KR20180024088A - 원자층 증착 장비 및 그를 이용한 원자층 증착 방법 - Google Patents

원자층 증착 장비 및 그를 이용한 원자층 증착 방법 Download PDF

Info

Publication number
KR20180024088A
KR20180024088A KR1020160108985A KR20160108985A KR20180024088A KR 20180024088 A KR20180024088 A KR 20180024088A KR 1020160108985 A KR1020160108985 A KR 1020160108985A KR 20160108985 A KR20160108985 A KR 20160108985A KR 20180024088 A KR20180024088 A KR 20180024088A
Authority
KR
South Korea
Prior art keywords
gas supply
deposited
atomic layer
substrate
gas
Prior art date
Application number
KR1020160108985A
Other languages
English (en)
Other versions
KR101861008B1 (ko
Inventor
전형탁
Original Assignee
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한양대학교 산학협력단 filed Critical 한양대학교 산학협력단
Priority to KR1020160108985A priority Critical patent/KR101861008B1/ko
Priority to CN201780050374.6A priority patent/CN109642317B/zh
Priority to PCT/KR2017/009246 priority patent/WO2018038547A1/ko
Publication of KR20180024088A publication Critical patent/KR20180024088A/ko
Application granted granted Critical
Publication of KR101861008B1 publication Critical patent/KR101861008B1/ko
Priority to US16/280,589 priority patent/US11124875B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4408Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber by purging residual gases from the reaction chamber or gas lines
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4412Details relating to the exhausts, e.g. pumps, filters, scrubbers, particle traps
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • C23C16/45548Atomic layer deposition [ALD] characterized by the apparatus having arrangements for gas injection at different locations of the reactor for each ALD half-reaction
    • C23C16/45551Atomic layer deposition [ALD] characterized by the apparatus having arrangements for gas injection at different locations of the reactor for each ALD half-reaction for relative movement of the substrate and the gas injectors or half-reaction reactor compartments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating

Abstract

원자층 증착 장비가 제공된다. 본 발명의 일 실시 예에 따른 원자층 증착 장비는, 소스 가스, 퍼지 가스 및 반응 가스를 포함하는 원자층 증착 가스를 동시에 증착 대상 기판의 다른 영역에 분사하는 가스 공급 모듈 및 상기 가스 공급 모듈의 일 측에 마련되며, 상기 증착 대상 기판을 직선으로 이송시키는 스테이지를 포함하되, 상기 스테이지를 따라 상기 증착 대상 기판이 상기 직선으로 1 싸이클(cycle) 이송됨에 따라 2층 이상의 원자층이 상기 증착 대상 기판에 증착될 수 있다.

Description

원자층 증착 장비 및 그를 이용한 원자층 증착 방법{Atomic Layer Deposition Apparatus and Deposition Method Using the Same}
본 발명은 원자층 증착 장비 및 그를 이용한 원자층 증착 방법에 관련된 것으로 보다 구체적으로는, 공간 분할 방식으로 고 품질의 원자층을 증착하는 원자층 증착 장비 및 그를 이용한 원자층 증착 방법에 관련된 것이다.
일반적으로, 반도체 기판이나 글라스 등의 기판 상에 소정 두께의 박막을 증착하는 방법으로는 스퍼터링(sputtering)과 같이 물리적인 충돌을 이용하는 물리 기상 증착법(physical vapor deposition, PVD)과, 화학반응을 이용하는 화학 기상 증착법(chemical vapor deposition, CVD) 등이 있다.
최근들어 반도체 소자의 디자인 룰(design rule)이 급격하게 미세해짐에 따라 미세 패턴의 박막이 요구되고 박막이 형성되는 영역의 단차 또한 매우 커지고 있어 원자층 두께의 미세 패턴을 매우 균일하게 형성할 수 있을 뿐만 아니라 스텝 커버리지(step coverage)가 우수한 원자층 증착 방법(atomic layer deposition: ALD)의 사용이 증대되고 있다.
이러한 원자층 증착 방법은 기체 분자들 간의 화학반응을 이용한다는 점에 있어서 일반적인 화학 기상 증착 방법과 유사하다. 하지만, 통상의 CVD가 복수의 기체 분자들을 동시에 프로세스 챔버 내로 주입하여 발생된 반응 생성물을 기판에 증착하는 것과 달리, 원자층 증착 방법은 하나의 소스 물질을 포함하는 가스를 프로세스 챔버 내로 주입하여 가열된 기판에 흡착시키고 이후 다른 소스 물질을 포함하는 가스를 프로세스 챔버에 주입함으로써 기판 표면에서 소스 물질 사이의 화학반응에 의한 생성물이 증착된다는 점에서 차이가 있다.
그러나, 현재 연구되고 있는 시분할 방식 원자층 증착 방법은, 생산성이 낮다는 문제를 가지고 있다. 이에 본 발명자는, 원자층 증착 박막의 고 품위는 유지시키되, 생산성을 향상시키는, 원자층 증착 장비 및 그를 이용한 원자층 증착 방법을 발명하게 되었다.
국제공개공보 WO 2013/191471A1
본 발명이 해결하고자 하는 일 기술적 과제는, 고 생산성을 보장하면서도 고 품위 박막을 제공하는 원자층 증착 장비 및 그를 이용한 원자층 증착 방법을 제공하는 데 있다.
본 발명이 해결하고자 하는 다른 기술적 과제는, 공간 분할 방식의 원자층 증착 환경을 제공하면서도, 장비의 소형화(foot print 감소)가 가능한 원자층 증착 장비 및 그를 이용한 원자층 증착 방법을 제공하는 데 있다.
본 발명이 해결하고자 하는 또 다른 기술적 과제는, 원자층 증착 가스의 혼입을 방지하는 로테이션 타입(rotation type) 원자층 증착 장비 및 그를 이용한 원자층 증착 방법을 제공하는 데 있다.
본 발명이 해결하고자 하는 기술적 과제는 상기 언급한 과제에 의하여 제한되지 아니한다.
본 발명의 일 실시 예에 따른 원자층 증착 장비는, 소스 가스, 퍼지 가스 및 반응 가스를 포함하는 원자층 증착 가스를 동시에 증착 대상 기판의 다른 영역에 분사하는 가스 공급 모듈 및 상기 가스 공급 모듈의 일 측에 마련되며, 상기 증착 대상 기판을 직선으로 이송시키는 스테이지를 포함하되, 상기 스테이지를 따라 상기 증착 대상 기판이 상기 직선을 따라 1 싸이클(cycle) 이송됨에 따라 2층 이상의 원자층이 상기 증착 대상 기판에 증착될 수 있다.
일 실시 예에 따르면, 상기 가스 공급 모듈은, 상기 소스 가스를 분사하는 소스 가스 공급부, 상기 퍼지 가스를 공급하는 제1, 제2 퍼지 가스 공급부 및 제1 외측 퍼지 가스 공급부, 제2 외측 퍼지 가스 공급부 및 상기 반응 가스를 분사하는 제1 및 제2 반응 가스 공급부를 포함하되, 상기 증착 대상 기판의 직선 이송 경로를 따라, 상기 제1 외측 퍼지 가스 공급부, 상기 제1 반응 가스 공급부, 제1 퍼지 가스 공급부, 상기 소스 가스 공급부, 상기 제2 퍼지 가스 공급부 및 상기 제2 반응 가스 공급부 및 상기 제2 외측 퍼지 가스 공급부 순서로 배치될 수 있다.
일 실시 예에 따르면, 상기 가스 공급 모듈은, 상기 소스 가스를 분사하는 소스 가스 공급부, 상기 퍼지 가스를 공급하는 퍼지 가스 공급부 및 상기 반응 가스를 분사하는 반응 가스 공급부를 포함하되, 상기 반응 가스 공급부와 상기 퍼지 가스 공급부 사이 또는 상기 소스 가스 공급부와 상기 퍼지 가스 공급부 사이에는 반응 가스 또는 소스 가스를 배기하는 배기구가 마련될 수 있다.
일 실시 예에 따르면, 상기 반응 가스를 배기하는 배기구는 상기 반응 가스 공급부와 인접하여 배치되어, 상기 반응 가스를 상기 증착 대상 기판과 반대 방향으로 배기하고, 상기 소스 가스를 배기하는 배기구는 상기 소스 가스 공급부와 인접하여 배치되어, 상기 소스 가스를 상기 증착 대상 기판과 반대 방향으로 배기할 수 있다.
일 실시 예에 따르면, 상기 스테이지는, 제1 방향으로 직선 연장하는 제1 및 제3 로드 및 제2 방향으로 직선 연장하는 제2 및 제4 로드를 포함하며, 상기 제1 내지 제4 로드들은 폐 경로(closed path)를 이룰 수 있다.
일 실시 예에 따르면, 상기 가스 공급 모듈은, 서브 가스 공급 모듈들로 구성되며, 상기 서브 가스 공급 모듈은, 일정 각도로 환형으로 배치되며, 상기 서브 가스 공급 모듈들은, 상기 반응 가스를 분사하는 제1 반응 가스 공급부, 상기 퍼지 가스를 분사하는 제1 퍼지 가스 공급부, 상기 소스 가스를 분사하는 소스 가스 공급부, 상기 퍼지 가스를 분사하는 제2 퍼지 가스 공급부 및 상기 반응 가스를 분사하는 제2 반응 가스 공급부 순서로 배치되는 가스 공급부들을 포함하며, 상기 소스 가스, 상기 퍼지 가스 및 상기 반응 가스를 포함하는 원자층 증착 가스를 동시에 상기 증착 대상 기판의 다른 영역에 분사하며, 상기 서브 가스 공급 모듈들은, 상기 서브 가스 공급 모듈들의 양 단에 상기 퍼지 가스를 분사하는 외곽 퍼지 가스 공급부들을 더 포함할 수 있다.
일 실시 예에 따르면, 상기 가스 공급 모듈은, 서로 다른 소스 가스를 제공하는 서브 가스 모듈들로 구성되며, 상기 증착 대상 기판이 스테이지를 따라 이송됨에 따라 상기 증착 대상 기판에는 이종의 박막들이 형성될 수 있다.
본 발명의 일 실시 예에 따른 원자층 증착 방법은, 폐 경로로 이루어진 스테이지 상에서, 증착 대상 기판을 직선으로 이송시켜, 상기 증착 대상 기판에 원자층 증착 가스를 공급하는 가스 공급 모듈을 통하여 제1 원자층을 증착하는 단계 및 상기 증착 대상 기판을 추가 이송시켜, 상기 증착 대상 기판에 상기 가스 공급 모듈을 통하여 제2 원자층을 증착하는 단계를 포함하며, 상기 증착 대상 기판이 상기 폐 경로를 따라, 1 싸이클 이송되는 경우, 상기 증착 대상 기판에 2층 이상의 원자층이 증착될 수 있다.
본 발명의 다른 실시 예에 따른 원자층 증착 방법은, 제1 증착 대상 기판 및 제2 증착 대상 기판을 포함하는 복수의 증착 대상 기판을, 폐 경로를 가지는 스테이지 상에서 제1 방향으로 이송하여, 상기 제1 증착 대상 기판에, 제1 가스 공급 모듈을 통하여, 제1 원자층을 증착하고, 상기 제2 증착 대상 기판에, 상기 제1 가스 공급 모듈과 이격하여 배치되는 제2 가스 공급 모듈을 통하여, 제2 원자층을 동시에 증착하는 제1 단계 및 상기 복수의 증착 대상 기판을 상기 제1 방향과 역 방향인 제2 방향으로 이송하여, 상기 제1 증착 대상 기판에, 상기 제1 가스 공급 모듈을 통하여, 상기 제1 원자층을 추가 증착하고, 상기 제2 증착 대상 기판에, 상기 제2 증착 대상 기판에, 상기 제2 가스 공급 모듈을 통하여, 제2 원자층을 추가 증착하는 제2 단계를 포함하여 이루어질 수 있다.
다른 실시 예에 따르면, 상기 제1 원자층과 상기 제2 원자층은 서로 동일한 종류의 원자층일 수 있다.
다른 실시 예에 따르면, 상기 제1 원자층과 상기 제2 원자층은 서로 다른 종류의 원자층일 수 있다.
다른 실시 예에 따르면, 상기 제2 단계 수행 이후에 상기 복수의 증착 대상 기판을 상기 제1 방향으로 이송하여, 상기 제1 증착 대상 기판에, 상기 제2 가스 공급 모듈을 통하여, 상기 제2 원자층을 증착하고, 상기 제2 증착 대상 기판에, 상기 제2 가스 공급 모듈과 이격하여 배치되는 제3 가스 공급 모듈을 통하여, 제3 원자층을 동시에 증착하는 제3 단계를 더 포함할 수 있다.
다른 실시 예에 따르면, 상기 제1 원자층 및 상기 제3 원자층은 서로 동일한 종류의 원자층이며, 상기 제2 원자층은 상기 제1 및 제3 원자층과 서로 다른 종류의 원자층일 수 있다.
본 발명의 실시 예에 따른 원자층 증착 장비는, 소스 가스, 퍼지 가스 및 반응 가스를 포함하는 원자층 증착 가스를 동시에 증착 대상 기판의 다른 영역에 분사하는 가스 공급 모듈 및 상기 가스 공급 모듈의 일 측에 마련되며, 상기 증착 대상 기판을 직선으로 이송시키는 스테이지를 포함하되, 상기 스테이지를 따라 상기 증착 대상 기판이 상기 직선으로 1 싸이클(cycle)을 이송됨에 따라 2층 이상의 원자층이 상기 증착 대상 기판에 증착될 수 있다. 즉, 본 발명의 일 실시 예에 따른 원자층 증착 장비는, 증착 대상 기판이 1 싸이클 이송되는 경우에도, 2층 이상의 원자층이 증착되도록 생산성을 향상시킬 수 있다.
또한, 본 발명의 일 실시 예에 따른 원자층 증착 장비는, 반응 가스 공급부와 상기 퍼지 가스 공급부 사이 또는 상기 소스 가스 공급부와 상기 퍼지 가스 공급부 사이에 위치하는 반응 가스 또는 소스 가스를 배기하는 배기구를 더 포함할 수 있다. 이에 따라, 본 발명의 일 실시 예에 따른 배기구는, 증착 대상 기판의 이송에 의하여 발생하는 기류가 야기할 수 있는 원자층 증착 가스의 혼입을 최소화할 수 있으므로, 고 품위의 박막을 제공할 수 있다.
본 발명의 실시 예에 따른, 효과는 상술한 효과에 의하여 제한되지 아니한다.
도 1은 본 발명의 제1 실시 에에 따른 원자층 증착 장비를 설명하기 위한 도면이다.
도 2는 본 발명의 제1 실시 예에 따른 원자층 증착 장비의 A-A' 단면을 설명하기 위한 도면이다.
도 3은 본 발명의 제2 실시 예에 따른 원자층 증착 장비를 설명하기 위한 도면이다.
도 4는 본 발명의 제2 실시 예에 따른 원자층 증착 장비의 B-B' 단면을 설명하기 위한 도면이다.
도 5는 본 발명의 제3 실시 예에 따른 원자층 증착 장비를 설명하기 위한 도면이다.
도 6은 본 발명의 제1 실시 예에 따른 원자층 증착 방법을 설명하기 위한 도면이다.
도 7 및 도 8은 본 발명의 제1 실시 예에 따른 원자층 증착 방법을 구체적으로 설명하기 위한 도면들이다.
도 9는 본 발명의 제2 실시 예에 따른 원자층 증착 방법을 설명하기 위한 도면이다.
도 10 내지 도 12는 본 발명의 제2 실시 에에 따른 원자층 증착 방법을 구체적으로 설명하기 위한 다른 도면들이다.
이하, 첨부된 도면들을 참조하여 본 발명의 바람직한 실시 예를 상세히 설명할 것이다. 그러나 본 발명의 기술적 사상은 여기서 설명되는 실시 예에 한정되지 않고 다른 형태로 구체화 될 수도 있다. 오히려, 여기서 소개되는 실시 예는 개시된 내용이 철저하고 완전해질 수 있도록 그리고 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 제공되는 것이다.
본 명세서에서, 어떤 구성요소가 다른 구성요소 상에 있다고 언급되는 경우에 그것은 다른 구성요소 상에 직접 형성될 수 있거나 또는 그들 사이에 제 3의 구성요소가 개재될 수도 있다는 것을 의미한다. 또한, 도면들에 있어서, 형상 및 영역들의 크기 또는 두께는 기술적 내용의 효과적인 설명을 위해 과장된 것이다.
또한, 본 명세서의 다양한 실시 예 들에서 제1, 제2, 제3 등의 용어가 다양한 구성요소들을 기술하기 위해서 사용되었지만, 이들 구성요소들이 이 같은 용어들에 의해서 한정되어서는 안 된다. 이들 용어들은 단지 어느 구성요소를 다른 구성요소와 구별시키기 위해서 사용되었을 뿐이다. 따라서, 어느 한 실시 예에 제 1 구성요소로 언급된 것이 다른 실시 예에서는 제 2 구성요소로 언급될 수도 있다. 여기에 설명되고 예시되는 각 실시 예는 그것의 상보적인 실시 예도 포함한다. 또한, 본 명세서에서 '및/또는'은 전후에 나열한 구성요소들 중 적어도 하나를 포함하는 의미로 사용되었다.
명세서에서 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한 복수의 표현을 포함한다. 또한, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 구성요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징이나 숫자, 단계, 구성요소 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 배제하는 것으로 이해되어서는 안 된다. 또한, 본 명세서에서 "연결"은 복수의 구성 요소를 간접적으로 연결하는 것, 및 직접적으로 연결하는 것을 모두 포함하는 의미로 사용된다.
또한, 하기에서 본 발명을 설명함에 있어 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략할 것이다.
본 발명의 제1 내지 제3 실시 예들에 따른 원자층 증착 장비는 다양한 원자층을 형성할 수 있다. 예를 들어, 금속 박막층, 산화물 박막층, 질화물 박막층, 탄화물 박막층, 황화물 박막층 중 적어도 하나의 박막층을 형성할 수 있다. 일 실시 예에 따르면, 금속 박막층을 형성하기 위한, 소스 가스는, TMA(Tri Methyl Aluminium), TEA(Tri Ethyl Aluminium) 및 DMACl(Di Methyl Aluminum Chloride) 중 하나이고, 반응 가스는, 산소 가스 및 오존 가스 중 하나일 수 있다. 이 때 퍼지 가스는, 아르곤(Ar)이나 질소(N2), 헬륨(He) 중 어느 하나의 가스 또는 둘 이상 혼합된 가스가 사용될 수 있다. 다른 실시 예에 따르면, 실리콘 박막층을 형성하기 위한, 소스 가스는, 리콘을 포함하는 실란(Silane, SiH4), 디실란(Disilane, Si2H6) 및 사불화 실리콘(SiF4) 중 하나일 수 있고, 반응 가스는, 산소 가스 및 오존 가스 중 하나일 수 있다. 이 때 퍼지 가스는, 아르곤(Ar)이나 질소(N2), 헬륨(He) 중 어느 하나의 가스 또는 둘 이상 혼합된 가스가 사용될 수 있다. 이 때, 소스 가스, 퍼지 가스, 반응 가스는 이에 한정되는 것은 아니며 당업자의 요구에 따라 변경될 수 있음은 물론이다. 이하 도 1 및 도 2를 참조하여 본 발명의 제1 실시 예에 따른 원자층 증착 장비가 설명된다.
도 1은 본 발명의 제1 실시 에에 따른 원자층 증착 장비를 설명하기 위한 도면이고, 도 2는 본 발명의 제1 실시 예에 따른 원자층 증착 장비의 A-A' 단면을 설명하기 위한 도면이다. 특히, 도2는 도 1의 W1이 가스 공급 모듈(100) 하측에 위치한 것을 상정한 단면도를 도시한다.
도 1 및 도 2를 참조하면, 본 발명의 제1 실시 예에 따른 원자층 증착 장비(10)는, 소스 가스, 퍼지 가스 및 반응 가스를 포함하는 증착 가스를 동시에 증착 대상 기판의 다른 영역에 분사하는 가스 공급 모듈(100) 및 상기 가스 공급 모듈(100)의 일 측 예를 들어, 하측에 마련되며, 상기 증착 대상 기판(W1, W2, W3, W4)이 직선 방향으로 이송되는 스테이지(180)를 포함할 수 있다. 이하 각 구성에 대하여 상세히 설명하기로 한다.
도 1을 참조하면, 상기 가스 공급 모듈(100)은 스테이지(180)의 중심선 예를 들어, Y축(또는 X축)에 대하여 대칭을 이룰 수 있다. 즉, 상기 가스 공급 모듈(100)은 스테이지(180)의 중심선을 통과하여 스테이지(180)의 일 단과 타 단 사이에 일체로 형성될 수 있다. 예를 들어, 상기 가스 공급 모듈(100)은 후술할 제1 로드(180) 및 제3 로드(184)를 폭 방향으로 덮을 수 있도록 배치될 수 있다.
상기 스테이지(180)는 Y축 방향으로 연장하는 제1 로드(180) 및 제3 로드(184)와 X축 방향으로 연장하는 제2 로드(182) 및 제4 로드(186)를 포함하여 이루어질 수 있다. 상기 제1 내지 제4 로드(180, 182, 184, 186)는 폐 경로(closed path)를 구성할 수 있다. 예를 들어, 상기 제1 내지 제4 로드(180, 182, 184, 186)는 "ㅁ" 형상을 가질 수 있다.
상기 제1 내지 제4 로드(180, 182, 184, 186) 상에는 상기 제1 내지 제4 로드(180, 182, 184, 186)을 따라 이동하는 안착부(미도시)가 마련될 수 있다. 이에 증착 대상 기판은, 안착부에 안착된 상태에서, 상기 제1 내지 제4 로드(180, 182, 184, 186)를 따라 이송될 수 있다.
보다 구체적으로, 상기 스테이지(180)는 증착 대상 기판(W1, W2, W3, W4)를 상기 로드(180, 182, 184, 186)를 따라 직선 방향 예를 들어, -Y축 방향으로 이송시킬 수 있다. 이에 따라, 증착 대상 기판은, 상기 로드들(180, 182, 184, 186)을 따라 1 싸이클 하는 경우, 상기 가스 공급 모듈(100) 아래를 2 번 통과할 수 있다. 이에 따라, 증착 대상 기판에는, 상기 가스 공급 모듈(100)의 좌단과 우단 아래를 통과하는 동안 각각 원자층 박막이 증착될 수 있다.
일 실시 예에 따르면, 상기 증착 대상 기판(W1, W2, W3, W4)은 별개의 속도로 이송될 수 있다.
도 1을 참조한 예에서는 로드들이 이루는 폐 경로가 "ㅁ" 인 것을 상정하였지만, 이와 다른 형상일 수 있음은 물론이다. 또한, 증착 대상 기판이 웨이퍼와 같이 원형인 것을 상정하였지만, 이와 다른 형상일 수 있음은 물론이다.
도 2를 참조하면 본 발명의 제1 실시 예에 따른 가스 공급 모듈(100)은 소스 가스를 분사하는 소스 가스 공급부(132b), 퍼지 가스를 공급하는 제1 및 제2 퍼지 가스 공급부(110a, 110b), 반응 가스를 분사하는 제1 및 제2 반응 가스 공급부(132a, 132c)를 포함할 수 있다. 또한, 상기 가스 공급 모듈(100)은 상기 가스 공급 모듈(100)의 양 단에 배치되는 제1 외곽 퍼지 가스 공급부(115a) 및 제2 외곽 퍼지 가스 공급부(115b)를 더 포함할 수 있다.
일 실시 예에 따르면, 상기 소스 가스 공급부(132b), 상기 제1 및 제2 퍼지 가스 공급부(110a, 110b), 상기 제1 및 제2 반응 가스 공급부(132a, 132c)는 증착 대상 기판의 이송 방향을 따라 배치될 수 있다.
보다 구체적으로, 상기 제1 외곽 퍼지 가스 공급부(115a), 상기 제1 반응 가스 공급부(132a), 제1 퍼지 가스 공급부(110a), 소스 가스 공급부(132b), 제2 퍼지 가스 공급부(110b), 제2 반응 가스 공급부(132c) 및 상기 제2 외곽 퍼지 가스 공급부(115b) 순서로 배치될 수 있다.
상기 제1 및 제2 외곽 퍼지 가스 공급부(115a, 115b) 및 상기 제1 및 제2 퍼지 가스 공급부(110a, 110b)는 퍼지 가스 공급원(150)으로부터 퍼지 가스를 제공받고, 제공받은 퍼지 가스를 증착 대상 기판을 향하여 분사할 수 있다. 상기 소스 가스 공급부(132b)는 소스 가스 공급원(140)으로부터 소스 가스를 제공받고, 제공받은 소스 가스를 증착 대상 기판을 향하여 분사할 수 있다. 또한, 상기 제1 및 제2 반응 가스 공급부(132a, 132c)는 반응 가스 공급원(160)으로부터 반응 가스를 제공받고, 제공받은 반응 가스를 증착 대상 기판을 향하여 분사할 수 있다.
상기 제1 반응 가스 공급부(132a) 및 상기 제2 반응 가스 공급부(132c)의 일 측에는, 분사된 반응 가스를 배기하는 배기구가 배치될 수 있다. 보다 구체적으로 상기 제1 반응 가스 공급부(132a)의 양 측에는 상기 제1 반응 가스 공급부(132a)에서 분사된 반응 가스를 배기하는 배기구(134a, 136a)가 직접 인접하여 배치될 수 있다. 상기 배기구(134a, 136a)는 분사된 반응 가스를 분사 방향과 역 방향으로 회수함으로써, 반응 가스가 선택된 분사 영역 외의 타 영역으로 진입하는 것을 방지할 수 있다. 또한, 상기 제2 반응 가스 공급부(132c)의 양 측에는 상기 제2 반응 가스 공급부(132c)에서 분사된 반응 가스를 배기하는 배기구(134c, 136c)가 직접 인접하여 배치될 수 있다. 상기 배기구(134c, 136c)는 분사된 반응 가스를 분사 방향과 역 방향으로 회수함으로써, 반응 가스가 선택된 분사 영역 외의 타 영역으로 진입하는 것을 방지할 수 있다.
상기 소스 가스 공급부(132b)의 일 측에는, 분사된 소스 가스를 배기하는 배기구가 배치될 수 있다. 보다 구체적으로 상기 소스 가스 공급부(132b)의 양 측에는 상기 소스 가스 공급부(132b)에서 분사된 소스 가스를 배기하는 배기구(134b, 136b)가 직접 인접하여 배치될 수 있다. 상기 배기구(134b, 136b)는 분사된 소스 가스를 분사 방향과 역 방향으로 회수함으로써, 소스 가스가 선택된 분사 영역 외의 타 영역으로 진입하는 것을 방지할 수 있다.
일 실시 예에 따르면, 상기 배기구(134a, 136a, 134b, 136b, 134c, 136c)는 바 드라이 펌프(bar dry pump, 170)와 연통할 수 있다. 상기 바 드라이 펌프(170)의 구동에 의하여, 탑 펌핑(top pumping) 방식으로 분사된 반응 가스 및/또는 소스 가스 중 기판의 해당 공간 분할 영역을 벗어나는 반응 가스 및/또는 소스 가스는 배기될 수 있다.
이하, 본 발명의 제1 실시 예에 따른 원자층 증착 장비의 구동 방법이 설명된다.
상기 가스 공급 모듈(100)의 각 가스 공급부는 해당 공간 분할 영역으로 가스를 동시에 분사할 수 있다. 예를 들어, 상기 제1 외곽 퍼지 가스 공급부(115a)는 A0 영역으로 퍼지 가스를 분사하고, 상기 제1 반응 가스 공급부(132a)는 A1 영역으로 반응 가스를 분사하고, 제1 퍼지 가스 공급부(110a)는 A2 영역으로 퍼지 가스를 분사하고, 소스 가스 공급부(132b)는 A3 영역으로 소스 가스를 분사하고, 제2 퍼지 가스 공급부(110b)는 A4 영역으로 퍼지 가스를 분사하고, 제2 반응 가스 공급부(132c)는 A5 영역으로 반응 가스를 분사하고, 상기 제2 외곽 퍼지 가스 공급부(115B)는 A6 영역으로 퍼지 가스를 분사할 수 있다. 이들 가스는 동시에 분사될 수 있다.
이 때, 상기 제1 반응 가스 공급부(132a)의 양 측에 배치된 배기구(134a, 136a)는 A1 영역 외측으로 진입하는 반응 가스를 반응 가스 분사 방향과 반대 방향으로 배기할 수 있고, 상기 소스 가스 공급부(132b)의 양 측에 배치된 배기구(134b, 136b)는 A3 영역 외측으로 진입하는 소스 가스를 소스 가스 분사 방향과 반대 방향으로 배기할 수 있고, 상기 제2 반응 가스 공급부(132c)의 양 측에 배치된 배기구(134c, 136c)는 A5 영역 외측으로 진입하는 반응 가스를 배기할 수 있다. 이에 따라 증착 가스 간의 혼입이 방지되므로 고 품의 박막을 제공할 수 있다.
스테이지(180)를 따라, 증착 대상 기판(W1)이 D1 방향으로 이송되어, 가스 공급 모듈(100) 좌단 하측으로 진입하게 되면, A0, A1, A2, A3, A4, A5, A6 영역을 순차적으로 통과하게 된다. 이에 따라, 증착 대상 기판(W1)의 각 영역은, A0, A1, A2, A3, A4, A5, A6 영역을 통과하면서, 소스 가스, 퍼지 가스, 반응 가스, 퍼지 가스를 제공받을 수 있다. 따라서, 증착 대상 기판(W1)에는 원자층 박막이 증착될 수 있다. 특히, 증착 대상 기판(W1)이 로드들이 이루는 폐 경로를 따라 1 싸이클하게 이송되면, 증착 대상 기판(W1)은 가스 공급 모듈(100)을 두 번 지나게 되므로, 2층의 원자층이 상기 증착 대상 기판에 증착될 수 있다.
이 때, 상기 증착 대상 기판(W1)이 직선 경로를 따라 이송되므로 상기 증착 대상 기판(W1) 전 면에 걸쳐서 균일한 원자층이 증착될 수 있다. 즉, 상기 증착 대상 기판(W1)의 지점에 상관없이, 원자층 증착 가스를 고르게 제공받을 수 있으므로, 상기 증착 대상 기판(W1) 상에는 균일한 원자층이 증착될 수 있다.
또한, 본 발명의 제1 실시 예에 따른 원자층 증착 장치는 연속적인 원자층 증착 공정을 제공할 수 있다. 원활한 원자층 증착을 위해서는 반응 가스 공급 시간이 소스 가스 공급 시간보다 2 배 정도 소요된다. 이는 증착 대상 기판의 소스 가스와 반응 가스가 반응하는 데 소요되는 시간이 필요하기 때문이다. 본 발명의 제1 실시 예에 따르면, 제1 로드 상의 소스 가스 공급부를 통과한 증착 대상 기판은 상기 제1 로드 상의 제2 반응 가스 공급부를 지나게 되며, 증착 대상 기판이 추가 이송되게 됨에 따라 제3 로드 상에 위치하는 가스 공급 모듈의 반응 가스 공급부를 통과하게 된다. 즉, 제1 로드 상에 위치한 가스 공급 모듈에서 소스 가스 및 반응 가스를 분사 받은 증착 대상 기판에 제3 로드 상에 위치한 가스 공급 모듈이 반응 가스를 추가 분사하므로, 반응 가스 증착을 위한 충분한 공정 시간을 제공할 수 있다. 이에 따라 고 품위의 박막을 제공할 수 있으므로, 증착 대상 기판을 연속적으로 이송시킬 수 있으므로 생산성을 향상시킬 수 있다.
또한, 본 발명의 제1 실시 예에 따른 원자층 증착 장치는, 제1 및 제2 외곽 퍼지 가스 공급부(115a, 115b)를 통하여, 증착 대상 기판의 이동에 따른 가스의 섞임 현상을 최소화할 수 있다. 상기 제1 반응 가스 공급부(132a) 외측으로 상기 제1 외곽 퍼지 가스 공급부(115a)가 배치되므로, 상기 제1 반응 가스 공급부(132a)에서 분사된 반응 가스가 상기 가스 공급 모듈(100)의 외측으로 제공되는 것을 방지할 수 있다. 또한, 상기 제2 반응 가스 공급부(132c) 외측으로 상기 제2 외곽 퍼지 가스 공급부(115b)가 배치되므로, 상기 제2 반응 가스 공급부(132c)에서 분사된 반응 가스가 상기 가스 공급 모듈(100)의 외측으로 제공되는 것을 방지할 수 있다. 이에 따라, 증착 대상 기판의 이송에 의하여 기류가 생성된다 하더라도, 반응 가스가 원치 않은 방향으로 제공되는 것을 퍼지 가스를 통하여 차단할 수 있는 것이다. 즉 제1 로드 상에 위치한 가스 분사 모듈에서 분사된 반응 가스가 다른 영역 예를 들어, 제3 로드 상의 가스 분사 모듈로 기류하는 것을 차단할 수 있다. 따라서, 본 발명의 제1 실시 예에 따른 원자층 증착 장치는, 가스의 섞임 현상을 최소화할 수 있으므로, 고 품위 원자층 박막을 제공할 수 있다.
또한, 본 발명의 제1 실시 예에 따른 원자층 증착 장비는, 복수의 증착 대상 기판이 안착된 상태에서 이송됨에 따라 공간 분할 방식 원자층 증착 공정이 수행될 수 있다. 이에 따라 종래의 공간 분할 방식의 원자층 증착 장비는, 증착 대상 기판에 대하여 로딩 공간, 증착 공간, 언로딩 공간과 같이 추가적인 공간이 소요되었으나, 본 발명의 제1 실시 예에 따르면, 소요되는 공간을 획기적으로 줄일 수 있으므로 장비의 소형화(foot print)가 가능해지게 된다.
이상 도 1 및 도 2를 참조하여, 본 발명의 제1 실시 예에 따른 원자층 증착 장비를 설명하였다. 이하 도 3 및 도 4를 참조하여, 본 발명의 제2 실시 예에 따른 원자층 증착 장비가 설명된다.
도 3은 본 발명의 제2 실시 예에 따른 원자층 증착 장비를 설명하기 위한 도면이고, 도 4는 본 발명의 제2 실시 예에 따른 원자층 증착 장비의 B-B' 단면을 설명하기 위한 도면이다.
도 3을 참조하면, 본 발명의 제2 실시 예에 따른 원자층 증착 장비(20)는 4개로 이루어진 제1 내지 제4 서브 가스 공급 모듈들(200a, 200b, 200c, 200d)로 구성될 수 있다. 이들 서브 가스 공급 모듈들(200a, 200b, 200c, 200d)은, 스테이지(280)의 중심선에 대하여 대칭을 이루도록 배치될 수 있다. 예를 들어, 상기 4개의 서브 가스 공급 모듈들(200a, 200b, 200c, 200d)은 예를 들어, 90도의 위상 차이를 두고 환형으로 배치될 수 있다. 이하에서는 설명의 편의를 위하여 서브 가스 공급 모듈은 가스 공급 모듈로 약칭하기로 한다.
상기 제1 내지 제4 가스 공급 모듈들(200a, 200b, 200c, 200d)은 동종 또는 이종의 원자층 박막을 증착할 수 있다. 예를 들어, 제1 및 제3 가스 공급 모듈들(200a, 200c)과 제2 및 제4 가스 공급 모듈들(200b, 200d)는 서로 다른 원자층 박막을 증착하도록 원자층 증착 가스를 제공할 수 있다. 이와 달리, 상기 제1 내지 제4 가스 공급 모듈들(200a, 200b, 200c, 200d)이 모두 동종의 원자층 박막을 증착하도록 증착 가스를 제공할 수 있음은 물론이다.
상기 스테이지(280)는 Y축 방향으로 연장하는 제1 로드(280) 및 제3 로드(284)와 X축 방향으로 연장하는 제2 로드(282) 및 제4 로드(286)를 포함하여 이루어질 수 있다. 상기 제1 내지 제4 로드(280, 282, 284, 286)는 폐 경로(closed path)를 구성할 수 있다. 예를 들어, 상기 제1 내지 제4 로드(280, 282, 284, 286)는 "ㅁ" 형상을 가질 수 있다. 이 경우, 상기 제1 가스 공급 모듈(200a)은 상기 제1 로드(280)를 상기 제1 로드(280)의 폭 방향으로 연장하도록 배치될 수 있고, 상기 제2 가스 공급 모듈(200b)은 상기 제2 로드(282)를 상기 제2 로드(282)의 폭 방향으로 연장하도록 배치될 수 있고, 상기 제3 가스 공급 모듈(200c)은 상기 제1 로드(284)를 상기 제3 로드(284)의 폭 방향으로 연장하도록 배치될 수 있고, 상기 제4 가스 공급 모듈(200d)은 상기 제4 로드(286)를 상기 제4 로드(286)의 폭 방향으로 연장하도록 배치될 수 있다.
상기 제1 내지 제4 로드(280, 282, 284, 286) 상에는 상기 제1 내지 제4 로드(280, 282, 284, 286)을 따라 순환 이동하는 안착부(미도시)가 마련될 수 있다. 이에 증착 대상 기판은, 안착부에 안착된 상태에서, 상기 제1 내지 제4 로드(280, 282, 284, 286)를 따라 이송될 수 있다.
보다 구체적으로, 상기 스테이지(280)는 증착 대상 기판(W1, W2, W3, W4)를 상기 로드(280, 282, 284, 286)를 따라 직선 방향 예를 들어, -Y축 방향으로 이송시킬 수 있다. 이에 따라, 증착 대상 기판은, 상기 로드들(280, 282, 284, 286)을 따라 1 싸이클 이송되는 경우, 가스 공급 모듈(200a, 200b, 200c, 200d)을 통과하므로 4개의 원자층을 증착받을 수 있다.
일 실시 예에 따르면, 상기 증착 대상 기판(W1, W2, W3, W4)은 별개의 속도로 이송될 수 있다.
도 3을 참조한 예에서는 스테이지2180)에 증착 대상 기판이 4개 안착되는 것을 상정하였지만, 이 보다 적거나 많은 수의 증착 대상 기판이 안착될 수 있도록 수 있음은 물론이다. 또한, 도 3을 참조한 에에서는 스테이지(280)가 "ㅁ" 형상인 것을 상정하였지만, 이와 다른 형상일 수 있음은 물론이다.
제1 내지 제4 가스 공급 모듈(200a, 200b, 200c, 200d)는 위치에 있어서 차이가 있을 뿐 서로 대응되는 구성이므로 이하에서는 제1 가스 공급 모듈(200a)을 기준으로 설명하기로 한다.
도 4를 참조하면 본 발명의 제2 실시 예에 따른 제1 가스 공급 모듈(200a)은 소스 가스를 분사하는 소스 가스 공급부(232b), 퍼지 가스를 공급하는 제1 및 제2 퍼지 가스 공급부(210a, 210b), 반응 가스를 분사하는 제1 및 제2 반응 가스 공급부(232a, 232c)를 포함할 수 있다. 또한, 상기 제1 가스 공급 모듈(200a)는 상기 제1 가스 공급 모듈(200a)의 양 단에 배치되는 제1 외곽 퍼지 가스 공급부(215a) 및 제2 외곽 퍼지 가스 공급부(215b)를 더 포함할 수 있다.
일 실시 예에 따르면, 상기 소스 가스 공급부(232b), 상기 제1 및 제2 퍼지 가스 공급부(210a, 210b), 상기 제1 및 제2 반응 가스 공급부(232a, 232c)는 증착 대상의 이송 방향을 따라 배치될 수 있다.
보다 구체적으로, 상기 제1 외곽 퍼지 가스 공급부(215a), 상기 제1 반응 가스 공급부(232a), 제1 퍼지 가스 공급부(210a), 소스 가스 공급부(232b), 제2 퍼지 가스 공급부(210b), 제2 반응 가스 공급부(232c) 및 상기 제2 외곽 퍼지 가스 공급부(215b) 순서로 배치될 수 있다.
상기 제1 및 제2 외곽 퍼지 가스 공급부(215a, 215b), 상기 제1 및 제2 퍼지 가스 공급부(210a, 210b)는 퍼지 가스 공급원(250)으로부터 퍼지 가스를 제공받고, 제공받은 퍼지 가스를 증착 대상 기판을 향하여 분사할 수 있다. 상기 소스 가스 공급부(232b)는 소스 가스 공급원(240)으로부터 소스 가스를 제공받고, 제공받은 소스 가스를 증착 대상 기판을 향하여 분사할 수 있다. 또한, 상기 제1 및 제2 반응 가스 공급부(232a, 232c)는 반응 가스 공급원(260)으로부터 반응 가스를 제공받고, 제공받은 반응 가스를 증착 대상 기판을 향하여 분사할 수 있다.
상기 제1 반응 가스 공급부(232a) 및 상기 제2 반응 가스 공급부(232c)의 일 측에는, 분사된 반응 가스를 배기하는 배기구가 배치될 수 있다. 보다 구체적으로 상기 제1 반응 가스 공급부(232a)의 양 측에는 상기 제1 반응 가스 공급부(232a)에서 분사된 반응 가스를 배기하는 배기구(234a, 236a)가 직접 인접하여 배치될 수 있다. 상기 배기구(234a, 236a)는 분사된 반응 가스를 분사 방향과 역 방향으로 회수함으로써, 반응 가스가 선택된 분사 영역 외의 타 영역으로 진입하는 것을 방지할 수 있다. 또한, 상기 제2 반응 가스 공급부(232c)의 양 측에는 상기 제2 반응 가스 공급부(232c)에서 분사된 반응 가스를 배기하는 배기구(234c, 236c)가 직접 인접하여 배치될 수 있다. 상기 배기구(234c, 236c)는 분사된 반응 가스를 분사 방향과 역 방향으로 회수함으로써, 반응 가스가 선택된 분사 영역 외의 타 영역으로 진입하는 것을 방지할 수 있다.
상기 소스 가스 공급부(232b)의 일 측에는, 분사된 소스 가스를 배기하는 배기구가 배치될 수 있다. 보다 구체적으로 상기 소스 가스 공급부(230b)의 양 측에는 상기 소스 가스 공급부(232b)에서 분사된 소스 가스를 소스 가스 분사 방향과 역 방향으로 배기하는 배기구(234b, 236b)가 직접 인접하여 배치될 수 있다. 상기 배기구(234b, 236b)는 분사된 소스 가스를 분사 방향과 역 방향으로 회수함으로써, 소스 가스가 선택된 분사 영역 외의 타 영역으로 진입하는 것을 방지할 수 있다.
일 실시 예에 따르면, 상기 배기구(234a, 236a, 234b, 236b, 234c, 236c)는 바 드라이 펌프(bar dry pump, 270)와 연통할 수 있다. 상기 바 드라이 펌프(270)의 구동에 의하여, 분사된 반응 가스 및/또는 소스 가스 중 기판의 해당 공간 분할 영역을 벗어나는 반응 가스 및/또는 소스 가스는 배기될 수 있다.
이하, 본 발명의 제2 실시 예에 따른 원자층 증착 장비의 구동 방법이 설명된다.
상기 제1 가스 공급 모듈(200a)의 각 가스 공급부는 해당 공간 분할 영역으로 가스를 동시에 분사할 수 있다. 예를 들어, 상기 제1 외곽 퍼지 가스 공급부(215a)는 A0 영역으로 퍼지 가스를 분사하고, 상기 제1 반응 가스 공급부(232a)는 A1 영역으로 반응 가스를 분사하고, 제1 퍼지 가스 공급부(210a)는 A2 영역으로 퍼지 가스를 분사하고, 소스 가스 공급부(232b)는 A3 영역으로 소스 가스를 분사하고, 제2 퍼지 가스 공급부(210b)는 A4 영역으로 퍼지 가스를 분사하고, 제2 반응 가스 공급부(232c)는 A5 영역으로 반응 가스를 분사하고, 상기 제2 외곽 퍼지 가스 공급부(A6)는 A6 영역으로 퍼지 가스를 분사할 수 있다.
이 때, 상기 제1 반응 가스 공급부(232a)의 양 측에 배치된 배기구(234a, 236a)는 A1 영역 외측으로 진입하는 반응 가스를 배기할 수 있고, 상기 소스 가스 공급부(232b)의 양 측에 배치된 배기구(234b, 236b)는 A3 영역 외측으로 진입하는 소스 가스를 배기할 수 있고, 상기 제2 반응 가스 공급부(232c)의 양 측에 배치된 배기구(234c, 236c)는 A5 영역 외측으로 진입하는 반응 가스를 배기할 수 있다. 이에 따라 증착 가스 간의 혼입이 방지되므로 고 품의 박막을 제공할 수 있다.
구체적인 설명을 생략하였으나, 제2 내지 제4 가스 공급 모듈(200b, 200c, 200d)도 상기 제1 가스 공급 모듈(200a)과 동일한 방법으로 구동될 수 있다.
스테이지를 따라, 증착 대상 기판(W1)이 D1 방향으로 이송됨에 따라, 상기 증착 대상 기판(W1)이 제1 가스 공급 모듈(200a) 하측으로 진입하게 되면, A0, A1, A2, A3, A4, A5, A6 영역을 순차적으로 통과하게 된다. 이에 따라, 증착 대상 기판(W1)의 각 영역은, A0, A1, A2, A3, A4, A5, A6 영역을 통과하면서, 소스 가스, 퍼지 가스, 반응 가스, 퍼지 가스를 제공받을 수 있다. 따라서, 증착 대상 기판(W1)에는 원자층 박막이 증착될 수 있다.
특히, 상기 증착 대상 기판(W1)이 로드(280, 282, 284, 286)들을 따라 1 싸이클 이송되게 되면, 증착 대상 기판(W1)은 제1 내지 제4 가스 공급 모듈(200a, 200b, 200c, 200d)을 지나게 되므로 4층의 원자층 박막이 증착될 수 있다.
이 때, 상기 증착 대상 기판(W1)이 직선 경로를 따라 이송되므로 상기 증착 대상 기판(W1) 전 면에 걸쳐서 균일한 원자층이 증착될 수 있다. 즉, 상기 증착 대상 기판(W1)의 지점에 상관없이, 원자층 증착 가스를 고르게 제공받을 수 있으므로, 상기 증착 대상 기판(W1) 상에는 균일한 원자층이 증착될 수 있다.
또한, 본 발명의 제2 실시 예에 따른 원자층 증착 장치는 연속적인 원자층 증착 공정을 제공할 수 있다. 원활한 원자층 증착을 위해서는 반응 가스 공급 시간이 소스 가스 공급 시간보다 2 배 정도 소요된다. 이는 증착 대상 기판의 소스 가스와 반응 가스가 반응하는 데 소요되는 시간이 필요하기 때문이다. 본 발명의 제2 실시 예에 따르면, 제1 가스 공급 모듈의 소스 가스 공급부를 통과한 증착 대상 기판은 제1 가스 공급 모듈의 제2 반응 가스 공급부를 지나게 된다. 이후 증착 대상 기판이 이송됨에 따라 제2 가스 공급 모듈의 제1 반응 가스 공급부를 통과하게 된다. 즉, 제1 가스 공급 모듈에서 소스 가스 및 반응 가스를 분사 받은 증착 대상 기판에 제2 가스 공급 모듈이 반응 가스를 추가 분사하므로, 반응 가스 증착을 위한 충분한 공정 시간을 제공할 수 있다. 이에 따라 고 품위의 박막을 제공할 수 있으므로, 증착 대상 기판을 연속적으로 이송시킬 수 있으므로 생산성을 향상시킬 수 있다.
또한, 본 발명의 제2 실시 예에 따른 원자층 증착 장치는, 제1 및 제2 외곽 퍼지 가스 공급부(215a, 215b)를 통하여, 증착 대상 기판의 이송에 의한 가스의 섞임 현상을 최소화할 수 있다. 상기 제1 반응 가스 공급부(232a) 외측으로 상기 제1 외곽 퍼지 가스 공급부(215a)가 배치되므로, 상기 제1 반응 가스 공급부(232a)에서 분사된 반응 가스가 상기 제1 가스 공급 모듈(200a)의 외측으로 제공되는 것을 방지할 수 있다. 또한, 상기 제2 반응 가스 공급부(232c) 외측으로 상기 제2 외곽 퍼지 가스 공급부(215b)가 배치되므로, 상기 제2 반응 가스 공급부(232c)에서 분사된 반응 가스가 상기 제1 가스 공급 모듈(200a)의 외측으로 제공되는 것을 방지할 수 있다. 이에 따라, 증착 대상 기판의 이송에 의하여 기류가 생성된다 하더라도, 반응 가스가 원치 않은 방향으로 제공되는 것을 퍼지 가스를 통하여 차단할 수 있는 것이다. 예를 들어, 상기 제1 가스 공급 모듈(200a)에서 분사된 반응 가스가 상기 제2 내지 제4 가스 공급 모듈(200b. 200c, 200d)으로 기류하는 것을 차단할 수 있다. 따라서, 본 발명의 제2 실시 예에 따른 원자층 증착 장치는, 가스의 섞임 현상을 최소화할 수 있으므로, 고 품위 원자층 박막을 제공할 수 있다.
또한, 본 발명의 제2 실시 예에 따른 원자층 증착 장비는, 복수의 증착 대상 기판이 안착된 상태에서 이송됨에 따라 공간 분할 방식 원자층 증착 공정이 수행될 수 있다. 이에 따라 종래의 공간 분할 방식의 원자층 증착 장비는, 증착 대상 기판에 대하여 로딩 공간, 증착 공간, 언로딩 공간과 같이 추가적인 공간이 소요되었으나, 본 발명의 제2 실시 예에 따르면, 소요되는 공간을 획기적으로 줄일 수 있으므로 장비의 소형화(foot print)가 가능해지게 된다.
이상 도 3 및 도 4를 참조하여 본 발명의 제2 실시 예에 따른 원자층 증착 장비를 설명하였다. 이하 도 5를 참조하여 본 발명의 제3 실시 예에 따른 원자층 증착 장비가 설명된다.
도 5는 본 발명의 제3 실시 예에 따른 원자층 증착 장비를 설명하기 위한 도면이다.
도 5를 참조하면, 본 발명의 제3 실시 예에 따른 원자층 증착 장비(30)의 가스 공급 모듈(300)은, 제1 가스 공급 모듈(300a)과 상기 제1 가스 공급 모듈(300a)에 인접하여 위치한 제2 가스 공급 모듈(300b)로 구성될 수 있다.
상기 제1 및 제2 가스 공급 모듈(300a, 300b)의 구성은 앞서 제1 및 제2 실시 예를 참조하여 설명한 바와 대응된다. 즉, 상기 제1 및 제2 가스 공급 모듈(300a, 300b)이 제1 외곽 퍼지 가스 공급부, 제1 반응 가스 공급부, 제1 퍼지 가스 공급부, 소스 가스 공급부, 제2 퍼지 가스 공급부, 제2 반응 가스 공급부 및 제2 외곽 퍼지 가스 공급부가 인접하여 배치될 수 있다. 또한, 제1 및 제2 반응 가스 공급부 및 소스 가스 공급부의 양 측으로는 배기구가 마련될 수 있다. 이에 구체적인 설명은 생략하기로 한다.
본 발명의 제3 실시 예에 따르면, 제1 내지 제4로드들(380, 382, 384, 386)을 따라 1 싸이클 함에 따라, 각 증착 대상 기판은, 제1 및 제2 가스 공급 모듈(300a. 300b)의 좌단 및 제1 및 제2 가스 공급 모듈(300a. 300b)의 우단을 통과하게 되므로 4층의 원자층 박막을 증착받을 수 있다.
본 발명의 제3 실시 예는, 앞서 설명한 본 발명의 제1 실시 예의 가스 공급 모듈이 이웃하여 배치된다는 점에서 본 발명의 제1 실시 예와 차이가 있다. 본 발명의 제3 실시 예는, 상술한 본 발명의 제2 실시 예에도 적용될 수 있음은 물론이다. 이 경우, 증착 대상 기판이 1 싸이클 이송됨에 따라 8층의 원자층 박막이 증착될 수 있다.
이상 도 5를 참조하여 본 발명의 제3 실시 예에 따른 원자층 증착 장치를 설명하였다. 이하, 도 6을 참조하여 본 발명의 제1 실시 예에 따른 원자층 증착 방법이 설명된다.
도 6은 본 발명의 제1 실시 예에 따른 원자층 증착 방법을 설명하기 위한 도면이고, 도 7 및 도 8은 본 발명의 제1 실시 예에 따른 원자층 증착 방법을 구체적으로 설명하기 위한 도면들이다. 특히, 도 7 및 도 8은 본 발명의 제1 실시 예에 따른 원자층 증착 장치를 통하여 제1 실시 예에 따른 원자층 증착 방법을 구현한 것을 상정한 도면이다.
도 6을 참조하면, 본 발명의 제1 실시 예에 따른 원자층 증착 방법은, 폐 경로로 이루어진 스테이지 상에서, 증착 대상 기판을 이송시켜, 상기 증착 대상 기판에 원자층 증착 가스를 공급하는 가스 공급 모듈을 통하여 제1 원자층을 증착하는 단계(S100) 및 상기 증착 대상 기판을 추가 이송시켜, 상기 증착 대상 기판에 상기 가스 공급 모듈을 통하여 제2 원자층을 증착하는 단계 (S110)를 포함하여 이루어질 수 있다. 설명의 편의를 위하여, 증착 대상 기판(W1)을 기준으로 설명하기로 한다.
도 7을 참조하면, 단계 S100에서, 증착 대상 기판(W1)을 직선으로 이송(D1 방향)시켜, 상기 증착 대상 기판(W1)에 원자층 증착 가스를 공급하는 가스 공급 모듈(100)을 통하여 제1 원자층을 증착할 수 있다.
즉, 상기 제1 로드(180) 상의 증착 대상 기판(W1)이 가스 공급 모듈(100)의 좌단 상측에 위치(도 7(a))한 상태에서, 증착 대상 기판 (W1)이 이송(D1 방향)됨에 따라, 증착 대상 기판(W1)에는, 상기 가스 공급 모듈(100)의 좌단을 통하여 소스 가스, 퍼지 가스, 반응 가스 및 퍼지 가스가 공간 분할 방식으로 제공될 수 있다. 이에 따라, 상기 증착 대상 기판(W1)이 상기 가스 공급 모듈(100)을 통과한 후(도 7(b)), 상기 증착 대상 기판(W1)에는 제1 원자층이 증착될 수 있다.
계속하여 도 8을 참조하면, 단계 S110에서, 상기 증착 대상 기판(W1)을 추가 이송(D2 방향)시켜, 상기 증착 대상 기판(W1)을 제3 로드(184) 상에 위치시킬 수 있다. 이에, 상기 가스 공급 모듈(100)의 우단을 통과하는 증착 대상 기판(W1)에 원자층 증착 가스를 제공함으로써, 상기 증착 대상 기판(W1)에 제2 원자층을 증착할 수 있다.
즉, 증착 대상 기판(W1)이 가스 공급 모듈(100)의 우단 하측에 위치(도 8(a))한 상태에서, 증착 대상 기판(W1)이 이송(D2 방향)됨에 따라, 증착 대상 기판(W1)에는, 상기 가스 공급 모듈(100)의 우단을 통하여 소스 가스, 퍼지 가스, 반응 가스 및 퍼지 가스가 공간 분할 방식으로 제공될 수 있다. 이에 따라, 상기 증착 대상 기판(W1)이 상기 가스 공급 모듈(100)을 통과한 후에는(도 8(b)), 상기 증착 대상 기판(W1)에는 제2 원자층이 증착될 수 있다.
즉, 증착 대상 기판(W1)이 로드들(180, 182, 184, 186)을 따라 1 싸이클 이송됨에 따라, 증착 대상 기판(W1)에는 2층의 원자층 박막이 증착될 수 있다.
또한, 증착 대상 기판(W1)이 가스 공급 모듈의 좌단에서 소스 가스를 공급받은 이후 가스 공급 모듈의 우단에서 다시 소스 가스를 공급받기 까지 2번의 반응 가스 공급을 받기 때문에 반응 가스 공급 과정에서 충분한 시간을 제공할 수 있다. 따라서, 공간 분할 방식임에도 고 품위의 박막을 제공할 수 있다.
도 7 및 도 8을 참조하여 설명한 실시 예에서는 설명의 편의를 위하여 증착 대상 기판이 1개 스테이지에 로딩된 경우를 상정하였으나, 이와 달리, 4개의 증착 대상 기판이 스테이지에 로딩될 수 있음은 물론이다.
또한, 본 발명의 제1 실시 예에 따른 원자층 증착 방법이 본 발명의 제1 실시 에에 따른 원자층 증착 장비에서 구현되는 경우를 상정하여 설명하였으나, 본 발명의 제1 실시 예에 따른 원자층 증착 방법은, 본 발명의 제2 및 제3 실시 예에 따른 원자층 증착 장비에서도 구현될 수 있음은 물론이다. 만약, 제2 및 제3 실시 예에 따른 원자층 증착 장비에서 구현되는 경우, 증착 대상 기판이 로드들을 따라 폐 경로를 1 싸이클 함에 4개의 원자층 박막이 증착될 수 있다.
이상 도 6 내지 도 8을 참조하여 본 발명의 제1 실시 예에 따른 원자층 증착 방법을 설명하였다. 이하에서는 도 9 내지 도 12를 참조하여 본 발명의 제2 실시 예에 따른 원자층 증착 방법이 설명된다.
도 9는 본 발명의 제2 실시 예에 따른 원자층 증착 방법을 설명하기 위한 도면이고, 도 10 내지 도 12는 본 발명의 제2 실시 예에 따른 원자층 증착 방법을 구체적으로 설명하기 위한 도면이다. 특히 도 10 내지 도 12는 본 발명의 제2 실시 예에 따른 원자층 증착 장치를 통하여 제2 실시 예에 따른 원자층 증착 방법을 구현한 것을 상정한 도면이다.
도 9를 참조하면, 본 발명의 제2 실시 예에 따른 원자층 증착 방법은, 제1 증착 대상 기판 및 제2 증착 대상 기판을 포함하는 복수의 증착 대상 기판을, 폐 경로를 가지는 스테이지 상에서 제1 방향으로 이송하여, 상기 제1 증착 대상 기판에, 제1 가스 공급 모듈을 통하여, 제1 원자층을 증착하고, 상기 제2 증착 대상 기판에, 상기 제1 가스 공급 모듈과 이격하여 배치되는 제2 가스 공급 모듈을 통하여, 제2 원자층을 동시에 증착하는 제1 단계 (S200) 및 상기 복수의 증착 대상 기판을 상기 제1 방향과 역 방향인 제2 방향으로 이송하여, 상기 제1 증착 대상 기판에, 상기 제1 가스 공급 모듈을 통하여, 상기 제1 원자층을 추가 증착하고, 상기 제2 증착 대상 기판에, 상기 제2 증착 대상 기판에, 상기 제2 가스 공급 모듈을 통하여, 제2 원자층을 추가 증착하는 제2 단계 (S210)를 포함하여 이루어질 수 있다.
도 10을 참조하면, 단계 S200에서, 상기 제1 로드(280) 상의 증착 대상 기판(W1)이 제1 방향(R1 방향, 반 시계 방향)으로 직선 이송됨에 따라, 상기 제1 증착 대상 기판(W1)에, 제1 가스 공급 모듈(200a)을 통하여, 제1 원자층을 증착하고, 상기 제2 증착 대상 기판(W2)에, 상기 제1 가스 공급 모듈(200a)과 환형 방향으로 이격하여 배치되는 제2 가스 공급 모듈(200b)을 통하여, 제2 원자층을 동시에 증착할 수 있다.
즉, 증착 대상 기판(W1)이 제1 가스 공급 모듈(200a)의 상측(제1 가스 공급 모듈(200a) 기준 +Y 방향)에 위치(도 10(a))한 상태에서, 증착 대상 기판(W1)이 반 시계 방향으로 직선 이송 됨에 따라, 증착 대상 기판(W1)에는, 상기 제1 가스 공급 모듈(200a)을 통하여 소스 가스, 퍼지 가스, 반응 가스 및 퍼지 가스가 공간 분할 방식으로 제공될 수 있다. 이에 따라, 상기 증착 대상 기판(W1)이 상기 제1 가스 공급 모듈(200a)을 통과한 후(도 10(b)), 상기 증착 대상 기판(W1)에는 제1 원자층이 증착될 수 있다.
또한, 증착 대상 기판(W2)이 제2 가스 공급 모듈(200b)의 좌측(제2 가스 공급 모듈(200b) 기준 ?X 방향)에 위치(도 10(a))한 상태에서, 증착 대상 기판(W2)이 반 시계 방향으로 이송됨에 따라, 증착 대상 기판(W2)에는, 상기 제2 가스 공급 모듈(200b)을 통하여 소스 가스, 퍼지 가스, 반응 가스 및 퍼지 가스가 공간 분할 방식으로 제공될 수 있다. 이에 따라, 상기 증착 대상 기판(W2)이 상기 제2 가스 공급 모듈(200b)을 통과한 후(도 10(b)), 상기 증착 대상 기판(W2)에는 제2 원자층이 증착될 수 있다. 이 때, 상기 제1 및 제2 원자층은 동시에 증착될 수 있다.
이 때, 상기 제1 가스 공급 모듈(200a)과 상기 제2 가스 공급 모듈(200b)이 서로 동일한 가스를 분사하는 경우, 상기 제1 및 제2 원자층은 서로 동일한 종류의 원자층일 수 있다. 이와 달리, 상기 제1 가스 공급 모듈(200a)과 상기 제2 가스 공급 모듈(200b)가 서로 다른 종류의 가스를 분사하는 경우, 상기 제1 및 제2 원자층은 서로 다른 종류의 원자층일 수 있다.
그 외, 증착 대상 기판들(W3. W3)도 로드를 따라 이송됨에 따라, 증착 대상 기판(W3, W4)에도 원자층 박막이 증착될 수 있음은 물론이다.
도 11을 참조하면, 단계 S210에서, 상기 증착 대상 기판이 제1 방향과 역 방향인 제2 방향(시계 방향)으로 이송(R2 방향)됨에 따라, 상기 제1 증착 대상 기판에, 상기 제1 가스 공급 모듈을 통하여, 상기 제1 원자층을 추가 증착하고, 상기 제2 증착 대상 기판에, 상기 제2 증착 대상 기판에, 상기 제2 가스 공급 모듈을 통하여, 제2 원자층을 추가 증착할 수 있다.
즉, 단계 S210은 단계 S200 이후 수행되어, 제1 증착 대상 기판(W1)이 다시 제1 가스 공급 모듈(200a)을 통과함으로써, 제1 원자층을 추가 증착하고, 제2 증착 대상 기판(W2)이 다시 제2 가스 공급 모듈(200b)을 통과함으로써, 제2 원자층을 추가 증착할 수 있다. 단계 S210은 상기 제1 가스 공급 모듈(200a)과 상기 제2 가스 공급 모듈(200b)가 서로 다른 종류의 가스를 분사하는 경우에 특히 유용할 수 있다. 보다 구체적으로, 제1 증착 대상 기판(W1)에는 제1 원자층이 2층으로 증착되고, 제2 증착 대상 기판(W2)에는 제1 원자층과 이종의 제2 원자 층이 2층으로 증착될 수 있다. 이 때, 제1 및 제2 추가 원자층은 동시에 증착될 수 있다.
이후, 단계 S200이 반복 수행되어, 상기 제1 증착 대상 기판(W1)에는 제1 원자층이 한번 더 증착되고, 상기 제2 증착 대상 기판(W2)에는 제2 원자층이 한번 더 증착될 수 있다. 본 단계는 생략 가능할 수 있다.
이후, 상기 증착 대상 기판이 제1 방향인 반 시계 방향으로 추가 이송될 수 있다. 도 12를 참조하면, 추가 이송에 의하여, 증착 대상 기판(W1)이 제2 가스 공급 모듈(200b)의 좌측(제2 가스 공급 모듈(200b) 기준 ?X 방향)에 위치(도 12(a))한 상태에서, 반 시계 방향으로 이송됨에 따라, 증착 대상 기판(W1)에는, 상기 제2 가스 공급 모듈(200b)을 통하여 소스 가스, 퍼지 가스, 반응 가스 및 퍼지 가스가 공간 분할 방식으로 제공될 수 있다. 이에 따라, 상기 증착 대상 기판(W1)이 상기 제2 가스 공급 모듈(200b)을 통과한 후(도 12(b)), 상기 증착 대상 기판(W1)에는 제2 원자층이 증착될 수 있다.
또한, 증착 대상 기판(W2)이 제3 가스 공급 모듈(200c)의 하측(제3 가스 공급 모듈(200c) 기준 ?Y 방향)에 위치(도 12(a))한 상태에서, 반 시계 방향으로 이송됨에 따라, 증착 대상 기판(W2)에는, 상기 제3 가스 공급 모듈(200c)을 통하여 소스 가스, 퍼지 가스, 반응 가스 및 퍼지 가스가 공간 분할 방식으로 제공될 수 있다. 이에 따라, 상기 증착 대상 기판(W2)이 상기 제3 가스 공급 모듈(200c)을 통과한 후(도 12(b)), 상기 증착 대상 기판(W2)에는 제3 원자층이 증착될 수 있다. 이 때, 제3 원자층은 제2 원자층과 동시에 증착될 수 있다.
상기 제1 가스 공급 모듈(200a)과 상기 제3 가스 공급 모듈(200c)은 서로 동일한 증착 가스를 분사하고, 상기 제2 가스 공급 모듈(200b)은 상기 제1 가스 공급 모듈(200a)과 상기 제3 가스 공급 모듈(200c)과 다른 증착 가스를 분사할 수 있다. 이에 따라, 제1 및 제3 원자층은 동일한 원자층이며, 제2 원자층은 제1 및 제3 원자층과 이종의 원자층일 수 있다. 이 때, 제4 가스 공급 모듈(200d)은 상기 제2 가스 공급 모듈(200b)과 서로 동일한 종류의 증착 가스를 분사할 수 있다.
본 발명의 제2 실시 예에 따른 원자층 증착 방법에 따르면, 이종의 원자층을 용이하게 형성할 수 있다는 점에서 편의성을 제공할 수 있다. 즉, 제1 가스 공급 모듈과 제3 가스 공급 모듈은 제2 가스 공급 모듈과 제4 가스 공급 모듈과 서로 다른 종류의 원자층 증착 가스를 제공할 수 있다. 이로써, 하나의 챔버 내에서 이종의 원자층이 증착 대상 기판에 증착될 수 있다.
또한, 예를 들어, 제1 증착 대상 기판이 제1 가스 공급 모듈을 왕복 통과하여, 제1 증착 대상 기판에 제1 원자층이 증착된 이후에, 제1 증착 대상 기판이 제2 가스 공급 모듈을 통과함으로써, 제1 원자층과 다른 종류의 제2 원자층이 제1 원자층 상에 증착될 수 있다. 이로써, 하이브리드 원자층이 증착될 수 있는 것이다. 상기 하이브리드 원자층은, 제1 무기층-제2 무기층으로 이루어질 수도 있고, 무기층-유기층으로 이루어질 수도 있고, 유기층-무기층으로 이루어질 수도 있고, 제1 유기층-제2 유기층으로 이루어질 수도 있다.
이와 달리, 상기 제1 내지 제4 가스 공급 모듈(200a, 200b, 200c, 200d) 각각이 서로 다른 종류의 원자층 증착 가스를 제공할 수도 있으며, 상기 제1 내지 제4 가스 공급 모듈(200a, 200b, 200c, 200d)가 동일한 종류의 원자층을 제공할 수 있음은 물론이다.
본 발명의 실시 예들에 따른 원자층 증착 장비 및 원자층 증착 방법은, 반도체, 디스플레이, 에너지 소자의 증착 기술로 적용될 수 있다.
이상, 본 발명을 바람직한 실시 예를 사용하여 상세히 설명하였으나, 본 발명의 범위는 특정 실시 예에 한정되는 것은 아니며, 첨부된 특허청구범위에 의하여 해석되어야 할 것이다. 또한, 이 기술분야에서 통상의 지식을 습득한 자라면, 본 발명의 범위에서 벗어나지 않으면서도 많은 수정과 변형이 가능함을 이해하여야 할 것이다.
10, 20, 30: 제1 내지 제3 원자층 증착 장비
100, 200, 300: 가스 공급 모듈
180, 280, 380: 스테이지
W1. W2, W3, W4: 증착 대상 기판

Claims (13)

  1. 소스 가스, 퍼지 가스 및 반응 가스를 포함하는 원자층 증착 가스를 동시에 증착 대상 기판의 다른 영역에 분사하는 가스 공급 모듈; 및
    상기 가스 공급 모듈의 일 측에 마련되며, 상기 증착 대상 기판을 직선으로 이송시키는 스테이지;를 포함하되,
    상기 스테이지를 따라 상기 증착 대상 기판이 상기 직선을 따라 1 싸이클(cycle) 이송됨에 따라 2층 이상의 원자층이 상기 증착 대상 기판에 증착되는 원자층 증착 장비.
  2. 제1 항에 있어서,
    상기 가스 공급 모듈은, 상기 소스 가스를 분사하는 소스 가스 공급부, 상기 퍼지 가스를 공급하는 제1, 제2 퍼지 가스 공급부 및 제1 외측 퍼지 가스 공급부, 제2 외측 퍼지 가스 공급부 및 상기 반응 가스를 분사하는 제1 및 제2 반응 가스 공급부를 포함하되,
    상기 증착 대상 기판의 직선 이송 경로를 따라, 상기 제1 외측 퍼지 가스 공급부, 상기 제1 반응 가스 공급부, 제1 퍼지 가스 공급부, 상기 소스 가스 공급부, 상기 제2 퍼지 가스 공급부 및 상기 제2 반응 가스 공급부 및 상기 제2 외측 퍼지 가스 공급부 순서로 배치되는 원자층 증착 장비.
  3. 제1 항에 있어서,
    상기 가스 공급 모듈은, 상기 소스 가스를 분사하는 소스 가스 공급부, 상기 퍼지 가스를 공급하는 퍼지 가스 공급부 및 상기 반응 가스를 분사하는 반응 가스 공급부를 포함하되,
    상기 반응 가스 공급부와 상기 퍼지 가스 공급부 사이 또는 상기 소스 가스 공급부와 상기 퍼지 가스 공급부 사이에는 반응 가스 또는 소스 가스를 배기하는 배기구가 마련되는 원자층 증착 장비
  4. 제3 항에 있어서,
    상기 반응 가스를 배기하는 배기구는 상기 반응 가스 공급부와 인접하여 배치되어, 상기 반응 가스를 상기 증착 대상 기판과 반대 방향으로 배기하고,
    상기 소스 가스를 배기하는 배기구는 상기 소스 가스 공급부와 인접하여 배치되어, 상기 소스 가스를 상기 증착 대상 기판과 반대 방향으로 배기하는 원자층 증착 장비.
  5. 제1 항에 있어서,
    상기 스테이지는, 제1 방향으로 직선 연장하는 제1 및 제3 로드 및 제2 방향으로 직선 연장하는 제2 및 제4 로드를 포함하며, 상기 제1 내지 제4 로드들은 폐 경로(closed path)를 이루는 원자층 증착 장비.
  6. 제1 항에 있어서,
    상기 가스 공급 모듈은, 서브 가스 공급 모듈들로 구성되며, 상기 서브 가스 공급 모듈은, 일정 각도로 환형으로 배치되며,
    상기 서브 가스 공급 모듈들은, 상기 반응 가스를 분사하는 제1 반응 가스 공급부, 상기 퍼지 가스를 분사하는 제1 퍼지 가스 공급부, 상기 소스 가스를 분사하는 소스 가스 공급부, 상기 퍼지 가스를 분사하는 제2 퍼지 가스 공급부 및 상기 반응 가스를 분사하는 제2 반응 가스 공급부 순서로 배치되는 가스 공급부들을 포함하며, 상기 소스 가스, 상기 퍼지 가스 및 상기 반응 가스를 포함하는 원자층 증착 가스를 동시에 상기 증착 대상 기판의 다른 영역에 분사하며, 상기 서브 가스 공급 모듈들은, 상기 서브 가스 공급 모듈들의 양 단에 상기 퍼지 가스를 분사하는 외곽 퍼지 가스 공급부들을 더 포함하는 원자층 증착 모듈.
  7. 제1 항에 있어서,
    상기 가스 공급 모듈은, 서로 다른 소스 가스를 제공하는 서브 가스 모듈들로 구성되며,
    상기 증착 대상 기판이 스테이지를 따라 이송됨에 따라 상기 증착 대상 기판에는 이종의 박막들이 형성되는 원자층 증착 모듈.
  8. 폐 경로로 이루어진 스테이지 상에서, 증착 대상 기판을 직선으로 이송시켜, 상기 증착 대상 기판에 원자층 증착 가스를 공급하는 가스 공급 모듈을 통하여 제1 원자층을 증착하는 단계; 및
    상기 증착 대상 기판을 추가 이송시켜, 상기 증착 대상 기판에 상기 가스 공급 모듈을 통하여 제2 원자층을 증착하는 단계;를 포함하며,
    상기 증착 대상 기판이 상기 폐 경로를 따라, 1 싸이클 이송되는 경우, 상기 증착 대상 기판에 2층 이상의 원자층이 증착되는 원자층 증착 방법.
  9. 제1 증착 대상 기판 및 제2 증착 대상 기판을 포함하는 복수의 증착 대상 기판을, 폐 경로를 가지는 스테이지 상에서 제1 방향으로 이송하여, 상기 제1 증착 대상 기판에, 제1 가스 공급 모듈을 통하여, 제1 원자층을 증착하고, 상기 제2 증착 대상 기판에, 상기 제1 가스 공급 모듈과 이격하여 배치되는 제2 가스 공급 모듈을 통하여, 제2 원자층을 동시에 증착하는 제1 단계; 및
    상기 복수의 증착 대상 기판을 상기 제1 방향과 역 방향인 제2 방향으로 이송하여, 상기 제1 증착 대상 기판에, 상기 제1 가스 공급 모듈을 통하여, 상기 제1 원자층을 추가 증착하고, 상기 제2 증착 대상 기판에, 상기 제2 증착 대상 기판에, 상기 제2 가스 공급 모듈을 통하여, 제2 원자층을 추가 증착하는 제2 단계를 포함하는 원자층 증착 방법.
  10. 제9 항에 있어서,
    상기 제1 원자층과 상기 제2 원자층은 서로 동일한 종류의 원자층인, 원자층 증착 방법.
  11. 제9 항에 있어서,
    상기 제1 원자층과 상기 제2 원자층은 서로 다른 종류의 원자층인, 원자층 증착 방법.
  12. 제11 항에 있어서,
    상기 제2 단계 수행 이후에 상기 복수의 증착 대상 기판을 상기 제1 방향으로 이송하여, 상기 제1 증착 대상 기판에, 상기 제2 가스 공급 모듈을 통하여, 상기 제2 원자층을 증착하고, 상기 제2 증착 대상 기판에, 상기 제2 가스 공급 모듈과 이격하여 배치되는 제3 가스 공급 모듈을 통하여, 제3 원자층을 동시에 증착하는 제3 단계를 더 포함하는 원자층 증착 방법.
  13. 제12 항에 있어서,
    상기 제1 원자층 및 상기 제3 원자층은 서로 동일한 종류의 원자층이며, 상기 제2 원자층은 상기 제1 및 제3 원자층과 서로 다른 종류의 원자층인, 원자층 증착 방법.
KR1020160108985A 2016-08-26 2016-08-26 원자층 증착 장비 및 그를 이용한 원자층 증착 방법 KR101861008B1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020160108985A KR101861008B1 (ko) 2016-08-26 2016-08-26 원자층 증착 장비 및 그를 이용한 원자층 증착 방법
CN201780050374.6A CN109642317B (zh) 2016-08-26 2017-08-24 原子层蒸镀装置及利用其的原子层蒸镀方法
PCT/KR2017/009246 WO2018038547A1 (ko) 2016-08-26 2017-08-24 원자층 증착 장비 및 그를 이용한 원자층 증착 방법
US16/280,589 US11124875B2 (en) 2016-08-26 2019-02-20 Atomic layer deposition apparatus and atomic layer deposition method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160108985A KR101861008B1 (ko) 2016-08-26 2016-08-26 원자층 증착 장비 및 그를 이용한 원자층 증착 방법

Publications (2)

Publication Number Publication Date
KR20180024088A true KR20180024088A (ko) 2018-03-08
KR101861008B1 KR101861008B1 (ko) 2018-05-25

Family

ID=61245130

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160108985A KR101861008B1 (ko) 2016-08-26 2016-08-26 원자층 증착 장비 및 그를 이용한 원자층 증착 방법

Country Status (4)

Country Link
US (1) US11124875B2 (ko)
KR (1) KR101861008B1 (ko)
CN (1) CN109642317B (ko)
WO (1) WO2018038547A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240032233A (ko) * 2022-09-01 2024-03-12 주식회사 넥서스비 원자층 증착 장치

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3765763A (en) * 1969-07-29 1973-10-16 Texas Instruments Inc Automatic slice processing
JP4817210B2 (ja) 2000-01-06 2011-11-16 東京エレクトロン株式会社 成膜装置および成膜方法
US7378127B2 (en) * 2001-03-13 2008-05-27 Micron Technology, Inc. Chemical vapor deposition methods
EP2159304A1 (en) * 2008-08-27 2010-03-03 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Apparatus and method for atomic layer deposition
US20120225204A1 (en) * 2011-03-01 2012-09-06 Applied Materials, Inc. Apparatus and Process for Atomic Layer Deposition
TWI461566B (zh) * 2011-07-01 2014-11-21 Ind Tech Res Inst 鍍膜用噴灑頭以及鍍膜裝置
KR101435100B1 (ko) * 2012-06-20 2014-08-29 주식회사 엠티에스나노테크 원자층 증착 장치
WO2013191471A1 (ko) 2012-06-20 2013-12-27 주식회사 엠티에스나노테크 원자층 증착 장치 및 방법
KR20130142869A (ko) * 2012-06-20 2013-12-30 주식회사 엠티에스나노테크 원자층 증착 장치 및 방법
KR101832404B1 (ko) 2012-06-22 2018-02-26 주식회사 원익아이피에스 가스분사장치 및 기판처리장치
KR101407436B1 (ko) * 2012-09-05 2014-06-19 주식회사 테스 박막증착장치 및 박막증착방법
TWI624560B (zh) * 2013-02-18 2018-05-21 應用材料股份有限公司 用於原子層沉積的氣體分配板及原子層沉積系統

Also Published As

Publication number Publication date
US11124875B2 (en) 2021-09-21
WO2018038547A1 (ko) 2018-03-01
CN109642317B (zh) 2021-04-30
KR101861008B1 (ko) 2018-05-25
CN109642317A (zh) 2019-04-16
US20190186013A1 (en) 2019-06-20

Similar Documents

Publication Publication Date Title
TW201824434A (zh) 氣體供應單元及包括氣體供應單元的基板處理裝置
KR101804125B1 (ko) 기판처리장치
US9890454B2 (en) Atomic layer deposition apparatus
KR20190081002A (ko) 증착 장치 및 그것을 이용한 증착 방법
KR20090021035A (ko) 박막 증착장치
KR101471973B1 (ko) 원자층 증착 설비 및 이의 제어 방법
KR20120012255A (ko) 수평 배치형 원자층 증착 장치
KR101861008B1 (ko) 원자층 증착 장비 및 그를 이용한 원자층 증착 방법
KR101006583B1 (ko) 수평 배치형 원자층 증착 장치
KR20120137017A (ko) 인라인 증착 장치
KR20120034087A (ko) 가스 분사 조립체 및 이를 이용한 박막증착장치
KR101885525B1 (ko) 원자층 증착 장비 및 그를 이용한 원자층 증착 방법
KR101243876B1 (ko) 기판 처리 장치
KR101972389B1 (ko) 원자층 증착을 위한 가스 공급 모듈
KR100901118B1 (ko) 박막 증착장치의 분사유닛
TW201704524A (zh) 用於改良的氣體分配的遞迴注入設備
KR101849388B1 (ko) 원자층 증착 장비 가스 모듈, 원자층 증착 장비 및 그를 이용한 원자층 증착 방법
KR20120070195A (ko) 배기가스를 분리 배출하는 원자층 증착 장치
KR20140041021A (ko) Cvd 모드와 ald 모드를 구비한 증착장치
KR102131933B1 (ko) 원자층 증착 장치 및 이를 이용한 원자층 증착 방법
KR101046612B1 (ko) 원자층 증착장치
KR20180096853A (ko) 박막 증착 장치
KR20110006874U (ko) 다중막의 증착을 위한 원자층 증착장치
KR101173085B1 (ko) 박막 증착장치
KR20060100961A (ko) 샤워헤드 및 이를 구비한 원자층 증착설비

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant