KR20180026884A - Method for removing waxy component of kapok fiber - Google Patents

Method for removing waxy component of kapok fiber Download PDF

Info

Publication number
KR20180026884A
KR20180026884A KR1020160113758A KR20160113758A KR20180026884A KR 20180026884 A KR20180026884 A KR 20180026884A KR 1020160113758 A KR1020160113758 A KR 1020160113758A KR 20160113758 A KR20160113758 A KR 20160113758A KR 20180026884 A KR20180026884 A KR 20180026884A
Authority
KR
South Korea
Prior art keywords
fiber
heat treatment
treatment
wax
wax component
Prior art date
Application number
KR1020160113758A
Other languages
Korean (ko)
Other versions
KR101909597B1 (en
Inventor
김남훈
장재혁
Original Assignee
강원대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 강원대학교산학협력단 filed Critical 강원대학교산학협력단
Priority to KR1020160113758A priority Critical patent/KR101909597B1/en
Publication of KR20180026884A publication Critical patent/KR20180026884A/en
Application granted granted Critical
Publication of KR101909597B1 publication Critical patent/KR101909597B1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06BTREATING TEXTILE MATERIALS USING LIQUIDS, GASES OR VAPOURS
    • D06B1/00Applying liquids, gases or vapours onto textile materials to effect treatment, e.g. washing, dyeing, bleaching, sizing or impregnating
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06BTREATING TEXTILE MATERIALS USING LIQUIDS, GASES OR VAPOURS
    • D06B3/00Passing of textile materials through liquids, gases or vapours to effect treatment, e.g. washing, dyeing, bleaching, sizing, impregnating
    • D06B3/04Passing of textile materials through liquids, gases or vapours to effect treatment, e.g. washing, dyeing, bleaching, sizing, impregnating of yarns, threads or filaments
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06CFINISHING, DRESSING, TENTERING OR STRETCHING TEXTILE FABRICS
    • D06C7/00Heating or cooling textile fabrics
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/38Oxides or hydroxides of elements of Groups 1 or 11 of the Periodic System
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2201/00Cellulose-based fibres, e.g. vegetable fibres
    • D10B2201/01Natural vegetable fibres

Abstract

The present invention relates to a method for removing a wax component of a kapok fiber, and more particularly, to a method which comprises heat treatment and alkali treatment as processes and a kapok fiber from which a wax component is eliminated by using the method. According to the present invention, the heat treatment and alkali treatment processes can be usefully used in eliminating a wax component of a kapok fiber by eliminating plant wax, lignin aliphatic aldehyde and a fat component from the kapok fiber.

Description

케이폭 섬유의 왁스 성분 제거 방법{Method for removing waxy component of kapok fiber}TECHNICAL FIELD [0001] The present invention relates to a method for removing a wax component from a waxy fiber,

본 발명은 케이폭 섬유의 왁스 성분 제거 방법에 관한 것으로, 더욱 상세하게는 열 처리 및 알칼리 처리를 통해 케이폭 섬유에 포함된 왁스 성분을 제거하는 방법에 관한 것이다.More particularly, the present invention relates to a method for removing wax components contained in a kapok fiber through heat treatment and alkali treatment.

케이폭은 말레이시아어로 섬유라는 뜻으로, 반야과에 속하는 카폭나무(Ceiba pentandra)의 과피 내벽에 형성된 털을 케이폭이라고 부른다. 동남아시아 및 아프리카, 남아메리카 등 광범위하게 분포하고 있다.Kapwon is a fiber in the Malaysian language, and the hair formed on the inner surface of the perianth of the Ceiba pentandra belonging to the Banya family is called "kwabo". South East Asia, Africa and South America.

케이폭 섬유는 흰색과 갈색을 띄며 견모양의 광택이 있고, 털발이 2 ~ 3 cm로 푹신하고 부드러운 특징이 있다. 가볍고 단열성이 높으며 탄력 또한 강하고, 면섬유와 유사하게 각각의 섬유가 단일세포로 이루어진 중공성 천연섬유이다. 표면이 왁스 성분과 약 13 %의 아세틸 그룹으로 구성되어 높은 소수성을 나타낸다. 따라서 베개, 옷의 보온재료, 구명조끼, 필터, 흡착포, 피부미용시트 등의 오일 흡착용 재료, 중금속 흡착제 그리고 방음재, 전열재 등의 충진재로 널리 사용되고 있다.The kawarp fiber is white and brown with a silk-like luster and feathers of 2 to 3 cm with soft and soft features. It is lightweight, high in heat insulation, strong in elasticity, and similar to cotton fiber, each fiber is a hollow natural fiber composed of single cells. The surface is composed of a wax component and an acetyl group of about 13%, indicating high hydrophobicity. Therefore, it is widely used as a filler, a heat insulating material for clothing, a material for absorbing oil such as a life jacket, a filter, an adsorbent, a skin-beauty sheet, a heavy metal adsorbent, a sound insulating material and a heat transfer material.

케이폭 섬유는 친수성인 셀룰로오스를 주성분으로 하여 구성된 중공성 천연섬유이나, 그 표면을 왁스(지방) 성분이 둘러싸고 있어 높은 소수성을 갖고 있다. 이러한 소수성에 기인하여 흡유용 소재 혹은 각종 의류용 소재에 널리 활용되고 있다. 그러나, 케이폭 섬유의 주성분인 셀룰로오스가 나타내는 친수성을 이용한 응용 분야는 보다 다양하며 실용적이다.The kawarp fiber is a hollow natural fiber composed mainly of hydrophilic cellulose, and has a high hydrophobicity because the wax (fat) component surrounds the surface thereof. Due to such hydrophobicity, it is widely used as a material for absorptive material or various clothes. However, the hydrophilic properties of cellulose, which is the main component of the kwon fiber, are more diverse and practical.

현재까지는 케이폭 섬유를 둘러싼 왁스 성분을 제거하기 위해 각종 화학적인 처리 방법(오존주입, 아세톤 유기용매, 핵산 추출 등)들이 사용되고 있으나 이들은 환경부하가 크며, 공정이 매우 복잡하여 그 효율이 떨어진다. 따라서, 친환경적인 왁스 성분 제거 방법을 개발할 필요가 있다.Until now, various chemical treatment methods (ozone injection, acetone organic solvent, nucleic acid extraction, etc.) have been used to remove the wax components surrounding the kawarp fiber, but they are inefficient due to environmental load and process complexity. Therefore, there is a need to develop an eco-friendly wax component removal method.

관련 종래기술로서 케이폭 섬유를 가공하기 위한 방법으로서 한국등록특허 제10-1308356호(2013.09.09.)는 비스코스 레이온 섬유와의 혼섬을 통해 강도 및 소수성을 보완하는 방법을 개시한 바 있다.Korean Patent No. 10-1308356 (2013.09.09.) Discloses a method for reinforcing strength and hydrophobicity by blending with Viscose rayon fiber as a method for processing kapok fiber as a related art.

한국등록특허 제10-1308356호(2013.09.09.)Korean Patent No. 10-1308356 (2013.09.09.) 한국등록특허 제10-1594638호(2016.02.05.)Korean Patent No. 10-1594638 (Feb. 한국공개특허 제10-2004-0034016호(2004.04.28.)Korean Patent Publication No. 10-2004-0034016 (April 28, 2004). 한국등록특허 제10-1017717호(2011.02.18.)Korean Patent No. 10-1017717 (Mar. 18, 2011) 한국등록특허 제10-1076289호(2011.10.18.)Korean Patent No. 10-1076289 (Oct. 18, 2011) 한국등록특허 제10-0465259호(2004.12.28.)Korean Patent No. 10-0465259 (December 28, 2004)

J. Ind. Eng. Chem., Vol. 13, No. 6, (2007) 956-958J. Ind. Eng. Chem., Vol. 13, No. 6, (2007) 956-958

본 발명자들은 케이폭 섬유의 왁스 성분을 제거하는 방법에 대하여 연구하던 중, 열 처리 및 알칼리 처리를 포함하는 공정이 케이폭 섬유의 왁스 성분을 제거하는 방법으로 유용하다는 것을 발견하였다.The inventors of the present invention have found out that a process including a heat treatment and an alkali treatment is useful as a method of removing the wax component of the kapok fiber while studying a method of removing the wax component of the kapok fiber.

따라서, 본 발명은 열 처리 및 알칼리 처리 공정을 포함하는 케이폭 섬유의 왁스 성분 제거 방법을 제공하는 것을 목적으로 한다. 또한, 본 발명은 상기 방법에 따라 왁스 성분이 제거된 케이폭 섬유를 제공하는 것을 목적으로 한다.Accordingly, it is an object of the present invention to provide a method of removing wax components of a covering woven fabric including a heat treatment and an alkali treatment process. The present invention also aims to provide a woven fabric-free kawour fiber according to the above-described method.

본 발명의 일 태양에 따라, a) 케이폭 섬유를 100 ~ 300 ℃로 열 처리하는 단계; 및 b) 상기 케이폭 섬유를 염기성 용액에 침지시켜 알칼리 처리하는 단계를 포함하는 케이폭 섬유의 왁스 성분 제거 방법이 제공되며, 상기 열 처리는 150 ~ 250 ℃로 바람직하게 수행될 수 있다.According to one aspect of the present invention, there is provided a method of manufacturing a fiber-reinforced composite material, comprising the steps of: a) And b) alkali treatment of the polyolefin fiber by immersing the polyolefin fiber in a basic solution, wherein the heat treatment is preferably performed at 150 to 250 ° C.

일 구현예에서, 상기 단계 a)의 열 처리는 승온속도 6 ℃/min으로 수행될 수 있으며, 열 처리 중 질소 가스를 1 kgf/cm2의 주입 압력으로 주입할 수 있다.In one embodiment, the heat treatment in step a) may be performed at a rate of temperature increase of 6 캜 / min, and nitrogen gas may be injected at an injection pressure of 1 kgf / cm 2 during thermal processing.

일 구현예에서, 상기 단계 a)의 열 처리 후 목표 온도에서 30분 ~ 1시간 동안 유지할 수 있다.In one embodiment, after the thermal treatment of step a), it may be maintained at the target temperature for 30 minutes to 1 hour.

일 구현예에서, 상기 단계 b)에서 알칼리 처리 후 케이폭 섬유에 산처리하여 pH 값을 6 이하로 조정할 수 있다. 상기 pH 값은 5 ~ 6일 때 바람직하게 수행될 수 있다.In one embodiment, the pH value may be adjusted to 6 or below by acid treatment of the alkaline treated kawour fibers in step b) above. The pH value may preferably be 5 to 6.

본 발명의 일 태양에 따라, 왁스 성분이 제거된 케이폭 섬유가 제공된다.According to one aspect of the present invention, a wax component-free kawarp fiber is provided.

본 발명에 의해, 열 처리 및 알칼리 처리를 거친 케이폭 섬유에서 플랜트 왁스, 리그닌 지방족 알데하이드 및 지방의 성분이 제거되는 것이 밝혀졌다. 따라서, 본 발명에 따른 공정은 케이폭 섬유의 왁스 성분 제거에 유용하게 사용될 수 있다.It has been found by the present invention that plant wax, lignin aliphatic aldehydes and fats constituents are removed from the treated and alkaline treated cane wool fibers. Therefore, the process according to the present invention can be usefully used for removing the wax component of the kapok fiber.

도 1은 열 처리한 케이폭 섬유 시료 및 열 처리 후 알칼리 처리한 시료의 결정화도를 측정한 그래프를 나타낸다.
도 2는 열 처리 및 알칼리 처리에 의한 케이폭 섬유의 형태학적 특성을 확인하기 위한 주사전자현미경 사진을 나타낸다.
도 3은 알칼리 처리한 케이폭 섬유의 화학성분 변화를 확인하기 위한 분광분석 그래프를 나타낸다.
Fig. 1 is a graph showing crystallization degrees of crystallized samples of a heat treated clay fiber sample and an alkali treated sample after heat treatment.
2 shows a scanning electron microscope photograph for confirming the morphological characteristics of the kapok fiber by heat treatment and alkali treatment.
Fig. 3 shows a spectroscopic analysis graph for confirming the change in the chemical composition of the alkaline treated canopy fiber.

본 발명은 a) 케이폭 섬유를 100 ~ 300 ℃로 열 처리하는 단계; 및 b) 상기 케이폭 섬유를 염기성 용액에 침지시켜 알칼리 처리하는 단계를 포함하는 케이폭 섬유의 왁스 성분 제거 방법을 제공한다. 상기 열 처리는 150 ~ 250 ℃로 바람직하게 수행될 수 있다.The present invention provides a method of making a fiber-reinforced composite fiber comprising the steps of: a) And b) a step of immersing the above-mentioned cane woven fiber in a basic solution to alkali treatment, thereby providing a method of removing the wax component of the cane woven fiber. The heat treatment may preferably be performed at 150 to 250 ° C.

일 구현예에서, 상기 단계 a)의 열 처리는 승온속도 6 ℃/min으로 수행될 수 있으며, 열 처리 중 질소 가스를 1 kgf/cm2의 주입 압력으로 주입하여 바람직하게 수행될 수 있다. 100 ℃ 이상의 온도에서 케이폭 섬유의 성질에 이상이 생길 수 있기 때문이다.In one embodiment, the heat treatment in step a) may be performed at a rate of temperature increase of 6 캜 / min, preferably by injecting nitrogen gas at an injection pressure of 1 kgf / cm 2 during thermal processing. This is because the properties of the kapok fiber may be abnormal at a temperature of 100 ° C or higher.

일 구현예에서, 상기 단계 a)의 열 처리 후 목표 온도에서 30분 ~ 1시간 동안 유지할 수 있으며, 30분 동안 유지함으로써 바람직하게 수행될 수 있다.In one embodiment, after the thermal treatment of step a), it may be maintained at the target temperature for 30 minutes to 1 hour and preferably 30 minutes.

일 구현예에서, 상기 단계 b)에서 알칼리 처리 후 케이폭 섬유에 산처리하여 pH 값을 6 이하로 조정할 수 있다. 상기 알칼리 처리는 NaOH를 이용하여 수행될 수 있으며, 상기 NaOH는 15 중량%를 사용함으로써 바람직하게 수행될 수 있다. 이후 pH 값을 조절하기 위해 초산을 이용할 수 있다. 상기 pH 값이 5 ~ 6일 때 바람직하게 수행될 수 있고, pH 값이 5.5일 때 더욱 바람직하게 수행될 수 있다.In one embodiment, the pH value may be adjusted to 6 or below by acid treatment of the alkaline treated kawour fibers in step b) above. The alkali treatment can be carried out using NaOH, which can be preferably carried out by using 15 wt% of NaOH. Acetic acid can then be used to adjust the pH value. The pH value may preferably be 5 to 6, and more preferably, when the pH value is 5.5.

또한 본 발명은 상기 방법에 따라 왁스 성분이 제거된 케이폭 섬유를 제공한다.The present invention also provides a wax component-free kawour fiber according to the above method.

이하, 본 발명을 실시예 및 시험예를 통하여 더욱 상세히 설명한다. 그러나, 하기 실시예 및 시험예는 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이에 제한되는 것은 아니다.Hereinafter, the present invention will be described in more detail through examples and test examples. However, the following examples and test examples are provided for illustrating the present invention, and the scope of the present invention is not limited thereto.

<실시예><Examples>

1. 케이폭 섬유에 대한 열 처리1. Heat treatment for kawan fiber

전기 탄화로(Electric furnace HT 16/16, Supertherm, Germany)를 이용하여 0.25 g의 케이폭 섬유 시료를 목표 온도 60 ~ 300 ℃ 범위 내에서 6 ℃/min으로 상승하는 탄화 스케줄을 설정하고, 목표 온도에 도달하면 30분 동안 해당 온도를 계속 유지하였으며, 이후 초기 온도에 도달할 때까지 10분 동안 전기 탄화로 내에서 방치하였다. 아무런 처리를 하지 않은 케이폭 섬유를 100 ℃ 이상의 온도에서 탄화시키면 섬유가 산화될 수 있기 때문에 1 kgf/cm2의 압력으로 질소를 주입하여 이를 방지해 주었다. 열 처리 후, 무게를 측정하여 중량감소율을 구하였다. 중량감소율(표 1)은 하기 수학식 1에 의해 측정하였다(W₁ = 미처리 시료의 중량 [g]), W₂ = 열 처리 후 시료의 중량 [g]).A carbonization schedule of 0.25 g of Kawoi fiber specimens rising at a target temperature of 60 ° C to 300 ° C at 6 ° C / min was set using an electric furnace (Electric furnace HT 16/16, Supertherm, Germany) Once reached, the temperature was maintained for 30 minutes and then left in an electrocarbon furnace for 10 minutes until the initial temperature was reached. When carbonizing a kapok fibers have not yet processed at least 100 ℃ temperature given to the fiber with nitrogen at a pressure of 1 kgf / cm 2 because it can be oxidized prevent this. After the heat treatment, the weight was measured to determine the weight reduction rate. (W1 = weight of untreated sample [g]), W2 = weight of sample after heat treatment [g]).

온도(℃)Temperature (℃) 6060 8080 100100 120120 140140 160160 180180 중량 감소율(%)Weight reduction rate (%) 3.43.4 4.14.1 4.24.2 5.25.2 6.76.7 14.414.4 18.618.6 온도(℃)Temperature (℃) 200200 220220 240240 260260 280280 300300 중량 감소율(%)Weight reduction rate (%) 23.323.3 28.328.3 34.734.7 62.062.0 65.465.4 87.787.7

[수학식 1][Equation 1]

Figure pat00001
Figure pat00001

2. 케이폭 섬유에 대한 알칼리 처리2. Alkali treatment of kawarp fiber

알칼리 처리를 위해 15 중량% NaOH 수용액을 제조한 후 상기 열 처리한 케이폭 섬유를 비커에 10분 동안 침지하였다. 이 때 케이폭 표면의 소수성 성분 때문에 침지가 원활하지 않을 수 있으므로 유리막대를 이용하여 섬유에 손상이 없도록 살살 교반하였다. 침지 후, 여과장치를 이용하여 증류수로 수회 수세하였다. 동시에 초산(Acetic Acid) 10 %를 액적 형태로 떨어뜨리며 서서히 중화시켰다. 중화는 pH 5.5에 도달할 때까지 진행하였으며 이는 pH 시험지를 이용하여 확인하였다. 그 후 상온에서 하루 동안 건조시켰다.A 15 wt% NaOH aqueous solution was prepared for alkali treatment, and then the heat-treated Kapok fiber was immersed in a beaker for 10 minutes. In this case, since the hydrophobic component on the surface of the covering can not be immersed easily, the glass rod was agitated so as not to damage the fiber. After immersion, it was washed several times with distilled water using a filtration apparatus. At the same time, 10% of acetic acid was dropped in droplets and neutralized slowly. Neutralization was carried out until pH 5.5 was reached, which was confirmed using a pH test strip. It was then dried at room temperature for one day.

<시험예><Test Example>

1. 열 처리 및 알칼리 처리된 케이폭 섬유의 결정구조 분석1. Analysis of crystal structure of heat treated and alkaline treated kawarp fiber

열 처리 및 알칼리 처리를 한 케이폭의 결정구조를 분석하기 위해 x선 회절 분석법을 이용하였다(도 1). 결정구조분석을 위해서 X선 회절장치(Dmax2200, Rigaku, Japan)을 사용하였다. 결정화도(Crystallinity Index) I c (수학식 2, I c = 결정성[Crystallinity], I 200 = 2θ가 22˚인 피크 특성, I am = 2θ가 18˚인 피크 특성)와 결정폭(crystallinity width) τ(수학식 3, τ = 결정폭[Crystallite width], Κ = 평균 결정 크기[Average crystallite size, nm], λ = X-ray의 파장 길이[the wave length of the X-ray], β = 반사된 200 피크 앵글의 반높이 폭[the half-height width of the peak angle of the 200 reflection, θ = 브랙각[Bragg angle, reflection angle])은 각각 하기 수학식에 의해 계산하였다.X-ray diffractometry was used to analyze the crystal structure of the heat treated and alkali treated cakewalk (FIG. 1). An X-ray diffractometer (Dmax2200, Rigaku, Japan) was used for crystal structure analysis. Crystallinity (Crystallinity Index) I c (Equation 2, I c = crystallinity [Crystallinity], I 200 = 2 θ The 22˚ peak characteristic, I am = the peak characteristic 2 θ is 18˚) and determining the width (crystallinity width) τ (equation 3, τ = decision range [Crystallite width], Κ = average crystal size [average crystallite size, nm], wavelength of λ = X-ray [the wave length of the X-ray], β = half-height width of the 200 reflection peak angle [the half-height width of the peak angle of the reflection 200, θ = Bragg angle [Bragg angle, reflection angle]) was calculated by the following equation, respectively.

열 처리 시료의 경우 280 ~ 300 ℃로 설정된 시료에서 피크의 모양이 변화한 것을 알 수 있으며 이로써 해당 온도를 목표 온도로 한 시료의 경우 비결정성이 나타나는 것으로 판단할 수 있다(도 1A).In the case of the heat-treated sample, it can be seen that the shape of the peak changes in the sample set at 280 to 300 ° C, and thus it can be judged that the sample having the target temperature as the target temperature shows amorphousness (FIG. 1A).

열 처리 후 알칼리 처리를 한 시료의 경우 200 ℃에서 피크의 모양이 변화하며 셀룰로오스 Ⅱ 구조가 얻어진 것으로 판단할 수 있다(도 1B). 이는 열 처리에 의한 화학반응성 변화인 것으로 볼 수 있다.In the case of the sample subjected to the alkali treatment after the heat treatment, the shape of the peak changes at 200 ° C and it can be judged that the cellulose II structure is obtained (FIG. 1B). This can be seen as a change in chemical reactivity due to heat treatment.

[수학식 2]&Quot; (2) &quot;

Figure pat00002
Figure pat00002

[수학식 3]&Quot; (3) &quot;

Figure pat00003
Figure pat00003

2. 케이폭 섬유의 이미지 형태 분석2. Image type analysis of Kawak fiber

케이폭 섬유의 열 처리 및 알칼리 처리에 따른 형태적 특성 변화를 분석하기 위해 주사전자현미경(Scanning Electron Microscope, JSM-5510V, JEOL, Japan)으로 관찰하였다. 미처리 시료와 열 처리, 알칼리 처리 시료의 특성 변화를 비교함으로써, 열 처리 및 알칼리 처리가 어떠한 변화를 주는지 확인하였다(도 2). 섬유의 횡단면을 관찰하기 위해서 섬유 내강을 절단하였고, 섬유의 코팅을 위해서 이온증착기(Cressington Sputter coater, ULVAC G-50DA, Japan)를 사용하여 시료에 골드코팅을 하였다.In order to analyze the morphological characteristics of the kawarp fiber according to the heat treatment and alkali treatment, it was observed with a scanning electron microscope (JSM-5510V, JEOL, Japan). By comparing the characteristics of the untreated sample with those of the heat treatment and the alkali treatment, it was confirmed how the heat treatment and the alkali treatment were changed (FIG. 2). In order to observe the cross-section of the fiber, the fiber lumen was cut, and gold coating was applied to the sample using an ion evaporator (Cressington Sputter coater, ULVAC G-50DA, Japan) for the fiber coating.

열 처리 온도에 따른 케이폭 섬유의 셀룰로오스 결정구조 변화를 나타낸 것으로 열 처리 온도가 상승함에 따라 결정성 및 상대결정화도는 점차 감소하였으나 셀룰로오스 Ⅰ 구조를 유지하였다. 그러나 열 처리 이후에 추가로 알칼리 처리를 하게 되면 케이폭 섬유의 결정성은 셀룰로오스 Ⅱ 구조로 용이하게 변화되는 것을 확인하였다. 전술한 사실들은 친수성이 크게 증대될 수 있는 현상으로 추정된다.Crystallinity and relative crystallinity decreased gradually with increasing the heat treatment temperature, but the cellulose I structure was maintained. However, it was confirmed that the crystallinity of the kapok fiber was easily changed to the cellulose II structure by further alkali treatment after the heat treatment. The above facts are presumed to be phenomena in which the hydrophilicity can be greatly increased.

3. 적외선 분광 분석3. Infrared spectroscopy

미처리 시료와 열 처리 시료의 화학 조성 비교를 위해 FT-IR(Fourier transform infrared spectroscopy) 분광분석은 프론티어(Frontier, PerkinElmer, UK)를 사용하여 ATR(attenuated total reflection)법으로 400 ~ 4000 cm-1의 범위에서 측정하였다(도 3). 적외선 분광 분석에 쓰인 시료는 미처리 시료, 100 ℃에서 열 처리한 시료, 200 ℃에서 열 처리한 시료의 화학 조성을 각각 분석하였다.For comparing the chemical composition of the untreated sample and the heat treated sample FT-IR (Fourier transform infrared spectroscopy ) spectrometry is the frontier (Frontier, PerkinElmer, UK) 400 ~ 4000 cm -1 to the ATR (attenuated total reflection) method using (Fig. 3). The chemical composition of untreated samples, samples heat treated at 100 ℃, and samples heat treated at 200 ℃ were analyzed.

열 처리 온도에 따른 케이폭 섬유의 화학적 특성 변화를 확인한 결과, 케이폭 섬유 내에 함유되어 있는 왁스 성분인 플랜트(plant) 왁스(2917 cm-1), 리그닌 지방족 알데하이드(1735 cm-1) 및 지방(1594 cm-1) 등이 열 처리에 의해 크게 감소한 것을 확인할 수 있었다.As a result of chemical changes of chemical properties of kwon fiber according to heat treatment temperature, it was found that wax component (2917 cm -1 ), lignin aliphatic aldehyde (1735 cm -1 ) and fat (1594 cm -1 ) -1 ) was greatly decreased by heat treatment.

Claims (9)

a) 케이폭 섬유를 100 ~ 300 ℃로 열 처리하는 단계; 및
b) 상기 케이폭 섬유를 염기성 용액에 침지시켜 알칼리 처리하는 단계
를 포함하는 케이폭 섬유의 왁스 성분 제거 방법.
a) heat treating the kapok fiber at 100 to 300 캜; And
b) a step of alkali treatment by immersing the above-mentioned canopy fiber in a basic solution
&Lt; / RTI &gt;
제 1 항에 있어서, 상기 단계 a)의 열 처리가 150 ~ 250 ℃로 수행되는 것을 특징으로 하는 왁스 성분 제거 방법.
The method of claim 1, wherein the heat treatment of step (a) is performed at a temperature of 150 to 250 ° C.
제 1 항에 있어서, 상기 단계 a)의 열 처리가 승온속도 6 ℃/min으로 수행되는 것을 특징으로 하는 왁스 성분 제거 방법.
The method of claim 1, wherein the heat treatment in step (a) is performed at a heating rate of 6 캜 / min.
제 1 항에 있어서, 상기 단계 a)의 열 처리 중 질소 가스를 주입하는 것을 특징으로 하는 왁스 성분 제거 방법.
The method of claim 1, wherein the nitrogen gas is injected during the heat treatment of step (a).
제 4 항에 있어서, 질소 가스의 주입 압력이 1 kgf/cm2인 것을 특징으로 하는 왁스 성분 제거 방법.
The wax component removing method according to claim 4, wherein the injection pressure of the nitrogen gas is 1 kgf / cm 2 .
제 1 항에 있어서, 상기 단계 a)의 열 처리 후 목표 온도에서 30분 ~ 1시간 동안 유지시키는 것을 특징으로 하는 왁스 성분 제거 방법.
The method according to claim 1, wherein the wax component is maintained at a target temperature for 30 minutes to 1 hour after the heat treatment in step a).
제 1 항에 있어서, 상기 단계 b)에서 알칼리 처리 후 케이폭 섬유에 산처리하여 pH 값을 6 이하로 조정하는 것을 특징으로 하는 왁스 성분 제거 방법.
The method for removing wax according to claim 1, wherein the pH value of the wax component is adjusted to 6 or less by subjecting the alkaline treated woolen fiber to an acid treatment in the step b).
제 7 항에 있어서, 상기 pH 값이 5 ~ 6인 것을 특징으로 하는 왁스 성분 제거 방법.
The method for removing wax according to claim 7, wherein the pH value is 5 to 6.
제 1 항 내지 제 8 항 중 어느 한 항에 따라 왁스 성분이 제거된 케이폭 섬유.
9. A woven fabric according to any one of claims 1 to 8, wherein the wax component is removed.
KR1020160113758A 2016-09-05 2016-09-05 Method for removing waxy component of kapok fiber KR101909597B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160113758A KR101909597B1 (en) 2016-09-05 2016-09-05 Method for removing waxy component of kapok fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160113758A KR101909597B1 (en) 2016-09-05 2016-09-05 Method for removing waxy component of kapok fiber

Publications (2)

Publication Number Publication Date
KR20180026884A true KR20180026884A (en) 2018-03-14
KR101909597B1 KR101909597B1 (en) 2018-10-18

Family

ID=61660449

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160113758A KR101909597B1 (en) 2016-09-05 2016-09-05 Method for removing waxy component of kapok fiber

Country Status (1)

Country Link
KR (1) KR101909597B1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040034016A (en) 2002-10-16 2004-04-28 벤텍스 주식회사 A surface changed man-made fabric from hydrophobic to hydrophilic using the mixed electiric gas
KR100465259B1 (en) 1999-12-01 2005-01-13 캐논 가부시끼가이샤 Method for manufacturing fiber with reformed surface
KR20050112627A (en) * 2004-05-27 2005-12-01 한국에너지기술연구원 Natural fiber with porous inside and its method
KR100861457B1 (en) * 2008-07-30 2008-10-02 정일훈 Bast fiber and a method thereof by using microbiology
KR20100042268A (en) * 2007-07-02 2010-04-23 플라신 파저 게엠베하 High strength fibrous material consisting of natural fibres, method for the production thereof, and use of same for producing composite materials
KR101017717B1 (en) 2008-09-24 2011-02-25 김양훈 Bio-modification method of polyester fiber using lipolytic enzymes
KR101076289B1 (en) 2008-11-10 2011-10-26 이경세 Natural Textile Modification Method
KR101308356B1 (en) 2012-02-16 2013-09-16 한국생산기술연구원 Non-woven fabric complex for facial mask sheet and manufacturing method thereof
KR20150049074A (en) * 2013-10-29 2015-05-08 한국생산기술연구원 Antifungal finishing method of kapok fiber nature hollowness using fine antimicrobial and padding filling material for keeping warmth using kapok fiber being antifungal-finishing and padding for keeping warmth using kapok fiber being antifungal-finishing and wool
KR101594638B1 (en) 2008-06-10 2016-02-16 페써겐 리무벌 앤드 다이어그너스틱 테크널라지스 인코포레이티드 Process to modify the fiber surface of a polymer nonwoven substrate

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100465259B1 (en) 1999-12-01 2005-01-13 캐논 가부시끼가이샤 Method for manufacturing fiber with reformed surface
KR20040034016A (en) 2002-10-16 2004-04-28 벤텍스 주식회사 A surface changed man-made fabric from hydrophobic to hydrophilic using the mixed electiric gas
KR20050112627A (en) * 2004-05-27 2005-12-01 한국에너지기술연구원 Natural fiber with porous inside and its method
KR20100042268A (en) * 2007-07-02 2010-04-23 플라신 파저 게엠베하 High strength fibrous material consisting of natural fibres, method for the production thereof, and use of same for producing composite materials
KR101594638B1 (en) 2008-06-10 2016-02-16 페써겐 리무벌 앤드 다이어그너스틱 테크널라지스 인코포레이티드 Process to modify the fiber surface of a polymer nonwoven substrate
KR100861457B1 (en) * 2008-07-30 2008-10-02 정일훈 Bast fiber and a method thereof by using microbiology
KR101017717B1 (en) 2008-09-24 2011-02-25 김양훈 Bio-modification method of polyester fiber using lipolytic enzymes
KR101076289B1 (en) 2008-11-10 2011-10-26 이경세 Natural Textile Modification Method
KR101308356B1 (en) 2012-02-16 2013-09-16 한국생산기술연구원 Non-woven fabric complex for facial mask sheet and manufacturing method thereof
KR20150049074A (en) * 2013-10-29 2015-05-08 한국생산기술연구원 Antifungal finishing method of kapok fiber nature hollowness using fine antimicrobial and padding filling material for keeping warmth using kapok fiber being antifungal-finishing and padding for keeping warmth using kapok fiber being antifungal-finishing and wool

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J. Ind. Eng. Chem., Vol. 13, No. 6, (2007) 956-958

Also Published As

Publication number Publication date
KR101909597B1 (en) 2018-10-18

Similar Documents

Publication Publication Date Title
Sathishkumar et al. Characterization of new cellulose sansevieria ehrenbergii fibers for polymer composites
Amroune et al. Tensile mechanical properties and surface chemical sensitivity of technical fibres from date palm fruit branches (Phoenix dactylifera L.)
KR101929285B1 (en) Graphene oxide synthesized from pitch-based carbon fiber and manufacturing method thereof
Vardhini et al. Optimisation of alkali treatment of banana fibres on lignin removal
Zannen et al. Effect of chemical extraction on physicochemical and mechanical properties of doum palm fibres
Reddy et al. Extraction and characterization of natural cellulose fibers from common milkweed stems
Mohit et al. Thermo-mechanical properties of sodium chloride and alkali-treated sugarcane bagasse fibre
EP3075399A1 (en) Tissue repair material derived from fish skin and manufacturing method thereof
CN111133146A (en) Cellulose nanofiber, sheet material comprising same, and method for producing same
Lassoued et al. Thermomechanical behavior of Tunisian palm fibers before and after alkalization
Campos et al. Production of cellulose nanowhiskers from oil palm mesocarp fibers by acid hydrolysis and microfluidization
Imoisili et al. Effect of chemical treatment on the morphology and mechanical properties of plantain (Musa paradisiaca) fiber
KR101909597B1 (en) Method for removing waxy component of kapok fiber
Muslimin et al. Effect of liquid smoke on surface morphology and tensile strength of Sago Fiber
Rodríguez et al. Water uptake, chemical characterization, and tensile behavior of modified banana–plantain fiber and their polyester composites
Diharjo et al. Effect of acetylation treatment and soaking time to bending strength of sugar palm fiber composite
Bakar et al. Extraction and surface characterization of novel bast fibers extracted from the Pennisetum Purpureum plant for composite application
Dwsanto et al. Radiale Kompression von Sugiholz
Soosai et al. Characterization of novel lignocellulosic Spinifex littoreus fibers and their composites
Widodo et al. Comprehensive investigation of raw and NaOH alkalized sansevieria fiber for enhancing composite reinforcement
Kommula et al. Effect of acid treatment on the chemical, structural, thermal and tensile properties of napier grass fibre strands
Novovic et al. Microfibrillated cellulose (MFC) isolation based on stalk sweet sorghum through alkalinization-bleaching treatment: effect of soaking temperature
Kanchireddy et al. Effect of fiber surface treatments on the tensile properties of polycarbonate-coated napier grass fibers
US10472767B2 (en) Method of removing odors from fibrous materials used in forming biocomposite materials
Raghavendra et al. A novel study on surface modification of palmyra fibers for enhancing mechanical and thermal properties

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right