Ser Arg Tyr Gln Arg Met Gly Leu Arg 610 615 620 Asp Leu Cys Asp Gln Leu His Asp Cys Tyr Arg Ala Asn Ala Thr Ala 625 630 635 640 Lys Gln Leu Lys Arg Leu Phe Thr Arg Leu Pro Glu Val Ala Val Ser 645 650 655 Pro Ala Arg Ala Tyr Asp Gln Met Val Arg Gly Asp Val Glu Ala Val 660 665 670 Pro Ile Glu Ala Leu Leu Gly Arg Val Ala Ala Val Met Leu Val Pro 675 680 685 Tyr Pro Pro Gly Ile Pro Leu Ile Met Pro Gly Glu Arg Phe Thr Glu 690 695 700 Ala Thr Arg Ser Ile Leu Asp Tyr Leu Ala Phe Ala Arg Ala Phe Asn 705 710 715 720 Gln Gly Phe Pro Gly Phe Val Ala Asp Val His Gly Leu Gln Asn Glu 725 730 735 Ser Gly Arg Tyr Thr Val Asp Cys Ile Thr Glu Cys Glu 740 745 <210> 8 <211> 2250 <212> DNA <213> Pseudomonas putida <220> <221> gene <222> (1)..(2250) <223> Lysine decarboxylase gene from Pseudomonas putida (ppldc) <400> 8 atgtacaagg acctcaagtt cccgatcctc atcgtccacc gggctatcaa ggctgacagt 60 gtcgccgggg agcgcgtgcg gggcatcgcc gaggaactgc gccaggacgg tttcgccatt 120 ctggccgccg ccgaccacgc cgaagcgcgc ctggttgccg ccactcacca cggcctggcc 180 tgcatgctga ttgccgccga aggagttggc gaaaacaccc acctgctgca gaacatggcc 240 gagctgatcc gcctggcgcg catgcgcgcg cccgacttgc cgatcttcgc cttgggcgag 300 caggtgaccc tggaaaacgc ccctgccgaa gccatgagcg agctcaacca actgcgtggc 360 atcctttacc tgttcgaaga caccgtgccg tttctcgccc gccaggtggc gcgtgccgca 420 cacacctacc ttgacggtct gctgccaccg ttcttcaagg ccctggtgca gcataccgcg 480 cagtccaact attcctggca taccccgggc catggcggtg gcgtggccta tcataaaagc 540 ccggtaggcc aggccttcca ccagttcttc ggggaaaaca ccctgcgctc ggacctgtct 600 gtttcagtgc cggagctggg ctcgctgctc gaccacacag gccccttggc cgaagccgag 660 gccagggcgg cgcgcaactt cggtgccgac cacaccttct tcgtcatcaa tggcacctcc 720 acagccaaca agattgtctg gcacgccatg gtcggtcgcg acgacctggt gttggtggac 780 cgcaactgcc ataagtcagt ggtgcacgcg atcatcatga ccggcgccat tccgctgtac 840 ctgtgcccag agcgcaacga gctgggcatc atcggcccga tcccgctcag cgagttcagc 900 cccgaggcaa tcgaggcgaa gatccaggcc aacccccttg cccatggccg tgggcaacgt 960 atcaagctgg cggtagtgac caactccacc tatgacgggc tgtgctacca cgccgggatg 1020 atcaagcagg ccctgggtgc cagcgtggaa gtactgcact tcgacgaggc ctggttcgct 1080 tatgcggcgt ttcacggctt cttcaccggg cgctatgcca tgggcactgc ctgcgcagcc 1140 gacagcccgt tggtgttcag cacccattcc acccacaagc tgctggcggc gttcagccag 1200 gcctcgatga tccatgtgca ggacggggcc aggcggcagc tggaccggga ccgcttcaac 1260 gaagcgttca tgatgcatat ctcgacttcg ccgcagtaca gcatccttgc ctcgctggac 1320 gtggcctcga ccatgatgga agggcaggcc gggcattcgc tgttgcaaga aatgttcgat 1380 gaggcgctga gttttcgtcg tgccctggcc aacctgcgcg agcacattgc tgcggatgac 1440 tggtggttca gtatttggca gccgcccagc actgaaggca tccagccctt ggccgcgcag 1500 gactggctgc tgcagccggg ggcgcagtgg catggctttg gtgaggtggc ggacggctac 1560 gtgttgctcg accctctgaa ggtgaccctg gtaatgccgg ggctgagtgc gggcggtgtg 1620 ctgggtgagc gtggcatccc ggcggcggtg gtcagcaagt ttctctggga gcgcgggctg 1680 gtggtggaaa aaaccggctt gtacagcttc ctggtgctgt tttccatggg catcaccaag 1740 ggcaagtgga gcaccttgct caccgaactg ctggagttca agcgccacta tgacggcaat 1800 acaccgctga gcagttgcct gccgagtgtg ggggttgccg atgcctcacg ctaccggggc 1860 atgggcctgc gcgacctgtg tgaacagttg catgactgct accgtgccaa tgccacggcc 1920 aagcagctga agcgggtgtt cacgcgtttg ccggaggtgg ccgtgagccc cgctcgggct 1980 tatgaccaga tggtacgtgg cgaggtggaa gcggtgccga tcgaagcttt gctgggccgt 2040 gtggccgcgg tgatgctggt gccgtacccg cccggtattc cgttgatcat gccgggagag 2100 cggttcaccg aggcgacccg ctcgatactt gactacttgg ccttcgcccg agccttcaac 2160 caaggctttc cggggtttgt cgcggatgtt cacggcctgc agaacgaaaa tggccgctac 2220 accgtggatt gcatcatgga atgcgagtga 2250 <210> 9 <211> 751 <212> PRT <213> Pseudomonas synxantha <220> <221> PEPTIDE <222> (1)..(751) <223> Lysine decarboxylase from Pseudomonas synxantha (PxLDC) <400> 9 Met Tyr Lys Asp Leu Lys Phe Pro Ile Leu Ile Val His Arg Asp Ile 1 5 10 15 Lys Ala Asp Thr Val Ala Gly Asp Arg Val Arg Gly Ile Ala Arg Glu 20 25 30 Leu Glu Gln Glu Gly Phe Ser Ile Phe Ser Ala Val Asp Tyr Ala Glu 35 40 45 Gly Arg Leu Val Ala Ser Thr His His Gly Leu Ala Cys Met Leu Ile 50 55 60 Ala Ala Glu Gly Ala Gly Glu Asn Thr His Leu Leu Gln Asn Met Val 65 70 75 80 Glu Leu Ile Arg Leu Ala Arg Val Arg Ala Pro Asn Leu Pro Ile Phe 85 90 95 Ala Leu Gly Glu Gln Val Thr Leu Glu Asn Ala Pro Ala Asp Ala Met 100 105 110 Ser Glu Leu Asn Gln Leu Arg Gly Ile Leu Tyr Leu Phe Glu Asp Thr 115 120 125 Val Pro Phe Leu Ala Arg Gln Val Ala Arg Ser Ala Arg Thr Tyr Leu 130 135 140 Asp Gly Leu Leu Pro Pro Phe Phe Lys Ala Leu Val Gln His Thr Ala 145 150 155 160 Asp Ser Asn Tyr Ser Trp His Thr Pro Gly His Gly Gly Gly Val Ala 165 170 175 Tyr Arg Lys Ser Pro Val Gly Gln Ala Phe His Gln Phe Phe Gly Glu 180 185 190 Asn Thr Leu Arg Ser Asp Leu Ser Val Ser Val Pro Glu Leu Gly Ser 195 200 205 Leu Leu Asp His Thr Gly Pro Leu Ala Glu Ala Glu Ala Arg Ala Ala 210 215 220 Arg Asn Phe Gly Ala Asp His Thr Phe Phe Val Ile Asn Gly Thr Ser 225 230 235 240 Thr Ala Asn Lys Ile Val Trp His Ser Met Val Gly Arg Asp Asp Leu 245 250 255 Val Leu Val Asp Arg Asn Cys His Lys Ser Val Leu His Ser Ile Ile 260 265 270 Met Thr Gly Ala Ile Pro Leu Tyr Leu Cys Pro Glu Arg Asn Glu Leu 275 280 285 Gly Ile Ile Gly Pro Ile Pro Leu Ser Glu Phe Ser Pro Glu Ser Ile 290 295 300 Arg Ala Lys Ile Asp Ala Ser Pro Leu Ala Tyr Gly Arg Pro Pro Lys 305 310 315 320 Val Lys Leu Ala Val Val Thr Asn Ser Thr Tyr Asp Gly Leu Cys Tyr 325 330 335 Asn Ala Glu Leu Ile Lys Gln Gln Leu Gly Asn Ser Val Glu Val Leu 340 345 350 His Phe Asp Glu Ala Trp Tyr Ala Tyr Ala Ala Phe His Glu Phe Phe 355 360 365 Ala Gly Arg Tyr Gly Met Gly Thr Ser Arg Thr Pro Asp Ser Pro Leu 370 375 380 Val Phe Thr Thr His Ser Thr His Lys Leu Leu Ala Ala Phe Ser Gln 385 390 395 400 Ala Ser Met Ile His Val Gln Asp Gly Gly Ala Arg Gln Leu Asp Arg 405 410 415 Asp Arg Phe Asn Glu Ala Phe Met Met His Ile Ser Thr Ser Pro Gln 420 425 430 Tyr Ser Ile Ile Ala Ser Leu Asp Val Ala Ser Ala Met Met Glu Gly 435 440 445 Pro Ala Gly Arg Ser Leu Leu Gln Glu Met Phe Asp Glu Ala Leu Ser 450 455 460 Phe Arg Arg Ala Leu Ala Asn Leu Arg Gln His Ile Ala Ala Glu Asp 465 470 475 480 Trp Trp Phe Ser Ile Trp Gln Pro Gln Ser Val Ala Gly Ile Asp Arg 485 490 495 Val Ala Thr Ala Asp Trp Leu Leu His Pro Gln Asp Asp Trp His Gly 500 505 510 Phe Gly Asp Val Ala Glu Asp Tyr Val Leu Leu Asp Pro Ile Lys Val 515 520 525 Thr Leu Val Met Pro Gly Leu Asn Ala Gly Gly Ala Leu Ser Asp Cys 530 535 540 Gly Ile Pro Ala Ala Val Val Ser Lys Phe Leu Trp Glu Arg Gly Leu 545 550 555 560 Val Val Glu Lys Thr Gly Leu Tyr Ser Phe Leu Val Leu Phe Ser Met 565 570 575 Gly Ile Thr Lys Gly Lys Trp Ser Thr Leu Leu Thr Glu Leu Leu Glu 580 585 590 Phe Lys Arg Ser Tyr Asp Ala Asn Val Ser Leu Ala Ser Cys Leu Pro 595 600 605 Ser Val Tyr Ala Gln Gly Pro Val Arg Tyr Gln Gly Leu Gly Leu Arg 610 615 620 Asp Leu Cys Asp Gln Leu His Ser Cys Tyr Arg Ser Asn Ala Thr Ala 625 630 635 640 Lys His Leu Lys Arg Met Tyr Thr Val Leu Pro Gln Ile Ala Met Lys 645 650 655 Pro Ala Asp Ala Tyr Asp Gln Leu Val Arg Gly Glu Val Glu Ala Val 660 665 670 Ser Ile Asp Ala Leu Pro Gly Arg Ile Ala Ala Val Met Leu Val Pro 675 680 685 Tyr Pro Pro Gly Ile Pro Leu Ile Met Pro Gly Glu Arg Phe Thr Glu 690 695 700 Ser Thr Arg Ser Ile Ile Asp Tyr Leu Ala Phe Ala Arg Thr Phe Asp 705 710 715 720 Ser Ser Phe Pro Gly Phe Val Ala Asp Val His Gly Leu Gln His Glu 725 730 735 Asp Asp Gly Ser Gly Arg Arg Tyr Thr Val Asp Cys Ile Lys Gly 740 745 750 <210> 10 <211> 2256 <212> DNA <213> Pseudomonas synxantha <220> <221> gene <222> (1)..(2256) <223> Lysine decarboxylase gene from Pseudomonas synxantha (pxldc) <400> 10 atgtacaaag acctcaagtt ccctattctt atcgtgcacc gtgacatcaa ggccgacacc 60 gttgccggtg accgggttcg aggcatcgcc agggagttgg aacaagaggg cttcagtata 120 ttttctgcgg tggattacgc cgaagggcgg ttggtggcct ccacccatca tggtttggcg 180 tgcatgttga tcgcagcaga aggcgccggg gaaaataccc acctgctgca aaacatggtc 240 gagctgatcc gcctggcgcg ggtaagggca cccaacctgc cgatctttgc cctgggtgag 300 caagtcaccc ttgaaaacgc gccggccgat gcgatgagcg agcttaacca gctacgcggc 360 attctttatc tgttcgaaga caccgtgccg ttcctggcgc gccaggtcgc ccgctctgcc 420 cgcacttacc tggacggcct gttaccgccg ttcttcaagg ccttggtgca gcacaccgcc 480 gattccaatt attcctggca cacccctggc catggcggtg gcgtggcgta tcgtaaaagc 540 ccggtggggc aggcgtttca ccagttcttc ggggagaaca ccctgcgctc ggacttgtct 600 gtttctgtcc ctgaactggg ctcgctgctc gatcataccg ggcccctggc cgaagccgag 660 gcccgcgccg cgcgcaactt tggcgccgac cataccttct tcgtcatcaa tggcacctcc 720 accgccaaca agatcgtctg gcattccatg gtcggtcgcg acgacctggt gttggtggac 780 cgcaactgcc acaagtcagt gctgcactcg atcatcatga ccggcgcgat cccgctgtat 840 ctgtgcccgg agcgcaacga actggggatc atcggcccga tccccttgag tgaattcagc 900 cccgaatcaa tccgcgccaa gatcgacgcc agcccgttgg catatggccg gccacccaag 960 gtgaagctgg cggtggtgac caattccacc tacgacggcc tgtgctacaa cgccgaactg 1020 atcaagcagc aattgggtaa tagcgtagag gtgctgcact tcgacgaagc ctggtatgcc 1080 tatgcggcat ttcacgagtt tttcgccggg cgctatggca tgggcacctc gcgcacaccg 1140 gacagcccgc tggtatttac cacccactcc acccacaaac tgctggccgc attcagccag 1200 gcatcgatga ttcatgtgca ggatggcggc gcacggcagc tggaccgtga ccgtttcaac 1260 gaagccttca tgatgcacat ctcgacttca ccgcaataca gcatcatcgc ttcgctggat 1320 gtcgcttcgg cgatgatgga aggccccgcc gggcgctcgc tgttgcagga aatgttcgac 1380 gaggccctga gtttccgccg cgcgctggcc aacctgcgcc agcatatcgc tgccgaggat 1440 tggtggtttt cgatctggca gccacaatcg gtggcgggta tcgaccgcgt tgccacggcg 1500 gactggctat tgcatcccca ggatgattgg cacggctttg gcgatgtggc tgaagattat 1560 gtcttgctgg acccgatcaa agtcaccctg gtgatgcctg gcctcaatgc aggtggcgcc 1620 ttgagcgatt gtgggattcc cgccgcggtg gtcagcaagt ttctctggga gcgcggcctc 1680 gtggtggaaa aaaccgggct ttattcgttc ctcgtgttgt tttccatggg gatcaccaaa 1740 ggcaagtgga gcaccttgct caccgagttg ctggagttca agcgcagtta cgatgccaac 1800 gtcagcctgg ccagttgttt gccctcggtg tacgcccagg ggccggtacg ttatcagggc 1860 ttgggcctgc gcgatctttg cgaccagttg cacagctgtt accgtagcaa cgccaccgcc 1920 aagcatctca agcgcatgta cacagtattg ccgcagatcg cgatgaaacc cgccgatgcc 1980 tacgaccaac tggtcagagg cgaagttgaa gcggtatcca tcgatgcctt gccaggacgc 2040 atcgcagccg taatgctggt gccttatcca ccgggcattc cattgataat gcccggcgag 2100 cgctttactg aatcaacgcg ttcaatcatc gactacctgg catttgcccg cacgttcgat 2160 agcagtttcc ccggttttgt cgccgatgtt catgggctgc aacacgaaga tgatggcagt 2220 ggccgtcgtt acaccgtcga ttgcatcaag ggttaa 2256 <210> 11 <211> 715 <212> PRT <213> Escherichia coli <220> <221> PEPTIDE <222> (1)..(715) <223> Lysine decarboxylase from Escherichia coli (EcLDC) <400> 11 Met Asn Val Ile Ala Ile Leu Asn His Met Gly Val Tyr Phe Lys Glu 1 5 10 15 Glu Pro Ile Arg Glu Leu His Arg Ala Leu Glu Arg Leu Asn Phe Gln 20 25 30 Ile Val Tyr Pro Asn Asp Arg Asp Asp Leu Leu Lys Leu Ile Glu Asn 35 40 45 Asn Ala Arg Leu Cys Gly Val Ile Phe Asp Trp Asp Lys Tyr Asn Leu 50 55 60 Glu Leu Cys Glu Glu Ile Ser Lys Met Asn Glu Asn Leu Pro Leu Tyr 65 70 75 80 Ala Phe Ala Asn Thr Tyr Ser Thr Leu Asp Val Ser Leu Asn Asp Leu 85 90 95 Arg Leu Gln Ile Ser Phe Phe Glu Tyr Ala Leu Gly Ala Ala Glu Asp 100 105 110 Ile Ala Asn Lys Ile Lys Gln Thr Thr Asp Glu Tyr Ile Asn Thr Ile 115 120 125 Leu Pro Pro Leu Thr Lys Ala Leu Phe Lys Tyr Val Arg Glu Gly Lys 130 135 140 Tyr Thr Phe Cys Thr Pro Gly His Met Gly Gly Thr Ala Phe Gln Lys 145 150 155 160 Ser Pro Val Gly Ser Leu Phe Tyr Asp Phe Phe Gly Pro Asn Thr Met 165 170 175 Lys Ser Asp Ile Ser Ile Ser Val Ser Glu Leu Gly Ser Leu Leu Asp 180 185 190 His Ser Gly Pro His Lys Glu Ala Glu Gln Tyr Ile Ala Arg Val Phe 195 200 205 Asn Ala Asp Arg Ser Tyr Met Val Thr Asn Gly Thr Ser Thr Ala Asn 210 215 220 Lys Ile Val Gly Met Tyr Ser Ala Pro Ala Gly Ser Thr Ile Leu Ile 225 230 235 240 Asp Arg Asn Cys His Lys Ser Leu Thr His Leu Met Met Met Ser Asp 245 250 255 Val Thr Pro Ile Tyr Phe Arg Pro Thr Arg Asn Ala Tyr Gly Ile Leu 260 265 270 Gly Gly Ile Pro Gln Ser Glu Phe Gln His Ala Thr Ile Ala Lys Arg 275 280 285 Val Lys Glu Thr Pro Asn Ala Thr Trp Pro Val His Ala Val Ile Thr 290 295 300 Asn Ser Thr Tyr Asp Gly Leu Leu Tyr Asn Thr Asp Phe Ile Lys Lys 305 310 315 320 Thr Leu Asp Val Lys Ser Ile His Phe Asp Ser Ala Trp Val Pro Tyr 325 330 335 Thr Asn Phe Ser Pro Ile Tyr Glu Gly Lys Cys Gly Met Ser Gly Gly 340 345 350 Arg Val Glu Gly Lys Val Ile Tyr Glu Thr Gln Ser Thr His Lys Leu 355 360 365 Leu Ala Ala Phe Ser Gln Ala Ser Met Ile His Val Lys Gly Asp Val 370 375 380 Asn Glu Glu Thr Phe Asn Glu Ala Tyr Met Met His Thr Thr Thr Ser 385 390 395 400 Pro His Tyr Gly Ile Val Ala Ser Thr Glu Thr Ala Ala Ala Met Met 405 410 415 Lys Gly Asn Ala Gly Lys Arg Leu Ile Asn Gly Ser Ile Glu Arg Ala 420 425 430 Ile Lys Phe Arg Lys Glu Ile Lys Arg Leu Arg Thr Glu Ser Asp Gly 435 440 445 Trp Phe Phe Asp Val Trp Gln Pro Asp His Ile Asp Thr Thr Glu Cys 450 455 460 Trp Pro Leu Arg Ser Asp Ser Thr Trp His Gly Phe Lys Asn Ile Asp 465 470 475 480 Asn Glu His Met Tyr Leu Asp Pro Ile Lys Val Thr Leu Leu Thr Pro 485 490 495 Gly Met Glu Lys Asp Gly Thr Met Ser Asp Phe Gly Ile Pro Ala Ser 500 505 510 Ile Val Ala Lys Tyr Leu Asp Glu His Gly Ile Val Val Glu Lys Thr 515 520 525 Gly Pro Tyr Asn Leu Leu Phe Leu Phe Ser Ile Gly Ile Asp Lys Thr 530 535 540 Lys Ala Leu Ser Leu Leu Arg Ala Leu Thr Asp Phe Lys Arg Ala Phe 545 550 555 560 Asp Leu Asn Leu Arg Val Lys Asn Met Leu Pro Ser Leu Tyr Arg Glu 565 570 575 Asp Pro Glu Phe Tyr Glu Asn Met Arg Ile Gln Glu Leu Ala Gln Asn 580 585 590 Ile His Lys Leu Ile Val His His Asn Leu Pro Asp Leu Met Tyr Arg 595 600 605 Ala Phe Glu Val Leu Pro Thr Met Val Met Thr Pro Tyr Ala Ala Phe 610 615 620 Gln Lys Glu Leu His Gly Met Thr Glu Glu Val Tyr Leu Asp Glu Met 625 630 635 640 Val Gly Arg Ile Asn Ala Asn Met Ile Leu Pro Tyr Pro Pro Gly Val 645 650 655 Pro Leu Val Met Pro Gly Glu Met Ile Thr Glu Glu Ser Arg Pro Val 660 665 670 Leu Glu Phe Leu Gln Met Leu Cys Glu Ile Gly Ala His Tyr Pro Gly 675 680 685 Phe Glu Thr Asp Ile His Gly Ala Tyr Arg Gln Ala Asp Gly Arg Tyr 690 695 700 Thr Val Lys Val Leu Lys Glu Glu Ser Lys Lys 705 710 715 <210> 12 <211> 31 <212> PRT <213> Artificial Sequence <220> <223> 15 amino acid of Lysine decarboxylase from Escherichia coli <400> 12 Gly Arg Val Glu Gly Lys Val Ile Tyr Glu Thr Gln Ser Thr His Lys 1 5 10 15 Leu Leu Ala Ala Phe Ser Gln Ala Ser Met Ile His Val Lys Gly 20 25 30 <210> 13 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> 5 LDC NdeI <400> 13 aatatacata tgtacaaaga cctccaattc ccc 33 <210> 14 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> 3 LDC XhoI <400> 14 aatatactcg agtcagatct tgatgcagtc caccg 35 <210> 15 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> 5 LDC BamHI <400> 15 aatataggat ccgtacaaag acctccaatt cccc 34 <210> 16 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> 3 LDC SacI <400> 16 aatatagagc tctcagatct tgatgcagtc caccg 35 <210> 17 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> 5 PaLDC NdeI <400> 17 aatatacata tgtacaaaga cctgaagttc cccatcc 37 <210> 18 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> 3 PaLDC XhoI <400> 18 aatatactcg agtcactccc ttatgcaatc aacggtatag c 41 <210> 19 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> 5 PrLDC NdeI <400> 19 aatatacata tgtacaaaga gctcaagttc cccgtcctc 39 <210> 20 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> 3 PrLDC XhoI <400> 20 aatatactcg agttattccc tgatgcagtc cactgtatag c 41 <210> 21 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> 5_LDC_NdeI_ppldc <400> 21 aatatacata tgtacaaaga cctccaattc ccc 33 <210> 22 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> 3_PaLDC_XhoI_ppldc <400> 22 aatatactcg agtcactccc ttatgcaatc aacggtatag c 41 <210> 23 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> 5_LDC_NdeI_pxldc <400> 23 aatatacata tgtacaaaga cctccaattc ccc 33 <210> 24 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> 3_PaLDC_XhoI_pxldc <400> 24 aatatactcg agtcactccc ttatgcaatc aacggtatag c 41

Claims (4)

서열번호 1, 3, 5, 7 또는 9의 아미노산 서열로 이루어지며, 라이신 디카르복실라제 활성을 가지는 단백질을 발현하도록 형질전환된 미생물로부터 생산된 라이신 디카르복실라제 활성을 가지는 단백질 또는 상기 미생물을 이용하여 라이신으로부터 카다베린으로 전환하는 단계, 및
상기 전환된 카다베린을 회수하는 단계를 포함하며,
상기 미생물은 대장균 또는 코리네박테리움 글루타미쿰이고, 상기 라이신으로부터 카다베린으로 전환하는 단계의 반응은 pH 6 내지 9에서 진행되는 카다베린의 제조방법.
A protein having lysine decarboxylase activity, which is produced from a microorganism transformed to express a protein having lysine decarboxylase activity, which is composed of the amino acid sequence of SEQ ID NO: 1, 3, 5, 7 or 9, Converting from lysine to cadaverine, and
Recovering the converted cadaverine,
Wherein the microorganism is Escherichia coli or Corynebacterium glutamicum, and the step of converting the lysine to cadaverine proceeds at a pH of from 6 to 9.
제1항에 있어서, 상기 라이신 디카르복실라제 활성은 pH 6 내지 9의 범위에서 라이신 디카르복실라제 활성의 최고 활성을 기준으로 70% 이상의 활성을 갖는 카다베린의 제조방법.The method according to claim 1, wherein the lysine decarboxylase activity has an activity of 70% or more based on the highest activity of lysine decarboxylase activity at a pH of 6 to 9. 서열번호 1, 3, 5, 7 또는 9의 아미노산 서열로 이루어지며, 라이신 디카르복실라제 활성을 가지는 단백질을 발현하도록 형질전환된 미생물을 배지에서 배양하는 단계, 및
상기 미생물 또는 배지에서 카다베린을 회수하는 단계를 포함하며,
상기 미생물은 대장균 또는 코리네박테리움 글루타미쿰이고, 상기 형질전환된 미생물을 배지에서 배양하는 단계 중 라이신 디카르복실라제의 반응은 pH 6 내지 9에서 진행되는 카다베린의 제조방법.
Culturing the microorganism transformed in the medium to express a protein having the lysine decarboxylase activity and consisting of the amino acid sequence of SEQ ID NO: 1, 3, 5, 7 or 9, and
Recovering the cadaverine in the microorganism or medium,
Wherein the microorganism is Escherichia coli or Corynebacterium glutamicum, and the reaction of lysine decarboxylase proceeds at a pH of 6 to 9 during the step of culturing the transformed microorganism in a medium.
제3항에 있어서, 상기 라이신 디카르복실라제 활성은 pH 6 내지 9의 범위에서 라이신 디카르복실라제 활성의 최고 활성을 기준으로 70% 이상의 활성을 갖는 카다베린의 제조방법.4. The method according to claim 3, wherein the lysine decarboxylase activity has an activity of 70% or more based on the highest activity of the lysine decarboxylase activity in the range of pH 6 to 9.
KR1020180055631A 2018-05-15 2018-05-15 The novel Lysine Decarboxylase and Process for producing cadeverine using the same KR101940647B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180055631A KR101940647B1 (en) 2018-05-15 2018-05-15 The novel Lysine Decarboxylase and Process for producing cadeverine using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180055631A KR101940647B1 (en) 2018-05-15 2018-05-15 The novel Lysine Decarboxylase and Process for producing cadeverine using the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020150019732A Division KR20160097691A (en) 2015-02-09 2015-02-09 The novel Lysine Decarboxylase and Process for producing cadeverine using the same

Publications (2)

Publication Number Publication Date
KR20180053631A true KR20180053631A (en) 2018-05-23
KR101940647B1 KR101940647B1 (en) 2019-01-21

Family

ID=62452667

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180055631A KR101940647B1 (en) 2018-05-15 2018-05-15 The novel Lysine Decarboxylase and Process for producing cadeverine using the same

Country Status (1)

Country Link
KR (1) KR101940647B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210045751A (en) * 2019-10-17 2021-04-27 경희대학교 산학협력단 Transformed methanotrophs for producing cadaverine and uses thereof
CN112746067A (en) * 2021-01-26 2021-05-04 洛阳华荣生物技术有限公司 Lysine decarboxylase mutants for producing D-ornithine
KR102590534B1 (en) * 2023-03-28 2023-10-16 국민대학교산학협력단 Method for the production of cadaverine with Hafnia Alvei as biocatalizer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7794726B2 (en) * 2007-12-07 2010-09-14 The Boards of Regents of the University of Oklahoma Mutants of lysine decarboxylase, vaccines for periodontitis, and methods of use

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7794726B2 (en) * 2007-12-07 2010-09-14 The Boards of Regents of the University of Oklahoma Mutants of lysine decarboxylase, vaccines for periodontitis, and methods of use

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GenBank Accession No. WP_017938426: lysine decarboxylase [Pseudomonas thermotolerans] (2013.06.28.) *
GenBank Accession No. WP_017938426: lysine decarboxylase [Pseudomonas thermotolerans] (2013.06.28.)* *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210045751A (en) * 2019-10-17 2021-04-27 경희대학교 산학협력단 Transformed methanotrophs for producing cadaverine and uses thereof
CN112746067A (en) * 2021-01-26 2021-05-04 洛阳华荣生物技术有限公司 Lysine decarboxylase mutants for producing D-ornithine
CN112746067B (en) * 2021-01-26 2023-10-31 洛阳华荣生物技术有限公司 Lysine decarboxylase mutants for preparing D-ornithine
KR102590534B1 (en) * 2023-03-28 2023-10-16 국민대학교산학협력단 Method for the production of cadaverine with Hafnia Alvei as biocatalizer

Also Published As

Publication number Publication date
KR101940647B1 (en) 2019-01-21

Similar Documents

Publication Publication Date Title
US11905539B2 (en) Isopropylmalate synthase variant and a method of producing L-leucine using the same
JP6431205B2 (en) Novel lysine decarboxylase and method for producing cadaverine using the same
US8574874B2 (en) Microorganisms for producing L-amino acids and process for producing L-amino acids using them
CN107074915B (en) Expression of Klebsiella oxytoca polypeptide participating in lysine decarboxylation and method and application thereof
KR20130082124A (en) Corynebacterium sp. having xylose availability and process for preparing l-lysine employing the same
US10415068B2 (en) Microorganism for production of putrescine and methods for production of putrescine using the same
KR101940647B1 (en) The novel Lysine Decarboxylase and Process for producing cadeverine using the same
CN113249347A (en) Mutants of pyruvate dehydrogenase and methods for producing L-amino acids using the same
US20150037850A1 (en) Recombinant microorganism producing quinolinic acid and a method for producing quinolinic acid using the same
US20220033786A1 (en) Provision of malonyl-coa in coryneform bacteria and method for producing polyphenoles and polyketides with coryneform bacteria
CN110997899B (en) Heterologous expression of thermophilic lysine decarboxylase and uses thereof
CN110872593B (en) Serine hydroxymethyl transferase mutant and application thereof
CN110904018B (en) 5-aminolevulinic acid production strain and construction method and application thereof
US20230332116A1 (en) Polypeptide with aspartate kinase activity and use thereof in production of amino acid
JP7214952B2 (en) Ornithine decarboxylase mutant and method for producing putrescine using the same
JP6959978B2 (en) Microorganisms with acyltransferase activity and their uses
WO2022210228A1 (en) MODIFIED α-ISOPROPYLMALATE SYNTHASE
KR20210143591A (en) Novel polypeptide and a method of producing L-leucine using the same
JP2022130759A (en) Ornithine decarboxylase mutant and production method of putrescine using the same
KR20160003615A (en) Modified Ornithine Decarboxylase protein with an improved producing capability for Putrescine and a Use thereof
EP2930244A1 (en) Microorganisms and methods for producing acrylate and other products from homoserine

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant