KR20170115878A - Method for Remote Wavelength Setting in Dense Wavelength Division Multiplexing system and Optical Transceiver therefor - Google Patents

Method for Remote Wavelength Setting in Dense Wavelength Division Multiplexing system and Optical Transceiver therefor Download PDF

Info

Publication number
KR20170115878A
KR20170115878A KR1020160043655A KR20160043655A KR20170115878A KR 20170115878 A KR20170115878 A KR 20170115878A KR 1020160043655 A KR1020160043655 A KR 1020160043655A KR 20160043655 A KR20160043655 A KR 20160043655A KR 20170115878 A KR20170115878 A KR 20170115878A
Authority
KR
South Korea
Prior art keywords
optical signal
wavelength
optical
cot
setting
Prior art date
Application number
KR1020160043655A
Other languages
Korean (ko)
Inventor
이득주
Original Assignee
주식회사 에치에프알
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에치에프알 filed Critical 주식회사 에치에프알
Priority to KR1020160043655A priority Critical patent/KR20170115878A/en
Publication of KR20170115878A publication Critical patent/KR20170115878A/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/572Wavelength control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/021Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0221Power control, e.g. to keep the total optical power constant

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Optical Communication System (AREA)

Abstract

DWDM 장치에서의 원격 파장설정 방법과 광 트랜시버 구현 방법을 개시한다.
COT 장치에서 초기 설정된 파장을 기반으로 원격에 위치한 RT 장치의 파장을 자동으로 설정하기 위한 DWDM 기반의 원격 파장설정 방법 및 그를 위한 장치에 관한 것이다.
A remote wavelength setting method and an optical transceiver implementation method in a DWDM device are disclosed.
And more particularly, to a DWDM-based remote wavelength setting method and apparatus for automatically setting a wavelength of a remotely located RT apparatus based on an initial wavelength set in a COT apparatus.

Description

DWDM 장치에서의 원격 파장설정 방법과 광 트랜시버 구현 방법{Method for Remote Wavelength Setting in Dense Wavelength Division Multiplexing system and Optical Transceiver therefor}TECHNICAL FIELD [0001] The present invention relates to a wavelength tunable wavelength division multiplexing (WDM)

본 실시예는 DWDM 장치에서 원격지에 설치된 광 트랜시버의 파장을 설정하는 방법 및 이를 사용한 광 트래시버에 관한 것이다. The present embodiment relates to a method of setting wavelengths of optical transceivers installed in a remote place in a DWDM device and a light transceiver using the same.

이 부분에 기술된 내용은 단순히 본 실시예에 대한 배경 정보를 제공할 뿐 종래기술을 구성하는 것은 아니다.The contents described in this section merely provide background information on the present embodiment and do not constitute the prior art.

광통신 기술의 발달과 인터넷 서비스 수요의 급격한 증가로 최근에는 DWDM 기반의 광통신 장치가 백본망에서 액세스망까지 확대되고 있다. 특히 2010년으 넘어 LTE 기술이 도입됨으로 인해 Mobile Fronthaul망에도 DWDM 방식의 고집적도를 가진 WDM 장치들이 설치되었다. 또한 이러한 DWDM 장치를 사용하는 망 구조가 다양해지고 비용절감과 망 단순화가 추진됨으로 인해 새로운 기술을 요구하게 되었다. 그 중 하나가 원격지에 설치된 장치에서 사용되는 광 송신기의 파장을 자동으로 설정하는 기술이 있다. Recently, due to the development of optical communication technology and the rapid increase of demand for internet service, optical communication devices based on DWDM have been expanded from backbone network to access network. In particular, due to the introduction of LTE technology beyond 2010, DWDM-based WDM devices have been installed in the Mobile Fronthaul network. In addition, as the network structure using these DWDM devices is diversified, and cost reduction and network simplification are promoted, a new technology is required. One of them is a technique for automatically setting the wavelength of an optical transmitter used in a device installed at a remote place.

2000년대 초반부터 WDM-PON이라는 장치를 겨냥한 기술이 다수 연구되고 원격지의 파장설정에 대한 연구가 있었다. Colorless라는 이름으로 불리는 이 기술의 연구 관점은 폭 넓은 파장범위를 제공할 수 있는 광원에 DWDM 소스를 인가하여 자연적으로 DWDM 파장을 출력하는 구조를 가지고 있다. 하지만 가변파장 레이저 다이오드를 사용하는 구조를 통해 원격지의 광 송신기의 파장을 설정하는 방식도 연구되어 특허가 출원되었다. 본 발명에서는 기존의 가변파장 레이저 다이오드를 사용하는 광 송신기의 파장을 설정하는 방식에 관한 것이고, 방식의 차별화를 통한 발명 내용을 포함하고 있다.Since the early 2000s, a number of technologies aimed at a device called WDM-PON have been studied and there have been studies on the wavelength setting of a remote location. The research focus of this technique, called Colorless, has a structure that outputs a DWDM wavelength naturally by applying a DWDM source to a light source capable of providing a wide wavelength range. However, a method of setting the wavelength of a remote optical transmitter through a structure using a variable wavelength laser diode has been studied and patented. The present invention relates to a method of setting a wavelength of an optical transmitter using a conventional tunable laser diode, and includes the contents of the invention by differentiating the method.

본 발명과 유사한 분야의 발명 중 하나는 단순히 OLT가 ONT에게 채널(파장) 정보를 제공하여 ONT의 광 송신 모듈이 수신한 파장 정보에 의해 파장을 설정한다(한국등록번호 10-0596407). 이 기존 방식은 OLT의 DCC(Data Control Center)라는 부분에서 OLT에서 연결된 채널 번호를 파장제어 정보라는 특별한 데이터 영역을 정해놓고 송신해야 하는 특징을 가지고 있다. 하지만, 이러한 DCC 통신을 위해서는 별도의 통신채널이 필요하며, 별도의 회로를 구성하는 단점 외에도 DCC 통신용 신호가 서비스 광 신호에 덧붙여져서 전체적인 광 신호의 속도를 증가시키는 영향을 주는 단점을 가지고 있다One of the inventions similar to the present invention is that the OLT simply provides channel (wavelength) information to the ONT and sets the wavelength according to the wavelength information received by the optical transmission module of the ONT (Korean Registration No. 10-0596407). In this conventional method, a DCC (Data Control Center) part of the OLT has a characteristic that a specific data area called wavelength control information is set and transmitted with the channel number connected in the OLT. However, in order to perform such DCC communication, a separate communication channel is required. In addition to the disadvantage of forming a separate circuit, the DCC communication signal is added to the service optical signal to increase the speed of the optical signal as a whole

다른 하나의 발명은 FSK 변조 방식을 이용한 파장정보 송수신 방식을 사용하며(한국등록특허 10-0910940), 이 방식은 광 송수신 모듈 내부에 별도의 FSK 회로를 두고 파장 정보를 부호화한 후 변조된 광 신호에 FSK 신호를 덧붙여 주고 받아야 하는 구조로 광 신호의 품질을 떨어뜨리고 초기에 OLT 광 파장이 정확히 다중화 필터 파장과 일치해야 하는 전제를 또한 가지고 있다. FSK 방식을 이용한 방식은 별도의 송수신 채널을 가지고 있는 어떤 방식이라도 가지고 있는 광 통신 품질 저하와 초기 파장의 정합 문제를 갖고 있다.In another method, a wavelength information transmitting / receiving method using an FSK modulation method is used (Korean Patent No. 10-0910940). In this method, a separate FSK circuit is provided in the optical transmitting / receiving module and wavelength information is encoded. The FSK signal must be added to and received from the OLT in order to reduce the quality of the optical signal and to have the premise that the OLT optical wavelength must exactly match the multiplexing filter wavelength. The FSK method has a problem of matching the initial wavelength with the deterioration of the optical communication quality of any method having a separate transmission / reception channel.

전체적으로 일반적인 구조의 가변파장 트랜시버와 다른 특별한 구조를 가진 실시 예는 다수 있지만 광학적인 품질을 저하시키거나 가격적인 부담을 상승시키고, 추가적인 부품 사용으로 인한 공간의 부족으로 인해 상용화가 어렵거나 MSA 규격을 따르지 못하는 어려움을 가지고 있다.Overall, there are many embodiments with variable wavelength transceivers of general construction and other special structures, but it is difficult to commercialize due to the lack of space due to the use of additional parts, or to lower the optical quality or increase the price burden, or to comply with the MSA standard I have difficulties that I can not do.

본 실시예는 COT 장치에서 초기 설정된 파장을 기반으로 원격지에 위치한 RT 장치의 파장을 자동으로 설정하기 위한 DWDM 기반의 원격 파장설정 방법 및 이러한 방식을 사용하는 광 트랜시버 장치를 제공하는 데 주된 목적이 있다.The present embodiment has a main purpose of providing a DWDM-based remote wavelength setting method for automatically setting a wavelength of an RT device located at a remote location based on a wavelength initially set in a COT device and an optical transceiver device using such a method .

본 실시예의 일 측면에 의하면, COT(Central Office Terminal) 장치 및 RT(Remote Terminal) 장치 간의 원격 파장설정 방법에 있어서, COT 장치에서 제1 광신호의 파장을 설정하고 상기 제1 광신호를 RT 장치로 전송하는 제1 광신호 전송과정; 상기 RT 장치에서 상기 COT 장치로부터 제1 광신호를 획득하면, 복수의 파장 중 하나의 파장을 선택하고 선택된 파장을 갖는 제2 광신호를 상기 COT 장치로 전송하는 제2 광신호 전송과정; 상기 COT 장치에서 상기 RT 장치로부터 상기 제1 광신호에 대응하는 제2 광신호를 획득하는 경우, 제1 광신호의 광출력을 변경 제어 및 복구하는 광출력 제어과정; 및 상기 RT 장치에서 상기 제2 광신호가 상기 COT 장치로 정상 전송된 경우, 상기 제1 광신호의 광출력을 변경 제어 및 복구를 감지하여 파장 설정을 수행하는 파장 설정과정을 포함하는 것을 특징으로 하는 DWDM 장치에서의 원격 파장설정 방법을 제공한다.According to an aspect of the present invention, there is provided a remote wavelength setting method between a central office terminal (COT) apparatus and a remote terminal (RT) apparatus, wherein a wavelength of a first optical signal is set in a COT apparatus, A first optical signal transmission process for transmitting the first optical signal; A second optical signal transmission step of, when the first optical signal is obtained from the COT device in the RT device, selecting a wavelength of a plurality of wavelengths and transmitting a second optical signal having a selected wavelength to the COT device; A light output control step of controlling and restoring the optical output of the first optical signal when acquiring a second optical signal corresponding to the first optical signal from the RT apparatus in the COT apparatus; And a wavelength setting step of performing wavelength setting by sensing change control and restoration of optical output of the first optical signal when the second optical signal is normally transmitted from the RT apparatus to the COT apparatus, Provides a remote wavelength setting method in a DWDM device.

이상에서 설명한 바와 같이 본 실시예에 의하면, 광 트랜시버 내의 마이크로 컨트롤러에 소프트웨어의 구현만으로 COT 장치 및 RT 장치 간의 원격 파장을 설정할 수 있는 효과가 있으며, 이로 인해 구조가 간단하고 구조 변경 가격이 저렴하고, 운용이 간편하다는 효과가 있다. As described above, according to the present embodiment, the remote wavelength between the COT device and the RT device can be set only by implementing the software in the microcontroller in the optical transceiver. Therefore, the structure is simple, It has the effect of easy operation.

또한, 본 실시예에 따른 원격파장 설정 방식 또는 알고리즘을 사용하는 장치의 경우, 일반적으로 사용 중인 광 트랜시버의 하드웨어 구조를 그대로 사용하면서 원격 파장을 설정하도록 구현할 수 있는 효과가 있다. In addition, in the case of the apparatus using the remote wavelength setting method or algorithm according to the present embodiment, the remote wavelength can be set while using the hardware structure of the optical transceiver generally used.

도 1은 본 실시예에 따른 DWDM 기반의 원격 파장 설정 시스템을 개략적으로 나타낸 블록 구성도이다.
도 2는 본 실시예에 따른 DWDM 기반의 원격 파장 설정을 위한 광 트랜시버를 개략적으로 나타낸 블록 구성도이다.
도 3은 본 실시예에 따른 온도 검출 및 파장 제어와 관련된 광 트랜시버의 구조를 개략적으로 나타낸 블록 구성도이다.
도 4는 본 실시예에 따른 COT 장치 및 RT 장치 각각에 포함된 마이크로 컨트롤러를 구체적으로 나타낸 블록 구성도이다.
도 5는 본 실시예에 따른 DWDM 기반의 원격 파장설정 방법을 설명하기 위한 순서도이다.
도 6은 본 실시예에 따른 상향 및 하향 스트림의 사용 파장 대역의 예시도이다.
1 is a block diagram schematically showing a DWDM-based remote wavelength setting system according to an embodiment of the present invention.
2 is a block diagram schematically showing an optical transceiver for DWDM-based remote wavelength setting according to the present embodiment.
3 is a block diagram schematically showing the structure of an optical transceiver related to temperature detection and wavelength control according to the present embodiment.
4 is a block diagram specifically showing a microcontroller included in each of the COT apparatus and the RT apparatus according to the present embodiment.
5 is a flowchart for explaining a DWDM-based remote wavelength setting method according to the present embodiment.
FIG. 6 is a diagram illustrating an example of a used wavelength band of an up stream and a down stream according to the present embodiment.

이하, 본 실시예를 첨부된 도면을 참조하여 상세하게 설명한다.Hereinafter, the present embodiment will be described in detail with reference to the accompanying drawings.

도 1은 본 실시예에 따른 DWDM 기반의 원격 파장 설정 시스템을 개략적으로 나타낸 블록 구성도이다. 1 is a block diagram schematically showing a DWDM-based remote wavelength setting system according to an embodiment of the present invention.

본 실시예에 따른 DWDM 기반의 원격 파장 설정 시스템은 COT(Central Office Terminal) 장치(110), RN(Remote Node) 장치(120) 및 RT(Remote Terminal) 장치(130)를 포함한다. 도 1에 도시된 DWDM 기반의 원격 파장 설정 시스템은 일 실시예에 따른 것으로서, 도 1에 도시된 모든 블록이 필수 구성요소는 아니며, 다른 실시예에서 DWDM 기반의 원격 파장 설정 시스템에 포함된 일부 블록이 추가, 변경 또는 삭제될 수 있다. The DWDM-based remote wavelength setting system according to the present embodiment includes a central office terminal (COT) apparatus 110, a remote node (RN) apparatus 120 and a remote terminal (RT) apparatus 130. The DWDM-based remote wavelength setting system shown in FIG. 1 is according to an embodiment. Not all the blocks shown in FIG. 1 are essential components, and in some embodiments, some blocks included in the DWDM- Can be added, changed or deleted.

도 1에 도시된 DWDM 기반의 원격 파장 설정 시스템은 DWDM 기반의 광 링크를 나타내며, COT 장치(110)와 RT 장치(130) 간에 이용되는 광 트랜시버(112, 132)의 구조에 따라 전체적인 특성이 변할 수 있다. 즉, COT 장치(110) 및 RT 장치(130)는 적어도 하나 이상의 광 트랜시버(112, 132)를 구비하며, 광 트랜시버(112, 132)는 가변파장 트랜시버(Tunable Transceiver)일 수 있다. The DWDM-based remote wavelength setting system shown in FIG. 1 represents a DWDM-based optical link and its overall characteristics change depending on the structure of optical transceivers 112 and 132 used between the COT apparatus 110 and the RT apparatus 130 . That is, the COT apparatus 110 and the RT apparatus 130 include at least one optical transceiver 112, 132, and the optical transceiver 112, 132 may be a tunable transceiver.

광 트랜시버(112, 132)는 내부에 특정 기능이 구현되어 외부에 연결된 파장 다중화/역다중화 필터(114)의 파장 특성과 동일한 파장을 출력하여 전체적인 광 링크를 형성할 수 있도록 한다. 여기서, 파장 다중화/역다중화 필터(114)는 COT 장치(110)에 탑재되어 파장 다중화/역다중화 기능을 담당하는 광 부품으로서, AWG(AWG: Arrayed Waveguide Gratings) 또는 박막 필터일 수 있다. The optical transceivers 112 and 132 have a specific function implemented therein to output the same wavelength as that of the wavelength multiplexing / demultiplexing filter 114 connected to the outside, thereby forming an overall optical link. The wavelength multiplexing / demultiplexing filter 114 may be an AWG (Arrayed Waveguide Gratings) or a thin film filter mounted on the COT device 110 to perform a wavelength multiplexing / demultiplexing function.

RN 장치(120)는 COT 장치(110) 및 RT 장치(130) 사이에 위치하여, 파장의 다중화/역다중화를 수행하며, C-밴드와 L-밴드 파장 대역을 분리하고 결합하는 WDM 필터를 포함할 수 있다. The RN apparatus 120 includes a WDM filter located between the COT apparatus 110 and the RT apparatus 130 for multiplexing / demultiplexing wavelengths and separating and combining C-band and L-band wavelength bands can do.

DWDM 기반의 원격 파장 설정하는 과정에서, COT 장치(110)는 제1 광 트랜시버(112)를 이용하여 파장 다중화/역다중화 필터(114) 및 RN 장치(120)를 경유하여 RT 장치(130) 측의 제2 광 트랜시버(132)로 기 설정된 파장을 갖는 제1 광신호를 전송한다. In the process of setting the remote wavelength based on the DWDM, the COT apparatus 110 uses the first optical transceiver 112 to transmit the optical signal to the RT apparatus 130 side via the wavelength multiplexing / demultiplexing filter 114 and the RN apparatus 120 And transmits the first optical signal having a predetermined wavelength to the second optical transceiver 132 of the second optical transceiver 132. [

RT 장치(130)의 제2 광 트랜시버(132)에서는 별도의 파장이 결정되지 않은 상태에서 제1 광신호를 수신하고, 복수의 파장 중 하나를 선택하여 소정의 파장을 갖는 제2 광신호를 RN 장치(120)를 경유하여 제1 광 트랜시버(112)로 전송한다. 여기서, 제2 광신호는 제1 광신호와 동일한 파장일 경우에만 RN 장치(120)를 통과하여 제1 광 트랜시버(112)로 전달될 수 있다. 따라서, 제2 광 트랜시버(132)는 제1 광신호와 동일한 파장이 선택될 때까지 복수의 파장을 순차적 또는 랜덤으로 변경하여 제2 광신호를 전송한다. The second optical transceiver 132 of the RT device 130 receives the first optical signal in a state where no additional wavelength is determined and selects one of the plurality of wavelengths to transmit a second optical signal having a predetermined wavelength to the RN And transmits it to the first optical transceiver 112 via the apparatus 120. Here, the second optical signal can be transmitted to the first optical transceiver 112 through the RN device 120 only when the second optical signal has the same wavelength as the first optical signal. Accordingly, the second optical transceiver 132 transmits the second optical signal by sequentially or randomly changing a plurality of wavelengths until the same wavelength as the first optical signal is selected.

제2 광 트랜시버(132)는 제1 광 트랜시버(112)로부터 제2 광신호의 정상수신에 대한 응답 즉, 제1 광신호의 광출력 변화를 감지한다. 이후, 제1 광 트랜시버(112)에서는 제1 광신호에 대한 광출력을 복구하고, 제1 광 트랜시버(112) 및 제2 광 트랜시버(132) 간의 파장 설정을 완료하여 광통신을 수행한다. The second optical transceiver 132 senses a response to the normal reception of the second optical signal from the first optical transceiver 112, that is, a change in optical output of the first optical signal. The first optical transceiver 112 then restores the optical output of the first optical signal and completes the wavelength setting between the first optical transceiver 112 and the second optical transceiver 132 to perform optical communication.

도 2는 본 실시예에 따른 DWDM 기반의 원격 파장 설정을 위한 광 트랜시버를 개략적으로 나타낸 블록 구성도이다. 2 is a block diagram schematically showing an optical transceiver for DWDM-based remote wavelength setting according to the present embodiment.

DWDM 기반의 원격 파장 설정을 위한 COT 장치(110)의 제1 광 트랜시버(112) 및 RT 장치(130)의 제2 광 트랜시버(132)는 도 2에 도시된 바와 같이, 물리적으로 동일한 구조를 갖을 수 있으며, 제1 광 트랜시버(112) 내에 포함된 제1 마이크로 컨트롤러(260)는 제2 광 트랜시버(132) 내에 포함된 제2 마이크로 컨트롤러(262)와의 내부 구성 또는 소프트웨어 구조 등이 상이할 수 있다. 이하에서는 COT 장치(110) 및 RT 장치(130)에 포함된 광 트랜시버(112, 132)를 통합하여 설명하도록 하며, 제1 마이크로 컨트롤러(260) 및 제2 마이크로 컨트롤러(262)에 대한 자세한 설명은 도 4에 기재하도록 한다. The first optical transceiver 112 of the COT apparatus 110 and the second optical transceiver 132 of the RT apparatus 130 for DWDM-based remote wavelength setting have physically identical structures as shown in FIG. 2 And the first microcontroller 260 included in the first optical transceiver 112 may be different from the second microcontroller 262 included in the second optical transceiver 132 such as an internal configuration or a software structure . The optical transceivers 112 and 132 included in the COT apparatus 110 and the RT apparatus 130 are collectively described below and detailed descriptions of the first microcontroller 260 and the second microcontroller 262 will be omitted herein. This will be described in Fig.

광 트랜시버(112, 132)는 레이저 다이오드 드라이버(LDD: Laser Diode Driver, 210), 가변파장 레이저 다이오드(T-LD: Tunable-Laser Diode, 220), 상태 모니터부(DDM: Digital Diagnostics Monitoring, 230), 증폭부(PA: Post Amplifier, 240), 포토다이오드 증폭부(PD-TIA: Photo Detector-Transimpedance Amplifier, 250), 마이크로 컨트롤러(Micro Controller, 260, 262) 및 칩온도 컨트롤러(TEC-Controller, 270)를 포함한다.The optical transceivers 112 and 132 include a laser diode driver (LDD) 210, a tunable laser diode (T-LD) 220, a digital diagnostic monitoring (DDM) A Post Amplifier 240, a Photo Detector-Transimpedance Amplifier 250, a Micro Controller 260, and a Chip Temperature Controller 270 (TEC-Controller) ).

레이저 다이오드 드라이버(210)는 가변 레이저(Tunable Laser)를 구동하기 위한 드라이버를 말하며, 가변파장 레이저 다이오드(220)는 발진 파장을 변화할 수 있는 레이저로서, 파장의 동조 범위는 레이저의 종류에 따라 달라질 수 있으며 고체 레이저, 색소 레이저, 반도체 레이저 등으로 구현될 수 있다. The laser diode driver 210 is a driver for driving a tunable laser. The variable wavelength laser diode 220 is a laser capable of changing an oscillation wavelength. The tuning range of the wavelength varies depending on the type of laser. And can be realized as a solid laser, a dye laser, a semiconductor laser, or the like.

상태 모니터부(230)는 광트랜시버(112, 132)의 주요 상태를 진단/점검한다. 예컨대, 광수신감도, 광출력세기, 바이어스 전류(Bias Current), 공급 전압(Supply Voltage), 온도 상태 등을 모니터링하며, 모니터링하는 항목이 기 설정된 특정값(기준값)을 초과하는 경우 경고 또는 알림을 출력하거나 외부 장치로 전송할 있다. The status monitor 230 diagnoses / checks the main status of the optical transceivers 112 and 132. For example, it monitors the optical sensitivity, optical output intensity, bias current, supply voltage, temperature status, etc., and when the monitored item exceeds the preset specific value (reference value) Output or transmit to an external device.

증폭부(240)는 후치 증폭기(Post Amplifier)로서 포토다이오드 증폭부(250)를 거친 전기 신호를 증폭(전력 증폭)하는 모듈을 말하며, 포토다이오드 증폭부(250)는 포토다이오드에 의해 검출된 전류를 증폭하는 모듈을 말한다. The amplification unit 240 is a postamplifier that amplifies (amplifies) an electric signal through the photodiode amplification unit 250. The photodiode amplification unit 250 amplifies the electric current detected by the photodiode . ≪ / RTI >

마이크로 컨트롤러(260, 262)는 마이크로 프로세서와 D/A 컨버터, A/D 컨버터 등을 포함한 모듈로서, 광 트랜시버(112, 132)의 전반적인 동작을 제어한다. 마이크로 컨트롤러(260, 262)는 파장 설정, 광출력 변화, 광출력 감지 등을 수행하여 파장 설정을 수행할 수 있으며, 마이크로 컨트롤러(260, 262)에 대한 구체적인 동작은 도 4를 통해 설명하도록 한다. The microcontrollers 260 and 262 are modules including a microprocessor, a D / A converter, an A / D converter, and the like, and control the overall operation of the optical transceivers 112 and 132. The microcontrollers 260 and 262 can perform wavelength setting by performing wavelength setting, optical output change, light output detection, and the like, and specific operations of the microcontrollers 260 and 262 will be described with reference to FIG.

칩온도 컨트롤러(270)는 가변파장 레이저 다이오드(220)의 칩 온도를 일정하게 유지하기 위한 전자 회로를 말한다. The chip temperature controller 270 refers to an electronic circuit for keeping the chip temperature of the variable wavelength laser diode 220 constant.

도 3은 본 실시예에 따른 온도 검출 및 파장 제어와 관련된 광 트랜시버의 구조를 개략적으로 나타낸 블록 구성도이다. 3 is a block diagram schematically showing the structure of an optical transceiver related to temperature detection and wavelength control according to the present embodiment.

도 3에 도시된 바와 같이, 마이크로 컨트롤러(260, 262)는 마이크로 프로세서(Micro Processor), 온도센서(Thermistor, 310), A/D 컨버터 및 D/A 컨버터를 포함할 수 있다. 즉, 마이크로 컨트롤러(260, 262)에 포함된 마이크로 프로세서는 A/D 컨버터를 통해 모니터 온도센서(310)와 연결될 수 있으며, D/A 컨버터를 통해 칩온도 컨트롤러(270)와 연결될 수 있다. 마이크로 컨트롤러(260, 262)와 칩온도 컨트롤러(270)는 도 3에 기재된 바와 같이 연결되는 것이 바람직하나 반드시 이에 한정되는 것은 아니다. 3, the microcontrollers 260 and 262 may include a microprocessor, a temperature sensor 310, an A / D converter, and a D / A converter. That is, the microprocessor included in the microcontrollers 260 and 262 can be connected to the monitor temperature sensor 310 through the A / D converter and to the chip temperature controller 270 through the D / A converter. The microcontrollers 260 and 262 and the chip temperature controller 270 are preferably connected as shown in FIG. 3, but are not limited thereto.

가변파장 트랜시버(112, 132)는 마이크로 컨트롤러(260, 262)는 마이크로 프로세서(Micro Processor), 온도센서(Thermistor, 310), A/D 컨버터 및 D/A 컨버터를 포함하는 구조를 기반으로 광신호의 파장을 제어할 수 있다. The tunable transceivers 112 and 132 are controlled by the microcontrollers 260 and 262 based on a structure including a microprocessor, a temperature sensor 310, an A / D converter, and a D / Can be controlled.

도 4는 본 실시예에 따른 COT 장치 및 RT 장치 각각에 포함된 마이크로 컨트롤러를 구체적으로 나타낸 블록 구성도이다. 4 is a block diagram specifically showing a microcontroller included in each of the COT apparatus and the RT apparatus according to the present embodiment.

COT 장치(110)에 포함된 제1 광 트랜시버(112)의 제1 마이크로 컨드롤러(260)는 파장 설정부(410), LOS 감지부(420), 광출력 제어부(430) 및 제1 파장 설정부(440)를 포함한다. 도 4에 도시된 제1 마이크로 컨드롤러(260)는 일 실시예에 따른 것으로서, 도 4에 도시된 모든 블록이 필수 구성요소는 아니며, 다른 실시예에서 제1 마이크로 컨드롤러(260)에 포함된 일부 블록이 추가, 변경 또는 삭제될 수 있다. The first microcontroller 260 of the first optical transceiver 112 included in the COT apparatus 110 includes the wavelength setting unit 410, the LOS sensing unit 420, the optical output control unit 430, (440). The first microcontroller 260 shown in FIG. 4 is according to one embodiment, and not all of the blocks shown in FIG. 4 are essential elements, and in other embodiments, the first microcontroller 260 shown in FIG. Some blocks may be added, changed or deleted.

파장 설정부(410)는 제1 광 트랜시버(112)에서 RT 장치(130)에 포함된 제2 광 트랜시버(132)로 광신호를 전송하기 위한 파장을 설정하고, 설정된 파장을 갖는 제1 광신호를 RT 장치(130)에 포함된 제2 광 트랜시버(132)로 전송한다. 여기서, 파장 설정부(410)는 RN 장치(120)를 경유하여 RT 장치(130)로 제1 광신호를 전송한다. 파장 설정부(410)에서 설정된 제1 광신호의 파장은 기 설정된 고정 파장일 수 있으나 반드시 이에 한정되는 것은 아니며, 랜덤으로 설정된 소정의 파장일 수도 있다. The wavelength setting unit 410 sets the wavelength for transmitting the optical signal from the first optical transceiver 112 to the second optical transceiver 132 included in the RT apparatus 130, To the second optical transceiver 132 included in the RT device 130. Here, the wavelength setting unit 410 transmits the first optical signal to the RT apparatus 130 via the RN apparatus 120. The wavelength of the first optical signal set by the wavelength setting unit 410 may be a predetermined fixed wavelength but is not limited thereto and may be a predetermined wavelength set at random.

LOS 감지부(420)는 RT 장치(130)에 포함된 제2 광 트랜시버(132)로부터 전송된 제2 광신호를 RN 장치(120)를 경유하여 획득하고, 획득한 제2 광신호에 근거하여 제1 광신호의 LOS(Loss Of Signal) 해제를 감지한다. 즉, LOS 감지부(420)는 제1 광신호가 제2 광 트랜시버(132)로 정상적으로 도착하여 LOS가 해제되었고, 제2 광 트랜시버(132)로부터 설정된 파장을 통해 제2 광신호가 제1 광 트랜시버(112)로 정상적으로 도착한 것으로 확인할 수 있다. LOS 감지부(420)는 제2 광신호를 획득하여 제1 광신호의 LOS 해제가 감지된 경우, 광출력 제어부(430)에서 제1 광신호의 광출력이 변화되도록 한다. The LOS sensing unit 420 acquires the second optical signal transmitted from the second optical transceiver 132 included in the RT apparatus 130 via the RN apparatus 120 and outputs the second optical signal based on the second optical signal obtained And detects the loss of signal (LOS) of the first optical signal. That is, the LOS detecting unit 420 detects that the first optical signal arrives normally to the second optical transceiver 132 and the LOS is released, and the second optical signal is transmitted through the first optical transceiver 132 through the wavelength set by the second optical transceiver 132 112). The LOS sensing unit 420 acquires the second optical signal, and when the LOS release of the first optical signal is sensed, the optical output controller 430 changes the optical output of the first optical signal.

광출력 제어부(430)는 제1 광 트랜시버(112)에서 전송되는 광신호의 광출력을 제어하는 동작을 수행한다. The optical output controller 430 controls the optical output of the optical signal transmitted from the first optical transceiver 112.

광출력 제어부(430)는 LOS 감지부(420)에서 제2 광신호를 획득하여 제1 광신호의 LOS 해제가 감지되면, 제1 광신호의 광출력을 변화시킨다. 광출력의 변화는 예컨대, 송신파워 자체를 차단하는 방식, 광파워를 소정의 비율로 감소시키는 방식 등을 적용하여 광출력을 제어할 수 있으며, 광출력 제어부(430)는 광출력을 차단 또는 감소시킬 수 있다면 다양한 방식의 광출력 제어 방식을 적용할 수 있다. The optical output controller 430 obtains the second optical signal from the LOS sensing unit 420 and changes the optical output of the first optical signal when the LOS release of the first optical signal is sensed. The optical output can be controlled by applying a method of blocking the transmission power itself, a method of reducing the optical power by a predetermined ratio, or the like, and the optical output controller 430 may block or reduce the optical output A variety of optical output control methods can be applied.

광출력 제어부(430)는 광출력이 변화된 제1 광신호를 제2 광 트랜시버(132)로 전송하고 기 설정된 시간 또는 일정 시간이 경과한 후 제1 광신호의 광출력을 변화 이전의 광출력으로 복구한다. The optical output controller 430 transmits the first optical signal having the changed optical output to the second optical transceiver 132 and outputs the optical output of the first optical signal to the optical output before the change, Restore.

즉, 광출력 제어부(430)는 제2 광신호의 정상 수신을 제2 광 트랜시버(132)로 알리기 위해 제1 광신호의 광출력을 제어하여 전송하며, 기 설정된 시간 또는 일정 시간이 경과한 후 제1 광신호의 광출력을 기존 광출력으로 복구한다. 예를 들어, 광출력 제어부(430)는 제1 광신호가 제1 광출력으로 전송하고 있는 상태에서 제2 광 트랜시버(132)로부터 제2 광신호가 정상 수신된 경우, 제1 광신호를 제2 광출력으로 감소 제어하거나 광출력을 차단한다. 제1 광신호의 광출력 제어 이후 기 설정된 시간 또는 일정 시간이 경과하면 광출력 제어부(430)는 제1 광신호를 제1 광출력으로 복구하여 제2 광 트랜시버(132)로 전송한다. That is, the optical output controller 430 controls the optical output of the first optical signal to inform the second optical transceiver 132 of the normal reception of the second optical signal, and transmits the optical output of the first optical signal after a predetermined period of time And restores the optical output of the first optical signal to the existing optical output. For example, when the second optical signal is normally received from the second optical transceiver 132 while the first optical signal is being transmitted through the first optical output, the optical output controller 430 converts the first optical signal into the second optical signal The output is reduced or the optical output is cut off. The optical output controller 430 restores the first optical signal to the first optical output and transmits the first optical signal to the second optical transceiver 132. [

이에 따라, RT 장치(130)에 포함된 제2 광 트랜시버(132)는 제1 광신호의 광출력 변화를 감지한 후 연속하여 제1 광신호의 광출력 복구를 감지할 수 있다. Accordingly, the second optical transceiver 132 included in the RT device 130 can detect the optical output recovery of the first optical signal continuously after detecting the optical output change of the first optical signal.

제1 파장 설정부(440)는 제2 광 트랜시버(132)의 정상 광신호 수신 여부를 확인하여 파장 설정을 완료하고, COT 장치(110) 및 RT 장치(130) 간에 설정된 파장을 이용하여 광통신을 수행한다. The first wavelength setting unit 440 confirms whether the second optical transceiver 132 receives the normal optical signal and completes the wavelength setting and transmits the optical signal using the wavelength set between the COT apparatus 110 and the RT apparatus 130 .

도 4에 기재된 파장 설정부(410), LOS 감지부(420), 광출력 제어부(430) 및 제1 파장 설정부(440)는 COT 장치(110)의 제1 광 트랜시버(112) 내부에 구성된 것으로 기재하고 있으나 반드시 이에 한정되는 것은 아니며, COT 장치(110) 내부의 통합 제어부(미도시)에 구성되어 복수의 제1 광 트랜시버(112)의 전체 또는 일부를 제어하는 형태로 구현될 수도 있다. The wavelength setting unit 410, the LOS sensing unit 420, the optical output control unit 430 and the first wavelength setting unit 440 shown in FIG. 4 are configured in the first optical transceiver 112 of the COT apparatus 110 However, the present invention is not limited thereto, and may be implemented in a form of controlling all or a part of a plurality of first optical transceivers 112 in an integrated control unit (not shown) in the COT apparatus 110.

RT 장치(130)에 포함된 제2 광 트랜시버(132)의 제2 마이크로 컨트롤러(262)는 LOS 해제부(450), 파장 변경부(460), 광출력 감지부(470) 및 제2 파장 설정부(480)를 포함한다. 도 4에 도시된 제2 마이크로 컨드롤러(262)는 일 실시예에 따른 것으로서, 도 4에 도시된 모든 블록이 필수 구성요소는 아니며, 다른 실시예에서 제2 마이크로 컨드롤러(262)에 포함된 일부 블록이 추가, 변경 또는 삭제될 수 있다. The second microcontroller 262 of the second optical transceiver 132 included in the RT apparatus 130 includes an LOS release unit 450, a wavelength change unit 460, an optical output detection unit 470, (480). The second microcontroller 262 shown in FIG. 4 is according to one embodiment, and not all of the blocks shown in FIG. 4 are essential elements, and in another embodiment, the second microcontroller 262 included in the second microcontroller 262 Some blocks may be added, changed or deleted.

LOS 해제부(450)는 COT 장치(110)에 포함된 제1 광 트랜시버(112)로부터 전송된 제1 광신호를 RN 장치(120)를 경유하여 획득하고, 제1 광신호의 LOS를 해제한다. 다시 말해, LOS 해제부(450)는 제1 광신호에 포함된 LOS값을 제거한다. 여기서, LOS값은 광신호에 포함된 신호값에서 n 개(n > 0의 자연수)의 연속 제로가 감지된 값을 의미하나 반드시 이에 한정되는 것은 아니며, 광신호에 포함된 기 설정된 값일 수 있다. The LOS releasing unit 450 obtains the first optical signal transmitted from the first optical transceiver 112 included in the COT apparatus 110 via the RN apparatus 120 and releases the LOS of the first optical signal . In other words, the LOS release unit 450 removes the LOS value contained in the first optical signal. Here, the LOS value refers to a value obtained by detecting n continuous zeros (n is a natural number of 0) in the signal value included in the optical signal, but is not limited thereto and may be a predetermined value included in the optical signal.

LOS 해제부(450)는 제1 광신호에 대한 LOS를 해제한 경우 COT 장치(110)의 제1 광 트랜시버(112) 및 RT 장치(130)의 제2 광 트랜시버(132) 간의 물리적인 광링크는 정상적으로 연결된 것으로 판단하며, COT 장치(110)의 제1 광 트랜시버(112)에서 RT 장치(130)의 제2 광 트랜시버(132)로 연결된 하향 링크(다운 스트림)은 정상적으로 연결된 것으로 판단한다. The LOS releasing unit 450 releases the physical optical link between the first optical transceiver 112 of the COT apparatus 110 and the second optical transceiver 132 of the RT apparatus 130 when the LOS for the first optical signal is released. And determines that the downlink (downstream) connected to the second optical transceiver 132 of the RT apparatus 130 from the first optical transceiver 112 of the COT apparatus 110 is normally connected.

파장 변경부(460)는 제2 광 트랜시버(132)에 기 설정된 복수의 파장 중 하나의 파장으로 설정하여 COT 장치(110)에 포함된 제1 광 트랜시버(112)로 제2 광신호를 전송한다. 다시 말해, 파장 변경부(460)는 복수의 파장 중 하나의 파장을 기 설정된 순서대로 선정하거나 랜덤으로 선정하여 제1 광 트랜시버(112)로 제2 광신호를 전송하며, 제1 광 트랜시버(112)로부터 제2 광신호에 대한 응답이 없는 경우 복수의 파장 중 다른 파장으로 변경하여 제2 광신호를 전송한다. The wavelength changing unit 460 sets a wavelength of one of a plurality of predetermined wavelengths in the second optical transceiver 132 and transmits the second optical signal to the first optical transceiver 112 included in the COT apparatus 110 . In other words, the wavelength changing unit 460 selects one of a plurality of wavelengths in a predetermined order or randomly selects a wavelength to transmit the second optical signal to the first optical transceiver 112, and the first optical transceiver 112 If there is no response to the second optical signal, the second optical signal is changed to a different one of the plurality of wavelengths to transmit the second optical signal.

파장 변경부(460)는 복수의 파장 중 하나의 파장을 선택하고, 선택된 파장을 갖는 제2 광신호를 RN 장치(120)를 경유하여 COT 장치(110)의 제1 광 트랜시버(112)로 전송한다. The wavelength changing unit 460 selects one wavelength of the plurality of wavelengths and transmits the second optical signal having the selected wavelength to the first optical transceiver 112 of the COT apparatus 110 via the RN apparatus 120 do.

파장 변경부(460)는 제2 광신호가 제1 광 트랜시버(112)에 전송되지 않은 경우, 정상적으로 전송이 될 때까지 복수의 파장을 순차적 또는 랜덤으로 변경하여 제2 광신호를 전송한다. 예를 들어, 파장 변경부(460)이 제1 파장 내지 제10 파장을 포함하는 경우, 파장 변경부(460)는 제1 파장 내지 제10 파장 중 제1 파장을 갖는 제2 광신호를 제1 광 트랜시버(112)로 전송하고, 제1 광 트랜시버(112)에서 제2 광신호에 대한 별도의 응답이 없는 경우 제2 파장으로 변경한 제2 광신호를 제1 광 트랜시버(112)로 전송한다. 이와 같이, 파장 변경부(460)는 광출력 감지부(470)에서 제2 광신호의 응답으로 제1 광신호에 대한 광출력 변화를 감지할 때까지 제1 파장 내지 제10 파장 내에서 파장 변경을 수행한다. If the second optical signal is not transmitted to the first optical transceiver 112, the wavelength changing unit 460 transmits the second optical signal by sequentially or randomly changing a plurality of wavelengths until it is normally transmitted. For example, when the wavelength changing unit 460 includes the first to tenth wavelengths, the wavelength changing unit 460 changes the second optical signal having the first wavelength from the first wavelength to the tenth wavelength, To the optical transceiver 112 and transmits the second optical signal changed to the second wavelength to the first optical transceiver 112 when there is no response to the second optical signal in the first optical transceiver 112 . As described above, the wavelength changing unit 460 changes the wavelength within the first wavelength to the tenth wavelength until the optical output detecting unit 470 detects the optical output change with respect to the first optical signal in response to the second optical signal. .

파장 변경부(460)는 선택된 제2 광신호의 파장이 물리적으로 연결되어 있는 RN 장치(120)의 MUX에 해당하는 파장 즉, 제1 광신호와 동일한 파장일 경우에만 제2 광신호가 제1 광 트랜시버(112)로 전송될 수 있다. 예를 들어, 파장 변경부(460)는 제1 파장 내지 제10 파장 중 기 설정된 순서로 파장을 변경하다가 제5 파장을 갖는 제2 광신호를 전송하는 경우 제1 광신호의 파장과 일치하여 제2 광신호가 제1 광 트랜시버(112)로 전송될 수 있다.The wavelength changing unit 460 changes the wavelength of the selected second optical signal to the wavelength corresponding to the MUX of the RN device 120 to which the wavelength of the selected second optical signal is physically connected, May be transmitted to the transceiver 112. For example, when the wavelength changing unit 460 changes the wavelength in the predetermined order among the first wavelength to the tenth wavelength and then transmits the second optical signal having the fifth wavelength, 2 optical signals may be transmitted to the first optical transceiver 112.

광출력 감지부(470)는 RN 장치(120)를 경유하여 제2 광신호가 제1 광 트랜시버(112)로 전송되면, 제1 광 트랜시버(112)로부터 제1 광신호의 광출력의 변화를 감지한다. When the second optical signal is transmitted to the first optical transceiver 112 via the RN device 120, the optical output detection unit 470 detects a change in optical output of the first optical signal from the first optical transceiver 112 do.

광출력 감지부(470)는 제1 광신호의 광출력이 감소되거나 차단된 것을 1 차적으로 감지하고, 기 설정된 시간이 경과한 후 제1 광신호의 광출력이 기존의 광출력으로 복구된 것을 감지한다. The optical output detection unit 470 primarily detects that the optical output of the first optical signal is reduced or blocked and detects that the optical output of the first optical signal is recovered to the existing optical output after a predetermined time has elapsed Detection.

광출력 감지부(470)는 제1 광신호의 광출력 변화 및 복구를 모두 감지한 경우 파장 변경부(460)에서 설정된 파장으로 제2 광신호가 정상적으로 제1 광 트랜시버(112)로 전송된 것으로 판단한다. 예를 들어, 제2 광신호가 제1 광 트랜시버(112)로 전송된 경우 광출력 감지부(470)는 제1 광출력을 갖는 제1 광신호가 제2 광출력으로 변경된 것을 감지하고, 기 설정된 시간이 경과한 후 다시 제1 광출력을 갖는 제1 광신호가 감지되는 경우 제2 광신호가 정상적으로 제1 광 트랜시버(112)로 전송된 것으로 판단한다. The optical output detecting unit 470 detects that the second optical signal is normally transmitted to the first optical transceiver 112 at the wavelength set by the wavelength changing unit 460 when the optical output detecting unit 470 detects all the optical output change and recovery of the first optical signal do. For example, when the second optical signal is transmitted to the first optical transceiver 112, the optical output detection unit 470 detects that the first optical signal having the first optical output is changed to the second optical output, It is determined that the second optical signal is normally transmitted to the first optical transceiver 112 when the first optical signal having the first optical output is detected.

제2 파장 설정부(480)는 제1 광 트랜시버(112)의 정상 광신호 수신 여부를 확인하여 파장 설정을 완료하고, COT 장치(110) 및 RT 장치(130) 간에 설정된 파장을 이용하여 광통신을 수행한다. 다시 말해, 제2 파장 설정부(480)는 광출력 감지부(470)에서 제2 광신호의 전송에 대한 응답 즉, 제1 광신호의 광출력 변화 및 광출력 복구를 응답을 정상적으로 감지한 경우 제2 광신호의 파장으로 파장 설정을 완료하고, COT 장치(110) 및 RT 장치(130) 간에 설정된 파장을 이용하여 광통신을 수행한다. The second wavelength setting unit 480 confirms whether the first optical transceiver 112 has received the normal optical signal and completes the wavelength setting and transmits the optical signal using the wavelength set between the COT apparatus 110 and the RT apparatus 130 . In other words, when the optical output detection unit 470 normally detects the response to the transmission of the second optical signal, that is, the optical output change of the first optical signal and the optical output recovery, The wavelength setting is completed with the wavelength of the second optical signal and the optical communication is performed using the wavelength set between the COT apparatus 110 and the RT apparatus 130.

도 4에 기재된 LOS 해제부(450), 파장 변경부(460), 광출력 감지부(470) 및 제2 파장 설정부(480)는 RT 장치(130)의 제2 광 트랜시버(132) 내부에 구성된 것으로 기재하고 있으나 반드시 이에 한정되는 것은 아니며, RT 장치(130) 내부의 통합 제어부(미도시)에 구성되어 복수의 제2 광 트랜시버(132)의 전체 또는 일부를 제어하는 형태로 구현될 수도 있다. The LOS releasing unit 450, the wavelength changing unit 460, the optical output detecting unit 470 and the second wavelength setting unit 480 described in FIG. 4 are disposed inside the second optical transceiver 132 of the RT apparatus 130 The present invention is not limited thereto and may be implemented in an integrated control unit (not shown) in the RT apparatus 130 to control all or a part of the plurality of second optical transceivers 132 .

전술한 바와 같이 도 4에 기재된 본 실시예에 따른 COT 장치(110) 및 RT 장치(130)의 동작은 프로그램으로 구현되어 컴퓨터로 읽을 수 있는 기록매체에 기록될 수 있다. 본 실시예에 따른 COT 장치(110) 및 RT 장치(130)의 동작을 구현하기 위한 프로그램이 기록되고 컴퓨터가 읽을 수 있는 기록매체는 컴퓨터 시스템에 의하여 읽혀질 수 있는 데이터가 저장되는 모든 종류의 기록장치를 포함한다. 이러한 컴퓨터가 읽을 수 있는 기록매체의 예로는 ROM, RAM, CD-ROM, 자기 테이프, 플로피디스크, 광 데이터 저장장치 등이 있으며, 또한 캐리어 웨이브(예를 들어, 인터넷을 통한 전송)의 형태로 구현되는 것도 포함한다. 또한, 컴퓨터가 읽을 수 있는 기록매체는 네트워크로 연결된 컴퓨터 시스템에 분산되어, 분산방식으로 컴퓨터가 읽을 수 있는 코드가 저장되고 실행될 수도 있다. 또한, 본 실시예를 구현하기 위한 기능적인(Functional) 프로그램, 코드 및 코드 세그먼트들은 본 실시예가 속하는 기술분야의 프로그래머들에 의해 용이하게 추론될 수 있을 것이다. As described above, the operation of the COT apparatus 110 and the RT apparatus 130 according to the present embodiment described in FIG. 4 can be implemented by a program and recorded in a computer-readable recording medium. A program for implementing the operations of the COT apparatus 110 and the RT apparatus 130 according to the present embodiment is recorded and a computer-readable recording medium includes all kinds of recording apparatuses for storing data that can be read by a computer system . Examples of such computer-readable recording media include ROM, RAM, CD-ROM, magnetic tape, floppy disk, optical data storage, etc., and also implemented in the form of a carrier wave (e.g., transmission over the Internet) . The computer readable recording medium may also be distributed over a networked computer system so that computer readable code in a distributed manner may be stored and executed. In addition, functional programs, codes, and code segments for implementing the present embodiment can be easily inferred by programmers in the technical field to which the present embodiment belongs.

도 5는 본 실시예에 따른 DWDM 기반의 원격 파장설정 방법을 설명하기 위한 순서도이다. 5 is a flowchart for explaining a DWDM-based remote wavelength setting method according to the present embodiment.

COT 장치(110)에 포함된 제1 광 트랜시버(112)는 사용 파장을 설정하고, 설정된 사용 파장을 갖는 제1 광신호를 RN 장치(120)를 경유하여 RT 장치(130)에 포함된 제2 광 트랜시버(132)로 전송한다(S510). 여기서, 설정된 제1 광신호의 파장은 기 설정된 고정 파장일 수 있으나 반드시 이에 한정되는 것은 아니며, 랜덤으로 설정된 소정의 파장일 수도 있다. The first optical transceiver 112 included in the COT apparatus 110 sets a used wavelength and transmits a first optical signal having a set use wavelength to the second optical transceiver 112 via the RN apparatus 120, To the optical transceiver 132 (S510). Here, the wavelength of the set first optical signal may be a predetermined fixed wavelength, but is not limited thereto, and may be a predetermined wavelength set at random.

제2 광 트랜시버(132)는 제1 광 트랜시버(112)로부터 RN 장치(120)를 경유하여 제1 광신호를 수신하고, 제1 광신호에 대한 LOS를 해제한다(S520). 여기서, LOS 해제는 제1 광신호에 포함된 LOS값을 제거하는 것을 의미하며, LOS값은 광신호에 포함된 신호값에서 n 개(n > 0의 자연수)의 연속 제로가 감지된 값을 의미한다. The second optical transceiver 132 receives the first optical signal from the first optical transceiver 112 via the RN device 120 and releases the LOS for the first optical signal (S520). Here, the LOS cancellation means removing the LOS value included in the first optical signal, and the LOS value means a value obtained by detecting n consecutive zeros (natural number of n> 0) in the signal value included in the optical signal. do.

제2 광 트랜시버(132)는 복수의 파장 중 하나의 파장을 설정하고, 설정된 파장을 갖는 제2 광신호를 RN 장치(120)를 경유하여 제1 광 트랜시버(112)로 전송한다(S530). 더 자세히 설명하자면, 제2 광 트랜시버(132)는 복수의 파장 중 하나의 파장을 기 설정된 순서 또는 랜덤으로 선정하여 제1 광 트랜시버(112)로 제2 광신호를 전송한다. The second optical transceiver 132 sets a wavelength of one of a plurality of wavelengths, and transmits a second optical signal having a predetermined wavelength to the first optical transceiver 112 via the RN device 120 (S530). More specifically, the second optical transceiver 132 selects a wavelength of one of a plurality of wavelengths in a predetermined order or randomly, and transmits the second optical signal to the first optical transceiver 112.

RN 장치(120)는 제2 광 트랜시버(132)로부터 제2 광신호를 획득하고, 제2 광신호의 파장이 제1 광신호의 파장과 동일한 파장인지 여부를 확인한다(S540).The RN apparatus 120 obtains the second optical signal from the second optical transceiver 132 and checks whether the wavelength of the second optical signal is the same as the wavelength of the first optical signal (S540).

제2 광신호의 파장이 제1 광신호의 파장과 일치하지 않는 경우(S542), 제2 광 트랜시버(132)에서 전송된 제2 광신호는 RN 장치(120)에서 제1 광 트랜시버(112)로 전송되지 못하며, 제2 광 트랜시버(132)는 복수의 파장 중 다른 하나의 파장으로 변경하여 제2 광신호를 제1 광 트랜시버(112)로 재전송한다. The second optical signal transmitted from the second optical transceiver 132 is transmitted from the RN device 120 to the first optical transceiver 112 when the wavelength of the second optical signal does not coincide with the wavelength of the first optical signal, And the second optical transceiver 132 changes the wavelength of the other of the plurality of wavelengths to retransmit the second optical signal to the first optical transceiver 112.

다시 말해, 제2 광 트랜시버(132)는 제2 광신호를 제1 광 트랜시버(112)로 전송 후 제1 광 트랜시버(112)로부터 제1 광신호의 광출력 변화를 감지하지 못하면 제2 광신호가 제1 광 트랜시버(112)로 전송되지 않은 것으로 인지하여 제2 광신호에 대한 파장을 변경한다. In other words, if the second optical transceiver 132 does not detect a change in optical output of the first optical signal from the first optical transceiver 112 after transmitting the second optical signal to the first optical transceiver 112, Recognizes that it is not transmitted to the first optical transceiver 112 and changes the wavelength for the second optical signal.

제2 광신호의 파장이 제1 광신호의 파장과 일치하는 경우, 제2 광 트랜시버(132)에서 전송된 제2 광신호는 RN 장치(120)를 경유하여 제1 광 트랜시버(112)로 전송된다(S544). When the wavelength of the second optical signal coincides with the wavelength of the first optical signal, the second optical signal transmitted from the second optical transceiver 132 is transmitted to the first optical transceiver 112 via the RN device 120 (S544).

제1 광 트랜시버(112)는 제2 광 트랜시버(132)로부터 전송된 제2 광신호를 RN 장치(120)를 경유하여 획득하고, 제2 광 트랜시버(132)에서의 제1 광신호의 LOS 해제를 감지한다(S546). 제1 광 트랜시버(112)는 제1 광신호가 제2 광 트랜시버(132)로 정상적으로 도착하여 LOS가 해제되었고, 제2 광 트랜시버(132)로부터 설정된 파장을 통해 제2 광신호가 제1 광 트랜시버(112)로 정상적으로 도착한 것으로 확인할 수 있다. The first optical transceiver 112 acquires the second optical signal transmitted from the second optical transceiver 132 via the RN device 120 and the LOS of the first optical signal in the second optical transceiver 132 (S546). The first optical transceiver 112 is configured such that the first optical signal normally arrives at the second optical transceiver 132 and the LOS is released and the second optical signal is transmitted through the first optical transceiver 112 ), It can be confirmed that it has arrived normally.

제1 광 트랜시버(112)는 제2 광신호를 획득한 후 LOS 해제가 감지되면, 제1 광신호의 광출력의 광출력이 변화되도록 제어한다(S550). 여기서, 광출력의 변화는 예컨대, 송신파워 자체를 차단하는 방식, 광파워를 소정의 비율로 감소시키는 방식 등을 적용하여 광출력을 제어할 수 있다. After acquiring the second optical signal, the first optical transceiver 112 controls the optical output of the optical output of the first optical signal to change when the LOS release is detected (S550). Here, the optical output can be controlled by changing the optical output by, for example, a method of blocking the transmission power itself, a method of reducing the optical power by a predetermined ratio, or the like.

제2 광 트랜시버(132)는 제1 광 트랜시버(112)로부터 제1 광신호의 광출력 변화를 감지한다(S552).The second optical transceiver 132 senses a change in light output of the first optical signal from the first optical transceiver 112 (S552).

제1 광 트랜시버(112)는 제1 광신호의 출력을 일정 시간동안 변화시킨 후 제1 광신호의 광출력을 기존 광출력으로 복구한다(S560). The first optical transceiver 112 changes the output of the first optical signal for a predetermined time and then restores the optical output of the first optical signal to the existing optical output (S560).

제2 광 트랜시버(132)는 제1 광신호의 광출력 변화를 감지한 이후 제1 광신호의 광출력이 기존의 광출력으로 복구된 것을 감지한다(S562).The second optical transceiver 132 senses the optical output change of the first optical signal, and then detects that the optical output of the first optical signal is restored to the existing optical output (S562).

제1 광 트랜시버(112) 및 제2 광 트랜시버(132)는 파장 설정과정에서 제1 광신호 및 제2 광신호에 대한 정상 광신호의 수신을 확인하고(S570, S572), 제1 광 트랜시버(112) 및 제2 광 트랜시버(132) 간의 파장설정을 완료하여 설정된 파장을 기반으로 광통신을 수행한다(S580, S582).The first optical transceiver 112 and the second optical transceiver 132 confirm receipt of the normal optical signal for the first optical signal and the second optical signal in the wavelength setting process at steps S570 and S572, 112 and the second optical transceiver 132, and performs optical communication based on the set wavelength (S580, S582).

도 5에서는 단계 S510 내지 단계 S582를 순차적으로 실행하는 것으로 기재하고 있으나, 이는 본 실시예의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 실시예가 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성에서 벗어나지 않는 범위에서 도 5에 기재된 순서를 변경하여 실행하거나 단계 S510 내지 단계 S582 중 하나 이상의 단계를 병렬적으로 실행하는 것으로 다양하게 수정 및 변형하여 적용 가능할 것이므로, 도 5는 시계열적인 순서로 한정되는 것은 아니다.5, it is described that steps S510 to S582 are sequentially executed. However, this is merely illustrative of the technical idea of the present embodiment, and if a person skilled in the art is familiar with the present invention, It will be understood that various changes and modifications may be made to the invention without departing from the essential characteristics thereof, such as by changing the order described in FIG. 5 or by executing one or more of steps S510 through S582 in parallel, But is not limited thereto.

도 6은 본 실시예에 따른 상향 및 하향 스트림의 사용 파장 대역의 예시도이다. FIG. 6 is a diagram illustrating an example of a used wavelength band of an up stream and a down stream according to the present embodiment.

도 6에 도시된 바와 같이, 광 링크의 상향 스트림과 하향 스트림의 광파장은 서로 다른 파장 대역을 사용하고 있어 COT 장치(110)와 RT 장치(130)에 사용되는 광 트랜시버(112, 132)는 동일하지만 광파장은 서로 다른 특성을 가지고 있다. 즉, 도 6에 도시된 바와 같이, 상향 및 하향 링크에서 사용하는 파장 대역으로는, COT 파장 밴드(예컨대, C-밴드(C-Band)), 가드-밴드(Guard Band) 및 RT 파장 밴드(예컨대, L-밴드(L-Band))가 이용될 수 있으며, 채널은 16 개, 32 개 등의 N 개(N은 자연수)의 채널이 사용될 수 있다.6, the optical transceivers 112 and 132 used in the COT apparatus 110 and the RT apparatus 130 are identical to each other because the upstream optical link and the downstream optical light use different wavelength bands, However, optical wavelengths have different characteristics. 6, the wavelength bands used in the uplink and the downlink include COT wavelength bands (for example, C-band), guard band, and RT wavelength band (for example, For example, an L-band (L-band) may be used, and N channels (N is a natural number) such as 16 channels or 32 channels may be used.

이상의 설명은 본 실시예의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 실시예가 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 실시예들은 본 실시예의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 실시예의 기술 사상의 범위가 한정되는 것은 아니다. 본 실시예의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 실시예의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The foregoing description is merely illustrative of the technical idea of the present embodiment, and various modifications and changes may be made to those skilled in the art without departing from the essential characteristics of the embodiments. Therefore, the present embodiments are to be construed as illustrative rather than restrictive, and the scope of the technical idea of the present embodiment is not limited by these embodiments. The scope of protection of the present embodiment should be construed according to the following claims, and all technical ideas within the scope of equivalents thereof should be construed as being included in the scope of the present invention.

110: COT 장치 120: RN 장치
130: RT 장치 112: 제1 광 트랜시버
132: 제2 광 트랜시버
410: 파장 설정부 420: LOS 감지부
430: 광출력 제어부 440: 제1 파장 설정부
450: LOS 해제부 460: 파장 변경부
470: 광출력 감지부 480: 제2 파장 설정부
110: COT apparatus 120: RN apparatus
130: RT device 112: first optical transceiver
132: second optical transceiver
410: wavelength setting unit 420: LOS detecting unit
430: optical output control unit 440: first wavelength setting unit
450: LOS releasing unit 460: wavelength changing unit
470: optical output detection unit 480: second wavelength setting unit

Claims (7)

COT(Central Office Terminal) 장치 및 RT(Remote Terminal) 장치 간의 원격 파장설정 방법에 있어서,
COT 장치에서 제1 광신호의 파장을 설정하고 상기 제1 광신호를 RT 장치로 전송하는 제1 광신호 전송과정;
상기 RT 장치에서 상기 COT 장치로부터 제1 광신호를 획득하면, 복수의 파장 중 하나의 파장을 선택하고 선택된 파장을 갖는 제2 광신호를 상기 COT 장치로 전송하는 제2 광신호 전송과정;
상기 COT 장치에서 상기 RT 장치로부터 상기 제1 광신호에 대응하는 제2 광신호를 획득하는 경우, 제1 광신호의 광출력을 변경 제어 및 복구하는 광출력 제어과정; 및
상기 RT 장치에서 상기 제2 광신호가 상기 COT 장치로 정상 전송된 경우, 상기 제1 광신호의 광출력을 변경 제어 및 복구를 감지하여 파장 설정을 수행하는 파장 설정과정
을 포함하는 것을 특징으로 하는 DWDM 장치에서의 원격 파장설정 방법.
A remote wavelength setting method between a Central Office Terminal (COT) device and an RT (Remote Terminal) device,
A first optical signal transmission step of setting the wavelength of the first optical signal in the COT device and transmitting the first optical signal to the RT device;
A second optical signal transmission step of, when the first optical signal is obtained from the COT device in the RT device, selecting a wavelength of a plurality of wavelengths and transmitting a second optical signal having a selected wavelength to the COT device;
A light output control step of controlling and restoring the optical output of the first optical signal when acquiring a second optical signal corresponding to the first optical signal from the RT apparatus in the COT apparatus; And
A wavelength setting step of performing wavelength setting by sensing change control and restoration of optical output of the first optical signal when the second optical signal is normally transmitted to the COT apparatus in the RT apparatus;
And setting the remote wavelength in the DWDM device.
제 1 항에 있어서,
상기 제1 광신호 전송과정은,
상기 제1 광신호를 RN(Remote Node) 장치를 경유하여 상기 RT 장치로 전송하며, 상기 제1 광신호의 파장은 기 설정된 고정 파장 또는 랜덤으로 설정된 소정의 파장인 것을 특징으로 하는 DWDM 장치에서의 원격 파장설정 방법.
The method according to claim 1,
The first optical signal transmission process includes:
Wherein the first optical signal is transmitted to the RT device via an RN (Remote Node) device, and the wavelength of the first optical signal is a predetermined fixed wavelength or a predetermined wavelength set at random. Remote wavelength setting method.
제 1 항에 있어서,
상기 광출력 제어과정은,
송신파워 자체를 차단하는 방식 및 광파워를 소정의 비율로 감소시키는 방식 중 적어도 하나의 방식을 이용하여 상기 제1 광신호를 상기 제2 광출력으로 변경 제어하는 것을 특징으로 하는 DWDM 장치에서의 원격 파장설정 방법.
The method according to claim 1,
The light output control process includes:
Wherein the first optical signal is changed to the second optical output by using at least one of a method of blocking transmission power itself and a method of reducing optical power by a predetermined ratio. Wavelength setting method.
제 3 항에 있어서,
상기 광출력 제어과정은,
상기 제2 광출력으로 변경된 상기 제1 광신호를 상기 RT 장치로 전송하고, 기 설정된 시간이 경과한 후 상기 제1 광신호의 제2 광출력을 변경 제어 이전의 상기 제1 광출력으로 복구하는 것을 특징으로 하는 DWDM 장치에서의 원격 파장설정 방법.
The method of claim 3,
The light output control process includes:
And transmits the first optical signal changed to the second optical output to the RT device and restores the second optical output of the first optical signal to the first optical output before the change control after a predetermined time elapses Wherein the remote wavelength is set in a DWDM apparatus.
제 1 항에 있어서,
상기 제2 광신호 전송과정은,
상기 제2 광신호를 RN 장치를 경유하여 상기 COT 장치로 전송하며, 복수의 파장 중 하나의 파장을 기 설정된 순서대로 선정하거나 랜덤으로 선정하여 선택된 파장을 갖는 상기 제2 광신호를 전송하는 것을 특징으로 하는 DWDM 장치에서의 원격 파장설정 방법.
The method according to claim 1,
The second optical signal transmission process includes:
The second optical signal is transmitted to the COT device via the RN device and one of the plurality of wavelengths is selected in a predetermined order or randomly selected to transmit the second optical signal having a selected wavelength A method for setting a remote wavelength in a DWDM apparatus using a wavelength division multiplexing method.
제 5 항에 있어서,
상기 제2 광신호 전송과정은,
상기 COT 장치로부터 상기 제2 광신호에 대한 응답이 존재하지 않는 경우, 상기 복수의 파장에서 상기 선택된 파장을 제외한 나머지 파장 중 하나의 파장을 선택하여 제2 광신호를 전송하는 동작을 반복하는 것을 특징으로 하는 DWDM 장치에서의 원격 파장설정 방법.
6. The method of claim 5,
The second optical signal transmission process includes:
And repeating the operation of selecting one of the remaining wavelengths excluding the selected wavelength in the plurality of wavelengths and transmitting the second optical signal when there is no response to the second optical signal from the COT device A method for setting a remote wavelength in a DWDM apparatus using a wavelength division multiplexing method.
제 1 항에 있어서,
상기 파장 설정과정은,
상기 제2 광신호가 상기 COT 장치로 정상 전송된 경우, 상기 제2 광신호에 대한 응답으로 상기 제1 광신호에 대한 상기 제2 광출력의 변경을 감지하고, 기 설정된 시간이 경과한 후 상기 제1 광신호에 대한 상기 제1 광출력의 복구를 감지하는 것을 특징으로 하는 DWDM 장치에서의 원격 파장설정 방법.
The method according to claim 1,
The wavelength-
Detecting a change of the second optical output with respect to the first optical signal in response to the second optical signal when the second optical signal is normally transmitted to the COT device, And detecting the recovery of the first optical output for one optical signal.
KR1020160043655A 2016-04-08 2016-04-08 Method for Remote Wavelength Setting in Dense Wavelength Division Multiplexing system and Optical Transceiver therefor KR20170115878A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160043655A KR20170115878A (en) 2016-04-08 2016-04-08 Method for Remote Wavelength Setting in Dense Wavelength Division Multiplexing system and Optical Transceiver therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160043655A KR20170115878A (en) 2016-04-08 2016-04-08 Method for Remote Wavelength Setting in Dense Wavelength Division Multiplexing system and Optical Transceiver therefor

Publications (1)

Publication Number Publication Date
KR20170115878A true KR20170115878A (en) 2017-10-18

Family

ID=60296475

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160043655A KR20170115878A (en) 2016-04-08 2016-04-08 Method for Remote Wavelength Setting in Dense Wavelength Division Multiplexing system and Optical Transceiver therefor

Country Status (1)

Country Link
KR (1) KR20170115878A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210147918A (en) 2020-05-29 2021-12-07 주식회사 쏠리드 Optical transceiver and method for automatically setting wavelength thereof
US11316589B2 (en) 2019-12-17 2022-04-26 Solid, Inc. Optical transceiver and method of automatically setting wavelength thereof
US11764892B2 (en) 2020-05-29 2023-09-19 Solid, Inc. Optical transceiver and method for automatically setting wavelength thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11316589B2 (en) 2019-12-17 2022-04-26 Solid, Inc. Optical transceiver and method of automatically setting wavelength thereof
KR20210147918A (en) 2020-05-29 2021-12-07 주식회사 쏠리드 Optical transceiver and method for automatically setting wavelength thereof
US11764892B2 (en) 2020-05-29 2023-09-19 Solid, Inc. Optical transceiver and method for automatically setting wavelength thereof

Similar Documents

Publication Publication Date Title
JP4822931B2 (en) Wavelength division multiplexing optical transmission system and management method thereof
JP6816771B2 (en) Monitoring system and monitoring method
Ciaramella et al. 1.28-Tb/s (32$\times $40 Gb/s) Free-Space Optical WDM Transmission System
EP2587701B1 (en) Wavelength-division multiplexing transmission device
US20090324233A1 (en) Fiber-optic long-haul transmission system
JP2018520561A5 (en)
US20110081146A1 (en) Optical monitor device
CN101213776A (en) Optical wavelength multiplexing access system
KR20170115878A (en) Method for Remote Wavelength Setting in Dense Wavelength Division Multiplexing system and Optical Transceiver therefor
JP6317357B2 (en) Disaster recovery in branched optical networks
JP3809419B2 (en) WDM channel monitoring system and method
JP2010011384A (en) Optical transmission apparatus, optical transmission system, and communication method of the system
JP3981013B2 (en) Receiver system and method for optical amplification backup
US9391421B2 (en) Optical amplification apparatus, optical transmission apparatus, and optical transmission system
US9166691B2 (en) Method for coupling an emitting device to a frequency splitter in an optical passive network
JP3047855B2 (en) WDM optical transmitter
JP2004260746A (en) Optical communication system
JP4900481B2 (en) Wavelength division multiplexing apparatus and optical signal input interruption detection method
US20100142940A1 (en) Optical communication system, optical receiving terminal, and optical signal fault detection method
JP5857697B2 (en) Wavelength multiplex transmission equipment
JP5188512B2 (en) Optical transmission system and repeater
JP5391359B1 (en) Optical node device, optical communication system, and optical node device monitoring method
JP4246644B2 (en) Optical receiver and optical transmission device
JP2008028928A (en) Wavelength multiplex optical transmission system and wavelength multiplex optical transmission method
JP6036393B2 (en) Optical transmission system and optical transmission device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application