KR20180046981A - Hydrogenation treatment method of heavy hydrocarbon fraction - Google Patents

Hydrogenation treatment method of heavy hydrocarbon fraction Download PDF

Info

Publication number
KR20180046981A
KR20180046981A KR1020160142329A KR20160142329A KR20180046981A KR 20180046981 A KR20180046981 A KR 20180046981A KR 1020160142329 A KR1020160142329 A KR 1020160142329A KR 20160142329 A KR20160142329 A KR 20160142329A KR 20180046981 A KR20180046981 A KR 20180046981A
Authority
KR
South Korea
Prior art keywords
catalyst
average temperature
desulfurization
desulfurization catalyst
heavy oil
Prior art date
Application number
KR1020160142329A
Other languages
Korean (ko)
Other versions
KR102560963B1 (en
Inventor
고재현
박영무
석태홍
Original Assignee
에스케이이노베이션 주식회사
에스케이에너지 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이이노베이션 주식회사, 에스케이에너지 주식회사 filed Critical 에스케이이노베이션 주식회사
Priority to KR1020160142329A priority Critical patent/KR102560963B1/en
Publication of KR20180046981A publication Critical patent/KR20180046981A/en
Application granted granted Critical
Publication of KR102560963B1 publication Critical patent/KR102560963B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1077Vacuum residues
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/205Metal content
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4006Temperature

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

Disclosed is a method for processing hydrogenation of heavy oil, which is for efficient utilization of a demetallization catalyst, maximization of the performance of a desulfurization catalyst, an increase in light oil capable of increasing production of heavy oil, and efficient utilization of a catalyst in a process of hydriding heavy oil such as atmospheric residual oil, vacuum residual oil, and the like. The method for processing hydrogenation of heavy oil, which performs hydrogenization in a series reactor divided into a desulfurization catalyst filling unit and a demetallization catalyst filling unit, comprises the steps of: filling a desulfurization catalyst and a demetallization catalyst in the desulfurization catalyst filling unit and the demetallization catalyst filling unit, respectively; adding a sulphidizing agent in the series reactor to perform sulfurization; and performing a hydrogenization processing reaction by adding hydrogen while passing heavy oil through the series reactor. The average temperature of the desulfurization catalyst filled in the desulfurization catalyst filling unit and the average temperature of the demetallization catalyst filled in the demetallization catalyst filling unit are set to be independently controlled. The difference between the average temperatures of the desulfurization catalyst and the demetallization catalyst is maintained at 15 to 50 deg. C.

Description

중질유분의 수소첨가 처리 방법{HYDROGENATION TREATMENT METHOD OF HEAVY HYDROCARBON FRACTION}TECHNICAL FIELD [0001] The present invention relates to a method for hydrotreating a heavy oil component,

본 발명은 중질유분의 수소첨가 처리 방법에 관한 것으로, 보다 상세하게는 상압 잔사유 및 감압 잔사유 등의 중질유분을 수소화 처리하는 공정에서 탈금속 촉매의 효율적인 활용과 탈황 촉매의 성능 최대화와 더불어, 경질유분의 생산량을 증대시킬 수 있는 경질유 증산 및 촉매의 효율적 활용을 위한 중질유분의 수소첨가 처리 방법에 관한 것이다.
More particularly, the present invention relates to a process for hydrotreating a heavy oil fraction such as atmospheric residual oil and reduced-pressure residual oil, The present invention relates to a process for hydrogenation of heavy oil components for efficient utilization of catalysts and for the production of light oils capable of increasing production of light oil components.

일반적으로, 종래의 상업용 정유공장(Commercial Refinery)에서의 수소첨가 처리 공정은 고온 및 고압의 수소 조건에서 탈금속 촉매와 탈황 촉매를 시리즈 반응기에 충진하여 중질유분 내의 황(S), 질소(N), CCR(Conradson Carbon Residue) 및 니켈(Ni), 바나듐(V) 등의 금속을 제거하여 저유황 연료유(L/S Fuel Oil) 또는 후단 중질유접촉분해 공정용 공급원료(Feedstock)를 생산하고 있다.Generally, a conventional hydrogenation treatment process in a commercial refinery is a process in which a desulfurization catalyst and a desulfurization catalyst are packed in a series reactor under high-temperature and high-pressure hydrogen conditions to remove sulfur (S), nitrogen (N) , CCR (Conradson Carbon Residue), Ni (Ni), and Vanadium (V) to produce feedstock for L / S Fuel Oil or downstream heavy oil contact cracking process .

또한, 고온 및 고압의 수소첨가 처리 조건에서는 분자량이 큰 분자에 대한 분해반응도 함께 진행되어 고부가 가치의 경질유분을 생산하는 것이 가능하다.In addition, under the high-temperature and high-pressure hydrogenation treatment conditions, decomposition reaction for molecules having a large molecular weight also progresses, and it is possible to produce light oil having high added value.

이러한 시리즈 반응기 중 앞에는 주로 니켈(Ni), 바나듐(V) 등의 금속을 제거하는 탈금속 촉매를 충진하여 촉매의 영구적인 피독 물질인 금속을 우선 제거하고, 그 뒤에는 황(S), 질소(N), CCR(Conradson Carbon Residue) 등을 제거하는 탈황 및 분해 반응용 촉매가 적용된다.Among these series reactors, a de-metal catalyst for removing metals such as nickel (Ni) and vanadium (V) is filled in advance to remove the metal which is a permanent poison of the catalyst first, followed by sulfur (S), nitrogen ), CCR (Conradson Carbon Residue), and the like.

특히, 중질유분 내 존재하는 금속 성분은 탈금속 촉매 반응을 통해 니켈 황화물(Ni sulfide) 또는 바나듐 황화물(V sulfide)로 전환되며, 이들은 촉매 기공 및 촉매층 공극에 침적된다. 이러한 탈금속 반응은 운전초기 급격한 반응 이후 점차 안정화된다. 이 과정에서 Ni, V 등의 메탈 성분이 촉매 기공(pore) 내 침적되어 세공 입구 플러깅(Pore Mouth Plugging)을 유발하며, 높은 반응열에 의한 코킹(Coking) 발생으로 인하여 촉매 성능 저하는 물론 공정 차압 증가의 원인이 된다.
In particular, the metal components present in the heavy oil fraction are converted to nickel sulfide or V sulfide through a metal removal catalytic reaction, which is deposited in the catalyst pores and catalyst layer voids. Such a demetalization reaction gradually stabilizes after an abrupt reaction at the initial stage of operation. In this process, metal components such as Ni and V are deposited in the pores of the catalyst to cause pore mouth plugging, and coking due to the high reaction heat causes deterioration in catalyst performance as well as increase in process pressure .

본 발명의 목적은 상압 잔사유 및 감압 잔사유 등의 중질유분을 수소화 처리하는 공정에서 탈금속 촉매의 효율적인 활용과 탈황 촉매의 성능 최대화와 더불어, 경질유분의 생산량을 증대시킬 수 있는 경질유 증산 및 촉매의 효율적 활용을 위한 중질유분의 수소첨가 처리 방법을 제공하는 것이다.
The object of the present invention is to efficiently utilize a demetallation catalyst and to maximize the performance of a desulfurization catalyst in the process of hydrotreating a heavy oil fraction such as an atmospheric residual oil and a reduced pressure residual oil, The present invention provides a method for hydrogenation treatment of heavy oil.

상기 목적을 달성하기 위한 본 발명의 실시예에 따른 중질유분의 수소첨가 처리 방법은 탈황 촉매 충진부와 탈금속 촉매 충진부로 구분되는 시리즈 반응기 내에 수소화 처리가 실시되는 중질유분의 수소첨가 처리 방법으로서, 상기 탈황 촉매 충진부 및 탈금속 촉매 충진부에 탈황 촉매 및 탈금속 촉매를 각각 충진하는 단계; 상기 시리즈 반응기 내에 황화제를 첨가하여 황화를 실시하는 단계; 및 상기 시리즈 반응기 내로 중질유분을 통과시켜 수소첨가 처리 반응을 실시하는 단계;를 포함하며, 상기 탈황 촉매 충진부 내에 충진되는 탈황 촉매의 평균 온도와 탈금속 촉매 충진부 내에 충진되는 탈금속 촉매의 평균 온도는 독립적으로 제어하도록 설정되며, 상기 탈황 촉매의 평균 온도와 탈금속 촉매의 평균 온도 간의 차이를 15 ~ 50℃로 유지시키는 것을 특징으로 한다.
According to another aspect of the present invention, there is provided a method for hydrotreating a heavy oil fraction, the hydrogenation treatment being performed in a series reactor divided into a desulfurization catalyst filling unit and a demetallation catalyst filling unit, Filling the desulfurization catalyst and the desulfurization catalyst with a desulfurization catalyst and a demetallation catalyst, respectively; Adding a sulphurizing agent to the series reactor to perform sulphation; And performing a hydrogenation treatment by passing a heavy oil component through the series reactor, wherein an average temperature of the desulfurization catalyst packed in the desulfurization catalyst packed part and an average of the demetallation catalyst packed in the demetallation catalyst packed part The temperature is set to be controlled independently and the difference between the average temperature of the desulfurization catalyst and the average temperature of the demetallation catalyst is maintained at 15 to 50 캜.

본 발명에 따른 중질유분의 수소첨가 처리 방법은 전체 운전 기간 동안 중질유분 수첨처리 공정에 있어 황(S), 질소(N), CCR(Conradson Carbon Residue) 등을 주로 제거하는 탈황 촉매(HDM Catalyst)의 평균 온도와 니켈(Ni), 바나듐(V) 등을 주로 제거하는 탈금속 촉매(HDS Catalyst)의 평균 온도를 독립적으로 제어함과 동시에 탈황 촉매의 평균 온도와 탈금속 촉매의 평균 온도 간의 차이를 15 ~ 50℃로 제어하는 것을 특징으로 한다.The method for hydrotreating a heavy oil fraction according to the present invention is characterized in that it comprises a desulfurization catalyst (HDM Catalyst) for mainly removing sulfur (S), nitrogen (N) and CCR (Conradson Carbon Residue) (HDS Catalyst) which mainly removes nickel (Ni) and vanadium (V) from the average temperature of the desulfurization catalyst and the average temperature of the desulfurization catalyst, And is controlled to 15 to 50 캜.

이에 따라, 본 발명에 따른 중질유분의 수소첨가 처리 방법은 고부가 가치의 경질유 증산과 더불어 탈금속 촉매 및 탈황 촉매의 효율적인 활용을 통해 고품질 저유황 연료유(L/S Fuel Oil) 또는 고품질의 잔사유접촉분해공정용 공급원료(Feedstock)를 생산하는 것이 가능하다.Accordingly, the method of hydrogenation treatment of heavy oil according to the present invention can be applied to high-quality low-sulfur fuel oil (L / S fuel oil) or high-quality residual oil It is possible to produce a feedstock for the catalytic cracking process.

또한, 본 발명에 따른 중질유분의 수소첨가 처리 방법은 중질유분의 수첨처리 공정 수명(Life-Time)을 증대시킬 수 있으며, 차압 발생과 같은 문제 가능성을 저감할 수 있게 된다.
In addition, the method for hydrotreating a heavy oil fraction according to the present invention can increase the life-time of a hydrogenation treatment of a heavy oil fraction and reduce the possibility of problems such as generation of differential pressure.

도 1은 본 발명의 실시예에 따른 중질유분의 수소첨가 처리 방법을 설명하기 위한 공정 모식도.
도 2는 본 발명과 종래 기술 간의 탈황 촉매 및 탈금속 촉매의 평균 온도 차이를 설명하기 위한 도면.
도 3은 실시예 1 ~ 4에 대한 탈황 촉매 및 탈금속 촉매의 불순물 전환율을 측정한 결과를 나타낸 그래프.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view of a process for explaining a hydrogenation treatment method of heavy oil according to an embodiment of the present invention. FIG.
2 is a view for explaining an average temperature difference between a desulfurization catalyst and a demetallization catalyst between the present invention and the prior art.
3 is a graph showing the results of measurement of impurity conversion rates of a desulfurization catalyst and a demetalization catalyst for Examples 1 to 4;

본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예를 참조하면 명확해질 것이다. 그러나, 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예는 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성요소를 지칭한다.BRIEF DESCRIPTION OF THE DRAWINGS The advantages and features of the present invention, and how to accomplish them, will become apparent by reference to the embodiments described in detail below with reference to the accompanying drawings. It should be understood, however, that the invention is not limited to the disclosed embodiments, but may be embodied in many different forms and should not be construed as being limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Is provided to fully convey the scope of the invention to those skilled in the art, and the invention is only defined by the scope of the claims. Like reference numerals refer to like elements throughout the specification.

이하 첨부된 도면을 참조하여 본 발명의 바람직한 실시예에 따른 중질유분의 수소첨가 처리 방법에 관하여 상세히 설명하면 다음과 같다.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a method for hydrotreating heavy crude oil according to a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings.

도 1은 본 발명의 실시예에 따른 중질유분의 수소첨가 처리 방법을 나타낸 공정 순서도이고, 도 2는 본 발명과 종래 기술 간의 탈황 촉매 및 탈금속 촉매의 평균 온도 차이를 설명하기 위한 도면이다.FIG. 1 is a process flow chart showing a method for hydrogenating heavy crude oil according to an embodiment of the present invention, and FIG. 2 is a view for explaining an average temperature difference between a desulfurization catalyst and a demetallization catalyst between the present invention and a conventional technology.

도 1 및 도 2를 참조하면, 본 발명의 실시예에 따른 중질유분의 수소첨가 처리 방법은 탈황 촉매 및 탈금속 촉매 충진 단계(S110), 황화 처리 단계(S120) 및 수소첨가 처리 반응 단계(S130)를 포함한다.
1 and 2, a method for hydrotreating heavy crude oil according to an embodiment of the present invention includes a desulfurization catalyst and a demetallation catalyst filling step (S110), a sulfurization treatment step (S120), and a hydrogenation treatment reaction step (S130 ).

탈황 촉매 및 Desulfurization catalyst and 탈금속Metal removal 촉매  catalyst 충진Filling

탈황 촉매 및 탈금속 촉매 충진 단계(S110)에서는 탈황 촉매 충진부 및 탈금속 촉매 충진부에 탈황 촉매 및 탈금속 촉매를 각각 충진한다.In the desulfurizing catalyst and the demetallating catalyst filling step (S110), the desulfurizing catalyst and the demetallating catalyst are filled in the desulfurizing catalyst filling part and the demetallating catalyst filling part, respectively.

이때, 탈황 촉매는 수소화분해(Hydrocracking), 수소화처리(Hydrotreating) 등에 사용되는 촉매라는 의미이며, 제한 없이 사용될 수 있다. 또한, 탈금속 촉매 역시 수소화분해(Hydrocracking), 수소화처리(Hydrotreating) 등에 사용되는 촉매라는 의미이며, 제한 없이 사용될 수 있다.At this time, the desulfurization catalyst means a catalyst used for hydrocracking, hydrotreating, etc., and can be used without limitation. In addition, the metal removal catalyst also means a catalyst used for hydrocracking, hydrotreating, etc., and can be used without limitation.

즉, 탈황 및 탈금속 촉매 각각은 VIB족으로부터 선택된 적어도 하나 이상의 금속, VIII 족으로부터 선택된 적어도 하나 이상의 금속, 또는 VIB족과 VIII족 중 적어도 하나 이상의 금속 및 산화물로 구성된 지지체를 포함할 수 있으나, 이들에 한정되는 것은 아니다.That is, each of the desulfurization and demetallation catalysts may include a support composed of at least one metal selected from group VIB, at least one metal selected from group VIII, or at least one metal selected from group VIB and group VII and oxides, .

탈황 촉매 및 탈금속 촉매 충진은 탈황 촉매 충진부와 탈금속 촉매 충진부로 구분되는 시리즈 반응기를 이용하여 실시하는 것이 바람직하다. 이와 같이, 본 발명에서는 반응 온도 구간이 서로 상이한 탈황 촉매 충진부와 탈금속 촉매 충진부로 구분되는 시리즈 반응기 내에 탈황 촉매 및 탈금속 촉매를 각각 충진하였다.It is preferable that the desulfurization catalyst and the demetallization catalyst are filled using a series reactor which is divided into a desulfurization catalyst filling part and a demetallating catalyst filling part. As described above, in the present invention, a desulfurization catalyst and a demetallization catalyst are filled in a series reactor divided into a desulfurization catalyst filling part and a demetallization catalyst filling part which have different reaction temperature sections.

이 경우, 탈황 촉매 충진부 내에 충진되는 탈황 촉매의 평균 온도와 탈금속 촉매 충진부 내에 충진되는 탈금속 촉매의 평균 온도는 독립적으로 제어하도록 설정되는 것이 바람직하다. 특히, 탈황 촉매의 평균 온도와 탈금속 촉매의 평균 온도 간의 차이를 15℃ 이상으로 설정하는 것이 바람직하며, 이에 대한 상세한 설명은 후술하도록 한다.
In this case, it is preferable that the average temperature of the desulfurization catalyst packed in the desulfurization catalyst charging part and the average temperature of the demetallization catalyst packed in the desulfurization catalyst charging part are independently controlled. In particular, it is preferable to set the difference between the average temperature of the desulfurization catalyst and the average temperature of the demetallation catalyst at 15 ° C or higher, and a detailed description thereof will be described later.

황화 처리Sulfation treatment

황화 처리 단계(S120)에서는 시리즈 반응기 내에 황화제를 첨가하여 황화 처리를 실시한다.In the sulfiding step (S120), a sulfiding agent is added to the series reactor to carry out the sulfiding treatment.

이때, 시리즈 반응기 내에 첨가되는 황화제로는 일 예로 DMDS(dimethyl disulfide)가 이용될 수 있다. 이러한 황화 처리시, 황화제를 첨가하여 황 농도를 2 ~ 3 vol%로 조절한 경질 경유를 이용할 수 있다.
At this time, DMDS (dimethyl disulfide) may be used as a sulfurizing agent to be added in the series reactor. In this sulphiding treatment, a light diesel having a sulfur concentration adjusted to 2 to 3 vol% by adding a sulfurizing agent can be used.

수소첨가 처리 반응Hydrogenation treatment reaction

수소첨가 처리 반응 단계(S130)에서는 시리즈 반응기 내로 중질유분을 통과시키면서 수소를 첨가하여 수소첨가 처리 반응을 실시한다.In the hydrogenation treatment reaction step (S130), hydrogen is added while passing the heavy oil fraction through the series reactor, and the hydrogenation treatment reaction is carried out.

이때, 시리즈 반응기의 압력은 13 ~ 200kg/cm3, 액체 공간 속도(LHSV)는 0.1 ~ 1hr-1, H2/오일 비(ratio)는 100 ~ 1000 NL/L로 설정될 수 있다.At this time, the pressure of the series reactor may be set to 13 to 200 kg / cm 3 , the liquid space velocity (LHSV) to 0.1 to 1 hr -1 and the H 2 / oil ratio to be 100 to 1000 NL / L.

여기서, 중질유분은 상압 잔사유, 감압 잔사유, 비튜멘(bitumen) 및 타르 샌드(tar sand) 중 어느 하나를 포함할 수 있다.Here, the heavy oil fraction may include any one of an atmospheric residue, a decompressed residue, a bitumen, and a tar sand.

특히, 탈황 촉매의 평균 온도와 탈금속 촉매의 평균 온도 간의 차이를 10 ~ 50℃, 보다 바람직하게는 20 ~ 35℃로 유지시키는 것이 좋다. 이를 위해, 탈금속 촉매의 평균 온도는 330 ~ 400℃로 유지시키고, 탈황 촉매의 평균 온도는 350 ~ 420℃로 유지시켜 수소화 처리를 실시하는 것이 바람직하다.In particular, it is preferable to maintain the difference between the average temperature of the desulfurization catalyst and the average temperature of the demetallation catalyst at 10 to 50 ° C, more preferably 20 to 35 ° C. For this purpose, it is preferable to maintain the average temperature of the demetallization catalyst at 330 to 400 ° C. and maintain the average temperature of the desulfurization catalyst at 350 to 420 ° C. to perform the hydrogenation treatment.

또한, 수소화 처리시, 0.01 ~ 1℃/day의 승온 속도로 탈금속 및 탈황 촉매의 온도를 상승시키는 것이 보다 바람직하다.
Further, in the hydrogenation treatment, it is more preferable to raise the temperature of the demetalization and desulfurization catalyst at a temperature raising rate of 0.01 to 1 占 폚 / day.

한편, 도 2에 도시된 바와 같이, 본 발명에서는 탈금속 촉매의 평균 온도를 330 ~ 400℃로 한정하고, 탈황 촉매의 평균 온도를 350 ~ 420℃로 한정하였다.Meanwhile, as shown in FIG. 2, in the present invention, the average temperature of the demetalization catalyst is limited to 330 to 400 ° C. and the average temperature of the desulfurization catalyst is limited to 350 to 420 ° C.

특히, 탈황 촉매의 평균 온도와 탈금속 촉매의 평균 온도의 차이를 15 ~ 50℃, 보다 바람직하게는 20 ~ 35℃로 유지시켰다.In particular, the difference between the average temperature of the desulfurization catalyst and the average temperature of the demetallation catalyst was maintained at 15 to 50 ° C, more preferably 20 to 35 ° C.

이와 같이, 본 발명은 종래 기술 대비 낮은 탈금속 촉매의 평균 온도를 적용하면서도, 중질유분 내에 포함된 니켈(Ni), 바나듐(V) 등의 금속 성분을 효과적으로 제거할 수 있으며, 종래 기술 대비 높은 탈황 촉매의 평균 온도에서 남은 금속 성분과 함께 중질유분 내에 존재하는 황(S), 질소(N), CCR(Conradson Carbon Residue) 등 불순물의 대부분 제거가 가능하다.As described above, the present invention can effectively remove metal components such as nickel (Ni) and vanadium (V) contained in the heavy oil component while applying an average temperature of the metal removal catalyst lower than that of the conventional art, It is possible to remove most of the impurities such as sulfur (S), nitrogen (N), and CCR (Conradson carbon residue) present in the heavy oil fraction together with the remaining metal component at the average temperature of the catalyst.

특히, 본 발명은 종래 기술과는 다른 승온 방법에도 불구하고 종래 기술에서의 불순물 전환율 이상의 촉매성능을 운전 기간 전체 동안 유지할 수 있게 된다. 이 결과, 본 발명에서는, 탈금속은 80% 이상의 불순물 전환율을 갖고, 탈황은 82% 이상의 불순물 전환율을 갖는다.
Particularly, the present invention makes it possible to maintain the catalytic performance over the entire impurity conversion rate in the conventional technology for the entire operation period, despite the temperature raising method different from the conventional technology. As a result, in the present invention, the demetalization has an impurity conversion of 80% or more, and the desulfurization has an impurity conversion of 82% or more.

즉, 본 발명에서는 탈황 촉매의 평균 온도를 상대적으로 높게 유지하는 것을 통해 생성물 내의 경질유 수율을 기존 대비 대략 수 vol% 내외로 증가시킬 수 있고, 탈금속 촉매의 평균 온도를 상대적으로 낮게 유지하는 것을 통하여 탈금속 반응으로 제거된 금속 성분의 급격한 침적 억제를 통해 탈금속 촉매의 성능을 전체 운전 기간 동안 일정하게 유지할 수 있으며, 수명 연장을 가능하게 한다.That is, in the present invention, by maintaining the average temperature of the desulfurization catalyst at a relatively high level, it is possible to increase the yield of light oil in the product to about several vol% compared with the conventional one, and to maintain the average temperature of the demetallation catalyst relatively low Through the suppression of the rapid precipitation of the metal component removed by the metal removal reaction, the performance of the metal removal catalyst can be maintained constant over the entire operation period, and the lifetime can be extended.

또한, 본 발명에서는 탈금속 촉매 및 탈황 촉매의 평균 온도를 효과적으로 제어함으로써 반응 중에 소모되는 수소의 사용량이 종래 대비 대략 15 ~ 25%의 수준으로 저감될 수 있다.
In addition, in the present invention, the average temperature of the demetallation catalyst and the desulfurization catalyst is effectively controlled, so that the amount of hydrogen consumed in the reaction can be reduced to about 15 to 25% of the conventional amount.

지금까지 살펴본 바와 같이, 본 발명의 실시예에 따른 중질유분의 수소첨가 처리 방법은 전체 운전 기간 동안 중질유분 수첨처리 공정에 있어 황(S), 질소(N), CCR(Conradson Carbon Residue) 등을 주로 제거하는 탈황 촉매(HDM Catalyst)의 평균 온도와 니켈(Ni), 바나듐(V) 등을 주로 제거하는 탈금속 촉매(HDS Catalyst)의 평균 온도를 독립적으로 제어함과 동시에 탈황 촉매의 평균 온도와 탈금속 촉매의 평균 온도 간의 차이를 15 ~ 50℃로 제어하는 것을 특징으로 한다.As described above, the method of hydrogenating heavy crude oil according to an embodiment of the present invention is characterized in that sulfur (S), nitrogen (N), and CCR (Conradson Carbon Residue) The average temperature of the desulfurization catalyst (HDM Catalyst) and the average temperature of the desulfurization catalyst (HDS catalyst), which primarily remove nickel (Ni) and vanadium (V), are independently controlled and the average temperature of the desulfurization catalyst And the difference between the average temperatures of the demetallation catalysts is controlled to 15 to 50 캜.

이에 따라, 본 발명의 실시예에 따른 중질유분의 수소첨가 처리 방법은 고부가 가치의 경질유 증산과 더불어 탈금속 촉매 및 탈황 촉매의 효율적인 활용을 통해 고품질 저유황 연료유(L/S Fuel Oil) 또는 고품질의 잔사유접촉분해공정용 공급원료(Feedstock)를 생산하는 것이 가능하다.Accordingly, the method for hydrotreating heavy crude oil according to an embodiment of the present invention can provide high-quality low-sulfur fuel oil (L / S fuel oil) or high-quality It is possible to produce a feedstock for the residual contact catalytic cracking process.

또한, 본 발명의 실시예에 따른 중질유부의 수소첨가 처리 방법은 중질유분의 수첨처리 공정 수명(Life-Time)을 증대시킬 수 있으며, 차압 발생과 같은 문제 가능성을 저감할 수 있게 된다.
In addition, the method for hydrotreating a heavy oil portion according to an embodiment of the present invention can increase the life-time of a hydrogenation treatment of a heavy oil component and reduce the possibility of problems such as generation of differential pressure.

실시예Example

이하, 본 발명의 바람직한 실시예를 통해 본 발명의 구성 및 작용을 더욱 상세히 설명하기로 한다. 다만, 이는 본 발명의 바람직한 예시로 제시된 것이며 어떠한 의미로도 이에 의해 본 발명이 제한되는 것으로 해석될 수는 없다.Hereinafter, the configuration and operation of the present invention will be described in more detail with reference to preferred embodiments of the present invention. It is to be understood, however, that the same is by way of illustration and example only and is not to be construed in a limiting sense.

여기에 기재되지 않은 내용은 이 기술 분야에서 숙련된 자이면 충분히 기술적으로 유추할 수 있는 것이므로 그 설명을 생략하기로 한다.
The contents not described here are sufficiently technically inferior to those skilled in the art, and a description thereof will be omitted.

1. 실험 방법1. Experimental Method

실시예Example 1 One

시리즈 반응기 중 반응기 1에는 탈금속 촉매(HDS Catalyst) 200cc를 충진하고, 반응기 2에는 탈황 촉매(HDM Catalyst) 300cc를 충진하였다.Of the series reactors, 200 cc of HDS Catalyst was charged to Reactor 1 and 300 cc of HDM Catalyst was charged to Reactor 2.

다음으로, 시리즈 반응기 내에 황화제인 DMDS(dimethyl disulfide)를 첨가하여 황 농도 2.2vol%로 조절한 경질 경유를 이용하여 황화를 실시하였다. Next, DMDS (dimethyl disulfide), which is a sulfurizing agent, was added to the series reactor, and sulfurization was carried out using light oil having a sulfur concentration adjusted to 2.2 vol%.

다음으로, 상압 잔사유를 시리즈 반응기 내로 통과시켜 수소첨가 처리 반응을 300일간 실시하였다.Next, the atmospheric residue was passed through the series reactor and hydrogenation treatment was carried out for 300 days.

이때, 시리즈 반응기의 압력은 140kg/cm3, 액체 공간 속도(LHSV)는 0.2hr-1, H2/오일의 비(ratio)는 850 NL/L로 설정하였으며, 탈황 촉매의 평균 온도와 탈금속 촉매의 평균 온도 간의 차이가 15℃가 되도록, 탈황 촉매의 평균 온도는 360℃로 유지하고, 탈금속 촉매의 평균 온도는 345℃로 유지하였다. 또한, 승온 속도를 0.1℃/day로 유지시켜 탈금속 및 탈황 촉매의 온도를 지속적으로 상승시켰다.
At this time, the pressure of the series reactor was set to 140 kg / cm 3 , the liquid space velocity (LHSV) was set to 0.2 hr -1 , the ratio of H 2 / oil was set to 850 NL / L, The average temperature of the desulfurization catalyst was maintained at 360 ° C and the average temperature of the demetallation catalyst was maintained at 345 ° C so that the difference between the average temperature of the catalyst was 15 ° C. The temperature of the demetalization and desulfurization catalyst was continuously increased by keeping the temperature increase rate at 0.1 ° C / day.

실시예Example 2 2

탈황 촉매의 평균 온도와 탈금속 촉매의 평균 온도 간의 차이가 25℃가 되도록, 탈황 촉매의 평균 온도는 370℃로 유지하고, 탈금속 촉매의 평균 온도는 345℃로 유지한 것을 제외하고는 실시예 1과 동일한 방법으로 중질유분의 수소첨가 처리 반응을 실시하였다.
The difference between the average temperature of the desulfurization catalyst and the average temperature of the demetallation catalyst was 25 ° C, the average temperature of the desulfurization catalyst was maintained at 370 ° C, and the average temperature of the demetallation catalyst was maintained at 345 ° C. The hydrogenation treatment of the heavy oil fraction was carried out in the same manner as in Example 1.

실시예Example 3 3

탈황 촉매의 평균 온도와 탈금속 촉매의 평균 온도 간의 차이가 30℃가 되도록, 탈황 촉매의 평균 온도는 375℃로 유지하고, 탈금속 촉매의 평균 온도는 345℃로 유지한 것을 제외하고는 실시예 1과 동일한 방법으로 중질유분의 수소첨가 처리 반응을 실시하였다.
Except that the difference between the average temperature of the desulfurization catalyst and the average temperature of the demetallation catalyst was 30 ° C, the average temperature of the desulfurization catalyst was maintained at 375 ° C and the average temperature of the demetallation catalyst was maintained at 345 ° C. The hydrogenation treatment of the heavy oil fraction was carried out in the same manner as in Example 1.

실시예Example 4 4

탈황 촉매의 평균 온도와 탈금속 촉매의 평균 온도 간의 차이가 50℃가 되도록, 탈황 촉매의 평균 온도는 395℃로 유지하고, 탈금속 촉매의 평균 온도는 345℃로 유지한 것을 제외하고는 실시예 1과 동일한 방법으로 중질유분의 수소첨가 처리 반응을 실시하였다.
Except that the difference between the average temperature of the desulfurization catalyst and the average temperature of the demetallation catalyst was 50 占 폚, the average temperature of the desulfurization catalyst was maintained at 395 占 폚, and the average temperature of the demetallation catalyst was maintained at 345 占 폚 The hydrogenation treatment of the heavy oil fraction was carried out in the same manner as in Example 1.

비교예Comparative Example 1 One

시리즈 반응기 중 반응기 1에는 탈금속 촉매(HDS Catalyst) 200cc를 충진하고, 반응기 2에는 탈황 촉매(HDM Catalyst) 300cc를 충진하였다.Of the series reactors, 200 cc of HDS Catalyst was charged to Reactor 1 and 300 cc of HDM Catalyst was charged to Reactor 2.

다음으로, 시리즈 반응기에 황화제인 DMDS(dimethyl disulfide)를 첨가하여 황 농도 2.2vol%로 조절한 경질 경유를 이용하여 황화를 실시하였다.Next, DMDS (dimethyl disulfide), which is a sulfurizing agent, was added to the series reactor and sulfurization was carried out using light diesel oil adjusted to a sulfur concentration of 2.2 vol%.

다음으로, 상압 잔사유를 시리즈 반응기 내로 통과시켜 수소첨가 처리 반응을 50일간 실시하였다.Next, the atmospheric residue was passed through the series reactor and the hydrogenation treatment was carried out for 50 days.

이때, 시리즈 반응기의 압력은 140kg/cm3, 액체 공간 속도(LHSV)는 0.2hr-1, H2/오일 비(ratio)는 850 NL/L로 설정하였으며, 탈황 촉매의 평균 온도와 탈금속 촉매의 평균 온도 간의 차이가 10℃가 되도록, 탈황 촉매의 평균 온도는 355℃로 유지하고, 탈금속 촉매의 평균 온도는 345℃로 유지하였다.
At this time, the pressure of the series reactor was set to 140 kg / cm 3 , the liquid space velocity (LHSV) was set to 0.2 hr -1 , the H 2 / oil ratio was set to 850 NL / L, The average temperature of the desulfurization catalyst was maintained at 355 deg. C, and the average temperature of the demetalization catalyst was maintained at 345 deg.

2. 물성 평가2. Property evaluation

표 1은 실시예 1 ~ 4에 대한 탈황 촉매 및 탈금속 촉매의 불순물 전환율을 측정한 결과를 나타낸 것이고, 도 3은 실시예 1 ~ 4에 대한 탈황 촉매 및 탈금속 촉매의 불순물 전환율을 측정한 결과를 나타낸 그래프이다.
Table 1 shows the measurement results of the impurity conversion rates of the desulfurization catalyst and the demetalization catalyst for Examples 1 to 4, and FIG. 3 shows the results of measurement of the impurity conversion rates of the desulfurization catalyst and the demetalization catalyst for Examples 1 to 4 Fig.

1) 탈황 촉매 불순물인 황(S) 전환율은 다음과 같이 정의하였다. 1) The conversion of sulfur (S) which is a desulfurization catalyst impurity was defined as follows.

HDS (중량%) = {(중량% S)공급원료 - (중량% S)생성물} / (중량% S)공급물 × 100
HDS (wt%) = {(wt% S) feedstock (wt% S) product} / (wt% S) feed × 100

2) 탈금속 촉매의 불순물 금속인 니켈(Ni), 바나듐(V) 전환율은 다음과 같이 정의하였다.2) Conversion rates of nickel (Ni) and vanadium (V) which are impurity metals of the demetalization catalyst were defined as follows.

HDM (중량%) = {(중량ppm Ni + V)공급원료 - (중량ppm Ni + V)생성물} / (중량ppm Ni + V)공급원료 × 100
HDM (wt%) = {(wt ppm Ni + V) feedstock- (wtppm Ni + V) product } / (wt ppm Ni + V) Feedstock x 100

[표 1][Table 1]

Figure pat00001
Figure pat00001

표 1 및 도 3에 도시된 바와 같이, 실시예 1 ~ 4의 경우, 탈황(HDS) 촉매의 평균 온도와 탈금속(HDM) 촉매의 평균 온도 간의 차이가 증가함에 따라 탈황 및 탈금속의 불순물 전환율이 일정 수준까지는 증가하는 경향을 나타내고 있으며, 특히 25℃의 온도 차로 조정한 실시예 2의 경우가 불순물 전환율이 가장 우수한 것을 확인하였다.
As shown in Table 1 and FIG. 3, in Examples 1 to 4, as the difference between the average temperature of the desulfurization (HDS) catalyst and the mean temperature of the demetalization (HDM) catalyst increases, It was confirmed that the impurity conversion ratio was the most excellent in the case of Example 2 adjusted by the temperature difference of 25 캜.

한편, 표 2는 실시예 2 및 비교예 1에 대한 반응 기간별 탈황 촉매 및 탈금속 촉매의 불순물 전환율을 측정한 결과를 나타낸 것이다.
On the other hand, Table 2 shows the results of measurement of the impurity conversion rates of the desulfurization catalysts and the demetalization catalysts according to the reaction period for Example 2 and Comparative Example 1.

[표 2][Table 2]

Figure pat00002
Figure pat00002

표 2를 참조하면, 비교예 1에 비하여 상대적으로 낮은 탈금속 반응 온도 조건으로 수소첨가 처리 반응을 실시했음에도 불구하고, 실시예 2의 경우에는 탈금속 촉매의 불순물 전환율이 비교예 1에 비하여 대략 2 ~ 9% 정도 높았으며, 탈황 촉매의 분술물 전환율 또한 대략 2 ~ 7% 정도 개선된 효과가 있다는 것을 확인하였다.
Referring to Table 2, although the hydrogenation treatment was performed at a relatively low demetallation reaction temperature condition as compared with Comparative Example 1, in the case of Example 2, the impurity conversion rate of the demetalization catalyst was about 2 ~ 9%, and it was confirmed that the decomposition reaction rate of the desulfurization catalyst was also improved by about 2 ~ 7%.

이상에서는 본 발명의 실시예를 중심으로 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 기술자의 수준에서 다양한 변경이나 변형을 가할 수 있다. 이러한 변경과 변형은 본 발명이 제공하는 기술 사상의 범위를 벗어나지 않는 한 본 발명에 속한다고 할 수 있다. 따라서 본 발명의 권리범위는 이하에 기재되는 청구범위에 의해 판단되어야 할 것이다.
Although the preferred embodiments of the present invention have been disclosed for illustrative purposes, those skilled in the art will appreciate that various modifications, additions and substitutions are possible, without departing from the scope and spirit of the invention as disclosed in the accompanying claims. These changes and modifications may be made without departing from the scope of the present invention. Accordingly, the scope of the present invention should be determined by the following claims.

S110 : 탈황 촉매 및 탈금속 촉매 충진 단계
S120 : 황화 처리 단계
S130 : 수소첨가 처리 반응 단계
S110: Desulfurization catalyst and demetalization catalyst charging step
S120: Sulfurization step
S130: hydrogenation treatment reaction step

Claims (6)

탈황 촉매 충진부와 탈금속 촉매 충진부로 구분되는 시리즈 반응기 내에 수소화 처리가 실시되는 중질유분의 수소첨가 처리 방법으로서,
상기 탈황 촉매 충진부 및 탈금속 촉매 충진부에 탈황 촉매 및 탈금속 촉매를 각각 충진하는 단계;
상기 시리즈 반응기 내에 황화제를 첨가하여 황화를 실시하는 단계; 및
상기 시리즈 반응기 내로 중질유분을 통과시키면서 수소를 첨가하여 수소첨가 처리 반응을 실시하는 단계;를 포함하며,
상기 탈황 촉매 충진부 내에 충진되는 탈황 촉매의 평균 온도와 탈금속 촉매 충진부 내에 충진되는 탈금속 촉매의 평균 온도는 독립적으로 제어하도록 설정되며,
상기 탈황 촉매의 평균 온도와 탈금속 촉매의 평균 온도 간의 차이를 15 ~ 50℃로 유지시키는 것을 특징으로 하는 중질유분 수소첨가 처리 방법.
A method for hydrogenation of a heavy oil fraction subjected to a hydrogenation treatment in a series reactor divided into a desulfurization catalyst charging section and a demetallation catalyst charging section,
Filling the desulfurization catalyst and the desulfurization catalyst with a desulfurization catalyst and a demetallation catalyst, respectively;
Adding a sulphurizing agent to the series reactor to perform sulphation; And
And performing hydrogenation treatment by adding hydrogen while passing the heavy oil fraction through the series reactor,
The average temperature of the desulfurization catalyst charged in the desulfurization catalyst charging part and the average temperature of the demetallation catalyst packed in the demetallization catalyst charging part are set to be controlled independently,
Wherein the difference between an average temperature of the desulfurization catalyst and an average temperature of the demetallation catalyst is maintained at 15 to 50 캜.
제1항에 있어서,
상기 탈황 촉매의 평균 온도와 탈금속 촉매의 평균 온도 간의 차이는 20 ~ 35℃인 것을 특징으로 하는 중질유분 수소첨가 처리 방법.
The method according to claim 1,
Wherein the difference between an average temperature of the desulfurization catalyst and an average temperature of the demetallation catalyst is 20 to 35 ° C.
제1항에 있어서,
상기 탈금속 촉매의 평균 온도는 330 ~ 400℃로 유지시키고,
상기 탈황 촉매의 평균 온도는 350 ~ 420℃로 유지시켜 수소화 처리하는 것을 특징으로 하는 중질유분 수소첨가 처리 방법.
The method according to claim 1,
The average temperature of the demetalization catalyst was maintained at 330 to 400 ° C.,
Wherein the average temperature of the desulfurization catalyst is maintained at 350 to 420 占 폚 and hydrogenated.
제1항에 있어서,
상기 중질유분은
상압 잔사유, 감압 잔사유, 비튜멘(bitumen) 및 타르 샌드(tar sand) 중 어느 하나를 포함하는 중질유분 수소첨가 처리 방법.
The method according to claim 1,
The heavy oil fraction
A method for hydrotreating a heavy oil, comprising at least one of an atmospheric residue, a decompressed residue, a bitumen, and a tar sand.
제1항에 있어서,
상기 수소화 처리시,
상기 중질유분을 시리즈 반응기 내로 통과시켜 반응을 실시하면서, 0.01 ~ 1℃/day의 승온 속도로 탈금속 및 탈황 촉매의 온도를 상승시키는 것을 특징으로 하는 중질유분 수소첨가 처리 방법.
The method according to claim 1,
In the hydrogenation treatment,
Wherein the temperature of the demetallating and desulfurizing catalyst is raised at a rate of temperature increase of 0.01 to 1 占 폚 / day while passing the heavy oil fraction through the series reactor to perform the reaction.
제1항에 있어서,
상기 탈금속은 80% 이상의 불순물 전환율을 갖고,
상기 탈황은 82% 이상의 불순물 전환율을 갖는 것을 특징으로 하는 중질유분 수소첨가 처리 방법.
The method according to claim 1,
The metal removal has an impurity conversion of 80% or more,
Wherein the desulfurization has an impurity conversion of 82% or more.
KR1020160142329A 2016-10-28 2016-10-28 Hydrogenation treatment method of heavy hydrocarbon fraction KR102560963B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160142329A KR102560963B1 (en) 2016-10-28 2016-10-28 Hydrogenation treatment method of heavy hydrocarbon fraction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160142329A KR102560963B1 (en) 2016-10-28 2016-10-28 Hydrogenation treatment method of heavy hydrocarbon fraction

Publications (2)

Publication Number Publication Date
KR20180046981A true KR20180046981A (en) 2018-05-10
KR102560963B1 KR102560963B1 (en) 2023-07-28

Family

ID=62184761

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160142329A KR102560963B1 (en) 2016-10-28 2016-10-28 Hydrogenation treatment method of heavy hydrocarbon fraction

Country Status (1)

Country Link
KR (1) KR102560963B1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0136089B1 (en) * 1990-03-29 1998-04-24 엥스띠뛰 프랑세 뒤 뻬뜨롤 Process for hydrotreatment of petroleum residue or heavy oil for reconversion to lighter frac
JP2004010857A (en) * 2002-06-11 2004-01-15 Nippon Kecchen Kk Method for hydrogenating hydrocarbon heavy oil
US20070158239A1 (en) * 2006-01-12 2007-07-12 Satchell Donald P Heavy oil hydroconversion process
JP4260477B2 (en) * 2000-10-24 2009-04-30 日揮株式会社 Refined oil and method for producing the same
KR20100100834A (en) * 2007-10-31 2010-09-15 셰브런 유.에스.에이.인크. Hydroprocessing bulk catalyst and use therof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0136089B1 (en) * 1990-03-29 1998-04-24 엥스띠뛰 프랑세 뒤 뻬뜨롤 Process for hydrotreatment of petroleum residue or heavy oil for reconversion to lighter frac
JP4260477B2 (en) * 2000-10-24 2009-04-30 日揮株式会社 Refined oil and method for producing the same
JP2004010857A (en) * 2002-06-11 2004-01-15 Nippon Kecchen Kk Method for hydrogenating hydrocarbon heavy oil
US20070158239A1 (en) * 2006-01-12 2007-07-12 Satchell Donald P Heavy oil hydroconversion process
KR20100100834A (en) * 2007-10-31 2010-09-15 셰브런 유.에스.에이.인크. Hydroprocessing bulk catalyst and use therof

Also Published As

Publication number Publication date
KR102560963B1 (en) 2023-07-28

Similar Documents

Publication Publication Date Title
JP4874977B2 (en) Recycling method of active slurry catalyst composition in heavy oil upgrade
US4048060A (en) Two-stage hydrodesulfurization of oil utilizing a narrow pore size distribution catalyst
US4149965A (en) Method for starting-up a naphtha hydrorefining process
CA2579837A1 (en) Process for upgrading heavy oil using a highly active slurry catalyst composition
EP2456843B1 (en) Pre-sulfiding and pre-conditioning of residuum hydroconversion catalysts for ebullated-bed hydroconversion processes
WO2013033288A2 (en) Hydroprocessing of heavy hydrocarbon feeds
WO2014205171A1 (en) Staged solvent assisted hydroprocessing and resid hydroconversion
KR102444109B1 (en) Process for producing middle distillates
CN108085057B (en) Heavy oil hydrocracking process
KR102329701B1 (en) Process for rejuvenation of a used hydrotreating catalyst
JP6420961B2 (en) Recycling method of heavy oil desulfurization catalyst
KR20180046981A (en) Hydrogenation treatment method of heavy hydrocarbon fraction
US9724678B2 (en) Process for preparing a sulphided catalyst
JP5751876B2 (en) Method for hydrorefining heavy oil
CN110776953B (en) Process for treating heavy hydrocarbon feedstock comprising fixed bed hydroprocessing, two deasphalting operations and hydrocracking of bitumen
US3860511A (en) Two-stage residual oil hydrodesulfurication process with ammonia addition
JPS6119301B2 (en)
KR20210102256A (en) Hydrodesulfurization Method of Sulfur-Containing Olefinic Gasoline Cut Using Regenerated Catalyst
US3859202A (en) First stage residual oil hydrodesulfurization with ammonia addition
JP2000256678A (en) Method for hydro-refining of heavy oil
US3859203A (en) Removal of sulfur from residual oil with downstream ammonia addition
US3859204A (en) Residual oil hydrodesulfurization process by catalyst pretreatment and ammonia addition
US3859200A (en) Residual oil hydrodesulfurization process at reduced hydrogen rate with ammonia addition
CN112745946B (en) Method and system for processing heavy raw oil
JP2001316679A (en) Method for hydro-refining heavy hydrocarbon oil

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant