KR20180011397A - 유기발광 표시장치와 그 구동방법 - Google Patents
유기발광 표시장치와 그 구동방법 Download PDFInfo
- Publication number
- KR20180011397A KR20180011397A KR1020160092733A KR20160092733A KR20180011397A KR 20180011397 A KR20180011397 A KR 20180011397A KR 1020160092733 A KR1020160092733 A KR 1020160092733A KR 20160092733 A KR20160092733 A KR 20160092733A KR 20180011397 A KR20180011397 A KR 20180011397A
- Authority
- KR
- South Korea
- Prior art keywords
- pixels
- image data
- lighting
- driving
- frame
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/22—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
- G09G3/30—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
- G09G3/32—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
- G09G3/3208—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
- G09G3/3225—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
- G09G3/3233—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2300/00—Aspects of the constitution of display devices
- G09G2300/08—Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
- G09G2300/0809—Several active elements per pixel in active matrix panels
- G09G2300/0842—Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
- G09G2300/0852—Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor being a dynamic memory with more than one capacitor
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2310/00—Command of the display device
- G09G2310/08—Details of timing specific for flat panels, other than clock recovery
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
- Control Of El Displays (AREA)
Abstract
본 발명에 따른 유기발광 표시장치는 화소들을 구비하는 표시패널과, 상기 화소들에 연결된 데이터 라인들을 구동하는 소스 드라이버와, 상기 화소들에 연결된 게이트 라인들을 구동하는 게이트 드라이버와, 저속 구동 모드에서, 상기 소스 드라이버와 게이트 드라이버의 동작을 제어하여 1 프레임 내에서 동일한 영상 데이터를 상기 화소들에 다수회 반복적으로 기입하는 타이밍 콘트롤러를 포함한다.
Description
본 발명은 유기발광 표시장치와 그 구동방법에 관한 것이다.
액티브 매트릭스 타입의 유기발광 표시장치는 스스로 발광하는 유기발광다이오드(Organic Light Emitting Diode: 이하, "OLED"라 함)를 포함하며, 응답속도가 빠르고 발광효율, 휘도 및 시야각이 큰 장점이 있다.
자발광 소자인 OLED는 애노드전극 및 캐소드전극과, 이들 사이에 형성된 유기 화합물층을 포함한다. 유기 화합물층은 정공주입층(Hole Injection layer, HIL), 정공수송층(Hole transport layer, HTL), 발광층(Emission layer, EML), 전자수송층(Electron transport layer, ETL) 및 전자주입층(Electron Injection layer, EIL)으로 이루어진다. 애노드전극과 캐소드전극에 전원전압이 인가되면 정공수송층(HTL)을 통과한 정공과 전자수송층(ETL)을 통과한 전자가 발광층(EML)으로 이동되어 여기자를 형성하고, 그 결과 발광층(EML)이 가시광을 발생하게 된다.
유기발광 표시장치는 OLED를 각각 포함한 화소들을 매트릭스 형태로 배열하고 영상 데이터의 계조에 따라 화소들의 휘도를 조절한다. 화소들 각각은 게이트-소스 간 전압에 따라 OLED에 흐르는 구동전류를 제어하는 구동 TFT(Thin Film Transistor)와, 구동 TFT의 게이트-소트 간 전압을 프로그래밍하기 위한 하나 이상의 스위치 TFT를 포함하며, 구동전류에 비례하는 OLED의 발광량으로 표시 계조(휘도)를 조절한다.
이러한 유기발광 표시장치에서 입력 영상의 변화가 적은 경우 소비 전력을 줄이기 위하여 화소들을 저속 구동하는 기술이 알려져 있다. 저속 구동시에는 영상 데이터의 리프레쉬(refresh) 주기가 길어지기 때문에, 화소들에 충전된 영상 데이터가 타겟 레벨로 유지되지 못하고 누설되는 문제가 있을 수 있다. 저속 구동 기술에서는 화소들에 충전된 영상 데이터의 누설을 최소화하기 위해, 화소들의 일부 TFT들을 오프 커런트(Off current) 특성이 좋은 산화물 트랜지스터로 구현하고 있다. 산화물 트랜지스터는 오프 커런트가 낮아 누설 전류를 줄이는 데 효과적이지만, 다결정 실리콘 트랜지스터에 비해 전자 이동도가 낮아 응답속도가 상대적으로 느린 단점이 있다.
이에, 산화물 트랜지스터를 포함한 화소들에 영상 데이터를 기입하는 경우, 해당 화소들에서 구현되는 휘도는 도 1 및 도 2와 같이 영상 데이터의 기입 시점(즉, 영상 데이터 업데이트 시점)으로부터 수 프레임 경과 후에 타겟 레벨(TL)에 도달한다. 타겟 레벨(TL) 도달시간을 나타내는 응답속도는 도 1의 P형 산화물 트랜지스터에 비해 도 2의 N형 산화물 트랜지스터에서 더 빠르지만, 도 2의 N형 산화물 트랜지스터에서도 여전히 타겟 레벨(TL)에 도달하는 데 최소 2 프레임 이상이 소요된다.
도 3과 같이 1Hz 저속 구동을 위한 1 프레임은 1초로서 길다. 따라서, 화소들에서 구현되는 휘도가 타겟 레벨(TL)에 도달하는 데 2~10 프레임이 필요한 경우, 화소들의 휘도는 프레임(F1,F2,F3)이 바뀌는 1초마다 점점 밝아지거나 번쩍이는 이상 현상으로 인지된다.
따라서, 본 발명의 목적은 산화물 트랜지스터를 포함한 화소들을 대상으로 저속 구동을 구현하는 경우, 표시 휘도가 타겟 레벨에 도달하는 데 소요되는 시간을 줄여 화면 깜박임과 같은 이상 현상을 최소화할 수 있도록 한 유기발광 표시장치와 그 구동방법을 제공하는 데 있다.
상기 목적을 해결하기 위하여, 본 발명에 따른 유기발광 표시장치는 화소들을 구비하는 표시패널과, 상기 화소들에 연결된 데이터 라인들을 구동하는 소스 드라이버와, 상기 화소들에 연결된 게이트 라인들을 구동하는 게이트 드라이버와, 저속 구동 모드에서, 상기 소스 드라이버와 게이트 드라이버의 동작을 제어하여 1 프레임 내에서 동일한 영상 데이터를 상기 화소들에 다수회 반복적으로 기입하는 타이밍 콘트롤러를 포함한다.
상기 타이밍 콘트롤러는, 저속 구동 모드에서, 모든 화소들에 영상 데이터가 1회 기입되는 데 필요한 라이팅 구간과, 상기 화소들에 기입된 영상 데이터를 유지하기 위한 홀딩 구간을 각각 상기 1 프레임 내에 다수개씩 할당하고, 라이팅 구간들을 통해 상기 동일한 영상 데이터를 상기 화소들에 다수회 반복적으로 기입한다.
본 발명에서 상기 동일한 영상 데이터는 상기 1 프레임 내에서 라이팅 구간의 개수만큼 반복적으로 상기 화소들에 기입된다.
상기 타이밍 콘트롤러는 상기 각 라이팅 구간을 M(M은 2이상의 양의 정수)개의 서브 라이팅 구간들로 시분할하고, 상기 동일한 영상 데이터는 상기 1 프레임 내에서 라이팅 구간의 개수*M만큼 반복적으로 상기 화소들에 기입된다.
상기 타이밍 콘트롤러는, 상기 라이팅 구간에서 상기 소스 드라이버의 출력을 허여하고, 상기 홀딩 구간에서 상기 소스 드라이버의 출력을 중지시킨다.
또한, 본 발명은 표시패널에 구비된 화소들을 갖는 유기발광 표시장치의 구동방법으로서, 소스 드라이버를 통해 상기 화소들에 연결된 데이터 라인들을 구동하는 단계와, 게이트 드라이버를 통해 상기 화소들에 연결된 게이트 라인들을 구동하는 단계와, 저속 구동 모드에서, 상기 소스 드라이버와 게이트 드라이버의 동작을 제어하여 1 프레임 내에서 동일한 영상 데이터를 상기 화소들에 다수회 반복적으로 기입하는 단계를 포함한다.
본 발명은 산화물 트랜지스터를 포함한 화소들을 대상으로 저속 구동을 구현하는 경우, 1 프레임 내에서 동일한 영상 데이터를 화소들에 다수회 반복적으로 기입함으로써 표시 휘도가 타겟 레벨에 도달하는 데 소요되는 시간을 줄여 화면 깜박임과 같은 이상 현상을 최소화할 수 있다.
도 1 및 도 2는 종래 저속 구동시 응답속도를 보여주는 도면들.
도 3은 종래 1Hz 저속 구동시의 영상 데이터 기입에 따른 휘도 변화를 보여주는 도면.
도 4는 본 발명의 실시예에 따른 유기발광 표시장치를 보여주는 도면.
도 5는 본 발명의 화소 어레이를 보여 주는 도면.
도 6은 도 5에 도시된 화소의 접속 구성을 보여 주는 도면.
도 7은 도 5에 도시된 화소에 입력되는 구동 신호들을 보여주는 도면.
도 8은 다수의 라이팅 구간들과 다수의 홀딩 구간들을 포함한 본 발명의 1 프레임 구성을 보여주는 도면.
도 9는 1 프레임 내에서 동일한 영상 데이터를 다수회 반복적으로 화소들에 기입하여 표시 휘도가 타겟 레벨에 도달하는 데 소요되는 시간을 줄이는 것을 보여주는 도면.
도 10a 내지 도 10c는 1 프레임 내에 할당되는 라이팅 구간들과 홀딩 구간들에 대한 다양한 실시예를 보여주는 도면들.
도 11은 1 프레임 내에 할당되는 라이팅 구간들과 홀딩 구간들에 대한 다른 실시예를 보여주는 도면.
도 3은 종래 1Hz 저속 구동시의 영상 데이터 기입에 따른 휘도 변화를 보여주는 도면.
도 4는 본 발명의 실시예에 따른 유기발광 표시장치를 보여주는 도면.
도 5는 본 발명의 화소 어레이를 보여 주는 도면.
도 6은 도 5에 도시된 화소의 접속 구성을 보여 주는 도면.
도 7은 도 5에 도시된 화소에 입력되는 구동 신호들을 보여주는 도면.
도 8은 다수의 라이팅 구간들과 다수의 홀딩 구간들을 포함한 본 발명의 1 프레임 구성을 보여주는 도면.
도 9는 1 프레임 내에서 동일한 영상 데이터를 다수회 반복적으로 화소들에 기입하여 표시 휘도가 타겟 레벨에 도달하는 데 소요되는 시간을 줄이는 것을 보여주는 도면.
도 10a 내지 도 10c는 1 프레임 내에 할당되는 라이팅 구간들과 홀딩 구간들에 대한 다양한 실시예를 보여주는 도면들.
도 11은 1 프레임 내에 할당되는 라이팅 구간들과 홀딩 구간들에 대한 다른 실시예를 보여주는 도면.
이하 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시예들을 상세히 설명한다. 명세서 전체에 걸쳐서 동일한 참조번호들은 실질적으로 동일한 구성요소들을 의미한다. 이하의 설명에서, 본 발명과 관련된 공지 기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우, 그 상세한 설명을 생략한다. 또한, 이하의 설명에서 사용되는 구성요소 명칭은 명세서 작성의 용이함을 고려하여 선택된 것일 수 있는 것으로서, 실제 제품의 부품 명칭과는 상이할 수 있다.
도 4는 본 발명의 실시예에 따른 유기발광 표시장치를 보여준다. 그리고, 도 5는 본 발명의 화소 어레이를 보여준다.
도 4 및 도 5를 참조하면, 본 발명에 따른 유기발광 표시장치는 화소들(P)이 구비된 표시패널(10), 화소들(P)에 연결된 신호라인들을 구동하는 표시패널 구동회로, 및 표시패널 구동회로를 제어하는 타이밍 콘트롤러(11)를 포함한다.
표시패널 구동회로는 표시패널(10)의 화소들(P)에 입력 영상 데이터를 기입한다. 표시패널 구동회로는 화소들(P)에 연결된 데이터라인들(14)을 구동하는 소스 드라이버(12)와, 화소들(P)에 연결된 게이트라인들(15a,15b,15c)을 구동하는 게이트 드라이버(13)를 포함한다.
표시패널 구동회로는 저속 구동 모드로 동작할 수 있다. 저속 구동 모드는 입력 영상을 분석하여 입력 영상이 미리 설정된 프레임 개수만큼 변화가 없을 때, 즉, 정지 영상이 일정 시간 이상 입력될 때 표시패널 구동 회로를 동작시키는 구동 주파수를 낮추어 화소들(P)에 대한 영상 데이터 기입 주기를 길게 제어하여 소비 전력을 줄인다. 저속 구동 모드에서는 표시패널에서 영상 데이터가 업데이트되는 재생속도(refresh rate)가 기본 구동 모드에 비해 늦다. 다시 말해, 기본 구동 모드에서 구동 주파수가 X Hz일때, 저속 구동 모드에서 구동 주파수는 X Hz 보다 낮다. 저속 구동 모드는 정지 영상이 입력될 때에 한정되지 않는다. 예컨대, 표시장치가 대기 모드로 동작하거나 사용자 명령이나 입력 영상이 소정 시간 이상 표시패널 구동 회로에 입력되지 않을 때 표시패널 구동 회로는 저속 구동 모드로 동작할 수 있다.
표시패널(10)에는 다수의 데이터 라인들(14)과 다수의 게이트 라인들(15a,15b,15c)이 교차되고, 화소들(P)이 매트릭스 형태로 배치된다. 표시패널(10)의 화소 어레이(Pixel array)에 입력 영상 데이터가 기입된다. 표시패널(10)은 초기화 전압(Vini)을 화소들(P)에 공급하는 초기화전압 공급라인(도 5, 16), 고전위 구동 전압(VDD)을 화소들(P)에 공급하는 VDD 공급라인, 저전위 구동 전압(VSS)을 화소들(P)에 공급하는 VSS 공급라인을 더 포함할 수 있다.
게이트 라인들은 제1 스캔 신호(도 5, SCAN1)가 공급되는 다수의 제1 게이트 라인들(15a), 제2 스캔 신호(도 5, SCAN2)가 공급되는 다수의 제2 게이트 라인들(15b), 및 에미션 신호(도 5, EM)가 공급되는 다수의 제3 게이트 라인들(15c)을 포함한다.
화소들(P) 각각은 컬러 구현을 위하여 적색 서브 화소, 녹색 서브 화소, 청색 서브 화소 중 어느 하나일 수 있으며, 또한 백색 서브 화소일 수도 있다. 화소들(P) 각각에는 하나의 데이터 라인(14), 하나의 제1 게이트 라인(15a), 하나의 제2 게이트 라인(15b), 하나의 제3 게이트 라인(15c), 및 VDD 공급라인 등이 연결된다.
소스 드라이버(12)는 기본 구동 모드에서 매 프레임 마다 타이밍 콘트롤러(11)로부터 수신되는 입력 영상 데이터(DATA)를 데이터 전압으로 변환한 후, 그 데이터 전압을 데이터 라인들(14)에 공급한다. 소스 드라이버(12)는 입력 영상 데이터(DATA)를 감마 보상 전압으로 변환하는 디지털 아날로그 컨버터(Digital to Analog Converter, 이하 "DAC"라 함)를 이용하여 데이터 전압을 출력한다. 소스 드라이버(12)는 저속 구동 모드에서 타이밍 콘트롤러(11)의 제어 하에 그 구동 주파수가 낮아진다. 예를 들어, 소스 드라이버(12)는 기본 구동 모드에서 매 프레임 기간 마다 입력 영상의 데이터 전압을 출력하는 반면, 저속 구동 모드에서 매 프레임의 일부 기간에서 입력 영상의 데이터 전압을 출력하고 매 프레임의 나머지 기간에서 출력을 중지시킨다. 따라서, 저속 구동 모드에서 소스 드라이버(12)의 구동 주파수와 소비 전력이 기본 구동 모드 보다 대폭 낮아진다.
소스 드라이버(12)와 표시패널(10)의 데이터 라인들(14) 사이에는 멀티플렉서(미도시)가 더 배치될 수 있다. 멀티플렉서는 소스 드라이버(12)에서 하나의 출력 채널을 통해 출력되는 데이터 전압을 N(N은 2 이상의 양의 정수)으로 분배함으로써 소스 드라이버(12)의 출력 채널 개수를 줄일 수 있다. 멀티플렉서는 표시장치의 해상도, 용도에 따라 생략 가능하다.
게이트 드라이버(13)는 타이밍 콘트롤러(11)의 제어 하에 스캔 신호들(SCAN1, SCAN2)을 출력하여 데이터 전압이 충전되는 화소들(P)을 선택한다. 게이트 드라이버(13)는 쉬프트 레지스터부(Shift register)로 구현되어 스캔 신호들(SCAN1, SCAN2)을 쉬프트시킴으로써, 그 신호들을 게이트 라인들(15a,15b)에 순차적으로 공급할 수 있다.
또한, 게이트 드라이버(13)는 타이밍 콘트롤러(11)의 제어 하에 에미션 신호(EM)를 출력하여 데이터 전압이 충전되는 화소들(P)의 발광 타이밍을 제어한다. 게이트 드라이버(13)는 쉬프트 레지스터부와 인버터부를 포함하여 에미션 신호(EM)를 쉬프트시킴으로써, 그 신호들을 게이트 라인들(15c)에 순차적으로 공급할 수 있다.
게이트 드라이버(13)는 GIP(Gate-driver In Panel) 공정으로 화소 어레이와 함께 표시패널(10)의 기판 상에 직접 형성될 수 있다.
타이밍 콘트롤러(11)는 도시하지 않은 호스트 시스템으로부터 입력 영상의 디지털 비디오 데이터(DATA)와, 그와 동기되는 타이밍 신호를 수신한다. 타이밍 신호는 수직 동기신호(Vsync), 수평 동기신호(Hsync), 도트 클럭 신호(DCLK) 및 데이터 인에이블신호(DE) 등을 포함한다. 호스트 시스템은 TV(Television) 시스템, 셋톱박스, 네비게이션 시스템, DVD 플레이어, 블루레이 플레이어, 개인용 컴퓨터(PC), 홈 시어터 시스템, 폰 시스템(Phone system) 중 어느 하나일 수 있다.
타이밍 콘트롤러(11)는 표시패널 구동회로의 구동 주파수를 낮추는 저속 구동 제어 모듈을 포함한다. 전술한 바와 같이 저속 구동 모드는 정지 영상에만 한정되지 않는다는 것에 주의하여야 한다.
타이밍 콘트롤러(11)는 기본 구동 모드에서 입력 프레임 주파수를 i 배 체배하여 입력 프레임 주파수*i(i는 0 보다 큰 양의 정수) Hz의 프레임 주파수로 표시패널 구동회로(12,13)의 동작 타이밍을 제어할 수 있다. 입력 프레임 주파수는 NTSC(National Television Standards Committee) 방식에서 60Hz이며, PAL(Phase-Alternating Line) 방식에서 50Hz이다. 타이밍 콘트롤러(11)는 저속 구동 모드에서 표시패널 구동 회로(12,13)의 구동 주파수를 낮춘다. 예를 들어, 타이밍 콘트롤러(11)는 화소들(P)에 대한 영상 데이터(DATA)의 기입 주기가 1초가 되도록 표시패널 구동회로(12,13)의 구동 주파수를 1 Hz 수준으로 낮출 수 있다. 저속 구동 모드의 주파수는 1 Hz에 한정되지 않는다. 저속 구동 모드에서, 표시패널(10)의 화소들(P)은 1 프레임 중의 대부분의 시간 동안 새로운 데이터 전압을 충전하지 않고 이미 충전된 데이터 전압을 유지한다.
타이밍 콘트롤러(11)는 호스트 시스템으로부터 수신된 타이밍 신호(Vsync, Hsync, DE)를 바탕으로서 소스 드라이버(12)의 동작 타이밍을 제어하기 위한 데이터 타이밍 제어 신호, 게이트 드라이버(13)의 동작 타이밍을 제어하기 위한 게이트 타이밍 제어 신호를 생성한다. 타이밍 콘트롤러(11)는 기본 구동 모드와 저속 구동 모드에서 타이밍 제어 신호들을 다르게 생성할 수 있다.
데이터 타이밍 제어신호는 소스 스타트 펄스(Source Start Pulse), 소스 샘플링 클럭(Source Sampling Clock), 및 소스 출력 인에이블신호(Source Output Enable) 등을 포함한다. 소스 스타트 펄스는 소스 드라이버(12)의 샘플링 스타트 타이밍을 제어한다. 소스 샘플링 클럭은 데이터 샘플링 타이밍을 쉬프트시키는 클럭이다. 타이밍 콘트롤러(11)와 소스 드라이버(12)사이의 신호 전송 인터페이스가 mini LVDS(Low Voltage Differential Signaling) 인터페이스라면, 소스 스타트 펄스와 소스 샘플링 클럭은 생략될 수 있다.
게이트 타이밍 제어신호는 게이트 스타트 펄스(Gate Start Pulse), 게이트 쉬프트 클럭(Gate Shift Clock), 에미션 쉬프트 클럭(Emission Shift Clock), 게이트 출력 인에이블신호(Gate Output Enable) 등을 포함한다. GIP 회로의 경우에, 게이트 출력 인에이블신호(Gate Output Enable)는 생략될 수 있다. 게이트 스타트 펄스는 매 프레임 기간마다 프레임 기간의 초기에 발생되어 게이트 드라이버(13) 각각의 쉬프트 레지스터부에 입력된다. 게이트 스타트 펄스는 매 프레임 기간 마다 스캔 신호(SCAN1,SCAN2)와 에미션 신호(EM)가 출력되는 스타트 타이밍을 제어한다. 게이트 쉬프트 클럭은 게이트 드라이버(13)의 쉬프트 레지스터부에 입력되어 쉬프트 레지스트부의 쉬프트 타이밍(shift timing)을 제어한다. 에미션 쉬프트 클럭은 게이트 드라이버(13)의 인버터부에 입력되어 인버터부의 쉬프트 타이밍(shift timing)을 제어한다.
도 6은 화소의 일 예를 보여 주는 등가 회로도이다. 도 7은 도 6에 도시된 화소에 입력되는 구동 신호들을 보여 주는 파형도이다. 도 6의 회로는 본 발명이 적용되는 화소의 일 예시에 불과하므로, 본 발명은 도 6에 한정되지 않음에 주의하여야 한다.
도 6 및 도 7을 참조하면, 화소들 각각은 OLED(Organic Light Emitting Diode), 다수의 TFT들(Thin Film Transistor)(ST1~ST3, DT), 및 2개의 스토리지 커패시터들(Cst1,Cst2)를 포함한다. 도 6에서 "Coled"는 OLED의 기생 용량을 나타낸다.
OLED는 데이터 전압(Vdata)에 따라 구동 TFT(DT)에서 조절되는 전류량으로 발광한다. OLED의 전류패스는 제2 스위치 TFT(ST2)에 의해 스위칭된다. OLED는 애노드 전극과 캐소드 전극 사이에 형성된 유기 화합물층을 포함한다. 유기 화합물층은 정공주입층(Hole Injection layer, HIL), 정공수송층(Hole transport layer, HTL), 발광층(Emission layer, EML), 전자수송층(Electron transport layer, ETL) 및 전자주입층(Electron Injection layer, EIL)을 포함할 수 있으나 이에 한정되지 않는다. OLED의 애노드 전극은 소스 노드(Ns)에 연결되고, 캐소드 전극은 저전위 구동 전압(VSS)이 인가되는 VSS 공급라인에 연결된다.
TFT들(ST1~ST3, DT)은 도 6에서 n 타입 MOSFET으로 예시되었으나 이에 한정되지 않는다. 예를 들어, TFT들(ST1~ST3, DT)은 p 타입 MOSFET으로 구현될 수도 있다. 이 경우, 스캔 신호들(SCAN1, SCAN2)과 에미션 신호(EM)의 위상이 반전된다. TFT들은 비정질 실리콘(a-Si) 트랜지스터, 다결정 실리콘 트랜지스터, 산화물 트랜지스터 중 어느 하나 또는 그 조합으로 구현될 수 있다.
스위치 소자로 이용되는 스위치 TFT들(ST1, ST3)은 저속 구동 모드에서 Off 기간이 길어진다. 따라서, 저속 구동 모드에서 스위치 TFT들(ST1, ST3)의 Off 전류 즉, 누설 전류를 줄이기 위하여, 이 스위치 TFT들(ST1, ST3)을 산화물 반도체 물질을 포함한 산화물 트랜지스터로 구현하는 것이 바람직하다. 스위치 TFT들(ST1, ST3)을 산화물 트랜지스터로 구현하면 Off 전류를 줄여 누설 전류로 인한 화소(P)의 충전 전압 감소를 방지할 수 있다.
구동 소자로 이용되는 구동 TFT(DT)와 오프 기간이 짧은 스위치 TFT(ST2)는 다결정 반도체 물질을 포함한 다결정 실리콘 트랜지스터로 적용하는 것이 바람직하다. 다결정 실리콘 트랜지스터는 전자의 이동도가 높기 때문에 OLED의 전류양을 크게 하여 효율을 높여 소비 전력을 개선할 수 있다.
OLED의 애노드 전극은 소스 노드(Ns)를 경유하여 구동 TFT(DT)에 연결된다. OLED의 캐소드 전극은 VSS 공급라인에 연결되어 저전위 구동전압(VSS)을 공급받는다.
구동 TFT(DT)는 게이트-소스 간 전압(Vgs)에 따라 OLED에 흐르는 전류를 조절하는 구동 소자이다. 구동 TFT(DT)는 게이트 노드(Ng)에 연결된 게이트 전극, 제2 스위치 TFT(ST2)의 소스 전극에 연결된 드레인 전극, 및 소스 노드(Ns)에 연결된 소스 전극을 포함한다. 제1 스토리지 커패시터(Cst1)는 게이트 노드(Ng)와 소스 노드(Ns) 사이에 연결되어 구동 TFT(DT)의 게이트-소스간 전압(Vgs)을 유지한다.
제1 스위치 TFT(ST1)는 제1 스캔 신호(SCAN1)에 응답하여 데이터 전압(Vdata)과 기준 전압(Vfef)을 선택적으로 게이트 노드(Ng)에 공급하는 스위치 소자이다. 제1 스위치 TFT(ST1)는 제1 게이트 라인(15a)에 연결된 게이트 전극, 데이터 라인(14)에 연결된 드레인 전극, 및 게이트 노드(Ng)에 연결된 소스 전극을 포함한다. 제1 스캔 신호(SCAN1)는 대략 1 수평 기간(1H) 동안 온 레벨로 발생되어 제1 스위치 TFT(ST1)를 턴-온시키고, 발광 기간(Tem) 동안 오프 레벨로 반전되어 제1 스위치 TFT(ST1)를 턴-오프시킨다.
제2 스위치 TFT(ST2)는 에미션 신호(EM)에 응답하여 OLED에 흐르는 전류를 스위칭하는 스위치 소자이다. 제2 스위치 TFT(ST2)의 드레인 전극은 고전위 구동 전압(VDD)이 공급되는 VDD 공급라인에 연결된다. 제2 스위치 TFT(ST2)의 소스 전극은 구동 TFT(DT)의 드레인 전극에 연결된다. 제2 스위치 TFT(ST2)의 게이트 전극은 제3 게이트 라인(15c)에 연결되어 에미션 신호(EM)를 공급 받는다. 에미션 신호(EM)는 샘플링 기간(Ts) 내에서 온 레벨로 발생되어 제2 스위치 TFT(ST2)를 턴-온(turn-on)시키고, 초기화 기간(Ti)과 프로그래밍 기간(Tw) 동안 오프 레벨로 반전되어 제2 스위치 TFT(ST2)를 턴-오프(turn-off)시킨다. 그리고, 에미션 신호(EM)는 발광 기간(Tem) 동안 온 레벨로 생성되어 제2 스위치 TFT(ST2)를 턴-온시켜 OLED의 전류 패스를 형성한다. 에미션 신호(EM)는 미리 설정된 PWM 듀티비에 따라 온 레벨과 오프 레벨 사이에서 스윙하는 교류 신호로 발생되어 OLED의 전류 패스를 스위칭할 수 있다.
제3 스위치 TFT(ST3)는 초기화 기간(Ti) 동안 제2 스캔 신호(SCAN2)에 응답하여 초기화 전압(Vini)을 소스 노드(Ns)에 공급한다. 제3 스위치 TFT(ST3)는 제2 게이트 라인(15b)에 연결된 게이트 전극, 초기화전압 공급라인(16)에 연결된 드레인 전극, 및 소스 노드(Ns)에 연결된 소스 전극을 포함한다. 제2 스캔 신호(SCAN2)는 초기화 기간(Ti) 내에서 온 레벨로 발생되어 제3 스위치 TFT(ST3)를 턴-온시키고, 나머지 기간 동안 오프 레벨을 유지하여 제3 스위치 TFT(ST3)를 오프 상태로 제어한다.
제1 스토리지 커패시터(Cst1)는 게이트 노드(Ng)와 소스 노드(Ns) 사이에 연결되어 양단 간의 차 전압을 저장한다. 제1 스토리지 커패시터(Cst1)는 소스 팔로워(source-follower) 방식으로 구동 TFT(DT)의 문턱 전압(Vth)을 샘플링한다. 제2 스토리지 커패시터(Cst2) VDD 공급라인과 소스 노드(Ns) 사이에 연결된다. 제2 스토리지 커패시터(Cst2)는 프로그래밍 기간(Tw) 동안 데이터 전압(Vdata)에 따라 게이트 노드(Ng)의 전위가 변할 때, 그 변화분을 전압 분배하여 소스 노드(Ns)에 반영한다.
각 화소(P)는 스캐닝 기간과 에미션 기간(Tem)을 통해 구동된다. 스캐닝 기간은 초기화 기간(Ti), 샘플링 기간(Ts), 프로그래밍 기간(Tw)으로 나뉘어 진다. 이 스캐닝 기간 동안, 대략 1 수평 기간(1H)으로 설정되어 화소 어레이의 1 수평 라인에 배열된 화소들(P)에 영상 데이터에 대응되는 데이터전압(Vdata)이 기입된다. 스캐닝 기간 동안, 화소의 구동 TFT(DT)의 문턱 전압이 샘플링되고 그 문턱 전압만큼 구동 TFT(DT)의 게이트-소스 간 전압이 보상된다.
초기화 기간(Ti)이 시작될 때, 제1 및 제2 스캔 신호(SCAN1, SCAN2)가 라이징되어 온 레벨로 발생된다. 이와 동시에, 에미션 신호(EM)는 폴링되어 오프 레벨로 변한다. 초기화 기간(Ti) 동안, 제2 스위치 TFT(ST2)는 턴-오프되어 OLED의 전류 패스를 차단한다. 제1 및 제3 스위치 TFT들(ST1, ST3)은 초기화 기간(Ti) 동안 턴-온된다. 초기화 기간(Ti) 동안, 데이터 라인(DL)에 소정의 기준 전압(Vref)이 공급된다. 초기화 기간(Ti) 동안 게이트 노드(Ng)의 전압은 기준 전압(Vini)으로 초기화되고, 소스 노드(Ns)의 전압은 소정의 초기화 전압(Vini)으로 초기화된다. 초기화 기간(Ti) 후에 제2 스캔 신호(SCAN2)는 오프 레벨로 변하여 제3 스위치 TFT(ST3)를 턴-오프시킨다. 온 레벨은 화소의 스위치 TFT들(ST1~ST3)이 턴-온(turn-on)되는 TFT의 게이트 전압 레벨이다. 오프 레벨은 화소의 스위치 소자들(ST1~ST3)이 턴-오프(turn-off)되는 게이트 전압 레벨이다.
샘플링 기간(Ts) 동안, 제1 스캔 신호(SCAN1)는 온 레벨을 유지하고, 제2 스캔 신호(SCAN2)는 오프 레벨을 유지한다. 에미션 신호(EM)는 샘플링 기간(Ts)이 시작될 때 라이징되어 온 레벨로 변한다. 샘플링 기간(Ts) 동안, 제1 및 제2 스위치 TFT들(ST1, ST2)이 턴-온되는 데 반해, 제3 스위치 TFT(ST3)는 턴-오프 된다. 샘플링 기간(Ts) 동안, 데이터 라인(11)에는 기준 전압(Vref)이 공급된다. 샘플링 기간(Ts) 동안, 게이트 노드(Ng)의 전위는 기준전압(Vref)으로 유지되는데 반해, 소스 노드(Ns)의 전위는 드레인-소스 간 전류(Ids)에 의해 상승한다. 이러한 소스 팔로워(source-follower) 방식에 따라 구동 TFT(DT)의 게이트-소스 간 전압(Vgs)은 구동 TFT(DT)의 문턱 전압(Vth)으로서 샘플링되며, 이렇게 샘플링된 문턱전압(Vth)은 제1 스토리지 커패시터(Cst1)에 저장된다. 샘플링 기간(Ts) 동안 게이트 노드(Ng)의 전압은 기준 전압(Vref)이고, 소스 노드(Ns)의 전압은 Vref-Vth 이다.
프로그래밍 기간(Tw) 동안 제1 스위치 TFT(ST1)는 온 레벨의 제1 스캔 신호(SCAN1)에 따라 온 상태를 유지하고 나머지 스위치 TFT들(ST2, ST3)은 턴-오프된다. 프로그래밍 기간(Tw) 동안 데이터 라인(14)에 입력 영상의 데이터 전압(Vdata)이 공급된다. 데이터 전압(Vdata)이 게이트 노드(Ng)에 인가되고, 게이트 노드(Ng)의 전압 변화분(Vdata-Vref)에 대한 커패시터들(Cst1,Cst2) 간의 전압 분배 결과가 소스 노드(Ns)에 반영됨으로써 구동 TFT(DT)의 게이트-소스 간 전압(Vgs)이 프로그래밍된다. 프로그래밍 기간(Tw) 동안, 게이트 노드(Ng)의 전압은 데이터 전압(Vdata)이고, 소스 노드(Ns)의 전압은 샘플링 기간(Ts)을 통해 설정된 "Vref-Vth"에 커패시터들(Cst1, Cst2) 간의 전압 분배 결과(C'*(Vdata-Vref))가 더해져 "Vref-Vth+C'*(Vdata-Vref)"가 된다. 결국, 구동 TFT(DT)의 게이트-소스 간 전압(Vgs)은 프로그래밍 기간(Tw)을 통해 "Vdata-Vref+Vth-C'*(Vdata-Vref)"으로 프로그래밍된다. 여기서, C'는 Cst1/(Cst1+Cst2)이다.
발광 기간(Tem)이 시작될 때, 에미션 신호(EM)는 라이징되어 다시 온 레벨로 변하는 반면, 제1 스캔 신호(SCAN1)는 폴링되어 오프 레벨로 변한다. 발광 기간(Tem) 동안, 제2 스위치 TFT(ST2)는 온 상태를 유지하여 OLED의 전류 패스를 형성한다. 구동 TFT(DT)는 발광 기간(Tem) 동안 데이터 전압에 따라 OLED의 전류량을 조절한다. 발광 기간(Tem) 동안, 제3 스위치 TFT(ST3)는 오프 상태를 유지한다.
발광 기간(Tem)은 프로그래밍 기간(Tw) 이후부터 그 다음 영상 데이터 기입을 위한 초기화 기간(Ti)까지 연속된다. 발광 기간(Tem) 동안, 구동 TFT(DT)의 게이트-소스 간 전압(Vgs)에 따라 조절되는 전류가 OLED에 흘러 OLED가 발광된다. 발광 기간(Tem) 동안, 제1 및 제2 스캔신호(SCAN1, SCAN2)는 오프 레벨을 유지하므로 제1 및 제3 스위치 TFT(ST1, ST3)는 오프된다.
발광 기간(Tem) 동안 OLED에 흐르는 전류(Ioled)는 수학식 1과 같다. OLED는 이 전류에 의해 발광되어 입력 영상의 밝기를 표현한다.
수학식 1에서, k는 구동 TFT(DT)의 이동도, 기생 커패시턴스 및 채널 용량 등에 의해 결정되는 비례 상수이다.
프로그래밍 기간(Tw)을 통해 프로그래밍 된 Vgs에 Vth가 포함되어 있으므로, 수학식1의 Ioled 에서 Vth가 소거된다. 따라서, 구동 TFT(DT)의 문턱전압(Vth)이 OLED의 전류(Ioled)에 미치는 영향이 제거된다.
도 8은 다수의 라이팅 구간들과 다수의 홀딩 구간들을 포함한 본 발명의 1 프레임 구성을 보여준다. 그리고, 도 9는 1 프레임 내에서 동일한 영상 데이터를 다수회 반복적으로 화소들에 기입하여 표시 휘도가 타겟 레벨에 도달하는 데 소요되는 시간을 줄이는 것을 보여준다.
도 8을 참조하면, 본 발명의 타이밍 콘트롤러(11)는 저속 구동 모드에서, 소스 드라이버(12)와 게이트 드라이버(13)의 동작을 제어하여 1 프레임 내에서 동일한 영상 데이터를 화소들(P)에 다수회 반복적으로 기입함으로써, 산화물 트랜지스터를 포함한 화소들을 대상으로 저속 구동을 구현하는 경우, 표시 휘도가 타겟 레벨에 도달하는 데 소요되는 시간을 줄여 화면 깜박임과 같은 이상 현상을 최소화한다.
이를 위해, 본 발명의 타이밍 콘트롤러(11)는 저속 구동 모드에서, 1 프레임 내에 다수의 라이팅 구간들(W)과 다수의 홀딩 구간들(H)을 할당하고, 소스 드라이버(12)와 게이트 드라이버(13)의 동작을 제어하여 다수의 라이팅 구간들을 통해 동일한 영상 데이터를 화소들(P)에 다수회 반복적으로 기입한다. 여기서, 1 라이팅 구간(W)은 표시패널(10)의 모든 화소들(P)에 영상 데이터를 1회 기입하는 데 필요한 시간이다. 그리고, 홀딩 구간들(H)은 화소들(P)에 기입된 영상 데이터를 유지하는 데 필요한 시간이다.
예를 들어, 타이밍 콘트롤러(11)는 저속 구동 모드에서, 소스 드라이버(12)와 게이트 드라이버(13)의 동작을 제어함으로써, 제1 프레임(F1) 내에서 다수의 라이팅 구간들(W)을 통해 동일한 영상 데이터(ID1)를 라이팅 구간(W)의 개수만큼 반복적으로 화소들(P)에 기입할 수 있다. 그리고, 타이밍 콘트롤러(11)는 제2 프레임(F2) 내에서 다수의 라이팅 구간들(W)을 통해 동일한 영상 데이터(ID2)를 라이팅 구간(W)의 개수만큼 반복적으로 화소들(P)에 기입할 수 있다.
타이밍 콘트롤러(11)는 저속 구동 모드에서, 라이팅 구간들(W) 동안 소스 드라이버(12)의 출력을 허여하고, 홀딩 구간들(H) 동안 소스 드라이버(12)의 출력을 중지시킨다. 또한, 타이밍 콘트롤러(11)는 저속 구동 모드에서, 라이팅 구간들(W) 동안 게이트 드라이버(13)의 스캔 신호 및 에미션 신호를 도 7과 같은 형태로 출력하고, 홀딩 구간들(H) 동안에는 스캔 신호를 오프 레벨로 출력하고 에미션 신호를 온 레벨로 출력할 수 있다.
그 결과, 저속 구동 모드에서, 라이팅 구간들(W) 동안 영상 데이터에 대응되는 데이터전압이 반복적으로 데이터라인들을 통해 화소들(P)에 기입되는 데 반해, 홀딩 구간들(H) 동안에는 화소들(P)에 기입된 데이터전압이 충전 상태를 유지한다.
도 9를 참조하면, 1Hz 저속 구동을 구현하는 경우 1 프레임은 1초로서 길다. 이때, 1Hz 저속 구동이 산화물 트랜지스터를 포함한 화소들을 대상으로 하여 구현되는 경우에는 해당 화소들에서 구현되는 휘도가 영상 데이터의 기입 시점(즉, 영상 데이터 업데이트 시점)으로부터 수 프레임 경과 후에 타겟 레벨(TL)에 도달할 수 있다. 이러한 문제를 해소하기 위해, 본 발명은 각 프레임(F1,F2,F3) 내에 k(k는 2 이상의 양의 정수)개의 라이팅 구간들(W)을 할당하고, 이 라이팅 구간들(W)을 이용하여 동일한 영상 데이터를 k회 반복적으로 화소들(P)에 기입함으로써, 표시 휘도가 타겟 레벨에 도달하는 데 소요되는 시간을 줄이고 충전속도를 높일 수 있다. 다시 말해, 본 발명은 동일한 영상 데이터를 1 프레임 내에서 라이팅 구간의 개수만큼 반복적으로 화소들(P)에 기입함으로써, 데이터 충전속도를 높이고 화면 깜박임과 같은 이상 현상을 최소화할 수 있다.
도 9에서 명확히 보여지듯이, 본 발명은 한 프레임 내에서 동일 데이터를 여러 번 기입하기 때문에 충전 데이터에 의한 표시 휘도는 한 프레임 내에서 타겟 레벨에 도달하게 된다.
도 10a 내지 도 10c는 1 프레임 내에 할당되는 라이팅 구간들과 홀딩 구간들에 대한 다양한 실시예를 보여준다.
도 10a를 참조하면, 1Hz 저속 구동 구현시 타이밍 콘트롤러(11)는 각각 1초/60에 해당되는 2개의 라이팅 구간들(W)과 58개의 홀딩 구간들(H)을 1 프레임(1F)에 할당할 수 있다. 소스 드라이버(12)와 게이트 드라이버(13)는 타이밍 콘트롤러(11)의 제어하에, 2개의 라이팅 구간들(W) 동안 동일한 영상 데이터(ID)를 화소들(P)에 2회 반복적으로 기입함으로써 데이터 충전 속도를 높이고, 58개의 홀딩 구간들(H) 동안 화소들(P)의 영상 데이터(ID)를 유지함으로써 소비 전력을 줄일 수 있다.
도 10b를 참조하면, 1Hz 저속 구동 구현시 타이밍 콘트롤러(11)는 각각 1초/60에 해당되는 3개의 라이팅 구간들(W)과 57개의 홀딩 구간들(H)을 1 프레임(1F)에 할당할 수 있다. 소스 드라이버(12)와 게이트 드라이버(13)는 타이밍 콘트롤러(11)의 제어하에, 3개의 라이팅 구간들(W) 동안 동일한 영상 데이터(ID)를 화소들(P)에 3회 반복적으로 기입함으로써 데이터 충전 속도를 높이고, 57개의 홀딩 구간들(H) 동안 화소들(P)의 영상 데이터(ID)를 유지함으로써 소비 전력을 줄일 수 있다.
도 10c를 참조하면, 1Hz 저속 구동 구현시 타이밍 콘트롤러(11)는 각각 1초/60에 해당되는 10개의 라이팅 구간들(W)과 50개의 홀딩 구간들(H)을 1 프레임(1F)에 할당할 수 있다. 소스 드라이버(12)와 게이트 드라이버(13)는 타이밍 콘트롤러(11)의 제어하에, 10개의 라이팅 구간들(W) 동안 동일한 영상 데이터(ID)를 화소들(P)에 10회 반복적으로 기입함으로써 데이터 충전 속도를 높이고, 50개의 홀딩 구간들(H) 동안 화소들(P)의 영상 데이터(ID)를 유지함으로써 소비 전력을 줄일 수 있다.
도 11은 1 프레임 내에 할당되는 라이팅 구간들과 홀딩 구간들에 대한 다른 실시예를 보여준다.
도 11을 참조하면, 타이밍 콘트롤러(11)는 저속 구동 모드에서, 1 프레임 내에 다수의 라이팅 구간들(W)과 다수의 홀딩 구간들(H)을 할당하고, 소스 드라이버(12)와 게이트 드라이버(13)의 동작을 제어하여 라이팅 구간들을 통해 동일한 영상 데이터를 화소들(P)에 다수회 반복적으로 기입한다. 특히, 본 발명의 타이밍 콘트롤러(11)는 데이터 충전 속도를 더욱 높이기 위해, 각 라이팅 구간(W)을 M(M은 2이상의 양의 정수)개의 서브 라이팅 구간들(Wa,Wb)로 시분할하고, 소스 드라이버(12)와 게이트 드라이버(13)의 동작을 제어하여 서브 라이팅 구간들(Wa,Wb)을 통해 동일한 영상 데이터를 화소들(P)에 다수회 반복적으로 기입할 수 있다. 이 경우, 동일한 영상 데이터는 1 프레임 내에서 라이팅 구간(W)의 개수*M만큼 반복적으로 화소들(P)에 기입된다. 즉, 영상 데이터의 기입 횟수는 서브 라이팅 구간의 개수(M)만큼 더 증가되므로 데이터 충전 속도는 더욱 높아진다.
이상 설명한 내용을 통해 당업자라면 본 발명의 기술사상을 일탈하지 아니하는 범위에서 다양한 변경 및 수정이 가능함을 알 수 있을 것이다. 따라서, 본 발명의 기술적 범위는 명세서의 상세한 설명에 기재된 내용으로 한정되는 것이 아니라 특허 청구의 범위에 의해 정하여져야만 할 것이다.
10 : 표시패널
11 : 타이밍 콘트롤러
12 : 소스 드라이버 13 : 게이트 드라이버
12 : 소스 드라이버 13 : 게이트 드라이버
Claims (10)
- 화소들을 구비하는 표시패널;
상기 화소들에 연결된 데이터 라인들을 구동하는 소스 드라이버;
상기 화소들에 연결된 게이트 라인들을 구동하는 게이트 드라이버; 및
저속 구동 모드에서, 상기 소스 드라이버와 게이트 드라이버의 동작을 제어하여 1 프레임 내에서 동일한 영상 데이터를 상기 화소들에 다수회 반복적으로 기입하는 타이밍 콘트롤러를 포함하는 유기발광 표시장치. - 제 1 항에 있어서,
상기 타이밍 콘트롤러는,
저속 구동 모드에서, 모든 화소들에 영상 데이터가 1회 기입되는 데 필요한 라이팅 구간과, 상기 화소들에 기입된 영상 데이터를 유지하기 위한 홀딩 구간을 각각 상기 1 프레임 내에 다수개씩 할당하고, 라이팅 구간들을 통해 상기 동일한 영상 데이터를 상기 화소들에 다수회 반복적으로 기입하는 유기발광 표시장치. - 제 2 항에 있어서,
상기 동일한 영상 데이터는 상기 1 프레임 내에서 라이팅 구간의 개수만큼 반복적으로 상기 화소들에 기입되는 유기발광 표시장치. - 제 2 항에 있어서,
상기 타이밍 콘트롤러는 상기 각 라이팅 구간을 M(M은 2이상의 양의 정수)개의 서브 라이팅 구간들로 시분할하고,
상기 동일한 영상 데이터는 상기 1 프레임 내에서 라이팅 구간의 개수*M만큼 반복적으로 상기 화소들에 기입되는 유기발광 표시장치. - 제 2 항에 있어서,
상기 타이밍 콘트롤러는,
상기 라이팅 구간에서 상기 소스 드라이버의 출력을 허여하고,
상기 홀딩 구간에서 상기 소스 드라이버의 출력을 중지시키는 유기발광 표시장치. - 표시패널에 구비된 화소들을 갖는 유기발광 표시장치의 구동방법에 있어서,
소스 드라이버를 통해 상기 화소들에 연결된 데이터 라인들을 구동하는 단계;
게이트 드라이버를 통해 상기 화소들에 연결된 게이트 라인들을 구동하는 단계; 및
저속 구동 모드에서, 상기 소스 드라이버와 게이트 드라이버의 동작을 제어하여 1 프레임 내에서 동일한 영상 데이터를 상기 화소들에 다수회 반복적으로 기입하는 단계를 포함하는 유기발광 표시장치의 구동방법. - 제 6 항에 있어서,
상기 1 프레임 내에서 동일한 영상 데이터를 상기 화소들에 다수회 반복적으로 기입한 후 유지시키는 단계는,
저속 구동 모드에서, 모든 화소들에 영상 데이터가 1회 기입되는 데 필요한 라이팅 구간과, 상기 화소들에 기입된 영상 데이터를 유지하기 위한 홀딩 구간을 각각 상기 1 프레임 내에 다수개씩 할당하는 단계와,
라이팅 구간들을 통해 상기 동일한 영상 데이터를 상기 화소들에 다수회 반복적으로 기입하는 단계를 포함하는 유기발광 표시장치의 구동방법. - 제 7 항에 있어서,
상기 동일한 영상 데이터는 상기 1 프레임 내에서 라이팅 구간의 개수만큼 반복적으로 상기 화소들에 기입되는 유기발광 표시장치의 구동방법. - 제 7 항에 있어서,
상기 각 라이팅 구간은 M(M은 2이상의 양의 정수)개의 서브 라이팅 구간들로 시분할 되고,
상기 동일한 영상 데이터는 상기 1 프레임 내에서 라이팅 구간의 개수*M만큼 반복적으로 상기 화소들에 기입되는 유기발광 표시장치의 구동방법. - 제 7 항에 있어서,
상기 라이팅 구간에서 상기 소스 드라이버의 출력은 허여되고,
상기 홀딩 구간에서 상기 소스 드라이버의 출력을 중지되는 유기발광 표시장치의 구동방법.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020160092733A KR102510567B1 (ko) | 2016-07-21 | 2016-07-21 | 유기발광 표시장치와 그 구동방법 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020160092733A KR102510567B1 (ko) | 2016-07-21 | 2016-07-21 | 유기발광 표시장치와 그 구동방법 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20180011397A true KR20180011397A (ko) | 2018-02-01 |
KR102510567B1 KR102510567B1 (ko) | 2023-03-16 |
Family
ID=61232073
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020160092733A KR102510567B1 (ko) | 2016-07-21 | 2016-07-21 | 유기발광 표시장치와 그 구동방법 |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102510567B1 (ko) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190122056A (ko) * | 2018-04-19 | 2019-10-29 | 엘지디스플레이 주식회사 | 전계 발광 표시장치와 그 구동 방법 |
US11514842B2 (en) | 2020-02-05 | 2022-11-29 | Samsung Electronics Co., Ltd. | LED based display panel including common LED driving circuit and display apparatus including the same |
US11626074B2 (en) | 2018-10-08 | 2023-04-11 | Samsung Display Co., Ltd. | Display device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20020013426A (ko) * | 2000-08-08 | 2002-02-20 | 야마자끼 순페이 | 전기-광학 장치 및 이 장치의 구동방법 |
KR20070083199A (ko) * | 2006-02-20 | 2007-08-23 | 도시바 마쯔시따 디스플레이 테크놀로지 컴퍼니, 리미티드 | El 표시 장치 및 el 표시 장치의 구동 방법 |
KR20150077807A (ko) * | 2013-12-30 | 2015-07-08 | 엘지디스플레이 주식회사 | 저속 구동이 가능한 표시장치 |
KR20160005839A (ko) * | 2014-07-07 | 2016-01-18 | 엘지디스플레이 주식회사 | 표시장치 |
-
2016
- 2016-07-21 KR KR1020160092733A patent/KR102510567B1/ko active IP Right Grant
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20020013426A (ko) * | 2000-08-08 | 2002-02-20 | 야마자끼 순페이 | 전기-광학 장치 및 이 장치의 구동방법 |
KR20070083199A (ko) * | 2006-02-20 | 2007-08-23 | 도시바 마쯔시따 디스플레이 테크놀로지 컴퍼니, 리미티드 | El 표시 장치 및 el 표시 장치의 구동 방법 |
KR20150077807A (ko) * | 2013-12-30 | 2015-07-08 | 엘지디스플레이 주식회사 | 저속 구동이 가능한 표시장치 |
KR20160005839A (ko) * | 2014-07-07 | 2016-01-18 | 엘지디스플레이 주식회사 | 표시장치 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190122056A (ko) * | 2018-04-19 | 2019-10-29 | 엘지디스플레이 주식회사 | 전계 발광 표시장치와 그 구동 방법 |
US11626074B2 (en) | 2018-10-08 | 2023-04-11 | Samsung Display Co., Ltd. | Display device |
US11514842B2 (en) | 2020-02-05 | 2022-11-29 | Samsung Electronics Co., Ltd. | LED based display panel including common LED driving circuit and display apparatus including the same |
Also Published As
Publication number | Publication date |
---|---|
KR102510567B1 (ko) | 2023-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107799068B (zh) | 有机发光显示器 | |
KR102597588B1 (ko) | 표시장치와 그의 열화 보상 방법 | |
KR102458078B1 (ko) | 게이트 구동회로와 이를 이용한 표시장치 | |
US10679562B2 (en) | Electroluminescence display | |
KR102450894B1 (ko) | 전계 발광 표시장치와 그 구동 방법 | |
KR102694938B1 (ko) | 전계 발광 표시장치 | |
KR20170026971A (ko) | 유기 발광 표시장치와 그 구동 장치 및 방법 | |
KR102636598B1 (ko) | 화소 구동 회로를 포함한 전계발광 표시장치 | |
KR20210073188A (ko) | 화소 구동 회로를 포함한 전계발광 표시장치 | |
KR102345423B1 (ko) | 유기발광표시장치 및 그의 구동방법 | |
KR102473217B1 (ko) | 전계 발광 표시장치 | |
KR20190122056A (ko) | 전계 발광 표시장치와 그 구동 방법 | |
KR102696839B1 (ko) | 유기 발광 다이오드 표시 장치 | |
KR20110122410A (ko) | 유기발광다이오드 표시장치 및 그 구동방법 | |
KR20180085121A (ko) | 화소 및 이를 이용한 유기전계발광 표시장치 | |
KR20200055580A (ko) | 픽셀 회로와 이를 이용한 표시장치 | |
KR102510567B1 (ko) | 유기발광 표시장치와 그 구동방법 | |
KR20160067636A (ko) | 유기발광 표시장치 | |
KR102625440B1 (ko) | 표시패널과 이를 이용한 전계 발광 표시장치 | |
KR102358043B1 (ko) | 전계 발광 표시장치 | |
KR20230099171A (ko) | 화소 회로 및 이를 포함하는 표시 장치 | |
KR20200076292A (ko) | 전계발광 표시장치 | |
KR20190062127A (ko) | 전계 발광 표시장치 | |
KR20190002949A (ko) | 전계 발광 표시장치 | |
KR102402429B1 (ko) | 전계 발광 표시장치와 그 구동방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right |