KR20180016971A - How to measure surface area of harmonized copper surface - Google Patents

How to measure surface area of harmonized copper surface Download PDF

Info

Publication number
KR20180016971A
KR20180016971A KR1020177025283A KR20177025283A KR20180016971A KR 20180016971 A KR20180016971 A KR 20180016971A KR 1020177025283 A KR1020177025283 A KR 1020177025283A KR 20177025283 A KR20177025283 A KR 20177025283A KR 20180016971 A KR20180016971 A KR 20180016971A
Authority
KR
South Korea
Prior art keywords
copper
etching
thallium
surface area
agcl
Prior art date
Application number
KR1020177025283A
Other languages
Korean (ko)
Inventor
토모코 히라가
카즈히코 이케다
Original Assignee
미쯔비시 가스 케미칼 컴파니, 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 filed Critical 미쯔비시 가스 케미칼 컴파니, 인코포레이티드
Publication of KR20180016971A publication Critical patent/KR20180016971A/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/32Measuring arrangements characterised by the use of electric or magnetic techniques for measuring areas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/42Measuring deposition or liberation of materials from an electrolyte; Coulometry, i.e. measuring coulomb-equivalent of material in an electrolyte
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/48Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • ing And Chemical Polishing (AREA)

Abstract

에칭조화된 구리표면의 표면적을 간편하고 또한 고정도로 측정하는 방법을 제공한다. 상기 과제는, 조화된 구리표면의 표면적을 측정하는 방법으로서, 금속구리의 표면에 생성되는 자연산화구리를 정전위로 제거하는 제1 공정과, 상기 자연산화구리가 제거된 금속구리의 표면에, 정전위로 이종금속의 단분자층을 형성하는 제2 공정과, 상기 이종금속의 단분자층을 정전위로 용해하는 제3 공정을 포함하고, 상기 이종금속의 단분자층을 용해하는 것에 사용된 애노드전기량을 산출함으로써, 조화된 구리표면의 표면적을 구하는, 상기 측정방법에 의해 해결할 수 있다.The present invention provides a method for measuring the surface area of an etched copper surface easily and with high accuracy. The above object is achieved by a method for measuring the surface area of a copper surface, comprising the steps of: removing natural copper oxide formed on the surface of a metal copper on a surface of a metal surface; A second step of forming a monomolecular layer of a dissimilar metal and a third step of dissolving the monomolecular layer of the dissimilar metal on the electrostatic charge to calculate an anode electric charge used for dissolving the monomolecular layer of the dissimilar metal, The surface area of the surface can be determined.

Description

조화된 구리표면의 표면적 측정방법How to measure surface area of harmonized copper surface

본 발명은, 예를 들어 화학에칭액에 의해 조화된 구리표면의 표면적을 전기화학측정에 의해 측정하는 방법에 관한 것이다.The present invention relates to a method for measuring the surface area of a copper surface, for example, chemically etched by a chemical etching solution, by electrochemical measurement.

프린트 배선판에 있어서의 구리와 수지의 사이에서 원하는 밀착성을 유지하는 방법으로서, 구리표면을 화학적 에칭액에 의해 조화시키고, 도 4~도 6(에칭후의 구리표면의 SEM관찰상) 및 도 7(시료의 단면의 SEM관찰상)과 같은 복잡한 형상의 미소요철을 형성하고, 앵커효과에 의해 밀착성을 얻는 방법이 있다. 일반적으로, 무전해구리는 표면이 조화된 후, 드라이필름 레지스트가 적층된다. 또한, 전해구리는 패턴형성후, 배선상부와 측면부가 조화된 후, 빌드업필름이 적층된다.As a method of maintaining a desired adhesion between copper and resin in a printed wiring board, a copper surface is roughened by a chemical etching solution, and FIGS. 4 to 6 (SEM observation of the copper surface after etching) and FIG. 7 There is a method of forming micro concavity and convexity of a complicated shape such as a cross-sectional SEM observation and obtaining an adhesion by an anchor effect. Generally, after the surface of the electroless copper is harmonized, a dry film resist is laminated. Further, after forming the pattern of the electrolytic copper, the buildup film is laminated after the upper and side portions of the wiring are matched.

조화형상의 형성은, 에칭액으로 구리표면을 깊이방향으로 100nm~250nm 정도, 미량에칭하면서 행해진다. 종래, 조화형상형성의 유무나 바람직한 형상의 판단은, 육안이나 주사형 전자현미경 SEM관찰에 의해 행해져 왔다. 그러나, 육안이나 SEM관찰에 의한 판단은, 개인의 경험에 의지할 수 밖에 없는 측면이 있다. 또한, 표면조도계를 이용한 측정방법에 있어서, 표면조도를 나타낸 파라미터인 Ra(산출평균조도), Ry(최대높이), 및 Rz(중점평균조도) 등을 구하고 있으나, 도 4~도 6 및 도 7과 같이 조화형상은 매우 복잡하므로, 그 표면형상을 정량적으로 파악하는 것이 어렵다.The formation of the harmonic shape is performed while etching the copper surface with a small amount of about 100 nm to 250 nm in the depth direction using an etching solution. Conventionally, the presence or absence of a coarse shape and the determination of a preferable shape have been performed by visual observation or scanning electron microscope SEM observation. However, judgments based on visual observation or SEM observation can not help but depend on individual experience. In the measurement method using the surface roughness meter, Ra (calculated average roughness), Ry (maximum height), and Rz (weighted average roughness), which are parameters indicating the surface roughness, It is difficult to grasp the surface shape quantitatively.

특허문헌 1에서는, Ra값이 동일해도, 필강도의 값이 낮고, 밀착성이 나쁜 결과가 되는 비교예가 있다. 특허문헌 1에 있어서의 표 1의 실시예 1~3의 Ra값은 0.25μm이고, 필강도는 1.10~1.20kgf/cm가 되고, 0045단락에 층간절연체와의 밀착성이 양호하다는 기재가 있다. 그러나, 표 2의 비교예의 1~4의 Ra값도 0.25μm로 실시예와 동일하나, 필강도는 0.70kgf/cm로 0027단락에 기재되어 있는 바람직한 필강도의 범위가 아니고, Ra값과 필강도가 정비례의 관계에 없다는 것을 알 수 있다.Patent Document 1 has a comparative example in which the value of the peel strength is low and the adhesion is poor even if the Ra values are the same. The Ra value in Examples 1 to 3 in Table 1 in Patent Document 1 is 0.25 占 퐉, the peel strength is 1.10 to 1.20 kgf / cm, and the short circuit has good adhesion to the interlayer insulator. However, the Ra values of the comparative examples 1 to 4 in Table 2 are also 0.25 占 퐉, which is the same as in the Examples, but the fill strength is 0.70 kgf / cm, which is not the range of preferable fill strength described in paragraph 0027, Can not be directly related to each other.

특허문헌 2에서는, Ra값이 동일해도, 레이저가공 에너지값이 최소가 되지 않는 비교예가 있다. 특허문헌 2의 0019단락에, Ra값을 0.20μm 이상으로 하면, 레이저가공 에너지를 저감할 수 있다고 되어 있고, 표 3의 실시예 1, 4~7, 9 및 10의 Ra값은 0.52μm이며, 구멍형성을 위한 레이저가공 에너지값은 3mJ이다. 그러나, 특허문헌 2에 있어서의 표 3의 비교예 3의 Ra값도 0.52μm로 동일하나, 레이저가공 에너지값이 5mJ로 최소화되지 않고, Ra값과 레이저가공 에너지의 관계가 정비례의 관계에 없다는 것을 알 수 있다.In Patent Document 2, there is a comparative example in which the laser processing energy value is not minimized even if the Ra values are the same. In paragraph [0019] of Patent Document 2, the laser machining energy can be reduced by raising the Ra value to 0.20 탆 or more. The Ra values in Examples 1, 4 to 7, 9 and 10 in Table 3 are 0.52 탆, The laser machining energy value for the hole formation is 3 mJ. However, the Ra value in Comparative Example 3 of Table 3 in Patent Document 2 is also 0.52 占 퐉, but the laser processing energy value is not minimized to 5 mJ, and the relationship between the Ra value and the laser processing energy is not in direct proportion Able to know.

특허문헌 1 및 2의 Ra값은, 조화된 표면을 측정한 결과이나, 도 4~도 6 및 도 7에 나타낸 바와 같이 조화형상은 복잡하므로, 측정면의 수직방향으로부터 광학적 혹은 탐침으로 기계적으로 측정하는 방법으로는, 표면조도를 정확히 구하는 것이 어려워 표면의 상태를 정량적으로 평가하지 못할 우려가 있다. 이러한 경우, 실제로 드라이필름 레지스트나 빌드업필름 등을 적층하고 필강도를 측정할 필요가 있으며, 조작이 번잡함과 함께 평가까지의 시간이 걸리므로 공정관리에는 사용할 수 없는 등의 문제점이 있다.The Ra values in Patent Documents 1 and 2 are the results of measuring the harmonized surface, but as shown in Figs. 4 to 6 and Fig. 7, since the harmonic shape is complex, the Ra value is measured optically from the vertical direction of the measurement surface or mechanically measured with the probe It is difficult to obtain the surface roughness accurately, and there is a possibility that the state of the surface can not be quantitatively evaluated. In such a case, it is necessary to actually laminate a dry film resist or a build-up film to measure the peel strength, and it is troublesome to operate and it takes a long time to evaluate it, and thus it has a problem that it can not be used for process control.

구리표면의 요철을 평가하는 방법으로서, 언더포텐셜석출법을 이용하여 전기화학적으로 구리의 표면적을 측정하는 방법이 있다.As a method of evaluating the unevenness of the copper surface, there is a method of electrochemically measuring the surface area of copper using the under-potential deposition method.

비특허문헌 1은, 태양광 발전에 사용되는 화학적 또는 전기화학적 산화에 의해 형성된 감광성 나노구조를 갖는 산화제1구리 및 산화제2구리의 활성표면적을, 탈륨 단분자층 언더포텐셜석출법을 이용하여 측정하고 있다. 우선, -0.80V vs Ag/AgCl로 자연산화구리를 제거하고, 계속해서 -0.69V vs Ag/AgCl로 탈륨 단분자층을 형성하고, 50mV/초로 전위를 애노드측으로 스위프하여, 탈륨을 용해시키고 있다.In Non-Patent Document 1, the active surface area of cuprous oxide and cupric oxide having a photosensitive nanostructure formed by chemical or electrochemical oxidation used in solar power generation is measured using a thallium monolayer underpotential deposition method. First, the natural oxide copper is removed with -0.80 V vs Ag / AgCl, and subsequently, a thallium monolayer is formed with -0.69 V vs Ag / AgCl, and the potential is swept to the anode side at 50 mV / sec to dissolve the thallium.

이 방법에서는, 정전위법과 전위를 스위프하는 사이클릭볼타메트리법을 조합함으로써, 표면적을 측정하고 있다.In this method, the surface area is measured by combining the electrostatic potential method and the cyclic voltammetry method of sweeping the potential.

비특허문헌 1은, 정전위법과 사이클릭볼타메트리법으로 표면적의 측정을 행하고 있으나, 순서가 번잡하여, 보다 고정도인 정량을 행하기 위한 수법을 검토하지 않고, 보다 간편하게 재현성 좋게 정량할 수 있는 방법의 개발이 요구되고 있다(비교예 1 참조).Non-Patent Document 1 discloses that although the surface area is measured by the electrostatic potential method and the cyclic voltammetry method, the order is complicated, and the method for quantitatively determining a more precise amount is not studied, (See Comparative Example 1).

일본특허공개 2011-80131Japanese Patent Application Laid-Open No. 2011-80131 일본특허공개 2013-89675Japanese Patent Publication No. 2013-89675

「Evaluation of electrochemically active surface area of photosensitive copper oxide nanostructures with extremely high surface roughness」, Electrochimica Acta,98,109-115(2013)&Quot; Evaluation of electrochemically active surface area of photosensitive copper oxide nanostructures with extremely high surface roughness ", Electrochimica Acta, 98, 109-115 (2013)

본 발명은, 예를 들어 화학에칭에 의해 조화된 구리표면의 표면적을 간편하고 재현성 좋게 측정하는 전기화학적 방법을 제공하는 것을 과제로 한다.An object of the present invention is to provide an electrochemical method for easily and reproducibly measuring the surface area of a copper surface harmonized by, for example, chemical etching.

본 발명은, 이러한 지견에 기초하여 완성한 것이다. 즉, 본 발명은 하기와 같다.The present invention has been completed on the basis of such findings. That is, the present invention is as follows.

<1> 조화된 구리표면의 표면적을 측정하는 방법으로서,&Lt; 1 > A method for measuring a surface area of a copper surface,

금속구리의 표면에 생성되는 자연산화구리를 정전위로 제거하는 제1 공정과,A first step of removing natural copper oxide generated on the surface of the metal copper on the electrostatic charge;

상기 자연산화구리가 제거된 금속구리의 표면에, 정전위로 이종금속의 단분자층을 형성하는 제2 공정과,A second step of forming a monomolecular layer of dissimilar metals on the electrostatic charge on the surface of the copper oxide from which the natural copper oxide has been removed,

상기 이종금속의 단분자층을 정전위로 용해하는 제3 공정을 포함하고,And a third step of dissolving the monomolecular layer of the dissimilar metal on the electrostatic charge,

상기 이종금속의 단분자층을 용해하는 것에 사용된 애노드전기량을 산출함으로써, 조화된 구리표면의 표면적을 구하는, 상기 측정방법이다.And calculating the anode electricity amount used for dissolving the monomolecular layer of the dissimilar metal to obtain the surface area of the roughened copper surface.

<2> 상기 자연산화구리를 제거하는 제1 공정에 있어서의 정전위가, -1.0V~-0.75V vs Ag/AgCl의 범위인 상기 <1>에 기재된 측정방법이다.<2> The method according to <1>, wherein the electrostatic potential in the first step of removing the natural copper oxide is in the range of -1.0 V to -0.75 V vs Ag / AgCl.

<3> 상기 이종금속이 탈륨인 상기 <1> 또는 <2>에 기재된 측정방법이다.<3> The method according to <1> or <2>, wherein the dissimilar metal is thallium.

<4> 상기 이종금속의 단분자층을 형성하는 제2 공정에 있어서의 정전위가, -0.74V~-0.61V vs Ag/AgCl의 범위인 상기 <1> 내지 <3> 중 어느 하나에 기재된 측정방법이다.<4> The method according to any one of <1> to <3>, wherein the electrostatic potential in the second step of forming the monomolecular layer of the dissimilar metal is in the range of -0.74 V to -0.61 V vs Ag / to be.

<5> 제2 공정에 있어서의 처리시간이 50~300초인 상기<1> 내지 <4> 중 어느 하나에 기재된 측정방법이다.<5> The measuring method according to any one of <1> to <4>, wherein the treating time in the second step is 50 to 300 seconds.

<6> 상기 단분자층을 용해하는 제3 공정에 있어서의 정전위가, -0.50V~0.0V vs Ag/AgCl의 범위인 상기 <1> 내지 <5> 중 어느 하나에 기재된 측정방법이다.<6> The method according to any one of <1> to <5>, wherein the electrostatic potential in the third step of dissolving the monolayer is in the range of -0.50 V to 0.0 V vs Ag / AgCl.

<7> 상기 단분자층을 정전위로 용해하는 것에 소비된 애노드전기량을 5회 측정하고, 그 변동계수가 20% 이하인 상기 <1> 내지 <6> 중 어느 하나에 기재된 측정방법이다.<7> The measuring method according to any one of <1> to <6>, wherein the anode electricity amount consumed for dissolving the monolayer on the electrostatic charge is measured five times and the coefficient of variation thereof is 20% or less.

<8> 상기 애노드전기량이, 하기 식(1)에 의해 산출되는 상기 <1> 내지 <7> 중 어느 하나에 기재된 측정방법이다.<8> The measuring method according to any one of <1> to <7>, wherein the anode electricity amount is calculated by the following formula (1).

[수학식 1][Equation 1]

Figure pct00001
Figure pct00001

Qa(mC/cm2): 애노드전기량Q a (mC / cm 2 ): anode electric quantity

i(mA/cm2): 부식전류밀도i (mA / cm 2 ): Corrosion current density

t(s): 시간t (s): time

<9> 상기 얻어진 애노드전기량이, 하기 식(2)에 따라서 표면적 팩터인 fSR로 환산되는 상기 <8>에 기재된 측정방법이다.<9> The method according to <8>, wherein the obtained anode electricity quantity is converted to f SR , which is a surface area factor according to the following equation (2).

[수학식 2]&Quot; (2) &quot;

Figure pct00002
Figure pct00002

Qa: 얻어진 애노드전기량Q a : the obtained anode electricity quantity

QTl: 112μCcm-2 Q TI : 112 μC cm -2

본 발명의 구리표면의 표면적 측정방법에 따르면, 간편하고, 또한 재현성 좋게 측정할 수 있다.According to the method for measuring the surface area of the copper surface of the present invention, measurement can be performed easily and with high reproducibility.

도 1은 비교예 1의 방법(비특허문헌 1에 개시된 사이클릭볼타메트리법)으로 탈륨용해에 사용된 애노드전류를 5회 측정한 결과를 나타낸 그래프이다.
도 2는 실시예 1의 방법으로 정전위하, 자연산화구리용해, 탈륨의 단분자형성 및 탈륨의 용해에 사용된 애노드전류를 5회 측정한 결과를 나타낸 그래프이다.
도 3은 실시예 1에 있어서의 에칭처리전의 구리표면의 SEM사진이다.
도 4는 실시예 1에 있어서의 에칭량이 150nm일 때의 구리표면의 SEM사진이다.
도 5는 실시예 1에 있어서의 에칭량이 200nm일 때의 구리표면의 SEM사진이다.
도 6은 실시예 1에 있어서의 에칭량이 250nm일 때의 구리표면의 SEM사진이다.
도 7은 실시예 1에 있어서의 시료의 단면의 SEM사진이다.
도 8은 본 발명의 표면적의 측정방법을 설명하기 위한 개략도이다.
1 is a graph showing the results of five measurements of the anode current used for thallium dissolution by the method of Comparative Example 1 (cyclic voltammetry method disclosed in Non-Patent Document 1).
Fig. 2 is a graph showing the results of five measurements of the anode current used for the dissolution of natural oxide copper, the formation of monomolecular thallium, and the dissolution of thallium in a static electric field by the method of Example 1. Fig.
3 is an SEM photograph of the copper surface before the etching treatment in Example 1. Fig.
4 is an SEM photograph of the copper surface when the etching amount in Example 1 is 150 nm.
5 is an SEM photograph of the copper surface when the etching amount in Example 1 is 200 nm.
6 is an SEM photograph of the copper surface when the etching amount in Example 1 is 250 nm.
7 is an SEM photograph of a section of the sample in Example 1. Fig.
8 is a schematic view for explaining a method of measuring the surface area of the present invention.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

도 8은, 본 발명의 표면적의 측정방법을 설명하기 위한 개략도이다. 본 발명은, 조화된 구리표면의 표면적을 측정하는 방법으로서, 금속구리의 표면에 생성되는 자연산화구리를 정전위로 제거하는 제1 공정과, 상기 자연산화구리가 제거된 금속구리의 표면에, 정전위로 이종금속의 단분자층을 형성하는 제2 공정과, 상기 이종금속의 단분자층을 정전위로 용해하는 제3 공정을 포함하고, 상기 이종금속의 단분자층을 용해하는 것에 사용된 애노드전기량을 산출함으로써, 조화된 구리표면의 표면적을 구하는, 상기 측정방법이다. 또한, 금속구리를 대기환경하에 방치해두면, 구리가 공기중의 산소와 직접 반응하여 산화제일구리의 피막이 형성되나, 본 발명에서는 이것을 자연산화구리라고 한다.Fig. 8 is a schematic view for explaining a method of measuring the surface area of the present invention. Fig. The present invention relates to a method of measuring the surface area of a roughened copper surface, the method comprising: a first step of removing the natural copper oxide produced on the surface of the copper metal by electrostatic force; A second step of forming a monomolecular layer of a dissimilar metal and a third step of dissolving the monomolecular layer of the dissimilar metal on the electrostatic charge to calculate an anode electric charge used for dissolving the monomolecular layer of the dissimilar metal, And the surface area of the surface is obtained. In addition, when metal copper is left in an atmospheric environment, copper reacts directly with oxygen in the air to form a coating of copper oxide, which is referred to as a natural oxidation oxide in the present invention.

본 발명의 표면적은, 0.5×10-3M의 황산탈륨을 포함하는 1M의 황산나트륨수용액 중에서 측정할 수 있다.The surface area of the present invention can be measured in a 1 M sodium sulfate aqueous solution containing 0.5 x 10 &lt; -3 &gt; M of thallium sulfate.

본 발명의 제1 공정은, 금속구리의 표면에 용이하게 생성되는 자연산화구리를 용해하기 위하여 정전위분극하는 공정이다. 분극전위는, -1.0V~-0.75V vs Ag/AgCl이 바람직하고, -0.90V~-0.77V vs Ag/AgCl이 보다 바람직하고, -0.85V 내지 -0.78V vs Ag/AgCl이 특히 바람직하다. -1.0V vs Ag/AgCl보다 작은 전위로 분극하면, 자연산화구리의 용해가 불충분해질 우려가 있고, -0.75Vvs Ag/AgCl보다 큰 전위로 분극하면, 자연산화구리의 용해가 불충분해질 우려가 있다.The first step of the present invention is a step of performing electrostatic polarization to dissolve natural copper oxide easily generated on the surface of metal copper. The polarization potential is preferably -1.0V to -0.75V vs Ag / AgCl, more preferably -0.90V to -0.77V vs Ag / AgCl, and particularly preferably -0.85V to -0.78V vs Ag / AgCl . If it is polarized at a potential smaller than -1.0 V vs Ag / AgCl, the dissolution of the natural copper oxide may become insufficient, and if it is polarized at a potential larger than -0.75 Vvs Ag / AgCl, the dissolution of the natural copper oxide may become insufficient .

정전위 분극하는 시간은 임의이나, 5초 이상 행하면, 충분히 자연산화구리를 용해할 수 있다. 바람직하게는, 5초~20초이며, 보다 바람직하게는, 5초~10초이다.The time for electrostatic polarization may be arbitrary, but if it is performed for 5 seconds or more, natural copper oxide can be sufficiently dissolved. It is preferably 5 seconds to 20 seconds, and more preferably 5 seconds to 10 seconds.

본 발명의 제2 공정은, 앞선 공정에서 자연산화구리를 용해(제거)한 금속구리의 표면에 이종금속의 단분자층을 형성하는 공정이다. 분극전위는, -0.74V~-0.61V vs Ag/AgCl이 바람직하고, -0.72V~-0.61V vs Ag/AgCl이 보다 바람직하고, -0.70V 내지 -0.61V vs Ag/AgCl이 특히 바람직하다. -0.74V vs Ag/AgCl보다 작은 전위로 분극하면, 의도치 않게 이종금속이온이 단분자가 아니라 벌크로 석출되는 경우가 있으며, -0.61V vs Ag/AgCl보다 큰 전위로 분극하면, 이종금속의 단분자층을 석출하지 않는 경우가 있다.The second step of the present invention is a step of forming a monomolecular layer of dissimilar metals on the surface of the metal copper in which the natural copper oxide is dissolved (removed) in the above step. The polarization potential is preferably -0.74 V to -0.61 V vs Ag / AgCl, more preferably -0.72 V to -0.61 V vs Ag / AgCl, and particularly preferably -0.70 V to -0.61 V vs Ag / AgCl . -0.74 V vs. Ag / AgCl, the dissociated metal ions may unintentionally precipitate in bulk rather than as a single molecule, and when polarized at a potential greater than -0.61 V vs Ag / AgCl, The monolayer may not be precipitated.

또한, 이종금속의 석출시간은, 50초~300초가 바람직하고, 50초~200초가 보다 바람직하고, 100초~200초가 특히 바람직하다. 이종금속의 석출시간이 50초보다 짧으면, 이종금속의 단분자층이 금속구리의 표면의 전부의 면에 형성되지 않을 우려가 있다. 또한, 단분자로 석출하기 때문에, 300초 이상의 시간을 들여도, 애노드전기량은 변함없다.The precipitation time of the dissimilar metals is preferably 50 seconds to 300 seconds, more preferably 50 seconds to 200 seconds, and particularly preferably 100 seconds to 200 seconds. If the deposition time of the dissimilar metals is shorter than 50 seconds, there is a possibility that the monomolecular layer of the dissimilar metal is not formed on the entire surface of the surface of the metal copper. In addition, since it is precipitated as a single molecule, the anode electricity quantity remains unchanged even if it takes 300 seconds or more.

본 발명의 제3 공정은, 상기 공정에서, 이종금속의 단분자층을 형성한 후, 이 이종금속을 정전위로 용해하는 공정이다. 용해하는 전위는 석출전위보다 높으면(貴) 되고, -0.5V~0.0V vs Ag/AgCl이 바람직하고, -0.5V~-0.1V vs Ag/AgCl이 보다 바람직하고, -0.4V~-0.2V가 특히 바람직하다. -0.5V vs Ag/AgCl보다 작은 전위로 분극하면, 이종금속의 단분자층을 충분히 용해할 수 없어, 애노드전류가 흐르지 않을 우려가 있다. 또한, 0.0V vs Ag/AgCl보다 큰 전위로 분극하면, 이종금속의 용해에 사용되는 애노드전류 뿐만 아니라, 구리의 용해에 사용되는 애노드전류도 측정될 가능성이 있다.The third step of the present invention is a step of forming a monomolecular layer of a dissimilar metal and dissolving the dissimilar metal on the electrostatic charge in the above step. The dissolution potential is higher than the precipitation potential and is preferably -0.5V to 0.0V vs Ag / AgCl, more preferably -0.5V to -0.1V vs Ag / AgCl, -0.4V to -0.2V Is particularly preferable. -0.5 V vs. Ag / AgCl, the monomolecular layer of the dissimilar metal can not be sufficiently dissolved and the anode current may not flow. In addition, when polarized at a potential greater than 0.0V vs Ag / AgCl, there is a possibility that not only the anode current used for dissolving dissimilar metals but also the anode current used for dissolving copper can be measured.

이종금속의 단분자층을 용해하는 시간은, 30초~60초가 바람직하고, 30초~45초가 특히 바람직하다. 이종금속의 단분자층을 용해하는 시간이 30초보다 짧으면, 이종금속의 단분자층이 전부 용해되지 않을 우려가 있다. 이종금속의 단분자층을 용해하는 시간이 60초보다 길어도 애노드전기량은 변하지 않는다.The time for dissolving the monomolecular layer of the dissimilar metal is preferably 30 seconds to 60 seconds, particularly preferably 30 seconds to 45 seconds. If the time for dissolving the monomolecular layer of the dissimilar metal is shorter than 30 seconds, the monomolecular layer of the dissimilar metal may not be completely dissolved. Even if the time for dissolving the monomolecular layer of the dissimilar metal is longer than 60 seconds, the anode electricity quantity does not change.

일반적으로 큰 일함수를 갖는 금속상에 작은 일함수를 갖는 금속의 이온이 언더포텐셜 석출된다. 본 발명에 있어서, 구리보다 작은 일함수를 갖는 금속은 탈륨을 들 수 있다. 따라서, 본 발명에서는, 이종금속으로서 특히 탈륨을 바람직하게 사용할 수 있다.Generally, ions of a metal having a small work function on a metal having a large work function are under-deposited. In the present invention, a metal having a work function smaller than copper is thallium. Therefore, in the present invention, thallium is particularly preferably used as the dissimilar metal.

본 발명에서는, 이종금속의 단분자층을 정전위로 용해하는 것에 소비된 애노드전기량을 5회 측정하고, 그 변동계수가 20% 이하인 것이 바람직하고, 15% 이하인 것이 보다 바람직하다.In the present invention, the anode electricity amount consumed for dissolving the monomolecular layer of the dissimilar metal on the electrostatic charge is measured five times, and the coefficient of variation thereof is preferably 20% or less, more preferably 15% or less.

본 발명에 있어서, 애노드전기량은, 하기 식(1)에 의해 산출할 수 있다.In the present invention, the anode electricity quantity can be calculated by the following equation (1).

[수학식 3]&Quot; (3) &quot;

Figure pct00003
Figure pct00003

Qa(mC/cm2): 애노드전기량Q a (mC / cm 2 ): anode electric quantity

i(mA/cm2): 부식전류밀도i (mA / cm 2 ): Corrosion current density

t(s): 시간t (s): time

또한, 얻어진 애노드전기량은, 하기 식(2)에 따라서 표면적 팩터인 fSR로 환산할 수 있다.Further, the obtained anode electricity quantity can be converted into a surface area factor f SR according to the following equation (2).

[수학식 4]&Quot; (4) &quot;

Figure pct00004
Figure pct00004

Qa: 얻어진 애노드전기량Q a : the obtained anode electricity quantity

QTl: 112μCcm-2 Q TI : 112 μC cm -2

실시예Example

본 발명을 더욱 구체적으로 실시예를 이용하여 설명한다. 또한, 본 발명은 하기의 실시예로 한정되어 해석되는 것이 아니다.The present invention will be described more specifically with reference to Examples. The present invention is not limited to the following examples.

실시예Example  And 비교예에서In the comparative example 이용한  Used 에칭조화제Etch conditioning agent

에칭조화제: 미쯔비시가스화학주식회사제의 EMR5100(등록상표) 또는 EMR2000(등록상표)Etching Hardener: EMR5100 (registered trademark) or EMR2000 (registered trademark) manufactured by Mitsubishi Gas Chemical Co.,

전해액Electrolyte

탈륨이온원으로서, 1M의 황산나트륨수용액 중에 황산탈륨을 0.5×10-3M으로 용해시켰다.As the thallium ion source, thallium sulfate was dissolved in an aqueous solution of 1 M sodium sulfate at 0.5 x 10 &lt; -3 &gt; M.

황산탈륨: 와코순약공업주식회사제 특급시약Sulfuric acid thallium: a special grade reagent manufactured by Wako Pure Chemical Industries, Ltd.

황산나트륨: 와코순약공업주식회사제 특급시약Sodium sulphate: a special grade reagent manufactured by Wako Pure Chemical Industries,

측정방법How to measure

1. 정전위분극측정1. Measurement of static polarization

전기화학측정장치(호쿠토덴코주식회사, HZ-5000)를 이용하여, 삼전극법으로 측정하였다. 에칭조화제에 의해 소정의 에칭량(에칭깊이, 150nm, 200nm, 및 250nm)으로 에칭한 구리를 작용전극으로 하고, 백금을 대전극, 루긴관형 염교부착은/염화은전극(호쿠토덴코주식회사, HX-RAg)을 참조전극으로 하고, 1M 황산나트륨수용액 중에 황산탈륨을 0.5×10-3M으로 용해한 전해액 중에서 측정하였다. 측정은 고정전극으로 행하였다.Electrode method, using an electrochemical measuring device (Hokuto Denko Co., Ltd., HZ-5000). (Etching depth: 150 nm, 200 nm, and 250 nm) was etched by an etching harmonizer at a predetermined etching amount, and platinum was used as a counter electrode. RAg) as a reference electrode was measured in an electrolytic solution in which 1 M sodium thiosulfate was dissolved at a concentration of 0.5 10 -3 M. The measurement was performed with a fixed electrode.

2. 표면의 SEM관찰2. SEM observation of the surface

주사형 전자현미경(SEM: 주식회사히다찌하이테크놀로지즈, S3400)을 이용하여, 가속전압 5kV, 배율 20000배의 조건으로 관찰하였다.And observed under the conditions of an acceleration voltage of 5 kV and a magnification of 20000 times using a scanning electron microscope (SEM: Hitachi High Technologies, Inc., S3400).

3. 단면의 SEM관찰3. SEM observation of section

이온밀링을 사용하여, 시료의 단면노출을 행하고 주사형 전자현미경 (SEM:주식회사히다찌하이테크놀로지즈, S3400)를 이용하여, 가속전압 10kV, 배율 3000배의 조건으로 관찰하였다.The single-sided exposure of the sample was performed using ion milling and observed under the conditions of an acceleration voltage of 10 kV and a magnification of 3000 times using a scanning electron microscope (SEM: Hitachi High Technologies, Inc., S3400).

실시예 1Example 1

에칭조화제로서 미쯔비시가스화학사제의 EMR5100(등록상표)을 이용하여, 표면으로부터의 깊이가 150nm, 200nm, 및 250nm가 되도록, 무전해구리(금속구리)막의 에칭조화를 행하였다. 조화상태를 확인하기 위하여, 표면 및 단면의 SEM관찰을 행하였다. 도 3은 에칭처리를 행하지 않은 무전해구리표면의 SEM사진이다. 도 4는 에칭량이 150nm일 때의 구리표면의 SEM사진이며, 도 5는 에칭량이 200nm일 때의 구리표면의 SEM사진이며, 도 6은 에칭량이 250nm일 때의 구리표면의 SEM사진이다. 도 7은 시료의 단면의 SEM사진이다.An electroless copper (metal copper) film was etched by using EMR5100 (registered trademark) manufactured by Mitsubishi Gas Chemical Co., Ltd. as the etching harmony agent so that the depth from the surface was 150 nm, 200 nm, and 250 nm. SEM observation of the surface and the cross section was carried out in order to confirm the harmony state. 3 is an SEM photograph of an electroless copper surface to which no etching treatment is applied. 4 is an SEM photograph of the copper surface when the etching amount is 150 nm, FIG. 5 is an SEM photograph of the copper surface when the etching amount is 200 nm, and FIG. 6 is an SEM photograph of the copper surface when the etching amount is 250 nm. 7 is an SEM photograph of the cross section of the sample.

탈륨이온원으로서, 1M의 황산나트륨수용액 중에 황산탈륨을 0.5×10-3M으로 용해한 용액을 이용하였다.As the thallium ion source, a solution in which thallium sulfate was dissolved in an aqueous solution of 1 M sodium sulfate at 0.5 × 10 -3 M was used.

탈륨을 포함한 전해액 중에, 무전해구리를 침지하고, 에칭한 무전해구리(금속구리)의 표면에 용이하게 생성되는 자연산화구리를 용해하기 위하여, 무전해구리(금속구리)의 작용전극을 -0.80V vs Ag/AgCl의 정전위로 5초간 분극하였다(제1 공정). 계속해서, 탈륨을 단분자층으로 석출(형성)하기 위하여, -0.69V vs Ag/AgCl의 정전위로 200초간 분극하였다(제2 공정). 계속해서, 석출한 탈륨 단분자층을 용해하기 위하여, -0.30V vs Ag/AgCl의 정전위로 30초간 분극하였다(제3 공정).Electroless copper was immersed in the electrolytic solution containing thallium and the working electrode of the electroless copper (metal copper) was changed to -0.80 to dissolve the natural copper oxide easily generated on the surface of the electroless copper (metal copper) V &lt; / RTI &gt; vs Ag / AgCl for 5 seconds on the static charge (first step). Subsequently, in order to precipitate (form) thallium into a monolayer, polarization was carried out for 200 seconds on the positive potential of -0.69 V vs Ag / AgCl (second step). Subsequently, in order to dissolve the precipitated thallium monolayer, it was polarized for 30 seconds on a static charge of -0.30 V vs. Ag / AgCl (third step).

탈륨 단분자층을 용해하는 것에 사용된 애노드전류를 시간으로 적분하고, 애노드전기량Qa을 구하였다.The anode current used to dissolve the thallium monolayer was integrated over time to obtain the anode charge Q a .

애노드전기량은, 하기 식(1)에 의해 산출하였다.The anode electricity quantity was calculated by the following equation (1).

[수학식 5]&Quot; (5) &quot;

Figure pct00005
Figure pct00005

Qa(mC/cm2): 애노드전기량Q a (mC / cm 2 ): anode electric quantity

i(mA/cm2): 부식전류밀도i (mA / cm 2 ): Corrosion current density

t(s): 시간t (s): time

얻어진 애노드전기량은, 하기 식(2)에 따라서 표면적 팩터인 fSR로 환산하였다.The obtained anode electricity quantity was converted into f SR, which is a surface area factor according to the following equation (2).

[수학식 6]&Quot; (6) &quot;

Figure pct00006
Figure pct00006

Qa: 얻어진 애노드전기량Q a : the obtained anode electricity quantity

QTl: 112μCcm-2 Q TI : 112 μC cm -2

112μCcm-2란, 탈륨이 1cm2인 이종금속상에 단분자층을 형성하는 것에 필요한 애노드전기량의 이론값이다.112 占 폚 cm -2 is the theoretical value of the anode electricity amount required to form the monomolecular layer on the dissimilar metal having 1 cm 2 of thallium.

이 조작을 5회 행하고, 애노드전기량의 평균값, 표준편차 및 변동계수를 구하였다. 그 결과를 표 1에 정리하였다.This operation was performed five times, and an average value, a standard deviation and a variation coefficient of the anode electricity amount were obtained. The results are summarized in Table 1.

애노드전기량 및 fSR은, 이하와 같다.The anode electricity quantity and f SR are as follows.

에칭조화전의 평균 Qa0=0.225mC/cm2 The average Q a0 before etching harmonization is 0.225 mC / cm &lt; 2 &gt;

표준편차: 0.024mC/cm2 Standard deviation: 0.024 mC / cm 2

변동계수: 11%          Coefficient of variation: 11%

평균 fSR0=2.01Mean f SR0 = 2.01

표준편차: 0.21          Standard deviation: 0.21

변동계수: 11%          Coefficient of variation: 11%

150nm 에칭조화후의 평균 Qa150=0.330mC/cm2 The average Q a150 after the 150 nm etching harmonization = 0.330 mC / cm &lt; 2 &gt;

표준편차: 0.028mC/cm2 Standard deviation: 0.028 mC / cm 2

변동계수: 9%          Coefficient of variation: 9%

평균 fSR150=2.95Mean f SR150 = 2.95

표준편차: 0.25          Standard deviation: 0.25

변동계수: 9%          Coefficient of variation: 9%

200nm에칭조화후의 평균 Qa200=0.532mC/cm2 The average Q a200 after the 200 nm etching harmonization = 0.532 mC / cm 2

표준편차: 0.061mC/cm2 Standard deviation: 0.061 mC / cm 2

변동계수: 11%          Coefficient of variation: 11%

평균 fSR200=4.75Mean f SR200 = 4.75

표준편차: 0.55          Standard deviation: 0.55

변동계수: 11%          Coefficient of variation: 11%

250nm에칭조화후의 평균 Qa250=0.780mC/cm2 Average Q a250 = 0.780mC / cm 2 after etching conditioner 250nm

표준편차: 0.073mC/cm2 Standard deviation: 0.073 mC / cm 2

변동계수: 9%          Coefficient of variation: 9%

평균 fSR250=6.97Mean f SR250 = 6.97

표준편차: 0.65          Standard deviation: 0.65

변동계수: 9%          Coefficient of variation: 9%

본 발명의 정전위법으로 애노드전기량을 측정한 결과, 에칭량에 따라, fSR로 표시되는 표면적이 증대하는 것을 알 수 있다. 또한, 변동계수는 에칭조화전후나 에칭량의 크기에 따라 상이한 경우가 없고, 약 10%였다.As a result of measuring the anode electricity quantity by the electrostatic potential method of the present invention, it can be seen that the surface area expressed by f SR is increased depending on the etching amount. In addition, the coefficient of variation was not different depending on the amount of etching before and after the etching harmony, and was about 10%.

애노드전기량 및 fSR에 대하여, 에칭전 및 각각 각 에칭량간에 유의차가 있는지 여부를 확인하기 위하여, Tukey-Kramer의 HSD검정을 행하였다. 이 경우에는, 양측 5%의 Tukey검정의 기각한계역은, 2.861이 된다. 하기 표 2에 있어서의 p값이 0.05 이하이면 유의하다고 할 수 있다. 검정의 결과로부터, 에칭조화전의 군, 150nm 에칭조화후, 200nm 에칭조화후, 250nm 에칭조화후의 모든 군의 사이에서 유의차가 있다는 결과가 나타났다(표 2). 이는, 변동계수가 작고 재현성 좋게 측정할 수 있다는 증거이다.An HSD test of Tukey-Kramer was performed to confirm whether there is a significant difference between the anode electric quantity and f SR before etching and between respective etching amounts. In this case, the rejection limit for the 5 percent Tukey test on both sides would be 2.861. It can be said that the p value in Table 2 below is 0.05 or less. The results of the assay show that there is a significant difference between all groups after etch conditioning, after 150 nm etching coarsulation, after 200 nm etching coarsening, and after 250 nm etching coarsulation (Table 2). This is evidence that the coefficient of variation is small and reproducible.

Figure pct00007
Figure pct00007

Figure pct00008
Figure pct00008

비교예 1Comparative Example 1

에칭조화제로서 미쯔비시가스화학사제의 EMR5100(등록상표)을 이용하여, 표면으로부터의 깊이가 150nm, 200nm, 및 250nm가 되도록, 무전해구리(금속구리)막의 에칭조화를 행하였다. 실시예 1과 마찬가지로 조화상태를 확인하기 위하여, 표면 및 단면의 SEM관찰을 행하였다.An electroless copper (metal copper) film was etched by using EMR5100 (registered trademark) manufactured by Mitsubishi Gas Chemical Co., Ltd. as the etching harmony agent so that the depth from the surface was 150 nm, 200 nm, and 250 nm. SEM observation of the surface and the cross section was carried out in order to confirm the coarsened state as in the first embodiment.

탈륨이온원으로서, 1M의 황산나트륨수용액 중에 황산탈륨을 0.5×10-3M으로 용해한 용액을 이용하였다.As the thallium ion source, a solution in which thallium sulfate was dissolved in an aqueous solution of 1 M sodium sulfate at 0.5 × 10 -3 M was used.

탈륨을 포함한 전해액 중에, 무전해구리를 침지하고, 무전해구리(금속구리)의 표면에 용이하게 생성되는 자연산화구리를 용해하기 위하여, 무전해구리(금속구리)의 작용전극을 -0.80V vs Ag/AgCl의 정전위로 5초간 분극하였다. 계속해서, 탈륨을 단분자층으로 석출하기 위하여, -0.69V vs Ag/AgCl의 정전위로 200초간 분극하였다. 계속해서, 석출한 탈륨 단분자층을 용해하기 위하여, -0.70V 내지 -0.30V vs Ag/AgCl까지 50mV/초로 스위프하였다(정전위는 아님).Electroless copper is immersed in an electrolytic solution containing thallium and a working electrode of electroless copper (metal copper) is set to -0.80 V vs &lt; RTI ID = 0.0 &gt; Ag / AgCl for 5 seconds. Subsequently, in order to precipitate thallium as a monolayer, it was polished for 200 seconds on a static charge of -0.69 V vs. Ag / AgCl. Subsequently, in order to dissolve the precipitated thallium monolayer, it was swept to -0.70 V to -0.30 V vs. Ag / AgCl to 50 mV / sec (not a positive potential).

전위가 -0.59V 내지 -0.30V vs Ag/AgCl의 범위인 애노드전류를 시간으로 적분하고, 애노드전기량을 구하였다.An anode current having a potential in the range of -0.59 V to -0.30 V vs Ag / AgCl was integrated with respect to time to obtain an anode electricity quantity.

구한 애노드전기량은, 탈륨이 1cm2의 구리상에 단분자로 생성될 때에 필요한 이론 애노드전기량으로 나누고 fSR로 하였다. 이 조작을 5회 행하고, 애노드전기량의 평균값 및 표준편차를 구하였다. 그 결과를 표 3에 정리하였다.The obtained anode electricity quantity was divided by the theoretical anode electricity quantity required when thallium was produced as a single molecule on 1 cm 2 of copper, and was defined as f SR . This operation was performed five times, and an average value and standard deviation of the anode electricity quantity were determined. The results are summarized in Table 3.

애노드전기량 및 fSR은, 이하와 같다.The anode electricity quantity and f SR are as follows.

에칭조화전의 평균 Qa0=0.227mC/cm2 The average Q a0 before etching harmonization is 0.227 mC / cm &lt; 2 &gt;

표준편차: 0.097mC/cm2 Standard deviation: 0.097 mC / cm 2

변동계수: 43%         Coefficient of variation: 43%

평균 fSR0=2.02Mean f SR0 = 2.02

표준편차: 0.87         Standard deviation: 0.87

변동계수: 43%         Coefficient of variation: 43%

150nm 에칭조화후의 평균 Qa150=0.300mC/cm2 Average Q a150 after 150 nm etching coarsening = 0.300 mC / cm &lt; 2 &gt;

표준편차: 0.108mC/cm2 Standard deviation: 0.108 mC / cm 2

변동계수: 36%         Coefficient of variation: 36%

평균 fSR150=2.68Mean f SR150 = 2.68

표준편차: 0.97         Standard deviation: 0.97

변동계수: 36%         Coefficient of variation: 36%

200nm 에칭조화후의 평균 Qa200=0.658mC/cm2 The average Q a200 after the 200 nm etching harmonization = 0.658 mC / cm 2

표준편차 :0.179mC/cm2 Standard deviation: 0.179 mC / cm 2

변동계수: 27%         Coefficient of variation: 27%

평균 fSR200=5.87Mean f SR200 = 5.87

표준편차: 1.60         Standard deviation: 1.60

변동계수: 27%         Coefficient of variation: 27%

250nm 에칭조화후의 평균 Qa250=0.889mC/cm2 Average Q a250 after etching at 250 nm = 0.889 mC / cm &lt; 2 &gt;

표준편차: 0.227mC/cm2 Standard deviation: 0.227 mC / cm 2

변동계수: 25%         Coefficient of variation: 25%

평균 fSR250=7.94Mean f SR250 = 7.94

표준편차: 2.03         Standard deviation: 2.03

변동계수: 25%         Coefficient of variation: 25%

비특허문헌 1의 방법에 준한 사이클릭볼타메트리법으로 애노드전기량을 측정하면, 에칭량의 증대에 준하여 fSR로 표시되는 표면적이 증대하는 것을 알 수 있으나, 변동계수가 에칭조화전에는, 측정값의 43%, 에칭량이 150nm일 때는 36%, 에칭량이 200nm일 때는 27%, 에칭량이 250nm일 때는 25%로 값이 크고, 게다가 그 값에 큰 차이가 보였다.When the anode electric quantity is measured by the cyclic voltammetry method according to the method of Non-Patent Document 1, it can be seen that the surface area expressed by f SR increases with the increase of the etching amount. However, The etching amount was 27% when the etching amount was 200 nm, and the etching amount was 25% when the etching amount was 250 nm, and a large difference was found in the value.

애노드전기량 및 fSR에 대하여, 에칭전 및 각각 각 에칭량간에 유의차가 있는지 여부를 확인하기 위하여, Tukey-Kramer의 HSD검정을 행하였다. 이 경우에는, 양측 5%의 Tukey검정의 기각한계역은, 2.861이 된다. 하기 표 4에 있어서의 p값이 0.05를 초과하면 유의하다고는 할 수 없다. 검정의 결과로부터, 에칭조화전의 군과 150nm 에칭조화후의 군의 사이에서는 유의차가 없고, 200nm 에칭조화후의 군과 250nm 에칭조화후의 군의 사이에서는 유의차가 없는 결과가 나타났다(표 4). 이는, 변동계수의 값이 크고, 또한 모든 군에서 상이하며, 재현성이 나쁘기 때문이다.An HSD test of Tukey-Kramer was performed to confirm whether there is a significant difference between the anode electric quantity and f SR before etching and between respective etching amounts. In this case, the rejection limit for the 5 percent Tukey test on both sides would be 2.861. If the p value in Table 4 is more than 0.05, it is not meaningful. From the results of the test, there is no significant difference between the group before etch conditioning and the group after 150 nm etching harmonization, and there is no significant difference between the group after 200 nm etch-blend and the group after 250 nm etch-blend (Table 4). This is because the value of the coefficient of variation is large and is different in all the groups and the reproducibility is poor.

Figure pct00009
Figure pct00009

Figure pct00010
Figure pct00010

실시예 2Example 2

에칭조화제로서 미쯔비시가스화학사제의 EMR2000(등록상표)을 이용하여, 표면으로부터의 깊이가 200nm가 되도록, 전해구리(금속구리)막의 에칭조화를 행하였다. 탈륨이온원으로서, 1M의 황산나트륨수용액 중에 황산탈륨을 0.5×10-3M으로 용해한 용액을 이용하였다.Etching of the electrolytic copper (metal copper) film was carried out using EMR2000 (registered trademark) manufactured by Mitsubishi Gas Chemical Company as the etching harmony agent so that the depth from the surface was 200 nm. As the thallium ion source, a solution in which thallium sulfate was dissolved in an aqueous solution of 1 M sodium sulfate at 0.5 × 10 -3 M was used.

탈륨을 포함한 전해액 중에, 무전해구리를 침지하고, 전해구리(금속구리)의 표면에 용이하게 생성된 자연산화구리를 용해하기 위하여, 전해구리(금속구리)의 작용전극을 -0.8V vs Ag/AgCl의 정전위로 5초간 분극하였다(제1 공정). 계속해서, 탈륨을 단분자층으로 석출(형성)하기 위하여, -0.69V vs Ag/AgCl의 정전위로 200초간 분극하였다(제2 공정). 계속해서, 석출한 탈륨 단분자층을 용해하기 위하여, -0.30V vs Ag/AgCl의 정전위로 30초간 분극하였다(제3 공정).Electroless copper was immersed in an electrolytic solution containing thallium and the working electrode of electrolytic copper (metal copper) was immersed in an electrolytic solution of -0.8 V vs Ag / The AgCl was polarized for 5 seconds on the static charge (first step). Subsequently, in order to precipitate (form) thallium into a monolayer, polarization was carried out for 200 seconds on the electrostatic potential of -0.69 V vs Ag / AgCl (second step). Subsequently, in order to dissolve the precipitated thallium monolayer, it was polarized for 30 seconds on a static charge of -0.30 V vs. Ag / AgCl (third step).

실시예 1과 마찬가지로, 탈륨 단분자층을 용해하는 것에 사용된 애노드전류를 시간으로 적분하고, 애노드전기량Qa를 구하였다.As in Example 1, the anode current used for dissolving the thallium monolayer was integrated with respect to time, and the anode electricity quantity Q a was determined.

이 조작을 5회 행하고, 애노드전기량의 평균값, 표준편차 및 변동계수를 구하였다. 그 결과를 표 5에 정리하였다.This operation was performed five times, and an average value, a standard deviation and a variation coefficient of the anode electricity amount were obtained. The results are summarized in Table 5.

애노드전기량 및 fSR은, 이하와 같다.The anode electricity quantity and f SR are as follows.

에칭조화전의 평균 Qa0=0.199mC/cm2 The average Q a0 before etching harmonization is 0.199 mC / cm &lt; 2 &gt;

표준편차: 0.019mC/cm2 Standard deviation: 0.019 mC / cm 2

변동계수: 9.6%           Coefficient of variation: 9.6%

평균 fSR0=1.77Mean f SR0 = 1.77

표준편차: 0.17           Standard deviation: 0.17

변동계수: 10%           Coefficient of variation: 10%

200nm 에칭조화후의 평균 Qa200=0.317mC/cm2 The average Q a200 after the 200 nm etching harmonization = 0.317 mC / cm 2

표준편차: 0.034mC/cm2 Standard deviation: 0.034 mC / cm 2

변동계수: 11%           Coefficient of variation: 11%

평균 fSR200=2.83Mean f SR200 = 2.83

표준편차: 0.31           Standard deviation: 0.31

변동계수: 11%           Coefficient of variation: 11%

본 발명의 정전위법으로 애노드전기량을 측정한 결과, 에칭량에 따라, fSR로 표시되는 표면적이 증대하는 것을 알 수 있다. 또한, 변동계수는 에칭조화전후나 에칭량의 크기에 따라 상이한 경우가 없고, 약 10%였다.As a result of measuring the anode electricity quantity by the electrostatic potential method of the present invention, it can be seen that the surface area expressed by f SR is increased depending on the etching amount. In addition, the coefficient of variation was not different depending on the amount of etching before and after the etching harmony, and was about 10%.

Figure pct00011
Figure pct00011

실시예 3Example 3

에칭조화제로서 미쯔비시가스화학사제의 EMR2000(등록상표)을 이용하여, 표면으로부터의 깊이가 200nm가 되도록, 전해구리(금속구리)막의 에칭조화를 행하였다. 탈륨이온원으로서, 1M의 황산나트륨수용액 중에 황산탈륨을 0.5×10-3M으로 용해한 용액을 이용하였다.Etching of the electrolytic copper (metal copper) film was carried out using EMR2000 (registered trademark) manufactured by Mitsubishi Gas Chemical Company as the etching harmony agent so that the depth from the surface was 200 nm. As the thallium ion source, a solution in which thallium sulfate was dissolved in an aqueous solution of 1 M sodium sulfate at 0.5 × 10 -3 M was used.

실시예 2의 제1 공정에 있어서의, 금속구리의 표면에 용이하게 생성되는 자연산화구리를 용해하기 위한 정전위분극을 -1.5V vs Ag/AgCl의 전위에서 행한 것 이외는, 실시예 2와 동일한 조건으로 조작하였다. 얻어진 애노드전기량의 평균은, 0.242mC/cm2였다. 자연산화구리의 용해가 불충분해져, 탈륨의 단분자층이 구리전면에 형성되는 것이 불충분하기 때문으로 생각된다.The procedure of Example 2 was repeated except that the electrostatic potential polarization for dissolving the natural copper oxide easily generated on the surface of the metal copper in the first step of Example 2 was performed at a potential of -1.5 V vs Ag / And operated under the same conditions. The average of the obtained anode electricity amounts was 0.242 mC / cm &lt; 2 & gt ;. It is considered that the dissolution of natural copper oxide becomes insufficient and the formation of a monolayer of thallium on the entire surface of copper is insufficient.

실시예 4Example 4

에칭조화제로서 미쯔비시가스화학사제의 EMR2000(등록상표)을 이용하여, 표면으로부터의 깊이가 200nm가 되도록, 전해구리(금속구리)막의 에칭조화를 행하였다. 탈륨이온원으로서, 1M의 황산나트륨수용액 중에 황산탈륨을 0.5×10-3M으로 용해한 용액을 이용하였다.Etching of the electrolytic copper (metal copper) film was carried out using EMR2000 (registered trademark) manufactured by Mitsubishi Gas Chemical Company as the etching harmony agent so that the depth from the surface was 200 nm. As the thallium ion source, a solution in which thallium sulfate was dissolved in an aqueous solution of 1 M sodium sulfate at 0.5 × 10 -3 M was used.

실시예 2의 제1 공정에 있어서의, 금속구리의 표면에 용이하게 생성되는 자연산화구리를 용해하기 위한 정전위분극을 -0.70V vs Ag/AgCl의 전위로 행한 것 이외는, 실시예 2와 동일한 조건으로 조작하였다. 얻어진 애노드전기량의 평균은, 0.252mC/cm2였다. 자연산화구리의 용해가 불충분해져, 탈륨의 단분자층이 구리전면에 형성되는 것이 불충분하기 때문으로 생각된다.Example 2 was repeated except that the electrostatic potential polarization for dissolving the natural copper oxide easily generated on the surface of the metal copper in the first step of Example 2 was performed at a potential of -0.70 V vs Ag / AgCl. And operated under the same conditions. The average of the obtained anode electricity amounts was 0.252 mC / cm &lt; 2 & gt ;. It is considered that the dissolution of natural copper oxide becomes insufficient and the formation of a monolayer of thallium on the entire surface of copper is insufficient.

실시예 5Example 5

에칭조화제로서 미쯔비시가스화학사제의 EMR2000(등록상표)을 이용하여, 표면으로부터의 깊이가 200nm가 되도록, 전해구리(금속구리)막의 에칭조화를 행하였다. 탈륨이온원으로서, 1M의 황산나트륨수용액 중에 황산탈륨을 0.5×10-3M으로 용해한 용액을 이용하였다.Etching of the electrolytic copper (metal copper) film was carried out using EMR2000 (registered trademark) manufactured by Mitsubishi Gas Chemical Company as the etching harmony agent so that the depth from the surface was 200 nm. As the thallium ion source, a solution in which thallium sulfate was dissolved in an aqueous solution of 1 M sodium sulfate at 0.5 × 10 -3 M was used.

실시예 2의 제2 공정에 있어서의, 자연산화구리가 제거된 금속구리의 표면에 탈륨의 단분자층을 형성하기 위하여 정전위분극을 -0.8V vs Ag/AgCl의 전위로 행한 것 이외는, 실시예 2와 동일한 조건으로 조작하였다. 얻어진 애노드전기량의 평균은, 2.339mC/cm2였다. 탈륨이온의 일부가 의도치 않게 단분자층이 아니고 벌크로 석출되었기 때문으로 생각된다.Except that the electrostatic potential polarization was performed at a potential of -0.8 V vs Ag / AgCl in order to form a thallium monomolecular layer on the surface of the metal copper from which natural copper oxide had been removed in the second step of Example 2, 2 under the same conditions. The average of the obtained anode electricity amounts was 2.339 mC / cm &lt; 2 & gt ;. It is thought that a part of thallium ions was unintentionally precipitated in a bulk rather than a monolayer.

실시예 6Example 6

에칭조화제로서 미쯔비시가스화학사제의 EMR2000(등록상표)을 이용하여, 표면으로부터의 깊이가 200nm가 되도록, 전해구리(금속구리)막의 에칭조화를 행하였다. 탈륨이온원으로서, 1M 황산나트륨수용액 중에 황산탈륨을 0.5×10-3M으로 용해한 용액을 이용하였다.Etching of the electrolytic copper (metal copper) film was carried out using EMR2000 (registered trademark) manufactured by Mitsubishi Gas Chemical Company as the etching harmony agent so that the depth from the surface was 200 nm. As the thallium ion source, a solution in which thallium sulfate was dissolved in an aqueous solution of 1 M sodium sulfate at 0.5 × 10 -3 M was used.

실시예 2의 제2 공정에 있어서의, 자연산화구리가 제거된 금속구리의 표면에 탈륨의 단분자층을 형성하기 위하여 정전위분극을 -0.6V vs Ag/AgCl의 전위로 행한 것 이외는, 실시예 2와 동일한 조건으로 조작하였다. 얻어진 애노드전기량의 평균은, 0.167mC/cm2였다. 탈륨의 단분자층이 구리전면에 형성되는 것이 불충분하기 때문으로 생각된다.Except that the electrostatic potential polarization was performed at a potential of -0.6 V vs. Ag / AgCl in order to form a monolayer of thallium on the surface of the metal copper from which natural copper oxide had been removed in the second step of Example 2, 2 under the same conditions. The average of the obtained anode electricity amounts was 0.167 mC / cm &lt; 2 & gt ;. It is considered that the formation of a monolayer of thallium on the entire surface of copper is insufficient.

실시예 7Example 7

에칭조화제로서 미쯔비시가스화학사제의 EMR2000(등록상표)을 이용하여, 표면으로부터의 깊이가 200nm가 되도록, 전해구리(금속구리)막의 에칭조화를 행하였다. 탈륨이온원으로서, 1M황산나트륨수용액 중에 황산탈륨을 0.5×10-3M으로 용해한 용액을 이용하였다.Etching of the electrolytic copper (metal copper) film was carried out using EMR2000 (registered trademark) manufactured by Mitsubishi Gas Chemical Company as the etching harmony agent so that the depth from the surface was 200 nm. As the thallium ion source, a solution in which thallium sulfate was dissolved in an aqueous solution of 1 M sodium sulfate at 0.5 × 10 -3 M was used.

실시예 2의 제2 공정에 있어서의, 자연산화구리가 제거된 금속구리의 표면에 탈륨의 단분자층을 형성하기 위한 석출시간을 30초로 행한 것 이외는, 실시예 2와 동일한 조건으로 조작하였다. 얻어진 애노드전기량의 평균은, 0.176mC/cm2였다. 탈륨의 단분자층이 구리전면에 형성되는 것이 불충분하기 때문으로 생각된다.The operation was carried out under the same conditions as in Example 2 except that the precipitation time for forming a thallium monomolecular layer on the surface of the metal copper from which natural copper oxide was removed in the second step of Example 2 was 30 seconds. The average of the obtained anode electricity amounts was 0.176 mC / cm &lt; 2 & gt ;. It is considered that the formation of a monolayer of thallium on the entire surface of copper is insufficient.

실시예 8Example 8

에칭조화제로서 미쯔비시가스화학사제의 EMR2000(등록상표)을 이용하여, 표면으로부터의 깊이가 200nm가 되도록, 전해구리(금속구리)막의 에칭조화를 행하였다. 탈륨이온원으로서, 1M의 황산나트륨수용액 중에 황산탈륨을 0.5×10-3M으로 용해한 용액을 이용하였다.Etching of the electrolytic copper (metal copper) film was carried out using EMR2000 (registered trademark) manufactured by Mitsubishi Gas Chemical Company as the etching harmony agent so that the depth from the surface was 200 nm. As the thallium ion source, a solution in which thallium sulfate was dissolved in an aqueous solution of 1 M sodium sulfate at 0.5 × 10 -3 M was used.

실시예 2의 제3 공정에 있어서의, 탈륨의 단분자층을 용해하기 위한 정전위분극을 0.1V vs Ag/AgCl의 전위로 행한 것 이외는, 실시예 2와 동일한 조건으로 조작하였다. 얻어진 애노드전기량의 평균은, 57.6mC/cm2였다. 탈륨의 단분자층 뿐만 아니라, 구리도 용해되었기 때문으로 생각된다.The same operation as in Example 2 was carried out except that the electrostatic potential polarization for dissolving the thallium monomolecular layer in the third step of Example 2 was set at a potential of 0.1 V vs Ag / AgCl. The average of the obtained anode electricity amounts was 57.6 mC / cm &lt; 2 & gt ;. It is considered that not only the monolayer of thallium but also copper dissolves.

Figure pct00012
Figure pct00012

본 발명의 표면적 측정방법에 의해 표면적을 측정하면, 상기와 같이 간편하고 재현성 좋게 고정도로 표면적을 측정할 수 있다.When the surface area is measured by the surface area measuring method of the present invention, the surface area can be measured to a high degree in a simple and reproducible manner as described above.

산업상의 이용가능성Industrial availability

본 발명의 표면적 측정방법은, 구리나 구리합금으로 이루어진 제품에 있어서, 간편하고 또한 고정도로 표면적을 측정할 수 있고, 산업상의 이용가능성이 높다.The surface area measuring method of the present invention can easily and highly accurately measure the surface area of a product made of copper or a copper alloy and has high industrial applicability.

Claims (9)

조화된 구리표면의 표면적을 측정하는 방법으로서,
금속구리의 표면에 생성되는 자연산화구리를 정전위로 제거하는 제1 공정과,
상기 자연산화구리가 제거된 금속구리의 표면에, 정전위로 이종금속의 단분자층을 형성하는 제2 공정과,
상기 이종금속의 단분자층을 정전위로 용해하는 제3 공정을 포함하고,
상기 이종금속의 단분자층을 용해하는 것에 사용된 애노드전기량을 산출함으로써, 조화된 구리표면의 표면적을 구하는, 상기 측정방법.
A method of measuring the surface area of a coherent copper surface,
A first step of removing natural copper oxide generated on the surface of the metal copper on the electrostatic charge;
A second step of forming a monomolecular layer of dissimilar metals on the electrostatic charge on the surface of the copper oxide from which the natural copper oxide has been removed,
And a third step of dissolving the monomolecular layer of the dissimilar metal on the electrostatic charge,
Wherein the surface area of the coarsened copper surface is obtained by calculating an anode electricity amount used for dissolving the monomolecular layer of the dissimilar metal.
제1항에 있어서,
상기 자연산화구리를 제거하는 제1 공정에 있어서의 정전위가, -1.0V~-0.75V vs Ag/AgCl의 범위인 측정방법.
The method according to claim 1,
Wherein the electrostatic potential in the first step of removing the natural copper oxide is in the range of -1.0 V to -0.75 V vs Ag / AgCl.
제1항 또는 제2항에 있어서,
상기 이종금속이 탈륨인 측정방법.
3. The method according to claim 1 or 2,
Wherein the dissimilar metal is thallium.
제1항 내지 제3항 중 어느 한 항에 있어서,
상기 이종금속의 단분자층을 형성하는 제2 공정에 있어서의 정전위가, -0.74V~-0.61V vs Ag/AgCl의 범위인 측정방법.
4. The method according to any one of claims 1 to 3,
Wherein the electrostatic potential in the second step of forming the monomolecular layer of the dissimilar metal is in the range of -0.74 V to -0.61 V vs Ag / AgCl.
제1항 내지 제4항 중 어느 한 항에 있어서,
제2 공정에 있어서의 처리시간이 50~300초인 측정방법.
5. The method according to any one of claims 1 to 4,
And the treatment time in the second step is 50 to 300 seconds.
제1항 내지 제5항 중 어느 한 항에 있어서,
상기 단분자층을 용해하는 제3 공정에 있어서의 정전위가, -0.50V~0.0V vs Ag/AgCl의 범위인 측정방법.
6. The method according to any one of claims 1 to 5,
Wherein the electrostatic potential in the third step of dissolving the monolayer is in the range of -0.50 V to 0.0 V vs Ag / AgCl.
제1항 내지 제6항 중 어느 한 항에 있어서,
상기 단분자층을 정전위로 용해하는 것에 소비된 애노드전기량을 5회 측정하고, 그 변동계수가 20% 이하인 측정방법.
7. The method according to any one of claims 1 to 6,
Wherein the anode electricity amount consumed for dissolving the monolayer on the electrostatic charge is measured five times, and the coefficient of variation thereof is 20% or less.
제1항 내지 제7항 중 어느 한 항에 있어서,
상기 애노드전기량이, 하기 식(1)에 의해 산출되는 측정방법.
[수학식 1]
Figure pct00013

Qa(mC/cm2): 애노드전기량
i(mA/cm2): 부식전류밀도
t(s): 시간
8. The method according to any one of claims 1 to 7,
Wherein the anode electricity quantity is calculated by the following equation (1).
[Equation 1]
Figure pct00013

Q a (mC / cm 2 ): anode electric quantity
i (mA / cm 2 ): Corrosion current density
t (s): time
제8항에 있어서,
상기 얻어진 애노드전기량이, 하기 식(2)에 따라서 표면적 팩터인 fSR로 환산되는 측정방법.
[수학식 2]
Figure pct00014

Qa: 얻어진 애노드전기량
QTl: 112μCcm-2
9. The method of claim 8,
Wherein the obtained anode electricity quantity is converted to f SR which is a surface area factor according to the following equation (2).
&Quot; (2) &quot;
Figure pct00014

Q a : the obtained anode electricity quantity
Q TI : 112 μC cm -2
KR1020177025283A 2015-06-04 2016-05-31 How to measure surface area of harmonized copper surface KR20180016971A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015113697 2015-06-04
JPJP-P-2015-113697 2015-06-04
PCT/JP2016/065943 WO2016194880A1 (en) 2015-06-04 2016-05-31 Method for measuring surface area of roughened copper surface

Publications (1)

Publication Number Publication Date
KR20180016971A true KR20180016971A (en) 2018-02-20

Family

ID=57441457

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020177025283A KR20180016971A (en) 2015-06-04 2016-05-31 How to measure surface area of harmonized copper surface

Country Status (5)

Country Link
JP (1) JPWO2016194880A1 (en)
KR (1) KR20180016971A (en)
CN (1) CN107615055A (en)
TW (1) TW201704535A (en)
WO (1) WO2016194880A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112290033B (en) * 2020-09-25 2021-09-21 天能电池集团股份有限公司 Method for measuring surface area of plate grid

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56132556A (en) * 1980-03-19 1981-10-16 Agency Of Ind Science & Technol Coulometric analysis
JP3612851B2 (en) * 1996-03-29 2005-01-19 Jfeスチール株式会社 Method for measuring plating adhesion
JP3824011B2 (en) * 2000-12-05 2006-09-20 Jfeスチール株式会社 Determination method of alloy phase in plating layer

Also Published As

Publication number Publication date
TW201704535A (en) 2017-02-01
CN107615055A (en) 2018-01-19
WO2016194880A1 (en) 2016-12-08
JPWO2016194880A1 (en) 2018-04-05

Similar Documents

Publication Publication Date Title
Çapraz et al. Factors controlling stress generation during the initial growth of porous anodic aluminum oxide
CN103069629B (en) Fuel cell separator and method for producing same
Koene et al. Electrochemical behaviour of poly (pyrrole) coatings on steel
Ved et al. Composition and corrosion behavior of iron-cobalt-tungsten
Liu et al. Characterization of anodic oxide growth on commercially pure titanium in NaTESi electrolyte
Kim et al. Corrosion Rate Evaluation of Pulse Electrochemical polishing for stainless steel
Park et al. Study of Cu electrochemical polishing mechanism with observation of water acceptor diffusion
KR20200089698A (en) Magnesium or aluminum metal member with black oxide film and method for manufacturing same
KR20180016971A (en) How to measure surface area of harmonized copper surface
JPWO2019077995A1 (en) Aluminum foil and aluminum parts for electrodes
WO2018062046A1 (en) Aluminum member for electrodes and method for producing aluminum member for electrodes
Jiang et al. A potential method for electrochemical micromachining of titanium alloy Ti6Al4V
Liang et al. Electrochemical behavior of 304 stainless steel with electrodeposited niobium as PEMFC bipolar plates
Whitman et al. Effect of galvanic current on the physicochemical, electrochemical and mechanical properties of an aerospace carbon fiber reinforced epoxy composite
Myrzak et al. The size effect of the corrosion rate of a copper nanowire array. Part I: The corrosion potential variation
Ryu et al. The effect of aluminum ions on the DC etching of aluminum foil
Olthuis et al. Preparation of iridium oxide and its application in sensor-actuator systems
JP2017211217A (en) Evaluation method of corrosion resistance, and repair method of plated product
CN112129825A (en) Oxide film detection method and oxide film detection device
Zahavi et al. A‐C Anodizing Processes of Aluminum Alloys
JP5835827B2 (en) Filling liquid evaluation device, filling property evaluation substrate, filled property evaluation electrode group, and reuse method thereof
Nakayama Mechanistic study by electrochemical impedance spectroscopy on reduction of copper oxides in neutral solutions
JP2018156921A (en) Method of producing aluminum conductive member and aluminum conductive member
Girginov et al. Impact of the preliminary surface treatment of aluminum on its electrochemical behaviour
Yeganeh et al. Comparison of corrosion resistance of nanostructured copper produced in vacuum and electrolytic solution in neutral chloride media