KR20180040269A - Method for producing rare ginsenosides from ginseng berry - Google Patents

Method for producing rare ginsenosides from ginseng berry Download PDF

Info

Publication number
KR20180040269A
KR20180040269A KR1020160131925A KR20160131925A KR20180040269A KR 20180040269 A KR20180040269 A KR 20180040269A KR 1020160131925 A KR1020160131925 A KR 1020160131925A KR 20160131925 A KR20160131925 A KR 20160131925A KR 20180040269 A KR20180040269 A KR 20180040269A
Authority
KR
South Korea
Prior art keywords
ginseng
glu
ginsenoside
leu
glucosidase
Prior art date
Application number
KR1020160131925A
Other languages
Korean (ko)
Other versions
KR101908659B1 (en
Inventor
김경록
Original Assignee
주식회사 케이바이오팜
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 케이바이오팜 filed Critical 주식회사 케이바이오팜
Priority to KR1020160131925A priority Critical patent/KR101908659B1/en
Publication of KR20180040269A publication Critical patent/KR20180040269A/en
Application granted granted Critical
Publication of KR101908659B1 publication Critical patent/KR101908659B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07JSTEROIDS
    • C07J17/00Normal steroids containing carbon, hydrogen, halogen or oxygen, having an oxygen-containing hetero ring not condensed with the cyclopenta(a)hydrophenanthrene skeleton
    • C07J17/005Glycosides
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/105Plant extracts, their artificial duplicates or their derivatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/63Steroids; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P33/00Preparation of steroids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01008Endo-1,4-beta-xylanase (3.2.1.8)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01021Beta-glucosidase (3.2.1.21)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01089Arabinogalactan endo-beta-1,4-galactanase (3.2.1.89)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01099Arabinan endo-1,5-alpha-L-arabinosidase (3.2.1.99)
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2250/00Food ingredients
    • A23V2250/20Natural extracts
    • A23V2250/21Plant extracts
    • A23V2250/2124Ginseng

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Nutrition Science (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Mycology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Botany (AREA)
  • Food Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

The present invention provides a method for producing rare ginsenoside by treating a ginsenoside substrate present in a ginseng berry with β-glucosidase, hemicellulase, or a mixed enzyme thereof. The method of the present invention effectively decomposes a plurality of substrates included in a ginseng berry, thereby effectively increasing the content of various types of rare ginsenoside having high bioavailability. Therefore, a rare ginsenoside material produced by the method of the present invention has excellent absorptivity and efficiency, thereby being able to be used as a health functional food or a cosmetic raw material. In addition, a rare ginsenoside material produced by the method of the present invention can be separated into a single component having high purity so as to be used as a medicine raw material or the like.

Description

인삼열매로부터 희귀 진세노사이드를 제조하는 방법{Method for producing rare ginsenosides from ginseng berry}The present invention relates to a method for producing rare ginsenosides from ginseng fruits,

본 발명은 인삼열매로부터 희귀 진세노사이드를 제조하는 방법에 관한 것으로서, 인삼열매의 착즙액 또는 인삼열매의 추출액을 특정 효소로 처리하여 인삼에 존재하지 않은 희귀 진세노사이드를 새롭게 생성하거나 인삼에 미량으로 존재하는 희귀 진세노사이드의 함량을 증가시키는 것을 특징으로 한다.The present invention relates to a method for producing rare ginsenoside from ginseng fruit, wherein a juice of ginseng fruit or an extract of ginseng fruit is treated with a specific enzyme to newly produce a rare ginsenoside which is not present in ginseng, To increase the content of rare ginsenosides present in the composition.

인삼(Panax ginseng C.A. Meyer)은 한반도가 원산인 우리나라의 특유의 약용식물로 2,000여년 전부터 널리 사용되어 왔다. 인삼의 반복적인 습열 처리와 건조를 거쳐 제조한 홍삼은 약효가 뛰어난 미량 진세노사이드가 새롭게 생성되어 인삼과는 다른 활성을 나타낸다. 인삼의 생리 활성에 대한 연구로부터 인삼의 여러 약리적 효과들은 주로 그 핵심성분인 인삼 특유의 사포닌, 즉 진세노사이드(ginsenoside) 때문인 것으로 알려져 있다. 진세노사이드는 탄소 수가 30개인 triterpene 골격에 글루코스, 아라비노스, 람노스 등 당이 붙어 있는 배당체 구조이며 그 골격에 따라 protopanaxadiol(PPD) 계열과 protopanaxatriol(PPT) 계열로 구분된다. 다른 배당체들과 마찬가지로 인삼 배당체인 진세노사이드는 섭취 후 소화과정에서 장관에 존재하는 미생물이 보유한 분해효소에 의해 당을 제거하는 탈당과정을 거쳐야 체내 흡수가 용이하다. 식약처 조사 결과 한국인의 상당수는 장관에 당 분해효소의 활성이 없거나 매우 약하여 인삼의 효능을 제대로 제공받지 못하는 것으로 보고되었다.Ginseng (Panax ginseng C.A. Meyer) is a Korean medicinal herb that is native to the Korean peninsula and has been widely used for over 2,000 years. Red ginseng, which has been produced by repeated heat treatment and drying of ginseng, has a new activity of ginsenoside which is different from ginseng. From the studies on the physiological activity of ginseng, various pharmacological effects of ginseng are known to be mainly due to saponin, ginsenoside, which is a key ingredient of ginseng. Ginsenoside is a glycoside structure with a sugar number of 30 in the triterpene skeleton, such as glucose, arabinose and rhamnose. Depending on its structure, it is divided into protopanaxadiol (PPD) and protopanaxatriol (PPT). Like other glycosides, ginsenoside, which is a ginseng glycoside, is easily absorbed through the process of elimination of sugar by the degrading enzyme of microorganisms present in the digestive tract during ingestion. A large number of Koreans have reported that the enzymes in the intestinal tract have no activity or are so weak that they do not receive the efficacy of ginseng.

따라서 개인 간의 진세노사이드 흡수율 및 효능의 차이를 최소화시키고 진세노사이드의 효과를 극대화시키기 위해서는 고분자 배당체를 섭취 전에 저분자화 시켜 체내 흡수율을 높이는 것이 바람직하며 이에 대한 연구가 다양하게 이루어지고 있다. 예를 들면, 최근 열 처리, 산/염기 처리 등의 물리적 화학적 처리법보다는, 반응에 따른 다양한 전환이 가능하고 특정 저분자 배당체를 선택적으로 생산할 수 있는 미생물이나 효소를 이용한 생물학적 처리방법에 관한 연구가 활발하게 이루어지고 있다. 지금까지 이들 진세노사이드를 연구하는데는 주로 인삼의 지하부인 뿌리를 이용하여 왔다. 그러나 최근 연구를 통해 인삼 지하부인 인삼근 외에도 인삼 엽 및 인삼열매 등 지상부에도 진세노사이드의 함량이 높은 것으로 알려졌다(Attele AS et al, Biochem Pharmacol, 58; 1685-1693, 1999). 인삼은 대개 4~6년근을 수확하여 건삼, 홍삼 및 이를 이용한 각종 제품들로 상품화되며, 그 과정에서의 인삼의 잎과 열매는 폐기물로 취급되어 왔다.Therefore, in order to maximize the effect of ginsenoside, it is desirable to increase the absorption rate of the ginsenoside by low molecular weight before ingestion of the ginsenoside. For example, recent research on biological treatment methods using microorganisms or enzymes capable of various conversions according to the reaction and selectively producing specific low molecular weight glycosides, rather than physical and chemical treatment methods such as heat treatment and acid / base treatment . Until now, studies on these ginsenosides have mainly used roots of ginseng underground. However, recent research has shown that ginsenosides are also found in the upper parts of ginseng leaves and ginseng fruits in addition to the ginseng undergrowths of ginseng (Attele AS et al, Biochem Pharmacol, 58, 1685-1693, 1999). Ginseng is usually harvested for 4-6 years, and it is commercialized as ginseng, red ginseng and various products using it. In the process, ginseng leaves and fruits have been treated as waste.

인삼열매는 조 사포닌 함량이 중량 g 당 240㎎ 이상으로 6년근 인삼의 중량 g당 80㎎에 비해 3배 정도 높아 사포닌 생산에 좋은 자원으로 평가된다. 그러나 인삼 재배농가에서는 6년근 재배 시 인삼근의 성장을 촉진하고 종자를 확보하기 위해 4년생 때 종자를 수확하고 3년생, 5년생, 6년생 때는 종자를 받지 않고 꽃대뿐 아니라 줄기부터 원천적으로 모두 제거하여 연간 3천여 톤의 열매가 버려지고 있다. 인삼근의 진세노사이드는 재배토양과 기후조건에 따라 성분을 달리하는 반면 인삼열매의 경우 조성과 함량 차이가 적은 것으로 알려져 있다. 인삼열매는 높은 사포닌 함량으로 인해 최근 음료 등으로 개발되고 있고 인삼열매 추출물은 남성 성기능 개선(대한민국 등록특허 제10-1241050호), 파킨슨병/알츠하이머 예방 및 치료(대한민국 등록특허 제10-1581497호), 제2형 당뇨병 치료(대한민국 등록특허 제10-1484502호)와 관련된 여러 활성을 가지는 것으로 보고되고 있다. 최근 인삼열매로부터 활성 효과가 뛰어난 사포닌을 회수하는 방법이 연구되고 있다. 예를 들어, 대한민국 등록특허 제10-1330935호에는 인삼열매로부터 과육을 탈피하여 인삼과육액을 제조하는 단계; 상기 인삼과육액을 초음파에 30분 내지 2시간 동안 방치하여 인삼열매 과육 성분을 용출시킨 후 원심분리하는 단계; 상기 원심분리된 상층액을 여과하는 단계; 및 상기 여과액을 분자량 1000 내지 2000 크기로 한외여과하여 물, 이온성 물질 및 수용성 저분자 물질을 제거하고 15 내지 30%로 농축액을 수득하는 단계를 포함하는 것을 특징으로 하는 진세노사이드 Re가 강화된 인삼열매 추출물의 제조방법이 개시되어 있다. 또한, 대한민국 등록특허공보 제10-1416669호에는 1 중량부의 인삼 열매를 5~300 중량부의 증류수에 넣고, 35분~45분 범위 내의 시간 동안 90℃~110℃ 범위 내의 온도에서 초음파 처리하는 단계; 및 상기 초음파 처리한 인삼 열매를 감압하에 농축시키고 동결 건조하는 단계;를 포함하여, 진세노사이드 Rg2, Rg3, Rh1, Rk1 및 F4의 함량을 증가시키는 것을 특징으로 하는 인삼 열매 제제의 제조방법이 개시되어 있다. 또한, 대한민국 등록특허 제10-1051519호에는 인삼열매를 증숙한 후 인삼열매의 수분함량이 12±3%가 되도록 건조하여 분쇄하는 단계와; 상기 분쇄된 인삼열매 분말을 수용성 용매 또는 수용성 용매와 유기 용매가 혼합된 용매에 용해시켜 알파-갈락토시다제, 펙티나제, 셀룰라제, 락타제 중에서 선택된 1종 또는 2종 이상과 효소 반응시키는 단계와; 상기 효소반응된 조성물에 EM(Effective Micro-organisms) 발효함초액을 혼합하여 추출하는 단계를 포함함을 특징으로 인삼열매 추출물의 제조방법이 개시되어 있다. 또한, 대한민국 등록특허 제10-1182741호에는 Aspergillus niger KCCM 11239 균주 유래의 분자량 123 kDa 이며 최적 온도안정성 70℃, 최적 PH 안정성 4.0인 β-glucosidase 효소를 이용함을 특징으로 하는 인삼 사포닌 성분 ginsenoside Rb1 을 Rd, F2 및 Rg3으로 생물전환하는 방법이 개시되어 있다. 또한, 대한민국 등록특허 제10-0443411호에는 페니실리움 속 또는 유박테리움 속 유래 베타글리코시다제(β-glycosidase)를 이용하여 진세노사이드 Re 또는 진세노사이드 Rg1으로부터 진세노사이드 F1을 제조하는 방법이 개시되어 있다.Ginseng fruit is more than 240 mg per gram of crude saponin, which is three times higher than 80 mg per g of 6-year-old ginseng, which is a good resource for saponin production. However, in ginseng cultivator, seeds were harvested at the age of 4 years to promote the growth of ginseng roots at the time of cultivation for 6 years, and at the end of 3, 5, and 6 years, 3,000 tons of fruit are being abandoned annually. Ginsenoside of ginseng root is different according to cultivation soil and climatic conditions, while ginseng fruit is known to have little difference in composition and content. The ginseng fruit has recently been developed as a beverage due to its high saponin content. The ginseng fruit extract has been shown to improve male sexual function (Korean Patent No. 10-1241050), Parkinson's disease / Alzheimer's disease prevention and treatment (Korean Patent No. 10-1581497) , And type 2 diabetes treatment (Korean Patent No. 10-1484502). Recently, a method of recovering saponins having excellent activity from ginseng fruit has been studied. For example, Korean Patent Registration No. 10-1330935 discloses a process for producing ginseng pulp by transplanting flesh from ginseng fruit; Allowing the ginseng flesh fluid to stand for 30 minutes to 2 hours on an ultrasonic wave to elute the components of the flesh of the ginseng fruit and then centrifuging; Filtering the centrifuged supernatant; And ultrafiltering said filtrate to a molecular weight of 1000-2000 to remove water, ionic material and water-soluble low molecular weight material and to obtain a concentrate at 15-30%. A method for producing a ginseng fruit extract is disclosed. Korean Patent Registration No. 10-1416669 discloses a method for preparing a ginseng extract, which comprises: 1 part by weight of ginseng fruit into 5 to 300 parts by weight of distilled water and sonicating at a temperature within a range of 90 ° C to 110 ° C for a period of time ranging from 35 minutes to 45 minutes; And a step of concentrating and freeze-drying the ultrasonic treated ginseng fruit under reduced pressure to increase the content of ginsenosides Rg2, Rg3, Rh1, Rk1 and F4. . Korean Patent No. 10-1051519 also discloses a method for producing a ginseng extract, comprising the steps of: after ginseng fruit is dried, pulverizing the ginseng fruit so as to have a moisture content of 12 3%; Dissolving the pulverized ginseng fruit powder in a water-soluble solvent or a solvent in which a water-soluble solvent and an organic solvent are mixed to cause an enzyme reaction with one or more selected from alpha-galactosidase, pectinase, cellulase and lactase ; And a step of mixing and extracting EM (Effective Micro-organisms) fermented green tea solution into the enzyme-reacted composition, thereby producing a ginseng fruit extract. Korean Patent No. 10-1182741 discloses a ginseng saponin component ginsenoside Rb1 derived from Aspergillus niger KCCM 11239 strain having a molecular weight of 123 kDa and having an optimum temperature stability of 70 캜 and an optimal pH stability of 4.0 using a β-glucosidase enzyme. Rd , F2 and Rg3. Korean Patent No. 10-0443411 also discloses a method for producing ginsenoside F1 from ginsenoside Re or ginsenoside Rg1 using beta-glycosidase derived from genus Penicillium or Ubumetium Method is disclosed.

본 발명은 종래의 기술적 배경하에서 도출된 것으로서, 본 발명의 목적은 인삼열매로부터 생리활성이 우수한 희귀 진세노사이드를 효과적으로 제조하는 방법을 제공하는데에 있다.The present invention has been made under the background of the prior art, and an object of the present invention is to provide a method for effectively producing a rare ginsenoside having excellent physiological activity from a ginseng fruit.

본 발명자들은 인삼열매가 희귀 진세노사이드를 생산하는데 필요한 유효 기질인 진세노사이드 Rd와 Rd 등을 충분히 보유하고 있다는 점과 인삼열매에 존재하는 진세노사이드를 특정 효소 단독 또는 특정 효소들의 조합으로 처리하면 다양한 희귀 진세노사이드를 생산할 수 있다는 점을 확인하고 본 발명을 완성하였다.The present inventors have found that the ginseng fruit has a sufficient amount of ginsenosides Rd and Rd which are effective substrates for producing rare ginsenoside and that the ginsenosides present in the ginseng fruit are treated with a specific enzyme alone or a combination of specific enzymes The present inventors confirmed that it is possible to produce a variety of rare ginsenosides.

상기 목적을 해결하기 위하여 본 발명은 인삼열매 착즙액, 인삼열매 추출액, 인삼열매 과육 착즙액, 인삼열매 과육 추출액 또는 이들의 농축액을 베타-글루코시다아제(β-glucosidase), 헤미셀룰라아제(hemicellulase) 또는 이들의 혼합 효소와 반응시켜 희귀 진세노사이드의 함량을 증가시키는 것을 특징으로 하는 인삼열매로부터 희귀 진세노사이드를 제조하는 방법을 제공한다.In order to solve the above-mentioned object, the present invention provides a method for producing a ginseng fruit juice extract, a ginseng fruit extract, a ginseng fruit pulp juice extract, a ginseng fruit pulp extract or a concentrate thereof with a β-glucosidase, a hemicellulase, And a method for preparing rare ginsenosides from ginseng fruits by reacting them with the mixed enzyme to increase the content of rare ginsenoside.

본 발명의 제조방법은 인삼열매 내에 포함된 다수의 기질을 효과적으로 분해하여 생체 이용률이 높은 다양한 희귀 진세노사이드의 함량을 효과적으로 증가시킬 수 있다. 따라서, 본 발명의 제조방법으로 제조된 희귀 진세노사이드 소재는 흡수도와 효능이 우수하여 건강기능식품이나 화장품 원료 등으로 사용될 수 있다. 또한, 본 발명의 제조방법으로 제조된 희귀 진세노사이드 소재를 순도가 높은 단일 성분으로 분리하면 의약품 원료 등으로도 사용될 수 있다.The production method of the present invention can effectively decompose a large number of substrates contained in ginseng fruit to effectively increase the content of various rare ginsenosides having high bioavailability. Therefore, the rare ginsenoside material produced by the production method of the present invention is excellent in absorption and efficacy and can be used as a health functional food, a cosmetic raw material and the like. In addition, if the rare ginsenoside material produced by the production method of the present invention is separated into a single high purity component, it can be used as a raw material for pharmaceuticals.

도 1은 성숙 인삼열매 착즙 농축액을 정제 DT-BGL 및 정제 CS-BGL과 반응시켰을 때 반응 생성물내 진세노사이드의 함량 변화를 나타낸 것이다.Figure 1 shows the content of ginsenosides in the reaction product when the juice concentrate of matured ginseng fruit was reacted with purified DT-BGL and purified CS-BGL.

이하, 본 발명을 구체적으로 설명한다. 본 발명에서 사용되는 용어인 '희귀 진세노사이드'는 인삼에 미량으로 존재하거나 별도의 물리적, 화학적 또는 생물학적 처리를 통해 새롭게 생성된 진세노사이드를 모두 포함하는 개념이다.Hereinafter, the present invention will be described in detail. The term 'rare ginsenoside' as used in the present invention is a concept that includes all of ginsenosides newly generated through physical, chemical, or biological treatments existing in ginseng in a trace amount.

본 발명은 인삼열매로부터 희귀 진세노사이드를 제조하는 방법에 관한 것이다. 본 발명의 일 예에 따른 희귀 진세노사이드의 제조방법은 인삼열매로부터 얻은 진세노사이드 함유 기질을 베타-글루코시다아제(β-glucosidase), 헤미셀룰라아제(hemicellulase) 또는 이들의 혼합 효소와 반응시키는 것으로 구성된다. 구체적으로 본 발명의 바람직한 일 예에 따른 희귀 진세노사이드의 제조방법은 인삼열매 착즙액, 인삼열매 추출액, 인삼열매 과육 착즙액, 인삼열매 과육 추출액 또는 이들의 농축액을 베타-글루코시다아제(β-glucosidase), 헤미셀룰라아제(hemicellulase) 또는 이들의 혼합 효소와 반응시키는 것으로 구성된다.The present invention relates to a method for preparing rare ginsenosides from ginseng fruits. The method for producing rare ginsenoside according to an embodiment of the present invention is to react ginsenoside-containing substrate obtained from ginseng fruit with beta-glucosidase, hemicellulase or a mixed enzyme thereof . Specifically, a method for producing rare ginsenosides according to a preferred embodiment of the present invention is a method for producing ginsenosides from ginseng fruit juice, ginseng fruit juice extract, ginseng fruit juice juice extract, ginseng fruit pulp extract, or concentrate thereof with beta-glucosidase glucosidase, hemicellulase, or a mixed enzyme thereof.

상기 인삼열매의 공급원인 인삼은 품종, 원산지 등이 특별히 제한되지 않는다. 예를 들어 상기 인삼열매는 고려인삼의 청경, 연풍, 선풍, 청선, 천량, 고풍, 금풍, 선원, 선향 등과 같이 다양한 품종에서 선택되는 인삼의 열매를 사용할 수 있고 삼칠삼, 전칠삼, 미국삼, 중국삼, 베트남삼, 죽절삼 등과 같이 다양한 원산지에서 선택되는 인삼을 열매를 사용할 수도 있다.The ginseng as a source of the ginseng fruit is not particularly limited in terms of the variety, origin, and the like. For example, the ginseng fruit may be selected from various kinds of ginseng such as Korean ginseng, Korean ginseng, Korean ginseng, Chinese ginseng, American ginseng, Chinese ginseng, Chinese ginseng , Vietnamese samphire, and mandarin oranges can be used.

또한, 상기 인삼열매는 미성숙 열매 또는 성숙 열매에서 선택될 수 있으며, 인삼열매에 존재하는 진세노사이드의 조성비를 고려할 대 성숙 열매인 것이 바람직하다.In addition, the ginseng fruit may be selected from immature fruit or mature fruit, and it is preferable that the ginseng fruit is a mature fruit considering the composition ratio of ginsenoside present in the ginseng fruit.

또한, 상기 베타-글루코시다아제(β-glucosidase)는 인삼열매에 존재하는 진세노사이드의 희귀 진세노사이드로의 전환시 반응 효율 및 생성되는 희귀 진세노사이드의 생리 활성과 다양성 등을 고려할 때 베타-글루코시다아제(β-glucosidase)는 클로스트리디움 스테르코라리움(Clostridium stercorarium)에서 유래하는 것이 바람직하고, 클로스트리디움 스테르코라리움 아종 스테르코라리움(Clostridium stercorarium subsp. stercorarium) DSM 8532 균주로부터 유래하는 것이 더 바람직하다. 상기 클로스트리디움 스테르코라리움 아종 스테르코라리움(Clostridium stercorarium subsp. stercorarium) DSM 8532 균주로부터 유래하는 베타-글루코시다아제(β-glucosidase)는 서열번호 1의 아미노산 서열로 구성된다.In addition, considering the reaction efficiency and the physiological activity and diversity of the rare ginsenosides in the conversion of ginsenoside present in ginseng fruit to rare ginsenosides, the beta-glucosidase is a beta-glucosidase, -Glucosidase is preferably derived from Clostridium stercorarium and is preferably derived from Clostridium stercorarium subsp. Stercorarium DSM 8532 strain Is more preferable. The β-glucosidase derived from the Clostridium stercorarium subsp. Stercorarium strain DSM 8532 is composed of the amino acid sequence of SEQ ID NO: 1.

또한, 상기 헤미셀룰라아제(hemicellulase)는 식물 세포벽 구성성분인 자일란, β-1,3-1,4-글루칸, 자일로글루칸, 글루코만난 등을 분해하는 효소에서 선택되며, 바람직하게는 자일라나아제(xylanase), 갈락타나아제(galactanase), 만나나아제(mannanase) 또는 아라비나아제(arabinase)로부터 선택되는 1종 이상으로 구성되고, 인삼열매에 존재하는 진세노사이드에 대한 기질 이용성과 희귀 진세노사이드의 전환 효율 그리고 베타-글루코시다아제(β-glucosidase)와의 조합에 의한 상승 작용 등을 고려할 때 자일라나아제(xylanase)와 갈락타나아제(galactanase)의 조합인 것이 바람직하다.In addition, the hemicellulase is selected from enzymes that decompose plant cell wall components xylan, β-1,3-1,4-glucan, xyloglucan, glucomannan and the like, preferably xylanase ), Galactanase, mannanase, or arabinase, and is characterized in that the substrate availability to the ginsenosides present in the ginseng fruit and that of the rare ginsenosides A combination of xylanase and galactanase is preferable in view of the conversion efficiency and the synergistic action by combination with beta-glucosidase.

또한, 상기 베타-글루코시다아제(β-glucosidase)와 헤미셀룰라아제(hemicellulase)의 혼합 효소에서 베타-글루코시다아제(β-glucosidase) 대 헤미셀룰라아제(hemicellulase)의 혼합 중량비는 크게 제한되지 않으며, 예를 들어 0.1:99.9 내지 99.9:0.1에서 선택될 수 있다. 다만, 효소 처리에 의한 희귀 진세노사이드의 함량 증가 수준을 고려할 때 상기 베타-글루코시다아제(β-glucosidase) 대 헤미셀룰라아제(hemicellulase)의 혼합 중량비는 1:4 내지 4:1인 것이 바람직하다.In addition, the mixing weight ratio of beta-glucosidase to hemicellulase in the mixed enzyme of beta-glucosidase and hemicellulase is not limited to a great extent, May be selected from 0.1: 99.9 to 99.9: 0.1. However, it is preferable that the mixing weight ratio of β-glucosidase to hemicellulase is 1: 4 to 4: 1 in consideration of the increased level of rare ginsenoside by enzyme treatment.

또한, 본 발명에 의해 반응 후 함량이 증가하는 희귀 진세노사이드는 Rg1, Rg2, Rg3, Rh1, Rh2, F2, Compound Mc, Compound K 또는 Compound Y에서 선택되는 1종 이상이고, 바람직하게는 Rg3, Rh1, Rh2, F2, Compound Mc, Compound K 또는 Compound Y에서 선택되는 1종 이상이다.The rare ginsenosides having an increased content after the reaction according to the present invention are at least one selected from Rg1, Rg2, Rg3, Rh1, Rh2, F2, Compound Mc, Compound K or Compound Y, Rh1, Rh2, F2, Compound Mc, Compound K or Compound Y.

이하, 본 발명을 실시예를 통하여 보다 구체적으로 설명한다. 다만, 하기 실시예는 본 발명의 기술적 특징을 명확하게 예시하기 위한 것일 뿐 본 발명의 보호범위를 한정하는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to examples. However, the following examples are intended to clearly illustrate the technical features of the present invention and do not limit the scope of protection of the present invention.

1. 인삼열매 착즙액의 제조 및 진세노사이드 조성 분석1. Preparation of juice of ginseng fruit and analysis of ginsenoside composition

포천지역 농가로부터 7월 말에 채취한 미성숙 인삼열매 1종과 8월 말에 채취한 성숙 인삼열매 1종을 각각 40㎏씩 공급받아, 종자를 제거하지 않은 상태로 압착하여 인삼열매 착즙액을 제조하였다. 상기 미성숙 인삼열매는 표피가 주로 초록색을 띠어 GBG(ginseng berry green)로 명명하고 성숙 인삼열매는 표피가 완연한 적색을 나타내어 GBR(ginseng berry red)로 명명한다. 이후, 인삼 착즙액을 15배 정도 농축하여 고형분 농도가 약 60 브릭스(brix)인 인삼열매 착즙 농축액을 제조하였다.One of the immature ginseng fruits collected at the end of July and one of the mature ginseng fruits collected at the end of August from the farms in Pocheon area were supplied with 40 kg of each, and the seeds were squeezed without removing the seeds to produce ginseng fruit juice Respectively. The above-mentioned immature ginseng fruit is named GBG (ginseng berry green) with the epidermis being mainly green, and ginseng berry red is named GBR (ginseng berry red) because the mature ginseng fruit has a reddish color. Then, the ginseng juice was concentrated about 15 times to prepare a concentrate of ginseng fruit juice having a solid concentration of about 60 brix.

인삼열매 착즙 농축액 10g씩을 메탄올에 5배수로 희석하고, 0.2 ㎛ membrane filter로 여과하여 얻은 여과액을 고성능액체크로마토그래피(HPLC) 분석용 시료로 사용하였다. 하기에 HPLC 분석 조건을 나타내었다.10 g of juice concentrate of ginseng fruit juice was diluted with methanol 5 times and filtered with 0.2 ㎛ membrane filter. The filtrate was used as a sample for high performance liquid chromatography (HPLC) analysis. The HPLC analysis conditions are shown below.

* 전체 시스템 : Agilent 1200 HPLC 시스템* Complete system: Agilent 1200 HPLC system

* 검출기 및 분석 파장 : UV detector, 203㎚* Detector and analysis wavelength: UV detector, 203 nm

* 이동상 용매 : Acetonitrile (용매 A)와 물 (용매 B)* Mobile phase solvent: Acetonitrile (solvent A) and water (solvent B)

* 이동상 용매의 농도 구배 : 용매 A의 비율을 초기 25%로 시작하고 총 45분에 걸쳐 100%가 될 때가지 점진적으로 증가시킴* Concentration gradient of mobile phase solvent: The ratio of solvent A starts at the initial 25% and progressively increases until it reaches 100% over a total of 45 minutes.

* 표준품 : Facechem사와 Sigma사에서 구매하여 사용* Standard: purchased from Facechem and Sigma

하기 표 1은 GBG 착즙 농축액과 GBR 착즙 농축액의 진세노사이드 조성을 HPLC로 분석한 결과이다. GBG 착즙 농축액과 GBR 착즙 농축액의 총 진세노사이드 함량은 각각 중량 g 당 135.34㎎ 및 174.32㎎ 이었다. GBG 착즙 농축액에서는 진세노사이드 Rd 함량이 가장 높았고, GBR 착즙 농축액에서는 진세노사이드 Re 함량이 가장 높게 나타났다. 이후 실험에서는 효소 반응의 기질로 GBR 착즙 농축액을 사용하였다.Table 1 below shows the results of HPLC analysis of the ginsenoside composition of GBG juice concentrate and GBR juice concentrate. The total ginsenoside content of the GBG juice concentrate and the GBR juice concentrate was 135.34 mg and 174.32 mg per g, respectively. The content of ginsenoside Rd was the highest in GBG juice concentrate and the content of ginsenoside Re was the highest in GBR juice concentrate. In the subsequent experiments, a GBR juice concentrate was used as a substrate for the enzyme reaction.

진세노사이드 구분Gin Senocide classification GBG 착즙 농축액(㎎/g)GBG juice concentrate (mg / g) GBR 착즙 농축액(㎎/g)GBR juice concentrate (mg / g) Rb1Rb1 8.358.35 14.7514.75 Rb2Rb2 5.155.15 9.69.6 Rb3Rb3 5.945.94 10.210.2 RcRc 10.6810.68 12.9612.96 RdRd 47.4647.46 38.2838.28 ReRe 39.4839.48 61.3661.36 RfRf 1.211.21 1.341.34 Rg1Rg1 8.678.67 9.99.9 Rg2Rg2 6.326.32 12.312.3 Rg3Rg3 0.450.45 0.530.53 Rh1Rh1 0.970.97 1.091.09 Rh2Rh2 0.00.0 0.00.0 F1F1 0.00.0 0.00.0 F2F2 0.00.0 0.00.0 Compound McCompound Mc 0.00.0 0.00.0 Compound Mc1Compound Mc1 0.00.0 0.00.0 Compound YCompound Y 0.00.0 0.00.0 Compound KCompound K 0.00.0 0.00.0 APPDAPPD 0.00.0 0.00.0 APPTAPPT 0.00.0 0.00.0

2. 재조합 베타-글루코시다아제(β-2. Recombinant beta-glucosidase (&bgr; glucosidaseglucosidase )의 )of 클로닝Cloning 및 생산 And production

(1) Dictyoglomus turgidum DSM 6724 균주 유래 재조합 베타-글루코시다아제의 클로닝 및 생산(1) Dictyoglomus Cloning and production of recombinant beta-glucosidase derived from turgidum DSM 6724 strain

Dictyoglomus turgidum DSM 6724 균주 유래 재조합 베타-글루코시다아제(GenBank 번호 : ACK415480; 'DT-BGL'로 명명함) DNA를 공지된 Lee 등((Biotechnol. Lett. 2012, 34(9): 1679)의 방법으로 클로닝하고 형질전환 균주에서 발현시켰다. 이후, 형질전환 균주를 시트레이트-인산 완충액에 희석하고 초음파를 이용하여 파쇄한 후, 원심분리하여 DT-BGL 발현 상등액을 수거하였다. 상기 상등액을 펩티드 태그로 정제하여 정제 DT-BGL을 얻었다. 후술하는 실험에서 DT-BGL 발현 상등액 및 정제 DT-BGL을 선택적으로 사용하였다. DT-BGL은 최적 반응 조건에서 기질인 진세노사이드 Rb1로부터 Rd, F2, Compound K를 거쳐 APPD를 생산하고, 기질인 진세노사이드 Rb2로부터 Compound Y를 생산하며 기질인 진세노사이드 Rc로부터 Compound Mc를 생산한다. DT-BGL의 최적 반응조건은 시트레이트-인산 완충액 50mM, pH 5.5, 반응온도 80℃이다. Dictyoglomus DNA of the turgidum DSM 6724 strain-derived recombinant beta-glucosidase (GenBank number: ACK415480; dubbed DT-BGL) was prepared by the method of Lee et al. (Biotechnol. Lett. 2012, 34 (9): 1679) Then, the transformant strain was diluted with citrate-phosphate buffer, disrupted using ultrasonic waves, and centrifuged to collect DT-BGL expression supernatant. The supernatant was purified with a peptide tag The DT-BGL expression supernatant and the purified DT-BGL were selectively used in the experiments described below. DT-BGL was synthesized from the ginsenoside Rb1 as the substrate, Rd, F2, and Compound K, And the compound Mc from the substrate Ginsenoside Rc The optimal reaction conditions for DT-BGL were: citrate-phosphate buffer 50 mM, pH 5.5, reaction Temperature 80 ℃ .

(2) 클로스트리디움 스테르코라리움 아종 스테르코라리움(Clostridium stercorarium subsp. stercorarium) DSM 8532 균주 유래 재조합 베타-글루코시다아제의 클로닝 및 생산(2) Cloning and production of recombinant beta-glucosidase derived from Clostridium stercorarium subsp. Stercorarium DSM 8532 strain

클로스트리디움 스테르코라리움 아종 스테르코라리움(Clostridium stercorarium subsp. stercorarium) DSM 8532 균주 유래 재조합 베타-글루코시다아제(GenBank 번호 : AGC67337; 'CS-BGL'로 명명함)는 서열번호 1의 아미노산 서열로 구성되며 Dictyoglomus turgidum DSM 6724 균주 유래 재조합 베타-글루코시다아제 DT-BGL과 아미노산 서열 상동성 차이가 67%이다. 서열번호 2의 염기서열로 구성된 CS-BGL DNA 단편를 중합효소연쇄반응(PCR)으로 증폭하여 확보하였다. 중합효소연쇄반응(PCR)에 사용된 프라이머는 아래와 같으며, 클로닝을 위해 제한효소 NheI과 XhoI을 사용하였다. Clostridium stercorarium subsp. Stercorarium DSM 8532 strain recombinant beta-glucosidase (GenBank number: AGC67337; designated 'CS-BGL') is an amino acid of SEQ ID NO: 1 Dictyoglomus The amino acid sequence homology difference with turgidum DSM 6724 strain-derived recombinant beta-glucosidase DT-BGL is 67%. A CS-BGL DNA fragment consisting of the nucleotide sequence of SEQ ID NO: 2 was amplified by polymerase chain reaction (PCR). The primers used for the PCR were as follows. For the cloning, restriction enzymes NheI and XhoI were used.

Forward primer : 5' -CGGCGCTAGCGTAATACCAATTGTTGCAAGAGTGTC - 3'Forward primer: 5 '-CGGCGCTAGCGTAATACCAATTGTTGCAAGAGTGTC-3'

Reverse primer : 5' - AGTACTCGAGAGCCTGTTCAGCTTTTCCTCGTTCAGTTCC - 3‘Reverse primer: 5 '- AGTACTCGAGAGCCTGTTCAGCTTTTCCTCGTTCAGTTCC -3'

중합효소연쇄반응(PCR)에 사용된 주형 DNA는 다음과 같은 방법으로 확보하였다. 클로스트리디움 스테르코라리움 아종 스테르코라리움(Clostridium stercorarium subsp. stercorarium) DSM 8532 균주를 한천 농도가 15g/ℓ인 Clostridium medium(DSM medium No. 255)에서 접종하고 혐기 조건에서 2일 동안 배양하여 집락을 형성시켰다. 이후, Clostridium medium(DSM medium No. 255) 5㎖가 수용된 vial(Wheaton, 10㎖ 용량)에 질소를 치환하여 산소를 제거한 후 클로스트리디움 스테르코라리움 아종 스테르코라리움(Clostridium stercorarium subsp. stercorarium) DSM 8532 균주의 집락을 접종하고 밀봉한 후 60℃의 온도 및 150 rpm의 교반 조건하에서 30시간 동안 배양하였다. 배양액을 원심분리하여 세포를 회수하고, genomic DNA isolation kit(Bioneer)를 사용하여 회수된 세포로부터 주형 DNA를 확보하였다.The template DNA used in the PCR was obtained by the following method. Clostridium stercorarium subsp. Stercorarium strain DSM 8532 was inoculated in Clostridium medium (DSM medium No. 255) at an agar concentration of 15 g / l and cultured for 2 days in anaerobic condition Colonies were formed. After removing oxygen by replacing nitrogen with vial (Wheaton, 10 ml capacity) containing 5 ml of Clostridium medium (DSM medium No. 255), Clostridium stercorarium ( Clostridium stercorarium) subsp. stercorarium DSM 8532 colonies were inoculated and sealed, and then cultured for 30 hours at a temperature of 60 ° C and a stirring condition of 150 rpm. Cells were recovered by centrifuging the culture, and template DNA was obtained from the recovered cells using a genomic DNA isolation kit (Bioneer).

중합효소연쇄반응(PCR)은 Phusion® High-Fidelity DNA Polymerase kit(NEB)를 사용하여 수행하였고 98℃에서 2분 동안 predenaturation을 실시한 후, denaturation 98℃, 10초; annealing 55℃, 30초; extention 72℃, 130초를 1 cycle로 하여 총 30 cycle을 수행하고 최종적으로 72℃에서 10분 동안 반응시켰다. 이후, agarose gel 전기영동상에서 증폭된 DNA 단편을 확인하고, DNA 단편을 elution 한 후 gel elution kit(Qiagen)를 이용하여 분리하였다. 분리한 DNA 단편을 NheI과 XhoI 제한 효소로 절단한 후 동일한 제한 효소로 처리한 pET-24a 벡터(Novagen)에 cloning 하고 염기서열을 확인하였다. CS-BGL가 클로닝된 pET-24a vector를 pCSBG 플라스미드로 명명하고 상기 플라스미드 50ng을 electroporation을 통해 대장균 ER2566 균주에 형질전환 후 LB-kanamycin 한천 배지에서 단일 집락을 획득하였다. 이후, 획득한 단일 집락을 kanamycin의 농도가 50㎍/㎖인 LB broth에 접종하고 하룻밤 동안 배양하고 이를 종균으로 사용하였다. 상기 종균을 kanamycin의 농도가 50㎍/㎖인 LB broth 500㎖에 접종하고, 37℃의 shaking incubator에서 230 rpm으로 교반배양하면서 배양액의 흡광도(Optical density at 600㎚)가 0.5에 도달하였을 때 IPTG를 최종 농도가 1mM이 되도록 첨가하여 목적 효소의 발현을 유도하고 16℃의 온도 및 150 rpm의 교반 조건에서 15시간 동안 추가로 배양하였다. 배양이 완료된 후, 형질전환 균주의 배양액을 3000rpm에서 20분 동안 원심분리하여 세포를 회수하고, 회수한 세포를 생리식염수로 20회 세척한 후 시트레이트-인산 완충액에 희석하였다. 이후, sonicator(Branson, model 100)를 이용하여 희석된 세포를 파쇄하고, 세포 파쇄액을 14,000 rpm으로 20분 동안 원심분리하여 비가용성 단백질 부분을 제거하고 CS-BGL 발현 상등액을 수거하였다. 또한, 상기 상등액을 pET-24a 벡터에 포함된 히스티딘 태그로 정제하여 정제 CS-BGL을 얻었다. 정제 시 metal ion affinity chromatography(IMAC) cartridge (Bio-Rad)와 immidazole을 사용하였고, 정제 CS-BGL은 시트레이트-인산 완충액에 가용화시킨 후 후술하는 실험에 사용하였다.Polymerase chain reaction (PCR) was performed using the Phusion® High-Fidelity DNA Polymerase kit (NEB), predenaturation at 98 ° C for 2 minutes, denaturation at 98 ° C for 10 seconds; annealing 55 캜, 30 sec; Extension A total of 30 cycles were performed at 72 ° C for 130 seconds as one cycle, and the reaction was finally performed at 72 ° C for 10 minutes. After amplification of the DNA fragments on the agarose gel electrophoresis, the DNA fragments were eluted and then separated by gel elution kit (Qiagen). The isolated DNA fragment was digested with NheI and XhoI restriction enzymes and cloned into pET-24a vector (Novagen) treated with the same restriction enzymes and the nucleotide sequence was confirmed. The pET-24a vector in which CS-BGL was cloned was designated as pCSBG plasmid, and 50 ng of the plasmid was transformed into E. coli ER2566 strain by electroporation and single colonies were obtained in LB-kanamycin agar medium. Then, the obtained single colonies were inoculated into LB broth having a kanamycin concentration of 50 μg / ml and cultured overnight, and used as seeds. The seeds were inoculated into 500 ml of LB broth at a concentration of 50 μg / ml of kanamycin and stirred at 230 rpm in a shaking incubator at 37 ° C. When the optical density at 600 nm reached 0.5, IPTG The final concentration was 1 mM to induce the expression of the target enzyme and further cultured for 15 hours at a temperature of 16 DEG C and a stirring condition of 150 rpm. After the cultivation was completed, the culture medium of the transformant was centrifuged at 3000 rpm for 20 minutes to recover the cells. The recovered cells were washed with physiological saline 20 times and then diluted with citrate-phosphate buffer. Subsequently, the diluted cells were disrupted using a sonicator (Branson, model 100), and the cell lysate was centrifuged at 14,000 rpm for 20 minutes to remove the insoluble protein portion and collect the CS-BGL expression supernatant. Further, the supernatant was purified by a histidine tag contained in the pET-24a vector to obtain purified CS-BGL. Purified CS-BGL was solubilized in Citrate-Phosphate Buffer and used in the experiments described below. Purification was carried out using metal ion affinity chromatography (IMAC) cartridge (Bio-Rad) and immidazole.

3. 재조합 베타-글루코시다아제에 의한 희귀 진세노사이드의 함량 증대3. Increased content of rare ginsenosides by recombinant beta-glucosidases

시트레이트-인산 완충액(50mM, pH 5.5)에 앞에서 수득한 GBR 착즙 농축액 1g을 넣고 여기에 효소 발현 상등액 2㎖(총 단백질 양은 4㎎임)를 넣은 후 65℃에서 1시간 동안 반응시켰다. 반응 생성물의 진세노사이드 조성을 HPLC로 분석하였고, 그 결과를 하기 표 2에 나타내었다.1 g of the GBR juice concentrate obtained above was added to citrate-phosphate buffer (50 mM, pH 5.5), and 2 ml of the enzyme-expressed supernatant (total amount of protein: 4 mg) was added thereto and reacted at 65 ° C for 1 hour. The ginsenoside composition of the reaction product was analyzed by HPLC and the results are shown in Table 2 below.

진세노사이드 구분
Gin Senocide classification
GBR 착즙 농축액(㎎/g)GBR juice concentrate (mg / g)
효소와 반응 전Before enzyme reaction CS-BGL과 반응 후After reaction with CS-BGL DT-BGL과 반응 후After reaction with DT-BGL Rb1Rb1 14.7514.75 0.00.0 0.200.20 Rb2Rb2 9.609.60 7.787.78 7.807.80 Rb3Rb3 10.2010.20 5.365.36 10.1210.12 RcRc 12.9612.96 9.429.42 9.569.56 RdRd 38.2838.28 50.3450.34 48.2448.24 ReRe 61.3661.36 49.2249.22 54.7654.76 RfRf 1.341.34 0.890.89 0.960.96 Rg1Rg1 9.909.90 10.9410.94 7.327.32 Rg2Rg2 12.312.3 11.5711.57 5.115.11 Rg3Rg3 0.530.53 4.554.55 0.00.0 Rh1Rh1 1.091.09 2.832.83 2.462.46 Rh2Rh2 0.00.0 2.122.12 0.00.0 F1F1 0.00.0 0.00.0 0.00.0 F2F2 0.00.0 3.643.64 1.551.55 Compound McCompound Mc 0.00.0 2.352.35 2.432.43 Compound Mc1Compound Mc1 0.00.0 0.00.0 0.00.0 Compound YCompound Y 0.00.0 1.581.58 1.641.64 Compound KCompound K 0.00.0 0.780.78 0.680.68 APPDAPPD 0.00.0 0.00.0 0.00.0 APPTAPPT 0.00.0 0.00.0 0.00.0

상기 표 2에서 보이는 바와 같이 베타-글루코시다아제 CS-BGL은 진세노사이드 Rh1, Compound MC, Compound Y, Compound K의 생성량 측면에서 베타-글루코시다아제 DT-BGL과 유사하였다. 그러나, 베타-글루코시다아제 CS-BGL은 베타-글루코시다아제 DT-BGL에 비해 진세노사이드 Rg3 및 Rh2를 새롭게 생성시켰고, 진세노사이드 Rg1 및 F2의 생성량도 매우 높았다. 또한, 베타-글루코시다아제 CS-BGL에 의해 기질인 진세노사이드 Rb1은 모두 분해되었고, 진세노사이드 Rd의 함량은 오히려 증가한 것에 비추어볼 때 베타-글루코시다아제 CS-BGL의 반응속도는 PPD(protopanaxadiol) 계열의 진세노사이드에 대해 높은 것으로 보인다. 또한, 베타-글루코시다아제 CS-BGL과의 반응에 의해 진세노사이드 Re의 반응 생성물인 Rg1의 함량이 증가한 것으로 보아, 베타-글루코시다아제 CS-BGL은 PPT(protopanaxatriol) 계열의 진세노사이드 20번 탄소 위치에 존재하는 글루코스를 분해하는 것으로 추정된다.As shown in Table 2, beta-glucosidase CS-BGL was similar to beta-glucosidase DT-BGL in terms of the amount of ginsenoside Rh1, Compound MC, Compound Y and Compound K produced. However, beta-glucosidase CS-BGL newly produced ginsenosides Rg3 and Rh2 as compared to beta-glucosidase DT-BGL, and the amount of ginsenosides Rg1 and F2 was also very high. In addition, since the content of ginsenoside Rb1, which is a substrate, was completely degraded by beta-glucosidase CS-BGL, the content of ginsenoside Rd was rather increased, and the reaction rate of beta-glucosidase CS- protopanaxadiol) family of ginsenosides. In addition, the content of Rg1, which is a reaction product of ginsenoside Re, was increased by the reaction with beta-glucosidase CS-BGL. As a result, beta-glucosidase CS-BGL was found to contain protopanaxatriol (PPT) It is presumed that the glucose present at the carbon position is decomposed.

이를 보다 명확히 확인하기 위해 효소 발현 상등액 대신 정제 DT-BGL 및 정제 CS-BGL을 사용하여 효소 발현 상등액과 동일한 조건으로 반응시켰고 반응 생성물의 미량 진세노사이드인 Rg1, Rg2, Rg3, Rh1, Rh2 및 F2의 함량을 비교하였다. 도 1은 성숙 인삼열매 착즙 농축액을 정제 DT-BGL 및 정제 CS-BGL과 반응시켰을 때 반응 생성물내 진세노사이드의 함량 변화를 나타낸 것이다. 도 1에서 보이는 바와 같이 성숙 인삼열매 착즙 농축액은 정제 CS-BGL과 반응하였을 때 진세노사이드 Rg3 및 Rh1의 함량이 각각 반응전보다 8배 및 2배 이상 증가하였다. 또한, 정제 CS-BGL은 정제 DT-BGL에 비해 진세노사이드 Rh2 및 F2를 새롭게 생성시켰고, 다른 미량 진세노사이드 생성량도 더 높은 것으로 나타났다. 결과적으로 베타-글루코시다아제 CS-BGL은 인삼열매 착즙 농축액 내 진세노사이드와 반응하여 미량 진세노사이드의 함량을 골고루 증가시킬 수 있는 것으로 판단된다.Rg1, Rg2, Rg3, Rh1, Rh2 and F2 of the reaction product were reacted under the same conditions as the enzyme expression supernatant using purified DT-BGL and purified CS-BGL in place of the enzyme expression supernatant. Were compared. Figure 1 shows the content of ginsenosides in the reaction product when the juice concentrate of matured ginseng fruit was reacted with purified DT-BGL and purified CS-BGL. As shown in FIG. 1, the content of ginsenosides Rg3 and Rh1 in the juice concentrate of mature ginseng fruit increased 8-fold and 2-fold, respectively, when they were reacted with purified CS-BGL. In addition, purified CS-BGL produced more ginsenosides Rh2 and F2 than purified DT-BGL, and the other trace ginsenosides produced were also higher. As a result, it is considered that beta-glucosidase CS-BGL can react with ginsenoside in the concentrate of ginseng fruit juice concentrate to increase the content of trace ginsenoside evenly.

4. 4. 헤미셀룰라아제에Hemicellulase 의한 희귀 진세노사이드의 함량 증대 Increased content of rare ginsenosides by

시트레이트-인산 완충액(50mM, pH 5.5)에 앞에서 수득한 GBR 착즙 농축액 1g을 넣고 여기에 상업적 효소인 헤미셀룰라아제 2㎖를 넣은 후 35℃에서 1시간 동안 반응시켰다. 반응 생성물의 진세노사이드 조성을 HPLC로 분석하였고, 그 결과를 하기 표 3에 나타내었다. 상기 상업적 효소인 헤미셀룰라아제는 자일라나아제(xylanase)와 갈락타나아제(galactanase)로 구성되어 있고, 일본 기업인 Amno사의 제품이다.1 g of the GBR juice concentrate obtained above was added to citrate-phosphate buffer (50 mM, pH 5.5), and 2 ml of hemicellulase as a commercial enzyme was added thereto, followed by reaction at 35 ° C for 1 hour. The ginsenoside composition of the reaction product was analyzed by HPLC and the results are shown in Table 3 below. The hemicellulase, which is a commercial enzyme, is composed of xylanase and galactanase, and is a product of Japanese company Amno.

진세노사이드 구분Gin Senocide classification GBR 착즙 농축액(㎎/g)GBR juice concentrate (mg / g) 효소와 반응 전Before enzyme reaction 헤미셀룰라아제와 반응 후After reaction with hemicellulase R2R2 2.212.21 0.00.0 Rb1Rb1 14.7514.75 10.2710.27 Rb2Rb2 9.69.6 7.787.78 Rb3Rb3 10.210.2 5.195.19 RcRc 12.9612.96 9.429.42 RdRd 38.2838.28 55.1055.10 ReRe 61.3661.36 50.3750.37 RfRf 1.341.34 1.291.29 Rg1Rg1 9.909.90 13.0113.01 Rg2Rg2 12.312.3 16.7816.78 Rg3Rg3 0.530.53 1.131.13 Rh1Rh1 1.091.09 3.543.54 Rh2Rh2 0.00.0 1.331.33 F1F1 0.00.0 0.00.0 F2F2 0.00.0 3.363.36 Compound McCompound Mc 0.00.0 2.012.01 Compound Mc1Compound Mc1 0.00.0 0.00.0

상기 표 3에서 보이는 바와 같이 헤미셀룰라아제는 아라비노스 또는 자일로스가 함유된 진세노사이드 Rb2, Rb3, Rc 또는 R2를 분해하여 진세노사이드 Rd, Rh1 또는 Compound Mc 등의 함량을 증가시키는데에 효과가 있었다. 또한, 헤미셀룰라아제는 진세노사이드 R2를 모두 분해시켜 진세노사이드 Rh1으로 전환시켰고, 그 결과 Rh1이 반응 후 약 3.2배 증가하였다. 또한, GBR 착즙 농축액과 헤미셀룰라아제의 반응 후 진세노사이드 Re의 반응 산물인 진세노사이드 Rg1 및 Rg2의 함량이 각각 1.3배씩 증가하였다. 또한, GBR 착즙 농축액과 헤미셀룰라아제의 반응 후 진세노사이드 Rc는 Compound Mc로 30% 이상 전환되었다. 또한, 헤미셀룰라아제는 GBR 착즙 농축액 내 진세노사이드 Rb2 및 Rb3를 각각 23% 및 50.8% 정도 분해하였고, 진세노사이드 Rb1을 약 30% 이상 분해하여 모두 Rd로 전환시켰다. 결론적으로, 헤미셀룰라아제는 종래 효소 처리로 분해가 어려운 진세노사이드의 아라비노스나 자일로스를 효과적으로 분해하여 인삼열매 착즙 농축액 내 다양한 미량 진세노사이드 함량을 유의적으로 증가시킬 수 있다.As shown in Table 3, hemicellulase was effective in decomposing ginsenosides Rb2, Rb3, Rc, or R2 containing arabinose or xylose to increase contents of ginsenoside Rd, Rh1 or Compound Mc . In addition, the hemicellulase completely decomposed ginsenoside R2 and converted it into ginsenoside Rh1. As a result, Rh1 increased about 3.2 times after the reaction. In addition, the content of ginsenosides Rg1 and Rg2, which are reaction products of ginsenoside Re, increased by 1.3 times after the reaction of GBR juice concentrate and hemicellulase. In addition, after the reaction of GBR juice concentrate with hemicellulase, ginsenoside Rc was converted to Compound Mc by more than 30%. Hemicellulase also decomposed ginsenosides Rb2 and Rb3 in GBR juice concentrate by 23% and 50.8%, respectively, and decomposed more than 30% of ginsenoside Rb1 into all Rd. In conclusion, hemicellulase effectively decomposes arabinose and xylose of ginsenoside, which is difficult to degrade by conventional enzyme treatment, and can significantly increase various trace ginsenoside contents in ginseng fruit juice concentrate.

5. 베타-글루코시다아제와 5. Beta-glucosidase and 헤미셀룰라아제의Hemicellulase 혼합 효소에 의한 희귀 진세노사이드의 함량 증대 Increased content of rare ginsenosides by mixed enzymes

시트레이트-인산 완충액(50mM, pH 5.5)에 앞에서 수득한 GBR 착즙 농축액 1g을 넣고 여기에 베타-글루코시다아제와 헤미셀룰라아제의 혼합 효소 2㎖를 넣은 후 65℃에서 1시간 동안 반응시켰다. 반응 생성물의 진세노사이드 조성을 HPLC로 분석하였고, 그 결과를 하기 표 4에 나타내었다. 상기 베타-글루코시다아제는 CS-BGL 발현 상등액이다. 또한, 상기 상업적 효소인 헤미셀룰라아제는 자일라나아제(xylanase)와 갈락타나아제(galactanase)로 구성되어 있고, 일본 기업인 Amno사의 제품이다. 하기 표 4에서 보이는 바와 같이 베타-글루코시다아제와 헤미셀룰라아제의 혼합 효소는 GBR 착즙 농축액 내 미량 진세노사이드 함량을 현저하게 증가시켰다. 이는 혼합 효소가 PPD 계열의 진세노사이드와 PPT 계열의 진세노사이드를 모두 기질로 사용하고 골고루 분해한 것에서 기인하는 것으로 판단된다.1 g of the GBR juice concentrate obtained above was added to citrate-phosphate buffer (50 mM, pH 5.5), and 2 ml of a mixed enzyme of beta-glucosidase and hemicellulase was added thereto, followed by reaction at 65 ° C for 1 hour. The ginsenoside composition of the reaction product was analyzed by HPLC and the results are shown in Table 4 below. The beta-glucosidase is a CS-BGL expression supernatant. The hemicellulase, which is a commercial enzyme, is composed of xylanase and galactanase, and is a product of Amno, a Japanese company. As shown in Table 4 below, the mixed enzyme of beta-glucosidase and hemicellulase significantly increased the content of trace ginsenosides in the GBR juice concentrate. It is considered that the mixed enzyme was caused by the decomposition of both the PPD series of ginsenosides and the PPT series of ginsenosides both as substrates and evenly.

진세노사이드 구분Gin Senocide classification GBR 착즙 농축액(㎎/g)GBR juice concentrate (mg / g) 효소와 반응 전Before enzyme reaction 혼합 효소 1과 반응 후After reaction with mixed enzyme 1 혼합 효소 2와 반응 후After reaction with mixed enzyme 2 혼합 효소 3과 반응 후After reaction with mixed enzyme 3 R2R2 2.212.21 0.00.0 0.00.0 0.00.0 Rb1Rb1 14.7514.75 9.149.14 9.129.12 5.545.54 Rb2Rb2 9.69.6 7.287.28 5.555.55 3.213.21 Rb3Rb3 10.210.2 3.393.39 5.985.98 7.377.37 RcRc 12.9612.96 6.216.21 7.427.42 8.998.99 RdRd 38.2838.28 57.2057.20 50.1050.10 45.1045.10 ReRe 61.3661.36 41.1741.17 47.3547.35 49.8649.86 RfRf 1.341.34 0.730.73 0.730.73 0.410.41 Rg1Rg1 9.909.90 17.2317.23 15.0815.08 12.4512.45 Rg2Rg2 12.312.3 21.3421.34 16.5416.54 13.1013.10 Rg3Rg3 0.530.53 1.131.13 3.933.93 4.984.98 Rh1Rh1 1.091.09 3.783.78 3.633.63 3.333.33 Rh2Rh2 0.00.0 2.212.21 2.452.45 2.832.83 F1F1 0.00.0 0.00.0 0.00.0 0.00.0 F2F2 0.00.0 3.643.64 3.983.98 4.534.53 Compound McCompound Mc 0.00.0 4.954.95 4.714.71 2.952.95 Compound Mc1Compound Mc1 0.00.0 0.00.0 0.00.0 0.00.0

* 혼합 효소 1 : 베타-글루코시다아제와 헤미셀룰라아제의 혼합 중량비가 1:4임Mixed enzyme 1: Mixed weight ratio of beta-glucosidase to hemicellulase is 1: 4

* 혼합 효소 2 : 베타-글루코시다아제와 헤미셀룰라아제의 혼합 중량비가 1:1임Mixed Enzyme 2: Mixture weight ratio of 1: 1 beta-glucosidase to hemicellulase

* 혼합 효소 3 : 베타-글루코시다아제와 헤미셀룰라아제의 혼합 중량비가 4:1임Mixed enzyme 3: Mixture weight ratio of beta-glucosidase to hemicellulase is 4: 1

이상에서와 같이 본 발명을 상기의 실시예를 통해 설명하였지만 본 발명이 반드시 여기에만 한정되는 것은 아니며 본 발명의 범주와 사상을 벗어나지 않는 범위 내에서 다양한 변형실시가 가능함은 물론이다. 따라서, 본 발명의 보호범위는 특정 실시 형태로 국한되는 것이 아니며, 본 발명에 첨부된 특허청구의 범위에 속하는 모든 실시 형태를 포함하는 것으로 해석되어야 한다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed exemplary embodiments, but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims. Accordingly, the scope of protection of the present invention is not limited to the specific embodiments but should be construed as including all embodiments belonging to the claims attached hereto.

<110> Kbiopharm Co., Ltd. <120> Method for producing rare ginsenosides from ginseng berry <130> DP-16-742 <160> 2 <170> KoPatentIn 3.0 <210> 1 <211> 794 <212> PRT <213> Unknown <220> <223> beta-glucosidase derived from Clostridium stercorarium subsp. stercorarium DSM 8532 <400> 1 Met Val Ile Pro Ile Val Ala Arg Val Ser Glu Lys Val Ile Ile Tyr 1 5 10 15 Tyr Ala Gly Thr Val Tyr Glu Asn Leu Asn Asp Lys Gly Ile Thr Gly 20 25 30 Val Ile Lys Met Gln Arg Asp Ile Lys Lys Ile Ile Ser Gln Met Thr 35 40 45 Leu Glu Glu Lys Ala Ser Leu Cys Ser Gly Leu Asp Ala Trp Asn Leu 50 55 60 Lys Ser Val Glu Arg Leu Gly Ile Pro Ser Ile Met Val Ser Asp Gly 65 70 75 80 Pro His Gly Leu Arg Lys Glu Thr Thr Asp Pro Thr Asp Pro Gly Lys 85 90 95 Lys Thr Thr Val Pro Ala Thr Cys Phe Pro Thr Ala Val Gly Leu Ala 100 105 110 Ser Ser Trp Asn Arg Glu Leu Val Glu Lys Val Gly Ala Ala Leu Gly 115 120 125 Glu Glu Cys Gln Ala Glu Gly Ile Ala Val Leu Leu Gly Pro Gly Thr 130 135 140 Asn Ile Lys Arg Ser Pro Leu Cys Gly Arg Asn Phe Glu Tyr Phe Ser 145 150 155 160 Glu Asp Pro Tyr Leu Ser Ser Glu Met Ala Ala Ser His Ile Lys Gly 165 170 175 Val Gln Ser Arg Gly Val Gly Thr Ser Leu Lys His Phe Ala Ala Asn 180 185 190 Asn Gln Glu His Arg Arg Met Ser Val Asp Ala Val Ile Asp Glu Arg 195 200 205 Thr Leu Arg Glu Ile Tyr Leu Ala Ser Phe Glu Gly Ala Val Lys Lys 210 215 220 Ala Lys Pro Trp Thr Ile Met Cys Ser Tyr Asn Arg Val Asn Gly Glu 225 230 235 240 Tyr Ala Ser Glu Asn Lys Phe Leu Leu Thr Asp Val Leu Arg Asn Glu 245 250 255 Trp Gly Phe Glu Gly Ile Val Val Ser Asp Trp Gly Ala Val Asn Glu 260 265 270 Arg Val Lys Gly Leu Glu Ala Gly Leu Asp Leu Glu Met Pro Ser Ser 275 280 285 Phe Gly Ile Gly Asp Gln Lys Ile Val Glu Ala Val Lys Lys Gly Glu 290 295 300 Leu Pro Glu Glu Val Leu Asp Arg Thr Val Glu Arg Ile Leu Asn Leu 305 310 315 320 Ile Phe Lys Ala Val Asp Asn Arg Lys Glu Asn Ala Gly Tyr Asp Arg 325 330 335 Glu Ala His His Lys Leu Ala Arg Glu Ala Ala Arg Glu Cys Met Val 340 345 350 Leu Leu Lys Asn Glu Asp Lys Ile Leu Pro Leu Arg Lys Gln Gly Thr 355 360 365 Ile Ala Val Ile Gly Glu Phe Ala Lys Arg Pro Arg Tyr Gln Gly Gly 370 375 380 Gly Ser Ser His Val Asn Pro Thr Ile Met Asp Ser Pro Tyr Glu Glu 385 390 395 400 Ile Lys Lys Ser Ala Gly Asn Asn Ala Asp Val Ile Tyr Ala Gln Gly 405 410 415 Tyr Phe Ile Glu Lys Asp Glu Pro Asp Glu Lys Leu Leu Glu Glu Ala 420 425 430 Lys Gln Ala Ala Leu Lys Ala Asp Val Ala Val Ile Phe Ala Gly Leu 435 440 445 Pro Glu His Tyr Glu Cys Glu Gly Tyr Asp Arg Gln His Met Arg Met 450 455 460 Pro Glu Ser His Cys Thr Leu Ile Glu Glu Val Ala Lys Val Gln Pro 465 470 475 480 Asn Val Val Val Val Leu Cys Asn Gly Ser Pro Val Glu Met Pro Trp 485 490 495 Ile Asp Lys Val Lys Gly Leu Leu Glu Ala Tyr Leu Gly Gly Gln Ala 500 505 510 Met Gly Gly Ala Ile Ala Asp Leu Leu Phe Gly Asp Ala Asn Pro Ser 515 520 525 Gly Lys Leu Ala Glu Thr Phe Pro Lys Gln Leu Ser Asp Asn Pro Ser 530 535 540 Tyr Leu Asn Phe Pro Gly Glu Gly Asp Arg Val Glu Tyr Arg Glu Gly 545 550 555 560 Ile Phe Val Gly Tyr Arg Tyr Tyr Asp Lys Lys Asn Met Glu Pro Leu 565 570 575 Phe Pro Phe Gly Tyr Gly Leu Ser Tyr Thr Thr Phe Glu Tyr Gly Asp 580 585 590 Leu Lys Ile Ser Arg Lys Glu Ile Ser Asp Asn Glu Thr Val Thr Val 595 600 605 Ser Val Lys Val Lys Asn Thr Gly Asp Met Ala Gly Lys Glu Ile Val 610 615 620 Gln Leu Tyr Val Arg Asp Ile Glu Ser Ser Val Ile Arg Pro Glu Lys 625 630 635 640 Glu Leu Lys Gly Phe Glu Lys Val Glu Leu Lys Pro Gly Glu Glu Lys 645 650 655 Thr Val Val Phe Glu Leu Asp Lys Arg Ala Phe Ala Tyr Tyr Asn Thr 660 665 670 Gly Ile Arg Asp Trp His Val Glu Thr Gly Glu Phe Glu Ile Leu Ile 675 680 685 Gly Arg Ser Ser Arg Asp Ile Val Leu Lys Asp Lys Ile Phe Val Lys 690 695 700 Ser Thr Val Thr Ile Lys Lys Pro Val Asp Arg Asn Thr Leu Val Gly 705 710 715 720 Asp Leu Leu Ser Asp Arg Val Leu Glu Pro Val Phe Arg Glu Phe Ile 725 730 735 Ile Asn Glu Ile Lys Asn Arg Tyr Leu Leu Asp Leu Leu Glu Asn Glu 740 745 750 Asp Lys Ser Leu Leu Ser Val Trp Met Arg Tyr Thr Pro Leu Arg Ser 755 760 765 Leu Ala Asn Ser Thr Gly Gly Glu Leu Asn Glu Glu Lys Leu Asn Arg 770 775 780 Leu Ile Asp Thr Leu Asn Ala Asn Ile Lys 785 790 <210> 2 <211> 2385 <212> DNA <213> Unknown <220> <223> DNA fragment encoding beta-glucosidase derived from Clostridium stercorarium subsp. stercorarium DSM 8532 <400> 2 gtggtaatac caattgttgc aagagtgtct gagaaagtta taatttatta tgccggaacg 60 gtttacgaaa atttgaacga taaaggcata acaggagtga taaaaatgca aagggacatc 120 aaaaaaatta tttcacaaat gacgctggaa gaaaaggcga gcttatgctc gggccttgac 180 gcctggaacc ttaaaagcgt agaacgtttg ggcattccgt ccattatggt atctgacggc 240 ccccatggtc tcagaaaaga gacaacggat cccactgatc ccggtaagaa aaccactgtc 300 ccggccacat gtttccccac tgcggttggc cttgcaagct catggaaccg tgaactggtg 360 gagaaagtag gcgccgcatt gggggaagaa tgccaggctg aaggaatagc agtgcttctt 420 gggccgggaa ccaatataaa acgttcccct ctttgcggaa gaaactttga atatttttcg 480 gaagacccgt acctttcttc ggagatggca gcaagccata taaaaggagt gcagagccgg 540 ggagtgggga cgtccctgaa gcattttgcg gcaaataacc aggaacaccg cagaatgagc 600 gtggatgcgg taattgacga aagaacgctg cgtgaaattt acctcgccag tttcgaaggg 660 gcggttaaaa aggcgaagcc gtggacgatc atgtgttcat acaacagggt aaacggcgag 720 tatgcatctg aaaataaatt tctgttaaca gatgtactga gaaatgaatg gggttttgaa 780 ggcattgtgg tatccgactg gggagcggtg aatgagaggg taaagggact ggaagccgga 840 cttgatcttg aaatgccgtc aagcttcggt attggagacc aaaaaatagt tgaagccgta 900 aagaagggtg agctgcccga agaggtattg gacagaaccg ttgaaaggat acttaattta 960 atttttaaag cggtggataa caggaaagaa aatgccggat atgaccggga agctcatcac 1020 aaactggcca gagaagcggc aagggagtgc atggtgctgc ttaagaacga ggacaaaata 1080 cttccgctta ggaagcaggg aaccatagcc gtaataggcg aatttgctaa aagaccacgg 1140 tatcagggcg gaggaagctc ccatgtaaat cccacaatca tggatagtcc atatgaagaa 1200 atcaaaaaat cagcgggaaa caatgcagat gttatatatg cgcaaggtta ttttattgaa 1260 aaggacgagc cagatgaaaa actcctggag gaagcaaagc aggcggcgct gaaggcagat 1320 gtcgccgtga tatttgcagg gcttcccgag cattatgaat gcgagggcta tgaccgtcag 1380 catatgagaa tgcccgaaag ccactgcacg cttatcgaag aagtggcgaa agtacaaccc 1440 aatgtggtgg tggtattatg caacggttca ccggtggaga tgccgtggat tgacaaagtg 1500 aagggattgc tggaggctta cctgggcgga caagccatgg gcggagccat tgccgatctt 1560 ctgttcggag acgccaatcc cagcgggaag ctcgccgaga ctttcccgaa acagttaagc 1620 gataaccctt catatttgaa ttttcccggg gaaggggaca gggttgaata cagggaaggc 1680 atattcgtgg gctacaggta ttatgacaaa aagaatatgg aaccgctgtt cccgttcgga 1740 tacgggctca gctacactac gtttgagtac ggcgatctga aaataagcag gaaagaaata 1800 tctgataacg aaacggtgac tgtgagcgta aaggttaaga ataccggaga tatggcgggt 1860 aaggagattg tgcagcttta cgtaagggat attgaaagct cggtaataag accggagaag 1920 gaactgaagg gttttgaaaa agttgaactt aagcccggcg aggaaaaaac ggtggtgttt 1980 gaacttgaca agagggcgtt tgcttattac aacaccggta taagggactg gcatgttgaa 2040 accggtgaat ttgagatttt aataggcaga tcctcaaggg acatagtgct taaagacaag 2100 atattcgtca aatcaaccgt taccataaaa aaaccggtgg acagaaacac gctggtgggg 2160 gatttgcttt ctgatcgggt tcttgagcct gtattcagag agtttattat taacgagata 2220 aaaaacaggt acttgttgga tttactggag aacgaggata aatccctcct gagtgtgtgg 2280 atgaggtata ctcctctgcg ttcattggcg aacagtacgg gtggggaact gaacgaggaa 2340 aagctgaaca ggctgattga tacactgaat gcaaatatta aataa 2385 &Lt; 110 > Kbiopharm Co., Ltd. <120> Method for producing rare ginsenosides from ginseng berry <130> DP-16-742 <160> 2 <170> KoPatentin 3.0 <210> 1 <211> 794 <212> PRT <213> Unknown <220> <223> beta-glucosidase derived from Clostridium stercorarium subsp.          stercorarium DSM 8532 <400> 1 Met Val Ile Pro Ile Val Ala Arg Val Ser Glu Lys Val Ile Ile Tyr   1 5 10 15 Tyr Ala Gly Thr Val Tyr Glu Asn Leu Asn Asp Lys Gly Ile Thr Gly              20 25 30 Val Ile Lys Met Gln Arg Asp Ile Lys Lys Ile Ser Ser Gln Met Thr          35 40 45 Leu Glu Glu Lys Ala Ser Leu Cys Ser Gly Leu Asp Ala Trp Asn Leu      50 55 60 Lys Ser Val Glu Arg Leu Gly Ile Pro Ser Ile Met Val Ser Asp Gly  65 70 75 80 Pro His Gly Leu Arg Lys Glu Thr Thr Asp Pro Thr Asp Pro Gly Lys                  85 90 95 Lys Thr Thr Val Ala Thr Cys Phe Pro Thr Ala Val Gly Leu Ala             100 105 110 Ser Ser Trp Asn Arg Glu Leu Val Glu Lys Val Gly Ala Ala Leu Gly         115 120 125 Glu Cys Gln Ala Glu Gly Ile Ala Val Leu Leu Gly Pro Gly Thr     130 135 140 Asn Ile Lys Arg Ser Pro Leu Cys Gly Arg Asn Phe Glu Tyr Phe Ser 145 150 155 160 Glu Asp Pro Tyr Leu Ser Ser Glu Met Ala Ala Ser His Ile Lys Gly                 165 170 175 Val Gln Ser Arg Gly Val Gly Thr Ser Leu Lys His Phe Ala Ala Asn             180 185 190 Asn Gln Glu His Arg Arg Met Ser Val Asp Ala Val Ile Asp Glu Arg         195 200 205 Thr Leu Arg Glu Ile Tyr Leu Ala Ser Phe Glu Gly Ala Val Lys Lys     210 215 220 Ala Lys Pro Trp Thr Ile Met Cys Ser Tyr Asn Arg Val Asn Gly Glu 225 230 235 240 Tyr Ala Ser Glu Asn Lys Phe Leu Leu Thr Asp Val Leu Arg Asn Glu                 245 250 255 Trp Gly Phe Glu Gly Ile Val Val Ser Asp Trp Gly Ala Val Asn Glu             260 265 270 Arg Val Lys Gly Leu Glu Ala Gly Leu Asp Leu Glu Met Pro Ser Ser         275 280 285 Phe Gly Ile Gly Asp Gln Lys Ile Val Glu Ala Val Lys Lys Gly Glu     290 295 300 Leu Pro Glu Glu Val Leu Asp Arg Thr Val Glu Arg Ile Leu Asn Leu 305 310 315 320 Ile Phe Lys Ala Val Asp Asn Arg Lys Glu Asn Ala Gly Tyr Asp Arg                 325 330 335 Glu Ala His His Lys Leu Ala Arg Glu Ala Ala Arg Glu Cys Met Val             340 345 350 Leu Leu Lys Asn Glu Asp Lys Ile Leu Pro Leu Arg Lys Gln Gly Thr         355 360 365 Ile Ala Val Ile Gly Glu Phe Ala Lys Arg Pro Arg Tyr Gln Gly Gly     370 375 380 Gly Ser Ser His Val Asn Pro Thr Ile Met Asp Ser Pro Tyr Glu Glu 385 390 395 400 Ile Lys Lys Ser Ala Gly Asn Asn Ala Asp Val Ile Tyr Ala Gln Gly                 405 410 415 Tyr Phe Ile Glu Lys Asp Glu Pro Asp Glu Lys Leu Leu Glu Glu Ala             420 425 430 Lys Gln Ala Ala Leu Lys Ala Asp Val Ala Val Ile Phe Ala Gly Leu         435 440 445 Pro Glu His Tyr Glu Cys Glu Gly Tyr Asp Arg Gln His Met Arg Met     450 455 460 Pro Glu Ser His Cys Thr Leu Ile Glu Glu Val Ala Lys Val Gln Pro 465 470 475 480 Asn Val Val Val Leu Cys Asn Gly Ser Pro Val Glu Met Pro Trp                 485 490 495 Ile Asp Lys Val Lys Gly Leu Leu Gly Aly Tyr Leu Gly Gly Gln Ala             500 505 510 Met Gly Gly Ala Ile Ala Asp Leu Leu Phe Gly Asp Ala Asn Pro Ser         515 520 525 Gly Lys Leu Ala Glu Thr Phe Pro Lys Gln Leu Ser Asp Asn Pro Ser     530 535 540 Tyr Leu Asn Phe Pro Gly Glu Gly Asp Arg Val Glu Tyr Arg Glu Gly 545 550 555 560 Ile Phe Val Gly Tyr Arg Tyr Tyr Asp Lys Lys Asn Met Glu Pro Leu                 565 570 575 Phe Pro Phe Gly Tyr Gly Leu Ser Tyr Thr Thr Phe Glu Tyr Gly Asp             580 585 590 Leu Lys Ile Ser Arg Lys Glu Ile Ser Asp Asn Glu Thr Val Thr Val         595 600 605 Ser Val Lys Val Lys Asn Thr Gly Asp Met Ala Gly Lys Glu Ile Val     610 615 620 Gln Leu Tyr Val Arg Asp Ile Glu Ser Ser Val Ile Arg Pro Glu Lys 625 630 635 640 Glu Leu Lys Gly Phe Glu Lys Val Glu Leu Lys Pro Gly Glu Glu Lys                 645 650 655 Thr Val Phe Glu Leu Asp Lys Arg Ala Phe Ala Tyr Tyr Asn Thr             660 665 670 Gly Ile Arg Asp Trp His Val Glu Thr Gly Glu Phe Glu Ile Leu Ile         675 680 685 Gly Arg Ser Ser Arg Asp Ile Val Leu Lys Asp Lys Ile Phe Val Lys     690 695 700 Ser Thr Val Thr Ile Lys Lys Pro Val Asp Arg Asn Thr Leu Val Gly 705 710 715 720 Asp Leu Leu Ser Asp Arg Val Leu Glu Pro Val Phe Arg Glu Phe Ile                 725 730 735 Ile Asn Glu Ile Lys Asn Arg Tyr Leu Leu Asp Leu Leu Glu Asn Glu             740 745 750 Asp Lys Ser Leu Leu Ser Val Trp Met Arg Tyr Thr Pro Leu Arg Ser         755 760 765 Leu Ala Asn Ser Thr Gly Gly Glu Leu Asn Glu Glu Lys Leu Asn Arg     770 775 780 Leu Ile Asp Thr Leu Asn Ala Asn Ile Lys 785 790 <210> 2 <211> 2385 <212> DNA <213> Unknown <220> <223> DNA fragment encoding beta-glucosidase derived from Clostridium          stercorarium subsp. stercorarium DSM 8532 <400> 2 gtggtaatac caattgttgc aagagtgtct gagaaagtta taatttatta tgccggaacg 60 gtttacgaaa atttgaacga taaaggcata acaggagtga taaaaatgca aagggacatc 120 aaaaaaatta tttcacaaat gacgctggaa gaaaaggcga gcttatgctc gggccttgac 180 gcctggaacc ttaaaagcgt agaacgtttg ggcattccgt ccattatggt atctgacggc 240 ccccatggtc tcagaaaaga gacaacggat cccactgatc ccggtaagaa aaccactgtc 300 ccggccacat gtttccccac tgcggttggc cttgcaagct catggaaccg tgaactggtg 360 gagaagtag gcgccgcatt gggggaagaa tgccaggctg aaggaatagc agtgcttctt 420 gggccgggaa ccaatataaa acgttcccct ctttgcggaa gaaactttga atatttttcg 480 gaagacccgt acctttcttc ggagatggca gcaagccata taaaaggagt gcagagccgg 540 ggagtgggga cgtccctgaa gcattttgcg gcaaataacc aggaacaccg cagaatgagc 600 gtggatgcgg taattgacga aagaacgctg cgtgaaattt acctcgccag tttcgaaggg 660 gcggttaaaa aggcgaagcc gtggacgatc atgtgttcat acaacagggt aaacggcgag 720 tatgcatctg aaaataaatt tctgttaaca gatgtactga gaaatgaatg gggttttgaa 780 ggcattgtgg tatccgactg gggagcggtg aatgagaggg taaagggact ggaagccgga 840 cttgatcttg aaatgccgtc aagcttcggt attggagacc aaaaaatagt tgaagccgta 900 aagaagggtg agctgcccga agaggtattg gacagaaccg ttgaaaggat acttaattta 960 atttttaaag cggtggataa caggaaagaa aatgccggat atgaccggga agctcatcac 1020 aaactggcca gagaagcggc aagggagtgc atggtgctgc ttaagaacga ggacaaaata 1080 cttccgctta ggaagcaggg aaccatagcc gtaataggcg aatttgctaa aagaccacgg 1140 tatcagggcg gaggaagctc ccatgtaaat cccacaatca tggatagtcc atatgaagaa 1200 atcaaaaaat cagcgggaaa caatgcagat gttatatatg cgcaaggtta ttttattgaa 1260 aaggacgagc cagatgaaaa actcctggag gaagcaaagc aggcggcgct gaaggcagat 1320 gtcgccgtga tatttgcagg gcttcccgag cattatgaat gcgagggcta tgaccgtcag 1380 catatgagaa tgcccgaaag ccactgcacg cttatcgaag aagtggcgaa agtacaaccc 1440 aatgtggtgg tggtattatg caacggttca ccggtggaga tgccgtggat tgacaaagtg 1500 aagggattgc tggaggctta cctgggcgga caagccatgg gcggagccat tgccgatctt 1560 ctgttcggag acgccaatcc cagcgggaag ctcgccgaga ctttcccgaa acagttaagc 1620 gataaccctt catatttgaa ttttcccggg gaaggggaca gggttgaata cagggaaggc 1680 atattcgtgg gctacaggta ttatgacaaa aagaatatgg aaccgctgtt cccgttcgga 1740 tacgggctc gctacactac gtttgagtac ggcgatctga aaataagcag gaaagaaata 1800 tctgataacg aaacggtgac tgtgagcgta aaggttaaga ataccggaga tatggcgggt 1860 aaggagattg tgcagcttta cgtaagggat attgaaagct cggtaataag accggagaag 1920 gaactgaagg gttttgaaaa agttgaactt aagcccggcg aggaaaaaac ggtggtgttt 1980 gaacttgaca agagggcgtt tgcttattac aacaccggta taagggactg gcatgttgaa 2040 accggtgaat ttgagatttt aataggcaga tcctcaaggg acatagtgct taaagacaag 2100 atattcgtca aatcaaccgt taccataaaa aaaccggtgg acagaaacac gctggtgggg 2160 gatttgcttt ctgatcgggt tcttgagcct gtattcagag agtttattat taacgagata 2220 aaaaacaggt acttgttgga tttactggag aacgaggata aatccctcct gagtgtgtgg 2280 atgaggtata ctcctctgcg ttcattggcg aacagtacgg gtggggaact gaacgaggaa 2340 aagctgaaca ggctgattga tacactgaat gcaaatatta aataa 2385

Claims (7)

인삼열매 착즙액, 인삼열매 추출액, 인삼열매 과육 착즙액, 인삼열매 과육 추출액 또는 이들의 농축액을 베타-글루코시다아제(β-glucosidase), 헤미셀룰라아제(hemicellulase) 또는 이들의 혼합 효소와 반응시켜 희귀 진세노사이드의 함량을 증가시키는 것을 특징으로 하는 인삼열매로부터 희귀 진세노사이드를 제조하는 방법.
Ginseng fruit juice extract, ginseng fruit extract, ginseng fruit pulp juice extract, ginseng fruit pulp extract, or a concentrate thereof is reacted with β-glucosidase, hemicellulase, A method for producing rare ginsenoside from a ginseng fruit characterized by increasing the content of senoside.
제1항에 있어서, 상기 인삼열매는 성숙 열매인 것을 특징으로 하는 인삼열매로부터 희귀 진세노사이드를 제조하는 방법.
The method of claim 1, wherein the ginseng fruit is mature fruit.
제1항에 있어서, 상기 베타-글루코시다아제(β-glucosidase)는 클로스트리디움 스테르코라리움(Clostridium stercorarium)에서 유래하는 것을 특징을 하는 인삼열매로부터 희귀 진세노사이드를 제조하는 방법.
3. The method of claim 1, wherein the beta-glucosidase is derived from Clostridium stercorarium . 2. The method of claim 1, wherein the beta-glucosidase is derived from Clostridium stercorarium .
제3항에 있어서, 상기 베타-글루코시다아제(β-glucosidase)는 서열번호 1의 아미노산 서열로 구성되는 것을 특징으로 하는 인삼열매로부터 희귀 진세노사이드를 제조하는 방법.
4. The method of claim 3, wherein the beta-glucosidase is composed of the amino acid sequence of SEQ ID NO: 1.
제1항에 있어서, 상기 헤미셀룰라아제(hemicellulase)는 자일라나아제(xylanase), 갈락타나아제(galactanase), 만나나아제(mannanase) 또는 아라비나아제(arabinase)로부터 선택되는 1종 이상으로 구성되는 것을 특징으로 하는 인삼열매로부터 희귀 진세노사이드를 제조하는 방법.
The hemicellulase according to claim 1, wherein the hemicellulase is at least one selected from the group consisting of xylanase, galactanase, mannanase, and arabinase. A method for producing rare ginsenoside from ginseng fruit characterized.
제1항에 있어서, 상기 베타-글루코시다아제(β-glucosidase) 대 헤미셀룰라아제(hemicellulase)의 혼합 중량비는 1:4 내지 4:1인 것을 특징으로 하는 인삼열매로부터 희귀 진세노사이드를 제조하는 방법.
The method according to claim 1, wherein the mixed weight ratio of the β-glucosidase to the hemicellulase is 1: 4 to 4: 1. The method for producing rare ginsenosides from the ginseng fruit .
제1항에 있어서, 상기 희귀 진세노사이드는 Rg1, Rg2, Rg3, Rh1, Rh2, F2, Compound Mc, Compound K 또는 Compound Y에서 선택되는 1종 이상인 것을 특징으로 하는 인삼열매로부터 희귀 진세노사이드를 제조하는 방법.The method according to claim 1, wherein the rare ginsenoside is at least one selected from Rg1, Rg2, Rg3, Rh1, Rh2, F2, Compound Mc, Compound K or Compound Y. Lt; / RTI &gt;
KR1020160131925A 2016-10-12 2016-10-12 Method for producing rare ginsenosides from ginseng berry KR101908659B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160131925A KR101908659B1 (en) 2016-10-12 2016-10-12 Method for producing rare ginsenosides from ginseng berry

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160131925A KR101908659B1 (en) 2016-10-12 2016-10-12 Method for producing rare ginsenosides from ginseng berry

Publications (2)

Publication Number Publication Date
KR20180040269A true KR20180040269A (en) 2018-04-20
KR101908659B1 KR101908659B1 (en) 2018-10-19

Family

ID=62088079

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160131925A KR101908659B1 (en) 2016-10-12 2016-10-12 Method for producing rare ginsenosides from ginseng berry

Country Status (1)

Country Link
KR (1) KR101908659B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108904563A (en) * 2018-09-12 2018-11-30 辽宁新中现代医药有限公司 A kind of complete stool ginseng raw juice processing method and purposes
CN110577947A (en) * 2019-11-01 2019-12-17 广西师范大学 Beta-glucosidase mutant and application thereof
KR20200141766A (en) * 2019-06-11 2020-12-21 건국대학교 산학협력단 A Method for Obtaining Functional Components from ginseng berries of different maturation stages

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102634654B1 (en) 2021-05-10 2024-02-08 자연그대로(주) Manufacturing method of ginseng-berry extract

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108904563A (en) * 2018-09-12 2018-11-30 辽宁新中现代医药有限公司 A kind of complete stool ginseng raw juice processing method and purposes
CN108904563B (en) * 2018-09-12 2021-03-19 辽宁新中现代医药有限公司 Processing method and application of whole-plant ginseng raw stock
KR20200141766A (en) * 2019-06-11 2020-12-21 건국대학교 산학협력단 A Method for Obtaining Functional Components from ginseng berries of different maturation stages
CN110577947A (en) * 2019-11-01 2019-12-17 广西师范大学 Beta-glucosidase mutant and application thereof
CN110577947B (en) * 2019-11-01 2022-10-18 广西师范大学 Beta-glucosidase mutant and application thereof

Also Published As

Publication number Publication date
KR101908659B1 (en) 2018-10-19

Similar Documents

Publication Publication Date Title
KR101908659B1 (en) Method for producing rare ginsenosides from ginseng berry
KR100789678B1 (en) Preparation Method Of Fermented Ginseng Or Fermented Red Ginseng Using Probiotics From Kimchi
CN109477126B (en) Production method of mogrol or mogrol glycoside
KR20170061959A (en) Preparation method of fermented ginseng and fermented black-red ginseng with active ginsenoside heightening rate absorption
KR101362351B1 (en) Ginseng process method for increasing ginsenoside quantity and processed goods thereof
CN107550961B (en) A kind of method that microbe Rapid Fermentation prepares ginseng/American ginseng extract
KR101566589B1 (en) Method for producing fermented red ginseng with increased Ginsenoside F2 contents and fermented red ginseng extract produced by the same method
KR101564487B1 (en) Manufacturing method of small molecule Ginsenoside
KR102258788B1 (en) Novel Aspergillus niger C2-2 isolated from Nu-ruk producing ginsenoside compound K biotransformation enzyme and use thereof
CN101485429B (en) Preparation method of hypoglycemic bitter melon freeze-dried powder
CN106108003A (en) A kind of preparation method rich in the black ginseng of rare ginsenoside Rh2
KR101975016B1 (en) Method for producing rare ginsenosides from ginseng berry by the combination of steaming process and enzyme treatment
KR101340079B1 (en) Biotransformation of ppt-type ginsenoside using terrabacter sp.-derived b-glucosidase
KR20080028266A (en) Method for production of compound k, and compound y, ginsenoside f1 from ginseng using hydrolytic enzymes, pectinex and viscozyme
KR20130110658A (en) Method for preparing ginsenoside rg3 using recombinant beta-glucosidase gene and hsccc (high speed counter current chromatography) after mplc (medium pressure chromatography) pre-treatment
KR101975018B1 (en) Composition for lowering cholesterol comprising a mixture culture of Ginseng Berry-Auricularia auricula mycelia
KR20140006683A (en) Production of ginsenoside rg3, rh1 and rg2 using novel ginsenoside glycosidase
KR101959848B1 (en) Method of producing rare ginseng saponin by using Formitella fracinea mycelia
KR102204450B1 (en) Production method of platycodin D using Platycodon grandiflorum leaf
KR20130085970A (en) A saponin converts compound k-enriched fractions and production method of the same using enzyme conversion and fractionation technology
KR101975017B1 (en) Composition for lowering cholesterol comprising a mixture culture of Ginseng Berry-hongguk
KR20170044828A (en) Preparation method of ginsenoside-Rd using an enzyme
KR102065502B1 (en) Method of Preparing Ginseng Syrup
KR101987453B1 (en) Method for producing personalized ginseng product for improving life-style related disease
KR101525956B1 (en) preparation method of quercetin or isoquecitrin using β-glucosidase

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
N231 Notification of change of applicant
E701 Decision to grant or registration of patent right