KR20180022098A - 표면 플라즈몬 공명을 이용한 마찰전기 발전기 - Google Patents

표면 플라즈몬 공명을 이용한 마찰전기 발전기 Download PDF

Info

Publication number
KR20180022098A
KR20180022098A KR1020160106978A KR20160106978A KR20180022098A KR 20180022098 A KR20180022098 A KR 20180022098A KR 1020160106978 A KR1020160106978 A KR 1020160106978A KR 20160106978 A KR20160106978 A KR 20160106978A KR 20180022098 A KR20180022098 A KR 20180022098A
Authority
KR
South Korea
Prior art keywords
layer
charge
charging
electrode
plasmon resonance
Prior art date
Application number
KR1020160106978A
Other languages
English (en)
Other versions
KR102600148B1 (ko
Inventor
정아름
신현진
김재영
변경은
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1020160106978A priority Critical patent/KR102600148B1/ko
Priority to US15/412,557 priority patent/US10587207B2/en
Priority to EP17163641.8A priority patent/EP3288172B1/en
Priority to CN201710537117.7A priority patent/CN107769607B/zh
Publication of KR20180022098A publication Critical patent/KR20180022098A/ko
Application granted granted Critical
Publication of KR102600148B1 publication Critical patent/KR102600148B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N1/00Electrostatic generators or motors using a solid moving electrostatic charge carrier
    • H02N1/04Friction generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

표면 플라즈몬 공명을 이용한 마찰전기 발전기가 개시된다. 개시된 마찰전기 발전기는, 서로 이격되게 마련되는 제1 및 제2 전극과, 상기 제1 및 제2 전극에 마련되는 제1 및 제2 대전층과, 상기 제2 대전층에 빛을 조사하는 광원을 포함한다. 여기서, 제2 대전층은 소정 파장의 빛에 의해 표면 플라즈몬 공명을 일으키는 금속 물질을 포함하고, 상기 광원은 표면 플라즈몬 공명을 일으키는 소정 파장의 빛을 상기 제2 대전층에 조사한다.

Description

표면 플라즈몬 공명을 이용한 마찰전기 발전기{Triboelectric generator using surface plasmon resonance}
마찰전기 발전기에 관한 것으로, 상세하게는 표면 플라즈몬 공명을 이용한 마찰전기 발전기에 관한 것이다.
최근에는 에너지를 하베스팅(harvesting)하는 기술이 각광을 받고 있다. 에너지 하베스팅 소자들은 주변 환경에 존재하는 바람이나 진동, 또는 인간의 움직임으로부터 발생되는 기계적 에너지 등을 전기 에너지로 변환하여 추출할 수 있는 새로운 친환경 에너지 발전소자라 할 수 있다.
마찰전기 발전기는 두 대전체의 마찰 시 나타나는 전하 이동 현상을 이용하여 전기 에너지를 발생시키는 에너지 하베스팅 소자이다. 마찰전기 발전기는 에너지 변환 효율이 높아서 외부의 작은 힘에 의해서도 높은 출력을 얻을 수 있다. 또한, 마찰전기 발전기는 열이나 태양을 이용한 에너지 하베스팅 소자들에 비해서 시간적, 공간적 제약이 없으며, 물질의 변형에 의해 전기에너지를 발생시키는 압전 소재를 이용한 에너지 하베스팅 소자에 비해 지속적으로 전기에너지를 발생시킬 수 있다.
예시적인 실시예는 표면 플라즈몬 공명을 이용한 마찰전기 발전기을 제공한다.
일 측면에 있어서,
서로 이격되게 마련되는 제1 및 제2 전극;
상기 제2 전극과 마주보는 상기 제1 전극의 일면에 마련되는 것으로, 유전 물질을 포함하는 제1 대전층;
상기 제1 전극과 마주보는 상기 제2 전극의 일면에 마련되어 상기 제1 대전층과의 접촉에 의해 상기 제1 대전체와 반대 극성의 전하로 대전되는 것으로, 소정 파장의 빛에 의해 표면 플라즈몬 공명(Surface Plasmon Resonance)을 일으키는 금속 물질을 포함하는 제2 대전층; 및
상기 표면 플라즈몬 공명을 일으키는 소정 파장의 빛을 상기 제2 대전층에 조사하는 광원;을 포함하는 포함하는 마찰전기 발전기가 제공된다.
상기 제1 대전층과 상기 제2 대전층은 압축(pressing), 슬라이딩(sliding) 또는 회전(rotating)에 의해 서로 접촉할 수 있다.
상기 제1 및 제2 전극은 그래핀, 탄소나노튜브(CNT), ITO(Indium Tin Oxide), 금속 및 전도성 폴리머로 이루어진 그룹에서 선택된 적어도 하나를 포함할 수 있다. 상기 제1 및 제2 전극 중 적어도 하나는 상기 표면 플라즈몬 공명을 일으키는 소정 파장의 빛을 투과시키는 물질을 포함할 수 있다.
상기 제1 및 제2 전극은 제1 및 제2 기판에 마련될 수 있다. 여기서, 상기 제1 및 제2 기판은 단단한 재질 또는 유연한 재질을 포함할 수 있다.
상기 제1 및 제2 기판은 외부의 힘에 의해 변형될 수 있는 유연성을 가지며,외부의 힘이 제거되었을 때는 원래 상태로 돌아가는 복원력을 가지는 물질을 포함할 수 있다. 상기 제1 기판은 제1 방향으로 볼록한 형상을 가지며, 상기 제2 기판은 상기 제1 방향과 반대방향인 제2 방향으로 볼록한 형상을 가질 수 있다.
상기 제1 대전층은 상기 제2 대전층과의 접촉에 의해 양전하로 대전되는 물질을 포함할 수 있다. 예를 들면, 상기 제1 대전층은 polyformaldehyde, ethylcellulose, polyamide, melamine formol, wool, silk, mica 또는 nylon을 포함할 수 있다.
상기 제1 대전층은 상기 제2 대전층과의 접촉에 의해 음전하로 대전되는 물질을 포함할 수 있다. 예를 들면, 상기 제1 대전층은 polytetrafluoroethylene(Teflon), polydimethylsiloxane(PDMS), polyvinyl chloride(PVC), polyimide(Kapton), polypropylene(PP), polyethylene(PE) 또는 polystyrene(PS)을 포함할 수 있다.
상기 제2 대전층의 금속 물질은 Au, Ag, Cu, Al 및 steel 이루어진 그룹에서선택된 적어도 하나를 포함할 수 있다.
상기 제2 대전층은 상기 표면 플라즈몬 공명을 일으키는 다수의 금속 입자를포함할 수 있다. 상기 제2 대전층은 상기 금속 입자들을 둘러싸도록 마련되는 다수의 제1 유전체를 더 포함할 수 있으며, 이 경우 상기 금속 입자들 중 상기 제1 대전층과 접촉하는 금속 입자들의 표면은 외부로 노출되어 있을 수 있다. 상기 제2 대전층은 상기 제1 유전체들 사이의 공간을 채우도록 마련되는 제2 대전체를 더 포함할 수 있다.
상기 제2 대전층은 상기 표면 플라즈몬 공명을 일으키는 표면 거칠기(surface roughness)를 가지는 금속을 포함할 수도 있다.
상기 제1 및 제2 대전층 중 적어도 하나는 대전 특성을 조절하기 위한 도펀트(dopant)로 도핑되어 있을 수 있다. 상기 제2 전극과 상기 제2 대전층은 일체로 형성될 수도 있다.
상기 마찰전기 발전기는 상기 제1 대전층과 상기 제2 대전층 사이에 마련되는 탄성 지지 부재를 더 포함할 수 있다.
상기 제1 및 제2 대전층은 각각 날개 형상을 포함하고, 상기 제1 및 제2 대전층 중 적어도 하나가 회전함으로써 상기 제1 및 제2 대전층이 서로 접촉하도록 마련될 수 있다.
다른 측면에 있어서,
서로 연결되어 있으며, 연결된 부분에서 접힐 수 있도록 마련되는 복수의 기판;
상기 기판들 각각의 일면 및 타면에 마련되는 제1 및 제2 전극;
상기 제1 전극에 마련되는 것으로, 유전 물질을 포함하는 제1 대전층;
상기 제2 전극에 마련되어 상기 제1 대전층과의 접촉에 의해 상기 제1 대전체와 반대 극성의 전하로 대전되는 것으로, 소정 파장의 빛에 의해 표면 플라즈몬 공명을 일으키는 금속 물질을 포함하는 제2 대전층; 및
상기 표면 플라즈몬 공명을 일으키는 소정 파장의 빛을 상기 제2 대전층에 조사하는 광원;을 포함하는 포함하는 마찰전기 발전기가 제공된다.
실시예에 따른 마찰전기 발전기에서는 제2 대전층이 광원으로부터 방출된 소정 파장의 빛에 의해 표면 플라즈몬 공명을 일으키는 금속 물질을 포함함으로써 마찰전기 발전기의 출력 에너지를 증대시킬 수 있다.
도 1은 예시적인 실시예에 따른 마찰전기 발전기를 도시한 단면도이다.
도 2는 도 1에 도시된 마찰전기 발전기에서 제2 대전층을 확대하여 도시한 것이다.
도 3a는 Au 나노입자들의 사이즈에 따라 표면 플라즈몬 공명을 일으키는 빛의 파장을 도시한 것이다.
도 3b는 Ag 나노입자들의 사이즈에 따라 표면 플라즈몬 공명을 일으키는 빛의 파장을 도시한 것이다.
도 4a 내지 도 4e는 도 1에 도시된 마찰전기 발전기의 전기에너지 발생 매커니즘을 설명하기 위한 도면들이다.
도 5a 내지 도 5c는 도 1에 도시된 제2 대전층의 변형예들을 도시한 것이다.
도 6은 다른 예시적인 실시예에 따른 마찰전기 발전기를 도시한 것이다.
도 7은 또 다른 예시적인 실시예에 따른 마찰전기 발전기를 도시한 것이다.
도 8은 또 다른 예시적인 실시예에 따른 마찰전기 발전기를 도시한 것이다.
도 9a 내지 도 9e는 도 8에 도시된 마찰전기 발전기가 작동하는 모습을 도시한 것이다.
도 10은 또 다른 예시적인 실시예에 따른 마찰전기 발전기를 도시한 것이다.
도 11a 내지 도 11d는 도 10에 도시된 마찰전기 발전기의 전기에너지 발생 매커니즘을 설명하기 위한 도면들이다.
도 12는 또 다른 예시적인 실시예에 따른 마찰전기 발전기를 도시한 것이다.
도 13은 또 다른 예시적인 실시예에 따른 마찰전기 발전기를 도시한 것이다.
이하, 첨부된 도면을 참조하여 실시예를 상세히 설명한다. 도면에서 동일한 참조부호는 동일한 구성요소를 지칭하며, 각 구성요소의 크기나 두께는 설명의 명료성을 위하여 과장되어 있을 수 있다. 또한, 소정의 물질층이 기판이나 다른 층 에 존재한다고 설명될 때, 그 물질층은 기판이나 다른 층에 직접 접하면서 존재할 수도 있고, 그 사이에 다른 제3의 층이 존재할 수도 있다. 그리고, 아래의 실시예에서 각 층을 이루는 물질은 예시적인 것이므로, 이외에 다른 물질이 사용될 수도 있다.
도 1은 예시적인 실시예에 따른 마찰전기 발전기를 도시한 단면도이다. 일반적으로, 마찰전기 발전기는 두 대전체의 마찰 시 나타나는 전하 이동 현상을 이용하여 전기 에너지를 발생시키는 에너지 하베스팅 소자를 말한다. 도 1에는 두 대전체가 압력에 의해 서로 접촉하여 대전됨으로써 전기에너지를 발생시키는 압축 컨택 방식(pressing contact mode)의 마찰전기 발전기가 도시되어 있다.
도 1을 참조하면, 마찰전기 발전기(100)는 서로 이격된 제1 및 제2 전극(121,122)과, 제1 전극(121)의 일면에 마련되는 제1 대전층(131)과, 제2 전극(122)의 일면에 마련되는 제2 대전층(132)과, 제2 대전층(132)에 소정 파장의 빛을 조사하는 광원(150)을 포함한다.
제1 및 제2 전극(121,122)은 제1 및 제2 기판(111.112)에 마련될 수 있다. 이러한 제1 및 제2 기판(111,112)이 서로 일정한 간격으로 이격되게 마련되어 있다. 도면에서, 제1 기판(111)은 상부 기판이 될 수 있으며, 제2 기판(112)은 하부 기판이 될 수 있다.
제1 및 제2 기판(111,112)은 예를 들어, 실리콘 웨이퍼 또는 글라스 등과 같은 단단한 재질을 포함할 수 있다. 하지만, 반드시 이에 한정되는 것은 아니며, 제1 및 제2 기판(111,112)은 다양한 물질을 포함할 수 있다. 예를 들면, 제1 및 제2 기판(111,112)은 폴리에스테르(PE), 폴리에스테르설폰(PES), 폴리에틸렌 나프탈레이트(PEN) 또는 캡톤(Kapton) 등과 같은 유연한 재질을 포함할 수도 있다.
제1 기판(111)의 하면에는 제1 전극(121)이 마련되어 있으며, 제2 기판(112)의 상면에는 제2 전극(122)이 마련되어 있다. 제1 및 제2 전극(121,122)은 전기전도성이 우수한 물질을 포함할 수 있다. 예를 들면, 제1 및 제2 전극(121,122)은 그래핀(graphene), 탄소나노튜브(carbon nanotube, CNT), ITO(Indium Tin Oxide), 금속 및 전도성 폴리머로 이루어진 그룹에서 선택된 적어도 하나의 물질을 포함할 수 있다. 여기서, 금속은 예를 들면, Ag, Al, Cu, Au, Ni, Cr 및 Pt으로 이루어진 그룹에서 선택된 적어도 하나를 포함할 수 있지만 이에 한정되지는 않는다. 이러한 제1 및 제2 전극(111,112)은 단층 구조 또는 복수의 층 구조를 가질 수 있다.
제2 기판(112)의 하부에 소정 파장의 빛을 방출하는 광원이 배치되어 있으며,이 경우 제2 기판(112) 및 제2 전극(122)은 투명한 물질을 포함할 수 있다. 따라서, 광원(150)으로부터 방출되는 소정 파장의 빛은 제2 기판(112) 및 제2 전극(122)을 투과하여 제2 대전층(132)에 조사될 수 있다. 한편, 광원(150)은 다양한 위치에 마련될 수 있으며, 이러한 광원(150)의 위치에 따라 제1 기판(111) 및 제1 전극(121)이 투명한 물질을 포함할 수도 있다.
제2 전극(122)과 마주보는 제1 전극(121)의 하면에는 제1 대전층(131)이 마련되어 있다. 제1 대전층(131)은 제2 대전층(132)과의 접촉에 의해 소정 극성의 전하로 대전되는 것으로, 제2 대전층(132)에 비해 상대적으로 전기전도도가 낮은 유전 물질을 포함할 수 있다.
제1 대전층(131)은 제2 대전층(132)과의 접촉에 의해 양전하로 대전될 수 있다. 이 경우, 제1 대전층(131)은 예를 들면, polyformaldehyde, ethylcellulose, polyamide, melamine formol, wool, silk, mica 또는 nylon 등을 포함할 수 있다. 하지만, 이에 한정되는 것은 아니며 제1 대전층(131)은 제2 대전체(132)와의 접촉에 의해 양전하로 대전될 수 있는 다양한 물질을 포함할 수 있다.
대체적으로(alternatively), 제1 대전층(131)은 제2 대전층(132)과의 접촉에 의해 음전하로 대전될 수도 있다. 이 경우, 제1 대전층(131)은 예를 들면, polytetrafluoroethylene(Teflon), polydimethylsiloxane(PDMS), polyvinyl chloride(PVC), polyimide(Kapton), polypropylene(PP), polyethylene(PE) 또는 polystyrene(PS)을 포함할 수 있다. 하지만, 이에 한정되는 것은 아니다.
제1 전극(121)과 마주보는 제2 전극(122)의 상면에는 제2 대전층(132)이 마련되어 있다. 여기서, 제2 대전층(132)은 마찰전기 발전기(100)에 외부의 힘이 가해지지 않은 상태에서는 제1 대전층(131)과 이격되도록 마련되어 있다. 이러한 제2 대전층(132)은 제1 대전층(131)과의 접촉에 의해 제1 대전층(131)과 반대 극성의 전하로 대전될 수 있다. 구체적으로, 제1 대전층(131)이 제2 대전층(132)과의 접촉에 의해 양전하로 대전되는 경우에는 제2 대전층(132)은 음전하로 대전될 수 있다. 대체적으로, 제1 대전층(131)이 제2 대전층(132)과의 접촉에 의해 음전하로 대전되는 경우에는 제2 대전층(132)은 양전하로 대전될 수 있다.
제2 대전층(132)은 제1 대전층(131)에 비해 상대적으로 전기전도도가 높고, 광원으로부터 방출된 소정 파장의 빛에 의해 표면 플라즈몬 공명(Surface Plasmon Resonance)을 일으키는 금속 물질을 포함할 수 있다. 여기서, 표면 플라즈몬 공명이라 함은 금속 물질의 표면과 유전체(예를 들면, 공기 등) 사이에 빛이 입사되며, 빛이 가지는 특정 에너지의 전자기장과의 공명으로 인해 금속 물질의 표면에 있는 자유전자들이 집단적으로 진동하는 현상을 말한다. 이러한 금속 물질은 외부 자극에 의해 전자의 방출이 쉽고 음의 유전 상수를 가지는 물질을 포함할 수 있다. 예를 들어, 금속 물질은 Au, Ag, Cu, Al 및 steel 이루어진 그룹에서 선택된 적어도 하나를 포함할 수 있다. 하지만, 이에 한정되는 것은 아니며, 제2 대전층(132)는 제1 대전층(131)과의 접촉에 의해 제1 대전층(131)과 반대 극성의 전하로 대전될 수 있으며 표면 플라즈몬 공명을 일으키는 다양한 금속 물질을 포함할 수 있다.
도 2는 도 1에 도시된 마찰전기 발전기(100)의 제2 대전층(132)을 확대하여 도시한 것이다. 도 2를 참조하면, 제2 전극(122)의 상면에 제2 대전층(132)이 마련되어 있다. 제2 대전층(132)은 다수의 금속 입자들(132a)과, 이 금속 입자들(132a)을 둘러싸도록 마련되는 다수의 유전체(132b)를 포함할 수 있다. 여기서, 금속 입자들(132a)은 단층 또는 복층 구조를 가질 수 있으며, 이 금속 입자들(132a)는 유전체들(132b)에 의해 제2 전극(122)과 절연되어 있다. 금속 입자들(132a) 중 제1 대전층(131)과 접촉하는 금속 입자들(132a)의 표면은 외부로 노출되어 있다. 이렇게 외부로 노출된 금속 입자들(132a)의 표면에 소정 파장의 빛이 조사되면 표면 플라즈몬 공명이 발생될 수 있다. 이 금속 입자들(132a)은 예를 들면, Au, Ag, Cu, Al 및 steel 이루어진 그룹에서 선택된 적어도 하나를 포함할 수 있다.
제1 및 제2 대전층(131,132) 중 적어도 하나는 그 표면의 대전 특성을 조절하기 위해 p형 도펀트 또는 n형 도펀트로 도핑될 수 있다. p형 도펀트의 소스(source)는 예를 들면, NO2BF4, NOBF4, NO2SbF6 등의 이온성 액체(ionic liquid), HCl, H2PO4, CH3COOH, H2SO4, HNO3 등의 산류 화합물(acidic compound), 디클로로디시아노퀴논(dichlorodicyanoquinone)(DDQ), 옥손(oxone), 디미리스토일포스파티딜이노시톨 (dimyristoylphosphatidylinositol) (DMPI), 트리플루오로메탄술폰이미드(trifluoromethanesulfoneimide) 등의 유기 화합물(organic compound) 등을 포함할 수 있다. 또는, p형 도펀트의 소스로 HPtCl4, AuCl3, HAuCl4, AgOTf(silver trifluoromethanesulfonate), AgNO3, H2PdCl6, Pd(OAc)2, Cu(CN)2 등을 포함할 수도 있다.
n형 도펀트의 소스는 예를 들면, 치환 또는 비치환된 니코틴아미드의 환원물(a reduction product of a substituted or unsubstituted nicotinamide); 치환 또는 비치환된 니코틴아미드와 화학적으로 결합된 화합물의 환원물(a reduction product of a compound which is chemically bound to a substituted or unsubstituted nicotinamide); 및 두 개 이상의 피리디늄 유도체를 포함하고 하나 이상의 피리디늄 유도체의 질소가 환원된 화합물(a compound comprising at least two pyridinium moieties in which a nitrogen atom of at least one of the pyridinium moieties is reduced)을 포함할 수 있다. 예컨대, n형 도펀트의 소스는 NMNH(nicotinamide mononucleotide-H), NADH(nicotinamide adenine dinucleotide-H), NADPH(nicotinamide adenine dinucleotide phosphate-H)를 포함하거나, 비올로겐(viologen)을 포함할 수 있다. 또는, 상기 n형 도펀트의 소스는 PEI(polyethylenimine) 등의 폴리머를 포함할 수 있다. 또는, n형 도펀트는 K, Li 등의 알칼리 금속을 포함할 수 있다. 한편, 이상에서 언급된 p형 도펀트와 n형 도펀트 물질은 예시적인 것으로, 이외에도 다른 다양한 물질이 도펀트로 사용될 수 있다.
광원(150)은 제2 대전층(132)의 금속 입자들(132a) 표면에 표면 플라즈몬 공명을 일으키는 소정 파장의 빛을 조사하는 역할을 한다. 한편, 도 1에서는 광원(150)이 하부 기판인 제2 기판(112)의 하부에 마련되는 경우가 예시적으로 도시되어 있다. 이 경우, 광원(150)으로부터 방출되는 빛이 제2 대전층(132)에 도달하기 위해서 제2 기판(112) 및 제2 전극(122)은 투명한 물질을 포함할 수 있다. 한편, 광원(150)의 위치는 다양하게 변형될 수 있으며, 이러한 광원(150)의 위치에 따라 제1 기판(111) 및 제1 전극(121)이 투명한 물질을 포함할 수도 있다. 광원(150)으로부터 방출되어 제2 대전층(132)의 금속 입자들(132a)에 조사됨으로써 발생하는 표면 플라즈몬 공명 효과는 예를 들면 제2 대전층(132)에 포함되는 금속 입자들(132a)의 재질, 사이즈, 모양, 밀도, 금속 입자들에 조사되는 빛의 파장, 세기, 입사각 등에 따라 조절될 수 있다.
도 3a 및 도 3b는 금속 입자들(132a)의 사이즈에 따라 표면 플라즈몬 공명 효과를 일으키는 빛의 파장을 도시한 것이다. 구체적으로, 도 3a는 Au 나노입자들의 사이즈에 따라 표면 플라즈몬 공명 효과를 일으키는 빛의 파장을 도시한 것이며, 도 3b는 Ag 나노입자들의 사이즈에 따라 표면 플라즈몬 공명 효과를 일으키는 빛의 파장을 도시한 것이다.
도 3a를 참조하면, Au 나노입자들의 사이즈가 20nm ~ 100nm 인 경우, 표면 플라즈몬 공명 효과를 일으키는 빛의 파장은 대략 500nm ~ 600nm 정도가 되었으며, Au 나노입자들의 사이즈가 증가함에 따라 표면 플라즈몬 공명 효과를 일으키는 빛의 파장도 증가하였다. 그리고, 도 3b를 참조하면, Ag 나노입자들의 사이즈가 20nm ~ 100nm 인 경우, 표면 플라즈몬 공명 효과를 일으키는 큰 빛의 파장은 대략 400nm ~ 520nm 정도가 되었으며, Ag 나노입자들의 사이즈가 증가함에 따라 표면 플라즈몬 공명 효과를 일으키는 빛의 파장도 증가하였다.
이와 같이, 제2 대전층(132)의 금속 입자들(132a)의 재질 및 사이즈에 따라 표면 플라즈몬 공명 효과를 일으키는 빛의 파장이 달라질 수 있음을 알 수 있다. 따라서, 금속 입자들(132a)의 재질 및 크기 또는 금속 입자들(132a)에 조사되는 빛의 파장을 변화시킴으로써 표면 플라즈몬 공명 효과를 조절할 수 있다.
이상과 같이, 제2 대전층(132)이 소정 파장의 빛에 의해 표면 플라즈몬 공명을 일으키는 금속 입자들(132a)을 포함함으로써 마찰전기 발전기(100)의 출력 에너지를 증대시킬 수 있다. 구체적으로, 광원(150)으로부터 소정 파장의 빛을 제2 대전층(132)의 금속 입자들(132a)에 조사하게 되면 표면 플라즈몬 공명에 의해 금속 입자들(132a) 내에는 핫 캐리어(hot carrier)가 발생하게 되며, 이러한 핫 캐리어는 금속 입자들(132a과 접촉하는 물질에 쉽게 전달될 수 있다. 이에 따라, 제2 대전층(132)에 제1 대전층(131)이 접촉하게 되면 제2 대전층(132)의 금속 입자들(132a) 내에 발생된 핫 캐리어(전자)가 제1 대전층(131)에 쉽게 전달됨으로써 전기장의 세기가 증대되고, 이에 따라 마찰전기 발전기(100)로부터 발생되는 출력 에너지가 증대될 수 있다.
도 4a 내지 도 4e는 도 1에 도시된 마찰전기 발전기(100)의 전기에너지 발생 매커니즘을 설명하기 위한 도면들이다. 이하에서는 제1 대전층(131)과 제2 대전층(132)이 접촉하는 경우 제1 대전층(131)은 음전하로 대전되고, 제2 대전층(132)은 양전하로 대전되는 경우를 예로 들어 설명한다.
도 4a는 마찰전기 발전기(100)에 외부의 힘이 작용하지 않은 상태를 도시한 것이다. 도면에서 참조번호 170은 제1 전극(121)과 제2 전극(122) 사이의 전자 흐름을 검출하기 위한 부하를 나타낸다. 도 4a를 참조하면, 광원(150)으로부터 방출된 소정 파장의 빛이 제2 대전층(132)에 조사되면 제2 대전층(132)의 금속 입자들(132a) 표면에서 표면 플라즈몬 공명에 의한 핫 캐리어가 발생하게 된다.
도 4b는 마찰전기 발전기(100)에 가해진 외부의 힘에 의해 제1 대전층(131)과 제2 대전층(132)이 서로 접촉된 상태를 도시한 것이다. 도 4b를 참조하면, 광원(150)으로부터 방출된 소정 파장의 빛이 제2 대전층(132)에 조사된 상태에서 제1 기판(111)에 누르는 힘을 가하게 되면 제1 대전층(131)과 제2 대전층(132) 사이의 간격이 좁아짐으로써 제1 대전층(131)와 제2 대전층(132)이 서로 접촉하게 된다. 이와 같이, 제1 및 제2 대전층(131,132)이 서로 접촉하게 되면 제1 대전층(131)의 접촉면은 음전하로 대전되며, 제2 대전층(132)의 접촉면은 양전하로 대전될 수 있다. 여기서, 표면 플라즈몬 공명에 의해 발생된 핫 캐리어가 제2 대전층(132)의 금속 입자들(132a)에서 제1 대전층(131)으로 이동함으로써 제1 대전층의 접촉면 및 제2 대전층의 접촉면은 보다 많은 전하들로 대전될 수 있다.
도 4c는 마찰전기 발전기(100)에 가해진 외부의 힘이 릴리즈됨에 따라 제1 대전층(131)과 제2 대전층(132)이 이격된 상태를 도시한 것이다. 도 4c를 참조하면, 제1 기판(111)에 가해진 누르는 힘이 릴리즈되면 서로 접촉하고 있던 제1 및 제2 대전층(131,132)은 이격되기 시작한다. 이렇게 제1 및 제2 대전층(131,132)이 이격된 상태에서는 전하 평형을 위해 제1 전극(121)에는 양전하가 유도되고, 제2 전극(122)에는 음전하가 유도된다. 이를 위해, 제1 전극(121)으로부터 제2 전극(122)으로 전자들(e-)이 이동하게 되고, 이러한 전자들의 흐름에 의해 부하(170)에 전류가 흐르게 된다.
도 4d는 마찰전기 발전기(100)에 가해진 외부의 힘이 계속 릴리즈되면서 제1 대전층(131)과 제2 대전층(132)이 초기 상태로 이격된 모습을 도시한 것이다. 도 4d를 참조하면, 제1 기판(111)에 가해진 누르는 힘이 계속 릴리즈되면 제1 대전층(131)과 제2 대전층(132) 사이의 간격이 계속 넓어짐으로써 제1 및 제2 대전층(131,132)은 도 4a에 도시된 바와 같은 초기의 이격된 상태로 돌아오게 된다.
도 4e는 마찰전기 발전기(100)에 가해진 외부의 힘에 의해 제1 대전층(131)과 제2 대전층(132)이 일정한 간격으로 이격된 상태를 도시한 것이다. 도 4e를 참조하면, 제1 기판(111)에 누르는 힘을 가하게 되면 제1 대전층(131)과 제2 대전층(132)은 그 사이의 간격이 좁아지면서 일정한 거리만큼 서로 이격되게 된다. 이와 같이, 제1 대전층(131)과 제2 대전층(132)이 일정한 간격으로 이격된 상태에서는 정전 유도(electrostatic induction)에 의해 제1 대전체(131)의 음전하에 의해 제2 전극(122)에 양전하를 유도하게 되고, 제2 대전체(132)의 양전하에 의해 제1 전극(121)에 음전하를 유도하게 된다. 이를 위해, 제2 전극(122)으로부터 제1 전극(121)으로 전자들(e-)이 이동하게 되고, 이러한 전자들의 흐름에 의해 부하(170)에 전류가 흐르게 된다.
이상과 같이, 본 실시예에 따른 마찰전기 발전기(100)에서는 제2 대전층(132)이 광원(150)으로부터 방출된 소정 파장의 빛에 의해 표면 플라즈몬 공명을 일으키는 금속 입자들(132a)을 포함함으로써 마찰전기 발전기(100)의 출력 에너지를 증대시킬 수 있다.
도 5a 내지 도 5c는 도 1에 도시된 제2 대전층(132)의 변형예들을 도시한 것이다.
도 5a를 참조하면, 제2 대전층(232)은 다수의 금속 입자들(232a)과, 이 금속 입자들(232a)을 둘러싸도록 마련되는 다수의 제1 유전체(232b)와, 제1 유전체들(232b) 사이의 공간을 채우도록 마련되는 제2 유전체(232c)를 포함할 수 있다. 여기서, 금속 입자들(232a)은 단층 또는 복층 구조를 가질 수 있으며, 이 금속 입자들(232a)는 제1 유전체들(232b) 및 제2 유전체(232c)에 의해 제2 전극(122)과 절연되어 있다. 그리고, 금속 입자들(232a) 중 제1 대전층(131)과 접촉하는 금속 입자들(232a)의 표면은 외부로 노출되어 있다. 이렇게 외부로 노출된 금속 입자들(232a)의 표면에 소정 파장의 빛이 조사되면 표면 플라즈몬 공명이 발생될 수 있다. 이와 같은 표면 플라즈몬 공명이 발생될 수 있는 금속 입자들(232a)은 예를 들면, Au, Ag, Cu, Al 및 steel 이루어진 그룹에서 선택된 적어도 하나를 포함할 수 있다.
도 5b를 참조하면, 제2 대전층(332)은 다수의 금속 입자들(332a)를 포함할 수 있으며, 이러한 금속 입자들(332a)은 단층 또는 복층 구조를 가질 수 있다. 여기서, 금속 입자들(332a)은 제2 전극(122)과 전기적으로 연결되도록 마련될 수 있다. 이러한 금속 입자들(332a) 중 제1 대전층(131)과 접촉하는 금속 입자들(332a)의 표면은 외부로 노출되어 있으며, 이렇게 외부로 노출된 금속 입자들(332a)의 표면에 소정 파장의 빛이 조사되면 표면 플라즈몬 공명이 발생될 수 있다.
도 5c를 참조하면, 제2 대전층(432)은 소정의 표면 거칠기(surface roughness)를 가지는 금속(432a)을 포함할 수 있다. 여기서, 금속(432a)은 광원(150)으로부터 조사되는 소정 파장의 빛에 의해 표면 플라즈마 공명을 일으킬 수 있는 표면 거칠기를 가질 수 있다. 이러한 금속(432a)은 제2 전극(122)과 전기적으로 연결되도록 마련될 수 있다.
도 6은 다른 예시적인 실시예에 따른 마찰전기 발전기를 도시한 것이다. 도 6에 도시된 마찰전기 발전기(500)는 도 1에서 제2 전극(122)과 제2 대전층(132)이 일체로 형성된 경우와 동일하다.
도 6을 참조하면, 마찰전기 발전기(500)는 서로 이격되게 마련된 제1 및 제2 기판(511.512)과, 제1 기판(511)에 마련되는 제1 전극(521)과, 제1 전극(521)에 마련된 제1 대전층(531)과, 제2 기판(512)에 마련된 제2 대전층(532)과, 제2 대전층(532)에 소정 파장의 빛을 조사하는 광원(550)을 포함한다. 도 6에서 제1 기판(511)은 상부 기판이 될 수 있으며, 제2 기판(512)은 하부 기판이 될 수 있다. 제1 및 제2 기판(511,512)은 단단한 재질 또는 유연한 재질을 포함할 수 있다.
제2 기판(512)과 마주보는 제1 기판(511)의 하면에는 제1 전극(521)이 마련되어 있다. 이러한 제1 전극(521)은 전기전도성이 우수한 물질, 예를 들면, 그래핀(graphene), 탄소나노튜브(carbon nanotube, CNT), ITO(Indium Tin Oxide), 금속 및 전도성 폴리머로 이루어진 그룹에서 선택된 적어도 하나의 물질을 포함할 수 있다. 여기서, 금속은 예를 들면, Ag, Al, Cu, Au, Ni, Cr 및 Pt으로 이루어진 그룹에서 선택된 적어도 하나를 포함할 수 있지만 이에 한정되지는 않는다. 이러한 제1 전극(521)은 단층 구조 또는 복수의 층 구조를 가질 수 있다.
제1 전극(521)의 하면에는 제1 대전층(531)이 마련되어 있다. 제1 대전층(531)은 제2 대전층(532)과의 접촉에 의해 양전하 또는 음전하로 대전되는 것으로, 제2 대전층(532)에 비해 상대적으로 전기전도도가 낮은 유전 물질을 포함할 수 있다. 제1 대전층(531)을 이루는 물질은 전술한 실시예에서 상세하게 설명되었으므로, 이에 대한 설명은 생략한다.
제1 기판(511)과 마주보는 제2 기판(512)의 상면에는 제2 대전층(532)이 마련되어 있다. 이러한 제2 대전층(532)은 제1 대전층(531)과의 접촉에 의해 제1 대전층(531)과 반대 극성의 전하로 대전될 수 있다. 구체적으로, 제1 대전층(531)이 제2 대전층(532)과의 접촉에 의해 양전하로 대전되는 경우에는 제2 대전층(532)은 음전하로 대전될 수 있다. 대체적으로, 제1 대전층(531)이 제2 대전층(532)과의 접촉에 의해 음전하로 대전되는 경우에는 제2 대전층(532)은 양전하로 대전될 수 있다.
제2 대전층(532)은 제1 대전층(531)에 비해 상대적으로 전기전도도가 높고, 광원으로부터 방출된 소정 파장의 빛에 의해 표면 플라즈몬 공명을 일으키는 금속 물질을 포함할 수 있다. 이러한 금속 물질은 외부 자극에 의해 전자의 방출이 쉽고 음의 유전 상수를 가지는 물질을 포함할 수 있다. 예를 들어, 금속 물질은 Au, Ag, Cu, Al 및 steel 이루어진 그룹에서 선택된 적어도 하나를 포함할 수 있다. 하지만, 이에 한정되는 것은 아니다. 한편, 제1 및 제2 대전층(531,532) 중 적어도 하나는 그 표면의 대전 특성을 조절하기 위해 p형 도펀트 또는 n형 도펀트로 도핑될 수 있다.
본 실시예에서 제2 대전층(532)은 대전체로서의 역할 뿐만 아니라 전극으로서의 역할도 수행하게 된다. 즉, 제2 대전층(532)은 제1 전극(521)에 대응하는 제2 전극으로서의 역할도 수행할 수 있다. 이를 위해, 제2 대전층(532)은 예를 들면 도 5b에 도시된 바와 같이 표면 플라즈몬 공명을 일으키는 다수의 금속 입자들을 포함하거나 또는 도 5c에 도시된 바와 같이 표면 플라즈몬 공명을 일으키는 표면 거칠기를 가지는 금속을 포함할 수 있다.
제2 대전층(532)의 주위에는 소정 파장의 빛을 제2 대전층에 조사하여 표면플라즈몬 공명을 일으키는 광원(550)이 배치되어 있다. 이러한 광원(550)은 다양한 위치에 마련되어 제2 대전층(532)에 소정 파장의 빛을 조사할 수 있다.
도 7은 또 다른 예시적인 실시예에 따른 마찰전기 발전기를 도시한 것이다. 도 7에 도시된 마찰전기 발전기(600)는 도 1에서 제1 기판(111)과 제2 기판(112) 사이에 탄성 지지 부재가 추가적으로 마련된 경우와 동일하다.
도 7을 참조하면, 마찰전기 발전기(600)는 서로 이격된 제1 및 제2 전극(621,622)과, 제1 전극(621)의 일면에 마련되는 제1 대전층(631)과, 제2 전극(622)의 일면에 마련되는 제2 대전층(632)과, 제2 대전층(632)에 소정 파장의 빛을 조사하는 광원(650)과, 제1 대전층(631)과 제2 대전층(632) 사이에 마련되는 탄성 지지 부재(640)를 포함한다.
제1 및 제2 전극(621,622)은 제1 및 제2 기판(611.612)에 마련될 수 있다. 이러한 제1 및 제2 기판(611,612)은 단단한 재질 또는 유연한 재질을 포함할 수 있다. 제1 기판(611)의 하면에는 제1 전극(621)이 마련되어 있으며, 제2 기판(612)의 상면에는 제2 전극(622)이 마련되어 있다. 이러한 제1 및 제2 전극(621,622)은 전기전도성이 우수한 물질, 예를 들면, 그래핀(graphene), 탄소나노튜브(carbon nanotube, CNT), ITO(Indium Tin Oxide), 금속 및 전도성 폴리머로 이루어진 그룹에서 선택된 적어도 하나의 물질을 포함할 수 있다.
제2 기판(612)의 하부에 소정 파장의 빛을 방출하는 광원(650)이 배치되어 있으며, 제2 기판(612) 및 제2 전극(622)은 투명한 물질을 포함할 수 있다. 한편, 광원(650)은 다양한 위치에 마련될 수 있으며, 이러한 광원(650)의 위치에 따라 제1 기판(611) 및 제1 대전층(621)은 투명한 물질을 포함할 수도 있다.
제2 전극(622)과 마주보는 제1 전극(621)의 하면에는 제1 대전층(631)이 마련되어 있다. 제1 대전층(631)은 제2 대전층(632)과의 접촉에 의해 양전하 또는 음전하로 대전되는 것으로, 제2 대전층(632)에 비해 상대적으로 전기전도도가 낮은 유전 물질을 포함할 수 있다.
제2 대전층(632)은 제1 대전층(631)에 비해 상대적으로 전기전도도가 높고, 광원으로부터 방출된 소정 파장의 빛에 의해 표면 플라즈몬 공명을 일으키는 금속 물질을 포함할 수 있다. 이러한 금속 물질은 외부 자극에 의해 전자의 방출이 쉽고 음의 유전 상수를 가지는 물질을 포함할 수 있다. 예를 들어, 금속 물질은 Au, Ag, Cu, Al 및 steel 이루어진 그룹에서 선택된 적어도 하나를 포함할 수 있지만, 이에 한정되는 것은 아니다.
제2 대전층(632)은 예를 들면 도 2, 도 5a, 도 5b 또는 도 5c에 도시된 구조를 가질 수 있다. 한편. 제1 및 제2 대전층(631,632) 중 적어도 하나는 그 표면의 대전 특성을 조절하기 위해 p형 도펀트 또는 n형 도펀트로 도핑될 수 있다.
광원(650)은 제2 대전층(632)의 금속 물질 표면에 표면 플라즈몬 공명을 일으키는 소정 파장의 빛을 조사하는 역할을 한다. 도 7에서는 광원(650)이 하부 기판인 제2 기판(612)의 하부에 마련되는 경우가 예시적으로 도시되어 있으나, 광원(650)의 위치는 다양하게 변형될 수 있다. 광원(650)으로부터 방출되어 제2 대전층(632)의 금속 물질에 조사됨으로써 발생하는 표면 플라즈몬 공명 효과는 예를 들면 제2 대전층(632)에 포함되는 금속 물질의 재질, 사이즈, 모양, 밀도, 금속 입자들에 조사되는 빛의 파장, 세기, 입사각 등에 따라 조절될 수 있다.
제1 기판(611)과 제2 기판(612) 사이에는 적어도 하나의 탄성 지지 부재(640)가 마련될 수 있다. 이러한 탄성 지지 부재(640)는 예를 들어 제1 및 제2 기판(611.612)을 지지하는 동시에 제1 기판(611)과 제2 기판(612)이 서로 멀어지는 방향으로 탄성력을 가하는 스프링을 포함할 수 있다. 하지만, 반드시 이에 한정되는 것은 아니다. 이와 같이, 제1 기판(611)과 제2 기판(612) 사이에 탄성 지지 부재가 마련된 경우에는 제1 기판(611)에 가해진 외부의 힘이 릴리즈되면 제1 및 제2 기판(611,612)이 보다 용이하게 원래 상태로 복원될 수 있다. 한편, 이상에서는 제2 전극(622)과 제2 대전층(632)이 별도로 마련되는 경우가 설명되었으나, 제2 전극(622)과 제2 대전층(632)이 일체로 형성될 수도 있다.
도 8은 또 다른 예시적인 실시예에 따른 마찰전기 발전기를 도시한 것이다.
도 8을 참조하면, 마찰전기 발전기(700)는 서로 이격되게 마련되는 제1 및 제2 기판(710,720)과, 제1 및 제2 전극(712,722)과, 제1 전극(712)의 일면에 마련되는 제1 대전층(731)과, 제2 전극(722)의 일면에 마련되는 제2 대전층(732)과, 광원(750)을 포함한다. 마찰전기 발전기(700)는 외부의 힘이 인가되지 않을 때는 제1 대전층(731)과 제2 대전층(732)이 서로 이격되어 분리된 상태를 유지하고, 마찰전기 발전기(700)에 외부의 힘이 인가되었을 때는 제1 대전층(731)과 제2 대전층(732)이 서로 접촉하는 물리적 구조를 가진다.
제1 및 제2 기판(710,720)은 외부의 힘에 의해 변형될 수 있는 유연성을 가지며, 외부의 힘이 제거되었을 때는 원래 상태로 돌아가는 복원력을 가지는 재질을 포함할 수 있다. 예를 들면, 제1 및 제2 기판(710,720)은 폴리에스테르(PE), 폴리에스테르설폰(PES), 폴리에틸렌 나프탈레이트(PEN) 또는 캡톤(Kapton) 등을 포함할 수 있지만 이에 한정되는 것은 아니다. 예를 들면, 도 8에서 제1 기판(711)은 상방향으로 볼록한 형태를 가질 수 있으며, 제2 기판(712)은 하방향으로 볼록한 형태를 가질 수 있다.
제1 기판(711)의 하면에는 제1 전극(721)이 마련되어 있으며, 제2 기판(712)의 상면에는 제2 전극(722)이 마련되어 있다. 이러한 제1 및 제2 전극(721,722)은 제1 및 제2 기판(711,712)의 변형에 대응하는 유연성을 가질 수 있다. 제1 및 제2 전극(721,722)은 전기전도성이 우수한 물질을 포함할 수 있다. 예를 들면, 제1 및 제2 전극(721,722)은 그래핀, 탄소나노튜브, ITO, 금속 및 전도성 폴리머로 이루어진 그룹에서 선택된 적어도 하나의 물질을 포함할 수 있다. 여기서, 금속은 예를 들면, Ag, Al, Cu, Au, Ni, Cr 및 Pt으로 이루어진 그룹에서 선택된 적어도 하나를 포함할 수 있지만 이에 한정되지는 않는다. 이러한 제1 및 제2 전극(721,722)은 단층 구조 또는 복수의 층 구조를 가질 수 있다.
제2 전극(722)과 마주보는 제1 전극(721)의 하면에는 제1 대전층(731)이 마련되고, 제1 전극(721)과 마주보는 제2 전극(722)의 상면에는 제2 대전층(732)이 마련되어 있다. 이러한 제1 및 제2 대전층(731,732)은 제1 및 제2 기판(711,712)의 변형에 대응하는 유연성을 가질 수 있다. 제1 및 제2 대전체(731,732)는 접촉에 의해 서로 다른 극성의 전하로 대전되는 물질을 포함할 수 있다.
제1 대전층(731)은 제2 대전층(732)과의 접촉에 의해 양전하 또는 음전하로 대전되는 것으로, 제2 대전층(732)에 비해 상대적으로 전기전도도가 낮은 유전 물질을 포함할 수 있다. 제1 대전층(731)이 양전하로 대전되는 경우에 제1 대전층(731)은 예를 들면, polyformaldehyde, ethylcellulose, polyamide, melamine formol, wool, silk, mica 또는 nylon 등을 포함할 수 있다. 하지만, 이에 한정되는 것은 아니다. 대체적으로 제1 대전층(731)이 음전하로 대전되는 경우에 제1 대전층(731)은 예를 들면, polytetrafluoroethylene(Teflon), polydimethylsiloxane(PDMS), polyvinyl chloride(PVC), polyimide(Kapton), polypropylene(PP), polyethylene(PE) 또는 polystyrene(PS)을 포함할 수 있다. 하지만, 이에 한정되는 것은 아니다.
제2 대전층(732)은 제1 대전층(731)에 비해 상대적으로 전기전도도가 높고, 광원(750)으로부터 방출된 소정 파장의 빛에 의해 표면 플라즈몬 공명을 일으키는 금속 물질을 포함할 수 있다. 이러한 금속 물질은 외부 자극에 의해 전자의 방출이 쉽고 음의 유전 상수를 가지는 물질을 포함할 수 있다. 예를 들어, 금속 물질은 Au, Ag, Cu, Al 및 steel 이루어진 그룹에서 선택된 적어도 하나를 포함할 수 있다. 하지만, 이에 한정되는 것은 아니다.
제2 대전층(732)은 예를 들면 도 2, 도 5a, 도 5b 또는 도 5c에 도시된 구조를 가질 수 있다. 전술한 바와 같이, 제1 및 제2 대전층(731,732) 중 적어도 하나는 그 표면의 대전 특성을 조절하기 위해 p형 도펀트 또는 n형 도펀트로 도핑될 수 있다.
광원(750)은 제2 대전층(732)의 금속 물질 표면에 표면 플라즈몬 공명을 일으키는 소정 파장의 빛을 조사하는 역할을 한다. 이러한 광원(750)의 위치는 다양하게 변형될 수 있다. 광원(750)으로부터 방출되어 제2 대전층(732)의 금속 물질에 조사됨으로써 발생하는 표면 플라즈몬 공명 효과는 예를 들면 제2 대전층(732)에 포함되는 금속 물질의 재질, 사이즈, 모양, 밀도, 금속 물질에 조사되는 빛의 파장, 세기, 입사각 등에 따라 조절될 수 있다. 한편, 이상에서는 제2 전극(722)과 제2 대전층(732)이 별도로 마련되는 경우가 설명되었으나, 제2 전극(722)과 제2 대전층(732)이 일체로 형성될 수도 있다.
도 9a 내지 도 9는 도 8에 도시된 마찰전기 발전기(700)가 작동하는 모습을 도시한 도면들이다.
도 9a는 마찰전기 발전기(700)가 변형되지 않은 초기 상태의 모습을 도시한 것이다. 도 9a에 도시된 상태에서 광원(750)은 소정 파장의 빛을 제2 대전층(732)에 조사하고, 이에 따라 제2 대전층(732)의 금속 물질 표면에서 표면 플라즈몬 공명이 일어나게 된다
도 9b를 참조하면, 제1 기판(711)에 누르는 힘을 가하게 되면 상부 기판인 제1 기판(711)의 적어도 일부가 제2 대전층(732) 쪽으로 움직이면서 변형을 시작한다. 도 9c를 참조하면, 제1 기판(711)을 지속적으로 누르게 되면 제1 대전층(731)은 제2 대전층(732) 쪽으로 더욱 가까이 움직이게 된다.
이어서, 도 9d를 참조하면, 제1 기판(711)을 더 누르게 되면 제1 대전층(731)이 제2 대전층(732)과 접촉하게 된다. 다음으로, 도 9e를 참조하면, 제1 기판(711)에 가해진 힘이 릴리즈되면 제1 대전층(731)은 제2 대전층(732)으로부터 떨어지기 시작하며, 제1 기판(711)의 릴리즈 상태가 지속되면 도 9a에 도시된 바와 같은 초기 상태로 돌아오게 된다.
이러한 마찰전기 발전기(700)의 작동에 의해 전기에너지가 발생되는 매커니즘은 도 1에 도시된 마찰전기 발전기(100)에서 상세하게 설명되었으므로, 이에 대한 설명은 생략한다. 이와 같이, 마찰전기 발전기(700)를 유연성을 가지는 재질로 구성함으로써 전기에너지를 효율적으로 얻을 수 있다.
도 10은 또 다른 예시적인 실시예에 따른 마찰전기 발전기를 도시한 단면도이다. 도 10에는 두 대전체가 슬라이딩(sliding)에 의해 서로 접촉하여 대전됨으로써 전기에너지를 발생시키는 슬라이딩 컨택 방식(sliding contact mode)의 마찰전기 발전기가 도시되어 있다.
도 10을 참조하면, 마찰전기 발전기(800)는 서로 이격된 제1 및 제2 전극(821,822)과, 제1 전극(821)의 일면에 마련되는 제1 대전층(831)과, 제2 전극(822)의 일면에 마련되는 제2 대전층(832)과, 제2 대전층(832)에 소정 파장의 빛을 조사하는 광원(850)을 포함한다.
제1 및 제2 전극(821,822)은 제1 및 제2 기판(811.812)에 마련될 수 있다. 도면에서, 제1 기판(811)은 상부 기판이 될 수 있으며, 제2 기판(812)은 하부 기판이 될 수 있다. 제1 및 제2 기판(811,812)은 단단한 재질 또는 유연한 재질을 포함할 수 있다.
제1 기판(811)의 하면에는 제1 전극(821)이 마련되어 있으며, 제2 기판(812)의 상면에는 제2 전극(822)이 마련되어 있다. 제1 및 제2 전극(821,822)은 전기전도성이 우수한 물질을 포함할 수 있다. 예를 들면, 제1 및 제2 전극(821,822)은 그래핀(graphene), 탄소나노튜브(carbon nanotube, CNT), ITO(Indium Tin Oxide), 금속 및 전도성 폴리머로 이루어진 그룹에서 선택된 적어도 하나의 물질을 포함할 수 있다. 여기서, 금속은 예를 들면, Ag, Al, Cu, Au, Ni, Cr 및 Pt으로 이루어진 그룹에서 선택된 적어도 하나를 포함할 수 있지만 이에 한정되지는 않는다. 이러한 제1 및 제2 전극(811,812)은 단층 구조 또는 복수의 층 구조를 가질 수 있다.
제2 기판(812)의 하부에 소정 파장의 빛을 방출하는 광원(850)이 배치되어 있다. 이 경우, 제2 기판(812) 및 제2 전극(822)은 투명한 물질을 포함할 수 있다. 따라서, 광원(850)으로부터 방출되는 소정 파장의 빛은 제2 기판(812) 및 제2 전극(822)을 투과하여 제2 대전층(832)에 조사될 수 있다. 한편, 광원(850)은 다양한 위치에 마련될 수 있으며, 이러한 광원(850)의 위치에 따라 제1 기판(811) 및 제1 전극(821)이 투명한 물질을 포함할 수도 있다.
제2 전극(822)과 마주보는 제1 전극(821)의 하면에는 제1 대전층(831)이 마련되어 있다. 제1 대전층(831)은 제2 대전층(832)과의 접촉에 의해 소정 극성의 전하로 대전되는 것으로, 제2 대전층(832)에 비해 상대적으로 전기전도도가 낮은 유전 물질을 포함할 수 있다.
제1 대전층(831)은 제2 대전층(832)과의 접촉에 의해 양전하로 대전될 수 있다. 이 경우, 제1 대전층(831)은 예를 들면, polyformaldehyde, ethylcellulose, polyamide, melamine formol, wool, silk, mica 또는 nylon 등을 포함할 수 있다. 하지만, 이에 한정되는 것은 아니다. 대체적으로(alternatively), 제1 대전층(831)은 제2 대전층(832)과의 접촉에 의해 음전하로 대전될 수도 있다. 이 경우, 제1 대전층(831)은 예를 들면, polytetrafluoroethylene(Teflon), polydimethylsiloxane(PDMS), polyvinyl chloride(PVC), polyimide(Kapton), polypropylene(PP), polyethylene(PE) 또는 polystyrene(PS)을 포함할 수 있다. 하지만, 이에 한정되는 것은 아니다.
제1 전극(821)과 마주보는 제2 전극(822)의 상면에는 제2 대전층(832)이 마련되어 있다. 제2 대전층(832)은 제1 대전층(831)과의 접촉에 의해 제1 대전층(831)과 반대 극성의 전하로 대전될 수 있다. 구체적으로, 제1 대전층(831)이 제2 대전층(832)과의 접촉에 의해 양전하로 대전되는 경우에는 제2 대전층(832)은 음전하로 대전될 수 있다. 대체적으로, 제1 대전층(831)이 제2 대전층(832)과의 접촉에 의해 음전하로 대전되는 경우에는 제2 대전층(832)은 양전하로 대전될 수 있다.
제2 대전층(832)은 제1 대전층(831)에 비해 상대적으로 전기전도도가 높고, 광원으로부터 방출된 소정 파장의 빛에 의해 표면 플라즈몬 공명을 일으키는 금속 물질을 포함할 수 있다. 이러한 금속 물질은 외부 자극에 의해 전자의 방출이 쉽고 음의 유전 상수를 가지는 물질을 포함할 수 있다. 예를 들어, 금속 물질은 Au, Ag, Cu, Al 및 steel 이루어진 그룹에서 선택된 적어도 하나를 포함할 수 있다. 하지만, 이에 한정되는 것은 아니다. 제2 대전층(832)은 예를 들면 도 2, 도 5a, 도 5b 또는 도 5c에 도시된 구조를 가질 수 있다. 또한, 제1 및 제2 대전층(831,832) 중 적어도 하나는 그 표면의 대전 특성을 조절하기 위해 p형 도펀트 또는 n형 도펀트로 도핑될 수 있다.
마찰전기 발전기(800)는 외부의 힘이 인가되지 않을 때는 제1 대전층(831)과 제2 대전층(832)이 서로 접촉된 상태를 유지하는 물리적 구조를 가질 수 있다. 대체적으로, 마찰전기 발전기(800)는 외부의 힘이 인가되지 않을 때는 제1 대전층(831)과 제2 대전층(832)이 서로 접촉되지 않은 상태를 유지하는 물리적 구조를 가질 수도 있다. 본 실시예에 따른 마찰전기 발전기(800)에서는 제1 대전층(832)이 제2 대전층(832) 상을 상대적으로 슬라이딩하여 제1 대전층(831)과 제2 대전층(832)의 접촉 면적이 변화됨으로써 전기에너지를 발생시킬 수 있다.
광원(850)은 제2 대전층(132)의 금속 물질 표면에 표면 플라즈몬 공명을 일으키는 소정 파장의 빛을 조사하는 역할을 한다. 도 10에서는 광원(850)이 하부 기판인 제2 기판(812)의 하부에 마련되는 경우가 예시적으로 도시되어 있으며. 이 경우 광원(850)으로부터 방출되는 빛은 제2 대전층(832)에 도달하기 위해서 제2 기판(812) 및 제2 전극(822)은 투명한 물질을 포함할 수 있다. 한편, 광원(850)의 위치는 다양하게 변형될 수 있으며, 이러한 광원(850)의 위치에 따라 제1 기판(811) 및 제1 전극(821)이 투명한 물질을 포함할 수도 있다. 광원(850)으로부터 방출되어 제2 대전층(832)의 금속 물질에 조사됨으로써 발생하는 표면 플라즈몬 공명 효과는 예를 들면 제2 대전층(832)에 포함되는 금속 물질의 재질, 사이즈, 모양, 밀도, 금속 물질에 조사되는 빛의 파장, 세기, 입사각 등에 따라 조절될 수 있다. 전술한 바와 같이, 제2 대전층(832)이 소정 파장의 빛에 의해 표면 플라즈몬 공명을 일으키는 금속 물질을 포함하게 되면 마찰전기 발전기(800)의 출력 에너지를 증대시킬 수 있다.
도 11a 내지 도 11d는 도 10에 도시된 마찰전기 발전기(800)의 전기에너지 발생 매커니즘을 설명하기 위한 도면들이다. 이하에서는 제1 대전층(831)과 제2 대전층(832)이 접촉하는 경우 제1 대전층(831)은 양전하로 대전되고, 제2 대전층(832)은 음전하로 대전되는 경우를 예로 들어 설명한다.
도 11a는 마찰전기 발전기(800)의 초기 상태를 도시한 것이다. 도면에서 참조번호 870은 제1 전극(821)과 제2 전극(822) 사이의 전자 흐름을 검출하기 위한 부하를 나타낸다. 도 11a를 참조하면, 광원(850)으로부터 방출된 소정 파장의 빛이 제2 대전층(832)에 조사되면 제2 대전층(832)의 금속 물질 표면에서 표면 플라즈몬 공명에 의한 핫 캐리어가 발생하게 된다. 여기서, 제1 대전층(831)과 제2 대전층(832)은 서로 접촉된 상태를 유지하고 있다. 이러한 제1 대전체(631)와 제2 대전체(832)의 접촉에 의해 제1 대전층(831)은 양전하로 대전되고, 제2 대전층(832)은 음전하로 대전될 수 있다. 이러한 표면 플라즈몬 공명에 의해 발생된 핫 캐리어가 제2 대전층(832)의 금속 물질에서 제1 대전층(831)으로 이동함으로써 제1 대전층(831)의 접촉면 및 제2 대전층(832)의 접촉면은 보다 많은 전하들로 대전될 수 있다.
도 11b는 제1 대전층(831)이 제1 방향으로 슬라이딩 되는 상태를 도시한 것이다. 도 11b를 참조하면, 제1 대전층(831)과 제2 대전층(832)이 접촉된 상태에서 제1 대전층(831)이 제2 대전층(832)으로부터 멀어지는 제1 방향(예를 들어 오른쪽 방향)으로 슬라이딩되면, 제1 대전층(831)과 제2 대전층(832)의 접촉 면적이 점점 줄어들게 된다. 이에 따라, 제1 전극(811)에는 음전하가 유도되고, 제2 전극(812)에는 양전하가 유도된다. 이를 위해, 제2 전극(828)으로부터 제1 전극(821)으로 전자들(e-)이 이동하게 되고, 이러한 전자들의 흐름에 의해 부하(870)에 전류가 흐르게 된다.
도 11c는 제1 대전층(831)이 제1 방향으로 슬라이딩을 계속하여 제1 대전층(831)과 제2 대전층(832)이 서로 접촉하지 않은 상태를 도시한 것이다. 도 11c를 참조하면, 제1 대전층(831)이 제1 방향으로 슬라이딩을 계속 함에 따라 제1 대전층(831)과 제2 대전층(832)은 서로 접촉하지 않을 수 있다. 한편, 이 상태에서 제1 대전층(831)과 제2 대전층(832)은 일부가 접촉하는 것도 가능하다.
도 11d는 제1 대전층(831)이 제2 방향으로 슬라이딩 되는 상태를 도시한 것이다. 도 11d를 참조하면, 도 11c에 도시된 상태에서 제1 대전층(831)이 제1 방향과 반대 방향인 제2 방향(예를 들어 왼쪽 방향)으로 슬라이딩되면, 제1 대전층(831)과 제2 대전층(832)의 접촉 면적이 점점 증가하게 된다. 이에 따라, 제1 전극(821)에는 양전하가 유도되고, 제2 전극(822)에는 음전하가 유도된다. 이를 위해, 제1 전극(821)으로부터 제2 전극(822)으로 전자들(e-)이 이동하게 되고, 이러한 전자들의 흐름에 의해 부하(870)에 전류가 흐르게 된다.
이상과 같이, 제2 대전층(832)이 광원(850)으로부터 방출된 소정 파장의 빛에 의해 표면 플라즈몬 공명을 일으키는 금속 물질을 포함함으로써 마찰전기 발전기(800)의 출력 에너지를 증대시킬 수 있다. 한편, 이상에서는 제2 전극(822)과 제2 대전층(832)이 별도로 마련되는 경우가 설명되었으나, 제2 전극(822)과 제2 대전층(832)이 일체로 형성될 수도 있다.
도 12는 또 다른 예시적인 실시예에 따른 마찰전기 발전기를 도시한 단면도이다. 도 12에는 두 대전체가 상대적인 회전에 서로 접촉하여 대전됨으로써 전기에너지를 발생시키는 회전 컨택 방식(rotating contact mode)의 마찰전기 발전기가 도시되어 있다.
도 12를 참조하면, 마찰전기 발전기(900)는 제1 및 제2 기판(911,912), 제1 및 제2 기판(911,912)에 마련되는 제1 및 제2 전극(921,922), 제1 및 제2 전극(921,922)에 마련되는 제1 및 제2 대전층(931,932), 및 제2 대전층(932)에 소정 파장의 빛을 조사하는 광원(950)을 포함한다.
제1 기판(911)은 상부 기판이 될 수 있으며, 제2 기판(912)은 하부 기판이 될 수 있다. 제1 기판(911)의 하면에는 제1 전극(921)이 마련되어 있으며, 제2 기판(921)의 상면에는 제2 전극(922)이 마련되어 있다. 이러한 제1 및 제2 전극(921,922)은 전기전도성이 우수한 물질을 포함할 수 있다.
제1 전극(921)의 하면에는 제1 대전층(931)이 마련되어 있으며, 제2 전극(922)의 상면에는 제2 대전층(932)이 마련되어 있다. 제1 대전층(931)은 제2 대전층(932)과의 접촉에 의해 양전하 또는 음전하로 대전되는 것으로, 제2 대전층(932)에 비해 상대적으로 전기전도도가 낮은 유전 물질을 포함할 수 있다.
제2 대전층(932)은 제1 대전층(931)과의 접촉에 의해 제1 대전층(931)과 반대 극성의 전하로 대전될 수 있다. 제2 대전층(932)은 제1 대전층(931)에 비해 상대적으로 전기전도도가 높고, 광원으로부터 방출된 소정 파장의 빛에 의해 표면 플라즈몬 공명을 일으키는 금속 물질을 포함할 수 있다. 이러한 금속 물질은 외부 자극에 의해 전자의 방출이 쉽고 음의 유전 상수를 가지는 물질을 포함할 수 있다. 예를 들어, 금속 물질은 Au, Ag, Cu, Al 및 steel 이루어진 그룹에서 선택된 적어도 하나를 포함할 수 있다. 하지만, 이에 한정되는 것은 아니다. 제2 대전층(932)은 예를 들면 도 2, 도 5a, 도 5b 또는 도 5c에 도시된 구조를 가질 수 있다. 한편, 제1 및 제2 대전층(931,932) 중 적어도 하나는 그 표면의 대전 특성을 조절하기 위해 p형 도펀트 또는 n형 도펀트로 도핑될 수 있다.
제2 대전층(932)의 주위에는 소정 파장의 빛을 제2 대전층(932)에 조사하여 표면 플라즈몬 공명을 일으키는 광원(950)이 배치되어 있다. 이러한 광원(950)은 제2 대전층(932)에 소정 파장의 빛을 조사할 수 있도록 다양한 위치에 마련될 수 있다.
본 실시예에서, 순차적으로 적층된 제1 기판(911), 제1 전극(921) 및 제1 대전층(931)은 적어도 하나의 제1 날개를 구성할 수 있으며, 순차적으로 적층된 제2 기판(912), 제2 전극(922) 및 제2 대전층(932)은 적어도 하나의 제2 날개를 구성할 수 있다. 도 12에는 4개의 제1 날개와 4개의 제2 날개가 마련된 경우가 도시되어 있다. 이와 같은 구성에서, 제1 날개가 제2 날개에 대해 상대적으로 회전함으로써 제1 대전층(931)은 회전하면서 제2 대전층(932) 상을 슬라이딩할 수 있다. 이에 따라, 제1 대전층(931)과 제2 대전층(932)이 접촉하는 면적이 변화함으로써 전기 에너지가 발생될 수 있다.
도 13은 또 다른 예시적인 실시예에 따른 마찰전기 발전기를 도시한 단면도이다.
도 13을 참조하면, 복수의 기판(1110)이 서로 연결되어 있으며, 기판들(1110)이 연결된 부분은 접히거나 펴질 수 있도록 마련되어 있다. 그리고, 기판들(91110) 각각의 일면(예를 들면 기판(1110)의 하면)에는 제1 전극(1121) 및 제1 대전층(1131)이 순차적으로 적층될 수 있으며, 기판들(1110) 각각의 타면(예를 들면 기판(1110)의 상면)에는 제2 전극(1122) 및 제2 대전층(1132)이 순차적으로 적층될 수 있다.
제1 및 제2 전극(1121,1122)은 전기전도성이 우수한 물질을 포함할 수 있다. 예를 들면, 제1 및 제2 전극(1121,1122)은 그래핀, 탄소나노튜브, ITO, 금속 및 전도성 폴리머로 이루어진 그룹에서 선택된 적어도 하나의 물질을 포함할 수 있다. 여기서, 금속은 예를 들면, Ag, Al, Cu, Au, Ni, Cr 및 Pt으로 이루어진 그룹에서 선택된 적어도 하나를 포함할 수 있지만 이에 한정되지는 않는다. 이러한 제1 및 제2 전극(1121,1122)은 단층 구조 또는 복수의 층 구조를 가질 수 있다.
제1 대전층(1131)은 제2 대전층(1132)과의 접촉에 의해 양전하 또는 음전하로 대전되는 것으로, 제2 대전층(1132)에 비해 상대적으로 전기전도도가 낮은 유전 물질을 포함할 수 있다. 그리고, 제2 대전층(1132)은 제1 대전층(1131)과의 접촉에 의해 제1 대전층(1131)과 반대 극성의 전하로 대전될 수 있다. 제2 대전층(1132)은 제1 대전층(1131)에 비해 상대적으로 전기전도도가 높고, 광원(1150)으로부터 방출된 소정 파장의 빛에 의해 표면 플라즈몬 공명을 일으키는 금속 물질을 포함할 수 있다. 이러한 금속 물질은 외부 자극에 의해 전자의 방출이 쉽고 음의 유전 상수를 가지는 물질을 포함할 수 있다. 제2 대전층(1132)은 예를 들면 도 2, 도 5a, 도 5b 또는 도 5c에 도시된 구조를 가질 수 있다. 한편, 제1 및 제2 대전층(1131,1132) 중 적어도 하나는 그 표면의 대전 특성을 조절하기 위해 p형 도펀트 또는 n형 도펀트로 도핑될 수 있다.
제2 대전층들(1132)의 주위에는 소정 파장의 빛을 제2 대전층들(1132)에 조사하여 표면 플라즈몬 공명을 일으키는광원(1150)이 배치되어 있다. 여기서, 광원(1150)의 위치 및 개수는 제2 대전층들(532)에 소정 파장의 빛을 조사할 수 있도록 다양하게 변형될 수 있다. 본 실시예에 따른 마찰전기 발전기(1000)에서는 복수의 기판(1110)이 접히거나 펴짐으로써 제1 대전층(1131)과 제2 대전층(1132)이 서로 접촉하거나 또는 서로 이격됨으로써 전기 에너지가 발생될 수 있다.
이상에서 살펴본 바와 같이, 예시적인 실시예들에 따른 마찰전기 발전기에서는 제2 대전층이 광원으로부터 방출된 소정 파장의 빛에 의해 표면 플라즈몬 공명을 일으키는 금속 물질을 포함함으로써 마찰전기 발전기의 출력 에너지를 증대시킬 수 있다.
100,500,600,700,800,900,1000.. 마찰전기 발전기
111,511,611,711,811,911.. 제1 기판
112,512,612,712,812,912.. 제2 기판
121,521,621,721,821,921,1121.. 제1 전극
122,522,622,722,822,922,1122.. 제1 전극
131,531,631,731,831,931,1131.. 제1 대전층
132,232,332,432,532,632,732,832,932,1132.. 제2 대전층
132a,232a,332a.. 금속 입자
132b,232b.. 제1 유전체
232c.. 제2 유전체
170,870.. 부하
150,550,650,750,850,950,1150.. 광원
432a.. 금속
1110.. 기판

Claims (27)

  1. 서로 이격되게 마련되는 제1 및 제2 전극;
    상기 제2 전극과 마주보는 상기 제1 전극의 일면에 마련되는 것으로, 유전 물질을 포함하는 제1 대전층;
    상기 제1 전극과 마주보는 상기 제2 전극의 일면에 마련되어 상기 제1 대전층과의 접촉에 의해 상기 제1 대전체와 반대 극성의 전하로 대전되는 것으로, 소정 파장의 빛에 의해 표면 플라즈몬 공명(Surface Plasmon Resonance)을 일으키는 금속 물질을 포함하는 제2 대전층; 및
    상기 표면 플라즈몬 공명을 일으키는 소정 파장의 빛을 상기 제2 대전층에 조사하는 광원;을 포함하는 포함하는 마찰전기 발전기.
  2. 제 1 항에 있어서,
    상기 제1 대전층과 상기 제2 대전층은 압축(pressing), 슬라이딩(sliding) 또는 회전(rotating)에 의해 서로 접촉하는 마찰전기 발전기.
  3. 제 1 항에 있어서,
    상기 제1 및 제2 전극은 그래핀, 탄소나노튜브(CNT), ITO(Indium Tin Oxide), 금속 및 전도성 폴리머로 이루어진 그룹에서 선택된 적어도 하나를 포함하는 마찰전기 발전기.
  4. 제 1 항에 있어서,
    상기 제1 및 제2 전극 중 적어도 하나는 상기 표면 플라즈몬 공명을 일으키는 소정 파장의 빛을 투과시키는 물질을 포함하는 마찰전기 발전기.
  5. 제 1 항에 있어서,
    상기 제1 및 제2 전극은 제1 및 제2 기판에 마련되는 마찰전기 발전기.
  6. 제 5 항에 있어서,
    상기 제1 및 제2 기판은 단단한 재질 또는 유연한 재질을 포함하는 마찰전기 발전기.
  7. 제 5 항에 있어서,
    상기 제1 및 제2 기판은 외부의 힘에 의해 변형될 수 있는 유연성을 가지며,외부의 힘이 제거되었을 때는 원래 상태로 돌아가는 복원력을 가지는 물질을 포함하는 마찰전기 발전기.
  8. 제 7 항에 있어서,
    상기 제1 기판은 제1 방향으로 볼록한 형상을 가지며, 상기 제2 기판은 상기 제1 방향과 반대방향인 제2 방향으로 볼록한 형상을 가지는 마찰전기 발전기.
  9. 제 1 항에 있어서,
    상기 제1 대전층은 상기 제2 대전층과의 접촉에 의해 양전하로 대전되는 물질을 포함하는 마찰전기 발전기.
  10. 제 9 항에 있어서,
    상기 제1 대전층은 polyformaldehyde, ethylcellulose, polyamide, melamine formol, wool, silk, mica 또는 nylon을 포함하는 마찰전기 발전기.
  11. 제 1 항에 있어서,
    상기 제1 대전층은 상기 제2 대전층과의 접촉에 의해 음전하로 대전되는 물질을 포함하는 마찰전기 발전기.
  12. 제 11 항에 있어서,
    상기 제1 대전층은 polytetrafluoroethylene(Teflon), polydimethylsiloxane(PDMS), polyvinyl chloride(PVC), polyimide(Kapton), polypropylene(PP), polyethylene(PE) 또는 polystyrene(PS)을 포함하는 마찰전기 발전기.
  13. 제 1 항에 있어서,
    상기 제2 대전층의 금속 물질은 Au, Ag, Cu, Al 및 steel 이루어진 그룹에서선택된 적어도 하나를 포함하는 마찰전기 발전기.
  14. 제 1 항에 있어서,
    상기 제2 대전층은 상기 표면 플라즈몬 공명을 일으키는 다수의 금속 입자를포함하는 마찰전기 발전기.
  15. 제 14 항에 있어서,
    상기 제2 대전층은 상기 금속 입자들을 둘러싸도록 마련되는 다수의 제1 유전체를 더 포함하고, 상기 금속 입자들 중 상기 제1 대전층과 접촉하는 금속 입자들의 표면은 외부로 노출되어 있는 마찰전기 발전기.
  16. 제 15 항에 있어서,
    상기 제2 대전층은 상기 제1 유전체들 사이의 공간을 채우도록 마련되는 제2 대전체를 더 포함하는 마찰전기 발전기.
  17. 제 1 항에 있어서,
    상기 제2 대전층은 상기 표면 플라즈몬 공명을 일으키는 표면 거칠기(surface roughness)를 가지는 금속을 포함하는 마찰전기 발전기.
  18. 제 1 항에 있어서,
    상기 제1 및 제2 대전층 중 적어도 하나는 대전 특성을 조절하기 위한 도펀트(dopant)로 도핑되어 있는 마찰전기 발전기..
  19. 제 1 항에 있어서,
    상기 제2 전극과 상기 제2 대전층은 일체로 형성되는 마찰전기 발전기.
  20. 제 1 항에 있어서,
    상기 제1 대전층과 상기 제2 대전층 사이에 마련되는 탄성 지지 부재를 더 포함하는 마찰전기 발전기.
  21. 제 1 항에 있어서,
    상기 제1 및 제2 대전층은 각각 날개 형상을 포함하고, 상기 제1 및 제2 대전층 중 적어도 하나가 회전함으로써 상기 제1 및 제2 대전층이 서로 접촉하도록 마련되는 마찰전기 발전기.
  22. 서로 연결되어 있으며, 연결된 부분에서 접힐 수 있도록 마련되는 복수의 기판;
    상기 기판들 각각의 일면 및 타면에 마련되는 제1 및 제2 전극;
    상기 제1 전극에 마련되는 것으로, 유전 물질을 포함하는 제1 대전층;
    상기 제2 전극에 마련되어 상기 제1 대전층과의 접촉에 의해 상기 제1 대전체와 반대 극성의 전하로 대전되는 것으로, 소정 파장의 빛에 의해 표면 플라즈몬 공명을 일으키는 금속 물질을 포함하는 제2 대전층; 및
    상기 표면 플라즈몬 공명을 일으키는 소정 파장의 빛을 상기 제2 대전층에 조사하는 광원;을 포함하는 포함하는 마찰전기 발전기.
  23. 제 22 항에 있어서,
    상기 제2 대전층의 금속 물질은 Au, Ag, Cu, Al 및 steel 이루어진 그룹에서선택된 적어도 하나를 포함하는 마찰전기 발전기.
  24. 제 22 항에 있어서,
    상기 제2 대전층은 상기 표면 플라즈몬 공명을 일으키는 다수의 금속 입자를포함하는 마찰전기 발전기.
  25. 제 24 항에 있어서,
    상기 제2 대전층은 상기 금속 입자들을 둘러싸도록 마련되는 다수의 제1 유전체를 더 포함하고, 상기 금속 입자들 중 상기 제1 대전층과 접촉하는 금속 입자들의 표면은 외부로 노출되어 있는 마찰전기 발전기.
  26. 제 22 항에 있어서,
    상기 제2 대전층은 상기 표면 플라즈몬 공명을 일으키는 표면 거칠기(surface roughness)를 가지는 금속을 포함하는 마찰전기 발전기.
  27. 제 22 항에 있어서,
    상기 제1 대전층과 상기 제2 대전층 사이에 마련되는 탄성 지지 부재를 더 포함하는 마찰전기 발전기.
KR1020160106978A 2016-08-23 2016-08-23 표면 플라즈몬 공명을 이용한 마찰전기 발전기 KR102600148B1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020160106978A KR102600148B1 (ko) 2016-08-23 2016-08-23 표면 플라즈몬 공명을 이용한 마찰전기 발전기
US15/412,557 US10587207B2 (en) 2016-08-23 2017-01-23 Triboelectric generator using surface plasmon resonance
EP17163641.8A EP3288172B1 (en) 2016-08-23 2017-03-29 Triboelectric generator using surface plasmon resonance
CN201710537117.7A CN107769607B (zh) 2016-08-23 2017-07-04 摩擦电发电机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160106978A KR102600148B1 (ko) 2016-08-23 2016-08-23 표면 플라즈몬 공명을 이용한 마찰전기 발전기

Publications (2)

Publication Number Publication Date
KR20180022098A true KR20180022098A (ko) 2018-03-06
KR102600148B1 KR102600148B1 (ko) 2023-11-08

Family

ID=58461116

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160106978A KR102600148B1 (ko) 2016-08-23 2016-08-23 표면 플라즈몬 공명을 이용한 마찰전기 발전기

Country Status (4)

Country Link
US (1) US10587207B2 (ko)
EP (1) EP3288172B1 (ko)
KR (1) KR102600148B1 (ko)
CN (1) CN107769607B (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190108453A (ko) 2018-03-14 2019-09-24 한양대학교 산학협력단 캡슐 구조의 마찰 전기 나노발전기 및 그 제조 방법
KR20200121449A (ko) * 2019-04-16 2020-10-26 연세대학교 산학협력단 고내구성 자가구동 환경센서

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9569055B2 (en) * 2013-08-13 2017-02-14 Samsung Electronics Company, Ltd. Interaction sensing
KR20160118600A (ko) * 2015-04-02 2016-10-12 성균관대학교산학협력단 도체―도체 간의 마찰전기 에너지 발전 소자
US10199958B2 (en) * 2015-04-21 2019-02-05 Samsung Electronics Co., Ltd. Triboelectric generator
KR20160144615A (ko) * 2015-06-09 2016-12-19 성균관대학교산학협력단 3차원 구조의 마찰전기 에너지 발생장치
US10277147B2 (en) * 2016-06-09 2019-04-30 Wisconsin Alumni Research Foundation Triboelectric nanogenerators based on chemically treated cellulose
US10804818B2 (en) * 2017-06-30 2020-10-13 Toyota Motor Engineering & Manufacturing North America, Inc. Triboelectric generator and network for mechanical energy harvesting
DE102018221047A1 (de) 2018-04-05 2019-10-10 Continental Reifen Deutschland Gmbh Vorrichtung zum Messen einer mechanischen Kraft, umfassend eine erste, zweite, dritte, vierte und fünfte Schicht sowie die Verwendungen der Vorrichtung und Reifen oder technischer Gummiartikel umfassend die Vorrichtung
CN110176872B (zh) * 2018-04-11 2020-12-11 北京纳米能源与系统研究所 纳米发电机系统及供电器件
CN108616225B (zh) * 2018-04-25 2019-11-08 东华大学 一种纤维基多层结构摩擦纳米发电机及其制备方法
CN111327223B (zh) * 2018-12-14 2020-12-29 天津理工大学 摩擦纳米发电机摩擦层材料及其制备方法和应用
CN109525141B (zh) * 2018-12-28 2020-09-25 大连民族大学 风力纳米摩擦发电机
WO2020236895A1 (en) * 2019-05-20 2020-11-26 Liquid X Printed Metals, Inc. Triboelectric energy generation methods and articles
CN110376184B (zh) * 2019-06-14 2020-07-28 清华大学 基于摩擦电的微等离子体发生装置及自供能气体传感器
CN110367938B (zh) * 2019-08-13 2022-05-13 重庆大学产业技术研究院 具有柔性分形结构的摩擦纳米发电传感器填充物及其应用
CN111245081B (zh) * 2020-01-21 2023-06-20 电子科技大学 自供能汽车尾气传感器与方法
CN111998731B (zh) * 2020-06-19 2023-08-18 江苏大学 一种基于超弹性体材料摩擦生电的箭靶环数检测装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130015794A (ko) * 2011-08-05 2013-02-14 한양대학교 산학협력단 표면 플라즈몬을 이용한 광소자
KR20130050166A (ko) * 2011-11-07 2013-05-15 삼성전자주식회사 표면 플라즈몬 공명을 이용하여 발광 특성이 향상된 발광소자
KR20150139282A (ko) * 2014-06-03 2015-12-11 한국과학기술연구원 하이브리드 에너지 발생 장치

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5515658B2 (ja) 2009-11-13 2014-06-11 コニカミノルタ株式会社 有機太陽電池素子及び有機太陽電池素子の製造方法
JP2011123205A (ja) * 2009-12-09 2011-06-23 Fuji Xerox Co Ltd 表示装置
KR101324707B1 (ko) 2011-03-21 2013-11-05 (주)월드튜브 방열용 조성물 및 이를 이용한 방열제품
US9178446B2 (en) 2011-08-30 2015-11-03 Georgia Tech Research Corporation Triboelectric generator
CN103946986A (zh) * 2011-11-14 2014-07-23 太平洋银泰格拉泰德能源公司 用于电磁能量收集的设备、系统和方法
US10153059B2 (en) * 2012-02-24 2018-12-11 The Regents Of The University Of California Charged particle acceleration device
US9790928B2 (en) * 2012-09-21 2017-10-17 Georgia Tech Research Corporation Triboelectric generators and sensors
CN103368452B (zh) * 2013-03-08 2016-03-30 北京纳米能源与系统研究所 静电脉冲发电机和直流脉冲发电机
CN103795288B (zh) * 2013-04-19 2016-03-16 北京纳米能源与系统研究所 一种转动式静电发电装置
KR20140126607A (ko) * 2013-04-23 2014-10-31 삼성전자주식회사 터치입력 모듈과 에너지 발생소자를 포함하는 스마트 장치 및 이 스마트 장치의 동작 방법
CN103779885B (zh) * 2013-09-26 2015-12-23 北京纳米能源与系统研究所 恒压自充电能量供给设备及其制造方法
KR101792648B1 (ko) 2014-04-11 2017-11-02 이성균 설탕 흑연 미세 분말, 설탕 그래핀
KR101690833B1 (ko) 2014-06-20 2016-12-29 한국과학기술원 자연 복제 구조를 갖는 접촉 대전 발전기 및 그 생성 방법
KR20160031620A (ko) * 2014-09-12 2016-03-23 삼성디스플레이 주식회사 표시장치
KR101535472B1 (ko) 2015-02-16 2015-07-14 조종수 초박막 열확산시트 및 그 제조방법
CN105099259A (zh) * 2015-08-20 2015-11-25 京东方科技集团股份有限公司 摩擦发电装置及其制作方法
KR102578823B1 (ko) * 2016-05-10 2023-09-15 삼성전자주식회사 마찰전기 발전기

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130015794A (ko) * 2011-08-05 2013-02-14 한양대학교 산학협력단 표면 플라즈몬을 이용한 광소자
KR20130050166A (ko) * 2011-11-07 2013-05-15 삼성전자주식회사 표면 플라즈몬 공명을 이용하여 발광 특성이 향상된 발광소자
KR20150139282A (ko) * 2014-06-03 2015-12-11 한국과학기술연구원 하이브리드 에너지 발생 장치

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190108453A (ko) 2018-03-14 2019-09-24 한양대학교 산학협력단 캡슐 구조의 마찰 전기 나노발전기 및 그 제조 방법
KR20200121449A (ko) * 2019-04-16 2020-10-26 연세대학교 산학협력단 고내구성 자가구동 환경센서

Also Published As

Publication number Publication date
KR102600148B1 (ko) 2023-11-08
US20180062543A1 (en) 2018-03-01
CN107769607B (zh) 2021-06-04
EP3288172A1 (en) 2018-02-28
CN107769607A (zh) 2018-03-06
EP3288172B1 (en) 2019-03-06
US10587207B2 (en) 2020-03-10

Similar Documents

Publication Publication Date Title
KR20180022098A (ko) 표면 플라즈몬 공명을 이용한 마찰전기 발전기
US11431265B2 (en) Triboelectric generator
KR102578823B1 (ko) 마찰전기 발전기
EP2975758B1 (en) Sliding frictional nano generator and power generation method
KR102553838B1 (ko) 마찰전기 발전기
EP2975759B1 (en) Sliding frictional nano generator and power generation method
CN106067739B (zh) 摩擦电产生器
Kim et al. Triboelectric charge-driven enhancement of the output voltage of BiSbTe-based thermoelectric generators
KR102581468B1 (ko) 전극 구조체, 이를 포함하는 마찰대전 발전기 및 그 제조 방법
KR101928428B1 (ko) 3d 프린팅을 이용한 마찰대전소자의 제조방법
KR101645134B1 (ko) 형상기억 폴리머 지지체를 이용한 정전기 에너지 발전소자
WO2007100941A2 (en) Closely spaced electrodes with a uniform gap
KR102520855B1 (ko) 마찰전기 발전기
KR20170126757A (ko) 마찰전기 발전기
KR102199791B1 (ko) 마찰 전계 효과를 이용한 열전발전소자
KR102206021B1 (ko) 마찰 전계 효과를 이용한 열전발전소자

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right