KR20170121584A - A producing method mixing sintered part for cutting tool and sintered part - Google Patents

A producing method mixing sintered part for cutting tool and sintered part Download PDF

Info

Publication number
KR20170121584A
KR20170121584A KR1020160050242A KR20160050242A KR20170121584A KR 20170121584 A KR20170121584 A KR 20170121584A KR 1020160050242 A KR1020160050242 A KR 1020160050242A KR 20160050242 A KR20160050242 A KR 20160050242A KR 20170121584 A KR20170121584 A KR 20170121584A
Authority
KR
South Korea
Prior art keywords
powder
metal oxide
sintering
sintered body
composite metal
Prior art date
Application number
KR1020160050242A
Other languages
Korean (ko)
Inventor
이선홍
안기봉
이병훈
박건태
전태원
김민주
Original Assignee
(주)지아이엘
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)지아이엘 filed Critical (주)지아이엘
Priority to KR1020160050242A priority Critical patent/KR20170121584A/en
Publication of KR20170121584A publication Critical patent/KR20170121584A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • C04B2235/3843Titanium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • C04B2235/3847Tungsten carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3886Refractory metal nitrides, e.g. vanadium nitride, tungsten nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/405Iron group metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

The present invention relates to a method for preparing a composite metal oxide sintered body. The method includes: a powder mixing step of preparing a mixture of hard metal powder; a grinding step of grinding the mixed powder obtained from the powder mixing step primarily; a sintering step of determining whether the size of the oxides ground in the grinding step is suitable and executing a secondary grinding operation when the size is not determined as suitable or sintering otherwise; a compressing and molding step of compressing and molding the ground oxide powder; and a sintering step of sintering the molded articles obtained from the compressing and molding step. When the particle size of the oxides ground in the grinding step is 1m or less, the particle size is determined as suitable. The present invention can solve the solubility problems due to hardness, uniformly mix the mixed powder only with problems due to hardness process without acids or additional treatment. In addition, the sintered body manufactured through the present method has excellent overall mechanical properties such as abrasion resistance and thermal conductivity.

Description

복합금속산화물 소결체 제조방법 및 복합금속산화물 소결체{A producing method mixing sintered part for cutting tool and sintered part}TECHNICAL FIELD The present invention relates to a composite metal oxide sintered body and a composite metal oxide sintered body,

본 발명은 복합금속산화물 소결체 제조방법 및 복합금속산화물 소결체에 관한 것이다.The present invention relates to a method of manufacturing a composite metal oxide sintered body and a composite metal oxide sintered body.

금속의 절삭 가공에 사용되는 내마모성 공구나 절삭공구 등은 주로 WC-Co 초경합금, TiC나 Ti(C, N)의 계열의 써메트(Cermet, Ceramic + Metal), 기타 세라믹 또는 고속도강 등으로 사용된다.Wear-resistant tools and cutting tools used for metal cutting are mainly used for WC-Co cemented carbide, Cermet, Ceramic + Metal of TiC or Ti (C, N) and other ceramics or high speed steel.

여기서 초경합금 복합 소결체는 TiC나 Ti(CN)등 이외에도 NbC, TaC, Mo2C 등의 경질 탄화물 분말체 및 결합상 Co 등의 금속 분말체를 혼합하여, 이들을 진공 또는 수소 분위기하에서 소결함으로써 제조된다.Here, the composite sintered body of the cemented carbide is produced by mixing hard carbide powders such as NbC, TaC and Mo2C and metal powders such as Co-phase Co in addition to TiC and Ti (CN) and sintering them in a vacuum or hydrogen atmosphere.

이와 같은 초경합금 복합 소결체의 제조방법은 입자크기가 크고, 입도의 분포가 균일하지 못한 문제점이 존재하였다. 또한 텅스텐 카바이트 초경합금에 비해 인성이 현저히 저하되는 문제점을 가지고 있었다.Such a method for producing a cemented carbide composite sintered body has a problem that the particle size is large and the particle size distribution is not uniform. In addition, the tungsten carbide cemented carbide has a problem that the toughness is significantly lowered.

이러한 문제점을 해결하기 위해 인성의 향상을 위해 WC, Mo2C, TaC, NbC 등 많은 첨가 탄화물을 사용하여 왔다. 그러나 이와 같은 방법 역시도 소결 중에 형성되며, 형성되는 양이 소결 온도와 시간에 연관되어 있으므로, 완전 고용체만으로 구성된 소결체를 얻을 수 없었고, 아직까지도 실질적인 고인성을 달성하는 완전 고용체 분말이나 이를 이용하여 제조되는 극 미세구조를 가진 소결체는 제공된 바가 없다.To solve these problems, many additive carbides such as WC, Mo2C, TaC and NbC have been used to improve toughness. However, such a method is also formed during sintering, and since the amount of sintering is related to the sintering temperature and time, it is impossible to obtain a sintered body composed solely of a solid solution solid, and a completely solid solution powder still achieving substantial toughness, No sintered body having a very fine structure is provided.

본 발명의 목적은 고경도에 따른 저인성의 문제를 해결하고, 혼합분말의 균일한 혼합처리를 산이나 추가적인 처리 없이 기계적인 혼합과정만으로 혼합할 수 있는 복합금속산화물 소결체 제조방법을 제공하는 것이다. It is an object of the present invention to provide a method for manufacturing a composite metal oxide sintered body capable of solving the problem of low hardness according to hardness and mixing a uniform mixing treatment of mixed powders by only mechanical mixing without an acid or an additional treatment.

본 발명의 또 다른 목적은 전반적인 기계적 물성이 우수한 복합금속산화물 복합금속산화물 소결체를 제공하는 것이다.It is still another object of the present invention to provide a composite metal oxide composite metal oxide sintered body having excellent overall mechanical properties.

상기 목적을 달성하기 위하여 복합금속산화물 소결체 제조방법에 있어서, 경질상의 금속분말 혼합물을 혼합하여 준비하는 분말혼합단계와; 상기 분말혼합단계에서 얻어진 혼합분말을 1차분쇄하는 분쇄단계와; 상기 분쇄단계에서 분쇄된 산화물들의 크기가 적합한지 판단하고, 상기 적합성 판단에서 적합하지 않다고 판단되는 경우 2차 분쇄를 실시하고, 적합하다고 판단되는 경우 하소하는 단계와; 상기 분쇄된 산화물 분말을 압축 및 성형하는 압축성형단계와; 상기 압축성형단계를 통해 얻어진 성형체를 소결하는 단계를 포함하며, 상기 1차분쇄단계에서 분쇄된 산화물들의 입경이 1㎛ 이하인 경우, 적합하다고 판단한다.In order to accomplish the above object, there is provided a method of manufacturing a composite metal oxide sintered body, comprising: a powder mixing step of mixing and preparing a hard metal powder mixture; A pulverizing step of firstly pulverizing the mixed powder obtained in the powder mixing step; Determining whether the size of the pulverized oxides is appropriate in the pulverizing step, performing second pulverization when it is determined that the size of the pulverized oxides is not suitable in the determination of conformity, and calcining if it is judged to be suitable; A compression molding step of compressing and molding the pulverized oxide powder; And sintering the compact obtained through the compression molding step. When the particle diameter of the milled oxides in the first milling step is 1 μm or less, it is judged to be suitable.

여기서 상기 적합성을 판단하는 단계는, 상기 금속 산화물의 조성 및 크기에 따라 상기 복합 금속 산화물을 만들 수 없는 영역이 존재하지 않는 경우에 적합한 것으로 판단하고, 상기 복합 금속 산화물을 만들 수 없는 영역이 존재하는 경우에 부적합한 것으로 판단하는 것이 바람직하다.Wherein the step of judging the conformity is judged to be suitable when there is no region in which the composite metal oxide can not be formed according to the composition and size of the metal oxide and if there is a region where the composite metal oxide can not be formed It is preferable to judge that it is inappropriate.

그리고 상기 분말혼합단계의 금속분말은 Fe, Co 및 Ni으로부터 선택되는 하나 이상의 분말 인 것이 바람직하다.The metal powder in the powder mixing step is preferably at least one powder selected from Fe, Co and Ni.

또한 상기 분말혼합단계에서는 질화티타늄, 탄화티타늄, 탄화몰리브덴, 탄화텅스텐, 코발트, 니켈, 크롬, 탄화탄탈럼 및 탄화니오븀으로 이루어진 그룹에서 선택된 하나 이상을 혼합하여 이루어지는 것이 바람직하다.Also, in the powder mixing step, a mixture of at least one selected from the group consisting of titanium nitride, titanium carbide, molybdenum carbide, tungsten carbide, cobalt, nickel, chromium, tantalum and niobium carbide is preferably mixed.

그리고 상기 소결단계에서는 열간프레싱 소결, 방전플라즈마 소결 및 열간정수압 소결로 이루어진 그룹에서 선택된 하나를 이용하여 수행되는 것이 바람직하다.In the sintering step, it is preferable to use one selected from the group consisting of hot pressing sintering, discharge plasma sintering and hot isostatic sintering.

또한 상기 소결단계에서는 1350 ℃ 내지 1500 ℃의 온도에서 2 시간 내지 6 시간 유지되는 것이 적절하다.Also, in the sintering step, it is suitable to be maintained at a temperature of 1350 캜 to 1500 캜 for 2 to 6 hours.

본 발명에 따른 복합금속산화물 소결체 제조방법 및 복합금속산화물 소결체는 고경도에 따른 저인성의 문제를 해결하고, 혼합분말의 균일한 혼합처리를 산이나 추가적인 처리 없이 기계적인 혼합과정만으로 혼합할 수 있다. 또한 이를 통해 제작된 소결체는 내마모성 및 열전도도 등과 같은 전반적인 기계적 물성이 우수하다. The method for producing a composite metal oxide sintered body and the composite metal oxide sintered body according to the present invention solve the problem of low toughness due to high hardness and can mix the uniform mixture of mixed powders only by mechanical mixing without the addition of an acid or an additional treatment. In addition, the sintered body manufactured through this method has excellent overall mechanical properties such as abrasion resistance and thermal conductivity.

도 1은 본 발명에 따른 복합금속산화물 소결체 제조방법을 나타낸 순서도이다.1 is a flowchart showing a method of manufacturing a composite metal oxide sintered body according to the present invention.

이하 본 발명의 바람직한 실시예를 첨부된 도면을 참조하여 상세히 설명한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

본 발명에 따른 복합금속산화물 소결체 제조방법의 제조방법은 금속분말을 혼합하는 분말혼합단계(S101); 분말혼합단계를 통해 얻어진 혼합분말을 1차분쇄하는 분쇄단계(S103); 분쇄단계에서 분쇄된 산화물들의 크기가 적합한지 판단하고(S104), 적합성 판단(S104)에서 적합하지 않다고 판단되는 경우 2차 분쇄를 실시하고, 적합하다고 판단되는 경우 하소하는 단계(S105); 분쇄된 산화물 분말을 압축 및 성형하는 압축성형단계와(S106); 압축성형단계를 통해 얻어진 성형체를 소결하는 단계(S107)로 이루어진다.A method of manufacturing a composite metal oxide sintered body according to the present invention includes: a powder mixing step (S101) of mixing metal powder; A pulverizing step (S103) of first pulverizing the mixed powder obtained through the powder mixing step; (S104), judging whether the size of the pulverized oxides is appropriate in the pulverizing step, performing the second pulverization when it is judged that it is not suitable in the conformity judgment (S104), and calcining (S105) if it is judged to be suitable; (S106) compressing and shaping the pulverized oxide powder; And sintering the compact obtained through the compression molding step (S107).

분말혼합단계(S101)는 금속분말 혼합물을 혼합하는 단계로, 철에 질화티타늄, 탄화티타늄, 탄화몰리브덴, 탄화텅스텐, 코발트, 니켈, 크롬, 탄화탄탈럼 및 탄화니오븀으로 이루어진 그룹에서 선택된 하나 이상을 혼합하여 이루어진다.The powder mixing step (S101) is a step of mixing a metal powder mixture, and mixing at least one selected from the group consisting of titanium nitride, titanium carbide, molybdenum carbide, tungsten carbide, cobalt, nickel, chromium, tantalum, .

더욱 상세하게는, 철 100 중량부에 질화티타늄, 탄화티타늄, 탄화몰 리브덴, 탄화텅스텐, 코발트, 니켈, 크롬, 탄화탄탈럼 및 탄화니오븀으로 이루어진 그룹에서 선택된 하나 이상으로 이루어진 금속 36 내지 54 중량부를 혼합하여 이루어지는 것이 바람직하며, 철 100 중량부에 질화티타늄 4 내지 6 중량부, 탄화티타늄 4 내지 6 중량부, 탄화몰리브덴 4 내지 6 중량부, 탄화텅스텐 4 내지 6 중량부, 코발트 4 내지 6 중량부, 니켈 4 내지 6 중량부, 크롬 4 내지 6 중량부, 탄화탄탈럼 4 내지 6 중량부 및 탄화니오븀 4 내지 6 중량부로 이루어지는 것이 더욱 바람직하다. 여기서 질화티타늄은 나노복합분말 입자의 조대화를 억제하고 내마모성을 향상시키며, 탄화티타늄은 경도와 내융착성을 향상시키고 가공면을 양호하게 하며, 탄화몰리브덴과 탄화텅스텐은 소결특성을 향상시키며, 코발트, 니켈 및 크롬은 인성을 향상시키고, 탄화탄탈럼 및 탄화니오븀은 고온경도와 열충격 저항성을 향상시키는 역할을 한다.More particularly, the present invention relates to a process for producing a ferritic stainless steel comprising 36 to 54 weight percent of a metal consisting of at least one member selected from the group consisting of titanium nitride, titanium carbide, molybdenum carbide, tungsten carbide, cobalt, nickel, chromium, tantalum, 4 to 6 parts by weight of titanium nitride, 4 to 6 parts by weight of titanium carbide, 4 to 6 parts by weight of molybdenum carbide, 4 to 6 parts by weight of tungsten carbide, 4 to 6 parts by weight of cobalt, and 4 to 6 parts by weight of cobalt are added to 100 parts by weight of iron 4 to 6 parts by weight of nickel, 4 to 6 parts by weight of chromium, 4 to 6 parts by weight of tantalum carbide and 4 to 6 parts by weight of niobium carbide. Here, titanium nitride suppresses coarsening of nanocomposite powder particles and improves wear resistance. Titanium carbide improves hardness and fusing resistance and improves the machined surface. Molybdenum carbide and tungsten carbide improve sintering properties, and cobalt , Nickel and chromium improve toughness, and tantalum carbide and niobium carbide serve to improve high temperature hardness and thermal shock resistance.

분쇄단계(S103)는 상기 분말혼합단계(S101)를 통해 혼합된 혼합물을 나노사이즈로 분쇄하는 단계로, 분말혼합단계(S101)를 통해 혼합된 혼합물을 쉐이커 밀, 유성볼밀 및 마멸분쇄기로 이루어진 그룹에서 선택된 하나를 이용하여 나노사이즈로 분쇄하는 단계다. 여기서 바람직하게는 마멸분쇄기를 사용하는 것이 바람직하다. 이를 통해 대량생산, 분말 미세화 및 공정시간 단축이 가능하다.The pulverization step (S103) is a step of pulverizing the mixed mixture into nano-sized particles through the powder mixing step (S101). The pulverized mixture obtained through the powder mixing step (S101) is mixed with a group consisting of a shaker mill, And then crushing it into nano-size using one selected from the above. Here, it is preferable to use an abrasive grinder. This enables mass production, powder refinement and shortening of process time.

분쇄단계(S103)에서 1차적으로 분쇄된 산화물 분말은 산화물 분말은 1~10㎛ 범위의 크기를 갖게 된다. 이러한 산화물 분말은 소결체의 조성과 소결조건이 정해진 상태에서 주어진 조성과 온도에서의 입자의 확산속도를 고려하여 분말의 입도 조건의 적합성을 판단(S104)하여 적합하지 않다고 판단되는 경우, 해당 분말에 대하여 2차 분쇄를 진행한다. 구체적인 조건은 각 원료 분말의 초기 조건과 원하는 조건에 따라 다르나 분말 크기의 입경이 1㎛ 이하인 것이 바람직하다. 이러한 분말 크기는 일실시예에 불과하므로 이에 한정하지 않는다.In the pulverization step (S103), the oxide powder that is primarily pulverized has a size ranging from 1 to 10 mu m. When the composition of the oxide powder and the sintering conditions are determined and the particle size distribution at a given composition and temperature is considered, the compatibility of the powder particle size condition is determined (S104). If it is determined that the oxide particle powder is not suitable, The second milling is carried out. The specific conditions depend on the initial condition of each raw material powder and the desired conditions, but it is preferable that the particle size of the powder size is 1 탆 or less. Such a powder size is only an example and is not limited thereto.

분쇄단계(S103) 이후 분말 입도가 적합한 것으로 판단되면 분쇄된 산화물 분말을 혼합한 뒤 균질하게 섞어 500℃ 이상 1000℃ 이하의 온도에서 1시간 이상 3시간 이하의 하소 과정(S105)을 거친다. 하소 과정(S105)은 부분적으로 분말이 뭉치거나 크기가 큰 분말을 형성할 수 있는데, 이를 위해서는 분쇄된 산화물 분말의 표면이 녹아야 한다. 따라서, 본 발명에 따른 실시예에서는 하소 공정의 온도를 500℃ 이상으로 하는데, 500℃ 보다 낮은 경우에는 산화물 분말의 표면이 잘 녹지 않게 된다. 반면, 하소 공정의 온도가 과도하게 높으면 산화물끼리 반응하여 국소적으로는 다른 조성을 형성하게 된다. If it is determined that the powder particle size is appropriate after the pulverization step (S103), the pulverized oxide powder is mixed and homogeneously mixed, and the calcination step (S105) is performed at a temperature of 500 ° C or more and 1000 ° C or less for 1 hour or more and 3 hours or less. The calcination process (S105) can partially form a powder aggregate or a large-size powder, in which the surface of the pulverized oxide powder has to be melted. Therefore, in the embodiment of the present invention, the temperature of the calcination process is set to 500 ° C or higher. When the temperature is lower than 500 ° C, the surface of the oxide powder is insoluble. On the other hand, when the calcination temperature is excessively high, the oxides react with each other to locally form different compositions.

이후 분쇄된 산화물 분말을 압축성형기에 투입하고 100 내지 500kg/ 의 압력으로 압축성형을 시행한다(S106). 이러한 압력으로 압축성형된 성형체는 우수한 형태안정성을 나타낸다.Thereafter, the pulverized oxide powder is put into a compression molding machine and compression molding is performed at a pressure of 100 to 500 kg / (S106). Molded articles obtained by compression molding at such a pressure exhibit excellent dimensional stability.

이에 의해 완성된 성형체는 열간프레싱 소결, 방전플라즈마 소결 및 열간정수압 소결로 이루어진 그룹에서 선택된 하나의 소결방법으로 소결을 진행하여 완성된 소결체를 얻을 수 있다(S107). 여기서 소결조건은 1350 ℃ 내지 1500 ℃의 온도에서 2 시간 내지 6 시간 유지되는 것이 바람직하다. Thereafter, the sintered body is sintered by one sintering method selected from the group consisting of hot pressing sintering, discharge plasma sintering, and hot isostatic pressing (S107). Here, the sintering condition is preferably maintained at a temperature of 1350 to 1500 캜 for 2 to 6 hours.

한편, 소결공중 후에는 소결체 내부에 다량의 기공을 포함하고 있는 문제점이 있으나, 추가적인 HIP 공정을 통해 밀도를 약 100%에 이르게 함으로써 품질을 향상시키는 것이 바람직하다.On the other hand, there is a problem that after the sintering air, a large amount of pores are contained in the sintered body. However, it is preferable to improve the quality by increasing the density to about 100% through an additional HIP process.

이를 통해 얻어지는 복합금속산화물 소결체는 고경도에 따른 저인성의 문제를 해결하고, 혼합분말의 균일한 혼합처리를 산이나 추가적인 처리 없이 기계적인 혼합과정만으로 혼합할 수 있다. 또한 이를 통해 제작된 소결체는 내마모성 및 열전도도 등과 같은 전반적인 기계적 물성이 우수한 효과를 나타낸다. The composite metal oxide sintered body thus obtained can solve the problem of low toughness due to high hardness and can mix the homogeneous mixing treatment of the mixed powder only by a mechanical mixing process without an acid or an additional treatment. In addition, the sintered body manufactured through this method exhibits excellent mechanical properties such as abrasion resistance and thermal conductivity.

S101: 금속분말 혼합물 준비단계 S103: 분쇄단계
S104: 분말 입도 적합성판단 단계 S105: 하소단계
S106: 압축성형 단계 S107: 소결단계
S101: Metal powder mixture preparation step S103: Grinding step
S104: Determination of Suitability of Powder Particle Size Step S105:
S106: compression molding step S107: sintering step

Claims (6)

복합금속산화물 소결체 제조방법에 있어서,
경질상의 금속분말 혼합물을 혼합하여 준비하는 분말혼합단계와;
상기 분말혼합단계에서 얻어진 혼합분말을 1차분쇄하는 분쇄단계와;
상기 분쇄단계에서 분쇄된 산화물들의 크기가 적합한지 판단하고, 상기 적합성 판단에서 적합하지 않다고 판단되는 경우 2차 분쇄를 실시하고, 적합하다고 판단되는 경우 하소하는 단계와;
상기 분쇄된 산화물 분말을 압축 및 성형하는 압축성형단계와;
상기 압축성형단계를 통해 얻어진 성형체를 소결하는 단계를 포함하며,
상기 1차분쇄단계에서 분쇄된 산화물들의 입경이 1㎛ 이하인 경우, 적합하다고 판단하는 것을 특징으로 하는 복합금속산화물 소결체 제조방법.
In the method for producing a composite metal oxide sintered body,
A powder mixing step of mixing and preparing a hard metal powder mixture;
A pulverizing step of firstly pulverizing the mixed powder obtained in the powder mixing step;
Determining whether the size of the pulverized oxides is appropriate in the pulverizing step, performing second pulverization when it is determined that the size of the pulverized oxides is not suitable in the determination of conformity, and calcining if it is judged to be suitable;
A compression molding step of compressing and molding the pulverized oxide powder;
And sintering the molded body obtained through the compression molding step,
And when the particle size of the oxides pulverized in the first pulverization step is 1 탆 or less, it is determined that the particle size is appropriate.
제1항에 있어서,
상기 적합성을 판단하는 단계는,
상기 금속 산화물의 조성 및 크기에 따라 상기 복합 금속 산화물을 만들 수 없는 영역이 존재하지 않는 경우에 적합한 것으로 판단하고, 상기 복합 금속 산화물을 만들 수 없는 영역이 존재하는 경우에 부적합한 것으로 판단하는 것을 특징으로 하는 복합금속산화물 소결체 제조방법.
The method according to claim 1,
The method of claim 1,
It is determined that the composite metal oxide is not suitable for a region where the composite metal oxide can not be formed depending on the composition and the size of the metal oxide. Wherein the composite metal oxide sintered body has a thickness of 10 to 20 nm.
제1항에 있어서,
상기 분말혼합단계의 금속분말은 Fe, Co 및 Ni으로부터 선택되는 하나 이상의 분말 인 것으로 특징으로 하는 복합금속산화물 소결체 제조방법.
The method according to claim 1,
Wherein the metal powder in the powder mixing step is at least one powder selected from Fe, Co, and Ni.
제1항 또는 제2항에 있어서,
상기 분말혼합단계에서는 질화티타늄, 탄화티타늄, 탄화몰리브덴, 탄화텅스텐, 코발트, 니켈, 크롬, 탄화탄탈럼 및 탄화니오븀으로 이루어진 그룹에서 선택된 하나 이상을 혼합하여 이루어지는 것을 특징으로 하는 복합금속산화물 소결체 제조방법.
3. The method according to claim 1 or 2,
Wherein the powder mixing step comprises mixing at least one selected from the group consisting of titanium nitride, titanium carbide, molybdenum carbide, tungsten carbide, cobalt, nickel, chromium, tantalum tantalum and niobium carbide to form a composite metal oxide sintered body .
제1항에 있어서,
상기 소결단계에서는 1350 ℃ 내지 1500 ℃의 온도에서 2 시간 내지 6 시간 유지되는 것을 특징으로 하는 복합금속산화물 소결체 제조방법.
The method according to claim 1,
Wherein the sintering step is performed at a temperature of 1350 to 1500 DEG C for 2 to 6 hours.
제1항 내지 제5항 중 어느 한 항의 제조방법에 의해 제조된 복합금속산화물 소결체.
A composite metal oxide sintered body produced by the manufacturing method according to any one of claims 1 to 5.
KR1020160050242A 2016-04-25 2016-04-25 A producing method mixing sintered part for cutting tool and sintered part KR20170121584A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160050242A KR20170121584A (en) 2016-04-25 2016-04-25 A producing method mixing sintered part for cutting tool and sintered part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160050242A KR20170121584A (en) 2016-04-25 2016-04-25 A producing method mixing sintered part for cutting tool and sintered part

Publications (1)

Publication Number Publication Date
KR20170121584A true KR20170121584A (en) 2017-11-02

Family

ID=60383102

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160050242A KR20170121584A (en) 2016-04-25 2016-04-25 A producing method mixing sintered part for cutting tool and sintered part

Country Status (1)

Country Link
KR (1) KR20170121584A (en)

Similar Documents

Publication Publication Date Title
KR100792190B1 (en) Solid-solution powder without core/rim structure, method to prepare the same, powder for cermet including said solid-solution powder, method to prepare the same and ceramics, cermet using said powder for solid-solution powder and cermet
JP4403286B2 (en) Cemented carbide tool material and manufacturing method thereof
TWI506144B (en) Hard alloy
CN102994792A (en) Preparation method for high-strength and high-hardness nanocrystalline tungstate-cobalt hard alloy
JP2679744B2 (en) High hardness and wear resistant material
JP5348537B2 (en) Cemented carbide
JP7272353B2 (en) Cemented Carbide, Cutting Tool and Cemented Carbide Manufacturing Method
CN110735075A (en) Preparation method of WC-based hard alloys with high wear resistance
KR101425952B1 (en) Low Binder Sintered Carbides and its Manufacturing Method
CN109641806B (en) Titanium carbonitride powder and method for producing titanium carbonitride powder
JPWO2006080302A1 (en) Composite wear-resistant member and manufacturing method thereof
JP2010500477A (en) Mixed powder containing solid solution powder and sintered body using the same, mixed cermet powder containing solid solution powder, cermet using the same, and method for producing them
CN107267836A (en) A kind of twin crystal hard alloy and preparation method thereof
KR20080077849A (en) High toughness cermets and method of fabricating the same
KR100700197B1 (en) Process for Manufacturing Sintered Materials Containing Cobalt Component
JP6439833B2 (en) Cemented carbide manufacturing method
EP3480328B1 (en) Super hard sintered body
JP7157887B1 (en) Grinding, stirring, mixing, kneading machine parts
KR20170121584A (en) A producing method mixing sintered part for cutting tool and sintered part
JP5740763B2 (en) Cemented carbide
JP2012117101A (en) Method for manufacturing cemented carbide
JP2012117100A (en) Cemented carbide
JP2016180183A (en) Cemented carbide, and working tool
KR20150000631A (en) METHOD FOR PREPARING PLATELET WC POWDER AND WC-Co CEMENTED CARBIDE CONTAINING PLATELET WC
JP7508155B1 (en) Manufacturing method of lightweight hard alloys