WO2022210228A1 - MODIFIED α-ISOPROPYLMALATE SYNTHASE - Google Patents

MODIFIED α-ISOPROPYLMALATE SYNTHASE Download PDF

Info

Publication number
WO2022210228A1
WO2022210228A1 PCT/JP2022/013788 JP2022013788W WO2022210228A1 WO 2022210228 A1 WO2022210228 A1 WO 2022210228A1 JP 2022013788 W JP2022013788 W JP 2022013788W WO 2022210228 A1 WO2022210228 A1 WO 2022210228A1
Authority
WO
WIPO (PCT)
Prior art keywords
residue
amino acid
modified
acid sequence
leucine
Prior art date
Application number
PCT/JP2022/013788
Other languages
French (fr)
Japanese (ja)
Inventor
修平 中根
Original Assignee
Green Earth Institute株式会社
伊藤忠ケミカルフロンティア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021054521A external-priority patent/JP2024075803A/en
Application filed by Green Earth Institute株式会社, 伊藤忠ケミカルフロンティア株式会社 filed Critical Green Earth Institute株式会社
Priority to CN202280025165.7A priority Critical patent/CN117460829A/en
Publication of WO2022210228A1 publication Critical patent/WO2022210228A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/06Alanine; Leucine; Isoleucine; Serine; Homoserine

Definitions

  • the present invention provides a modified ⁇ -isopropylmalate synthase with reduced feedback inhibition by leucine, a polynucleotide encoding the modified ⁇ -isopropylmalate synthase, a genetically modified microorganism into which the polynucleotide has been introduced, and the gene
  • the present invention relates to a method for producing a desired substance using modified microorganisms.
  • the present application is based on Japanese Patent Application No. 2021 filed with the Japan Patent Office on March 29, 2021. The priority is claimed based on Japanese Patent Application No. 2021-054521, and the content of the above Japanese patent application is incorporated herein for all purposes. Additionally, the disclosure of each prior art document referred to in this application is also incorporated herein for all purposes.
  • L-leucine is a type of essential amino acid, an expensive amino acid that is widely used in pharmaceuticals, foods, feed additives, industrial chemicals, etc., and is mainly produced using microorganisms. Specifically, fermentative production of branched-chain amino acids including L-leucine is mainly carried out using Escherichia microorganisms or Corynebacterium microorganisms. It is known that 2-ketoisocaproic acid is biosynthesized as a precursor starting from pyruvic acid through various steps.
  • IPMS IP-isopropylmalate synthase
  • IPMS plays an important role in the L-leucine biosynthetic pathway
  • feedback inhibition often occurs, in which the enzymatic activity is inhibited by the final product L-leucine produced.
  • feedback inhibition has been a problem in the industrial production of L-leucine using microorganisms, and various techniques have been developed to solve this problem.
  • Patent Document 1 discloses a microorganism transformed with a DNA encoding ⁇ -isopropylmalate synthase that has L-leucine-producing ability and has been released from inhibition by L-leucine, and L - A method for the production of leucine is disclosed.
  • ⁇ -isopropylmalate synthase whose inhibition by L-leucine has been released is cloned from a mutant strain of E. coli having L-leucine-producing ability.
  • Patent Document 2 discloses a mutant IPMS in which the amino acid sequence of the wild-type IPMS encoded by the LeuA gene derived from Corynebacterium glutamicum is mutated to aspartic acid at the 553rd tyrosine residue. and a fermentation method for producing L-leucine or ketoisocaproate (KIC) using a microorganism introduced with the nucleotide, and the mutant IPMS is L-leucine, etc. It is mentioned that feedback inhibition of enzyme activity by is reduced.
  • KIC ketoisocaproate
  • a genetically modified strain was prepared by introducing a gene encoding the mutant IPMS (mutant leuA gene) into Corynebacterium glutamicum ATCC13032 strain, and the genetically modified strain , Using the wild-type ATCC13032 strain as a control, KIC and L-leucine production tests were conducted, and it was confirmed that the genetically modified strain was endowed with the ability to produce these substances compared to the wild-type ATCC13032 strain. ing.
  • Patent Document 3 also discloses a mutant IPMS having a predetermined amino acid substitution for an IPMS encoded by a LeuA gene derived from Corynebacterium glutamicum, and a recombinant Corynebacterium glutamicum introduced with a nucleic acid encoding the same.
  • a strain is disclosed, as well as a method for producing L-leucine using the recombinant strain.
  • the amino acid substitutions possessed by the above-mentioned mutant IPMS are the substitution of histidine for arginine at position 494 and the substitution of aspartic acid for glycine at position 497 in the amino acid sequence of IPMS used as a reference in the same document.
  • Patent Document 4 discloses a novel mutant polypeptide having IPMS activity, a polynucleotide encoding the same, a microorganism containing the polypeptide, and a method for producing L-leucine by culturing the microorganism.
  • the "novel mutant polypeptide having IPMS activity" more specifically refers to the 558th arginine in the wild-type IPMS amino acid sequence encoded by the Corynebacterium glutamicum-derived LeuA gene.
  • IPMS mutants that were actually produced and strains into which the IPMS mutants were introduced are IPMS mutants that possess amino acid substitutions of R558H, R558A, R558Q, G561D, G561R, and G561Y, respectively, and IPMS mutants having amino acid substitutions by a combination of R55H and G561D, and Corynebacterium glutamicum recombinant strains into which these mutants were respectively introduced, and these recombinant strains have L-leucine relative to the wild type. It has been confirmed that the productivity of
  • JP-A-2001-37494 Japanese Patent Publication No. 2015-514431 Chinese Patent Application Publication No. 104480058 Japanese Patent Publication No. 2020-503045
  • An object of the present invention is to provide novel IPMS mutants that can impart to various microorganisms the ability to produce derivatives containing L-leucine and its precursors.
  • Type ⁇ -isopropylmalate synthase (A) an amino acid sequence having at least two substitutions selected from the following (a) to (c) in the amino acid sequence shown in SEQ ID NO: 2; (B) an amino acid sequence having a sequence identity of 60% or more to the amino acid sequence shown in SEQ ID NO: 2 and containing at least two substitutions selected from (a) to (c) below; (C) the amino acid sequence shown in SEQ ID NO: 2, containing at least two substitutions selected from the following (a) to (c), and one or more at sites excluding the sites where the at least two substitutions are located amino acid sequences in which amino acids have been deleted, substituted, inserted or added; (a) replacement of the 530
  • [7] The modified ⁇ -isopropyl malate synthase of [6], wherein the at least one amino acid mutation includes all of the substitutions defined in (a') to (c') above.
  • [8] Any one of [1] to [7], including an amino acid sequence having at least two substitutions in the amino acid sequence of a wild-type 2-isopropylmalate synthase derived from a bacterium belonging to the genus Corynebacterium The modified ⁇ -isopropyl malate synthase described in .
  • Malate synthase (g) replacement of the 530th glycine residue or an amino acid residue corresponding to the glycine residue with an aspartic acid residue; (h) substitution of the 532nd glycine residue or an amino acid residue corresponding to the glycine residue with an aspartic acid residue; and (j) the 535th alanine residue or an amino acid corresponding to the alanine residue Substitution of residues for threonine, valine, glycine, leucine or isoleucine residues.
  • [16] A microorganism into which the polynucleotide of [15] has been introduced.
  • [17] A microorganism comprising the modified ⁇ -isopropylmalate synthase of any one of [1] to [14].
  • [18] The microorganism of [16] or [17], which is a coryneform bacterium.
  • [19] The microorganism of [18], which is Corynebacterium glutamicum.
  • the target substance is (2S)-2-isopropyl malate, 2-isopropyl malate, (2R,3S)-3-isopropyl malate, (2S)-2-isopropyl-3-oxosuccinate,
  • the method of [21] which is 4-methyl-2-oxopentanoate or L-leucine or a metabolite via these compounds on the biosynthetic pathway.
  • IPMS mutants that are highly resistant to feedback inhibition can be utilized and used to produce L-leucine and its derivatives, including its precursors, with high yield and productivity. can.
  • FIG. 2 is a diagram for use in explaining metabolic pathways that microorganisms may have in embodiments of the present invention.
  • An aspect of the present invention is a novel mutant polypeptide with IPMS activity. That is, according to this aspect, a modified ⁇ -isopropylmalate synthase with reduced L-leucine feedback inhibition is provided, as specified by the components shown in [1] or [6] above. More specifically, the novel mutant polypeptide comprises at least two of glycine, glycine, and alanine at positions 530, 532, and 535 from the N-terminus of a polypeptide consisting of the amino acid sequence of UniprotKB:P42455, or at least two of the amino acid residues corresponding to are replaced with different amino acid residues. Said mutant polypeptide is at least more resistant to feedback inhibition than the polypeptide having IPMS activity of UniprotKB:P42455.
  • UniprotKB The amino acid sequence of P42455 is the amino acid sequence of wild-type IPMS derived from Corynebacterium glutamicum ATCC13032/DSM20300/BCRC11384/JCM1318/LMG3730/NCIMB10025 strains.
  • sequence listing the nucleotide sequence containing the region (CDS) encoding the wild-type IPMS and the amino acid sequence of the wild-type IPMS in the genome sequence of Corynebacterium glutamicum ATCC13032 strain are listed in order of sequence numbers. 1,2.
  • “Feedback inhibition” in the present invention means that the final product of the metabolic system becomes an inhibitor and inhibits the reaction at the initial stage of the metabolic system.
  • it means that L-leucine or a derivative thereof inhibits the activity of IPMS that mediates the first step of its biosynthetic pathway. is widely known. Therefore, when simply referring to “feedback inhibition”, inhibitors against IPMS are not limited to L-leucine. Releasing feedback inhibition of IPMS can improve L-leucine productivity compared to others.
  • L-leucine feedback inhibition it means that IPMS is subject to feedback inhibition by L-leucine, and when saying "L-leucine feedback inhibition is reduced” or the like, it means that IPMS of interest is , means that at least the feedback inhibition by L-leucine is reduced or eliminated.
  • the modified ⁇ -isopropylmalate synthase described above has a property of reduced L-leucine feedback inhibition, and, although not necessarily essential, reduced feedback inhibition by L-leucine derivatives or other metabolites. It may have properties.
  • highly resistant to feedback inhibition means maintaining enzyme activity without being inhibited even in the presence of high concentrations of inhibitors. Resistance to feedback inhibition can be assessed by comparing IPMS activity in the presence of inhibitor to activity in the absence of inhibitor.
  • the IPMS in the present invention may be derived from any organism as long as it is a modified enzyme having the conversion activity and reduced feedback inhibition, but is preferably an enzyme derived from a coryneform bacterium. More preferably, it may be an IPMS derived from Corynebacterium glutamicum. It is not limited.
  • said IPMS has at least 80%, 84%, 90%, 95%, 96%, 97%, 98% or 99% sequence homology or sequence identity with the amino acid sequence of UniprotKB:P42455 (SEQ ID NO: 2) may include a polypeptide having For example, an amino acid sequence having such sequence homology or sequence identity and showing an effect corresponding to IPMS may have an amino acid sequence in which a part of the sequence is deleted, modified, substituted or added. Needless to say, it is included in the present invention.
  • the homologous amino acid residue to be mutated can be estimated by aligning with UniprotKB:P42455.
  • Common programs can be used for alignment, such as Clustal and BLAST. Alignments may be conformational superpositions, for which reason they can be evaluated, for example, by utilizing molecular graphics tools such as PyMOL.
  • coryneform bacterium refers to a group of microorganisms defined in Burgeys Manual of Determinative Bacteriology (Vol. 8, p.599, 1974). More specifically, coryneform bacteria include Corynebacterium spp., Brevibacterium spp., Arthrobacter spp., Mycobacterium spp., Micrococcus ) genus, Microbacterium genus, and the like. For more details, reference can be made to the definitions described in WO2019156152A1.
  • “Mutation”, “mutant” or “mutant” in the present invention refers to genes, polypeptides, enzymes, or microorganisms possessing them, in which the base sequence of a gene is altered and the amino acid sequence is accordingly altered.
  • IPMS mutant or mutant IPMS means a mutant in which the amino acid sequence of IPMS is changed by one or more amino acids compared to the wild type, and the activity and the degree of feedback inhibition to L-leucine and its derivatives are changed. do.
  • mutant polypeptides having IPMS activity of the present invention are amino acid residues 530, 532, and 535 from the N-terminus of a polypeptide consisting of the amino acid sequence of UniprotKB: P42455, glycine, glycine, and alanine, or at least two of the amino acid residues corresponding to those amino acids may be substituted with different amino acid residues.
  • the another amino acid residue refers to one amino acid residue selected from 19 types of 20 standard amino acids excluding the amino acid residue before mutation in wild-type IPMS.
  • the mutant polypeptide includes the amino acid sequence shown in SEQ ID NO: 2 (Table 1) and at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, Polypeptides with 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% sequence homology or identity may be included. .
  • SEQ ID NO: 2 Table 1
  • polypeptides with 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% sequence homology or identity may be included.
  • it is an amino acid sequence that has such sequence homology or sequence identity and shows an effect corresponding to IPMS, in addition to mutations at positions 530, 532, and 535, a part of the sequence is deleted or modified.
  • enzyme variants having substituted or added amino acid sequences are also included in the present invention.
  • the present invention includes those calculated in consideration of the number of amino acids when some amino acids are added
  • “one or more” (“one or The range of “plurality”) is not particularly limited, but in certain embodiments, for example, 1 to 400, 1 to 300, 1 to 200, 1 to 100, 1 to 50, 1 30 from .
  • the range of "one or more" (“one or more") is at least 2 or more, preferably 2 to 20, more preferably 2 to 10, even more preferably 2 to 5 particularly preferably 2 to 4, 2 to 3, for example 2.
  • the “corresponding wild-type 2-isopropylmalate synthase ( ⁇ -isopropylmalate synthase)” may be interpreted literally, and the present invention
  • wild-type 2-isopropyl malate synthase ( ⁇ -isopropyl malate synthase) that serves as a reference for reducing L-leucine feedback inhibition.
  • the modified ⁇ -isopropylmalate synthase may reduce the degree of L-leucine feedback inhibition compared to the reference wild-type 2-isopropylmalate synthase ( ⁇ -isopropylmalate synthase) at least 1 have one amino acid mutation, and the at least one amino acid mutation contains at least two of the amino acid substitutions defined in (a'), (b') and (c') above Enough.
  • the meanings of the “corresponding amino acid residues” described in (a′), (b′) and (c′) are SEQ ID NO: 2, the substitution site is specified in the IPMS amino acid sequence to be mutated. That is, the "corresponding amino acid residues" in the above (a'), (b') and (c') are specifically ClustalW and ClustalX (Bioinformatics, Vol. 23, Issue 21, 2008 11 Month, pp. 2947-2948; Bioinformatics, Volume 23, Issue 21, 1, November 2007, pp 2947-2948), the amino acid sequence of IPMS to be mutagenized for the amino acid sequence shown in SEQ ID NO: 2. Aligned one-to-one with each amino acid residue shown in (a'), (b') and (c') above when one-to-one alignment (pairwise alignment) is performed based on identity say amino acids.
  • the modified ⁇ -isopropyl malate synthase of the present invention is ⁇ G530F/G532D/A535T ⁇ G530N/G532D/A535T ⁇ G530C/G532D/A535T ⁇ G530P/G532D/A535T ⁇ G530R/G532D/A535T ⁇ G530L/G532D/A535T ⁇ G530I/G532D/A535T ⁇ G530T/G532D/A535T ⁇ G530H /G532D/A535T ⁇ G530D/G532E/A535T ⁇ G530D/G532K/A535T ⁇ G530D/G532A/A535T ⁇ G530D/G532V/A535T ⁇ G530D/G532F/A535T ⁇ G530D/G532N/A535T ⁇ G530D/G532C/A535T ⁇ G530P/G53
  • the amino acid sequence that the modified ⁇ -isopropylmalate synthase of the present invention can have is obtained by BLAST known to those skilled in the art for the amino acid sequence shown in SEQ ID NO: 2 (wild-type IPMS of Corynebacterium glutamicum ATCC13032 strain). Analysis can be performed and design can be made based on the amino acid sequences of various IPMS homologues retrieved thereby.
  • BLAST analysis of the amino acid sequence shown in SEQ ID NO: 2 revealed, for example, Corynebacterium deserti-derived IPMS (Accession No. WP_053543926.1, sequence identity 94.64%), Corynebacterium efficiens-derived IPMS (Accession No.
  • amino acid sequences that the modified ⁇ -isopropylmalate synthase according to the present invention may have can be designed. Please note that these Accession No.
  • the amino acid sequences identified by are incorporated herein by reference.
  • the above (a'), (b') and (c'), or the above (d), (e) and (f), or the above (g), (h) and ( A mutant polypeptide having an amino acid sequence obtained by making at least two of each of the amino acid substitutions shown in j) is specified herein as an embodiment of the modified ⁇ -isopropylmalate synthase according to the present invention. It is what is done.
  • the modified ⁇ -isopropylmalate synthase of the present invention is eukaryotic, prokaryotic, fungal, bacterial, archaeal, coryneform, corynebacterium (e.g., Corynebacterium glutamicum, Corynebacterium deserti, Corynebacterium efficiens, Corynebacterium halotolerans, Corynebacterium ammoniagenes, Corynebacterium maris, Corynebacterium hadale) in the amino acid sequences of the wild-type ⁇ -(c′), Alternatively, it has an amino acid sequence obtained by performing at least two of the amino acid substitutions shown in (d), (e) and (f) above, or (g), (h) and (j) above.
  • corynebacterium e.g., Corynebacterium glutamicum, Corynebacterium deserti, Corynebacterium efficiens, Corynebacterium haloto
  • polynucleotide encoding said mutant polypeptide.
  • the polynucleotide may have any sequence as long as it contains a nucleotide sequence that encodes the mutant polypeptide or modified ⁇ -isopropylmalate synthase of the present invention.
  • the polynucleotide of the wild-type leuA gene before mutagenesis may be a sequence amplified by PCR from genomic DNA prepared from an organism having the leuA gene, or a nucleotide sequence designed based on known genetic information is artificially synthesized. good too. Any combination of codons may be used as long as they encode the same polypeptide, and the codon usage frequency, secondary structure, etc. may be taken into account in the design.
  • the method of introducing mutations into the wild-type polynucleotide may be in vitro or in vivo.
  • Methods for introducing mutations in vitro include, but are not limited to, PCR-based methods using mutated primers, and random mutation-introducing methods by performing PCR under error-prone conditions.
  • Methods for introducing mutations in vivo include, but are not limited to, a method of spontaneously mutating by repeating passages in culture, and a method of treatment with a mutagen such as ultraviolet light or an alkylating agent.
  • the microorganisms of the present invention are capable of producing derivatives containing L-leucine and its precursors. Additionally, in some embodiments, the microorganisms of the present invention are microorganisms, including eukaryotic microorganisms such as, for example, fungi, prokaryotes, bacteria, archaea, corynebacterium, coryneform bacteria.
  • L-leucine corresponds to all intermediates in the leucine biosynthetic pathway after 2-ketoisovaleric acid such as isopropylmalic acid and 2-ketoisocaproic acid.
  • FIG. Contains various metabolites that make up the L-leucine biosynthetic pathway shown in .
  • derivatives of L-leucine include all substances that can be biosynthesized from L-leucine and its precursors. These include, but are not limited to, 3-hydroxyisovaleric acid derived from 2-ketoisocaproic acid, 3-methylbutanol, isoamylacetic acid, and the like.
  • microorganisms in the present invention include those artificially produced by transformation and naturally occurring ones.
  • the microorganism may be a microorganism transformed with a vector containing a polynucleotide encoding the mutant polypeptide (modified ⁇ -isopropylmalate synthase).
  • the microorganisms include microorganisms that express the mutant polypeptide (modified ⁇ -isopropylmalate synthase) by various known methods.
  • the polynucleotide encoding the mutant polypeptide (modified ⁇ -isopropylmalate synthase) may be introduced into the microorganism in a form capable of being expressed in host cells.
  • a polynucleotide encoding the mutant polypeptide (modified ⁇ -isopropylmalate synthase) is converted into a mutant polypeptide (modified ⁇ -isopropylmalate synthase) in host cells. Synthase) may be introduced in a form that does not express.
  • the transformed gene polynucleotide encoding the mutant polypeptide
  • the mutant polypeptide modified ⁇ -isopropyl malate synthase
  • the polynucleotide encoding the mutant polypeptide may be in any form. may have the form of DNA or RNA.
  • the microorganism according to the present invention expresses the mutant polypeptide (modified ⁇ -isopropylmalate synthase) and, in addition, 3-methyl-2-oxobutanoate , (2S)-2-isopropyl maleate, 2-isopropyl maleate, (2R,3S)-3-isopropyl maleate, (2S)-2-isopropyl-3-oxosuccinate, 4-methyl-2-oxo It has a biosynthetic pathway that biosynthesizes pentanoate and L-leucine in this order.
  • the microorganism according to the present invention expresses the mutant polypeptide (modified ⁇ -isopropylmalate synthase), and at least one of these compounds on the biosynthetic pathway It has one or more biosynthetic pathways that biosynthesize metabolites derived from one.
  • the microorganism according to the present invention may have reduced or inactivated wild-type ⁇ -isopropylmalate synthase activity.
  • the microorganism when the wild-type ⁇ -isopropylmalate synthase activity is reduced or inactivated, the microorganism has an adverse effect on the production of the target substance due to the L-leucine feedback inhibition exhibited by the wild-type enzyme.
  • Expression of the modified ⁇ -isopropylmalate synthase in which the feedback inhibition is reduced while being eliminated allows the metabolic reaction to the target substance to proceed efficiently.
  • the reduction or inactivation of wild-type ⁇ -isopropylmalate synthase activity in microorganisms is performed by leuA present on the genome or its homolog gene (wild-type ⁇ -isopropylmalate synthase-encoding gene) or regulation of gene expression thereof. It can be realized by a technique such as disruption of the region (e.g. promoter region).
  • the method for producing a target substance comprises (I) culturing or reacting coryneform bacteria capable of producing L-leucine among the microorganisms according to the present invention in a medium to produce L-leucine or metabolize L-leucine. (b) recovering the L-leucine or metabolite produced in step (II) from the microorganism or culture medium; .
  • “Culturing” generally means growing the microorganism under suitably controlled environmental conditions, and “cultivating or reacting” in the present invention has such a general meaning. but not limited to the culture of, for example, culture or reaction modes that can realize the production of the target substance by allowing at least a part of the metabolism of the microorganism to function without substantial growth of the microorganism. do.
  • the culturing or reaction process in the present invention can be carried out by employing suitable media/reaction media and culturing conditions known in the art. Such a culture/reaction process can be easily adjusted and used according to the strain selected by those skilled in the art.
  • the culture or reaction, ie step (I) may be, but is not limited to, batch, continuous and fed-batch culture.
  • step (I) the culture or reaction conditions are not limited as long as the microorganism according to the present invention can produce the target substance.
  • step (I) is carried out under microaerobic or aerobic conditions.
  • step (I) is performed at a concentration of dissolved oxygen (DO) of said predetermined culture medium or reaction medium from about 0 to about 60 ppm, preferably from about 0 ppm to about 40 ppm, such as from about 0 ppm to about 8.0 ppm. Carry out step (I) so that the range is 0 ppm.
  • DO dissolved oxygen
  • step (I) is carried out such that the dissolved oxygen concentration (DO) ranges from about 0 ppm to about 2 ppm, preferably from about 0 to about 1 ppm, more preferably from 0 to 0.5 ppm.
  • the ORP oxidation-reduction potential
  • the ORP is about -500 mV to about 700 mV, about -500 mV to about 550 mV, about -400 mV to about 500 mV, about -400 mV to about 400 mV, about Perform step (I) to a range of 350 mV, from about -300 mV to about 300 mV, from about -250 mV to about 200 mV, or from about -250 mV to about 100 mV.
  • step (I) when using microorganisms that can be cultured at high density, such as coryneform bacteria, if step (I) is performed under microaerobic or aerobic conditions with air aeration and agitation, , the DO and ORP of the medium or reaction medium decrease with the growth of the microorganism, and after sufficient growth, the DO value becomes almost zero and the ORP value decreases to the range of about -300 mV to about -200 mV. .
  • the DO may not be zero depending on the type and properties of the microorganisms used and various conditions such as stirring throughout the period, and the present invention is not limited by the above numerical range.
  • the target substance is (2S)-2-isopropylmalate, 2-isopropylmalate, (2R,3S)-3-isopropylmalate, (2S)-2-isopropyl-3-oxo Succinate, 4-methyl-2-oxopentanoate or L-leucine, or metabolites via these compounds on the biosynthetic pathway.
  • the compounds from (2S)-2-isopropylmalate to L-leucine are metabolites in the L-leucine biosynthetic pathway that microorganisms may have.
  • FIG. 1 the compounds from (2S)-2-isopropylmalate to L-leucine are metabolites in the L-leucine biosynthetic pathway that microorganisms may have.
  • the method for recovering the target substance produced in step (I) is not particularly limited. , recovering the target substance (e.g. L-leucine or its precursor, derivative or derivative) from the microorganism or medium or reaction medium using a suitable method known in the art, depending on the culture/reaction method be able to. For example, centrifugation, filtration, anion exchange chromatography, crystallization, HPLC, etc., can be used to recover the target substance from the microorganism or culture medium or reaction medium using suitable methods known in the art.
  • the recovery step according to (II) includes a step of recovering a fraction containing the target substance or a crude product. may further include a step of purifying the
  • IPMS gene amino acid sequence of coryneform bacterium (UniprotKB: P42455) was obtained, and restriction enzymes NdeI and BamHI recognition sequences were added to the 5′ and 3′ ends by artificial gene synthesis. synthesized DNA. A DNA fragment obtained by cleaving this DNA with NdeI and BamHI was mixed with a fragment obtained by cleaving the expression vector pGE409 (WO2020090016A1) with the same restriction enzymes and ligated with T4 DNA ligase (NEB). The resulting plasmid was named pGE1835.
  • Mutagenesis 2 (permissive evaluation of each residue based on triple mutants) Mutagenesis was performed using various predetermined primer pairs and pGE1881 as a template by the same method as described in WO2019156152A1.
  • Plasmids for chromosome gene recombination were obtained by performing PCR using the genomic DNA of Corynebacterium glutamicum ATCC13032 as a template, using various predetermined primer pairs, and cloning the DNA fragment of pGE209 (WO2019156152A1) cut with KpnI and BamHI. Plasmid vector pGE1781 was obtained by circular ligation using Kit.
  • pGE1781 was introduced into Corynebacterium glutamicum ATCC13032 strain by electroporation, and ⁇ leuA strain was produced by the markerless genetic recombination method described in WO2019156152A1.
  • IPMS Mutant Overexpressing Strain The ⁇ leuA strain was electroporated with each expression plasmid shown in Tables 3 and 4 and selected with kanamycin to obtain a mutant IPMS overexpressing strain.
  • the pellet was suspended in a disruption buffer (50 mM Tris (7.5), 100 mM KCl, 1 mM EDTA), and cells were disrupted with a bead shocker according to the method described in (WO2020090016A1).
  • the protein concentration of the cell lysate was quantified according to the Bradford method.
  • the enzymatic activity of isopropylmalate synthase in cell lysate was 100 mM Tris-HCl (pH 7.5), 2 mM 4-PDS (4,4'-Dithiodipyridine), 2 mM Acetyl-CoA, 2 mM 3 -Methyl-2-oxobutanoic acid was mixed with the cell lysate, and the change in absorbance at 324 nm due to the reaction of liberated CoA with 4-PDS to produce 4-thiopyridine was measured. For measurements of feedback inhibition by L-leucine, 10 mM L-leucine was added to the reaction.
  • Glucose 40g ( NH4) 2SO4 20g, urea 5g, KH2PO4 1g, K2HPO4 1g , MgSO4.7H2O 0.25g , MOPS 42g , CaCl2 10mg , FeSO4.7H2O 10 mg, MnSO4.H2O 10 mg, ZnSO4.7H2O 1 mg, CuSO4 0.2 mg, NiCl2.6H2O 0.02 mg, biotin 0.2 mg, thiamine hydrochloride 0.2 mg, PCA 30 mg/L , pH 7.4
  • G530D, G530E, G530K, G530A, G530V, G530N, G530C, G530P, G530R, G530L, G530I, G530T, G530H, G532D, G532A, G532V, G532P, G532L, G532T, G532T, G532T, G532T, G530D, G530E, G530K, G530A, G530V, G530N, G530C, G530P, G530R, G530L, G530I, G530T, G530H, G532D, G532A, G532V, G532P, G532L, G532T, G532T, G5322 , A535S, A535V, A535K, A535D, A535F, A535G, A535L, A535I, and A535H are expected to improve the performance of IPMS, which is effective in increasing L-leucine
  • the present invention has high industrial applicability in the field of industrial production of various chemical substances.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Mycology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Cell Biology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

The present disclosure provides a novel IPMS mutant which can impart, to various microorganisms, the ability to produce a derivative including L-leucine or a precursor thereof. The IPMS mutant contains at least two amino acid substitutions selected from the following (a') to (c') on the basis of the amino acid sequence set forth in SEQ ID NO: 2: (a') substitution of the amino acid residue corresponding to the glycine residue at position 530 with an amino acid residue other than a glycine residue; (b') substitution of the amino acid residue corresponding to the glycine residue at position 532 with an amino acid residue other than a glycine residue; and (c') substitution of the amino acid residue corresponding to the alanine residue at position 535 with an amino acid residue other than an alanine residue.

Description

改変型α-イソプロピルマレートシンターゼModified α-Isopropyl Malate Synthase
 本発明は、ロイシンによるフィードバック阻害が低減された改変型α-イソプロピルマレートシンターゼ、該改変型α-イソプロピルマレートシンターゼをコードするポリヌクレオチド、該ポリヌクレオチドが導入された遺伝子改変微生物、並びに該遺伝子改変微生物を用いて所定の目的物質を生産する方法に関する。
 なお、本願は、2021年3月29日付けで日本国特許庁に提出された日本国特許出願No.特願2021-054521に基づいて優先権を主張するものであり、上記日本国特許出願の内容は、あらゆる目的において本明細書で援用される。加えて、本願において言及される各先行技術文献の開示内容も、あらゆる目的において本明細書において援用される。
The present invention provides a modified α-isopropylmalate synthase with reduced feedback inhibition by leucine, a polynucleotide encoding the modified α-isopropylmalate synthase, a genetically modified microorganism into which the polynucleotide has been introduced, and the gene The present invention relates to a method for producing a desired substance using modified microorganisms.
The present application is based on Japanese Patent Application No. 2021 filed with the Japan Patent Office on March 29, 2021. The priority is claimed based on Japanese Patent Application No. 2021-054521, and the content of the above Japanese patent application is incorporated herein for all purposes. Additionally, the disclosure of each prior art document referred to in this application is also incorporated herein for all purposes.
 L-ロイシンは、必須アミノ酸の一種であって、医薬、食品、飼料添加物、工業薬品などに広範囲に用いられる高価なアミノ酸であり、主に微生物を用いて生産される。具体的には、L-ロイシンを含む分枝鎖アミノ酸の発酵生産は、主にエシェリキア属微生物又はコリネバクテリウム属微生物を利用して行われている。ピルビン酸を起点に各種段階を経て2-ケトイソカプロン酸が前駆体として生合成されることが知られている。このようなL-ロイシン生合成の経路においては、α-イソプロピルマレートシンターゼ(2-イソプロピルマレートシンターゼ、α-イソプロピルリンゴ酸シンターゼ、EC 2.3.3.13;以下、「IPMS」と言うことがある。)が主要な役割を担っており、各種の生物種から該酵素をコードする遺伝子が単離されており、さらに多くの生物種において当該遺伝子のヌクレオチド配列並びに酵素タンパク質のアミノ酸配列も決定されている。 L-leucine is a type of essential amino acid, an expensive amino acid that is widely used in pharmaceuticals, foods, feed additives, industrial chemicals, etc., and is mainly produced using microorganisms. Specifically, fermentative production of branched-chain amino acids including L-leucine is mainly carried out using Escherichia microorganisms or Corynebacterium microorganisms. It is known that 2-ketoisocaproic acid is biosynthesized as a precursor starting from pyruvic acid through various steps. In such a pathway of L-leucine biosynthesis, α-isopropylmalate synthase (2-isopropylmalate synthase, α-isopropylmalate synthase, EC 2.3.3.13; hereinafter referred to as "IPMS" ) plays a major role, and genes encoding the enzyme have been isolated from various species, and the nucleotide sequences of the genes and the amino acid sequences of the enzyme proteins in many species have also been identified. has been decided.
 ところで、L-ロイシン生合成経路において、IPMSが重要な役割を担っているものの、その酵素活性が、生成された最終産物であるL-ロイシンによって阻害されてしまうフィードバック阻害がしばしば生じ得ることが知られており、従来から、このようなフィードバック阻害が、微生物を利用したL-ロイシンの工業生産において問題となっており、この問題を解決し得る各種技術が開発されている。 By the way, although IPMS plays an important role in the L-leucine biosynthetic pathway, it is known that feedback inhibition often occurs, in which the enzymatic activity is inhibited by the final product L-leucine produced. Conventionally, such feedback inhibition has been a problem in the industrial production of L-leucine using microorganisms, and various techniques have been developed to solve this problem.
 例えば、特許文献1には、L-ロイシン生産能を有し、かつL-ロイシンによる阻害が解除されたα-イソプロピルリンゴ酸シンターゼをコードするDNAにより形質転換された微生物、及びこれを用いたL-ロイシンの製造方法が開示されている。特許文献1に記載の技術において、「L-ロイシンによる阻害が解除されたα-イソプロピルリンゴ酸シンターゼ」とは、L-ロイシン生産能を有するエシェリキア・コリ(E. coli)の変異株からクローニングした変異型leuA遺伝子にコードされる変異型IPMSであり、該変異型IPMSは、対応する野生型IPMSに対して所定のアミノ酸置換を有することを特徴としている。特許文献1には、実際に、所定のエシェリキア・コリ菌株をいくつかの変異型IPMSコード核酸で形質転換することによりL-ロイシン生産株を取得し、得られた各L-ロイシン生産株について、IPMSの比活性及びL-ロイシンによるフィードバック阻害の程度並びにL-ロイシンの生産能について評価した結果が記載されている。 For example, Patent Document 1 discloses a microorganism transformed with a DNA encoding α-isopropylmalate synthase that has L-leucine-producing ability and has been released from inhibition by L-leucine, and L - A method for the production of leucine is disclosed. In the technique described in Patent Document 1, "α-isopropylmalate synthase whose inhibition by L-leucine has been released" is cloned from a mutant strain of E. coli having L-leucine-producing ability. A mutant IPMS encoded by a mutant leuA gene, characterized by having predetermined amino acid substitutions relative to the corresponding wild-type IPMS. In Patent Document 1, L-leucine-producing strains were actually obtained by transforming a given Escherichia coli strain with several mutant IPMS-encoding nucleic acids, and for each L-leucine-producing strain obtained, The results of evaluating the specific activity of IPMS, the degree of feedback inhibition by L-leucine, and the ability to produce L-leucine are described.
 更に、特許文献2には、コリネバクテリウム・グルタミカム由来のLeuA遺伝子にコードされる野生型IPMSのアミノ酸配列に対し、第553番目のチロシン残基がアスパラギン酸に変異した変異型IPMS、これをコードするヌクレオチド、及び該ヌクレオチドが導入された微生物を利用したL-ロイシン又はケトイソカプロエート(KIC)を製造するための発酵法なる技術が開示されており、上記変異型IPMSは、L-ロイシン等による酵素活性のフィードバック阻害が低減されたものであることが言及されている。より詳細には、特許文献2では、コリネバクテリウム・グルタミカムATCC13032株に上記変異型IPMSをコードする遺伝子(変異型leuA遺伝子)が導入された遺伝子組換え菌株を作製し、該遺伝子組換え菌株について、野生型ATCC13032株をコントロールとして用いてKIC及びL-ロイシンの製造試験を行ったところ、野生型ATCC13032株に対し、上記遺伝子組み換え菌株には、これら物質の生産能が付与されることが確認されている。 Furthermore, Patent Document 2 discloses a mutant IPMS in which the amino acid sequence of the wild-type IPMS encoded by the LeuA gene derived from Corynebacterium glutamicum is mutated to aspartic acid at the 553rd tyrosine residue. and a fermentation method for producing L-leucine or ketoisocaproate (KIC) using a microorganism introduced with the nucleotide, and the mutant IPMS is L-leucine, etc. It is mentioned that feedback inhibition of enzyme activity by is reduced. More specifically, in Patent Document 2, a genetically modified strain was prepared by introducing a gene encoding the mutant IPMS (mutant leuA gene) into Corynebacterium glutamicum ATCC13032 strain, and the genetically modified strain , Using the wild-type ATCC13032 strain as a control, KIC and L-leucine production tests were conducted, and it was confirmed that the genetically modified strain was endowed with the ability to produce these substances compared to the wild-type ATCC13032 strain. ing.
 更に、特許文献3にも、コリネバクテリウム・グルタミカム由来のLeuA遺伝子にコードされるIPMSに対し、所定のアミノ酸置換を有する変異型IPMS、これをコードする核酸が導入されたコリネバクテリウム・グルタミカム組み換え菌株、並びに該組換え菌株を用いたL-ロイシンの製造方法が開示されている。特許文献3には、上記変異型IPMSが保有するアミノ酸置換は、同文献において基準とされるIPMSのアミノ酸配列において、第494番目のアルギニンがヒスチジンに置換され、第497番目のグリシンがアスパラギン酸に置換され、かつ第499番目のロイシンがバリンに置換されたものであることが記載されているものと思料される。しかしながら、コリネバクテリウム・グルタミカムが保有する野生型IPMS(LeuA遺伝子タンパク質)のアミノ酸配列においては、第494番目、第497番目及び第499番目の各アミノ酸は、特許文献3で言及される置換前の各アミノ酸と相違しており、特許文献3は、中国語による文献であるところ、その開示内容は不明な点が多い。 Furthermore, Patent Document 3 also discloses a mutant IPMS having a predetermined amino acid substitution for an IPMS encoded by a LeuA gene derived from Corynebacterium glutamicum, and a recombinant Corynebacterium glutamicum introduced with a nucleic acid encoding the same. A strain is disclosed, as well as a method for producing L-leucine using the recombinant strain. In Patent Document 3, the amino acid substitutions possessed by the above-mentioned mutant IPMS are the substitution of histidine for arginine at position 494 and the substitution of aspartic acid for glycine at position 497 in the amino acid sequence of IPMS used as a reference in the same document. and that leucine at position 499 is substituted with valine. However, in the amino acid sequence of the wild-type IPMS (LeuA gene protein) possessed by Corynebacterium glutamicum, the 494th, 497th and 499th amino acids are It is different from each amino acid, and although Patent Document 3 is written in Chinese, there are many unclear points about its disclosure.
 更に、特許文献4には、IPMS活性を有する新規変異型ポリペプチド、これをコードするポリヌクレオチド、該ポリペプチドを含む微生物、及び該微生物を培養してL-ロイシンを生産する方法が開示されている。特許文献4において、「IPMS活性を有する新規変異型ポリペプチド」とは、より具体的には、コリネバクテリウム・グルタミカム由来のLeuA遺伝子にコードされる野生型IPMSアミノ酸配列において、第558番目のアルギニン残基がアルギニン以外の他のアミノ酸残基に置換され又は第561番目のグリシン(残基がグリシン以外の他のアミノ酸残基に置換された、IPMS活性を有する変異型ポリペプチドとして規定されている。特許文献4において、実際に作製されたIPMS変異体並びに該IPMS変異体が導入された菌株は、R558H、R558A、R558Q、G561D、G561R、G561Yの各アミノ酸置換をそれぞれ保有するIPMS変異体、並びにR55H及びG561Dの組み合わせによるアミノ酸置換を保有するIPMS変異体と、これら変異体がそれぞれ導入されたコリネバクテリウム・グルタミカム組換え菌株であり、これらの組換え菌株は、野生株に対してL-ロイシンの生産能が向上していることが確認されている。 Furthermore, Patent Document 4 discloses a novel mutant polypeptide having IPMS activity, a polynucleotide encoding the same, a microorganism containing the polypeptide, and a method for producing L-leucine by culturing the microorganism. there is In Patent Document 4, the "novel mutant polypeptide having IPMS activity" more specifically refers to the 558th arginine in the wild-type IPMS amino acid sequence encoded by the Corynebacterium glutamicum-derived LeuA gene. A residue is substituted with an amino acid residue other than arginine, or glycine at position 561 (residue is substituted with an amino acid residue other than glycine), and is defined as a variant polypeptide having IPMS activity In Patent Document 4, IPMS mutants that were actually produced and strains into which the IPMS mutants were introduced are IPMS mutants that possess amino acid substitutions of R558H, R558A, R558Q, G561D, G561R, and G561Y, respectively, and IPMS mutants having amino acid substitutions by a combination of R55H and G561D, and Corynebacterium glutamicum recombinant strains into which these mutants were respectively introduced, and these recombinant strains have L-leucine relative to the wild type. It has been confirmed that the productivity of
特開2001-37494号公報JP-A-2001-37494 特表2015-514431号公報Japanese Patent Publication No. 2015-514431 中国特許出願公開第104480058号公報Chinese Patent Application Publication No. 104480058 特表2020-503045号公報Japanese Patent Publication No. 2020-503045
 本発明の目的は、L-ロイシンやその前駆体を含む派生物の生産能を各種微生物に付与できる新規IPMS変異体を提供することにある。 An object of the present invention is to provide novel IPMS mutants that can impart to various microorganisms the ability to produce derivatives containing L-leucine and its precursors.
 上記を解決するために鋭意研究を重ねた結果、L-ロイシンに対するフィードバック阻害に耐性を持つIPMSの複数の独立した変異を適切に組み合わせることで、単独の変異では得られなかった顕著なL-ロイシン生産性の増加が観察され、本発明を完成するに至った。 As a result of intensive research to solve the above problems, by appropriately combining multiple independent mutations of IPMS that are resistant to feedback inhibition to L-leucine, a remarkable L-leucine that could not be obtained by a single mutation An increase in productivity was observed, leading to the completion of the present invention.
 即ち、本発明の態様によれば、以下が提供される。
[1]下記の(A)~(C)の何れかに規定されるアミノ酸配列を含み、かつ配列番号2に示すアミノ酸配列からなるタンパク質と比較して、L-ロイシンフィードバック阻害が低減された改変型α-イソプロピルマレートシンターゼ:
(A)配列番号2に示すアミノ酸配列において、下記の(a)~(c)から選択される少なくとも2つの置換を有してなるアミノ酸配列;
(B)配列番号2に示すアミノ酸配列に対し60%以上の配列同一性を有し、かつ下記の(a)~(c)から選択される少なくとも2つの置換を含む、アミノ酸配列; 
(C)配列番号2に示すアミノ酸配列において、下記の(a)~(c)から選択される少なくとも2つの置換を含み、かつ該少なくとも2つの置換が位置する部位を除く部位に1若しくは複数のアミノ酸が欠失、置換、挿入若しくは付加されたアミノ酸配列、
(a)第530番目のグリシン残基のグリシン残基以外のアミノ酸残基への置換、
(b)第532番目のグリシン残基のグリシン残基以外のアミノ酸残基への置換、及び
(c)第535番目のアラニン残基のアラニン残基以外のアミノ酸残基への置換。
That is, according to aspects of the present invention, the following are provided.
[1] A modification in which L-leucine feedback inhibition is reduced compared to a protein comprising an amino acid sequence defined in any of the following (A) to (C) and consisting of the amino acid sequence shown in SEQ ID NO:2 Type α-isopropylmalate synthase:
(A) an amino acid sequence having at least two substitutions selected from the following (a) to (c) in the amino acid sequence shown in SEQ ID NO: 2;
(B) an amino acid sequence having a sequence identity of 60% or more to the amino acid sequence shown in SEQ ID NO: 2 and containing at least two substitutions selected from (a) to (c) below;
(C) the amino acid sequence shown in SEQ ID NO: 2, containing at least two substitutions selected from the following (a) to (c), and one or more at sites excluding the sites where the at least two substitutions are located amino acid sequences in which amino acids have been deleted, substituted, inserted or added;
(a) replacement of the 530th glycine residue with an amino acid residue other than a glycine residue;
(b) replacement of the 532nd glycine residue with an amino acid residue other than a glycine residue; and (c) replacement of the 535th alanine residue with an amino acid residue other than an alanine residue.
[2]上記(B)に規定のアミノ酸配列は、配列番号2に示すアミノ酸配列に対し84%以上の配列同一性を有するアミノ酸配列である、[1]に記載の改変型α-イソプロピルマレートシンターゼ。
[3]上記(B)に規定のアミノ酸配列は、配列番号2に示すアミノ酸配列に対し90%以上の配列同一性を有するアミノ酸配列である、[1]又は[2]に記載の改変型α-イソプロピルマレートシンターゼ。
[4]上記(a)~(c)に規定の置換全てを含む、[1]~[3]の何れか1つに記載の改変型α-イソプロピルマレートシンターゼ。
[5]上記(A)又は(C)に規定されるアミノ酸配列を含む、[4]に記載の改変型α-イソプロピルマレートシンターゼ。
[2] The modified α-isopropyl malate according to [1], wherein the amino acid sequence defined in (B) above has a sequence identity of 84% or more to the amino acid sequence shown in SEQ ID NO:2. Synthase.
[3] The modified α according to [1] or [2], wherein the amino acid sequence defined in (B) above has 90% or more sequence identity with the amino acid sequence shown in SEQ ID NO: 2. - isopropyl malate synthase.
[4] The modified α-isopropyl malate synthase according to any one of [1] to [3], containing all the substitutions defined in (a) to (c) above.
[5] The modified α-isopropylmalate synthase of [4], comprising the amino acid sequence defined in (A) or (C) above.
[6]対応する野生型2-イソプロピルマレートシンターゼと比較して、L-ロイシンフィードバック阻害を低減する少なくとも1つのアミノ酸変異を有し、
上記少なくとも1つのアミノ酸変異が、配列番号2に示すアミノ酸配列を基準として、下記の(a’)~(c’)から選択される少なくとも2つの置換を含む、改変型α-イソプロピルマレートシンターゼ:
(a’)第530番目のグリシン残基に相当するアミノ酸残基のグリシン残基以外のアミノ酸残基への置換;
(b’)第532番目のグリシン残基に相当するアミノ酸残基のグリシン残基以外のアミノ酸残基への置換;及び
(c’)第535番目のアラニン残基に相当するアミノ酸残基のアラニン残基以外のアミノ酸残基への置換。
[6] having at least one amino acid mutation that reduces L-leucine feedback inhibition compared to the corresponding wild-type 2-isopropyl malate synthase;
A modified α-isopropyl malate synthase in which the at least one amino acid mutation comprises at least two substitutions selected from the following (a′) to (c′) based on the amino acid sequence shown in SEQ ID NO: 2:
(a') substitution of an amino acid residue corresponding to the 530th glycine residue with an amino acid residue other than the glycine residue;
(b′) substitution of the amino acid residue corresponding to the 532nd glycine residue with an amino acid residue other than the glycine residue; and (c′) alanine of the amino acid residue corresponding to the 535th alanine residue Substitutions to amino acid residues other than residues.
[7]上記少なくとも1つのアミノ酸変異が、上記(a’)~(c’)に規定の置換全てを含む、[6]に記載の改変型α-イソプロピルマレートシンターゼ。
[8]コリネバクテリウム属細菌に由来する野生型2-イソプロピルマレートシンターゼのアミノ酸配列において上記少なくとも2つの置換を有してなるアミノ酸配列を含む、[1]~[7]の何れか1つに記載の改変型α-イソプロピルマレートシンターゼ。
[7] The modified α-isopropyl malate synthase of [6], wherein the at least one amino acid mutation includes all of the substitutions defined in (a') to (c') above.
[8] Any one of [1] to [7], including an amino acid sequence having at least two substitutions in the amino acid sequence of a wild-type 2-isopropylmalate synthase derived from a bacterium belonging to the genus Corynebacterium The modified α-isopropyl malate synthase described in .
[9]上記少なくとも2つの置換が、下記の(d)~(f)から選択される少なくとも2つの置換である、[1]~[8]の何れか1つに記載の改変型α-イソプロピルマレートシンターゼ:
(d)第530番目のグリシン残基又は当該グリシン残基に相当するアミノ酸残基のアスパラギン酸残基、グルタミン酸残基、リジン残基、アラニン残基、バリン残基、グルタミン残基、システイン残基、プロリン残基、アルギニン残基、ロイシン残基、イソロイシン残基、スレオニン残基又はヒスチジン残基への置換;
(e)第532番目のグリシン残基又は当該グリシン残基に相当するアミノ酸残基のアスパラギン酸残基、アラニン残基、バリン残基、プロリン残基、ロイシン残基、イソロイシン残基、スレオニン残基又はヒスチジン残基への置換;及び
(f)第535番目のアラニン残基又は当該アラニン残基に相当するアミノ酸残基のスレオニン残基、セリン残基、バリン残基、リジン残基、アスパラギン酸残基、フェニルアラニン残基、グリシン残基、ロイシン残基、イソロイシン残基又はヒスチジン残基への置換。
[9] The modified α-isopropyl according to any one of [1] to [8], wherein the at least two substitutions are at least two substitutions selected from (d) to (f) below. Malate synthase:
(d) aspartic acid residue, glutamic acid residue, lysine residue, alanine residue, valine residue, glutamine residue, cysteine residue of the 530th glycine residue or an amino acid residue corresponding to the glycine residue , proline, arginine, leucine, isoleucine, threonine or histidine residues;
(e) aspartic acid residue, alanine residue, valine residue, proline residue, leucine residue, isoleucine residue, threonine residue of the 532nd glycine residue or an amino acid residue corresponding to the glycine residue or substitution with a histidine residue; and (f) a threonine residue, serine residue, valine residue, lysine residue, aspartic acid residue of the 535th alanine residue or an amino acid residue corresponding to the alanine residue groups, phenylalanine residues, glycine residues, leucine residues, isoleucine residues or histidine residues.
[10]上記(d)~(f)に規定の置換全てを含む、[9]に記載の改変型α-イソプロピルマレートシンターゼ。
[11]上記(A)又は(C)に規定されるアミノ酸配列を含む、[10]に記載の改変型α-イソプロピルマレートシンターゼ。
[12]上記少なくとも2つの置換が、下記の(g)~(j)から選択される少なくとも2つの置換である、[1]~[11]の何れか1つに記載の改変型α-イソプロピルマレートシンターゼ:
(g)第530番目のグリシン残基又は当該グリシン残基に相当するアミノ酸残基のアスパラギン酸残基への置換;
(h)第532番目のグリシン残基又は当該グリシン残基に相当するアミノ酸残基のアスパラギン酸残基への置換;及び
(j)第535番目のアラニン残基又は当該アラニン残基に相当するアミノ酸残基のスレオニン残基、バリン残基、グリシン残基、ロイシン残基又はイソロイシン残基への置換。
[10] The modified α-isopropylmalate synthase of [9], containing all the substitutions defined in (d) to (f) above.
[11] The modified α-isopropylmalate synthase of [10], comprising the amino acid sequence defined in (A) or (C) above.
[12] The modified α-isopropyl according to any one of [1] to [11], wherein the at least two substitutions are at least two substitutions selected from (g) to (j) below. Malate synthase:
(g) replacement of the 530th glycine residue or an amino acid residue corresponding to the glycine residue with an aspartic acid residue;
(h) substitution of the 532nd glycine residue or an amino acid residue corresponding to the glycine residue with an aspartic acid residue; and (j) the 535th alanine residue or an amino acid corresponding to the alanine residue Substitution of residues for threonine, valine, glycine, leucine or isoleucine residues.
[13]上記(g)~(j)に規定の置換全てを含む、[12]に記載の改変型α-イソプロピルマレートシンターゼ。
[14]上記(A)又は(C)に規定されるアミノ酸配列を含む、[13]に記載の改変型α-イソプロピルマレートシンターゼ。
[15][1]~[14]の何れか1つに記載の改変型α-イソプロピルマレートシンターゼをコードするポリヌクレオチド。
[13] The modified α-isopropylmalate synthase of [12], containing all the substitutions defined in (g) to (j) above.
[14] The modified α-isopropylmalate synthase of [13], comprising the amino acid sequence defined in (A) or (C) above.
[15] A polynucleotide encoding the modified α-isopropylmalate synthase of any one of [1] to [14].
[16][15]に記載のポリヌクレオチドが導入された、微生物。
[17][1]~[14]のいずれか1つに記載の改変型α-イソプロピルマレートシンターゼを含む、微生物。
[18]コリネ型細菌である、[16]又は[17]に記載の微生物。
[19]コリネバクテリウム・グルタミカムである、[18]に記載の微生物。
[16] A microorganism into which the polynucleotide of [15] has been introduced.
[17] A microorganism comprising the modified α-isopropylmalate synthase of any one of [1] to [14].
[18] The microorganism of [16] or [17], which is a coryneform bacterium.
[19] The microorganism of [18], which is Corynebacterium glutamicum.
[20]野生型α-イソプロピルマレートシンターゼ活性が低減され又は不活化された、[16]~[19]の何れか1つに記載の微生物。 [20] The microorganism according to any one of [16] to [19], wherein wild-type α-isopropylmalate synthase activity is reduced or inactivated.
[21](I)[16]~[20]の何れか1つに記載の微生物を所定の培地又は反応媒体で培養し又は反応せしめることにより目的物質を産生すること;並びに
(II)該目的物質を回収すること、
を含む、目的物質を生産する方法。
[21] (I) Producing a target substance by culturing or reacting the microorganism according to any one of [16] to [20] in a predetermined medium or reaction medium; and (II) the object recovering material;
A method of producing a desired substance, comprising
[22]上記目的物質が、(2S)-2-イソプロピルマレート、2-イソプロピルマレート、(2R,3S)-3-イソプロピルマレート、(2S)-2-イソプロピル-3-オキソサクシネート、4-メチル-2-オキソペンタノエート若しくはL-ロイシン又は生合成経路上これらの化合物を経由する代謝産物である、[21]に記載の方法。 [22] The target substance is (2S)-2-isopropyl malate, 2-isopropyl malate, (2R,3S)-3-isopropyl malate, (2S)-2-isopropyl-3-oxosuccinate, The method of [21], which is 4-methyl-2-oxopentanoate or L-leucine or a metabolite via these compounds on the biosynthetic pathway.
[23]上記目的物質が、L-ロイシン又はこれから誘導される代謝産物である、[21]又は[22]に記載の方法。 [23] The method of [21] or [22], wherein the target substance is L-leucine or a metabolite derived therefrom.
 本発明によれば、フィードバック阻害に高い耐性を持つIPMS変異体を利用することができ、それを用いてL-ロイシンやその前駆体を含む派生物を高い収率と生産性をもって生産することができる。 According to the present invention, IPMS mutants that are highly resistant to feedback inhibition can be utilized and used to produce L-leucine and its derivatives, including its precursors, with high yield and productivity. can.
本発明の実施形態において微生物が有し得る代謝経路の説明に用いるための図である。FIG. 2 is a diagram for use in explaining metabolic pathways that microorganisms may have in embodiments of the present invention.
 本発明の態様は、IPMS活性を有する新規変異型ポリペプチドである。即ち、係る態様によれば、上述の[1]又は[6]に示す構成要素により特定されるとおり、L-ロイシンフィードバック阻害が低減された改変型α-イソプロピルマレートシンターゼが提供される。より詳細には、前記新規変異型ポリペプチドは、UniprotKB:P42455のアミノ酸配列からなるポリペプチドのN末端から530番目、532番目、535番目のグリシン、グリシン、アラニンのうちの少なくとも2つ、又はこれらに相当するアミノ酸残基のうちの少なくとも2つがそれぞれ別のアミノ酸残基に置換されている。前記変異型ポリペプチドは、少なくとも、UniprotKB:P42455のIPMS活性を有するポリペプチドに比べて、フィードバック阻害に高い耐性を有する。 An aspect of the present invention is a novel mutant polypeptide with IPMS activity. That is, according to this aspect, a modified α-isopropylmalate synthase with reduced L-leucine feedback inhibition is provided, as specified by the components shown in [1] or [6] above. More specifically, the novel mutant polypeptide comprises at least two of glycine, glycine, and alanine at positions 530, 532, and 535 from the N-terminus of a polypeptide consisting of the amino acid sequence of UniprotKB:P42455, or at least two of the amino acid residues corresponding to are replaced with different amino acid residues. Said mutant polypeptide is at least more resistant to feedback inhibition than the polypeptide having IPMS activity of UniprotKB:P42455.
 ここで、UniprotKB:P42455のアミノ酸配列を、下記の表1に示す。
Figure JPOXMLDOC01-appb-T000001
Here, the amino acid sequence of UniprotKB:P42455 is shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
 UniprotKB:P42455のアミノ酸配列は、コリネバクテリウム・グルタミカム(Corynebacterium glutamicum)ATCC13032 /DSM20300/BCRC11384/JCM1318/LMG3730/NCIMB10025株に由来する野生型IPMSのアミノ酸配列である。配列表に、コリネバクテリウム・グルタミカム(Corynebacterium glutamicum)ATCC13032株が有するゲノム配列において、該野生型IPMSをコードする領域(CDS)を含むヌクレオチド配列並びに該野生型IPMSのアミノ酸配列をそれぞれ、順に配列番号1、2として示す。 UniprotKB: The amino acid sequence of P42455 is the amino acid sequence of wild-type IPMS derived from Corynebacterium glutamicum ATCC13032/DSM20300/BCRC11384/JCM1318/LMG3730/NCIMB10025 strains. In the sequence listing, the nucleotide sequence containing the region (CDS) encoding the wild-type IPMS and the amino acid sequence of the wild-type IPMS in the genome sequence of Corynebacterium glutamicum ATCC13032 strain are listed in order of sequence numbers. 1,2.
 本発明における「フィードバック阻害」とは、代謝系の最終産物が阻害剤となり、その代謝系の初期段階での反応を阻害することを意味する。本発明においては、L-ロイシン又はその誘導体がその生合成経路の第1段階を媒介するIPMSの活性を阻害することを意味するが、構造が似ていれば程度の差こそあれ阻害活性を示すことが広く知られている。それ故、単に「フィードバック阻害」と言う場合には、IPMSに対する阻害剤はL-ロイシンに限定されるものではない。IPMSのフィードバック阻害を解除すると、そうでないものに比べてL-ロイシンの生産性を向上させることができる。もっとも、「L-ロイシンフィードバック阻害」と言う場合、IPMSがL-ロイシンによるフィードバック阻害を受けることを意味し、「L-ロイシンフィードバック阻害が低減された」等と言う場合には、対象のIPMSが、少なくとも、L-ロイシンによるフィードバック阻害が低減され又は解除された性質を有するものであることを意味する。上述の改変型α-イソプロピルマレートシンターゼは、L-ロイシンフィードバック阻害が低減された性質を有することに加え、必ずしも必須ではないが、L-ロイシンの誘導体又はその他代謝産物によるフィードバック阻害が低減された性質を有するものであってもよい。 "Feedback inhibition" in the present invention means that the final product of the metabolic system becomes an inhibitor and inhibits the reaction at the initial stage of the metabolic system. In the present invention, it means that L-leucine or a derivative thereof inhibits the activity of IPMS that mediates the first step of its biosynthetic pathway. is widely known. Therefore, when simply referring to "feedback inhibition", inhibitors against IPMS are not limited to L-leucine. Releasing feedback inhibition of IPMS can improve L-leucine productivity compared to others. However, when referring to "L-leucine feedback inhibition", it means that IPMS is subject to feedback inhibition by L-leucine, and when saying "L-leucine feedback inhibition is reduced" or the like, it means that IPMS of interest is , means that at least the feedback inhibition by L-leucine is reduced or eliminated. The modified α-isopropylmalate synthase described above has a property of reduced L-leucine feedback inhibition, and, although not necessarily essential, reduced feedback inhibition by L-leucine derivatives or other metabolites. It may have properties.
 本発明において「フィードバック阻害に高い耐性を持つ」とは、高濃度の阻害剤存在下においても、酵素活性を阻害されることなく維持することを意味する。フィードバック阻害への耐性は、阻害剤存在下におけるIPMS活性を阻害剤非存在下における活性と比較することによって評価できる。 In the present invention, "highly resistant to feedback inhibition" means maintaining enzyme activity without being inhibited even in the presence of high concentrations of inhibitors. Resistance to feedback inhibition can be assessed by comparing IPMS activity in the presence of inhibitor to activity in the absence of inhibitor.
 本発明におけるIPMSとは、2-ケトイソ吉草酸(2-ketoisovalerate;3-methyl-2-oxobutanoate)をアセチルCoAと反応させてL-ロイシンの前駆体の1つであるイソプロピルリンゴ酸(isopropylmalate)に変換する酵素である。より具体的には、IPMSは、図1に示すとおり、3-メチル-2-オキソブタノエート〔3-methyl-2-oxobutanoate〕から(2S)-2-イソプロピルマレート〔(2S)-2-isopropylmalate〕への代謝反応、即ち、3-メチル-2-オキソブタノエート + アセチルCoA + HO = (2S)-2-イソプロピルマレート + CoA + Hの反応式で表される反応を触媒する酵素であり、その酵素活性は、EC番号2.3.3.13として定義されるものである。 IPMS in the present invention is a reaction of 2-ketoisovalerate (3-methyl-2-oxobutanoate) with acetyl CoA to form isopropylmalate, which is one of the precursors of L-leucine. It is an enzyme that converts More specifically, IPMS, as shown in FIG. -isopropylmalate], that is, the reaction represented by the reaction formula of 3-methyl-2-oxobutanoate + acetyl CoA + H 2 O = (2S)-2-isopropylmalate + CoA + H + and its enzymatic activity is defined as EC number 2.3.3.13.
 本発明におけるIPMSは、前記変換活性を有し、かつ上記フィードバック阻害が低減された改変型酵素であればいかなる生物由来であってもよいが、コリネ型細菌に由来する酵素であることが好ましい。さらに好ましくは、コリネバクテリウム・グルタミカム(Corynebacterium glutamicum)由来のIPMSであってもよく、具体的にはUniprotKB:P42455のアミノ酸配列に対し所定のアミノ酸置換を含むものであってもよいが、これらに限定されるものではない。さらに、前記IPMSは、UniprotKB:P42455のアミノ酸配列(配列番号2)と少なくとも80%、84%、90%、95%、96%、97%、98%又は99%の配列相同性又は配列同一性を有するポリペプチドを含んでもよい。例えば、このような配列相同性又は配列同一性を有し、IPMSに相応する効果を示すアミノ酸配列であれば、一部の配列が欠失、改変、置換又は付加されたアミノ酸配列を有するものも本発明に含まれることは言うまでもない。また、UniprotKB:P42455以外のアミノ酸配列を用いる場合は、UniprotKB:P42455とアラインメントすることにより変異を入れるべき相同なアミノ酸残基を推定することができる。アラインメントには一般的なプログラムを利用することができ、例えば、ClustalやBLASTが挙げられる。アラインメントは立体構造の重ね合わせでもよく、そのために、例えば、PyMOLなどの分子グラフィクスツールを利用することによって評価できる。 The IPMS in the present invention may be derived from any organism as long as it is a modified enzyme having the conversion activity and reduced feedback inhibition, but is preferably an enzyme derived from a coryneform bacterium. More preferably, it may be an IPMS derived from Corynebacterium glutamicum. It is not limited. Further, said IPMS has at least 80%, 84%, 90%, 95%, 96%, 97%, 98% or 99% sequence homology or sequence identity with the amino acid sequence of UniprotKB:P42455 (SEQ ID NO: 2) may include a polypeptide having For example, an amino acid sequence having such sequence homology or sequence identity and showing an effect corresponding to IPMS may have an amino acid sequence in which a part of the sequence is deleted, modified, substituted or added. Needless to say, it is included in the present invention. Moreover, when using an amino acid sequence other than UniprotKB:P42455, the homologous amino acid residue to be mutated can be estimated by aligning with UniprotKB:P42455. Common programs can be used for alignment, such as Clustal and BLAST. Alignments may be conformational superpositions, for which reason they can be evaluated, for example, by utilizing molecular graphics tools such as PyMOL.
 本発明において「コリネ型細菌」とは、バージーズ・マニュアル・デターミネイティブ・バクテリオロジー(Bargeys Manual of Determinative Bacteriology,第8巻,p.599、1974年)に定義されている一群の微生物を指す。
 より詳細には、コリネ型細菌として、コリネバクテリウム(Corynebacterium)属菌、ブレビバクテリウム(Brevibacterium)属菌、アースロバクター(Arthrobacter)属菌、マイコバクテリウム(Mycobacterium)属菌、マイクロコッカス(Micrococcus)属菌、マイクロバクテリウム(Microbacterium)属菌等が挙げられる。
 さらに詳細には、WO2019156152A1に記載された定義を参照することができる。
In the present invention, the term "coryneform bacterium" refers to a group of microorganisms defined in Burgeys Manual of Determinative Bacteriology (Vol. 8, p.599, 1974).
More specifically, coryneform bacteria include Corynebacterium spp., Brevibacterium spp., Arthrobacter spp., Mycobacterium spp., Micrococcus ) genus, Microbacterium genus, and the like.
For more details, reference can be made to the definitions described in WO2019156152A1.
 本発明における「変異」、「変異型」又は「変異体」とは、ある遺伝子の塩基配列が変化し、それに伴いアミノ酸の配列が変化した遺伝子、ポリペプチド、酵素、又はそれらを持つ微生物を指す。IPMSの変異体あるいは変異型IPMSとは、IPMSのアミノ酸配列が野生型と比べて1アミノ酸以上変化したものであり、活性やL-ロイシン及びその誘導体に対するフィードバック阻害の程度が変化した変異体を意味する。 "Mutation", "mutant" or "mutant" in the present invention refers to genes, polypeptides, enzymes, or microorganisms possessing them, in which the base sequence of a gene is altered and the amino acid sequence is accordingly altered. . IPMS mutant or mutant IPMS means a mutant in which the amino acid sequence of IPMS is changed by one or more amino acids compared to the wild type, and the activity and the degree of feedback inhibition to L-leucine and its derivatives are changed. do.
 具体的には、本発明のIPMS活性を有する変異型ポリペプチドは、UniprotKB:P42455のアミノ酸配列からなるポリペプチドのN末端から530番目、532番目、535番目のアミノ酸残基であるグリシン、グリシン、及びアラニンのうち少なくとも2つ、又はそれらのアミノ酸に相当するアミノ酸残基のうち少なくとも2つがそれぞれ別のアミノ酸残基に置換されたものであってもよい。この場合、前記別のアミノ酸残基とは、20種類の標準アミノ酸から野生型IPMSにおける変異前のアミノ酸残基を除いた19種類から選ばれる1つのアミノ酸残基を指す。 Specifically, the mutant polypeptides having IPMS activity of the present invention are amino acid residues 530, 532, and 535 from the N-terminus of a polypeptide consisting of the amino acid sequence of UniprotKB: P42455, glycine, glycine, and alanine, or at least two of the amino acid residues corresponding to those amino acids may be substituted with different amino acid residues. In this case, the another amino acid residue refers to one amino acid residue selected from 19 types of 20 standard amino acids excluding the amino acid residue before mutation in wild-type IPMS.
 また、前記変異型ポリペプチドには、配列番号2(表1)に示すアミノ酸配列と少なくとも80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%又は99%の配列相同性又は配列同一性を有するポリペプチドが含まれてもよい。例えば、このような配列相同性又は配列同一性を有し、IPMSに相応する効果を示すアミノ酸配列であれば、530、532、535番目の変異に加えて、一部の配列が欠失、改変、置換又は付加されたアミノ酸配列を有する酵素変異体も本発明に含まれる。また、UniprotKB:P42455のN末端に一部のアミノ酸が付加又は欠損した場合に当該アミノ酸の数を考慮して算定されるものも本発明に含まれることは当業者にとって明らかである。 In addition, the mutant polypeptide includes the amino acid sequence shown in SEQ ID NO: 2 (Table 1) and at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, Polypeptides with 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% sequence homology or identity may be included. . For example, if it is an amino acid sequence that has such sequence homology or sequence identity and shows an effect corresponding to IPMS, in addition to mutations at positions 530, 532, and 535, a part of the sequence is deleted or modified. Also included in the present invention are enzyme variants having substituted or added amino acid sequences. In addition, it is clear to those skilled in the art that the present invention includes those calculated in consideration of the number of amino acids when some amino acids are added or deleted from the N-terminus of UniprotKB:P42455.
 なお、本発明において、上記の「少なくとも2つの置換が位置する部位を除く部位に1若しくは複数のアミノ酸が欠失、置換、挿入若しくは付加されたアミノ酸配列」における「1若しくは複数」(「1又は複数」)の範囲は、特に限定されるものでもないが、特定の実施形態において、例えば、1から400個、1から300個、1から200個、1から100個、1から50個、1から30個である。別の実施形態においては、「1若しくは複数」(「1又は複数」)の範囲は、少なくとも2個以上、好ましくは2から20個、より好ましくは2から10個、さらにより好ましくは2から5個、特に好ましくは2から4個、2から3個、例えば2個である。 In the present invention, "one or more" ("one or The range of "plurality") is not particularly limited, but in certain embodiments, for example, 1 to 400, 1 to 300, 1 to 200, 1 to 100, 1 to 50, 1 30 from . In another embodiment, the range of "one or more" ("one or more") is at least 2 or more, preferably 2 to 20, more preferably 2 to 10, even more preferably 2 to 5 particularly preferably 2 to 4, 2 to 3, for example 2.
 なお、上記[6]に係る改変型α-イソプロピルマレートシンターゼにおいて、「対応する野生型2-イソプロピルマレートシンターゼ(α-イソプロピルマレートシンターゼ)」は、字義どおりに解釈すれば足り、本発明に係る改変型α-イソプロピルマレートシンターゼにおいて、L-ロイシンフィードバック阻害の低減の基準となる野生型2-イソプロピルマレートシンターゼ(α-イソプロピルマレートシンターゼ)を意味する。つまり、改変型α-イソプロピルマレートシンターゼは、基準とされる野生型2-イソプロピルマレートシンターゼ(α-イソプロピルマレートシンターゼ)と比較して、L-ロイシンフィードバック阻害の程度を低減し得る少なくとも1つのアミノ酸変異を有するものであり、かつ当該少なくとも1つのアミノ酸変異は、上記(a’)、(b’)及び(c’)に規定されるアミノ酸置換のうち少なくとも2つを含むものであれば足りる。 In addition, in the modified α-isopropylmalate synthase according to [6] above, the “corresponding wild-type 2-isopropylmalate synthase (α-isopropylmalate synthase)” may be interpreted literally, and the present invention In the modified α-isopropyl malate synthase according to, wild-type 2-isopropyl malate synthase (α-isopropyl malate synthase) that serves as a reference for reducing L-leucine feedback inhibition. That is, the modified α-isopropylmalate synthase may reduce the degree of L-leucine feedback inhibition compared to the reference wild-type 2-isopropylmalate synthase (α-isopropylmalate synthase) at least 1 have one amino acid mutation, and the at least one amino acid mutation contains at least two of the amino acid substitutions defined in (a'), (b') and (c') above Enough.
 さらに、上記[6]に係る改変型α-イソプロピルマレートシンターゼにおいて、(a’)、(b’)及び(c’)にそれぞれ記載される「相当するアミノ酸残基」の意義は、配列番号2に示すアミノ酸配列に含まれるアミノ酸を基準に、変異導入の対象とするIPMSのアミノ酸配列において置換部位を特定することにある。即ち、上記(a’)、(b’)及び(c’)における「相当するアミノ酸残基」とは、具体的には、ClustalWやClustalX(バイオインフォマティクス,第23巻、イシュー21、2008年11月、第2947-2948頁;Bioinformatics, Volume23,Issue 21,1 November 2007,pp2947-2948)等の手法により、配列番号2に示すアミノ酸配列に対して、変異導入の対象となるIPMSのアミノ酸配列の同一性に基づいて、1対1の整列(ペアワイズアラインメント)を行った場合に、上記(a’)、(b’)及び(c’)に示す各アミノ酸残基と1対1で整列されるアミノ酸を言う。 Furthermore, in the modified α-isopropyl malate synthase according to [6] above, the meanings of the “corresponding amino acid residues” described in (a′), (b′) and (c′) are SEQ ID NO: 2, the substitution site is specified in the IPMS amino acid sequence to be mutated. That is, the "corresponding amino acid residues" in the above (a'), (b') and (c') are specifically ClustalW and ClustalX (Bioinformatics, Vol. 23, Issue 21, 2008 11 Month, pp. 2947-2948; Bioinformatics, Volume 23, Issue 21, 1, November 2007, pp 2947-2948), the amino acid sequence of IPMS to be mutagenized for the amino acid sequence shown in SEQ ID NO: 2. Aligned one-to-one with each amino acid residue shown in (a'), (b') and (c') above when one-to-one alignment (pairwise alignment) is performed based on identity say amino acids.
 特定の実施形態においては、本発明に係る改変型α-イソプロピルマレートシンターゼは、G530D/G532D/A535T、G530E/G532D/A535T、G530K/G532D/A535T、G530A/G532D/A535T、G530V/G532D/A535T、G530F/G532D/A535T、G530N/G532D/A535T、G530C/G532D/A535T、G530P/G532D/A535T、G530R/G532D/A535T、G530L/G532D/A535T、G530I/G532D/A535T、G530T/G532D/A535T、G530H/G532D/A535T、G530D/G532E/A535T、G530D/G532K/A535T、G530D/G532A/A535T、G530D/G532V/A535T、G530D/G532F/A535T、G530D/G532N/A535T、G530D/G532C/A535T、G530D/G532P/A535T、G530D/G532L/A535T、G530D/G532I/A535T、G530D/G532T/A535T、G530D/G532H/A535T、G530D/G532D/A535S、G530D/G532D/A535V、G530D/G532D/A535K、G530D/G532D/A535D、G530D/G532D/A535N、G530D/G532D/A535F、G530D/G532D/A535C、G530D/G532D/A535G、G530D/G532D/A535L、G530D/G532D/A535I、及びG530D/G532D/A535Hからなる群から選択される三重変異を含む。 In certain embodiments, the modified α-isopropyl malate synthase of the present invention is 、G530F/G532D/A535T、G530N/G532D/A535T、G530C/G532D/A535T、G530P/G532D/A535T、G530R/G532D/A535T、G530L/G532D/A535T、G530I/G532D/A535T、G530T/G532D/A535T、G530H /G532D/A535T、G530D/G532E/A535T、G530D/G532K/A535T、G530D/G532A/A535T、G530D/G532V/A535T、G530D/G532F/A535T、G530D/G532N/A535T、G530D/G532C/A535T、G530D/G532P /A535T、G530D/G532L/A535T、G530D/G532I/A535T、G530D/G532T/A535T、G530D/G532H/A535T、G530D/G532D/A535S、G530D/G532D/A535V、G530D/G532D/A535K、G530D/G532D/A535D , G530D/G532D/A535N, G530D/G532D/A535F, G530D/G532D/A535C, G530D/G532D/A535G, G530D/G532D/A535L, G530D/G532D/A535I, and G530D/G532D/A535H Contains triple mutations.
 なお、本発明に係る改変型α-イソプロピルマレートシンターゼが有し得るアミノ酸配列は、配列番号2に示すアミノ酸配列(コリネバクテリウム・グルタミカムATCC13032株の野生型IPMS)について、当業者において知られるBLAST解析を行い、これによって検索された各種IPMSホモログのアミノ酸配列に基づいて設計することができる。配列番号2に示すアミノ酸配列について、BLAST解析を行うと、例えば、Corynebacterium deserti由来IPMS(Accession No. WP_053543926.1、配列同一性94.64%)、Corynebacterium efficiens由来IPMS(Accession No.WP_006768473.1、配列同一性90.26%)、Corynebacterium halotolerans由来IPMS(Accession No.WP_015399748.1、配列同一性82.62%)、Corynebacterium ammoniagenes由来IPM(Accession No.WP_040354747.1、配列同一性79.14%)、Corynebacterium maris由来IPMS(Accession No.WP_041631981.1、配列同一性79.87%)、Corynebacterium hadale由来IPMS(Accession No.WP_095538136.1、配列同一性76.02%)等のIPMSホモログを見出すことができる。これらのIPMSホモログの各アミノ酸配列に基づいて、本発明に係る改変型α-イソプロピルマレートシンターゼが有し得るアミノ酸配列を設計することができる。なお、これらのAccession No.により特定されるアミノ酸配列は、援用によって本明細書に一部として組み込まれる。加えて、これらアミノ酸配列に対し、上記(a’)、(b’)及び(c’)、又は上記(d)、(e)及び(f)、又は上記(g)、(h)及び(j)に示す各アミノ酸置換のうち少なくとも2つを施すことにより得られるアミノ酸配列を有する変異型ポリペプチドは、本発明に係る改変型α-イソプロピルマレートシンターゼの実施形態として、本明細書に明示されるものである。 The amino acid sequence that the modified α-isopropylmalate synthase of the present invention can have is obtained by BLAST known to those skilled in the art for the amino acid sequence shown in SEQ ID NO: 2 (wild-type IPMS of Corynebacterium glutamicum ATCC13032 strain). Analysis can be performed and design can be made based on the amino acid sequences of various IPMS homologues retrieved thereby. BLAST analysis of the amino acid sequence shown in SEQ ID NO: 2 revealed, for example, Corynebacterium deserti-derived IPMS (Accession No. WP_053543926.1, sequence identity 94.64%), Corynebacterium efficiens-derived IPMS (Accession No. WP_006768473.1, sequence identity 94.64%). sequence identity 90.26%), IPMS derived from Corynebacterium halotolerans (Accession No. WP_015399748.1, sequence identity 82.62%), IPM derived from Corynebacterium ammoniagenes (Accession No. WP_040354747.1, sequence identity 79%) , Corynebacterium maris-derived IPMS (Accession No. WP_041631981.1, sequence identity 79.87%), Corynebacterium hadale-derived IPMS (Accession No. WP_095538136.1, sequence identity 76.02%), etc. can. Based on the amino acid sequences of these IPMS homologues, amino acid sequences that the modified α-isopropylmalate synthase according to the present invention may have can be designed. Please note that these Accession No. The amino acid sequences identified by are incorporated herein by reference. In addition, for these amino acid sequences, the above (a'), (b') and (c'), or the above (d), (e) and (f), or the above (g), (h) and ( A mutant polypeptide having an amino acid sequence obtained by making at least two of each of the amino acid substitutions shown in j) is specified herein as an embodiment of the modified α-isopropylmalate synthase according to the present invention. It is what is done.
 いくつかの実施形態において、本発明に係る改変型α-イソプロピルマレートシンターゼは、真核生物、原核生物、真菌類、細菌、古細菌、コリネ型細菌、コリネバクテリウム属(例えばCorynebacterium glutamicum、Corynebacterium deserti、Corynebacterium efficiens、Corynebacterium halotolerans、Corynebacterium ammoniagenes、Corynebacterium maris、Corynebacterium hadale)が固有に有する野生型α-イソプロピルマレートシンターゼのアミノ酸配列において、上記(a’)、(b’)及び(c’)、又は上記(d)、(e)及び(f)、又は上記(g)、(h)及び(j)に示す各アミノ酸置換のうち少なくとも2つを施すことにより得られるアミノ酸配列を有する。 In some embodiments, the modified α-isopropylmalate synthase of the present invention is eukaryotic, prokaryotic, fungal, bacterial, archaeal, coryneform, corynebacterium (e.g., Corynebacterium glutamicum, Corynebacterium deserti, Corynebacterium efficiens, Corynebacterium halotolerans, Corynebacterium ammoniagenes, Corynebacterium maris, Corynebacterium hadale) in the amino acid sequences of the wild-type α-(c′), Alternatively, it has an amino acid sequence obtained by performing at least two of the amino acid substitutions shown in (d), (e) and (f) above, or (g), (h) and (j) above.
 本発明の他の態様は、前記変異型ポリペプチドをコードするポリヌクレオチドである。
 前記ポリヌクレオチドは、本発明に係る変異型ポリペプチド又は改変型α-イソプロピルマレートシンターゼをコードする塩基配列を含むものであれば、どのような配列を有するものであってもよい。
Another aspect of the invention is a polynucleotide encoding said mutant polypeptide.
The polynucleotide may have any sequence as long as it contains a nucleotide sequence that encodes the mutant polypeptide or modified α-isopropylmalate synthase of the present invention.
 変異導入前の野生型leuA遺伝子のポリヌクレオチドは、leuA遺伝子を有する生物から調製したゲノムDNAからPCRによって増幅した配列でもよいし、公知の遺伝子情報を元に設計した塩基配列を人工遺伝子合成してもよい。また、同じポリペプチドをコードする限りにおいてはコドンの組み合わせは何でもよく、コドン使用頻度や二次構造などを考慮して設計してもよい。 The polynucleotide of the wild-type leuA gene before mutagenesis may be a sequence amplified by PCR from genomic DNA prepared from an organism having the leuA gene, or a nucleotide sequence designed based on known genetic information is artificially synthesized. good too. Any combination of codons may be used as long as they encode the same polypeptide, and the codon usage frequency, secondary structure, etc. may be taken into account in the design.
 前記野生型ポリヌクレオチドに変異を導入する方法はin vitroでもin vivoであってもよい。in vitroで変異を導入する方法は、変異を導入したプライマーを用いたPCRによる方法や、エラープローンな条件でPCRを行いランダムに変異を導入する方法などがあるが、これに限らない。in vivoにおいて変異を導入する方法は、培養の継代を繰り返して自然に突然変異を起こさせる方法や、紫外線やアルキル化剤などの変異原で処理する方法などがあるが、これに限らない。 The method of introducing mutations into the wild-type polynucleotide may be in vitro or in vivo. Methods for introducing mutations in vitro include, but are not limited to, PCR-based methods using mutated primers, and random mutation-introducing methods by performing PCR under error-prone conditions. Methods for introducing mutations in vivo include, but are not limited to, a method of spontaneously mutating by repeating passages in culture, and a method of treatment with a mutagen such as ultraviolet light or an alkylating agent.
 本発明の更なる他の態様によれば、上述の変異型ポリペプチド(改変型α-イソプロピルマレートシンターゼ)又はポリヌクレオチドを含む微生物が提供される。特定の実施形態においては、本発明に係る微生物は、L-ロイシンやその前駆体を含む派生物生産能を有する。加えて、いくつかの実施形態において、本発明に係る微生物は、例えば真菌類等の真核微生物、原核生物、細菌、古細菌、コリネバクテリウム属、コリネ型細菌を含む微生物である。なお、上記のL-ロイシンの前駆体には、イソプロピルリンゴ酸、2-ケトイソカプロン酸などの2-ケトイソ吉草酸以降のロイシン生合成経路における全ての中間体が該当し、具体的には、図1に示すL-ロイシン生合成経路を構成する各種代謝物を含む。さらに、L-ロイシンの派生物には、L-ロイシンおよびその前駆体から生合成されうる全ての物質を包含する。これには、例えば、2-ケトイソカプロン酸から派生する3-ヒドロキシイソ吉草酸、3-メチルブタノール、イソアミル酢酸などが考えられるが、これらに限定されるものではない。 According to yet another aspect of the present invention, there is provided a microorganism containing the mutant polypeptide (modified α-isopropylmalate synthase) or polynucleotide described above. In certain embodiments, the microorganisms of the present invention are capable of producing derivatives containing L-leucine and its precursors. Additionally, in some embodiments, the microorganisms of the present invention are microorganisms, including eukaryotic microorganisms such as, for example, fungi, prokaryotes, bacteria, archaea, corynebacterium, coryneform bacteria. The precursor of L-leucine mentioned above corresponds to all intermediates in the leucine biosynthetic pathway after 2-ketoisovaleric acid such as isopropylmalic acid and 2-ketoisocaproic acid. Specifically, FIG. Contains various metabolites that make up the L-leucine biosynthetic pathway shown in . Furthermore, derivatives of L-leucine include all substances that can be biosynthesized from L-leucine and its precursors. These include, but are not limited to, 3-hydroxyisovaleric acid derived from 2-ketoisocaproic acid, 3-methylbutanol, isoamylacetic acid, and the like.
 本発明における前記微生物には、形質転換により人工的に製造されたものや、自然に発生したものが含まれる。 The microorganisms in the present invention include those artificially produced by transformation and naturally occurring ones.
 例えば、前記微生物は、前記変異型ポリペプチド(改変型α-イソプロピルマレートシンターゼ)をコードするポリヌクレオチドを含むベクターで形質転換された微生物であってもよい。いくつかの実施形態では、前記微生物は、様々な公知の方法により前記変異型ポリペプチド(改変型α-イソプロピルマレートシンターゼ)を発現する微生物を包含する。 For example, the microorganism may be a microorganism transformed with a vector containing a polynucleotide encoding the mutant polypeptide (modified α-isopropylmalate synthase). In some embodiments, the microorganisms include microorganisms that express the mutant polypeptide (modified α-isopropylmalate synthase) by various known methods.
 特定の実施形態においては、前記微生物において、前記変異型ポリペプチド(改変型α-イソプロピルマレートシンターゼ)をコードするポリヌクレオチドは、宿主細胞内で発現可能な形態で導入されていてもよい。別の実施形態においては、前記微生物において、前記変異型ポリペプチド(改変型α-イソプロピルマレートシンターゼ)をコードするポリヌクレオチドが、宿主細胞内で該変異型ポリペプチド(改変型α-イソプロピルマレートシンターゼ)を発現しない形態で導入されたものであってもよい。加えて、形質転換される遺伝子(前記変異型ポリペプチドをコードするポリヌクレオチド)は、宿主細胞内で該変異型ポリペプチド(改変型α-イソプロピルマレートシンターゼ)を発現する形態で導入される場合、染色体内に挿入されていても、染色体外に位置していてもよい。また、当該遺伝子が宿主細胞内で発現する形態で導入される場合、前記変異型ポリペプチド(改変型α-イソプロピルマレートシンターゼ)をコードするポリヌクレオチドは、いかなる形態であってもよく、具体的にはDNAやRNAの形態を有し得る。 In a specific embodiment, the polynucleotide encoding the mutant polypeptide (modified α-isopropylmalate synthase) may be introduced into the microorganism in a form capable of being expressed in host cells. In another embodiment, in the microorganism, a polynucleotide encoding the mutant polypeptide (modified α-isopropylmalate synthase) is converted into a mutant polypeptide (modified α-isopropylmalate synthase) in host cells. Synthase) may be introduced in a form that does not express. In addition, when the transformed gene (polynucleotide encoding the mutant polypeptide) is introduced in a form that expresses the mutant polypeptide (modified α-isopropyl malate synthase) in host cells , may be integrated within a chromosome or located extrachromosomally. Further, when the gene is introduced in a form in which it is expressed in host cells, the polynucleotide encoding the mutant polypeptide (modified α-isopropylmalate synthase) may be in any form. may have the form of DNA or RNA.
 いくつかの実施形態においては、本発明に係る微生物は、上記変異型ポリペプチド(改変型α-イソプロピルマレートシンターゼ)を発現するものであることに加え、3-メチル-2-オキソブタノエート、(2S)-2-イソプロピルマレート、2-イソプロピルマレート、(2R,3S)-3-イソプロピルマレート、(2S)-2-イソプロピル-3-オキソサクシネート、4-メチル-2-オキソペンタノエート、L-ロイシンを、この順に生合成する生合成経路を有する。別の実施形態においては、本発明に係る微生物は、上記変異型ポリペプチド(改変型α-イソプロピルマレートシンターゼ)を発現するものであることに加え、生合成経路上、これらの化合物のうち少なくとも1つから誘導される代謝産物を生合成する1又は複数の生合成経路を有する。 In some embodiments, the microorganism according to the present invention expresses the mutant polypeptide (modified α-isopropylmalate synthase) and, in addition, 3-methyl-2-oxobutanoate , (2S)-2-isopropyl maleate, 2-isopropyl maleate, (2R,3S)-3-isopropyl maleate, (2S)-2-isopropyl-3-oxosuccinate, 4-methyl-2-oxo It has a biosynthetic pathway that biosynthesizes pentanoate and L-leucine in this order. In another embodiment, the microorganism according to the present invention expresses the mutant polypeptide (modified α-isopropylmalate synthase), and at least one of these compounds on the biosynthetic pathway It has one or more biosynthetic pathways that biosynthesize metabolites derived from one.
 さらに、いくつかの実施形態においては、本発明に係る微生物は、野生型α-イソプロピルマレートシンターゼ活性が低減され又は不活化されたものであってもよい。このように、野生型α-イソプロピルマレートシンターゼ活性が低減され又は不活化されたものである場合、当該微生物では、目的物質の生成に対し、野生型酵素が示すL-ロイシンフィードバック阻害の悪影響を排除できる一方、当該フィードバック阻害が低減された改変型α-イソプロピルマレートシンターゼが発現することから、目的物質への代謝反応を効率良く進行させることができる。その結果、係る微生物によれば、特に高い収率と生産性とをもって目的物質を生産することが可能になる。微生物における野生型α-イソプロピルマレートシンターゼ活性の低減又は不活化は、具体的には、ゲノム上に存在するleuA若しくはそのホモログ遺伝子(野生型α-イソプロピルマレートシンターゼコード遺伝子)又はその遺伝子発現調節領域(e.g.プロモータ領域)の破壊等の手法により実現することができる。 Furthermore, in some embodiments, the microorganism according to the present invention may have reduced or inactivated wild-type α-isopropylmalate synthase activity. Thus, when the wild-type α-isopropylmalate synthase activity is reduced or inactivated, the microorganism has an adverse effect on the production of the target substance due to the L-leucine feedback inhibition exhibited by the wild-type enzyme. Expression of the modified α-isopropylmalate synthase in which the feedback inhibition is reduced while being eliminated allows the metabolic reaction to the target substance to proceed efficiently. As a result, according to such microorganisms, it is possible to produce the target substance with particularly high yield and productivity. Specifically, the reduction or inactivation of wild-type α-isopropylmalate synthase activity in microorganisms is performed by leuA present on the genome or its homolog gene (wild-type α-isopropylmalate synthase-encoding gene) or regulation of gene expression thereof. It can be realized by a technique such as disruption of the region (e.g. promoter region).
 本発明の更なる他の態様によれば、上述のとおり、(I)本発明に係る前記微生物を所定の培地又は反応媒体で培養し又は反応せしめることにより目的物質を産生すること;並びに(II)該目的物質を回収すること、を含む、目的物質を生産する方法が提供される。特定の実施形態においては、目的物質を生産する方法は、(I)本発明に係る前記微生物のうちL-ロイシンを生産し得るコリネ型細菌を培地で培養し又は反応せしめてL-ロイシン又は代謝経路上L-ロイシンから誘導される代謝産物を生産する工程と、(b)前記微生物又は培養培地から、工程(II)で生産した前記L-ロイシン又は代謝産物を回収する工程とを含んでもよい。 According to still another aspect of the present invention, as described above, (I) producing the target substance by culturing or reacting the microorganism according to the present invention in a predetermined medium or reaction medium; ) recovering the target substance. In a specific embodiment, the method for producing a target substance comprises (I) culturing or reacting coryneform bacteria capable of producing L-leucine among the microorganisms according to the present invention in a medium to produce L-leucine or metabolize L-leucine. (b) recovering the L-leucine or metabolite produced in step (II) from the microorganism or culture medium; .
 「培養」とは、一般的には、前記微生物を好適に調節された環境条件で生育させることを意味するが、本発明における「培養し又は反応せしめる」とは、このような一般的な意味の培養に限定されず、例えば、前記微生物の実質的な増殖を伴わず、当該微生物の代謝の少なくとも一部を機能せしめることにより上記目的物質の生産を実現し得る培養又は反応の態様をも包含する。本発明における培養し又は反応過程は、当該技術分野で公知の好適な培地・反応媒体と培養条件とを採用することにより行うことができる。このような培養・反応過程は、当業者であれば選択される菌株に応じて容易に調整して用いることができる。具体的には、前記培養又は反応、すなわち工程(I)は、回分、連続及び流加培養であってもよいが、これらに限定されるものではない。 "Culturing" generally means growing the microorganism under suitably controlled environmental conditions, and "cultivating or reacting" in the present invention has such a general meaning. but not limited to the culture of, for example, culture or reaction modes that can realize the production of the target substance by allowing at least a part of the metabolism of the microorganism to function without substantial growth of the microorganism. do. The culturing or reaction process in the present invention can be carried out by employing suitable media/reaction media and culturing conditions known in the art. Such a culture/reaction process can be easily adjusted and used according to the strain selected by those skilled in the art. Specifically, the culture or reaction, ie step (I), may be, but is not limited to, batch, continuous and fed-batch culture.
 さらに、工程(I)において、本発明に係る微生物が目的物質を生成し得る限り、培養又は反応の条件は限定されるものではないが、目的物質として例えばL-ロイシン又はこれから誘導される代謝産物を生産する場合には、一般的には、工程(I)は、微好気条件又は好気条件下で実行されることが好ましい。いくつかの実施形態では、工程(I)を、前記所定の培地又は反応媒体の溶存酸素濃度(DO)が、約0~約60ppm、好ましくは約0ppm~約40ppm、例えば約0ppm~約8.0ppmの範囲となるように工程(I)を実行する。別の実施形態においては、該溶存酸素濃度(DO)が約0ppm~約2ppm、好ましくは約0~約1ppm、より好ましくは0~0.5ppmの範囲となるように工程(I)を実行してもよい。さらに、特定の実施形態においては、ORP(酸化-還元電位)が約-500mV~約700mV、約-500mV~約550mV、約-400mV~約500mV、約-400mV~約400mV、約-350mV~約350mV、約-300mV~約300mV、約-250mV~約200mV、又は約-250mV~約100mVの範囲となるように工程(I)を実行する。一般的に、コリネ型細菌等の高密度で培養可能な微生物を利用する場合、 大気による通気・攪拌を伴う微好気又は好気条件下で工程(I)を行うと、培養又は反応開始後、培地又は反応媒体のDO及びORPは、微生物の増殖と共に低下していき、十分に増殖して以降、DO値はほぼゼロになり、ORP値は約-300mV~約-200mVの範囲に低下する。ただし、利用する微生物の種類や性質、通期攪拌等の各種条件によっては、DOがゼロにならないこともあり、本発明は、上記数値範囲によって限定されるものでもない。 Furthermore, in step (I), the culture or reaction conditions are not limited as long as the microorganism according to the present invention can produce the target substance. When producing , it is generally preferred that step (I) is carried out under microaerobic or aerobic conditions. In some embodiments, step (I) is performed at a concentration of dissolved oxygen (DO) of said predetermined culture medium or reaction medium from about 0 to about 60 ppm, preferably from about 0 ppm to about 40 ppm, such as from about 0 ppm to about 8.0 ppm. Carry out step (I) so that the range is 0 ppm. In another embodiment, step (I) is carried out such that the dissolved oxygen concentration (DO) ranges from about 0 ppm to about 2 ppm, preferably from about 0 to about 1 ppm, more preferably from 0 to 0.5 ppm. may Further, in certain embodiments, the ORP (oxidation-reduction potential) is about -500 mV to about 700 mV, about -500 mV to about 550 mV, about -400 mV to about 500 mV, about -400 mV to about 400 mV, about Perform step (I) to a range of 350 mV, from about -300 mV to about 300 mV, from about -250 mV to about 200 mV, or from about -250 mV to about 100 mV. In general, when using microorganisms that can be cultured at high density, such as coryneform bacteria, if step (I) is performed under microaerobic or aerobic conditions with air aeration and agitation, , the DO and ORP of the medium or reaction medium decrease with the growth of the microorganism, and after sufficient growth, the DO value becomes almost zero and the ORP value decreases to the range of about -300 mV to about -200 mV. . However, the DO may not be zero depending on the type and properties of the microorganisms used and various conditions such as stirring throughout the period, and the present invention is not limited by the above numerical range.
 特定の実施形態においては、目的物質は、(2S)-2-イソプロピルマレート、2-イソプロピルマレート、(2R,3S)-3-イソプロピルマレート、(2S)-2-イソプロピル-3-オキソサクシネート、4-メチル-2-オキソペンタノエート若しくはL-ロイシン又は生合成経路上これらの化合物を経由する代謝産物である。図1に示されるとおり、(2S)-2-イソプロピルマレートないしL-ロイシンまでの該化合物は、微生物が有し得るL-ロイシン生合成経路における代謝物である。図1に説明されるとおり、上記L-ロイシン生合成経路における最終産物であるL-ロイシンにより、3-メチル-2-オキソブタノエート + アセチルCoA + HO = (2S)-2-イソプロピルマレート + CoA + Hの反応式で表される反応を触媒し得る野生型IPMSの活性をフィードバック阻害してしまうが、本発明は、野生型IPMSに加え/代替して、L-ロイシンフィードバック阻害耐性を有する改変型α-イソプロピルマレートシンターゼを構成要素として採用していることから、目的物質を高い収率と生産性とをもって生産することができる。 In certain embodiments, the target substance is (2S)-2-isopropylmalate, 2-isopropylmalate, (2R,3S)-3-isopropylmalate, (2S)-2-isopropyl-3-oxo Succinate, 4-methyl-2-oxopentanoate or L-leucine, or metabolites via these compounds on the biosynthetic pathway. As shown in FIG. 1, the compounds from (2S)-2-isopropylmalate to L-leucine are metabolites in the L-leucine biosynthetic pathway that microorganisms may have. As illustrated in FIG. 1, L-leucine, the final product in the L-leucine biosynthetic pathway, leads to 3-methyl-2-oxobutanoate + acetyl-CoA + H 2 O = (2S)-2-isopropyl Although feedback inhibits the activity of wild-type IPMS that can catalyze the reaction represented by the reaction formula of malate + CoA + H + , the present invention provides L-leucine feedback in addition to/instead of wild-type IPMS. Since the modified α-isopropylmalate synthase having inhibition resistance is employed as a component, the target substance can be produced with high yield and productivity.
 本発明に係る目的物質を生産する方法において、工程(I)で生成した標的物質(例えばL-ロイシン又はこれから誘導される下流代謝産物)を回収する方法としては、特に限定されるものでもないが、培養・反応方法に応じて、当該分野で公知の好適な方法を用いて微生物又は培地若しくは反応媒体から目的物質(e.g.L-ロイシン又はその前駆体、派生物若しくは誘導体)を回収することができる。例えば、遠心分離、濾過、陰イオン交換クロマトグラフィー、結晶化、HPLCなどが用いられ、当該分野で公知の好適な方法を用いて微生物又は培地若しくは反応媒体から前記目的物質を回収することができる。また、前記(II)に係る回収工程は、前記目的物質を含む画分や粗生成物を回収する工程を包含するものであるが、特定の実施形態では、1又は複数の方法により該目的物質を精製する工程を更に含んでもよい。 In the method for producing a target substance according to the present invention, the method for recovering the target substance produced in step (I) (for example, L-leucine or a downstream metabolite derived therefrom) is not particularly limited. , recovering the target substance (e.g. L-leucine or its precursor, derivative or derivative) from the microorganism or medium or reaction medium using a suitable method known in the art, depending on the culture/reaction method be able to. For example, centrifugation, filtration, anion exchange chromatography, crystallization, HPLC, etc., can be used to recover the target substance from the microorganism or culture medium or reaction medium using suitable methods known in the art. In addition, the recovery step according to (II) includes a step of recovering a fraction containing the target substance or a crude product. may further include a step of purifying the
 以下、実施例を挙げて本出願をより詳細に説明する。しかし、これらの実施例は本出願を例示的に説明するためのものであり、本出願がこれらの実施例に限定されるものではない。 The present application will be described in more detail below with examples. However, these examples are for the purpose of illustratively describing the present application, and the present application is not limited to these examples.
(1)発現プラスミドベクターの作製
 コリネ型細菌のIPMS遺伝子アミノ酸配列(UniprotKB:P42455)を取得し、人工遺伝子合成により5’末端および3’末端に制限酵素NdeIおよびBamHI認識配列を付加した塩基配列からなるDNAを合成した。このDNAをNdeI及びBamHIで切断して得たDNA断片を、発現ベクターであるpGE409(WO2020090016A1)を同様の制限酵素で切断した断片と混合し、T4DNAリガーゼ(NEB)でライゲーションした。得られたプラスミドをpGE1835と命名した。
(1) Preparation of Expression Plasmid Vector The IPMS gene amino acid sequence of coryneform bacterium (UniprotKB: P42455) was obtained, and restriction enzymes NdeI and BamHI recognition sequences were added to the 5′ and 3′ ends by artificial gene synthesis. synthesized DNA. A DNA fragment obtained by cleaving this DNA with NdeI and BamHI was mixed with a fragment obtained by cleaving the expression vector pGE409 (WO2020090016A1) with the same restriction enzymes and ligated with T4 DNA ligase (NEB). The resulting plasmid was named pGE1835.
(2)変異導入
 所定の各種プライマーペアーを使用し、WO2019156152A1に記載された方法と同様の方法によりpGE1835をテンプレートとして変異導入を行い、下記の表2に示す変異導入プラスミドを取得した。
Figure JPOXMLDOC01-appb-T000002
(2) Mutagenesis Mutagenesis was performed using various predetermined primer pairs and pGE1835 as a template in the same manner as described in WO2019156152A1 to obtain mutagenesis plasmids shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000002
(3)変異導入2(3重変異体をベースとした各残基の許容性評価)
 所定の各種プライマーペアーを使用し、WO2019156152A1に記載された方法と同様の方法によりpGE1881をテンプレートとして変異導入を行った。
(3) Mutagenesis 2 (permissive evaluation of each residue based on triple mutants)
Mutagenesis was performed using various predetermined primer pairs and pGE1881 as a template by the same method as described in WO2019156152A1.
(4)ΔleuA株の作製
 コリネバクテリウム・グルタミカムの染色体遺伝子組み換えは、WO2019156152A1に記載の方法で行った。
(4) Preparation of ΔleuA strain Chromosome gene recombination of Corynebacterium glutamicum was performed by the method described in WO2019156152A1.
 染色体遺伝子組み換え用プラスミドは、所定の各種プライマーペアーを用いてコリネバクテリウム・グルタミカムATCC13032のゲノムDNAを鋳型にPCRを行い、KpnIおよびBamHIで切断したpGE209(WO2019156152A1)のDNA断片をIn-Fusion HD Cloning Kitを用いて環状に連結させることにより、プラスミドベクターpGE1781を取得した。 Plasmids for chromosome gene recombination were obtained by performing PCR using the genomic DNA of Corynebacterium glutamicum ATCC13032 as a template, using various predetermined primer pairs, and cloning the DNA fragment of pGE209 (WO2019156152A1) cut with KpnI and BamHI. Plasmid vector pGE1781 was obtained by circular ligation using Kit.
 pGE1781をコリネバクテリウム・グルタミカムATCC13032株にエレクトロポレーションにより導入し、WO2019156152A1に記載のマーカーレス遺伝子組み換え法によりΔleuA株を作製した。 pGE1781 was introduced into Corynebacterium glutamicum ATCC13032 strain by electroporation, and ΔleuA strain was produced by the markerless genetic recombination method described in WO2019156152A1.
(5)IPMS変異体過剰発現株
 ΔleuA株に表3、4に記載の各発現プラスミドをエレクトロポレーションし、カナマイシンでセレクションすることで変異型IPMSの過剰発現株を得た。
(5) IPMS Mutant Overexpressing Strain The ΔleuA strain was electroporated with each expression plasmid shown in Tables 3 and 4 and selected with kanamycin to obtain a mutant IPMS overexpressing strain.
(6)培養
 得られた形質転換体をA寒天培地(WO2020090016A1)にストリークして33℃で24時間培養し、増殖した菌体を、25μg/mL Kmを加えた生産培地10mLにOD610=0.2になるように植菌し、33℃,200rpmで24時間振盪培養した。培養終了後に、培養液を遠心分離して上清とペレットを分離し、上清中のL-ロイシンの濃度は高速液体クロマトグラフィーにより(WO2020090016A1)に記載の方法に従って分析した。ペレットは破砕用バッファー(50mM Tris(7.5), 100 mM KCl, 1mM EDTA)で懸濁し、(WO2020090016A1)に記載の方法に従いビーズショッカーで細胞を破砕した。細胞破砕液のタンパク質濃度はブラッドフォード法に従って定量した。細胞破砕液中のイソプロピルリンゴ酸合成酵素の酵素活性は、100 mM Tris-HCl (pH 7.5), 2 mM 4-PDS(4,4′-Dithiodipyridine), 2 mM Acetyl-CoA, 2 mM 3-メチル-2-オキソブタン酸に細胞破砕液を混ぜ、遊離したCoAが4-PDSと反応して4-thiopyridineが生成されることによる324 nmの吸光度変化を測定した。L-ロイシンによるフィードバック阻害の測定のためには、反応液に10 mMのL-ロイシンを添加した。
(6) Cultivation The resulting transformant was streaked on A agar medium (WO2020090016A1) and cultured at 33° C. for 24 hours. 2, and cultured with shaking at 33° C. and 200 rpm for 24 hours. After the culture was completed, the culture medium was centrifuged to separate the supernatant from the pellet, and the concentration of L-leucine in the supernatant was analyzed by high performance liquid chromatography (WO2020090016A1) according to the method described in (WO2020090016A1). The pellet was suspended in a disruption buffer (50 mM Tris (7.5), 100 mM KCl, 1 mM EDTA), and cells were disrupted with a bead shocker according to the method described in (WO2020090016A1). The protein concentration of the cell lysate was quantified according to the Bradford method. The enzymatic activity of isopropylmalate synthase in cell lysate was 100 mM Tris-HCl (pH 7.5), 2 mM 4-PDS (4,4'-Dithiodipyridine), 2 mM Acetyl-CoA, 2 mM 3 -Methyl-2-oxobutanoic acid was mixed with the cell lysate, and the change in absorbance at 324 nm due to the reaction of liberated CoA with 4-PDS to produce 4-thiopyridine was measured. For measurements of feedback inhibition by L-leucine, 10 mM L-leucine was added to the reaction.
<生産培地>
 グルコース40g,(NHSO 20g,尿素 5g,KHPO 1g,KHPO 1g,MgSO・7HO 0.25g, MOPS 42g,CaCl 10mg,FeSO・7HO 10mg,MnSO・HO 10mg,ZnSO・7HO 1mg,CuSO 0.2mg,NiCl・6HO 0.02mg,ビオチン 0.2mg,チアミン塩酸塩 0.2mg,PCA 30mg/L,pH7.4
<Production medium>
Glucose 40g, ( NH4) 2SO4 20g, urea 5g, KH2PO4 1g, K2HPO4 1g , MgSO4.7H2O 0.25g , MOPS 42g , CaCl2 10mg , FeSO4.7H2O 10 mg, MnSO4.H2O 10 mg, ZnSO4.7H2O 1 mg, CuSO4 0.2 mg, NiCl2.6H2O 0.02 mg, biotin 0.2 mg, thiamine hydrochloride 0.2 mg, PCA 30 mg/L , pH 7.4
(7)変異体の性能試験1
 野生型および変異型のIPMSをΔleuA株へのプラスミド導入により過剰発現した菌株を用いて、L-ロイシンの生産、IPMSの活性およびL-ロイシン存在下におけるIPMSの残存活性を比較した。
(7) Mutant performance test 1
Using strains in which wild-type and mutant IPMS were overexpressed by plasmid introduction into the ΔleuA strain, L-leucine production, IPMS activity, and IPMS residual activity in the presence of L-leucine were compared.
 表3に示すとおり、コリネ型細菌の持つIPMSにおいてもロイシン結合部位周辺の残基へ変異を導入することにより、L-ロイシン生産能を保持すると共に、L-ロイシンに対するフィードバック阻害耐性を獲得した変異型IPMSを取得することができた。しかし、これらの変異をそれぞれ組み合わせた二重変異体を作製したところ、L-ロイシンに対するフィードバック阻害耐性は高かったものの、L-ロイシン生産量およびIPMS活性は大きく低下した。さらに、3つの変異を全て導入した三重変異体を作製したところ、予期せぬことに高いIPMS活性とL-ロイシンに対するフィードバック阻害耐性を維持し、一重変異体と比較しても顕著なL-ロイシン生産量の増加が観察された。 As shown in Table 3, by introducing mutations to residues around the leucine-binding site in IPMS possessed by coryneform bacteria, L-leucine-producing ability is maintained and feedback inhibition resistance to L-leucine is acquired. type IPMS could be obtained. However, when a double mutant was prepared by combining these mutations, the resistance to feedback inhibition against L-leucine was high, but the L-leucine production amount and IPMS activity were greatly reduced. Furthermore, when we created a triple mutant in which all three mutations were introduced, we unexpectedly maintained high IPMS activity and feedback inhibition resistance to L-leucine, and L-leucine which is remarkable compared to the single mutant. An increase in production was observed.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
(8)変異体の性能試験2
 三重変異体のそれぞれの残基について、他のアミノ酸残基への変異でも同様の効果が得られるかどうかの検証のため、各残基を異なるアミノ酸残基へ置換し、ΔleuA株へプラスミド導入した過剰発現株を用いて、L-ロイシンの生産、IPMSの活性およびL-ロイシン存在下におけるIPMSの残存活性を比較した。その結果を表4に示す。
(8) Mutant performance test 2
For each residue of the triple mutant, each residue was replaced with a different amino acid residue to verify whether the same effect could be obtained by mutating to other amino acid residues, and the plasmid was introduced into the ΔleuA strain. Using overexpression strains, L-leucine production, IPMS activity, and IPMS residual activity in the presence of L-leucine were compared. Table 4 shows the results.
 全ての変異体において高いL-ロイシンフィードバック阻害耐性を維持したが、L-ロイシン生産量とIPMS活性は変異型によって大きく異なり、フィードバック阻害に耐性のある酵素さえ得られれば高いL-ロイシン生産性が得られるわけではないことが分かった。 All mutants maintained high resistance to L-leucine feedback inhibition, but the L-leucine production amount and IPMS activity differed greatly depending on the mutant type, and high L-leucine productivity was obtained if even an enzyme resistant to feedback inhibition was obtained. It turns out that you don't get it.
 野生型酵素と比較すると、G530D、G530E、G530K、G530A、G530V、G530N、G530C、G530P、G530R、G530L、G530I、G530T、G530H、G532D、G532A、G532V、G532P、G532L、G532I、G532T、G532H、A535T、A535S、A535V、A535K、A535D、A535F、A535G、A535L、A535I、A535Hのそれぞれの位置における変異の組み合わせによりL-ロイシン生産量の増加に効果のあるIPMSの性能向上が期待できる。 G530D, G530E, G530K, G530A, G530V, G530N, G530C, G530P, G530R, G530L, G530I, G530T, G530H, G532D, G532A, G532V, G532P, G532L, G532T, G532T, G532T, G532T, G530D, G530E, G530K, G530A, G530V, G530N, G530C, G530P, G530R, G530L, G530I, G530T, G530H, G532D, G532A, G532V, G532P, G532L, G532T, G532T, G5322 , A535S, A535V, A535K, A535D, A535F, A535G, A535L, A535I, and A535H are expected to improve the performance of IPMS, which is effective in increasing L-leucine production.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 本発明は、各種化学物質の工業生産の分野において高い産業上の利用可能性を有する。 The present invention has high industrial applicability in the field of industrial production of various chemical substances.

Claims (23)

  1. 下記の(A)~(C)の何れかに規定されるアミノ酸配列を含み、かつ配列番号2に示すアミノ酸配列からなるタンパク質と比較して、L-ロイシンフィードバック阻害が低減された改変型α-イソプロピルマレートシンターゼ:
    (A)配列番号2に示すアミノ酸配列において、下記の(a)~(c)から選択される少なくとも2つの置換を有してなるアミノ酸配列;
    (B)配列番号2に示すアミノ酸配列に対し60%以上の配列同一性を有し、かつ下記の(a)~(c)から選択される少なくとも2つの置換を含む、アミノ酸配列; 
    (C)配列番号2に示すアミノ酸配列において、下記の(a)~(c)から選択される少なくとも2つの置換を含み、かつ該少なくとも2つの置換が位置する部位を除く部位に1若しくは複数のアミノ酸が欠失、置換、挿入若しくは付加されたアミノ酸配列、
    (a)第530番目のグリシン残基のグリシン残基以外のアミノ酸残基への置換、
    (b)第532番目のグリシン残基のグリシン残基以外のアミノ酸残基への置換、及び
    (c)第535番目のアラニン残基のアラニン残基以外のアミノ酸残基への置換。
    A modified α-type having reduced L-leucine feedback inhibition as compared with a protein comprising the amino acid sequence defined in any of the following (A) to (C) and consisting of the amino acid sequence shown in SEQ ID NO: 2. Isopropyl malate synthase:
    (A) an amino acid sequence having at least two substitutions selected from the following (a) to (c) in the amino acid sequence shown in SEQ ID NO: 2;
    (B) an amino acid sequence having a sequence identity of 60% or more to the amino acid sequence shown in SEQ ID NO: 2 and containing at least two substitutions selected from (a) to (c) below;
    (C) the amino acid sequence shown in SEQ ID NO: 2, containing at least two substitutions selected from the following (a) to (c), and one or more at sites excluding the sites where the at least two substitutions are located amino acid sequences in which amino acids have been deleted, substituted, inserted or added;
    (a) replacement of the 530th glycine residue with an amino acid residue other than a glycine residue;
    (b) replacement of the 532nd glycine residue with an amino acid residue other than a glycine residue; and (c) replacement of the 535th alanine residue with an amino acid residue other than an alanine residue.
  2. 上記(B)に規定のアミノ酸配列は、配列番号2に示すアミノ酸配列に対し84%以上の配列同一性を有するアミノ酸配列である、請求項1に記載の改変型α-イソプロピルマレートシンターゼ。 2. The modified α-isopropylmalate synthase according to claim 1, wherein the amino acid sequence defined in (B) above has 84% or more sequence identity with the amino acid sequence shown in SEQ ID NO:2.
  3. 上記(B)に規定のアミノ酸配列は、配列番号2に示すアミノ酸配列に対し90%以上の配列同一性を有するアミノ酸配列である、請求項1又は2に記載の改変型α-イソプロピルマレートシンターゼ。 3. The modified α-isopropylmalate synthase according to claim 1 or 2, wherein the amino acid sequence defined in (B) above is an amino acid sequence having 90% or more sequence identity with the amino acid sequence shown in SEQ ID NO: 2. .
  4. 上記(a)~(c)に規定の置換全てを含む、請求項1~3の何れか1項に記載の改変型α-イソプロピルマレートシンターゼ。 The modified α-isopropylmalate synthase according to any one of claims 1 to 3, comprising all the substitutions defined in (a) to (c) above.
  5. 上記(A)又は(C)に規定されるアミノ酸配列を含む、請求項4に記載の改変型α-イソプロピルマレートシンターゼ。 5. The modified α-isopropylmalate synthase according to claim 4, comprising the amino acid sequence defined in (A) or (C) above.
  6. 対応する野生型2-イソプロピルマレートシンターゼと比較して、L-ロイシンフィードバック阻害を低減する少なくとも1つのアミノ酸変異を有し、
    上記少なくとも1つのアミノ酸変異が、配列番号2に示すアミノ酸配列を基準として、下記の(a’)~(c’)から選択される少なくとも2つの置換を含む、改変型α-イソプロピルマレートシンターゼ:
    (a’)第530番目のグリシン残基に相当するアミノ酸残基のグリシン残基以外のアミノ酸残基への置換;
    (b’)第532番目のグリシン残基に相当するアミノ酸残基のグリシン残基以外のアミノ酸残基への置換;及び
    (c’)第535番目のアラニン残基に相当するアミノ酸残基のアラニン残基以外のアミノ酸残基への置換。
    having at least one amino acid mutation that reduces L-leucine feedback inhibition compared to the corresponding wild-type 2-isopropyl malate synthase;
    A modified α-isopropyl malate synthase in which the at least one amino acid mutation comprises at least two substitutions selected from the following (a′) to (c′) based on the amino acid sequence shown in SEQ ID NO: 2:
    (a') substitution of an amino acid residue corresponding to the 530th glycine residue with an amino acid residue other than the glycine residue;
    (b′) substitution of the amino acid residue corresponding to the 532nd glycine residue with an amino acid residue other than the glycine residue; and (c′) alanine of the amino acid residue corresponding to the 535th alanine residue Substitutions to amino acid residues other than residues.
  7. 上記少なくとも1つのアミノ酸変異が、上記(a’)~(c’)に規定の置換全てを含む、請求項6に記載の改変型α-イソプロピルマレートシンターゼ。 7. The modified α-isopropylmalate synthase according to claim 6, wherein said at least one amino acid mutation comprises all the substitutions defined in (a') to (c') above.
  8. コリネバクテリウム属細菌に由来する野生型2-イソプロピルマレートシンターゼのアミノ酸配列において上記少なくとも2つの置換を有してなるアミノ酸配列を含む、請求項1~7の何れか1項に記載の改変型α-イソプロピルマレートシンターゼ。 The modified form according to any one of claims 1 to 7, comprising an amino acid sequence having at least two substitutions in the amino acid sequence of a wild-type 2-isopropylmalate synthase derived from a bacterium belonging to the genus Corynebacterium. α-Isopropylmalate synthase.
  9. 上記少なくとも2つの置換が、下記の(d)~(f)から選択される少なくとも2つの置換である、請求項1~8の何れか1項に記載の改変型α-イソプロピルマレートシンターゼ:
    (d)第530番目のグリシン残基又は当該グリシン残基に相当するアミノ酸残基のアスパラギン酸残基、グルタミン酸残基、リジン残基、アラニン残基、バリン残基、グルタミン残基、システイン残基、プロリン残基、アルギニン残基、ロイシン残基、イソロイシン残基、スレオニン残基又はヒスチジン残基への置換;
    (e)第532番目のグリシン残基又は当該グリシン残基に相当するアミノ酸残基のアスパラギン酸残基、アラニン残基、バリン残基、プロリン残基、ロイシン残基、イソロイシン残基、スレオニン残基又はヒスチジン残基への置換;及び
    (f)第535番目のアラニン残基又は当該アラニン残基に相当するアミノ酸残基のスレオニン残基、セリン残基、バリン残基、リジン残基、アスパラギン酸残基、フェニルアラニン残基、グリシン残基、ロイシン残基、イソロイシン残基又はヒスチジン残基への置換。
    The modified α-isopropylmalate synthase according to any one of claims 1 to 8, wherein the at least two substitutions are at least two substitutions selected from (d) to (f) below:
    (d) aspartic acid residue, glutamic acid residue, lysine residue, alanine residue, valine residue, glutamine residue, cysteine residue of the 530th glycine residue or an amino acid residue corresponding to the glycine residue , proline, arginine, leucine, isoleucine, threonine or histidine residues;
    (e) aspartic acid residue, alanine residue, valine residue, proline residue, leucine residue, isoleucine residue, threonine residue of the 532nd glycine residue or an amino acid residue corresponding to the glycine residue or substitution with a histidine residue; and (f) a threonine residue, serine residue, valine residue, lysine residue, aspartic acid residue of the 535th alanine residue or an amino acid residue corresponding to the alanine residue groups, phenylalanine residues, glycine residues, leucine residues, isoleucine residues or histidine residues.
  10. 上記(d)~(f)に規定の置換全てを含む、請求項9に記載の改変型α-イソプロピルマレートシンターゼ。 10. The modified α-isopropylmalate synthase according to claim 9, which contains all the substitutions specified in (d) to (f) above.
  11. 上記(A)又は(C)に規定されるアミノ酸配列を含む、請求項10に記載の改変型α-イソプロピルマレートシンターゼ。 11. The modified α-isopropylmalate synthase according to claim 10, comprising the amino acid sequence defined in (A) or (C) above.
  12. 上記少なくとも2つの置換が、下記の(g)~(j)から選択される少なくとも2つの置換である、請求項1~11の何れか1項に記載の改変型α-イソプロピルマレートシンターゼ:
    (g)第530番目のグリシン残基又は当該グリシン残基に相当するアミノ酸残基のアスパラギン酸残基への置換;
    (h)第532番目のグリシン残基又は当該グリシン残基に相当するアミノ酸残基のアスパラギン酸残基への置換;及び
    (j)第535番目のアラニン残基又は当該アラニン残基に相当するアミノ酸残基のスレオニン残基、バリン残基、グリシン残基、ロイシン残基又はイソロイシン残基への置換。
    The modified α-isopropylmalate synthase according to any one of claims 1 to 11, wherein the at least two substitutions are at least two substitutions selected from (g) to (j) below:
    (g) replacement of the 530th glycine residue or an amino acid residue corresponding to the glycine residue with an aspartic acid residue;
    (h) substitution of the 532nd glycine residue or an amino acid residue corresponding to the glycine residue with an aspartic acid residue; and (j) the 535th alanine residue or an amino acid corresponding to the alanine residue Substitution of residues for threonine, valine, glycine, leucine or isoleucine residues.
  13. 上記(g)~(j)に規定の置換全てを含む、請求項12に記載の改変型α-イソプロピルマレートシンターゼ。 13. The modified α-isopropylmalate synthase according to claim 12, comprising all the substitutions specified in (g) to (j) above.
  14. 上記(A)又は(C)に規定されるアミノ酸配列を含む、請求項13に記載の改変型α-イソプロピルマレートシンターゼ。 14. The modified α-isopropylmalate synthase according to claim 13, comprising the amino acid sequence defined in (A) or (C) above.
  15. 請求項1~14の何れか1項に記載の改変型α-イソプロピルマレートシンターゼをコードするポリヌクレオチド。 A polynucleotide encoding the modified α-isopropylmalate synthase according to any one of claims 1 to 14.
  16. 請求項15に記載のポリヌクレオチドが導入された、微生物。 A microorganism into which the polynucleotide of claim 15 has been introduced.
  17. 請求項1~14のいずれか1項に記載の改変型α-イソプロピルマレートシンターゼを含む、微生物。 A microorganism comprising the modified α-isopropylmalate synthase according to any one of claims 1-14.
  18. コリネ型細菌である、請求項16又は17に記載の微生物。 18. The microorganism according to claim 16 or 17, which is a coryneform bacterium.
  19. コリネバクテリウム・グルタミカムである、請求項18に記載の微生物。 19. The microorganism of claim 18, which is Corynebacterium glutamicum.
  20. 野生型α-イソプロピルマレートシンターゼ活性が低減され又は不活化された、請求項16~19の何れか1項に記載の微生物。 The microorganism according to any one of claims 16 to 19, wherein wild-type α-isopropylmalate synthase activity is reduced or inactivated.
  21. (I)請求項16~20の何れか1項に記載の微生物を所定の培地又は反応媒体で培養し又は反応せしめることにより目的物質を産生すること;並びに
    (II)該目的物質を回収すること、
    を含む、目的物質を生産する方法。
    (I) producing a target substance by culturing or reacting the microorganism according to any one of claims 16 to 20 in a predetermined medium or reaction medium; and (II) recovering the target substance. ,
    A method of producing a desired substance, comprising
  22. 上記目的物質が、(2S)-2-イソプロピルマレート、2-イソプロピルマレート、(2R,3S)-3-イソプロピルマレート、(2S)-2-イソプロピル-3-オキソサクシネート、4-メチル-2-オキソペンタノエート若しくはL-ロイシン又は生合成経路上これらの化合物を経由する代謝産物である、請求項21に記載の方法。 The target substance is (2S)-2-isopropyl malate, 2-isopropyl malate, (2R,3S)-3-isopropyl malate, (2S)-2-isopropyl-3-oxosuccinate, 4-methyl -2-oxopentanoate or L-leucine or a metabolite via these compounds on the biosynthetic pathway.
  23. 上記目的物質が、L-ロイシン又はこれから誘導される代謝産物である、請求項21又は22に記載の方法。

     
    The method according to claim 21 or 22, wherein the target substance is L-leucine or a metabolite derived therefrom.

PCT/JP2022/013788 2021-03-29 2022-03-24 MODIFIED α-ISOPROPYLMALATE SYNTHASE WO2022210228A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280025165.7A CN117460829A (en) 2021-03-29 2022-03-24 Modified alpha-isopropyl malate synthase

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021054521A JP2024075803A (en) 2021-03-29 Modified α-isopropylmalate synthase
JP2021-054521 2021-03-29

Publications (1)

Publication Number Publication Date
WO2022210228A1 true WO2022210228A1 (en) 2022-10-06

Family

ID=83458736

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/013788 WO2022210228A1 (en) 2021-03-29 2022-03-24 MODIFIED α-ISOPROPYLMALATE SYNTHASE

Country Status (2)

Country Link
CN (1) CN117460829A (en)
WO (1) WO2022210228A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001037494A (en) * 1999-07-09 2001-02-13 Ajinomoto Co Inc Dna encoding variant isopropyl maleate synthase, l- leucine-producing microorganism and production of l- leucine
JP2015514431A (en) * 2012-04-27 2015-05-21 エボニック インダストリーズ アクチエンゲゼルシャフトEvonik Industries AG Feedback resistant alpha-isopropylmalate synthase
JP2015529459A (en) * 2012-08-22 2015-10-08 フォルシュングスツェントルム・ユーリッヒ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Method for producing a vector containing a gene encoding an enzyme with reduced or turned off feedback inhibition and its use for producing amino acids and nucleotides
CN109456987A (en) * 2018-10-26 2019-03-12 天津科技大学 The related gene and engineering bacteria construction method of high yield L-Leu and application
JP2020503045A (en) * 2016-12-28 2020-01-30 シージェイ チェイルジェダン コーポレーション Novel mutant isopropylmalate synthase and method for producing L-leucine using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001037494A (en) * 1999-07-09 2001-02-13 Ajinomoto Co Inc Dna encoding variant isopropyl maleate synthase, l- leucine-producing microorganism and production of l- leucine
JP2015514431A (en) * 2012-04-27 2015-05-21 エボニック インダストリーズ アクチエンゲゼルシャフトEvonik Industries AG Feedback resistant alpha-isopropylmalate synthase
JP2015529459A (en) * 2012-08-22 2015-10-08 フォルシュングスツェントルム・ユーリッヒ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Method for producing a vector containing a gene encoding an enzyme with reduced or turned off feedback inhibition and its use for producing amino acids and nucleotides
JP2020503045A (en) * 2016-12-28 2020-01-30 シージェイ チェイルジェダン コーポレーション Novel mutant isopropylmalate synthase and method for producing L-leucine using the same
CN109456987A (en) * 2018-10-26 2019-03-12 天津科技大学 The related gene and engineering bacteria construction method of high yield L-Leu and application

Also Published As

Publication number Publication date
CN117460829A (en) 2024-01-26

Similar Documents

Publication Publication Date Title
CN108884449B (en) Novel isopropylmalate synthase variants and method for producing L-leucine using same
EP3597738B1 (en) Modified homoserine dehydrogenase, and method for producing homoserine or homoserine-derived l-amino acid using same
KR20130072183A (en) Method of producing l-lysine using microorganism having ability to produce l-lysine
EP3690036A1 (en) Modified homoserine dehydrogenase, and method for producing homoserine or homoserine-derived l-amino acid using same
JP2023503077A (en) Novel branched-chain amino acid aminotransferase mutant and method for producing leucine using the same
CN113249347A (en) Mutants of pyruvate dehydrogenase and methods for producing L-amino acids using the same
KR101359844B1 (en) Recombinant microorganism producing quinolinic acid and method of producing quinolinic acid using the same
DK2430152T3 (en) A microorganism with increased L-lysine productivity and method for producing L-lysine using the same
CN110997899B (en) Heterologous expression of thermophilic lysine decarboxylase and uses thereof
CN109790557B (en) Controlling biofilm dispersion to produce amino acids or amino acid-derived products
CN111406104B (en) Reduction of accumulation of imine/enamine for production of amino acid or amino acid derivative products
WO2022210228A1 (en) MODIFIED α-ISOPROPYLMALATE SYNTHASE
EP4230723A1 (en) Polypeptide with aspartate kinase activity and use thereof in production of amino acid
CN113278620B (en) Mutant hypertonic inducible promoter Pprox and application thereof
KR102589135B1 (en) Microorganism having inhanced activity of 3-methyl-2-oxobutanoate hydroxymethyltransferase and uses thereof
JP7214952B2 (en) Ornithine decarboxylase mutant and method for producing putrescine using the same
KR102233376B1 (en) A modified polypeptide of meso-diaminopimelate dehydrogenase and a method for producing L- threonine using the same
CN116888141A (en) GLXR protein variants or methods of producing threonine using same
CN115003807A (en) Novel cysteine sulfinate desulfhydrase variant and method for producing L-valine using the same
JP2018517411A (en) Microorganism producing O-acetylhomoserine and method for producing O-acetylhomoserine using the same
EP2397545B1 (en) Method for producing amino acid
KR102377745B1 (en) Novel promoter and use thereof
JP2024075803A (en) Modified α-isopropylmalate synthase
CN115052976B (en) Novel acetohydroxyacid synthase variants and microorganisms comprising same
WO2008026698A1 (en) Method for production of l-glutamic acid

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22780442

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280025165.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22780442

Country of ref document: EP

Kind code of ref document: A1