KR20180014500A - 자기 보안 전송 장치, 이를 포함하는 전자 장치 및 모바일 시스템 - Google Patents

자기 보안 전송 장치, 이를 포함하는 전자 장치 및 모바일 시스템 Download PDF

Info

Publication number
KR20180014500A
KR20180014500A KR1020160097850A KR20160097850A KR20180014500A KR 20180014500 A KR20180014500 A KR 20180014500A KR 1020160097850 A KR1020160097850 A KR 1020160097850A KR 20160097850 A KR20160097850 A KR 20160097850A KR 20180014500 A KR20180014500 A KR 20180014500A
Authority
KR
South Korea
Prior art keywords
switching
inductor
inductor current
data
sub
Prior art date
Application number
KR1020160097850A
Other languages
English (en)
Other versions
KR102491814B1 (ko
Inventor
이성우
오형석
강상희
이광찬
조대웅
허정욱
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1020160097850A priority Critical patent/KR102491814B1/ko
Priority to US15/426,397 priority patent/US10430701B2/en
Priority to CN201710615384.1A priority patent/CN107682050B/zh
Publication of KR20180014500A publication Critical patent/KR20180014500A/ko
Priority to US16/578,785 priority patent/US11170360B2/en
Application granted granted Critical
Publication of KR102491814B1 publication Critical patent/KR102491814B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/0075
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/06187Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code with magnetically detectable marking
    • G06K19/06206Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code with magnetically detectable marking the magnetic marking being emulated
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/06187Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code with magnetically detectable marking
    • G06K19/06196Constructional details
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/08Methods or arrangements for sensing record carriers, e.g. for reading patterns by means detecting the change of an electrostatic or magnetic field, e.g. by detecting change of capacitance between electrodes
    • G06K7/082Methods or arrangements for sensing record carriers, e.g. for reading patterns by means detecting the change of an electrostatic or magnetic field, e.g. by detecting change of capacitance between electrodes using inductive or magnetic sensors
    • G06K7/083Methods or arrangements for sensing record carriers, e.g. for reading patterns by means detecting the change of an electrostatic or magnetic field, e.g. by detecting change of capacitance between electrodes using inductive or magnetic sensors inductive
    • G06K7/084Methods or arrangements for sensing record carriers, e.g. for reading patterns by means detecting the change of an electrostatic or magnetic field, e.g. by detecting change of capacitance between electrodes using inductive or magnetic sensors inductive sensing magnetic material by relative movement detecting flux changes without altering its magnetised state
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q20/00Payment architectures, schemes or protocols
    • G06Q20/30Payment architectures, schemes or protocols characterised by the use of specific devices or networks
    • G06Q20/34Payment architectures, schemes or protocols characterised by the use of specific devices or networks using cards, e.g. integrated circuit [IC] cards or magnetic cards
    • G06Q20/352Contactless payments by cards
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07FCOIN-FREED OR LIKE APPARATUS
    • G07F7/00Mechanisms actuated by objects other than coins to free or to actuate vending, hiring, coin or paper currency dispensing or refunding apparatus
    • G07F7/08Mechanisms actuated by objects other than coins to free or to actuate vending, hiring, coin or paper currency dispensing or refunding apparatus by coded identity card or credit card or other personal identification means
    • G07F7/0873Details of the card reader
    • G07F7/088Details of the card reader the card reader being part of the point of sale [POS] terminal or electronic cash register [ECR] itself
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/20Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by the transmission technique; characterised by the transmission medium
    • H04B5/24Inductive coupling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/77Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for interrogation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • Y02B70/16
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Business, Economics & Management (AREA)
  • Signal Processing (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Business, Economics & Management (AREA)
  • Accounting & Taxation (AREA)
  • Strategic Management (AREA)
  • Artificial Intelligence (AREA)
  • Computer Hardware Design (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Near-Field Transmission Systems (AREA)
  • Power Engineering (AREA)

Abstract

자기 보안 전송 장치는 인덕터, 스위칭 회로 및 제어 회로를 포함한다. 상기 인덕터는 데이터 전송 구간에서 자기 스트라이프 데이터를 포함하는 자기 펄스를 방출한다. 상기 스위칭 회로는 상기 인덕터에 연결되고, 스위칭 제어 신호들에 응답하여 온/오프되어 상기 인덕터의 전류 경로를 제공하는 복수의 스위칭 소자들을 포함한다. 상기 제어 회로는 상기 스위칭 제어 신호들을 상기 스위치 회로에 제공하여 상기 데이터 전송 구간과 상기 자기 스트라이프 데이터가 방출되지 않는 데이터 비전송 구간에서 상기 스위칭 소자들의 온/오프를 제어하고, 상기 데이터 비전송 구간에서 상기 인덕터에 흐르는 인덕터 전류가 적어도 하나의 상수 기울기를 가지고 단계적으로(step-wisely) 증가하거나 감소하도록 상기 스위칭 소자들을 제어한다.

Description

자기 보안 전송 장치, 이를 포함하는 전자 장치 및 모바일 시스템 {Magnetic secure transmission device, electronic device and mobile system including the same}
본 발명은 비접촉 결재 수단에 관한 것으로, 보다 상세하게는 자기 보안 전송 장치, 이를 포함하는 전자 장치 및 모바일 시스템에 관한 것이다.
자기 스트라이프 데이터의 송신은 자기 스트라이프 판독기(magnetic stripe reader; MSR)에 자기 스트라이프 카드를 통과시켜(swiping) 지불 기능, 식별(identification; ID) 기능, 및 액세스 제어 기능을 가능하게 하는 것에 의해 주로 이루어져 왔다. 스마트폰 및 태블릿 상의 모바일 월렛 애플리케이션은 기존 상인의 판매시점관리 시스템(point of sale; POS) 디바이스 또는 MSR을 갖는 다른 디바이스와 상호작용함에 있어서 어려움이 있었다. 무접촉 판독기 내장 POS 단말(contactless reader enabled POS terminal)(통상적으로, 예를 들면, ISO 14443 표준을 사용함)은 무접촉 또는 근접장 통신(near field communication; NFC) 지불을 수용할 정도로 흔하지는 않다. 단지 NFC 폰 또는 바코드와 같은 다른 송신 수단과 상호작용하기 위해, 자기 스트라이프 카드만을 수용하는 수백만 대의 상인의 POS 디바이스 또는 도어 락을 교체하는 것은 비용이 많이 들며 시간을 필요로 할 것이다.
많은 나라에서, 발행된 무접촉 지불 카드의 수는 소비자에게 발생된 자기 스트라이프 카드의 수와 비교하면 여전히 작다. 무접촉 통신 성능을 갖는 NFC 칩은 몇몇 모바일 폰에 임베딩되었으며, 카드소유자(cardholder)의 보안 정보를 저장하기 위한 디지털 월렛으로서 구글 및 ISIS와 같은 회사에 의해 사용된다. 이들 NFC 기반의 디지털 월렛은 제한된 수의 NFC 가능 POS 디바이스와의 무접촉 지불 트랜잭션에서 사용될 수 있지만, 이들 NFC 칩기반의 디지털 월렛은 상당한 제약을 갖는다.
이에 따라, 본 발명의 일 목적은 전력 소모를 감소시킬 수 있는 자기 보안 전송 장치를 제공하는 것이다.
본 발명의 일 목적은 상기 자기 보안 전송 장치를 구비하여 전력 소모를 감소시킬 수 있는 전자 장치를 제공하는 것이다.
본 발명의 일 목적은 상기 자기 보안 전송 장치를 구비하여 전력 소모를 감소시킬 수 있는 모바일 시스템을 제공하는 것이다.
상기 일 목적을 달성하기 위한 본 발명의 실시예에 따른 자기 보안 전송 장치는 인덕터, 스위칭 회로 및 제어 회로를 포함한다. 상기 인덕터는 데이터 전송 구간에서 자기 스트라이프 데이터를 포함하는 자기 펄스를 방출한다. 상기 스위칭 회로는 상기 인덕터에 연결되고, 스위칭 제어 신호들에 응답하여 온/오프되어 상기 인덕터의 전류 경로를 제공하는 복수의 스위칭 소자들을 포함한다. 상기 제어 회로는 상기 스위칭 제어 신호들을 상기 스위치 회로에 제공하여 상기 데이터 전송 구간과 상기 자기 스트라이프 데이터가 방출되지 않는 데이터 비전송 구간에서 상기 스위칭 소자들의 온/오프를 제어하고, 상기 데이터 비전송 구간에서 상기 인덕터에 흐르는 인덕터 전류가 적어도 하나의 상수 기울기를 가지고 단계적으로 증가하거나 감소하도록 상기 스위칭 소자들을 제어한다.
상기 일 목적을 달성하기 위한 본 발명의 실시예에 따른 전자 장치는 모바일 디바이스, 자기 보안 전송 장치 및 결제 버튼을 포함한다. 상기 모바일 디바이스는 결제 지갑 어플리케이션을 포함하고, 결제 카드의 자기 스트라이프 데이터를 포함하는 펄스 스트림을 전송한다. 상기 자기 보안 전송 장치는 상기 펄스 스트림을 수신하고, 상기 수신된 펄스 스트림을 증폭 및 정형하며 상기 자기 스트라이프 데이터를 포함하는 자기 펄스를 생성하고 상기 생성된 자기 펄스를 방출한다. 상기 결재 버튼은 상기 결제 카드와 연관되도록 프로그래밍되고, 상기 자기 펄스의 방출을 개시하도록 활성화된다. 상기 자기 보안 전송 장치는 인덕터, 스위칭 회로 및 제어 회로를 포함한다. 상기 인덕터는 데이터 전송 구간에서 상기 자기 스트라이프 데이터를 포함하는 상기 자기 펄스를 방출한다. 상기 스위칭 회로는 상기 인덕터에 연결되고, 스위칭 제어 신호들에 응답하여 온/오프되어 상기 인덕터의 전류 경로를 제공하는 복수의 스위칭 소자들을 포함한다. 상기 제어 회로는 상기 스위칭 제어 신호들을 상기 스위치 회로에 제공하여 상기 데이터 전송 구간과 상기 자기 스트라이프 데이터가 방출되지 않는 데이터 비전송 구간에서 상기 스위칭 소자들의 온/오프를 제어하고, 상기 데이터 비전송 구간에서 상기 인덕터에 흐르는 인덕터 전류가 적어도 하나의 상수 기울기를 가지고 단계적으로 증가하거나 감소하도록 상기 스위칭 소자들을 제어한다.
상기 일 목적을 달성하기 위한 본 발명의 실시예에 따른 모바일 시스템은 모바일 디바이스, 웨어러블 디바이스, 자기 보안 전송 장치 및 결재 버튼을 포함한다. 상기 웨어러블 디바이스는 상기 모바일 디바이스와 연동되어 동작하고, 결제 지갑 어플리케이션을 포함하고, 결제 카드의 자기 스트라이프 데이터를 포함하는 펄스 스트림을 전송한다. 상기 자기 보안 전송 장치는 상기 펄스 스트림을 수신하고, 상기 수신된 펄스 스트림을 증폭 및 정형하며 상기 자기 스트라이프 데이터를 포함하는 자기 펄스를 생성하고 생성된 자기 펄스를 방출한다. 상기 결재 버튼은 상기 결제 카드와 연관되도록 프로그래밍되고, 상기 자기 펄스의 방출을 개시하도록 활성화된다. 상기 자기 보안 전송 장치는 인덕터, 스위칭 회로 및 제어 회로를 포함한다. 상기 인덕터는 데이터 전송 구간에서 상기 자기 스트라이프 데이터를 포함하는 상기 자기 펄스를 방출한다. 상기 스위칭 회로는 상기 인덕터에 연결되고, 스위칭 제어 신호들에 응답하여 온/오프되어 상기 인덕터의 전류 경로를 제공하는 복수의 스위칭 소자들을 포함한다. 상기 제어 회로는 상기 스위칭 제어 신호들을 상기 스위치 회로에 제공하여 상기 데이터 전송 구간과 상기 자기 스트라이프 데이터가 방출되지 않는 데이터 비전송 구간에서 상기 스위칭 소자들의 온/오프를 제어하고, 상기 데이터 비전송 구간에서 상기 인덕터에 흐르는 인덕터 전류가 적어도 하나의 상수 기울기를 가지고단계적으로 증가하거나 감소하도록 상기 스위칭 소자들을 제어한다.
본 발명의 예시적인 실시예들에 따르면, 자기 스트라이프 데이터가 전송되지 않는 데이터 비전송 구간에서 자기 보안 전송 장치의 인덕터를 통하여 흐르는 인덕터 전류가 적어도 하나의 상수 기울기를 가지고 단계적으로 증가 또는 감소하도록 제어하여 데이터 비전송 구간에서 자기 보안 전송 장치의 전력 소모를 감소시킬 수 있다.
도 1은 본 발명의 실시예들에 따른 자기 보안 전송(magnetic secure transmission) 장치를 포함하는 결제 시스템을 나타내는 블록도이다.
도 2는 본 발명의 실시예들에 따른 도 1의 결제 시스템에서 모바일 디바이스의 구성을 나타내는 블록도이다.
도 3은 도 1의 자기 보안 전송 장치에서 스위칭 회로와 인덕터를 나타내는 회로도이다.
도 4는 도 1의 자기 보안 전송 장치에서 도 3의 인덕터를 통하여 흐르는 인덕터 전류를 나타낸다.
도 5는 인덕터 전류가 도 4와 같은 경우, 인덕터를 통하여 방출되는 자기 펄스(또는 자기장)을 나타낸다.
도 6은 본 발명의 실시예들에 따라 도 1의 자기 보안 전송 장치에서 도 3의 인덕터를 통하여 흐르는 인덕터 전류를 나타낸다.
도 7은 인덕터 전류가 도 6과 같은 경우, 인덕터를 통하여 방출되는 자기 펄스(또는 자기장)을 나타낸다.
도 8은 도 6에서 데이터 비전송 구간을 상세히 나타낸다.
도 9는 본 발명의 실시예들에 따라 도 1의 자기 보안 전송 장치에서 도 3의 인덕터를 통하여 흐르는 인덕터 전류를 나타낸다.
도 10은 도 3의 자기 보안 전송 장치에서 인덕터 전류가 각각 도 4 및 도 9와 같이 변화할 때 인덕터 전류의 실효값을 나타내는 그래프이다.
도 11은 본 발명의 실시예들에 따른 도 1의 자기 보안 전송 장치의 구성을 나타내는 블록도이다.
도 12는 본 발명의 실시예들에 따른 도 1의 자기 보안 전송 장치의 구성을 다른 예를 나타내는 블록도이다.
도 13은 도 12의 자기 보안 전송 장치에서 무선 전력 수신 상태를 설명하는 도면이다.
도 14는 도 12의 자기 보안 전송 장치에서 무선 전력 전송 상태를 설명하는 도면이다.
도 15는 본 발명의 실시예들에 따른 도 12의 자기 보안 전송 장치의 인덕터를 나타낸다.
도 16은 본 발명의 실시예들에 따른 자기 보안 전송 장치의 동작 방법을 나타내는 흐름도이다.
도 17은 본 발명의 실시예들에 따른 자기 보안 전송 장치를 포함하는 시스템을 나타내는 블록도이다.
도 18은 도 17의 시스템에서 자기 보안 전송 장치의 초기화 방법을 나타내는 흐름도이다.
도 19는 본 발명의 실시예들에 따른 도 17의 시스템에서 자기 보안 전송 장치의 기능적 블록도이다.
도 20은 본 발명의 일 실시예에 따른 모바일 시스템을 나타내는 블록도이다.
이하, 첨부한 도면들을 참조하여, 본 발명의 바람직한 실시예를 보다 상세하게 설명하고자 한다. 도면상의 동일한 구성요소에 대해서는 동일한 참조부호를 사용하고 동일한 구성요소에 대해서 중복된 설명은 생략한다.
도 1은 본 발명의 실시예들에 따른 자기 보안 전송(magnetic secure transmission) 장치를 포함하는 결제 시스템을 나타내는 블록도이다.
도 1을 참조하면, 결제 시스템(또는 전자 시스템)(10)은 모바일 디바이스(100), 자기 보안 전송 장치(200), POS 단말(460) 및 거래 프로세서(450)를 포함할 수 있다. 모바일 디바이스(100) 및 자기 보안 전송 장치(200)는 전자 장치로 호칭될 수 있다.
자기 보안 전송 장치(200)는 입출력 인터페이스(109)를 통하여 모바일 디바이스(100)와 연결될 수 있다. 상기 입출력 인터페이스(109)는 모바일 디바이스(100)의 오디오 잭 또는 이어폰 잭일 수 있으나 이에 한정되지 않는다. 자기 보안 전송 장치(200)는 모바일 디바이스(100)의 입출력 인터페이스(109)에 연결될 수 있는 동글(dongle) 또는 캡슐의 형태로 제공될 수 있다.
모바일 디바이스(100)는 스마트 폰일 수 있고, 모바일 디바이스(100)에는 지갑 소프트웨어 어플리케이션(105)이 로드된다. POS 단말(400)은 자기 스트라이프 판독 헤드(410), 디코더(420) 및 CPU(central processing unit)(430)를 포함할 수 있다.
표준 ISO/ABA 자기 스트라이프 카드를 판독할 수 있는 일반적인 카드 결제 단말(400)이 구비된 POS 위치에서 결제를 수행하기 위해, 소비자는 자신의 모바일 디바이스(100)에서 상기 지갑 어플리케이션(105)를 선택하고, 결제에 사용하기 원하는 프리로드(preload)된 결제 카드들 중 하나를 선택한다. 소비자는 모바일 디바이스(100)을 들고 POS 단말(400)에 접근시키고, 상기 모바일 디바이스(100) 상의 결제 아이콘/키(107)를 누른다.
상기 모바일 디바이스(100)의 지갑 어플리케이션(105)은, 상기 선택된 카드의 자기 스트라이프 데이터를 포함한 펄스 스트림을 입출력 인터페이스(109)를 통해 자기 보안 전송 장치(200)로 전송한다. 자기 보안 전송 장치(200)는, 변조된 자기 임펄스(impulse)(270)의 형태로 상기 펄스 스트림을 증폭, 정형 및 방출한다.
상기 자기 임펄스(270)는 POS 결제 단말(400)에 위치한 자기 스트라이프 판독 헤드(410)에 의해 검출(pick up)되고, 전기적 펄스로 변환된다. 표준 자기 스트라이프 카드가 POS 결제 단말의 판독 슬롯을 통해 스와이프된 것처럼, 상기 변환된 전기적 펄스는 디코더(420)에 의해 디코딩되고, POS 단말(400)의 CPU(430)에 의해 처리된다. 가맹점주(merchant)는 결제 금액을 입력하고, 거래(transaction)는 POS 단말(400)에 의해 네트워크(460)를 통해 결제 거래 프로세서(450)로 전송된다.
상기 거래 프로세서(450)는 거래 승인을 회신하고, 상기 POS 단말(400)은 영수증을 프린트하고 출력한다. 카드 입력 방법을 제외하고, 상기 전체 거래는 표준 자기 스트라이프 카드를 이용한 것과 동일한 방법으로 완료된다.
자기 보안 전송 장치(200)는 인덕터(230), 스위칭 회로(210) 및 보안 마이크로 컨트롤러(250)를 포함할 수 있다. 스위칭 회로(210)는 입출력 인터페이스(109)를 통하여 모바일 디바이스(100)에 연결되고, 인덕터(230)에 연결될 수 있다. 스위칭 회로(210)는 스위칭 제어 신호들(SCS)에 응답하여 인덕터(230)에 전류 경로를 제공하여 인덕터(230)에 흐르는 인덕터 전류를 조절할 수 있다. 스위칭 회로(210)는 자기 스트라이프 데이터를 포함하는 자기 펄스(270)가 인덕터(230)를 통하여 방출되는 데이터 전송 구간에서는 상기 인덕터 전류가 선형적으로 증가하거나 선형적으로 감소하도록 전류 경로를 제공할 수 있다. 스위칭 회로(210)는 자기 펄스(270)가 인덕터(230)를 통하여 방출되지 않는 데이터 비전송 구간에서는 상기 인덕터 전류가 적어도 하나의 상수 기울기를 가지고 단계적으로 증가하거나 감소하도록 전류 경로를 제공하여 데이터 비전송 구간에서 자기 보안 전송 장치(200)에서 소모되는 전력을 감소시킬 수 있다.
상기 스위칭 제어 신호들(SCS)은 모바일 디바이스(100)의 어플리케이션 프로세서로부터 제공되거나 자기 보안 전송 장치(200)의 보안 마이크로 컨트롤러(250)로부터 제공될 수 있다. 보안 마이크로 컨트롤러(250)는 제어 회로 또는 컨트롤러로 호칭될 수도 있다.
실시예에 있어서, 자기 스트라이프 전송은, 토큰화된(tokenized) 카드 데이터를 POS 단말(400)로 전송하기 위해 사용된다. 상기 실시 예에 있어서, 실제 결제 카드 번호 또는 이중 일부는, 크립토그래픽하게 (cryptographically) 생성된 토큰(token)에 의해 대체되고, 상기 토큰은, 표준 PAN(primary account number)과 유사한 포맷으로 이루어진 토큰 데이터를 포함한, 트랙 데이터(track data)의 형식으로 이루어진다. 상기 PAN은
유효한 BIN(bank identification number)을 포함할 수 있다.
이러한 토큰은, 카드 발행자 또는 또 다른 온라인 소스(source)로부터 다운로드되거나, 또는 로컬하게(locally) 생성된다. 토큰의 MST 전송은, 1회의 거래에만 유효한 크립토그래픽하게 생성된 토큰을 전송함으로써 유효한 카드 번호의 전송을 대체한다. 따라서 상기 토큰의 MST 전송은, 기존의 POS 하드웨어를 전혀 교체할 필요 없이, 표준 자기 스트라이프에 내재된 보안 리스크를 제거한다. 다양한 실시 예에 따르면, 하나 이상의 트랙 데이터(track data)는, 기존의 POS 하드웨어 및 소프트웨어와의 호환성(compatibility)을 향상시키기 위해 전송된다. 이러한 실시 예의 경우, Track 1 데이터의 전송은 Track 2 데이터의 전송에 뒤이어 이루어지거나, 또는 Track 2 데이터의 전송은 Track 1 데이터의 전송에 뒤이어 이루어질 수 있다.
또 다른 실시 예에 따르면, 자기 보안 전송 장치(200)는 카드 데이터의 보안 로컬 저장소(secure local storage)를 제공할 수 있고, 스위칭 회로(210)를 직접적으로 구동할 수 있는 보안 마이크로컨트롤러(secure microcontroller)(250)를 더 포함한다. 상기 실시 예는, 저장-및-전송 모드에서 자기 보안 전송 장치(200)가 모바일 디바이스(100)로부터 분리되어 동작하도록 한다. 일부 실시 예에 있어서, 상기 자기 보안 전송 장치(200)는 카드 데이터 및 다른 개인 정보의 보안 저장소를 위한 휘발성 및 비휘발성 메모리를 더 포함할 수 있다.
실시예에 있어서, 모바일 디바이스(110) 및 자기 보안 전송 장치(200) 사이에 블루투스TM 통신을 사용할 수 있다. 이 경우, 쌍방향(two-way) 통신은 강화된 보안성(security) 및 유연성(flexibility)을 위해 사용되고, 상기 쌍방향 통신은 자기 보안 전송 장치(200) 보안 마이크로컨트롤러(250)에 의해 형성된 보안 엘리먼트(secure element)에 저장된 카드 데이터의 모바일 디바이스(100)에 의한 검색(retrieval)을 포함할 수 있다.
도 2는 본 발명의 실시예들에 따른 도 1의 결제 시스템에서 모바일 디바이스의 구성을 나타내는 블록도이다.
도 2를 참조하면, 모바일 디바이스(100)는 시스템 버스(103)를 통하여 서로 연결되는 어플리케이션 프로세서(120), 통신 및 입/출력부(110), 카메라 모듈(130), 메모리(140), 인터페이스(150), 디스플레이(160) 및 전력 관리 집적 회로(power management integrated circuit, 이하 'PMIC')(170)를 포함할 수 있다. PMIC(170)는 재충전가능한 배터리(180)와 연결되고 배터리 전압(VBAT)를 제공할 수 있다.
어플리케이션 프로세서(120)는 모바일 디바이스(100)의 전반적인 동작을 제어할 수 있다.
통신 및 입/출력부(110)는 외부 장치와 통신을 수행할 수 있고, 사용자로부터 데이터를 수신하거나 데이터를 출력할 수 있다. 통신 및 입/출력부(110)는 베이스밴드 칩 셋(Baseband Chipset)을 포함할 수 있고, 블루투스(Bluetooth) 통신을 수행할 수 있다. 통신 및 입/출력부(110)는 도 1의 입출력 인터페이스(109)를 포함할 수 있다.
카메라 모듈(130)은 이미지 센서를 포함할 수 있고, 촬영 모드에서 이미지 센서에 의하여 얻어지는 정지 영상 또는 동영상 등의 이미지 프레임을 처리한다. 그리고 처리된 이미지 프레임은 디스플레이(160)에 표시될 수 있다. 카메라 모듈(130)에서 처리된 이미지 프레임은 메모리(140)에 저장되거나 통신부(110)를 통하여 외부로 전송될 수 있다.
메모리(140)는 어플리케이션 프로세서(120)의 처리 및 제어를 위한 프로그램이 저장할 수도 있고, 입력되거나 출력되는 데이터들의 임시 저장을 위한 기능을 수행할 수도 있다. 메모리(150)는 플래시 메모리 타입(flash memory type), 하드디스크 타입(hard disk type), 멀티미디어 카드 마이크로 타입(multimedia card micro type), 카드 타입의 메모리(예를 들어 SD 또는 XD 메모리 등), 램, 롬 중 적어도 하나의 타입의 저장매체를 포함할 수 있다.
인터페이스부(150)는 디스플레이(160)와의 인터페이스를 수행한다.
PMIC(170)는 모바일 디바이스(100)가 동작하는데 필요한 배터리 전압(VBAT)을 공급할 수 있다. 배터리(180)는 재충전가능한 배터리로 구현될 수 있다. 예를 들어, 모바일 디바이스(100)가 웨어러블 장치(wearable device)와 같은 휴대용 장치인 경우에, PMIC(170)의 전원 공급 용량은 제한적이기 때문에, 모바일 디바이스(100)의 전력 소모를 감소시키는 것이 중요할 수 있다.
도 3은 도 1의 자기 보안 전송 장치에서 스위칭 회로와 인덕터를 나타내는 회로도이다.
도 3을 참조하면, 스위칭 회로(210)는 제1 내지 제4 스위칭 소자들(SW1~SW4)을 포함할 수 있다.
제1 스위칭 소자(SW1)는 배터리 전압(VBAT)이 제공되는 전원 노드(PN)와 인덕터(230)의 제1 단자에 연결되는 제1 노드(N1) 사이에 연결될 수 있다. 제2 스위칭 소자(SW2)는 제1 노드(N1)와 접지 전압(GND) 사이에 연결될 수 있다. 제3 스위칭 소자(SW3)는 전원 노드(PN)와 인덕터(230)의 제2 단자에 연결되는 제2 노드(N2) 사이에 연결될 수 있다. 제4 스위칭 소자(SW4)는 제2 노드(N2)와 접지 전압(GND) 사이에 연결될 수 있다.
제1 내지 제4 스위칭 소자들(SW1~SW4) 각각에는 어플리케이션 프로세서(120) 또는 제어 회로(250)로부터 제1 내지 제4 스위칭 제어 신호들(SCS1~SCS4)이 인가될 수 있다. 실시예에 있어서, 제1 스위칭 소자(SW1) 및 제3 스위칭 소자(SW3)는 피모스 트랜지스터로 구현될 수 있고, 제2 스위칭 소자(SW2) 및 제4 스위칭 소자(SW4)는 엔모스 트랜지스터로 구현될 수 있다. 다른 실시예에 있어서, 제1 내지 제4 스위칭 소자들(SW1~SW4) 각각은 모스 트랜지스터가 아닌 제1 내지 제4 스위칭 제어 신호들(SCS1~SCS4)에 응답하여 온/오프될 수 있는 소자로 구현될 수 있다.
제1 내지 제4 스위칭 소자들(SW1~SW4)은 제1 내지 제4 스위칭 제어 신호들(SCS1~SCS4)에 응답하여 온/오프되어 인덕터(230)를 통하여 흐르는 인덕터 전류(IL)에 전류 경로를 제공할 수 있다.
도 4는 도 1의 자기 보안 전송 장치에서 데이터 전송 구간과 데이터 비전송 구간에서 도 3의 인덕터를 통하여 흐르는 인덕터 전류를 나타내고, 도 5는 인덕터 전류가 도 4와 같은 경우, 인덕터를 통하여 방출되는 자기 펄스(또는 자기장)를 나타낸다.
도 4에서 구간들(INT11, INT13, INT15)은 각각 인덕터(230)를 통하여 자기 스트라이프 데이터를 포함하는 자기 펄스(270)가 방출되는 데이터 전송 구간을 나타내고, 구간들(INT12, INT14)은 각각 인덕터(230)를 통하여 자기 스트라이프 데이터를 포함하는 자기 펄스(270)가 방출되는 데이터 비전송 구간을 나타낸다.
도 4에서는 제1 내지 제4 스위칭 소자들(SW1~SW4) 중 구간들(INT11~INT15) 각각에서 온-되는 스위칭 소자들을 함께 도시하였다.
도 3 내지 도 5를 참조하면, 데이터 전송 구간인 구간(INT11)에서 제1 스위칭 소자(SW1)와 제4 스위칭 소자(SW4)가 온 되면, 배터리 전압(VBAT)이 연결되는 전원 노드(PN)로부터 제1 스위칭 소자(SW1), 인덕터(230) 및 제4 스위칭 소자(SW4)를 통하여 접지 전압(GND)으로 전류 경로가 형성되어 인덕터 전류(IL)는 선형적으로, VBAT/L(L은 인덕터(230)의 인덕턴스를 나타냄)의 기울기로 증가하게 된다. 이에 따라, 구간(INT11)에서는 인덕터 전류(IL)의 변화에 따라 자기 펄스(270)가 방출되게 된다.
데이터 비전송 구간인 구간(INT12)에서 제2 스위칭 소자(SW2)와 제4 스위칭 소자(SW4)가 오프되고, 제1 스위칭 소자(SW1)와 제3 스위칭 소자(SW3)가 온 되면, 제1 노드(N1)와 제3 노드(N3)의 전위는 서로 동일하게 되므로 인덕터(230) 양단의 전압이 '0'이 되어 인덕터 전류(IL)는 변하지 않고, 최대값으로 유지된다. 이에 따라 구간(INT12)에서는 인덕터 전류(IL)가 변화하지 않으므로 자기 펄스(270)가 방출되지 않는다.
데이터 전송 구간인 구간(INT13)에서 제2 스위칭 소자(SW2)와 제3스위칭 소자(SW3)가 온 되면, 전원 노드(PN)로부터 제3 스위칭 소자(SW3), 인덕터(230) 및 제2 스위칭 소자(SW2)를 통하여 접지 전압(GND)으로 전류 경로가 형성되어 인덕터 전류(IL)는 선형적으로, -VBAT/L의 기울기로 감소하게 된다. 이에 따라, 구간(INT13)에서는 인덕터 전류(IL)의 변화에 따라 자기 펄스(270)가 방출되게 된다.
데이터 비전송 구간인 구간(INT14)에서 제2 스위칭 소자(SW2)와 제4 스위칭 소자(SW4)가 온되고, 제1 스위칭 소자(SW1)와 제3 스위칭 소자(SW3)가 오프되면, 제1 노드(N1)와 제3 노드(N3)의 전위는 서로 동일하게 되므로 인덕터(230) 양단의 전압이 '0'이 되어 인덕터 전류(IL)는 변하지 않고, 최소값으로 유지된다. 이에 따라 구간(INT147)에서는 인덕터 전류(IL)가 변화하지 않으므로 자기 펄스(270)가 방출되지 않는다.
데이터 전송 구간인 구간(INT15)에서 제1 스위칭 소자(SW1)와 제4 스위칭 소자(SW4)가 온 되면, 전원 노드(PN)로부터 제1 스위칭 소자(SW1), 인덕터(230) 및 제4 스위칭 소자(SW4)를 통하여 접지 전압(GND)으로 전류 경로가 형성되어 인덕터 전류(IL)는 선형적으로, VBAT/L의 기울기로 증가하게 된다. 이에 따라, 구간(INT15)에서는 인덕터 전류(IL)의 변화에 따라 자기 펄스(270)가 방출되게 된다.
자기 보안 전송 장치(200)에서 소모되는 전력은 인덕터 전류(IL)의 실효값, 즉 root mean square(rms) 값에 비례하게 되는데 데이터 비전송 구간인 구간(INT12)에서 인덕터 전류(IL)가 최대값으로 유지되고 구간(INT14)에서 인덕터 전류(IL)가 최소값으로 유지되는 경우에 인덕터 전류(IL)의 실효값은 구간들(INT12, INT14)에서 최대가 되므로, 도 4의 실시예의 경우에는 데이터 비전송 구간에서 자기 보안 전송 장치(200)의 소비 전력이 최대가 된다.
도 6은 본 발명의 실시예들에 따라 도 1의 자기 보안 전송 장치에서 데이터 전송 구간과 데이터 비전송 구간에서 도 3의 인덕터를 통하여 흐르는 인덕터 전류를 나타내고, 도 7은 인덕터 전류가 도 6과 같은 경우, 인덕터를 통하여 방출되는 자기 펄스(또는 자기장)를 나타내고, 도 8은 도 6에서 데이터 비전송 구간을 상세히 나타낸다.
도 6에서 구간들(INT21, INT23, INT25)은 각각 인덕터(230)를 통하여 자기 스트라이프 데이터를 포함하는 자기 펄스(270)가 방출되는 데이터 전송 구간을 나타내고, 구간들(INT22, INT24)은 각각 인덕터(230)를 통하여 자기 스트라이프 데이터를 포함하는 자기 펄스(270)가 방출되는 데이터 비전송 구간을 나타낸다.
도 6에서는 제1 내지 제4 스위칭 소자들(SW1~SW4) 중 구간들(INT11~INT15) 각각에서 온-되는 스위칭 소자들을 함께 도시하였다.
도 6에서 데이터 전송 구간인 구간들(INT21, INT23, INT25) 각각은 도 4의 구간들(INT11, INT13, INT15) 각각과 실질적으로 동일하거나 유사하므로 구간들(INT21, INT23, INT25)에 대한 상세한 설명은 생략한다.
도 3, 도 6 내지 도 8을 참조하면, 인덕터 전류(IL)가 선형적으로 증가하는 구간(INT21) 이후의 제1 데이터 비전송 구간(INT22)에서는 제어 회로(250)는 제1 내지 제4 스위칭 제어 신호들(SCS1~SCS4)을 이용하여 인덕터 전류(IL)의 실질적 유지와 선형적 감소가 교번적으로 반복되도록 제1 내지 제4 스위칭 소자들(SW1~SW4)의 온/오프를 제어할 수 있다. 인덕터 전류(IL)가 실질적으로 유지된다는 것은 인덕터 전류(IL)가 일정한 범위 내에서 변동되는 것을 포함할 수 있다.
제1 데이터 비전송 구간(INT22)은 복수의 서브 구간들(S11~S19)로 분할될 수 있다. 서브 구간들(S11~S19)은 인덕터 전류(IL)가 유지되는 제1 서브 구간들(S11, S13, S15, S17, S19) 및 인덕터 전류(IL)가 선형적으로 감소되는 제2 서브 구간들(S12, S14, S18)을 포함할 수 있다. 컨트롤러(250)는 서브 구간들(S11~S19) 각각의 길이가 서로 동일하거나 달라지도록 개별적으로 조절할 수 있다.
제1 서브 구간들(S11, S13, S15, S17, S19) 각각에서는 제2 스위칭 소자(SW2)와 제4 스위칭 소자(SW4)가 오프되고, 제1 스위칭 소자(SW1)와 제3 스위칭 소자(SW3)가 온 되고, 제1 노드(N1)와 제3 노드(N3)의 전위는 서로 동일하게 되므로 인덕터(230) 양단의 전압이 '0'이 되어 인덕터 전류(IL)는 직전 구간의 최소값으로 유지되게 된다. 이에 따라, 제1 서브 구간들(S11, S13, S15, S17, S19) 각각에서는 인덕터 전류(IL)가 변화하지 않으므로 인덕터(230)에서 자기 펄스(270)가 방출되지 않는다.
제2 서브 구간들(S12, S14, S18) 각각에서는 제2 스위칭 소자(SW2)와 제3스위칭 소자(SW3)가 온 되어, 전원 노드(PN)로부터 제3 스위칭 소자(SW3), 인덕터(230) 및 제2 스위칭 소자(SW2)를 통하여 접지 전압(GND)으로 전류 경로가 형성되어 인덕터 전류(IL)는 선형적으로, -VBAT/L의 기울기로 감소하게 된다. 이에 따라, 제2 서브 구간들(S12, S14, S18) 각각에서는 인덕터 전류(IL)의 변화에 따라 자기 펄스(270)가 방출되기는 하나, 자기 펄스(270)의 크기가 매우 작으므로 자기 펄스(270)는 자기 스트라이프 판독 헤드(410)에 의하여 검출되지 않는다. 실시예에 있어서, 제2 서브 구간들(S12, S14, S18) 각각에서, 제어 회로(250)는 제2 스위칭 소자(SW2)와 제3스위칭 소자(SW3)의 온 되는 시간을 조절하여 방출되는 자기 펄스(270)의 크기를 조절할 수 있다. 즉 제어 회로(250)는 제2 스위칭 소자(SW2)와 제3스위칭 소자(SW3)의 온 되는 시간을 조절하여 방출되는 자기 펄스(270)가 자 기 스트라이프 판독 헤드(410)에 의하여 검출되지 않도록 할 수 있다.
서브 구간(S16)에서도 인덕터 전류(IL)의 선형적 감소와 실질적 유지가 반복될 수 있다.
인덕터 전류(IL)가 선형적으로 감소하는 구간(INT23) 이후의 제2 데이터 비전송 구간(INT24)에서는 제어 회로(250)는 제1 내지 제4 스위칭 제어 신호들(SCS1~SCS4)을 이용하여 인덕터 전류(IL)의 실질적 유지와 선형적 증가가 교번적으로 반복되도록 제1 내지 제4 스위칭 소자들(SW1~SW4)의 온/오프를 제어할 수 있다.
제2 데이터 비전송 구간(INT24)은 복수의 서브 구간들(S21~S29)로 분할될 수 있다. 서브 구간들(S21~S29)은 인덕터 전류(IL)가 유지되는 제1 서브 구간들(S21, S23, S25, S27, S29) 및 인덕터 전류(IL)가 선형적으로 증가되는 제2 서브 구간들(S22, S24, S28)을 포함할 수 있다. 컨트롤러(250)는 서브 구간들(S21~S29) 각각의 길이가 서로 동일하거나 달라지도록 개별적으로 조절할 수 있다.
제1 서브 구간들(S21, S23, S25, S27, S29) 각각에서는 제2 스위칭 소자(SW2)와 제4 스위칭 소자(SW4)가 온되고, 제1 스위칭 소자(SW1)와 제3 스위칭 소자(SW3)가 오프되어, 제1 노드(N1)와 제3 노드(N3)의 전위는 서로 동일하게 되므로 인덕터(230) 양단의 전압이 '0'이 되어 인덕터 전류(IL)는 직전 구간의 최대값으로 유지되게 된다. 이에 따라, 제1 서브 구간들(S21, S23, S25, S27, S29) 각각에서는 인덕터 전류(IL)가 변화하지 않으므로 인덕터(230)에서 자기 펄스(270)가 방출되지 않는다.
제2 서브 구간들(S22, S24, S28) 각각에서는 제1 스위칭 소자(SW1)와 제4 스위칭 소자(SW4)가 온 되면, 전원 노드(PN)로부터 제1 스위칭 소자(SW1), 인덕터(230) 및 제4 스위칭 소자(SW4)를 통하여 접지 전압(GND)으로 전류 경로가 형성되어 인덕터 전류(IL)는 선형적으로, VBAT/L의 기울기로 증가하게 된다. 이에 따라, 제2 서브 구간들(S22, S24, S28) 각각에서는 인덕터 전류(IL)의 변화에 따라 자기 펄스(270)가 방출되기는 하나, 자기 펄스(270)의 크기가 매우 작으므로 자기 펄스(270)는 자기 스트라이프 판독 헤드(410)에 의하여 검출되지 않는다. 실시예에 있어서, 제2 서브 구간들(S22, S24, S28) 각각에서, 제어 회로(250)는 제1 스위칭 소자(SW1)와 제4스위칭 소자(SW4)의 온 되는 시간을 조절하여 방출되는 자기 펄스(270)의 크기를 조절할 수 있다. 즉 제어 회로(250)는 제1 스위칭 소자(SW1)와 제4스위칭 소자(SW4)의 온 되는 시간을 조절하여 방출되는 자기 펄스(270)가 자기 스트라이프 판독 헤드(410)에 의하여 검출되지 않도록 할 수 있다.
서브 구간(S26)에서도 인덕터 전류(IL)의 선형적 증가와 선형적 유지가 반복될 수 있다.
도 6 및 도 8에서 제1 데이터 비전송 구간(INT22)이 제2 데이터 비전송 구간(INT24)에 선행하는 것으로 도시되었으나 실시예에 따라, 데이터 전송 구간에서 인덕터 전류(IL)의 선형적 증가와 감소에 따라 제2 데이터 비전송 구간(INT24)이 제1 데이터 비전송 구간(INT22)에 선행할 수도 있다.
도 9는 본 발명의 실시예들에 따라 도 1의 자기 보안 전송 장치에서 데이터 전송 구간과 데이터 비전송 구간에서 도 3의 인덕터를 통하여 흐르는 인덕터 전류를 나타낸다.
도 9에서 구간들(INT31, INT33, INT35)은 각각 인덕터(230)를 통하여 자기 스트라이프 데이터를 포함하는 자기 펄스(270)가 방출되는 데이터 전송 구간을 나타내고, 구간들(INT32, INT34)은 각각 인덕터(230)를 통하여 자기 스트라이프 데이터를 포함하는 자기 펄스(270)가 방출되는 데이터 비전송 구간을 나타낸다.
도 9에서는 제1 내지 제4 스위칭 소자들(SW1~SW4) 중 구간들(INT11~INT15) 각각에서 온되는 스위칭 소자들을 함께 도시하였다.
도 9에서 데이터 전송 구간인 구간들(INT31, INT33, INT35) 각각은 도 4의 구간들(INT11, INT13, INT15) 각각과 실질적으로 동일하거나 유사하므로 구간들(INT31, INT33, INT35)에 대한 상세한 설명은 생략한다.
도 3 및 도 9를 참조하면, 인덕터 전류(IL)가 선형적으로 증가하는 구간(INT31) 이후의 제1 데이터 비전송 구간(INT32)에서는 제어 회로(250)는 제1 내지 제4 스위칭 제어 신호들(SCS1~SCS4)을 이용하여 제1 서브 구간(S31)에서는 인덕터 전류(IL)의 실질적 유지와 선형적 감소가 교번적으로 반복되고, 제1 서브 구간(S31)에 연속하는 제2 서브 구간(S32)에서는 인덕터 전류(IL)가 '0'의 값으로 유지되고, 제2 서브 구간(S32)에 연속하는 제3 서브 구간(S33)에서는 인덕터 전류(IL)의 선형적 증가와 실질적 유지가 교번적으로 반복되도록 제1 내지 제4 스위칭 소자들(SW1~SW4)의 온/오프를 제어할 수 있다. 제1 데이터 비전송 구간(INT32)은 상기의 제1 내지 제3 서브 구간들(S31, S32, S33)을 포함할 수 있다. 제1 서브 구간(S31)에서 스위칭 회로(210)의 동작은 도 8의 제1 데이터 비전송 구간(INT22)의 서브 구간들(S11~S18)과 실질적으로 유사할 수 있다. 제3 서브 구간(S33)에서의 스위칭 회로(210)의 동작은 도 8의 제2 데이터 비전송 구간(INT24)의 서브 구간들(S21~S28)과 실질적으로 유사할 수 있다.
인덕터 전류(IL)가 선형적으로 감소하는 구간(INT33) 이후의 제2 데이터 비전송 구간(INT34)에서는 제어 회로(250)는 제1 내지 제4 스위칭 제어 신호들(SCS1~SCS4)을 이용하여 제1 서브 구간(S41)에서는 인덕터 전류(IL)의 실질적 유지와 선형적 증가가 교번적으로 반복되고, 제1 서브 구간(S41)에 연속하는 제2 서브 구간(S42)에서는 인덕터 전류(IL)가 '0'의 값으로 유지되고, 제2 서브 구간(S42)에 연속하는 제3 서브 구간(S43)에서는 인덕터 전류(IL)의 선형적 감소와 실질적 유지가 교번적으로 반복되도록 제1 내지 제4 스위칭 소자들(SW1~SW4)의 온/오프를 제어할 수 있다. 제2 데이터 비전송 구간(INT42)은 상기의 제1 내지 제3 서브 구간들(S41, S42, S43)을 포함할 수 있다. 제1 서브 구간(S41)에서 스위칭 회로(210)의 동작은 도 8의 제2 데이터 비전송 구간(INT24)의 서브 구간들(S21~S28)과 실질적으로 유사할 수 있다. 제3 서브 구간(S43)에서의 스위칭 회로(210)의 동작은 도 8의 제1 데이터 비전송 구간(INT22)의 서브 구간들(S11~S18)과 실질적으로 유사할 수 있다.
도 9에서 제1 데이터 비전송 구간(INT32)이 제2 데이터 비전송 구간(INT34)에 선행하는 것으로 도시되었으나 실시예에 따라, 데이터 전송 구간에서 인덕터 전류(IL)의 선형적 증가와 감소에 따라 제2 데이터 비전송 구간(INT34)이 제1 데이터 비전송 구간(INT32)에 선행할 수도 있다. 또한 제어 회로(250)는 인덕터 전류(IL)가 실질적으로 유지되는 구간, 선형적으로 증가되는 구간 및 선형적으로 감소되는 구간의 각각의 길이를 개별적으로 조절할 수 있다.
도 10은 도 3의 자기 보안 전송 장치에서 인덕터 전류가 각각 도 4 및 도 9와 같이 변화할 때 인덕터 전류의 실효값을 나타내는 그래프이다.
도 10에서 참조 번호(310)는 도 3의 자기 보안 전송 장치(200)에서 인덕터 전류(IL)가 도 4와 같이 구동될 때 인덕터 전류(IL)의 실효값을 나타내고, 참조 번호(320)는 도 3의 자기 보안 전송 장치(200)에서 인덕터 전류(IL)가 도 9와 같이 구동될 때 인덕터 전류(IL)의 실효값을 나타낸다.
도 10을 참조하여 알 수 있듯이, 도 3의 자기 보안 전송 장치(200)에서 인덕터 전류(IL)가 도 9와 같이 구동될 때 도 4의 경우에 비하여 인덕터 전류(IL)의 실효값이 약 40% 정도 감소한다. 따라서 도 3의 자기 보안 전송 장치(200)에서 인덕터 전류(IL)가 도 9와 같이 구동될 때 도 4의 경우에 비하여 소비 전력은 약 60% 정도 감소될 수 있다.
이와 같이 도 3의 자기 보안 전송 장치(200)에서 데이터 비전송 구간에 인덕터 전류(IL)의 실효값을 감소시켜 소비 전력을 감소시키면, 자기 보안 전송 장치(200)는 전원 공급 용량은 제한적인 웨어러블 디바이스에도 적용할 수 있다.
도 11은 본 발명의 실시예들에 따른 도 1의 자기 보안 전송 장치의 구성을 나타내는 블록도이다.
도 11의 자기 보안 전송 장치(200b)는 도 1의 자기 보안 전송 장치(200)와는 파형 정형기(260)를 더 포함한다는 점에서 차이가 있다.
도 1 및 도 11을 참조하면, 표준 ISO/ABA 자기 스트라이프 카드를 판독할 수 있는 일반적인 카드 결제 단말(400)이 구비된 POS 위치에서 결제를 수행하기 위해, 소비자는 자신의 모바일 디바이스(100)에서 상기 지갑 어플리케이션(105)을 선택하고, 결제에 사용하기 원하는 프리로드(preload)된 결제 카드들 중 하나를 선택한다. 소비자는 모바일 디바이스(100)를 들고 POS 단말(400)에 접근시키고, 상기 모바일 디바이스(100) 상의 결제 아이콘/키(107)를 누른다. 상기 모바일 디바이스(100)의 지갑 어플리케이션(105)은, 상기 선택된 카드의 자기 스트라이프 데이터를 포함한 펄스 스트림을 입출력 인터페이스(109)를 통해 자기 보안 전송 장치(200)로 전송한다.
파형 정형기(260)는 수신된 자기 스프라이프 데이터를 포함한 펄스 스트림의 파형을 자기 임펄스 형태로 정형하고, 자기 임펄스를 스위칭 회로(210)를 통하여 인덕터(230)에 제공한다.
도 12는 본 발명의 실시예들에 따른 도 1의 자기 보안 전송 장치의 구성을 다른 예를 나타내는 블록도이다.
도 12에서는 도 2의 모바일 디바이스(100)의 PMIC(170)에 포함되는 로우-드롭아웃 레귤레이터(이하 'LDO', 175)를 함께 도시한다.
도 12를 참조하면, 자기 보안 전송 장치(200c)는 인덕터(230), 스위칭 회로(210) 및 MST 모듈(270)을 포함할 수 있다. 도 12에서는 도 1의 보안 마이크로 컨트롤러(250)를 도시하지는 않았으나, 보안 마이크로 컨트롤러(250)는 자기 보안 전송 장치(200c)에 포함될 수 있다.
스위칭 회로(210)의 구성과 동작은 도 3을 참조하여 자세히 설명하였으므로 이에 대한 상세한 설명은 생략한다.
MST 모듈(270)은 상태 스위치(MSW) 및 펄스 형성 필터(271)를 포함할 수 있다. 상태 스위치(MSW)는 어플리케이션 프로세서(120) 또는 보안 마이크로 컨트롤러(250)의 제어에 따라 모바일 디바이스(100)가 MST 기능 수행 요청이 발생하는 동안 턴-온 상태를 가질 수 있다. 별도의 MST 기능 실행이 없는 경우 상태 스위치(MSW)는 턴-오프 상태를 가질 수 있다. MST 모듈(270)은 제1 노드(N1)와 인덕터(230)의 제1 단자 사이에 연결되는 제1 커패시터(C1)와 병렬로 배치될 수 있다. 인덕터(230)는 MST 모듈(270)에 직렬 연결될 수 있다. 펄스 형성 필터(271) 내부에도 커패시터가 배치될 수 있다. 펄스 형성 필터(271)에 포함된 커패시터는 용량이 제1 커패시터(C1)에 지정된 크기 이상(예: 50배 이상)의 용량을 가질 수 있다.
도 12의 구조에서 상태 스위치(MSW)가 모드 신호(MS)에 응답하여 턴-온되면, 외부에서 인덕터(230)를 바라는 보는 경우 펄스 형성 필터(271)의 커패시터가 제1 커패시터(C1)에 비하여 상당히 큰 용량 값을 가지기 때문에 제1 커패시터(C1)의 영향 없이 MST 모듈(270)만 인덕터(230)에 연결된 형태와 등가상태가 될 수 있다. 또한, 상태 스위치(MSW)가 턴-오프가 되면, 펄스 형성 필터(271)는 인덕터(230)에 대하여 플로팅 상태가 됨으로써, 펄스 형성 필터(271)에 포함된 커패시터는 실질적으로 제거된 상태가 될 수 있다. 결과적으로 인덕터(230)를 통해 수신된 AC 신호는 제1 커패시터(C1)를 통하여 스위칭 회로(210)에 전달될 수 있다.
제1 스위칭 소자(SW1)와 제3 스위칭 소자(SW3)는 전원 노드(PN)를 통하여 LDO(175)에 연결될 수 있다. LDO(175)는 스위칭 회로(210)를 통해 DC화된 전력을 배터리(180)에 충전시킬 수 있을 정도로 처리하여 PMIC(170)에 전달할 수 있다.
도 13은 도 12의 자기 보안 전송 장치에서 무선 전력 수신 상태를 설명하는 도면이다.
도 13을 참조하면, 무선 전력 충전 상태와 관련하여, 외부로부터 무선 전력이 전송되면 자기 보안 전송 장치(200)의 인덕터(230)의 일단에 AC 신호의 정극이 형성되고, 타단에 AC 신호의 부극이 형성될 수 있다. 인덕터(230) 등에 별도로 마련된 센서를 통해 일정 크기 이상의 신호 흐름이 발생하는 것이 감지되면, 제어 회로(250)는 제1 스위칭 소자(SW1) 및 제4 스위칭 소자(SW4)를 턴-온 상태로 제어하고, 제2 스위칭 소자(SW2) 및 제3 스위칭 소자(SW3)를 턴-오프 상태로 제어할 수 있다. 이에 따라, 인덕터(230)에 형성된 신호는 제1 커패시터(C1)가 배치된 신호 라인을 따라 제1 스위칭 소자(SW1)의 소스 방향으로 흐르고, 턴-온 상태의 제1 스위칭 소자(SW1)를 통하여 LDO(175)로 공급될 수 있다. 여기서 LDO(175)는 공급된 신호를 DC-DC 변환하여 PMIC(170)에 전달할 수 있다. 한편, LDO(175)와 공통 접지되는 제4 스위칭 소자(SW4)를 통하여 해당 신호는 인덕터(230)로 복귀함으로써 제1 스위칭 소자(SW1) 및 제4 스위칭 소자(SW4)를 통한 AC 신호의 1/2 주기가 완료될 수 있다.
외부로부터 전송되는 무선 전력은 AC 신호 특성에 따라 나머지 1/2 주기 동안 특성이 변경되어 제공됨에 따라 코일(120)의 일단에 AC 신호의 부극이 형성되고, 타단에 AC 신호의 정극이 형성될 수 있다. 제어 회로(250)는 제 1 스위칭 소자(SW1) 및 제4 스위칭 소자(SW4)를 턴-오프 상태로 제어하고, 제2 스위칭 소자(SW2) 및 제3 스위칭 소자(SW3)를 턴-온 상태로 제어할 수 있다. 이에 따라, 인덕터(230)에 형성된 신호는 턴-온 상태인 제3 스위칭 소자(SW3)를 통하여 LDO(175)에 전달되고, 공통 접지로 연결된 제2 스위칭 소자(SW3)를 거쳐 제1 커패시터(C1)가 배치된 신호 라인을 통해 회귀할 수 있다. 상술한 동작 과정에서, 스위칭 회로(210)에 포함되는 각각의 스위치들은 AC 신호를 정류하여 DC 신호로 변환하여 LDO(175)에 전달할 수 있다.
도 14는 도 12의 자기 보안 전송 장치에서 무선 전력 전송 상태를 설명하는 도면이다.
도 14를 참조하면, 무선 전력 전송 상태와 관련하여, 자기 보안 전송 장치(200)는 PMIC(170)로부터 공급된 신호를 LDO(175)를 통해 전달받고, 이를 스위칭 회로(210)에 전달하여 인덕터(230) 방향으로 흐르도록 처리할 수 있다.
이와 관련하여, 제어 회로(250)는 제1 스위칭 소자(SW1) 및 제4 스위칭 소자(SW4)를 턴-온 상태로 제어하고, 제2 스위칭 소자(SW2) 및 제3 스위칭 소자(SW3)를 턴-오프 상태로 제어할 수 있다. 이에 따라, 턴-온 상태의 제1 스위칭 소자(SW1), 제1 커패시터(C1)를 포함하는 신호 라인, 인덕터(230), 제4 스위칭 소자(SW4) 및 접지 전압(GND)을 포함하는 경로가 형성될 수 있다.
LDO(175)를 통해 출력된 DC 신호는 스위칭 회로(210)의 스위칭 소자들을 거치면서 AC 형태로 변환되어 인덕터(230)를 흐를 수 있다.
AC 신호의 1/2 주기가 경과하면, 제어 회로(250)는 제1 스위칭 소자(SW1) 및 제4 스위칭 소자(SW4)를 턴-오프하도록 제어하고, 제2 스위칭 소자(SW2) 및 제3 스위칭 소자(SW3)를 턴-온하도록 제어할 수 있다. 이에 따라, LDO(175)를 통해 출력된 DC 신호는 턴-온 상태의 제3 스위칭 소자(SW2), 제4 스위칭 소자(SW4)의 소스, 인덕터(230), 제1 커패시터(C1)가 배치된 신호 라인, 제1 스위칭 소자(SW1)의 소스, 제2 스위칭 소자(SW2) 및 접지 전압(GND)을 포함하는 패스를 따라 이동하면서 인덕터(230)에 AC 신호를 공급할 수 있다.
도 15는 본 발명의 실시예들에 따른 도 12의 자기 보안 전송 장치의 인덕터를 나타낸다.
도 15를 참조하면, 인덕터(230)는 제1 코일(230a)과 제2 코일(230b)을 포함할 수 있고, 도 15에서와 같이 배치될 수 있다.
예를 들어, 제1 코일(230a)은 중심에서부터 일정 크기 이상의 거리에 배치된 적어도 하나의 폐곡선이 배치되는 형태로 마련될 수 있다. 제2 코일(230b)은 제1 코일(230a)의 중앙에 배치되데, 중심에서부터 일정 크기 이하의 거리에 배치된 적어도 하나의 폐곡선이 배치되는 형태로 마련될 수 있다. 도 15에서는 제1 코일(320a)과 제2 코일(320b)이 각각 두 개의 폐곡선이 일정 간격을 가지며 배치되는 것으로 도시하였으나 다양한 실시예들이 이에 한정되는 것은 아니다, 상기 폐곡선의 개수는 실장 영역에 따라 보다 다양한 개수로 확보될 수 있다.
도 16은 본 발명의 실시예들에 따른 자기 보안 전송 장치의 동작 방법을 나타내는 흐름도이다.
도 1 내지 도 11 및 도 16을 참조하면, 본 발명의 실시예들에 따른 자기 보안 전송 장치(200)의 동작 방법에서는 제어 회로(120 또는 250)에 제어에 따라 데이터 전송 구간에서 인덕터(230)를 포함하는 자기 보안 전송 장치(200)를 통하여 POS 단말(400)에 자기 스트립 데이터를 포함하는 자기 펄스(270)를 비접촉으로 전송한다(S510).
상기 데이터 전송 구간 이후의 데이터 비전송 구간에서, 상기 인덕터(230)에 연결되는 스위칭 회로(210)의 복수의 스위칭 소자들(SW1~SW4)을 온/오프를 제어하여 인덕터(230)를 흐르는 인덕터 전류(IL)를 단계적으로 증가 또는 감소시킨다(S520). 실시예에 있어서, 상기 인덕터 전류(IL)를 단계적으로 감소시키기 위하여 인덕터 전류(IL)의 유지와 선형적 감소를 교번적으로 반복시킬 수 있다. 실시예에 있어서, 상기 인덕터 전류(IL)를 단계적으로 증가시키기 위하여 인덕터 전류(IL)의 유지와 선형적 증가를 교번적으로 반복시킬 수 있다.
도 17은 본 발명의 실시예들에 따른 자기 보안 전송 장치를 포함하는 시스템을 나타내는 블록도이다.
도 17을 참조하면, 시스템(20)은 자기 보안 전송 장치(이하 'MST', 400), 모바일 디바이스(100), 지갑 서버(wallet server)(195), 프로비저닝 및 인증 서버(194), 카드 발행자 서버(193), 매입자 서버(acquirer server)(191), POS(400), 결제 네트워크 서버(195), 프로세서 서버(199)(예: 발행자의 서드 파티 프로세서 서버) 및 (도 17에 도시된)
MST(200)의 일부이거나 모바일 디바이스(100) 상에서 지갑 어플리케이션과 단독으로 작동할 수 있는 암호화된 자기 스트라이프 판독기(MSR)(180)를 포함한다. MST(200)는 모바일 디바이스(100)와 접속되거나(interface) 모바일 디바이스(100) 내에 임베디드될(embedded) 수도 있고, 모바일 디바이스(100)는 지갑 서버(195), 프로비저닝 및 인증 서버(194), 카드 발행자 서버(193) 및 매입자 서버(191)와 네트워크(198)를 통해 통신한다. 또한, 지갑 서버(195), 프로비저닝 및 인증 서버(194), 카드 발행자 서버(193), 매입자 서버(191), 결제 네트워크 서버(192) 및 프로세서 서버(199) 각각은 네트워크(198)를 통해 다른 하나와 통신할 수도 있다.
실시예에 있어서, 지갑 서버(195)는 하나 이상의 데이터베이스(196) 및 사용자 계정(197)을 포함할 수도 있다. 하나 이상의 데이터베이스(196)는 MST(200) 및 사용자 계정(197)의 연관 데이터(association data)를 저장할 수 도 있고, MST(200) 및/또는 지갑 서버(195)에 의해 사용되는 하나 이상의 키를 저장할 수도 있다. MST(200)는 이하에서 더 상세히 설명된 것과 같이 사용자 계정(197)에 등록될 수도 있다.
프로비저닝 및 인증 서버(194), 카드 발행자 서버(193) 및 매입자 서버(191)가 본 문서에 개시된 방법이 수행되도록 하는 소프트웨어 및/또는 하드웨어와 같은 하나 이상의 데이터베이스 및 다른 컴포넌트를 포함할 수도 있다는 것이 또한 이해되어야 한다.
설명된 바와 같이, MST(200)는 모바일 디바이스(100)와 연결될 수도 있고 연결이 끊어질 수도 있는 동글(dongle)일 수도 있다. MST(200)는 오디오 포트 및/또는, 예를 들어, USB 포트, 30 핀 또는 9 핀 애플 인터페이스, 블루투스 인터페이스, 근거리 무선 통신(NFC) 및 다른 시리얼 인터페이스를 포함하는, 그러나 이에 제한되지 않는, 다른 타입의 통신 인터페이스를 통해 모바일 디바이스(100)와 통신할 수도 있다. MST(200)가 동글로서 설명된 것과 달리, MST는 블루투스 또는 NFC와 같은 비접촉식 인터페이스를 통해 모바일 디바이스(100)와 통신하는 다른 타입의 주변 디바이스일 수도 있고; 또는 MST(200)는 모바일 디바이스(100)의 일부로서 모바일 통신 디바이스(100)의 내부에 임베디드될 수도 있다.
실시예에 있어서, 사용자는, 예를 들어, 모바일 디바이스(100) 상에 지갑 어플리케이션을 다운로드 및/또는 설치함으로써 지갑 서버(195) 상에 사용자 계정(197)을 셋업할 수도 있다. 지갑 어플리케이션은 사용자가 비대면(CNP: Card-Not-Present) 및 대면(CP: Card-Present) 거래에 사용 가능한 카드의 리스트를 보기 위한 인터페이스일 수도 있다. 실시예에 있어서 사용자는 카드를 고르거나 선택할(choose or select) 수도 있고, 정적 또는 동적-CVV(dCVV(Card Validation Value)) 모드에서 MST(200)를 사용하여 카드에 대응하는 카드 데이터(예를 들어, 카드 트랙 데이터)를 전송할 수도 있다. 유사하게, CNP 거래를 수행하는 경우, 사용자는 동적으로 산출된 만료 일자(EXP) 및 CVV-2를 볼 수도 있고 dCVV CNP 거래를 수행하기 위해 체크아웃 웹 형식을 채우도록 만료 일자(EXP) 및 CVV-2를 사용할 수도 있다.
또한, 사용자는 사용자 계정 웹 포탈에 접근함으로써 네트워크(198)와 연결된 컴퓨터를 사용하여 사용자 계정(197)을 셋업할 수도 있다. 사용자 계정(197)을 셋업하기 위해, 사용자는 사용자 이름, 패스워드 및 개인 PIN을 특정할 수도 있다. 패스워드는 모바일 디바이스(100) 상에서 지갑 어플리케이션에 로그인하는데 사용될 수도 있다. 사용자가 로그인된 경우, 개인 PIN은 지갑 어플리케이션을 언락(unlock)하는데 뿐만 아니라 지갑 어플리케이션의 결제 카드 섹션에 진입하는데 사용될 수도 있다.
도 18은 도 17의 시스템에서 자기 보안 전송 장치의 초기화 방법을 나타내는 흐름도이다.
도 17 및 도 18을 참조하면, 사용자 계정(197)으로, 고유의 디바이스 ID를 갖는, MST(400)를 초기화하는 방법에서는 MST(200)는 모바일 디바이스(100)에 MST(200)를 연결하거나 플러그인함으로써(S610) 사용자 계정(197)에 최초로 등록되거나 초기화된다. 모바일 디바이스(100)에 MST(200)를 연결하면, 지갑 어플리케이션은 MST(200)를 인식하고 사용자의 사용자 계정(197)에 MST(200)를 등록한다(S620). MST(200)가 적절한 사용자 계정에 연결되고 등록되면, MST(200) 및 사용자 계정(197)은 핸드셰이크(handshake)를 수행(S630)할 수도 있고, 명령을 송신하고 수신할 수도 있다(S640).
MST(100)가 사용자 계정(197)에 등록된 경우, 사용자는 MST(200)의 빌트 인(built in) MSR 상에 카드를 스와이핑 함으로써 사용자의 카드를 로드하도록 지갑 어플리케이션을 사용할 수 있고, MST(200) 또는 모바일 디바이스(100)와 연결될 수도 있는 MSR(180)을 분리할 수 있다. 카드 데이터는 디지털화 및 암호화될 수도 있고, 추후 사용을 위해 MST(200) 내에 저장될 수도 있다. 예를 들어, 도 17에 도시된 바와 같이, 카드는 MST(200)에 의해 사용될 수도 있고 거래를 이루도록(effect) POS 단말(400)로 송신될 수도 있다.
도 19는 본 발명의 실시예들에 따른 도 17의 시스템에서 자기 보안 전송 장치의 기능적 블록도이다.
도 19를 참조하면, MST(200)는, 마이크로프로세서(250), 발광 다이오드(LED: light-emitting diode) 인디케이터(2004), 전원(power source)(2006), 선택적으로 자기 스트라이프 판독기(MSR)(2008), 메모리 스토리지 컴포넌트 또는 보안 엘리먼트(2010), 입/출력(input/output) 인터페이스(2012)(예: 3.5mm 또는 다른 표준 오디오 포트, USB 포트/잭 인터페이스, 또는 이에 제한되지 않으나, 30핀 또는 9핀 Apple 인터페이스, 블루투스 인터페이스 및 다른 시리얼(serial) 인터페이스를 포함하는 다른 통신 인터페이스), 및 POS 단말(400)과 같이 MSR을 구비한 어떤 POS 디바이스에 의해 수신될 자기 펄스를 전송하기 위한, 드라이버 및 인덕터를 포함하는 자기장 전송기(magnetic field transmitter)(2014)를 포함한다.
마이크로프로세서(250)는 보안을 관리하고(handle), 모바일 디바이스(100)와 통신한다. 또한, 상기 마이크로프로세서(205)는 암호화된 카드 데이터를 보안 엘리먼트(2010)로 전송하고 보안 엘리먼트(2010)로부터 수신할 수 있다. 자기장 전송기(2014)는 자기 임펄스(magnetic impulse)를 POS 단말(400)의 MSR로 전송함으로써, 카드 소지자의 자기 스트라이프 데이터를 POS 단말(400)로 전송한다. 자기장 전송기(2014)는 도 1의 스위칭 회로(210) 및 인덕터(230)를 포함할 수 있다.
또한, MST(200)는 부가적인 MSR(2008)을 이용함으로써 다른 자기 스트라이프 카드를 판독하는데 사용될 수도 있다. MSR(2008)은, 결제 카드 데이터를 보안 엘리먼트(2010) 상에 로드하기 위해, 그리고 카드 트랙 데이터를 캡처하기 위해 사용될 수도 있다.
위에서 설명된 바와 같이, MST(200)는, 결제 카드에 한하지 않고, 어떠한 유형의 자기 스트라이프 카드도 메모리 수단으로 로드할 수 있는 능력을 가진다. 비결제 카드는, 편의성을 위해, 보안성을 낮추어 별도로 저장될 수도 있다. 예를 들어, 몇몇 비결제 어플리케이션은 도어를 열기 위한 카드, 로열티(loyalty) 카드 등을 포함할 수 있다. 결제 데이터 vs. 비결제 데이터의 로딩(loading)은, 2개의 별개 필드 또는 저장 영역에 분리될 수 도 있다. 예를 들어, 결제 카드는 비결제 스토리지로 로드되지 않을 수도 있다. 예를 들면, 결제 데이터는, 검출될 수 있는 특정한 포맷을 가질 수도 있고, 비결제 스토리지 영역으로 로드되도록 허용되지 않을 수도 있다. 또한, 결제 카드는, 전송되기 전에, 어플리케이션을 통한 인증을 요구할 수도 있다. 반면, 디폴트(default) 비결제 데이터는 인증 없이 전송될 수도 있다.
MST(200)는 오디오 잭 및 USB 연결을 넘어서 (블루투스 및 다른 무선 통신 인터페이스와 같은) 상이한 인터페이스를 통해 모바일 디바이스(100)와 연결될 수 있다. 디바이스, 시스템, 및 방법은, 암호화된 카드 데이터를 MST(200)의 메모리 수단으로 로딩하는 것을 허용할 수 있고, 암호화된 카드 데이터는 추후 복호화될 수 있고, POS(400)로 전송되거나, 또는 암호화되어 모바일 디바이스(100)로 전송되고 그리고 나서 복호화 및 서버 상에서 사용자 계정을 로딩하는 처리 또는 POS 거래의 처리를 위해 결제 서버로 라우팅(routing)될 수 있다.
도 20은 본 발명의 일 실시예에 따른 모바일 시스템을 나타내는 블록도이다.
도 20을 참조하면, 모바일 시스템(30)은 모바일 디바이스(600) 및 웨어러블 디바이스(900)를 포함할 수 있다. 모바일 디바이스(600)는 스마트폰일 수 있고, 웨어러블 디바이스(900)는 모바일 디바이스(600)와 연동되어 동작하는 시계 타입의 웨어러블 장치(wearable device)일 수 있다.
웨어러블 디바이스(900)는 모바일 디바이스(600)와 연동되어 동작하여 모바일 디바이스(600)에 수신되는 메시지나 전화를 디스플레이 패널(910)에 표시할 수 있다. 또한 웨이러블 디바이스(900)는 카메라 모듈(930)을 통하여 촬영한 이미지를 모바일 디바이스(600)로 전송할 수 있다. 또한 웨어러블 디바이스(900)는 모바일 디바이스(600)와는 독립적으로 여러 가지 어플리케이션들을 구동할 수 있다.
모바일 디바이스(600)는 3차원 이미지 센서(700), 2차원 이미지 센서(800) 및 디스플레이 장치(641)를 포함한다. 모바일 디바이스(600)는 터치 스크린(644), 버튼들(643, 645), 마이크(647) 및 스피커(648)를 더 포함할 수 있다.
3차원 이미지 센서(700)는 모바일 디바이스(600)의 제1 면(예를 들어, 전면)에 장착되며, 피사체의 근접 여부를 감지하는 제1 센싱 및 상기 피사체에 대한 거리 정보를 획득하여 상기 피사체의 움직임을 인식(gesture recognition)하는 제2 센싱을 수행한다. 3차원 이미지 센서(700)는 복수의 거리 픽셀들을 구비하는 제1 센싱부(710) 및 적외선 광 또는 근적외선 광을 방출하는 광원부(740)를 포함할 수 있다.
2차원 이미지 센서(800)는 모바일 디바이스(600)의 상기 제1 면에 장착되며, 상기 피사체에 대한 컬러 영상 정보를 획득하는 제3 센싱을 수행할 수 있다. 2차원 이미지 센서(600)는 복수의 컬러 픽셀들을 구비하는 제2 센싱부(810)를 포함할 수 있다.
도 20의 실시예에서, 3차원 이미지 센서(700) 및 2차원 이미지 센서(800)는 두 개의 분리된 집적 회로 칩들로 제조될 수 있다. 즉, 모바일 디바이스(600)는 두 개의 센싱 모듈들을 포함할 수 있다. 이 경우, 상기 복수의 거리 픽셀들 및 상기 복수의 컬러 픽셀들은 두 개의 분리된 픽셀 어레이들을 형성할 수 있다.
모바일 디바이스(600)는 도 1의 모바일 디바이스(100)로 구현될 수 있다.
웨어러블 디바이스(900)는 자기 보안 전송 장치(950)를 포함할 수 있다. 자기 보안 전송 장치(950)는 도 1의 자기 보안 전송 장치(200)로 구현될 수 있다. 자기 보안 전송 장치(950)는 웨어러블 디바이스(900)에 탈착될 수 있는 동글 형태일 수 있고, 다른 실시예에서는 웨어러블 디바이스(900)내에 임베드될 수 있다.
도 1의 지갑 어플리케이션(105)이 모바일 디바이스(900) 또는 웨어러블 디바이스(900)에 로드될 수 있고, 웨어러블 디바이스(900)를 도 1의 POS 단말(400)에 접근시키고, 모바일 디바이스(900) 또는 웨어러블 디바이스(900) 상에서 결재 아이콘/키를 누르면 택된 카드의 자기 스트라이프 데이터를 포함한 자기 임펄스가 자기 보안 전송 장치(950)의 인덕터로부터 POS 결제 단말(400)에 위치한 자기 스트라이프 판독 헤드(410)에 의해 검출(pick up)되고, 전기적 펄스로 변환되어 결제가 수행될 수 있다.
자기 보안 전송 장치(950)는 도 1 내지 11을 참조하여 설명한 바와 같이, 데이터 비전송 구간에서 인덕터 전류를 적어도 하나의 상수 기울기를 가지고 단계적으로 감소시키거나 증가시켜서 데이터 비전송 구간에서 자기 보안 전송 장치(950)의 소비 전력을 감소시킬 수 있다. 따라서 자기 보안 전송 장치(950)는 전원 공급 용량이 제한적인 웨어러블 디바이스(900) 내에 임베드되거나 웨어러블 디바이스(900)와 연결되어 동작할 수 있다. 또한 자기 보안 전송 장치(950)는 도 12 내지 도 15를 참조하여 설명한 바와 같이, 무선 전력을 충전 가능한 배터리에 충전하거나 무선 전력을 외부로 전송하는 데에도 사용될 수 있다.
본 발명은 실시예들은 다양한 모바일 디바이스 및 웨어러블 디바이스들에 적용되어 전력 소모를 감소시킬 수 있다.
상기에서는 본 발명의 실시예들을 참조하여 설명하였지만, 해당 기술분야에서 통상의 지식을 가진 자는 하기의 특허청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 것이다.

Claims (20)

  1. 데이터 전송 구간에서 자기 스트라이프 데이터를 포함하는 자기 펄스를 방출하는 인덕터;
    상기 인덕터에 연결되고, 스위칭 제어 신호들에 응답하여 온/오프되어 상기 인덕터의 전류 경로를 제공하는 복수의 스위칭 소자들을 포함하는 스위칭 회로; 및
    상기 스위칭 제어 신호들을 상기 스위치 회로에 제공하여 상기 데이터 전송 구간과 상기 자기 스트라이프 데이터가 방출되지 않는 데이터 비전송 구간에서 상기 스위칭 소자들의 온/오프를 제어하고, 상기 데이터 비전송 구간에서 상기 인덕터에 흐르는 인덕터 전류가 적어도 하나의 상수 기울기를 가지고 단계적으로 증가하거나 감소하도록 상기 스위칭 소자들을 제어하는 제어 회로를 포함하는 자기 보안 전송(magnetic secure transmission) 장치.
  2. 제1항에 있어서, 상기 스위칭 회로는
    전원 전압과 상기 인덕터의 제1 단자에 연결되는 제1 노드 사이에 연결되는 제1 스위칭 소자;
    상기 제1 노드와 접지 전압 사이에 연결되는 제2 스위칭 소자;
    상기 전원 전압과 상기 인덕터의 제2 단자에 연결되는 제2 노드 사이에 연결되는 제3 스위칭 소자; 및
    상기 제2 노드와 상기 접지 전압 사이에 연결되는 제4 스위칭 소자를 포함하는 자기 보안 전송 장치.
  3. 제2항에 있어서,
    상기 제어 회로는 상기 데이터 전송 구간에서 상기 인덕터 전류가 선형적으로 증가하거나 감소하도록 상기 제1 내지 제4 스위칭 소자들의 온/오프를 제어하는 자기 보안 전송 장치.
  4. 제2항에 있어서,
    상기 제어 회로는 상기 인덕터 전류가 선형적으로 증가하는 제1 데이터 전송 구간 이후의 제1 데이터 비전송 구간에서, 상기 인덕터 전류의 실질적 유지와 선형적 감소가 교번적으로 반복되도록 상기 제1 내지 제4 스위칭 소자들의 온/오프를 제어하는 자기 보안 전송 장치.
  5. 제4항에 있어서,
    상기 제어 회로는 상기 인덕터 전류가 유지되는 복수의 제1 서브 구간들 각각에서 상기 제1 스위칭 소자와 상기 제3 스위칭 소자가 턴-온되도록 제어하고 상기 인덕터 전류가 선형적으로 감소되는 제2 서브 구간들 각각에서 상기 제2 스위칭 소자와 상기 제3 스위칭 소자가 턴-온 되도록 제어하는 자기 보안 전송 장치.
  6. 제5항에 있어서,
    상기 제어 회로는 상기 제2 서브 구간들 각각에서 상기 제2 스위칭 소자와 상기 제3 스위칭 소자가 턴-온 되는 온-타임을 조절하여 상기 자기 펄스의 크기를 조절하는 자기 보안 전송 장치.
  7. 제5항에 있어서,
    상기 제어 회로는 상기 제1 서브 구간들 각각의 길이와 상기 제2 서브 구간들 각각의 길이를 개별적으로 조절하는 자기 보안 전송 장치.
  8. 제2항에 있어서,
    상기 제어 회로는 상기 인덕터 전류가 선형적으로 감소하는 제2 데이터 전송 구간 이후의 제2 데이터 비전송 구간에서, 상기 인덕터 전류의 실질적 유지와 선형적 증가가 교번적으로 반복되도록 상기 제1 내지 제4 스위칭 소자들의 온/오프를 제어하는 자기 보안 전송 장치.
  9. 제8항에 있어서,
    상기 제어 회로는 상기 인덕터 전류가 유지되는 복수의 제1 서브 구간들 각각에서 상기 제2 스위칭 소자와 상기 제4 스위칭 소자가 턴-온되도록 제어하고 상기 인덕터 전류가 선형적으로 증가되는 복수의 제2 서브 구간들 각각에서 상기 제2 스위칭 소자와 상기 제4 스위칭 소자가 턴-온 되도록 제어하는 자기 보안 전송 장치.
  10. 제9항에 있어서,
    상기 제어 회로는 상기 제2 서브 구간들 각각에서 상기 제1 스위칭 소자와 상기 제4 스위칭 소자가 턴-온 되는 온-타임을 조절하여 상기 자기 펄스의 크기를 조절하는 자기 보안 전송 장치.
  11. 제9항에 있어서,
    상기 제어 회로는 제1 서브 구간들 각각의 길이와 상기 제2 서브 구간들 각각의 길이를 개별적으로 조절하는 자기 보안 전송 장치.
  12. 제2항에 있어서,
    상기 제어 회로는 상기 인덕터 전류가 선형적으로 증가하는 제1 데이터 전송 구간이후의 제1 데이터 비전송 구간의 제1 서브 구간에서 상기 인덕터 전류의 실질적 유지와 선형적 감소가 교번적으로 반복되고, 상기 제1 서브 구간에 연속하는 상기 제1 데이터 비전송 구간의 제2 서브 구간에서 상기 인덕터 전류가 제1 값으로 유지되고, 상기 제2 서브 구간에 연속하는 상기 제1 데이터 비전송 구간의 제3 서브 구간에서 상기 인덕터 전류의 선형적 증가와 실질적 유지가 교번적으로 반복되도록 상기 제1 내지 제4 스위칭 소자들의 온/오프를 제어하는 자기 보안 전송 장치.
  13. 제12항에 있어서
    상기 제어 회로는 상기 제1 서브 구간, 상기 제2 서브 구간 및 상기 제3 서브 구간 각각에서 상기 인덕터 전류의 실질적 유지 구간, 상기 선형적 증가 구간 및 상기 선형적 감소 구간을 개별적으로 조절하는 자기 보안 전송 장치.
  14. 제2항에 있어서,
    상기 제어 회로는 상기 인덕터 전류가 선형적으로 감소하는 제2 데이터 전송 구간이후의 제2 데이터 비전송 구간의 제1 서브 구간에서 상기 인덕터 전류의 실질적 유지와 선형적 증가가 교번적으로 반복되고, 상기 제1 서브 구간에 연속하는 상기 제2 데이터 비전송 구간의 제2 서브 구간에서 상기 인덕터 전류가 제1 값으로 유지되고, 상기 제2 서브 구간에 연속하는 상기 제2 데이터 비전송 구간의 제3 서브 구간에서 상기 인덕터 전류의 선형적 감소와 실질적 유지가 교번적으로 반복되도록 상기 제1 내지 제4 스위칭 소자들의 온/오프를 제어하는 자기 보안 전송 장치.
  15. 제14항에 있어서,
    상기 제어 회로는 상기 제1 서브 구간, 상기 제2 서브 구간 및 상기 제3 서브 구간 각각에서 상기 인덕터 전류의 실질적 유지 구간, 상기 선형적 증가 구간 및 상기 선형적 감소 구간을 개별적으로 조절하는 자기 보안 전송 장치.
  16. 제2항에 있어서,
    상기 제어 회로는 상기 제1 스위칭 소자에 제1 스위칭 제어 신호를 인가하고, 상기 제2 스위칭 소자에 제2 스위칭 제어 신호를 인가하고, 상기 제3 스위칭 소자에 제3 스위칭 제어 신호를 인가하고, 상기 제4 스위칭 소자에 제4 스위칭 제어 신호를 인가하는 자기 보안 전송 장치.
  17. 결제 지갑 어플리케이션을 포함하고, 결제 카드의 자기 스트라이프 데이터를 포함하는 펄스 스트림을 전송하는 모바일 디바이스;
    상기 펄스 스트림을 수신하고, 상기 수신된 펄스 스트림을 증폭 및 정형하며 상기 자기 스트라이프 데이터를 포함하는 자기 펄스를 생성하고 생성된 자기 펄스를 방출하는 자기 보안 전송(magnetic secure transmission) 장치; 및
    상기 결제 카드와 연관되도록 프로그래밍되고, 상기 자기 펄스의 방출을 개시하도록 활성화되는 결제 버튼을 포함하고,
    상기 자기 보안 전송 장치는
    데이터 전송 구간에서 상기 자기 펄스를 방출하는 인덕터;
    상기 인덕터에 연결되고, 스위칭 제어 신호들에 응답하여 온/오프되어 상기 인덕터의 전류 경로를 제공하는 복수의 스위칭 소자들을 포함하는 스위칭 회로; 및
    상기 스위칭 제어 신호들을 상기 스위치 회로에 제공하여 상기 데이터 전송 구간과 상기 자기 스트라이프 데이터가 방출되지 않는 데이터 비전송 구간에서 상기 스위칭 소자들의 온/오프를 제어하고, 상기 데이터 비전송 구간에서 상기 인덕터에 흐르는 인덕터 전류가 적어도 하나의 상수 기울기를 가지고 단계적으로 증가하거나 감소하도록 상기 스위칭 소자들을 제어하는 제어 회로를 포함하는 전자 장치.
  18. 제17항에 있어서, 상기 스위칭 회로는
    전원 전압과 상기 인덕터의 제1 단자에 연결되는 제1 노드 사이에 연결되는 제1 스위칭 소자;
    상기 제1 노드와 접지 전압 사이에 연결되는 제2 스위칭 소자;
    상기 전원 전압과 상기 인덕터의 제2 단자에 연결되는 제2 노드 사이에 연결되는 제3 스위칭 소자; 및
    상기 제2 노드와 상기 접지 전압 사이에 연결되는 제4 스위칭 소자를 포함하고,
    상기 제어 회로는 제1 데이터 전송 구간에서 상기 인덕터 전류가 선형적으로 증가하도록 상기 제1 내지 제4 스위칭 소자들의 온/오프를 제어하고, 제2 데이터 전송 구간에서 상기 인덕터 전류가 선형적으로 감소하도록 상기 제1 내지 제4 스위칭 소자들의 온/오프를 제어하고,
    상기 제어 회로는 상기 모바일 디바이스 내의 어플리케이션 프로세서 및 상기 자기 보안 전송 장치 내의 컨트롤러 중 하나인 전자 장치.
  19. 제17항에 있어서,
    상기 스위칭 회로는 전력 수신 모드에서 외부로부터 무선으로 공급되는 전력을 상기 인덕터를 통하여 수신하여 상기 모바일 디바이스 내의 전력 관리 집적 회로에 제공하고,
    전력 전송 모드에서 상기 전력 관리 집적 회로로부터 공급되는 전력을 상기 인덕터를 통하여 상기 외부로 무선으로 전송하는 전자 장치.
  20. 모바일 디바이스;
    상기 모바일 디바이스와 연동되어 동작하고, 결제 지갑 어플리케이션을 포함하고, 결제 카드의 자기 스트라이프 데이터를 포함하는 펄스 스트림을 전송하는 웨어러블 디바이스;
    상기 펄스 스트림을 수신하고, 상기 수신된 펄스 스트림을 증폭 및 정형하며 상기 자기 스트라이프 데이터를 포함하는 자기 펄스를 생성하고 생성된 자기 펄스를 방출하는 자기 보안 전송(magnetic secure transmission) 장치; 및
    상기 결제 카드와 연관되도록 프로그래밍되고, 상기 자기 펄스의 방출을 개시하도록 활성화되는 결제 버튼을 포함하고,
    상기 자기 보안 전송 장치는
    데이터 전송 구간에서 상기 자기 펄스를 방출하는 인덕터;
    상기 인덕터에 연결되고, 스위칭 제어 신호들에 응답하여 온/오프되어 상기 인덕터의 전류 경로를 제공하는 복수의 스위칭 소자들을 포함하는 스위칭 회로; 및
    상기 스위칭 제어 신호들을 상기 스위치 회로에 제공하여 상기 데이터 전송 구간과 상기 자기 스트라이프 데이터가 방출되지 않는 데이터 비전송 구간에서 상기 스위칭 소자들의 온/오프를 제어하고, 상기 데이터 비전송 구간에서 상기 인덕터에 흐르는 인덕터 전류가 적어도 하나의 상수 기울기를 가지고 단계적으로 증가하거나 감소하도록 상기 스위칭 소자들을 제어하는 제어 회로를 포함하는 모바일 시스템.
KR1020160097850A 2016-08-01 2016-08-01 자기 보안 전송 장치, 이를 포함하는 전자 장치 및 모바일 시스템 KR102491814B1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020160097850A KR102491814B1 (ko) 2016-08-01 2016-08-01 자기 보안 전송 장치, 이를 포함하는 전자 장치 및 모바일 시스템
US15/426,397 US10430701B2 (en) 2016-08-01 2017-02-07 Magnetic secure transmission device, electronic device and mobile system including the same
CN201710615384.1A CN107682050B (zh) 2016-08-01 2017-07-25 磁安全传输设备和包括其的支付系统
US16/578,785 US11170360B2 (en) 2016-08-01 2019-09-23 Magnetic secure transmission (MST) device, MST system and controller including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160097850A KR102491814B1 (ko) 2016-08-01 2016-08-01 자기 보안 전송 장치, 이를 포함하는 전자 장치 및 모바일 시스템

Publications (2)

Publication Number Publication Date
KR20180014500A true KR20180014500A (ko) 2018-02-09
KR102491814B1 KR102491814B1 (ko) 2023-01-26

Family

ID=61011688

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160097850A KR102491814B1 (ko) 2016-08-01 2016-08-01 자기 보안 전송 장치, 이를 포함하는 전자 장치 및 모바일 시스템

Country Status (3)

Country Link
US (1) US10430701B2 (ko)
KR (1) KR102491814B1 (ko)
CN (1) CN107682050B (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11170360B2 (en) 2016-08-01 2021-11-09 Samsung Electronics Co., Ltd. Magnetic secure transmission (MST) device, MST system and controller including the same
KR102395069B1 (ko) 2017-06-19 2022-05-09 삼성전자주식회사 Mst 장치 및 그것을 포함하는 전자 장치
KR102323560B1 (ko) 2017-08-08 2021-11-08 삼성전자주식회사 전류의 피크 세기를 조절하도록 구성되는 회로를 포함하는 전자 장치
DE102018212957B3 (de) 2018-08-02 2020-01-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Übertragung von daten von einem benutzerendgerät zu einem anderen gerät
CN110069954B (zh) * 2019-05-27 2024-06-11 江西联智集成电路有限公司 Mst驱动器及其驱动方法
US11783310B1 (en) * 2020-06-16 2023-10-10 Block, Inc. Point-of-sale authorization

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100129789A (ko) * 2008-05-13 2010-12-09 가부시키가이샤 리코 전류 모드 제어형 스위칭 조절기 및 그 동작 방법
WO2015123559A1 (en) * 2014-02-17 2015-08-20 Looppay, Inc. Baseband nearfield magnetic stripe data transmitter
KR20160061228A (ko) * 2014-11-21 2016-05-31 삼성전자주식회사 신호 송수신 회로 및 이를 포함하는 전자 장치

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003037637A (ja) 2001-07-25 2003-02-07 Fujitsu Ten Ltd 通信システム
JP2010016985A (ja) 2008-07-03 2010-01-21 Sanyo Electric Co Ltd 電力搬送における情報伝送方法とこの情報伝送方法を使用する充電台と電池内蔵機器
JP5504903B2 (ja) 2010-01-14 2014-05-28 日本電気株式会社 受信回路、受信方法及び信号伝達システム
WO2012122994A1 (en) * 2011-03-11 2012-09-20 Kreft Heinz Off-line transfer of electronic tokens between peer-devices
KR101580342B1 (ko) 2011-08-29 2015-12-24 삼성전기주식회사 무선 전력 전송 시스템 및 그의 제어방법
WO2013151290A1 (ko) 2012-04-05 2013-10-10 엘지이노텍 주식회사 전력 공급 장치, 무선전력 송신장치 및 전력 공급 방법
EP2663106B1 (en) * 2012-05-08 2017-02-15 Nxp B.V. Secure near field communication solutions and circuits
KR102048443B1 (ko) 2012-09-24 2020-01-22 삼성전자주식회사 근거리 무선 송수신 방법 및 장치
US9361613B2 (en) * 2014-02-17 2016-06-07 Samsung Pay, Inc. System and method for a baseband nearfield magnetic stripe data transmitter
KR102229022B1 (ko) * 2014-03-18 2021-03-17 삼성전자주식회사 마그네틱 필드 모니터를 가지는 카드 검출 장치 및 이를 포함하는 시스템
US9780575B2 (en) 2014-08-11 2017-10-03 General Electric Company System and method for contactless exchange of power
WO2016072799A1 (en) 2014-11-08 2016-05-12 Samsung Electronics Co., Ltd. Electronic device including a plurality of payment modules
KR102424286B1 (ko) 2014-11-08 2022-07-25 삼성전자주식회사 복수의 결제 모듈들을 포함하는 전자 장치
EP3048666B1 (en) * 2015-01-21 2022-11-09 Samsung Electronics Co., Ltd. Electronic device
US9755636B2 (en) * 2015-06-23 2017-09-05 Microsoft Technology Licensing, Llc Insulated gate device discharging
CN105721025A (zh) * 2016-03-14 2016-06-29 张培蕾 一种利用手机模拟磁数据传输的装置
US9697450B1 (en) * 2016-07-29 2017-07-04 Alpha And Omega Semiconductor Incorporated Magnetic stripe data transmission system and method for reliable data transmission and low power consumption

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100129789A (ko) * 2008-05-13 2010-12-09 가부시키가이샤 리코 전류 모드 제어형 스위칭 조절기 및 그 동작 방법
WO2015123559A1 (en) * 2014-02-17 2015-08-20 Looppay, Inc. Baseband nearfield magnetic stripe data transmitter
KR20160061228A (ko) * 2014-11-21 2016-05-31 삼성전자주식회사 신호 송수신 회로 및 이를 포함하는 전자 장치

Also Published As

Publication number Publication date
CN107682050A (zh) 2018-02-09
US20180032850A1 (en) 2018-02-01
KR102491814B1 (ko) 2023-01-26
US10430701B2 (en) 2019-10-01
CN107682050B (zh) 2021-08-13

Similar Documents

Publication Publication Date Title
KR102491814B1 (ko) 자기 보안 전송 장치, 이를 포함하는 전자 장치 및 모바일 시스템
US10679209B2 (en) Method for replacing traditional payment and identity management systems and components to provide additional security and a system implementing said method
US10667106B2 (en) Tuning a NFC antenna of a device
US9870557B2 (en) Payment object reader device with multiple types of reader circuitry
US9894468B2 (en) Apparatus for selectively coupling an energy storage device
WO2016163134A1 (ja) カードおよびアプリケーションプログラム
TWI478069B (zh) A display card with a security check
CN105452987A (zh) 管理使用电子设备的低功率模式的近场通信
JP2018506093A (ja) スマートマルチカードおよびスマートマルチカード用カードデータ発行方法
KR101756238B1 (ko) 스마트 카드 및 그 제어 방법 및 휴대용 단말기 및 그 제어 방법
US11170360B2 (en) Magnetic secure transmission (MST) device, MST system and controller including the same
US8708232B2 (en) Bank card with display screen
KR100814377B1 (ko) 다기능 오티피 토큰
KR101237437B1 (ko) 이미지 표시 방법
KR20110105747A (ko) 카드

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant