KR20180036001A - Artificial leather with polyester manufactured by the component derived from biomass resources and method for producing the same - Google Patents

Artificial leather with polyester manufactured by the component derived from biomass resources and method for producing the same Download PDF

Info

Publication number
KR20180036001A
KR20180036001A KR1020160125990A KR20160125990A KR20180036001A KR 20180036001 A KR20180036001 A KR 20180036001A KR 1020160125990 A KR1020160125990 A KR 1020160125990A KR 20160125990 A KR20160125990 A KR 20160125990A KR 20180036001 A KR20180036001 A KR 20180036001A
Authority
KR
South Korea
Prior art keywords
bio
produced
artificial leather
polyethylene terephthalate
ethylene
Prior art date
Application number
KR1020160125990A
Other languages
Korean (ko)
Inventor
고경철
유혁재
박철권
정대영
Original Assignee
코오롱인더스트리 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코오롱인더스트리 주식회사 filed Critical 코오롱인더스트리 주식회사
Priority to KR1020160125990A priority Critical patent/KR20180036001A/en
Publication of KR20180036001A publication Critical patent/KR20180036001A/en

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/12Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins
    • D06N3/121Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins with polyesters, polycarbonates, alkyds
    • D06N3/123Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins with polyesters, polycarbonates, alkyds with polyesters
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/007Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by mechanical or physical treatments
    • D06N3/0075Napping, teasing, raising or abrading of the resin coating
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2201/00Chemical constitution of the fibres, threads or yarns
    • D06N2201/04Vegetal fibres
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2211/00Specially adapted uses
    • D06N2211/12Decorative or sun protection articles
    • D06N2211/28Artificial leather

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Synthetic Leather, Interior Materials Or Flexible Sheet Materials (AREA)

Abstract

The present invention relates to artificial leather based on polyester produced from a biomass derived component. The present invention provides the artificial leather produced by impregnating non-woven fabric, three dimensionally bridged by sea island type composite fiber including polyethylene terephthalate, with polymer elastomer, forming raised naps and performing a dyeing process. The polyethylene terephthalate is produced by making bio ethylene glycol react with terephthalic acid, whereas the bio ethylene glycol ferments sugar cane to generate bio ethanol, bio ethylene is generated from the bio ethanol through dehydration reaction and the polyethylene terephthalate is produced through the bio ethylene. The present invention uses the polyester produced with the biomass derived ethylene glycol, which is based on non-petroleum, to reduce emission of greenhouse gas and reduces energy consumption in a raw material producing process to produce the artificial leather in an eco-friendly way.

Description

바이오매스 유래 성분으로 제조된 폴리에스테르로 이루어진 인공피혁 및 이의 제조방법{Artificial leather with polyester manufactured by the component derived from biomass resources and method for producing the same}TECHNICAL FIELD [0001] The present invention relates to an artificial leather comprising a polyester produced from a biomass-derived component and a method for producing the same,

본 발명은 바이오매스 유래 성분으로 제조된 폴리에스테르로 이루어진 인공피혁에 관한 것으로, 좀 더 상세하게는 바이오에탄올로부터 유래되어 제조된 에틸렌글리콜로 중합된 폴리에스테르 섬유를 사용하여 친환경 특성이 향상된 인공피혁에 관한 것이다. The present invention relates to an artificial leather comprising polyester produced from a biomass-derived component, and more particularly, to an artificial leather improved in environment-friendly characteristics by using polyester fiber polymerized with ethylene glycol derived from bioethanol .

인공피혁은 극세섬유가 3차원적으로 교락되어 형성된 부직포에 고분자 탄성체가 함침되어 이루어진 것으로서, 천연피혁과 유사하게 부드러운 질감 및 독특한 외관을 가짐으로써, 신발, 의류, 장갑, 잡화, 가구, 및 자동차 내장재 등과 같은 다양한 분야에 널리 이용되고 있다.The artificial leather is made by impregnating a nonwoven fabric formed by three-dimensionally entangled microfine fibers into an elastomeric polymer, and has a soft texture and a unique appearance similar to natural leather. Thus, shoes, clothes, gloves, miscellaneous goods, And the like.

이와 같은 인공피혁은 극세섬유를 형성하기 위해 해도형 복합섬유를 사용하게 되는데, 이러한 해도형 복합섬유는 원료로 폴리에스테르, 폴리아미드, 폴리에틸렌, 폴리스티렌 등 다양한 종류의 합성섬유소재를 이용하여 제조되고 있다.Such artificial leather uses sea-island composite fibers to form microfine fibers. Such sea-island composite fibers are manufactured using various kinds of synthetic fiber materials such as polyester, polyamide, polyethylene, and polystyrene as raw materials .

인공피혁이 비록 상기와 같이 석유화학제품에 의한 합성섬유소재를 이용하고 있지만, 지구 환경 보호의 관점에서 화석연료가 아닌 자연계의 천연자원을 이용하는 등과 같이 환경친화적 인공피혁의 제조방법이 요구되고 있다. Although artificial leather uses synthetic fiber materials made of petrochemical products as described above, there is a demand for a method of manufacturing environmentally friendly artificial leather such as using natural resources of nature rather than fossil fuel in view of protecting the global environment.

대한민국등록특허 제0877716호(인조피혁의 제조방법 및 그 방법에 의해 제조된 인조피혁)Korean Patent No. 0877716 (Method for producing artificial leather and artificial leather produced by the method)

상기 요구에 대응하기 위해 본 발명은 인공피혁의 제조방법에서 천연자원에서 유래된 원료를 이용하는 방법을 제공하는 것을 과제로 한다. In order to cope with the above-mentioned demand, it is an object of the present invention to provide a method of using a raw material derived from natural resources in a method of manufacturing an artificial leather.

본 발명은 상기 과제를 해결하기 위해, 테레프탈산과, 사탕수수를 발효시켜 바이오에탄올을 생성하고 상기 바이오에탄올에서 탈수반응을 통해 바이오에틸렌을 생성하고 상기 바이오에틸렌을 통해 제조된 바이오 에틸렌글리콜을, 반응시켜 중합된 폴리에틸렌테레프탈레이트 섬유를 포함하며, 마찰 견뢰도가 4급(ISO 105법) 이상인, 바이오매스 유래 성분으로 제조된 폴리에스테르로 이루어진 인공피혁을 제공한다.In order to solve the above problems, the present invention provides a method for producing bio-ethylene by fermenting terephthalic acid and sugarcane to produce bio-ethanol, dehydrating the bio-ethanol to produce bio-ethylene, and reacting bio- The present invention provides an artificial leather comprising a polymerized polyethylene terephthalate fiber and a polyester produced from a biomass-derived component having a friction fastness of not less than class 4 (ISO 105 method).

또한, 폴리에틸렌테레프탈레이트를 포함하는 해도형 복합섬유에 의해 3차원적으로 교락되어 이루어진 부직포에, 고분자 탄성체를 함침시키고, 기모를 형성하고, 염색하여 제조되는 인공피혁에 있어서, 상기 폴리에틸렌테레프탈레이트는 바이오 에틸렌글리콜과 테레프탈산을 반응시켜 제조되되, 상기 바이오 에틸렌글리콜은 사탕수수를 발효시켜 바이오에탄올을 생성하고 상기 바이오에탄올에서 탈수반응을 통해 바이오에틸렌을 생성하고 상기 바이오에틸렌을 통해 제조된 된 것을 특징으로 하는, 바이오매스 유래 성분으로 제조된 폴리에스테르로 이루어진 인공피혁의 제조방법을 제공한다. Further, in an artificial leather produced by impregnating a polymeric elastomer into a nonwoven fabric which is three-dimensionally entangled with sea-island conjugate fibers including polyethylene terephthalate, forming a bristle, and dyeing the polyethylene terephthalate, Wherein the bio-ethylene glycol is produced by reacting ethylene glycol and terephthalic acid, wherein the bio-ethylene glycol is produced by fermenting sugar cane to produce bio-ethanol, and de-watering the bio-ethanol to produce bio-ethylene, , And a polyester produced from a biomass-derived component.

본 발명에 따르면 비석유계인 바이오매스 유래 에틸렌글리콜로 제조된 폴리에스테르를 사용하게 되므로 온실가스 배출량을 감소시킬 수 있고 원료 제조 공정상의 에너지 소모량을 줄일 수 있어 인공피혁이 환경친화적으로 제조된다. According to the present invention, since polyester produced from non-petroleum-derived biomass-derived ethylene glycol is used, greenhouse gas emission can be reduced and energy consumption in the raw material production process can be reduced, so that artificial leather is produced environmentally friendly.

인공피혁의 제조방법은 일반적으로, (ⅰ)알칼리에 용해되어 용출되는 해(海)성분의 폴리머와 알칼리에 용해되지 않고 잔존하는 도(島)성분의 폴리머를 사용하여 복합방사하고, 이렇게 복합방사된 해도형 복합섬유의 단섬유를 개섬, 카딩 및 크로스 래핑하여 웹(Web)을 제조한 다음, 이를 니들펀칭하여 3차원적으로 상호 교락된 부직포를 제조하고, (ⅱ)상기 부직포를 열수축시켜 고밀도 부직포를 얻고, (ⅲ)상기 고밀도 부직포를 알칼리 수용액으로 처리하여 해도형 복합섬유에서 용출성분을 제거하여 단사 섬도가 0.3 데니어 이하가 되도록 극세섬유화 하여 극세섬유 부직포를 얻고, (ⅳ)상기 부직포에 고분자 탄성체를 함침시킨 후, 응고조에서 상기 고분자 탄성체을 응고시키고, 수세하고, 건조하고, (ⅴ)상기 건조에 의한 부직포를 버핑하여 부직포의 표면에 입모(立毛)를 형성하고 원하는 색상으로 염색하여 이루어질 수 있다.The artificial leather is generally produced by composite spinning using (i) a polymer of a sea component dissolved and dissolved in an alkali and a polymer of an island component remaining unresolved in an alkali, (Ii) three-dimensionally interwoven nonwoven fabrics are manufactured by needle punching the webs by carding, carding and cross-lapping of the shortened nonwoven fabrics, and (ii) heat-shrinking the nonwoven fabric by heat- (Iii) treating the high-density nonwoven fabric with an aqueous alkaline solution to remove elution components from the sea-island conjugate fiber to obtain microfine fibrous so that the monofilament fineness is 0.3 denier or less to obtain a microfine fibrous nonwoven fabric; (iv) After impregnating the elastic body, the polymeric elastomer is coagulated in a coagulation bath, washed with water and dried, (v) the nonwoven fabric is buffed by the drying, A can forming a nap (毛 立) to be dyed to any color.

이때 상기 (ⅳ)의 단계는 상기 (ⅲ)의 단계 이전에 이루어질 수 있다. At this time, the step (iv) may be performed before the step (iii).

상기 해도형 복합섬유의 성분은, 도성분으로 폴리에틸렌테레프탈레이트, 폴리부틸렌테레프탈레이트, 폴리트리메틸렌 테레프탈레이트 등과 같은 폴리에스테르 또는 폴리아미드 등이 사용될 수 있고, 해성분으로는 도성분과 용제 또는 알칼리 용해성이 상이한 폴리스티렌, 폴리에틸렌, 변성 공중합 폴리에스테르 등이 사용되는데, 본 발명에서는 해성분으로 알칼리 용해성이 우수한 변성 공중합 폴리에스테르, 도성분으로 폴리에틸렌테레프탈레이트가 좀 더 바람직하게 사용된다. As the components of the sea-island composite fiber, polyester or polyamide such as polyethylene terephthalate, polybutylene terephthalate, and polytrimethylene terephthalate may be used as the component, and a sea component may be a component or a solvent or an alkali soluble These different polystyrene, polyethylene, modified copolymer polyester and the like are used. In the present invention, a modified copolymer polyester excellent in alkali solubility as a sea component and polyethylene terephthalate as a component are more preferably used.

상기 변성 공중합 폴리에스테르는 테레프탈산과 에틸렌글리콜을 주성분으로 하되, 여기에 이소프탈산, 5-소디움술포이소프탈산, 디메틸글리콜이소술포네이트나트륨염 및 폴리에틸렌글리콜 중에서 선택되는 성분이 3∼20 몰% 공중합된 것으로서 일반 폴리에스테르에 비해 알카리 용해성이 약 5배 이상 향상되는 것으로 알려져 있다.Wherein the modified copolymer polyester comprises terephthalic acid and ethylene glycol as main components, wherein the component selected from isophthalic acid, 5-sodium sulfoisophthalic acid, dimethyl glycols, arsenic sulfonate sodium salt and polyethylene glycol is 3 to 20 mol% And it is known that alkali solubility is improved about 5 times or more as compared with general polyester.

본 발명은 도성분으로 사용되는 폴리에틸렌테레프탈레이트는 단량체로서 테레프탈산 및 바이오 에틸렌글리콜을 통상의 폴리에스테르 중합방법에 의해 제조할 수 있다. The polyethylene terephthalate used as a filler in the present invention can be produced by a conventional polyester polymerization method of terephthalic acid and bioethylene glycol as monomers.

상기 바이오 에틸렌글리콜은 바이오매스로부터 유래된 것으로, 이산화탄소와 햇빛을 흡수하여 생산된 사탕수수를 발효공정을 거쳐 바이오에탄올을 생성하고, 이 바이오에탄올에서 탈수반응을 통해 바이오에틸렌을 생성하고, 이 바이오에틸렌을 통해 바이오 에틸렌글리콜을 생성하게 되는데, Shell/SD 방법을 적용하여 제조된 것을 사용할 수 있다. The bio-ethylene glycol is derived from biomass. The bio-ethylene glycol is produced by absorbing carbon dioxide and sunlight to produce bio-ethanol through a fermentation process. The bio-ethylene is dehydrated to produce bio- To produce bio-ethylene glycol, which is prepared by applying the Shell / SD method.

또한, 테레프탈산 1몰에 대하여 상기 바이오 에틸렌글리콜은 1.1 ~ 1.2몰로 반응시키는 것이 중합물의 중량평균분자량과 용융점도를 용이하게 증대하여 섬유로 성형할 수 있어 바람직하다. In addition, it is preferable to react 1.1 to 1.2 moles of the above-mentioned bio-ethylene glycol with respect to 1 mole of terephthalic acid because the weight average molecular weight and melt viscosity of the polymer can be easily increased to form the fiber.

본 발명의 폴리에틸렌테레프탈레이트는 용융점도가 380~450 포아제(290℃, 1000 shear rate)인 것이 방사 안정성을 향상할 수 있어 바람직하다.The polyethylene terephthalate of the present invention is preferably a polyethylene terephthalate having a melt viscosity of 380 to 450 poise (290 ° C, 1000 shear rate) because it improves the radiation stability.

한편, 본 발명에서는 상기 해성분에 있어서도 폴리에스테르의 원료로서의 에틸렌글리콜에 상기 바이오 에틸렌글리콜을 사용할 수 있다. On the other hand, in the present invention, also in the case of the above sea component, Ethylene glycol can be used.

본 발명에서 복합방사시 해성분은 10∼40중량%, 도성분은 90∼60중량%로 하는 것이 바람직하나 이들의 중량비를 특별하게 한정하는 것은 아니다.In the present invention, it is preferable that the sea component is 10 to 40 wt% and the isoprene component is 90 to 60 wt%, but the weight ratio thereof is not particularly limited.

상기 복합방사는 해성분과 도성분을 각각 용융하고 소정의 방사구금을 통해 토출시켜 필라멘트를 얻고, 상기 필라멘트를 집속한 토우를 연신배율 2.5~3.3으로 연신하고, 연신된 토우를 크림핑하는 크림프 공정을 수행하고, 열고정하여 단사섬도가 2~5 데니어인 해도형 복합섬유를 얻을 수 있다. The composite yarn is produced by melting a sea component and a component, respectively, discharging the yarn through a predetermined spinneret to obtain a filament, stretching the tow to which the filament is bundled at a draw ratio of 2.5 to 3.3, and crimping the drawn tow And is opened and fixed to obtain a sea-island composite fiber having a single fiber fineness of 2 to 5 denier.

이후 절단하여 단섬유를 제조한 후 이들을 카딩 및 니들펀칭 등의 공정으로 3차원 교락시켜 부직포를 제조할 수 있다.The nonwoven fabric can be produced by cutting the monofilaments and then subjecting them to three-dimensional entanglement by a process such as carding or needle punching.

이하에 본 발명을 실시예에 의해 구체적으로 설명한다. 단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐, 본 발명이 하기의 실시예에 의해 한정되는 것이 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 치환 및 균등한 타 실시예로 변경 할 수 있음은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어서 명백할 것이다. Hereinafter, the present invention will be described in detail with reference to Examples. It is to be understood, however, that these examples are for illustrative purposes only and are not to be construed as limiting the scope of the invention as defined by the appended claims. And will be apparent to those skilled in the art to which the present invention pertains.

<평가방법><Evaluation method>

1. 고유점도1. Intrinsic viscosity

폴리에스테르를 페놀/테트라클로로에탄(중량비 50:50)에 녹여 0.5 중량% 용액을 만든 후 우베로드 점도계로 35℃에서 측정한다. The polyester was dissolved in phenol / tetrachloroethane (weight ratio 50:50) to make a 0.5 wt.% Solution and measured at 35 ° C with a Ube load viscometer.

2. 융점2. Melting point

열 시차 주사 열량계(Perkin Elmer, DSC-Diamond)를 이용하여 측정하는데, 열 흡수 피크가 나타나지 않는 경우, 즉 융점이 발견되지 않는 경우 동적 열특성 측정기(Perkin Elmer, DMA-7; TMA 모드)를 이용하여 연화거동을 측정한다. (Perkin Elmer, DMA-7 (TMA mode)) is used when no heat absorption peak is found, that is, when no melting point is found, by using a thermal differential scanning calorimeter (Perkin Elmer, DSC-Diamond) And the softening behavior is measured.

3. 방사 안정성 3. Radiation stability

24시간 방사를 진행하여 절사와 단사 횟수를 아래의 기준으로 평가한다. 24-hour irradiation is performed and the number of cuts and single yarns is evaluated according to the following criteria.

◎(아주 좋음) : 0회, ○(좋음) : 1~2회, △(보통) : 3~5회, ×(나쁨) : 6회 이상◎ (very good): 0 times, ○ (good): 1 to 2 times, △ (normal): 3 to 5 times, × (poor): 6 times or more

4. 해도형 섬유의 결정화도 4. Crystallinity of sea-island fibers

해도형 섬유의 결정화도는 시료의 밀도(ρ)값을 바탕으로 이론적인 폴리에스테르의 완전 결정영역의 밀도값(ρc=1.457g/㎤)과 비결정영역의 밀도값(ρ=1.336g/㎤)을 이용하여 아래 식 1로 구한다.The crystallinity of the sea-island fiber is determined by the theoretical density (ρ c = 1.457 g / ㎤) of the perfect crystalline region of the polyester and the density value (ρ a = 1.336 g / ㎤) of the amorphous region based on the density ) To obtain the following equation (1).

결정화도[Xc(%)] = (ρ - ρa) × 100 / (ρc - ρa) [식 1]Crystallinity [Xc (%)] = (p-p a ) x 100 / ( c -p a )

이때 시료의 밀도는 해도형 복합섬유를 노말헵탄과 카본테트라클로라이드 혼합용매로 구성된 밀도계(일본 시바야마 회사제품, 모델명 : Model SS)에 투입하여 23℃에서 1일 동안 방치 후, 해성분과 도성분이 통합된 벌크한 상태의 해도형 섬유의 밀도를 측정한다.  At this time, the density of the sample was determined by placing the sea-island conjugate fiber in a density meter (product name: Model SS, manufactured by Japan Shibayama Co., Ltd.) consisting of a mixture of normal heptane and carbon tetrachloride, leaving the sample at 23 ° C for one day, The density of the sea-island fibers in the integrated bulk state is measured.

5. 해도형 섬유의 신도와 인장강도5. Elongation and tensile strength of sea-island fibers

해도형 섬유의 신도 및 인장강도는 렌찡 회사의 바이브로스코프(Vibroskop)로 초하중 50mg을 부여하여 데니어를 측정하고 초하중 100mg을 부여한 상태에서 인스트롱 회사의 인장시험기로 20회 측정(시료 측정길이 20mg, 인장속도 100mm/min)하여 평균값을 구한다.The elongation and tensile strength of sea-island fibers were measured by a tensile tester of In-Strong Co., Ltd. under the condition of 100 mg of denier measured with a Vibroscope of Leng Ching Co., 20 mg, tensile speed 100 mm / min).

6. 마찰견뢰도6. Friction fastness

본 발명에서 '인공피혁의 마찰견뢰도'는 ISO 105법에 의하여 측정한다.In the present invention, the 'fastness to friction of artificial leather' is measured according to ISO 105 method.

건마찰 견뢰도 평가는 폭 25 mm, 길이 220 mm의 시험 편을 세로방향에 평행으로 2 매 취하여 마찰시험기의 시험대에 고정하고, 세로, 가로 각각 50 mm의 백면포로 시험기의 마찰자를 덮어 고정한다. 마찰자에는 4.9 N(500 gf)의 하중을 건 후, 왕복속도 30 회/분, 이행 거리 100 mm로 시험편의 표면을 100 회 왕복시킨 후 백면포를 벗겨 백면포의 오염 정도를 오염용 그레이 스케일로 판정한 등급을 구한다.In the evaluation of the dry friction resistance, two test specimens with a width of 25 mm and a length of 220 mm are taken parallel to the longitudinal direction, fixed on the test stand of the friction tester, and the rubbers of the test rollers of 50 mm in length and 50 mm in width are fixed. After a load of 4.9 N (500 gf) was applied to the rubbing member, the surface of the test piece was reciprocated 100 times at a reciprocating speed of 30 times / min and a transfer distance of 100 mm. Then, the white cotton cloth was peeled off, Is obtained.

습마찰 견뢰도 평가는 폭 25 mm, 길이 220 mm의 시험편을 세로방향에 평행으로 2 매 취하여 마찰시험기의 시험대에 고정하고, 세로, 가로 각각 50 mm의 백면포로 인공 땀액에 10 분간 침적한 후 가볍게 짜서 시험기의 마찰자를 덮어 고정한다. 마찰자에는 4.9 N(500 gf)의 하중을 건 후, 왕복속도 30 회/분, 이행 거리 100 mm로 시험편의 표면을 100 회 왕복시킨 후 백면포를 벗겨 백면포의 오염 정도를 오염용 그레이 스케일로 판정한 등급을 구한다.The wet rubbing fastness test was carried out by taking two parallel test specimens having a width of 25 mm and a length of 220 mm and fixing them on a test stand of a friction tester and immersing them in a 50 mm long, Cover and fix the rubbers of the testing machine. After a load of 4.9 N (500 gf) was applied to the rubbing member, the surface of the test piece was reciprocated 100 times at a reciprocating speed of 30 times / min and a transfer distance of 100 mm. Then, the white cotton cloth was peeled off, Is obtained.

[실시예 1][Example 1]

사탕수수를 발효시켜 바이오에탄올을 생성하고 상기 바이오에탄올에서 탈수반응을 통해 바이오에틸렌을 생성하고 상기 바이오에틸렌을 통해 제조된 바이오 에틸렌글리콜 1.136몰 대 테레프탈산 1몰의 비율로 하여 통상의 폴리에스테르 중합방법으로 중합반응시켜 폴리에틸렌테레프탈레이트를 제조하였다. Sugarcane is fermented to produce bioethanol, bioethanol is produced through dehydration reaction in the bioethanol, and the ratio of the bioethylene glycol produced through the bioethylene to 1.136 mole of terephthalic acid to 1 mole of terephthalic acid is subjected to a conventional polyester polymerization method The polymerization reaction was carried out to prepare polyethylene terephthalate.

이때 얻어진 상기 폴리에틸렌테레프탈레이트의 특성을 하기 표 1에 나타내었다. The characteristics of the polyethylene terephthalate thus obtained are shown in Table 1 below.

도성분으로 상기 폴리에틸렌테레프탈레이트를, 해성분으로 주성분이 폴리에틸렌테레프탈레이트이되 5-소디움 설포이소프탈산이 5 몰% 공중합된 알칼리 이용해성의 폴리에스테르를 각각의 압출기에서 용융시키고, 용융된 도성분과 해성분을 70:30의 중량비로 방사온도가 290℃이고 도성분의 개수가 16개인 해도형 복합섬유용 방사구금에 공급하고 복합방사하여 필라멘트를 얻었다. Soluble polyester in which 5 mol% of 5-sodium sulfoisophthalic acid is copolymerized as a sea component and polyethylene terephthalate as a main component is melted in each extruder, and the melted metal component and the dissolved component Was fed to a spinneret for sea-island conjugated fibers having a spinning temperature of 290 DEG C and a number of hexahedral components of 16 at a weight ratio of 70:30, followed by co-spinning to obtain filaments.

상기 필라멘트를 집속하여 토우를 만들고 상기 토우를 3배의 연신배율로 연신하고 연신한 토우에 12개/인치의 크림프를 형성하고 40℃에서 열고정하여 단사 섬도 3.5데니어의 해도형 섬유를 얻었다. The filaments were bundled to make a tow, the tow was stretched at a draw ratio of 3 times, a crimp of 12 / inch was formed in the stretched tow, and was heat set at 40 캜 to obtain a sea-island fiber having a single yarn fineness of 3.5 denier.

상기 해도형 섬유의 결정화도와 방사 안정성을 하기 표 2에 나타내었다. The crystallinity and radiation stability of the sea-island fibers are shown in Table 2 below.

상기 해도형 섬유를 절단하여 길이 51mm의 단섬유로 만든 후 상기 단섬유를 개섬하고, 카딩하고 바늘로 니들펀칭하여 중량 500g/㎡ 의 3차원 교락 부직포를 제조하였다.The above sea-island type fibers were cut into a short fiber having a length of 51 mm. The short fibers were carded, carded and needle-punched by a needle to prepare a three-dimensionally entangled nonwoven fabric having a weight of 500 g / m 2.

상기 부직포를 열수축시키고, 알칼리 수용액으로 처리하여 해도형 복합섬유에서 용출성분을 제거하여 단사 섬도가 0.3 데니어 이하가 되도록 극세섬유화 하여 극세섬유 부직포를 얻고, 상기 부직포에 폴리우레탄을 함침시킨 후, 응고조에서 상기 폴리우레탄을 응고시키고, 수세하고, 건조하여 부직포:폴리우레탄이 70:30 중량비의 함침 부직포를 얻었다.The nonwoven fabric is heat-shrunk and treated with an aqueous alkaline solution to remove eluted components from the sea-island composite fibers to obtain microfine fibers having a single yarn fineness of 0.3 denier or less to obtain a microfine fibrous nonwoven fabric. The nonwoven fabric is impregnated with polyurethane, , The polyurethane was coagulated, washed with water, and dried to obtain an impregnated nonwoven fabric having a weight ratio of nonwoven fabric: polyurethane of 70:30.

상기 함침 부직포를 버핑하여 부직포의 표면에 입모(立毛)를 형성하고 염색하여 인공피혁을 제조하였다.The impregnated nonwoven fabric was buffed to form an upright hair on the surface of the nonwoven fabric and dyed to produce an artificial leather.

이때 염색조건을 하기와 같이 하였다. The dyeing conditions were as follows.

<염색조건><Conditions for dyeing>

1) 염료 비율1) Dye ratio

- 황색 분산 염료(Huntsman사 제품) 8.0 % o.w.f.Yellow disperse dye (Huntsman) 8.0% o.w.f.

- 적색 분산 염료(Huntsman사 제품) 6.5 % o.w.f.- Red disperse dye (Huntsman) 6.5% o.w.f.

- 청색 분산 염료(Huntsman사 제품) 6.5 % o.w.f.Blue disperse dye (Huntsman) 6.5% o.w.f.

2) 균염제 : PEO Alkyl Amine Sulfate Type 화합물 배합품 3.0% o.w.f.2) Leveling agent: PEO Alkyl Amine Sulfate Type Compound compound 3.0% o.w.f.

3) 욕중유연제(D-1500) : 3 g/l3) Bath softener (D-1500): 3 g / l

4) 산 : 아세트산 1 g/l4) Acid: 1 g / l of acetic acid

5) 욕비(첨가물 중량:용매 중량) : 1:255) Bath (additive weight: solvent weight): 1:25

6) 염색온도 및 시간 : 120 ℃ 및 60 분6) Dyeing temperature and time: 120 占 폚 and 60 minutes

고유점도(IV)Intrinsic viscosity (IV) 유리전이온도(Tg)The glass transition temperature (Tg) 결정화온도(Tc)The crystallization temperature (Tc) 융점(Tm)Melting point (Tm) 용융점도
(290℃,
1000 shear rate)
Melting point
(290 &lt;
1000 shear rate)
실시예 1Example 1 0.6720.672 80.4980.49 164.4164.4 253.07253.07 410410 대조구*1)Control * 1) 0.6550.655 81.0681.06 166.73166.73 252.73252.73 486486 *1) 대조구는 섬유용으로 일반적으로 사용되는 시판 폴리에틸렌테레프탈레이트* 1) The control is a commercially available polyethylene terephthalate


해도형 복합섬유 물성Properties of sea-island composite fibers 해도형 복합섬유
방사 안정성
Sea-island composite fiber
Radiation stability
결정화도(%)Crystallinity (%) 신도(%)Shinto (%) 인장강도(g/㎝)Tensile strength (g / cm) 절사Cut 실시예 1Example 1 28.528.5 108.1108.1 3.563.56 대조구*1)Control * 1) 29.229.2 107.6107.6 3.373.37 *1) 대조구는 섬유용으로 일반적으로 사용되는 시판 폴리에틸렌테레프탈레이트* 1) The control is a commercially available polyethylene terephthalate

마찰 견뢰도Friction fastness 건마찰 견뢰도Dry friction resistance 습마찰 견뢰도Wet friction fastness 실시예 1Example 1 4급4th grade 4급4th grade 대조구*1)Control * 1) 4급4th grade 4급4th grade *1) 대조구는 일반적인 방법으로 제조되는 인공피혁* 1) Controls are artificial leather

상기 표 1, 2 및 3으로부터 바이오매스 유래 성분인 바이오 에틸렌글리콜로 제조된 폴리에틸렌테레프탈레이트 섬유는, 일반적인 폴리에틸렌테레프탈레이트 섬유와 유사한 물성 및 방사 안정성을 나타냄을 확인하였고, 이를 이용한 인공피혁에서도 마찰 견뢰도가 기존의 인공피혁과 유사하므로 인공피혁용 원재료로 사용 가능하다.From the above Tables 1, 2 and 3, it was confirmed that the polyethylene terephthalate fiber produced from bio-ethylene glycol as a biomass-derived component exhibited physical and radiation stability similar to that of general polyethylene terephthalate fiber. It is similar to existing artificial leather and can be used as raw material for artificial leather.

따라서 바이오매스 유래 성분인 바이오 에틸렌글리콜로 제조된 폴리에틸렌테레프탈레이트에 의해 인공피혁의 제조방법이 좀 더 친환경적으로 변화됨을 확인할 수 있다. Therefore, it can be confirmed that the production method of artificial leather is changed more eco-friendly by polyethylene terephthalate produced from bio-ethylene glycol as a biomass-derived component.

Claims (4)

테레프탈산과, 사탕수수를 발효시켜 바이오에탄올을 생성하고 상기 바이오에탄올에서 탈수반응을 통해 바이오에틸렌을 생성하고 상기 바이오에틸렌을 통해 제조된 바이오 에틸렌글리콜을, 반응시켜 중합된 폴리에틸렌테레프탈레이트 섬유를 포함하며, 마찰 견뢰도가 4급(ISO 105법) 이상인, 바이오매스 유래 성분으로 제조된 폴리에스테르로 이루어진 인공피혁. Terephthalic acid, and sugar cane to produce bioethanol, dehydrating the bioethanol to produce bio-ethylene, and reacting the bio-ethylene glycol produced through the bio-ethylene with polyethylene terephthalate fibers, Artificial leather made of polyester produced from a biomass-derived component having a friction fastness not less than class 4 (ISO 105 method). 폴리에틸렌테레프탈레이트를 포함하는 해도형 복합섬유에 의해 3차원적으로 교락되어 이루어진 부직포에, 고분자 탄성체를 함침시키고, 기모를 형성하고, 염색하여 제조되는 인공피혁에 있어서,
상기 폴리에틸렌테레프탈레이트는 바이오 에틸렌글리콜과 테레프탈산을 반응시켜 제조되되,
상기 바이오 에틸렌글리콜은 사탕수수를 발효시켜 바이오에탄올을 생성하고 상기 바이오에탄올에서 탈수반응을 통해 바이오에틸렌을 생성하고 상기 바이오에틸렌을 통해 제조된 된 것을 특징으로 하는, 바이오매스 유래 성분으로 제조된 폴리에스테르로 이루어진 인공피혁의 제조방법.
In an artificial leather produced by impregnating a polymeric elastomer into a nonwoven fabric which is three-dimensionally entangled with sea-island conjugate fibers including polyethylene terephthalate, bridging and dying,
The polyethylene terephthalate is produced by reacting bio-ethylene glycol with terephthalic acid,
Wherein the bio-ethylene glycol is produced by fermenting sugar cane to produce bio-ethanol, and producing bio-ethylene through dehydration reaction in the bio-ethanol and through the bio-ethylene, Wherein the method comprises the steps of:
제 2항에 있어서,
상기 폴리에틸렌테레프탈레이트는 상기 테레프탈산 1몰에 대하여 상기 바이오 에틸렌글리콜은 1.1 ~ 1.2몰로 반응시키는 것을 특징으로 하는 바이오매스 유래 성분으로 제조된 폴리에스테르로 이루어진 인공피혁의 제조방법.
3. The method of claim 2,
Wherein the polyethylene terephthalate is reacted with 1.1 to 1.2 moles of the bio-ethylene glycol per mole of the terephthalic acid A method for producing an artificial leather comprising a polyester produced from a biomass-derived component.
제 2항에 있어서,
상기 폴리에틸렌테레프탈레이트는 용융점도가 380~450 포아제(290℃, 1000 shear rate)인 것을 특징으로 하는 바이오매스 유래 성분으로 제조된 폴리에스테르로 이루어진 인공피혁의 제조방법.
3. The method of claim 2,
Wherein the polyethylene terephthalate has a melt viscosity of 380 to 450 poise (290 DEG C, 1000 shear rate).
KR1020160125990A 2016-09-30 2016-09-30 Artificial leather with polyester manufactured by the component derived from biomass resources and method for producing the same KR20180036001A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160125990A KR20180036001A (en) 2016-09-30 2016-09-30 Artificial leather with polyester manufactured by the component derived from biomass resources and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160125990A KR20180036001A (en) 2016-09-30 2016-09-30 Artificial leather with polyester manufactured by the component derived from biomass resources and method for producing the same

Publications (1)

Publication Number Publication Date
KR20180036001A true KR20180036001A (en) 2018-04-09

Family

ID=61977932

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160125990A KR20180036001A (en) 2016-09-30 2016-09-30 Artificial leather with polyester manufactured by the component derived from biomass resources and method for producing the same

Country Status (1)

Country Link
KR (1) KR20180036001A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180126735A (en) * 2017-05-18 2018-11-28 현대자동차주식회사 Eco-friendly artificial leather for interior of automobile and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180126735A (en) * 2017-05-18 2018-11-28 현대자동차주식회사 Eco-friendly artificial leather for interior of automobile and manufacturing method thereof

Similar Documents

Publication Publication Date Title
Karmakar Chemical technology in the pre-treatment processes of textiles
Broadbent Basic principles of textile coloration
Albrecht et al. Nonwoven fabrics: raw materials, manufacture, applications, characteristics, testing processes
CA2915810C (en) Process for the preparation of a fiber, a fiber and a yarn made from such a fiber
KR102637213B1 (en) Napped artificial leather dyed using cationic dye, and method for manufacturing same
TWI828715B (en) Fabrics and spun yarns comprising polyester staple fiber
NO871844L (en) KNITTED SUBSTANCES AND PROCEDURES FOR PREPARING THESE.
KR100510766B1 (en) Island-in-the-sea microfiber
KR20180036001A (en) Artificial leather with polyester manufactured by the component derived from biomass resources and method for producing the same
Vhanbatte Background and type of textile materials processed in textile industry
CN106319749B (en) Wool-imitated tricot lace fabric
JP2000054228A (en) Polyamide-based conjugate fiber
CN116288804B (en) High-shrinkage polyester sea-island fiber and preparation method and application thereof
JP2000248427A (en) Polyester fiber
CN111101239A (en) Low-temperature dyed polyester fiber, fabric and production method thereof
KR100483812B1 (en) Cation dyeable Sea-island fine filament which has high alkali-resistance and process of producing thereof
KR100546463B1 (en) Manufacturing method of uniform salt polyester blend yarn
JP4572528B2 (en) Method for producing fabric made of polylactic acid fiber
JP2000054227A (en) Polyolefin-based conjugate fiber
JP4254393B2 (en) Manufacturing method of polyamide woven fabric
JPS6332900B2 (en)
JP2001329057A (en) Trimethylene terephthalate copolymer
JP3371022B2 (en) Polyester chemical lace base fabric
Mathur et al. Specialty Fibres-IV: Poly Lactic Acid Fibres.
KR100523946B1 (en) Method of Making File Letters.

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application