KR20170106908A - Organic semiconductor compounds Containing Posphine oxide and Solar Cell Device Using This Material - Google Patents

Organic semiconductor compounds Containing Posphine oxide and Solar Cell Device Using This Material Download PDF

Info

Publication number
KR20170106908A
KR20170106908A KR1020170020890A KR20170020890A KR20170106908A KR 20170106908 A KR20170106908 A KR 20170106908A KR 1020170020890 A KR1020170020890 A KR 1020170020890A KR 20170020890 A KR20170020890 A KR 20170020890A KR 20170106908 A KR20170106908 A KR 20170106908A
Authority
KR
South Korea
Prior art keywords
independently
alkyl
organic semiconductor
semiconductor compound
heteroaryl
Prior art date
Application number
KR1020170020890A
Other languages
Korean (ko)
Other versions
KR101905088B1 (en
Inventor
김윤희
권순기
성민재
Original Assignee
경상대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경상대학교산학협력단 filed Critical 경상대학교산학협력단
Publication of KR20170106908A publication Critical patent/KR20170106908A/en
Application granted granted Critical
Publication of KR101905088B1 publication Critical patent/KR101905088B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/50Organo-phosphines
    • C07F9/53Organo-phosphine oxides; Organo-phosphine thioxides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D517/00Heterocyclic compounds containing in the condensed system at least one hetero ring having selenium, tellurium, or halogen atoms as ring hetero atoms
    • C07D517/02Heterocyclic compounds containing in the condensed system at least one hetero ring having selenium, tellurium, or halogen atoms as ring hetero atoms in which the condensed system contains two hetero rings
    • C07D517/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/50Organo-phosphines
    • C07F9/53Organo-phosphine oxides; Organo-phosphine thioxides
    • C07F9/5337Phosphine oxides or thioxides containing the structure -C(=X)-P(=X) or NC-P(=X) (X = O, S, Se)
    • H01L51/0036
    • H01L51/0074
    • H01L51/424
    • H01L51/4253
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/20Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising organic-organic junctions, e.g. donor-acceptor junctions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L2031/0344Organic materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The present invention relates to an organic semiconductor compound, and an organic solar cell using the same. The organic semiconductor compound exhibits high thermal stability, increases coplanarity in a main chain, and achieves favorable expansion of - electrons by having an expanded conjugated structure. To this end, a compound having a phosphine oxide group functioning as an electron withdrawing group within a molecule and a compound including a heteroaryl group acting as an electron donating group are alternatively polymerized.

Description

포스핀 옥사이드기를 포함하는 유기 반도체 화합물 및 이를 이용한 유기태양전지{Organic semiconductor compounds Containing Posphine oxide and Solar Cell Device Using This Material}TECHNICAL FIELD The present invention relates to an organic semiconductor compound including a phosphine oxide group and an organic solar cell using the organic semiconductor compound.

본 발명은 포스핀 옥사이드기를 포함하는 유기 반도체 화합물 및 이를 이용한 유기태양전지에 관한 것이다. 보다 상세하게는 분자내 전자 당김체인 포스핀 옥사이드기와 전자 공여체인 헤테로아릴기를 동시에 포함하는 유기 반도체 화합물 및 이를 이용한 유기태양전지에 관한 것이다.The present invention relates to an organic semiconductor compound containing a phosphine oxide group and an organic solar cell using the same. More particularly, the present invention relates to an organic semiconductor compound containing a phosphine oxide group, which is an electron withdrawing group in a molecule, and a heteroaryl group, which is an electron donor, and an organic solar cell using the same.

최근 급속화되고 있는 석유자원 고갈과 환경보존이라는 이슈가 맞물려 대체에너지 연구에 대한 요구가 많아지고 있다. 그중에서 가장 각광받는 분야가 태양전지 분야이다. 태양전지는 빛에너지를 전기에너지로 직접 변환시켜 주는 소자로, 거의 무한대에 가까운 에너지 자원이면서도 친환경적이고, 높은 효율을 가지는 것으로 알려져 있다.There is a growing demand for alternative energy research due to the recent rapid depletion of petroleum resources and environmental issues. Among them, the most popular field is solar cell. Solar cell is a device that directly converts light energy into electric energy. It is known to be environmentally friendly, highly efficient, and near-infinite energy resource.

태양전지는 오래 전부터 무기물을 기반으로 한 태양전지의 개발이 이루어져 오고 있으며, 최근에 들어서는 상용화를 위해 높은 가격 경쟁력을 가지는 태양전지의 개발이 이슈가 되고 있다. 이러한 추세로 인해 기존의 벌크(bulk)한 태양전지보다 얇은 박막형 태양전지 위주로 개발이 요구되면서, 저가형의 유기태양전지에 대한 연구가 활발하게 이루어지고 있다. 그러나, 10% 이상의 에너지 전환효율을 얻기 위해서는 전하 이동속도가 향상된 낮은 밴드갭(low band gap)의 도너(donor) 물질, 그 도너 물질에 최적화된 밴드갭(band gap)을 갖는 억셉터(acceptor) 물질 등의 신재료 개발과, 표면 플라즈몬 공명 현상의 적용, up-conversion이나 down-conversion 등을 통한 광 이용 효율의 향상 등 신개념을 적용한 새로운 형태의 소자 등의 개발 또한 필수적으로 수행되어야 할 것이다.Solar cells have been developing solar cells based on inorganic materials for a long time. Recently, development of solar cells with high price competitiveness has become an issue for commercialization. Due to this trend, thin film solar cells are required to be developed more thinner than conventional bulk solar cells, and research on low cost organic solar cells is being actively conducted. However, in order to obtain an energy conversion efficiency of 10% or more, a donor material having a low band gap having an improved charge transfer speed, an acceptor having a band gap optimized for the donor material, Development of new materials such as materials, application of surface plasmon resonance phenomenon, improvement of light utilization efficiency through up-conversion or down-conversion, and so on.

유기태양전기가 고효율을 가지기 위해서는 높은 단락 전류(JSC)와 개방전압(VOC)을 가져야 한다. 이를 만족시키기 위해서는 먼저, 낮은 에너지갭을 가지며 높은 흡광계수를 가지도록 유기 반도체 화합물을 설계해야 하고, 가시광선 영역의 빛뿐만 아니라 근적외선 영역의 빛까지 흡수를 하여야 하며 같은 두께에서 더 많은 빛을 흡수할 수 있도록 설계해야 한다. 이러한 낮은 에너지갭을 가지는 유기 반도체 화합물은 현재 전자가 풍부한 도너(Donor) 물질과 전자가 부족한 억셉터(Acceptor) 물질이 교대로 결합되어 고분자 사슬을 형성시킴으로써 합성될 수 있다. 그러나, 이렇게 고분자를 합성을 하면 많은 경우 고분자의 HOMO 에너지 레벨이 증가하게 되어 VOC가 감소하는 결과를 초래한다. 또한, VOC를 높이기 위해서는 낮은 에너지갭 고분자의 HOMO 에너지 레벨을 낮추어야 한다. 이는 고분자 사슬에 전자를 당기는 치환체를 도입함으로써 얻을 수 있다.Organic solar electricity has to have high short-circuit current (J SC ) and open-circuit voltage (V OC ) for high efficiency. In order to satisfy this requirement, it is necessary to design an organic semiconductor compound having a low energy gap and a high extinction coefficient, absorb light not only in the visible light region but also in the near infrared region and absorb more light in the same thickness Should be designed. Organic semiconductor compounds having such a low energy gap can be synthesized by forming a polymer chain by alternately combining an electron rich donor substance and an electron-poor acceptor substance. However, when the polymer is synthesized in such a manner, the HOMO energy level of the polymer increases in many cases, resulting in a decrease in V OC . In order to increase V OC , the HOMO energy level of the low energy gap polymer should be lowered. This can be obtained by introducing a substituent which attracts electrons to the polymer chain.

상기에서 언급한 두 가지의 방법을 혼합하여 낮은 에너지갭을 가지는 유기 반도체 화합물을 합성하는 많은 연구 결과가 보고되고 있다. 유기태양전지에 사용되는 대표적인 일예로, 폴리헥실티오펜(poly(3-hexylthiophene), P3HT)을 들 수 있다. 이는, 전자 도너 물질 P3H와 전자 억셉터 물질([6,6]-phenyl C61 butyric acid methyl ester, PCBM)이 도입된 것으로, 약 4-5%대의 비교적 높은 광전환 효율을 보이고 있다. 하지만 약 2.0 eV 정도의 에너지갭을 가지는 P3HT는 광흡수 영역이 약 650 nm까지로 제한되어 많은 태양광을 흡수함에 있어 한계가 있으므로 광전류의 향상을 기대하기 어려운 문제점이 있다(비특허문헌 1 내지 2). Many research results have been reported for synthesizing an organic semiconductor compound having a low energy gap by mixing the above two methods. Representative examples of organic solar cells include poly (3-hexylthiophene), P3HT. This is due to the introduction of the electron donor material P3H and the electron acceptor material ([6,6] -phenyl C61 butyric acid methyl ester, PCBM), which shows a relatively high light conversion efficiency of about 4-5%. However, P3HT having an energy gap of about 2.0 eV has a problem that it is difficult to expect the improvement of the photocurrent because the light absorption region is limited to about 650 nm and there is a limit in absorbing a large amount of solar light (see Non-Patent Documents 1 to 2 ).

즉, 유기태양전지의 실용화를 위해서는 10% 이상의 광전환 효율을 가지며, 광흡수 영역이 넓고 낮은 에너지갭을 가질 뿐 아니라, 정공이동도가 우수하고, 적절한 분자 준위를 가지는 새로운 고분자의 유기 반도체 화합물의 개발이 절실히 요구되고 있다.That is, in order to put the organic solar cell to practical use, it is required to have a light conversion efficiency of 10% or more, a wide absorption range of light, a low energy gap, an excellent hole mobility, Development is urgently required.

이에, 본 발명자들은 전자 당김체인 포스핀 옥사이드기와 전자 공여체인 헤테로아릴기를 동시에 포함함으로써, 높은 파이전자 겹침을 가져 산화안정성이 우수하고, 전자 이동 특성이 우수한 유기 반도체 화합물과 이를 이용한 고효율의 유기태양전지를 제공하고자 본 발명을 완성하였다.Thus, the present inventors have found that an organic semiconductor compound having high oxidation stability and high electron mobility due to high p-electron overlapping, and a high efficiency organic solar cell using the organic semiconducting compound having high electron mobility can be obtained by simultaneously including a phosphine oxide group as an electron withdrawing group and a heteroaryl group as an electron donor The present invention has been completed.

Nature Materials 4, 864-868 (2005) Nature Materials 4, 864-868 (2005) Advanced Functional Materials Volume 15, Issue 10, 1617-1622 (2005)  Advanced Functional Materials Volume 15, Issue 10, 1617-1622 (2005)

본 발명의 목적은 분자 내 전자 당김체인 포스핀 옥사이드기와 전자 공여체인 헤테로아릴기를 동시에 포함하는 유기 반도체 화합물 및 이를 활성층 재료로 도입한 유기태양전지를 제공하는 것이다.An object of the present invention is to provide an organic semiconductor compound which simultaneously contains a phosphine oxide group as a electron withdrawing group in the molecule and a heteroaryl group as an electron donor and an organic solar cell into which the organic semiconductor compound is introduced as an active layer material.

본 발명은 하기 화학식 1로 표시되는 유기 반도체 화합물을 제공한다.The present invention provides an organic semiconductor compound represented by the following general formula (1).

[화학식 1][Chemical Formula 1]

Figure pat00001
Figure pat00001

[상기 화학식 1에 있어서,[In the formula 1,

L1 내지 L3는 각각 독립적으로 (C3~C30)헤테로아릴렌이고;L 1 to L 3 are each independently (C 3 to C 30) heteroarylene;

Z1 및 Z2는 각각 독립적으로 S 또는 Se이고;Z 1 and Z 2 are each independently S or Se;

R1 및 R2는 각각 독립적으로 수소 또는 (C1-C30)알킬이고; R 1 and R 2 are each independently hydrogen or (C 1 -C 30) alkyl;

n은 1 내지 1000의 정수이며;n is an integer from 1 to 1000;

상기 L1 내지 L3 의 헤테로아릴렌과 R1 및 R2 의 알킬은 각각 독립적으로 (C1-C30)알킬, (C2-C30)알케닐, (C2-C30)알키닐, (C1-C30)알콕시, (C3-C30)시클로알킬, (C3-C30)헤테로시클로알킬, (C6~C30)아릴, (C1-C30)알킬이 치환된 (C6-C30)아릴, (C3~C30)헤테로아릴, (C1-C30)알킬이 치환된 (C3-C30)헤테로아릴, 아미노, 하이드록시 및 할로겐으로부터 선택되는 하나 이상의 치환기로 더 치환될 수 있고, 상기 헤테로아릴렌, 헤테로시클로알킬 및 헤테로아릴은 B, N, O, S, Se, P(=O), Si 및 P로부터 선택된 하나 이상의 헤테로원자를 포함한다.]The L heteroarylene and alkyl of R 1 and R 2 ranging from 1 to L 3 are each independently (C1-C30) alkyl, (C2-C30) alkenyl, (C2-C30) alkynyl, (C1-C30) (C3-C30) cycloalkyl, (C3-C30) heterocycloalkyl, (C6-C30) aryl, (C6-C30) aryl substituted with (C1- (C3-C30) heteroaryl substituted with a (C1-C30) alkyl, amino, hydroxy and halogen, said heteroarylene, heterocycloalkyl and heteroaryl being optionally substituted with one or more substituents selected from B, And at least one heteroatom selected from N, O, S, Se, P (= O), Si and P.

본 발명은 하기 화학식 4로 표시되는 화합물과 하기 화학식 5로 표시되는 화합물을 반응하여 하기 화학식 2로 표시되는 유기 반도체 화합물을 제조하는 단계;를 포함하는 유기 반도체 화합물의 제조방법을 제공한다.The present invention provides a process for preparing an organic semiconductor compound, which comprises reacting a compound represented by the following formula (4) with a compound represented by the following formula (5) to produce an organic semiconductor compound represented by the following formula (2).

[화학식 2](2)

Figure pat00002
Figure pat00002

[화학식 4][Chemical Formula 4]

Figure pat00003
Figure pat00003

[화학식 5][Chemical Formula 5]

Figure pat00004
Figure pat00004

[상기 화학식 2, 화학식 4 및 화학식 5에 있어서,[In the formulas (2), (4) and (5)

Z1, Z2 및 Z11 내지 Z14는 각각 독립적으로 S 또는 Se이고;Z 1 , Z 2 and Z 11 to Z 14 are each independently S or Se;

n은 1 내지 1000의 정수이며;n is an integer from 1 to 1000;

R11 내지 R18은 각각 독립적으로 수소, (C1-C20)알킬, (C1-C30)알콕시, (C6~C20)아릴, (C1-C20)알킬이 치환된 (C6-C20)아릴, (C3~C20)헤테로아릴 또는 (C1-C20)알킬이 치환된 (C3-C20)헤테로아릴이며;R 11 to R 18 are each independently selected from the group consisting of hydrogen, (C 1 -C 20) alkyl, (C 1 -C 30) alkoxy, (C 6 -C 20) aryl, (C 6 -C 20) (C3-C20) heteroaryl or (C3-C20) heteroaryl substituted with (C1-C20) alkyl;

T1 및 T2는 각각 독립적으로 -Sn(R31)(R32)(R33)이고, 상기 R31 내지 R33 은 각각 독립적으로 (C1-C7)알킬이며;T 1 and T 2 are each independently -Sn (R 31 ) (R 32 ) (R 33 ), and R 31 to R 33 are each independently (C 1 -C 7) alkyl;

X1 및 X2는 각각 독립적으로 할로겐이다.]X 1 and X 2 are each independently halogen.]

또한, 본 발명은 상기 유기 반도체 화합물을 포함하는 유기태양전지를 제공하며, 상기 유기 반도체 화합물은 상기 유기태양전지의 활성층에 포함되는 것이 바람직하다.The present invention also provides an organic solar cell comprising the organic semiconductor compound, wherein the organic semiconductor compound is included in the active layer of the organic solar cell.

본 발명에 따른 유기 반도체 화합물은 전자 당김체인 포스핀 옥사이드기를 포함하는 화합물과 전자 공여체인 헤테로아릴기를 포함하는 화합물을 교대로 중합되도록 함으로써, 주 사슬의 공면성을 증가시키고 확장된 공액 구조를 가질 수 있다. 또한, 이러한 확장된 공액 구조로 인해 높은 전자 밀도를 가져 분자간 상호작용을 향상시켜 우수한 열적 안정성을 가질 수 있다.The organic semiconductor compound according to the present invention can be produced by alternately polymerizing a compound containing a phosphine oxide group as an electron withdrawing group and a compound containing a heteroaryl group as an electron donor to increase the cohesiveness of the main chain and to have an extended conjugated structure have. In addition, the extended conjugated structure has a high electron density and improves the intermolecular interaction, so that it can have excellent thermal stability.

본 발명에 따른 특정의 반복단위를 가지는 유기 반도체 화합물은 전자 밀도를 최적으로 향상시킴으로써, 우수한 전하이동도와 산화 안정성을 가질 수 있다. 또한, 전자 공여체인 헤테로아릴기에 분쇄 형태의 알킬기를 도입함으로써 보다 향상된 용해도를 가질 수 있었으며, 이러한 물성으로 인해 진공증착 뿐 아니라 스핀코팅이나 프린팅 같은 단순한 용액 공정기반에 적용이 가능하다.The organic semiconductor compound having a specific repeating unit according to the present invention can have excellent charge mobility and oxidation stability by optimally improving the electron density. Further, by introducing an alkyl group in the form of a pulverized form into the heteroaryl group as an electron donor, the solubility can be further improved. Due to such physical properties, the present invention can be applied not only to vacuum deposition but also to a simple solution process such as spin coating or printing.

또한, 본 발명에 따른 유기태양전지는 낮은 에너지 밴드갭과 낮은 HOMO 값을 가지는 본 발명의 유기 반도체 화합물을 포함함으로써, 높은 전자 밀도로 인해 높은 단락 전류(Jsc)를 가질 수 있다.In addition, the organic solar cell according to the present invention can have a high short-circuit current (Jsc) due to its high electron density by including the organic semiconductor compound of the present invention having a low energy band gap and a low HOMO value.

도 1 내지 도 3은 실시예 1 내지 3에서 합성된 유기 반도체 화합물의 용액상, 필름상 및 어닐링시의 UV-vis 흡수 스펙트라이며,
도 4는 실시예 3에서 합성된 유기 반도체 화합물의 전기적 특성(cyclic voltammetry) 도면이며,
도 5 내지 도 7은 실시예 1 내지 3에서 합성된 유기 반도체 화합물의 시차열량분석(DSC) 곡선이며,
도 8은 실시예 3에서 합성된 유기 반도체 화합물의 열중량분석(TGA) 곡선이며,
도 9는 실시예 6의 전압-전류 밀도 특성 그래프이다.
1 to 3 are UV-vis absorption spectra of a solution phase, a film phase, and an annealing time of the organic semiconductor compound synthesized in Examples 1 to 3,
4 is a cyclic voltammetry diagram of the organic semiconductor compound synthesized in Example 3,
5 to 7 are differential thermal calorimetry (DSC) curves of the organic semiconductor compounds synthesized in Examples 1 to 3,
8 is a thermogravimetric analysis (TGA) curve of the organic semiconductor compound synthesized in Example 3,
9 is a graph of the voltage-current density characteristic of the sixth embodiment.

본 발명에 따른 신규한 포스핀 옥사이드기를 포함하는 유기 반도체 화합물 및 이를 이용한 유기태양전지에 대하여 이하 상술하나, 이때 사용되는 기술 용어 및 과학 용어에 있어서 다른 정의가 없다면, 이 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 가지며, 하기의 설명에서 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 설명은 생략한다.The organic semiconductor compound containing a novel phosphine oxide group according to the present invention and the organic solar cell using the organic semiconductor compound will be described below. However, unless otherwise defined in technical terms and scientific terms used herein, It is to be understood that the present invention may be embodied in many other specific forms without departing from the spirit or essential characteristics thereof, and it is to be understood that the invention is not limited to the disclosed embodiments.

본 발명은 하기 화학식 1로 표시되는 바와 같이, 포스핀 옥사이드기와 헤테로아릴이 교대로 반복되는 반복단위를 가짐으로써, 고분자 주 사슬의 공면성을 향상시켜, 높은 전자 밀도를 가질 수 있을 뿐 아니라 높은 열안정성을 가질 수 있다.The present invention has a repeating unit in which a phosphine oxide group and a heteroaryl are alternately repeated, as shown by the following formula (1), thereby improving the cohesiveness of the polymer main chain, not only can have a high electron density, Stability can be obtained.

[화학식 1][Chemical Formula 1]

Figure pat00005
Figure pat00005

[상기 화학식 1에 있어서,[In the formula 1,

L1 내지 L3는 각각 독립적으로 (C3~C30)헤테로아릴렌이고;L 1 to L 3 are each independently (C 3 to C 30) heteroarylene;

Z1 및 Z2는 각각 독립적으로 S 또는 Se이고;Z 1 and Z 2 are each independently S or Se;

R1 및 R2는 각각 독립적으로 수소 또는 (C1-C30)알킬이고; R 1 and R 2 are each independently hydrogen or (C 1 -C 30) alkyl;

n은 1 내지 1000의 정수이며;n is an integer from 1 to 1000;

상기 L1 내지 L3 의 헤테로아릴렌과 R1 및 R2 의 알킬은 각각 독립적으로 (C1-C30)알킬, (C2-C30)알케닐, (C2-C30)알키닐, (C1-C30)알콕시, (C3-C30)시클로알킬, (C3-C30)헤테로시클로알킬, (C6~C30)아릴, (C1-C30)알킬이 치환된 (C6-C30)아릴, (C3~C30)헤테로아릴, (C1-C30)알킬이 치환된 (C3-C30)헤테로아릴, 아미노, 하이드록시 및 할로겐으로부터 선택되는 하나 이상의 치환기로 더 치환될 수 있고, 상기 헤테로아릴렌, 헤테로시클로알킬 및 헤테로아릴은 B, N, O, S, Se, P(=O), Si 및 P로부터 선택된 하나 이상의 헤테로원자를 포함한다.]The L heteroarylene and alkyl of R 1 and R 2 ranging from 1 to L 3 are each independently (C1-C30) alkyl, (C2-C30) alkenyl, (C2-C30) alkynyl, (C1-C30) (C3-C30) cycloalkyl, (C3-C30) heterocycloalkyl, (C6-C30) aryl, (C6-C30) aryl substituted with (C1- (C3-C30) heteroaryl substituted with a (C1-C30) alkyl, amino, hydroxy and halogen, said heteroarylene, heterocycloalkyl and heteroaryl being optionally substituted with one or more substituents selected from B, And at least one heteroatom selected from N, O, S, Se, P (= O), Si and P.

본 발명의 용어 "헤테로아릴렌"은 두개의 수소 제거에 의해서 방향족 탄화수소로부터 유도된 유기 라디칼로 B, N, O, S, Se, P(=O), Si 및 P로부터 선택된 하나 이상의 헤테로원자를 포함하는 3 내지 8개의 고리원자를 포함하는 일환상 또는 다환상 방향족 탄화수소 라디칼일 수 있고, 각 고리에 적절하게는 3 내지 7개, 바람직하게는 5 또는 6개의 고리원자를 포함하는 단일 또는 융합 고리계를 포함하며, 다수개의 헤테로아릴이 단일결합으로 연결되어 있는 형태까지 포함하며, 구체적인 예로 퓨릴렌, 티오펜일렌, 피롤릴렌, 피란일렌, 이미다졸릴렌, 피라졸릴렌, 티아졸릴렌, 티아디아졸릴렌, 이소티아졸릴렌, 이속사졸릴렌, 옥사졸릴렌, 옥사디아졸릴렌, 트리아진일렌, 테트라진일렌, 트리아졸릴렌, 테트라졸릴렌, 퓨라잔일렌, 피리딜렌, 피라진일렌, 피리미딘일렌, 피리다진일렌 등의 단환 헤테로아릴렌; 및 벤조퓨란일렌, 벤조티오펜일렌, 이소벤조퓨란일렌, 벤조이미다졸릴렌, 벤조티아졸릴렌, 벤조이소티아졸릴렌, 벤조이속사졸릴렌, 벤조옥사졸릴렌, 이소인돌릴렌, 인돌릴렌, 인다졸릴렌, 벤조티아디아졸릴렌, 퀴놀릴렌, 이소퀴놀릴렌, 신놀리닐렌, 퀴나졸리닐렌, 퀴놀리진일렌, 퀴녹살리닐렌, 카바졸릴렌, 페난트리딘일렌, 벤조디옥솔릴렌 등의 다환식 헤테로아릴렌; 등으로 예시될 수 있으나 이에 한정되는 것은 아니다.The term "heteroarylene" of the present invention refers to an organic radical derived from aromatic hydrocarbons by the removal of two hydrogens, containing one or more heteroatoms selected from B, N, O, S, Se, P (= O) And may be monocyclic or polycyclic aromatic hydrocarbon radicals containing from 3 to 8 ring atoms inclusive, each ring optionally containing from 3 to 7, preferably 5 or 6 ring atoms, And includes a form in which a plurality of heteroaryls are connected by a single bond, and specific examples thereof include furanylene, thiophenylene, pyrrolylene, pyranylene, imidazolylene, pyrazolylene, thiazolylene, thia The present invention relates to a method for producing a compound represented by the general formula (1): wherein R 1 and R 2 are each independently selected from the group consisting of a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, a heterocyclic group, Midian Monocyclic heteroarylene such as phenylene, pyridazinyl, and the like; And benzofuranylenes such as benzofuranylene, benzothiophenylene, isobenzofuranylene, benzoimidazolylene, benzothiazolylene, benzoisothiazolylene, benzoisoxazolylene, benzoxazolylene, isoindolylene, indolylene, And examples thereof include benzofuranyl, benzothiadiazolylene, benzothiadiazolylene, quinolylene, isoquinolylene, cinnolenylene, quinazolinylene, quinolizinylene, quinoxalinylene, carbazolylene, phenanthridinylene, benzodioxolylene Polycyclic heteroarylene; But the present invention is not limited thereto.

본 발명의 용어 "알킬" 및 그 외 "알킬"부분을 포함하는 모든 치환체는 직쇄 또는 분쇄 형태를 모두 포함하는 탄화수소 라디칼을 의미하는 것으로, 구체적인 예로 메틸, 에틸, n-프로필, i-프로필, n-부틸, i-부틸, s-부틸, t-부틸, n-펜틸, i-펜틸, s-펜틸, n-헥실, i-헥실, s-헥실, n-헵틸 등일 수 있으나 이에 한정되는 것은 아니다. All substituents, including the term "alkyl", and other "alkyl" part of the present invention to mean a hydrocarbon radical containing both a straight or branched chain type, and specific examples of methyl, ethyl, n - propyl, i - propyl, n Butyl, i -butyl, s -butyl, t -butyl, n -pentyl, i -pentyl, s -pentyl, n -hexyl, i -hexyl, s -hexyl, n-heptyl and the like .

또한, 용어 "알케닐" 은 이중결합을 하나이상 포함하는 직쇄 또는 분쇄 형태의 불포화 탄화수소 라디칼을 의미하는 것이고, 용어 "알키닐"은 삼중결합을 하나이상 포함하는 직쇄 또는 분쇄 형태의 불포화 탄화수소 라디칼을 의미하는 것으로, 알케닐의 구체적인 예로 에테닐, 프로프-1-엔-1-일, 프로프-1-엔-2-일, 프로프-2-엔-1-일, 프로프-2-엔-2-일, 부트-1-엔-1-일, 부트-1-엔-2-일, 2-메틸-프로프-1-엔-1-일, 부트-2-엔-1-일, 부트-2-엔-2-일, 부타-1,3-디엔-1-일, 부타-1,3-디엔-2-일 등일 수 있으며, 알키닐의 구체적인 예로 에티닐, 프로프-1-인-1-일, 프로프-2-인-1-일, 부트-1-인-1-일, 부트-1-인-3-일 또는 부트-3-인-1-일 등일 수 있으나 이에 한정되는 것은 아니다.The term "alkenyl" means an unsaturated hydrocarbon radical in the form of a straight or branched chain containing at least one double bond and the term " alkynyl "means an unsaturated hydrocarbon radical in the form of a straight or branched chain containing at least one triple bond Specific examples of the alkenyl include ethenyl, prop-1-en-1-yl, prop-1-en-2-yl, Yl, 2-methyl-prop-1-en-1-yl, but-2-en-1-yl, , But-1, 3-dien-2-yl, but-1, 3-dien-2-yl and the like. Specific examples of alkynyl include ethynyl, 1-yl, but-1-yn-3-yl or but-3-yn-1-yl and the like, But is not limited thereto.

본 발명의 용어 "시클로알킬"은 3 내지 9개의 탄소 원자의 완전히 포화 및 부분적으로 불포화된 탄화수소 고리를 의미하는 것일 수 있으며, 아릴 또는 헤테로아릴이 융합되어 있는 경우도 포함하는 것일 수 있다. 또한 용어 "헤테로시클로알킬"은 B, N, O, S, P(=O), Si 및 P로부터 선택된 하나 이상의 헤테로원자를 포함하는 일환상 또는 다환상 비방향족 라디칼일 수 있다. The term "cycloalkyl ", as used herein, may refer to fully saturated and partially unsaturated hydrocarbon rings of from 3 to 9 carbon atoms, including those where aryl or heteroaryl is fused. The term "heterocycloalkyl" can also be a monocyclic or polycyclic non-aromatic radical comprising at least one heteroatom selected from B, N, O, S, P (= O), Si and P.

또한, 본 발명의 용어 "아릴"은 하나의 수소 제거에 의해서 방향족 탄화수소로부터 유도된 유기 라디칼로, 일환상 또는 다환상 방향족 탄화수소 라디칼일 수 있고, 각 고리에 적절하게는 3 내지 7개, 바람직하게는 5 또는 6개의 고리원자를 포함하는 단일 또는 융합 고리계를 포함하며, 다수개의 아릴이 단일결합으로 연결되어 있는 형태까지 포함하며, 구체적인 예로 페닐, 나프틸, 비페닐, 터페닐, 안트릴, 인데닐(indenyl), 플루오레닐, 페난트릴, 트라이페닐레닐, 피렌일, 페릴렌일, 크라이세닐, 나프타세닐, 플루오란텐일 등으로 예시될 수 있으나 이에 한정되는 것은 아니다. 본 발명의 용어 "헤테로아릴"은 하나의 수소 제거에 의해서 방향족 탄화수소로부터 유도된 유기 라디칼로 B, N, O, S, P(=O), Si 및 P로부터 선택된 하나 이상의 헤테로원자를 포함하는 3 내지 8개의 고리원자를 포함하는 일환상 또는 다환상 방향족 탄화수소 라디칼일 수 있고, 각 고리에 적절하게는 3 내지 7개, 바람직하게는 5 또는 6개의 고리원자를 포함하는 단일 또는 융합 고리계를 포함하며, 다수개의 헤테로아릴이 단일결합으로 연결되어 있는 형태까지 포함하며, 구체적인 예로 퓨릴, 티오펜일, 피롤릴, 피란일, 이미다졸릴, 피라졸릴, 티아졸릴, 티아디아졸릴, 이소티아졸릴, 이속사졸릴, 옥사졸릴, 옥사디아졸릴, 트리아진일, 테트라진일, 트리아졸릴, 테트라졸릴, 퓨라잔일, 피리딜, 피라진일, 피리미딘일, 피리다진일 등의 단환 헤테로아릴; 및 벤조퓨란일, 벤조티오펜일, 이소벤조퓨란일, 벤조이미다졸릴, 벤조티아졸릴, 벤조이소티아졸릴, 벤조이속사졸릴, 벤조옥사졸릴, 이소인돌릴, 인돌릴, 인다졸릴, 벤조티아디아졸릴, 퀴놀릴, 이소퀴놀릴, 신놀리닐, 퀴나졸리닐, 퀴놀리진일, 퀴녹살리닐, 카바졸릴, 페난트리딘일, 벤조디옥솔릴 등의 다환식 헤테로아릴; 등으로 예시될 수 있으나 이에 한정되는 것은 아니다.The term "aryl " of the present invention is an organic radical derived from an aromatic hydrocarbon by the removal of one hydrogen, which may be a monocyclic or polycyclic aromatic hydrocarbon radical, suitably containing 3 to 7, Includes a single or fused ring system containing 5 or 6 ring atoms and includes a form in which a plurality of aryls are connected by a single bond. Specific examples thereof include phenyl, naphthyl, biphenyl, terphenyl, anthryl, But are not limited to, indenyl, fluorenyl, phenanthryl, triphenylenyl, pyrenyl, perylenyl, crycenyl, naphthacenyl, fluoranthenyl and the like. The term "heteroaryl ", as used herein, refers to an organic radical derived from an aromatic hydrocarbon by the removal of one hydrogen, such as 3, including at least one heteroatom selected from B, N, O, S, P To 8 ring atoms, and includes a single or fused ring system, suitably containing from 3 to 7, preferably 5 or 6, ring atoms in each ring And includes a form in which a plurality of heteroaryls are connected by a single bond. Specific examples include furyl, thiophenyl, pyrrolyl, pyranyl, imidazolyl, pyrazolyl, thiazolyl, thiadiazolyl, isothiazolyl, Monocyclic heteroaryl such as isoxazolyl, oxazolyl, oxadiazolyl, triazinyl, tetrazinyl, triazolyl, tetrazolyl, furazanyl, pyridyl, pyrazinyl, pyrimidinyl and pyridazinyl; And benzofuranyl, benzofuranyl, benzothiophenyl, isobenzofuranyl, benzoimidazolyl, benzothiazolyl, benzoisothiazolyl, benzoisoxazolyl, benzoxazolyl, isoindolyl, indolyl, indazolyl, benzothiadiazole Polycyclic heteroaryl such as benzyl, tolyl, quinolyl, isoquinolyl, cinnolinyl, quinazolinyl, quinolizinyl, quinoxalinyl, carbazolyl, phenanthridinyl, benzodioxolyl and the like; But the present invention is not limited thereto.

본 발명의 용어 "알킬이 치환된 아릴"및 "알킬이 치환된 헤테로아릴"은 "*-아릴-알킬" 및 "*-헤테로아릴-알킬"을 의미하는 것으로 알킬, 아릴 및 헤테로아릴의 정의는 상술한 바를 따르며, 용어 "할로겐"은 플루오로, 클로로, 브로모 또는 아이오도를 의미한다. The term " alkyl substituted aryl "and" alkyl substituted heteroaryl "in the present invention mean " * -aryl-alkyl" and "* -heteroaryl-alkyl ", wherein alkyl, aryl and heteroaryl In accordance with the foregoing, the term "halogen " means fluoro, chloro, bromo or iodo.

상기 화학식 1로 표시되는 유기 반도체 화합물에 있어서, 상기 L1 내지 L3는 하기 구조에서 선택될 수 있다. In the organic semiconductor compound represented by Formula 1, L 1 to L 3 may be selected from the following structures.

본 발명의 일 실시예에 따른 상기 유기 반도체 화합물에 있어서, 하기 구조의 전자 공여체 화합물을 도입한 본 발명의 유기 반도체 화합물은 적어도 3개 이상의 일환상 또는 다환상 헤테로아릴렌을 반복단위에 포함하는 것을 특징으로 하며, 이들 중 적어도 하나 이상은 상이한 구조를 가지는 것이 좋다. In the organic semiconductor compound according to an embodiment of the present invention, the organic semiconductor compound of the present invention having an electron donor compound having the following structure introduced therein contains at least three monocyclic or polycyclic heteroarylene in the repeating unit And at least one of them has a different structure.

즉, 적어도 하나 이상의 상이한 구조의 헤테로아릴렌을 포함함으로써, 주 사슬의 비규칙적인 배열성을 구현할 수 있었으며, 이로인해 분자 자유 부피가 증가되고, 증가된 자유 부피로 인하여 용해성이 높아져 THF, 톨루엔, 자일렌, 테트랄린 등과 같은 비할로겐 용매에서도 높은 용해도를 가질 수 있다. That is, by including at least one heteroarylene having at least one different structure, it is possible to realize the irregular arrangement of the main chain, thereby increasing the molecular free volume, increasing the solubility due to the increased free volume, But also high solubility in non-halogen solvents such as xylene, tetralin and the like.

Figure pat00006
Figure pat00006

[상기 구조에 있어서, [In the above structure,

Z11 내지 Z14는 각각 독립적으로 S 또는 Se이고;Z 11 to Z 14 are each independently S or Se;

R11 내지 R18은 각각 독립적으로 수소, (C1-C20)알킬, (C1-C30)알콕시, (C6~C20)아릴, (C1-C20)알킬이 치환된 (C6-C20)아릴, (C3~C20)헤테로아릴 및 (C1-C20)알킬이 치환된 (C3-C20)헤테로아릴에서 선택된다.]R 11 to R 18 are each independently selected from the group consisting of hydrogen, (C 1 -C 20) alkyl, (C 1 -C 30) alkoxy, (C 6 -C 20) aryl, (C 6 -C 20) (C3-C20) heteroaryl and (C3-C20) heteroaryl substituted with (C1-C20) alkyl.

본 발명의 일 실시예에 따른 상기 유기 반도체 화합물에 있어서, 높은 전하 이동도를 가지기 위한 측면에서, 바람직하게는 하기 화학식 2로 표시되는 유기 반도체 화합물일 수 있다.The organic semiconductor compound according to an embodiment of the present invention may be an organic semiconductor compound represented by the following general formula (2) in view of having a high charge mobility.

[화학식 2](2)

Figure pat00007
Figure pat00007

[상기 화학식 2에 있어서,[In the formula (2)

Z1, Z2 및 Z11 내지 Z14는 각각 독립적으로 S 또는 Se이고;Z 1 , Z 2 and Z 11 to Z 14 are each independently S or Se;

n은 1 내지 1000의 정수이며;n is an integer from 1 to 1000;

R11 내지 R18은 각각 독립적으로 수소, (C1-C20)알킬, (C1-C30)알콕시, (C6~C20)아릴, (C1-C20)알킬이 치환된 (C6-C20)아릴, (C3~C20)헤테로아릴 및 (C1-C20)알킬이 치환된 (C3-C20)헤테로아릴에서 선택된다.]R 11 to R 18 are each independently selected from the group consisting of hydrogen, (C 1 -C 20) alkyl, (C 1 -C 30) alkoxy, (C 6 -C 20) aryl, (C 6 -C 20) (C3-C20) heteroaryl and (C3-C20) heteroaryl substituted with (C1-C20) alkyl.

구체적으로, 상기 화학식 2로 표시되는 유기 반도체 화합물은 상기 R11 내지 R15 및 R18 은 각각 독립적으로 수소 또는

Figure pat00008
이며, 상기 R41 및 R42 는 각각 독립적으로 (C1-C7)알킬이며, m은 1 내지 5의 정수이고, 상기 R16 및 R17 은 각각 독립적으로 (C1-C20)알킬이 치환된 (C6-C20)아릴 및 (C1-C20)알킬이 치환된 (C3-C20)헤테로아릴에서 선택되는 것일 수 있다.Specifically, in the organic semiconductor compound represented by Formula 2, R 11 to R 15 and R 18 are each independently hydrogen or
Figure pat00008
, R 41 and R 42 are each independently (C 1 -C 7) alkyl, m is an integer of 1 to 5, and R 16 and R 17 are each independently selected from the group consisting of (C 1 -C 20) alkyl substituted -C20) aryl and (C3-C20) heteroaryl substituted with (C1-C20) alkyl.

본 발명의 일 실시예에 따른 상기 유기 반도체 화합물은 보다 낮은 에너지 밴드갭과 낮은 HOMO 값을 구현하기 위한 측면에서 바람직하게, 하기 화학식 3으로 표시되는 유기 반도체 화합물일 수 있으며, 이를 채용함으로써 향상된 단락 전류(JSC)와 개방전압(VOC)을 가지는 고 효율의 유기태양전지를 제공할 수 있다.The organic semiconductor compound according to an embodiment of the present invention may be an organic semiconductor compound represented by the following Chemical Formula 3 in view of lower energy band gap and lower HOMO value, It is possible to provide a high-efficiency organic solar cell having an open circuit voltage (J SC ) and an open circuit voltage (V OC ).

[화학식 3](3)

Figure pat00009
Figure pat00009

[상기 화학식 3에 있어서,[Formula 3]

Z1, Z2 및 Z11 내지 Z14는 각각 독립적으로 S 또는 Se이고;Z 1 , Z 2 and Z 11 to Z 14 are each independently S or Se;

n은 1 내지 1000의 정수이며;n is an integer from 1 to 1000;

R11 내지 R15 및 R18은 각각 독립적으로 수소, (C1-C20)알킬, (C1-C30)알콕시, (C6~C20)아릴, (C1-C20)알킬이 치환된 (C6-C20)아릴, (C3~C20)헤테로아릴 또는 (C1-C20)알킬이 치환된 (C3-C20)헤테로아릴이며;R 11 to R 15 and R 18 are each independently selected from the group consisting of hydrogen, (C 1 -C 20) alkyl, (C 1 -C 30) alkoxy, (C 6 -C 20) aryl, , (C3-C20) heteroaryl or (C3-C20) heteroaryl substituted with (C1-C20) alkyl;

R21 및 R22는 (C1-C20)알킬이다.]R 21 and R 22 are (C 1 -C 20) alkyl.

또한, 상기 화학식 3으로 표시되는 유기 반도체 화합물은 용해도 및 전하이동도를 높이기 위한 측면에서, 상기 R11 및 R14 는 각각 독립적으로

Figure pat00010
이며, 상기 R41 및 R42 는 각각 독립적으로 (C1-C7)알킬이며, m은 1 내지 5의 정수이고, 상기 R12, R13, R15 및 R18 은 각각 독립적으로 수소인 것이 좋으나 이에 한정되는 것은 아니다. In order to increase the solubility and charge mobility of the organic semiconductor compound represented by Formula 3, R 11 and R 14 are each independently
Figure pat00010
, R 41 and R 42 are each independently (C 1 -C 7) alkyl, m is an integer of 1 to 5, and R 12, R 13, R 15 and R 18 are each independently hydrogen, But is not limited thereto.

이때, 상술한 분쇄 형태의 알킬기를 가질 경우, 직쇄 형태의 알킬기에 비해 3재 이상의 용해도와 무려 10 배 이상의 높은 전하이동도를 가질 수 있다.At this time, the alkyl group having the above-mentioned pulverized form may have a solubility of 3 or more and a charge mobility of 10 times or more higher than that of a linear alkyl group.

보다 바람직하게, 상기 유기 반도체 화합물은 하기 화합물에서 선택될 수 있으나 이에 한정이 있는 것은 아니다.More preferably, the organic semiconductor compound can be selected from the following compounds, but is not limited thereto.

Figure pat00011
Figure pat00011

[상기 n은 1 내지 1000의 정수이다.][Wherein n is an integer of 1 to 1000]

본 발명에 따른 하기 화학식 2로 표시되는 유기 반도체 화합물은 하기 화학식 4로 표시되는 화합물과 하기 화학식 5로 표시되는 화합물을 반응하여 하기 화학식 2로 표시되는 유기 반도체 화합물을 제조하는 단계;를 포함하는 제조방법으로 제조될 수 있으나 이에 한정되는 것은 아니며, 통상의 유기화학 반응에 의하여 제조될 수 있음은 물론이다.The organic semiconductor compound represented by the following formula 2 according to the present invention is prepared by reacting a compound represented by the following formula 4 with a compound represented by the following formula 5 to prepare an organic semiconductor compound represented by the following formula 2 But the present invention is not limited thereto and can be produced by a conventional organic chemical reaction.

[화학식 2](2)

Figure pat00012
Figure pat00012

[화학식 4][Chemical Formula 4]

Figure pat00013
Figure pat00013

[화학식 5][Chemical Formula 5]

Figure pat00014
Figure pat00014

[상기 화학식 2, 화학식 4 및 화학식 5에 있어서,[In the formulas (2), (4) and (5)

Z1, Z2 및 Z11 내지 Z14는 각각 독립적으로 S 또는 Se이고;Z 1 , Z 2 and Z 11 to Z 14 are each independently S or Se;

n은 1 내지 1000의 정수이며;n is an integer from 1 to 1000;

R11 내지 R18은 각각 독립적으로 수소, (C1-C20)알킬, (C1-C30)알콕시, (C6~C20)아릴, (C1-C20)알킬이 치환된 (C6-C20)아릴, (C3~C20)헤테로아릴 또는 (C1-C20)알킬이 치환된 (C3-C20)헤테로아릴이며;R 11 to R 18 are each independently selected from the group consisting of hydrogen, (C 1 -C 20) alkyl, (C 1 -C 30) alkoxy, (C 6 -C 20) aryl, (C 6 -C 20) (C3-C20) heteroaryl or (C3-C20) heteroaryl substituted with (C1-C20) alkyl;

T1 및 T2는 각각 독립적으로 -Sn(R31)(R32)(R33)이고, 상기 R31 내지 R33 은 각각 독립적으로 (C1-C7)알킬이며;T 1 and T 2 are each independently -Sn (R 31 ) (R 32 ) (R 33 ), and R 31 to R 33 are each independently (C 1 -C 7) alkyl;

X1 및 X2는 각각 독립적으로 할로겐이다.]X 1 and X 2 are each independently halogen.]

또한, 본 발명은 상기 유기 반도체 화합물을 포함하는 유기태양전지를 포함한다. 보다 바람직하게는 본 발명에 따른 상기 유기 반도체 화합물을 유기태양전지의 활성층에 포함할 수 있다. The present invention also includes an organic solar cell comprising the organic semiconductor compound. More preferably, the organic semiconductor compound according to the present invention may be included in the active layer of the organic solar cell.

일반적으로 본 발명에 따른 유기태양전지는 이하 상술하는 방법으로 제조될 수 있으나 이는 일례를 들어 설명하는 것으로 이에 한정이 있는 것은 아니다.In general, the organic solar cell according to the present invention can be manufactured by the method described below, but the present invention is not limited thereto.

본 발명의 바람직한 실시예에 따라 제조된 유기태양전지는 기판, 제1전극, 정공수송층, 활성층, 전자수송층 및 제2전극으로 이루어진다. An organic solar cell manufactured according to a preferred embodiment of the present invention comprises a substrate, a first electrode, a hole transporting layer, an active layer, an electron transporting layer, and a second electrode.

상기 기판은 유리 및 석영판 이외에도 PET(polyethylene terephthalate), PEN(polyethylene naphthelate), PP(polyperopylene), PI(polyimide), PC(polycarbornate), PS(polystylene), POM(polyoxyethlene), AS 수지(acrylonitrile styrene copolymer), ABS 수지(acrylonitrile butadiene styrene copolymer) 및 TAC(Triacetyl cellulose) 등을 포함하는 플라스틱과 같은 유연하고 투명한 물질로 제조될 수 있다. In addition to glass and quartz, the substrate may be made of a material selected from the group consisting of PET (polyethylene terephthalate), PEN (polyethylene naphthalate), PP (polyperopylene), PI (polyimide), PC (polycarbornate), PS (polystylene), POM such as plastics, including acrylonitrile butadiene styrene copolymer, ABS resin, and TAC (triacetyl cellulose).

또한 상기 제1 전극은 스퍼터링, E-Beam, 열증착, 스핀코팅, 스크린 프린팅, 잉크젯 프린팅, 닥터 블레이드 또는 그라비아 프린팅법을 사용하여 투명전극 물질을 상기 기판의 일면에 도포되거나 필름형태로 코팅됨으로써 형성된다. 제1 전극(120)은 애노드의 기능을 하는 부분으로써, 후술하는 제2 전극(160)에 비해 일함수가 큰 물질로 투명성 및 도전성을 갖는 임의의 물질이 사용될 수 있다. 예를 들면, ITO(indium tin oxide), 금, 은, 플로린이 도핑된 틴 옥사이드(fluorine doped tin oxide; FTO), 알루미늄이 도핑된 징크 옥사이드(aluminium doped zink oxide, AZO), IZO(indium zink oxide), ZnO-Ga2O3, ZnO-Al2O3 및 ATO(antimony tin oxide) 등이 있으며, 바람직하게는 ITO를 사용하는 것이 좋다.The first electrode may be formed by coating a transparent electrode material on one side of the substrate or by coating it with a film using sputtering, E-beam, thermal evaporation, spin coating, screen printing, inkjet printing, doctor blade or gravure printing do. The first electrode 120 functions as an anode and may be made of any material having a higher work function than the second electrode 160 and having transparency and conductivity. For example, there are known indium tin oxide (ITO), gold, silver, fluorine doped tin oxide (FTO), aluminum doped zink oxide (AZO), indium zinc oxide ), ZnO-Ga 2 O 3 , ZnO-Al 2 O 3 and ATO (antimony tin oxide), and it is preferable to use ITO.

상기 제1 전극의 상부에는 정공 수송층이 스핀코팅 또는 딥코팅 등의 방법을 통해 도입되는데, 본 발명에서는 전도성 고분자 용액으로서 폴리리(3,4-에틸렌디옥시티오펜):폴리(4-스티렌설포네이트)[PEDOT:PSS]를 사용하는 것이 바람직하다.A hole transport layer is introduced onto the first electrode through spin coating or dip coating. In the present invention, a poly (3,4-ethylenedioxythiophene): poly (4-styrenesulfonate ) [PEDOT: PSS] is preferably used.

또한 상기 활성층에는 본 발명에 따른 유기 반도체 화합물을 포함할 수 있으며, 이의 배합량은 용도에 따라 적절하게 조절될 수 있다. 또한 상기 유기 반도체 화합물은 유기 용매에 용해시켜, 60 내지 120nm 두께로 활성층에 도입될 수 있다. 이때, 상기 유기용매는 아세톤, 메탄올, THF, 톨루엔, 자일렌, 테트랄린, 클로로포름, 클로로벤젠, 디클로로벤젠 또는 이들의 혼합용매 일 수 있으나, 이에 한정되는 것은 아니다. 또한 본 발명에 따른 유기 반도체 화합물을 포함하는 상기 활성층은 높은 전자 밀도로 인하여, 단락전류밀도(short circuit current density) 및 개방전압(open circuit voltage)이 증가하여 에너지변환효율에 좋다. The active layer may contain the organic semiconductor compound according to the present invention, and the compounding amount thereof may be suitably adjusted according to the use. The organic semiconductor compound may be dissolved in an organic solvent and introduced into the active layer to a thickness of 60 to 120 nm. At this time, the organic solvent may be acetone, methanol, THF, toluene, xylene, tetralin, chloroform, chlorobenzene, dichlorobenzene or a mixture thereof, but is not limited thereto. In addition, the active layer including the organic semiconductor compound according to the present invention has good short-circuit current density and open circuit voltage due to its high electron density, which is good for energy conversion efficiency.

상기 전자수송층은 전자수송층의 모폴로지를 향상시키기 위해 계면활성제(surfactant)를 첨가하여 제조 할 수 있다. 이때, 상기 전자수송층은 친전자성 기능을 가지는 수용성 고분자를 물, 에탄올 또는 이들의 혼합용매에 용해하고, 상기 고분자 용액에 계면활성제를 첨가한 후 여과하여 박막을 형성하는 단계를 포함하여 제조할 수 있다. 이때, 상기 친전자성 기능기를 가지는 수용성 고분자로는 폴리[9,9-비스(6'-디에탄올아미노)헥실)-플루오렌]이 바람직하며, 상기 계면활성제는 2,4,7,9-테트라메틸-5-데킨-4,7-디올인 것이 바람직하지만, 이에 한정되는 것은 아니다. 또한 상기 수용성 고분자 및 계면활성제가 혼합된 용액을 스핀 코팅 등의 방법으로 2 내지 20nm 코팅하여 열처리하는 것이 좋다. 이때, 상기 전자수송층은 스핀코팅의 방법 외에도 딥코팅, 스크린 프린팅, 잉크젯 프린팅, 그라비아 프린팅, 스프레이 코팅, 닥터블레이드 또는 브러쉬 페인팅 등의 방법을 응용할 수 있으며, 본 발명이 이에 제한되는 것은 아니다.The electron transport layer may be prepared by adding a surfactant to improve the morphology of the electron transport layer. At this time, the electron transport layer may be prepared by dissolving a water-soluble polymer having an electrophilic function in water, ethanol or a mixed solvent thereof, adding a surfactant to the polymer solution, and then filtering to form a thin film have. As the water-soluble polymer having the electrophilic functional group, poly [9,9-bis (6'-diethanolamino) hexyl) -fluorene] is preferable, and the surfactant is 2,4,7,9- Tetramethyl-5-decyne-4,7-diol, but is not limited thereto. The solution mixed with the water-soluble polymer and the surfactant may be coated by 2 to 20 nm by a spin coating method and then heat-treated. In this case, the electron transport layer may be formed by dip coating, screen printing, inkjet printing, gravure printing, spray coating, doctor blade, or brush painting in addition to the spin coating method, but the present invention is not limited thereto.

또한 상기 제2 전극은 전자수송층이 도입된 상태에서 열증착기를 이용하여 증착될 수 있다. 이때 사용가능한 전극재료로는 불화리튬/알루미늄, 불화리튬/칼슘/알루미늄, 칼슘/알루미늄, 불화바륨/알루미늄, 불화바륨/바륨/알루미늄, 바륨/알루미늄, 알루미늄, 금, 은, 마스네슘:은 및 리튬:알루미늄 중에서 선택될 수 있으며, 바람직하게는 불화바륨/바륨/알루미늄 구조로 제작된 전극을 사용하는 것이 좋다.Also, the second electrode may be deposited using a thermal evaporator in a state in which an electron transport layer is introduced. The electrode material that can be used in this case includes lithium fluoride / aluminum, lithium fluoride / calcium / aluminum, calcium / aluminum, barium fluoride / aluminum, barium fluoride / barium / aluminum, barium / aluminum, aluminum, gold, silver, Lithium, and aluminum. Preferably, an electrode made of a barium / barium / aluminum structure is used.

본 발명은 하기의 실시예에 의하여 보다 명확히 이해될 수 있으며, 하기의 실시예는 본 발명의 예시 목적에 불과하며 발명의 영역을 제한하고자 하는 것은 아니다.The present invention can be more clearly understood by the following examples, and the following examples are merely illustrative of the present invention and are not intended to limit the scope of the invention.

(실시예 1) (Example 1)

a단계. 2,6-bis(5-bromo-4-octylthiophen-2-yl)-4-phenylphospholo[3,2-b:4,5-b']dithiophene 4-oxide 의 제조 a step. Preparation of 2,6-bis (5-bromo-4-octylthiophen-2-yl) -4-phenylphospholo [3,2-b: 4,5-b '] dithiophene 4-oxide

Figure pat00015
Figure pat00015

잘 건조시킨 500 mL 삼구 둥근 바닥 플라스크에 2,6-bis(4-octylthiophen-2-yl)-4-phenylphospholo[3,2-b:4,5-b']dithiophene 4-oxide (4 g, 0.005997 mol) 을 chloroform (120 mL)에 녹이고 질소 치환을 실시하였다. 그 후 빛을 차단한 후 N-bromosuccinimide (2.24 g, 0.012593 mol)을 넣어준 후 반응용액을 상온(23 ℃)에서 12 시간 환류하였다. 상기 반응용액에 증류수를 투입하여 반응 종결 시키고 chloroform으로 추출하고, 유기층을 물로 씻어준 다음 MgSO4로 건조시킨 후 회전식 증발기를 이용하여 용매를 제거하였다. n-Hexane/ ethyl acetate (2/1)용매를 사용하여 컬럼 크로마토그래피로 분리해서 주황의 고체 화합물 3.7 g(0.00443225 mol)을 75.5% 수득율로 얻었다. 4-octylthiophen-2-yl) -4-phenylphospholo [3,2-b: 4,5-b '] dithiophene 4-oxide (4 g, 0.005997 mol) was dissolved in chloroform (120 mL) and nitrogen substitution was carried out. After blocking the light, N-bromosuccinimide (2.24 g, 0.012593 mol) was added and the reaction solution was refluxed at room temperature (23 ° C) for 12 hours. Distilled water was added to the reaction solution to terminate the reaction and extracted with chloroform. The organic layer was washed with water, dried over MgSO 4, and then the solvent was removed using a rotary evaporator. n- Hexane / ethyl acetate (2/1) solvent to obtain 3.7 g (0.00443225 mol) of a solid yellow compound in a yield of 75.5%.

1H-NMR (300 MHz, CDCl3)[ppm] δ = 7.816-7.748(m, 2H) 7.614-7.585(m, 1H) 7.528-2.491 (m, 2H) 7.179,7.170 (d, 2H) 6.969 (s, 1H) 2.6, 2.576, 2.549 (t, 4H) 1.5 (m, 4H) 1.34-1.3 (br 20H) 0.911(t, 6H) 1 H-NMR (300 MHz, CDCl 3 ) [ppm] δ = 7.816-7.748 (m, 2H) 7.614-7.585 (m, 1H) 7.528-2.491 (m, 4H) 1.34-1. 3 (br 20H) 0.911 (t, 6H)

13C-NMR (500 MHz, CDCl3)[ppm] δ = 142, 140, 136.6, 134.2, 133.1 132.3, 128.8, 127,124.1, 124, 110, 31.9, 31.2, 29.6, 29.3, 27.4, 22.7, 14.1 13 C-NMR (500 MHz, CDCl 3 ) [ppm] δ = 142, 140, 136.6, 134.2, 133.1 132.3, 128.8, 127, 124.1, 124, 110, 31.9, 31.2,

MS (EI) m/z = 834.03MS (EI) m / z = 834.03 < RTI ID = 0.0 >

b단계. PDTPT-BDTT의 제조Step b. Manufacture of PDTPT-BDTT

Figure pat00016
Figure pat00016

상기 고분자는 스틸레(Stille) 커플링 반응을 통해 중합할 수 있다. BDTTtin(0.50 g, 0.000474176 mol)과 2,6-bis(5-bromo-4-octylthiophen-2-yl)-4-phenylphospholo[3,2-b:4,5-b']dithiophene 4-oxide (0.396g, , 0.000474176 mol)을 chlorobenzene (7.5 mL)에 녹이고 질소 치환을 실시하였다. 그 후 촉매로 Pd2(dba)3 (0.0095 g, 2 mol%)와 P(o-tol)3(0.0127 g, 8 mol%)을 넣고 110 ℃에서 24 시간 동안 환류하였다. 2-tributyltin thiophene (0.1g)을 넣고 6 시간 교반하고, 2-bromothiophene 0.1 g 을 넣고 6 시간 교반시키며 end-capping 을 하였다. 반응용액을 메탄올 (300 mL)에 천천히 침전시키고 생성된 고체를 걸러내었다. 걸러낸 고체는 속실렛(sohxlet)을 통해 메탄올, 헥산, 톨루엔, 클로로포름 순으로 정제하였다. 내려온 액체를 메탄올에 다시 침전시키고 필터를 통해 걸러낸 후 건조시켜 검적색 고체의 화합물인 PDTPT-BDTT를 50% 수득율로 얻었다.The polymer may be polymerized through a Stille coupling reaction. BDTTtin (0.50 g, 0.000474176 mol) and 2,6-bis (5-bromo-4-octylthiophen-2-yl) -4-phenylphospholo [3,2-b: 4,5-b '] dithiophene 4-oxide 0.396 g, 0.000474176 mol) was dissolved in chlorobenzene (7.5 mL), and nitrogen substitution was carried out. Then, Pd 2 (dba) 3 (0.0095 g, 2 mol%) and P (o-tol) 3 (0.0127 g, 8 mol%) were added as a catalyst and refluxed at 110 ° C. for 24 hours. 2-tributyltin thiophene (0.1 g) was added, and the mixture was stirred for 6 hours. Then, 0.1 g of 2-bromothiophene was added thereto, followed by end-capping with stirring for 6 hours. The reaction solution was slowly precipitated in methanol (300 mL) and the resulting solid was filtered off. The filtered solid was purified through a sohxlet in the order of methanol, hexane, toluene and chloroform. The resulting liquid was precipitated again in methanol, filtered through a filter, and dried to obtain PDTPT-BDTT, a red solid compound, in a yield of 50%.

1H-NMR (300 MHz, CDCl3)[ppm] δ = 7.7(br, 2H), 7.6(br, 2H), 7.51(br, 9H), 7.31(br, 2H), 7.18(br, 2H), 6.8(br 4H) 2.81(br 4H), 2.68(br, 4H), 1.68(br, 4H) 1.56(br, 4H), 1.26(br, 40H), 0.88(br, 12H) 1 H-NMR (300 MHz, CDCl 3) [ppm] δ = 7.7 (br, 2H), 7.6 (br, 2H), 7.51 (br, 9H), 7.31 (br, 2H), 7.18 (br, 2H) 4H), 1.26 (br, 4H), 0.88 (br, 4H), 6.68 (br,

(실시예 2) (Example 2)

a단계. PDTPT-BDTSe의 제조a step. Manufacture of PDTPT-BDTSe

Figure pat00017
Figure pat00017

상기 고분자는 스틸레(Stille) 커플링 반응을 통해 중합할 수 있다. BDTTtin(0.50 g, 0.00052047 mol)과 2,6-bis(5-bromo-4-octylthiophen-2-yl)-4-phenylphospholo[3,2-b:4,5-b']dithiophene 4-oxide (0.434g, 0.00052047 mol)을 chlorobenzene (7.5 mL)에 녹이고 질소 치환을 실시하였다. 그 후에 촉매로 Pd2(dba)3 (0.0087 g, 2 mol%)와 P(o-tol)3(0.0115 g, 8 mol%)을 넣고 110 ℃에서 24 시간 동안 환류하였다. 2-tributyltin thiophene (0.1g)을 넣고, 6 시간 교반한 후 2-bromothiophene 0.1 g을 넣고 6 시간 교반하여, end-capping 을 하였다. 반응용액을 메탄올 (300 mL)에 천천히 침전시키고 생성된 고체를 걸러내었다. 걸러낸 고체는 속실렛(sohxlet)을 통해 메탄올, 헥산, 톨루엔, 클로로포름 순으로 정제하였다. 내려온 액체를 메탄올에 다시 침전시키고 필터를 통해 걸러낸 후 건조시켜 검적색 고체의 화합물인 PDTPT-BDTSe를 50% 수득율로 얻었다.The polymer may be polymerized through a Stille coupling reaction. BDTTtin (0.50 g, 0.00052047 mol) and 2,6-bis (5-bromo-4-octylthiophen-2-yl) -4-phenylphospholo [3,2-b: 4,5-b '] dithiophene 4-oxide 0.434 g, 0.00052047 mol) was dissolved in chlorobenzene (7.5 mL) and nitrogen substitution was carried out. Then, Pd 2 (dba) 3 (0.0087 g, 2 mol%) and P (o-tol) 3 (0.0115 g, 8 mol%) were added as a catalyst and refluxed at 110 ° C for 24 hours. 2-tributyltin thiophene (0.1 g) was added, and the mixture was stirred for 6 hours. Then, 0.1 g of 2-bromothiophene was added thereto and the mixture was stirred for 6 hours for end-capping. The reaction solution was slowly precipitated in methanol (300 mL) and the resulting solid was filtered off. The filtered solid was purified through a sohxlet in the order of methanol, hexane, toluene and chloroform. The resulting liquid was precipitated again in methanol, filtered through a filter, and dried to obtain PDTPT-BDTSe, a red solid compound, in a yield of 50%.

1H-NMR (300 MHz, CDCl3)[ppm] δ = 7.7(br, 2H), 7.6(br, 2H), 7.51(br, 11H), 7.18(br, 2H), 6.8(br 4H) 2.81(br 4H), 2.68(br, 4H), 1.68(br, 4H) 1.56(br, 4H), 1.26(br, 40H), 0.88(br, 12H) 1 H-NMR (300 MHz, CDCl 3) [ppm] δ = 7.7 (br, 2H), 7.6 (br, 2H), 7.51 (br, 11H), 7.18 (br, 2H), 6.8 (br 4H) 2.81 (br, 4H), 2.68 (br, 4H), 1.68 (br, 4H)

(실시예 3) (Example 3)

a단계. PDTPT-BDTEX의 제조a step. Manufacture of PDTPT-BDTEX

Figure pat00018
Figure pat00018

상기 고분자는 스틸레(Stille) 커플링 반응을 통해 중합할 수 있다. BDTEHtin (0.20 g, 0.0002211 mol)과 2,6-bis(5-bromo-4-octylthiophen-2-yl)-4-phenylphospholo[3,2-b:4,5-b']dithiophene 4-oxide (0.185g, , 0.0002211 mol)을 chlorobenzene (4 mL)에 녹이고 질소 치환을 실시하였다. 그 후에 촉매로 Pd2(dba)3 (0.004 g, 2 mol%)와 P(o-tol)3(0.005 g, 8 mol%)을 넣고 110℃에서 18시간 동안 환류시켰다. 2-tributyltin thiophene (0.1g)을 넣고 6시간 교반시키고, 2-bromothiophene 0.1g을 넣고 6시간 교반시키며, end-capping 을 하였다. 그런 다음, 상기 반응용액을 메탄올(300 mL)에 천천히 침전시키고 생성된 고체를 걸러내었다. 걸러낸 고체는 속실렛(sohxlet)을 통해 메탄올, 헥산, 톨루엔, 클로로포름 순으로 정제하였다. 내려온 액체를 메탄올에 다시 침전시키고 필터를 통해 걸러낸 후 건조시켜 검적색 고체의 화합물인 PDTPT-BDTEX를 50% 수득율로 얻었다.The polymer may be polymerized through a Stille coupling reaction. BDTEHtin (0.20 g, 0.0002211 mol) and 2,6-bis (5-bromo-4-octylthiophen-2-yl) -4-phenylphospholo [3,2-b: 4,5- b '] dithiophene 4-oxide 0.185 g, 0.0002211 mol) was dissolved in chlorobenzene (4 mL), and nitrogen substitution was carried out. Then, Pd 2 (dba) 3 (0.004 g, 2 mol%) and P (o-tol) 3 (0.005 g, 8 mol%) were added as a catalyst and refluxed at 110 ° C for 18 hours. 2-tributyltin thiophene (0.1 g) was added and stirred for 6 hours. 0.1 g of 2-bromothiophene was added, followed by stirring for 6 hours and end-capping. The reaction solution was then slowly precipitated in methanol (300 mL) and the resulting solid was filtered out. The filtered solid was purified through a sohxlet in the order of methanol, hexane, toluene and chloroform. The lowered liquid was precipitated again in methanol, filtered through a filter, and dried to obtain PDTPT-BDTEX, a red solid compound, in a yield of 50%.

1H-NMR (300 MHz, CDCl3)[ppm] δ = 7.7(br, 2H), 7.6(br, 2H), 7.51(br, 9H),7.31(br, 2H), 7.18(br, 2H), 6.8(br 2H) 2.68(br 4H), 2.62(br, 4H), 1.66(br, 2H) 1.55(br, 8H), 1.26(br, 32H), 0.99(br 6H), 0.88(br, 12H) 1 H-NMR (300 MHz, CDCl 3) [ppm] δ = 7.7 (br, 2H), 7.6 (br, 2H), 7.51 (br, 9H), 7.31 (br, 2H), 7.18 (br, 2H) (Br, 2H), 6.8 (br 2H) 2.68 (br 4H), 2.62 (br, 4H), 1.66 (br, 2H) )

(실시예 4)유기태양전지의 제작(Example 4) Fabrication of organic solar cell

투명전극인 ITO가 코팅된 유리기판을 먼저 아세톤, 이소프로필 알코올을 각각 사용하여 음파세척을 한 후 UV-Ozone 처리를 30 분간 실시하였다. 그 위에 PEDOT-PSS(Baytron P TP AI 4083, Bayer AG)를 스핀 코팅하여 40nm 두께로 층을 코팅하였다. 그 후 120 ℃에서 10 분간 어닐링을 하여 용매를 제거하였다. 활성층은 본 발명에 따른 실시예 1로부터 얻어진 고분자(PDTPT-BDTT) 5 mg을 사용하여 PCBM 유도체(PC71BM)를 1:3 w/w 비율로 다이클로로벤젠 용매에 40 mg/ml 농도로 섞은 후 옥타다이싸이올(ODT) 0.5 vol%를 첨가하여 잘 섞었다. 그 후 60 ℃에서 12 시간동안 교반시킨 후에 0.2 폴리테트라플루오로에틸렌 필터로 물질을 필터한 후 PEDOT-PSS 층위에 1000 rpm 속도로 60 초간 스핀코팅을 실시하였다. 그 후에 고진공 (2 X 10-6 torr)에서 LiF(1 nm)를 코팅하고 금속 전극으로 알루미늄(Al)을 100 nm 두께로 증착하여 유기태양전지를 제작하였다. The glass substrate coated with ITO, which is a transparent electrode, was first subjected to ultrasonic cleaning using acetone and isopropyl alcohol, followed by UV-Ozone treatment for 30 minutes. PEDOT-PSS (Baytron P TP AI 4083, Bayer AG) was spin coated thereon to coat the layer with a thickness of 40 nm. Thereafter, the solvent was removed by annealing at 120 DEG C for 10 minutes. The active layer was prepared by mixing 5 mg of the polymer (PDTPT-BDTT) obtained from Example 1 according to the present invention and a PCBM derivative (PC 71 BM) in a concentration of 40 mg / ml in a dichloromethane solvent at a ratio of 1: 3 w / w 0.5% of octadis thiol (ODT) was added and mixed well. The material was then filtered with a 0.2 polytetrafluoroethylene filter and then spin-coated on the PEDOT-PSS layer at a rate of 1000 rpm for 60 seconds. Then, LiF (1 nm) was coated in a high vacuum (2 × 10 -6 torr) and aluminum (Al) was vapor deposited as a metal electrode to a thickness of 100 nm to produce an organic solar cell.

상기 방법으로 제조된 유기태양전지의 전류밀도-전압 (J-V) 특성을 Oriel 1000W solar simulator에 의해 100 mW/cm2(AM 1.5G)로써 태양광을 모사한 조명하에서 측정하고, Voc(open circuit voltage), JSC(short-circuit current density), FF(fill factor), 및 에너지 변환 효율(η, overall conversion efficiency)의 광전 파라미터(photovoltaic parameter)를 하기 표 2에 도시하였다.The current density-voltage (JV) characteristics of the organic solar cell fabricated by the above method were measured under the illumination simulating sunlight with 100 mW / cm 2 (AM 1.5G) by Oriel 1000W solar simulator, and Voc The photovoltaic parameters of short-circuit current density (JSC), fill factor (FF), and overall conversion efficiency (η) are shown in Table 2 below.

(실시예 5)유기태양전지의 제작(Example 5) Production of organic solar cell

상기 실시예 4에서 실시예 1로부터 얻어진 고분자(PDTPT-BDTT) 대신에 실시예 2로부터 얻어진 고분자 (PDTPT-BDTSe)을 이용하여, 상기 실시예 4와 동일한 방법으로 유기태양전지를 제작하고, 실시예 4의 방법으로 유기태양전지의 특성을 측정하여 하기 표 2에 도시하였다.An organic solar cell was prepared in the same manner as in Example 4, except that the polymer (PDTPT-BDTSe) obtained in Example 2 was used instead of the polymer (PDTPT-BDTT) obtained in Example 4, The characteristics of the organic solar cell were measured by the method of Table 4 and shown in Table 2 below.

(실시예 6)유기태양전지의 제작(Example 6) Fabrication of organic solar cell

상기 실시예 4에서 실시예 1로부터 얻어진 고분자(PDTPT-BDTT) 대신에 실시예 3으로부터 얻어진 고분자 (PDTPT-BDTEX)을 이용하여, 상기 실시예 4와 동일한 방법으로 유기태양전지를 제작하고, 실시예 4의 방법으로 유기태양전지의 특성을 측정하여 하기 표 2에 도시하였다.An organic solar cell was prepared in the same manner as in Example 4, except that the polymer (PDTPT-BDTEX) obtained in Example 3 was used instead of the polymer (PDTPT-BDTT) obtained in Example 4, The characteristics of the organic solar cell were measured by the method of Table 4 and shown in Table 2 below.

상기 실시예 1 내지 실시예 3에서 합성된 신규한 유기 반도체 화합물의 광 흡수영역은 용액상태와 필름상태에서 측정하여 결과를 도 1 내지 3에 도시하였다. 또한 실시예 3 에서 합성된 신규한 유기 반도체 화합물의 전기화학적 특성을 분석하기 위해서 Bu4NClO4(0.1 몰농도)의 용매 하에서 50 mV/s의 조건에서 싸이클로 볼타메트리(cyclic voltammetry)를 이용하여 측정한 결과를 도 4에 도시하였으며, 측정 시 카본 전극을 사용하여 코팅을 통해 전압을 인가하였다. The light absorbing regions of the novel organic semiconductor compounds synthesized in Examples 1 to 3 were measured in a solution state and a film state, and the results are shown in Figs. Further, in order to analyze the electrochemical characteristics of the novel organic semiconductor compound synthesized in Example 3, cyclic voltammetry was performed under the condition of Bu 4 NClO 4 (0.1 molar concentration) in a solvent of 50 mV / s The measurement results are shown in FIG. 4, and a voltage was applied through a coating using a carbon electrode during the measurement.

하기 표 1에 실시예 1 내지 실시예 3에서 합성된 신규한 유기 반도체 화합물의 광학적 성질을 기재하였다. 여기서 밴드갭은 필름상태에서 UV흡수파장에서 구하였다. The optical properties of the novel organic semiconductor compounds synthesized in Examples 1 to 3 are shown in Table 1 below. Here, the band gap was obtained at the UV absorption wavelength in the film state.

Figure pat00019
Figure pat00019

본 발명에 따른 유기 반도체 화합물은 1.746 eV(실시예 3의 밴드갭) 수준의 밴드갭으로 장파장의 빛까지 흡수할 수 있으며 즉, 태양광과 유사한 파장영역의 빛까지 흡수가 가능하기 때문에 보다 많은 전류를 생산하게 되어 높은 단락전류가 발생할 수 있다. The organic semiconductor compound according to the present invention can absorb long wavelength light with a band gap of 1.746 eV (band gap of Embodiment 3), that is, can absorb light in a wavelength region similar to sunlight, So that a short circuit current can be generated.

또한, 본 발명에 따른 유기 반도체 화합물은 -5.86 eV(실시예 3의 EHOMO) 수준의 낮은 HOMO값을 가지는 것을 알 수 있는데, 이는 기존의 Acceptor보다 상대적으로 전자를 잘 잡아당기기 때문에 낮은 값을 가지는 것으로 설명할 수 있다. 즉, 본 발명에 따른 유기 반도체 화합물은 기존의 Acceptor보다 상대적으로 낮은 HOMO값으로 인해, 높은 개방전압의 형성이 가능할 뿐만 아니라 산화안정성도 높아지게 되어 상용화에 큰 이득이 된다. 이에, 본 발명에 따른 유기 반도체 화합물은 높은 개방전압(Voc) 및 산화안정성을 가질 것으로 예상될 뿐 아니라 낮은 LUMO값을 가져 쉽게 전자가 전극으로 이동할 수 있을 것이라 예상할 수 있다.Also, it the organic semiconductor compound according to the invention can be seen that having a lower HOMO value of (E HOMO of Example 3) level of -5.86 eV, which has a low value because of pulling out the relatively well compared to conventional electronic Acceptor . That is, since the organic semiconductor compound according to the present invention has a HOMO value relatively lower than that of the conventional Acceptor, not only can a high open-circuit voltage be formed, but oxidation stability also becomes high, which is a great advantage in commercialization. Accordingly, it is expected that the organic semiconductor compound according to the present invention not only has a high open-circuit voltage (Voc) and oxidation stability but also has a low LUMO value, so that electrons can easily migrate to the electrode.

또한, 반복 단위체에 하나 이상의 티오페닐렌 및/또는 셀레노페닐렌을 포함하는 3개 이상의 일환상 또는 다환상 헤테로아릴렌을 반복단위로 가짐에 따라 고분자 주 사슬의 공면성을 획기적으로 향상시켜, 보다 높은 전자 밀도를 가질 수 있을 뿐 아니라 높은 열안정성을 가질 수 있으며, 이로 인해 주 사슬의 비규칙적인 배열성을 주어 분자 내 자유 부피를 높일 수 있다. Also, since the repeating unit has three or more monocyclic or polycyclic heteroarylene containing one or more thiophenylene and / or selenophenylene as repeating units, the cohesiveness of the polymer main chain can be remarkably improved, Not only can have higher electron density, but also have high thermal stability, which can result in irregular arrangement of the main chain, thereby increasing the intrinsic free volume.

도 5 내지 7 에서는 실시예 1 내지 실시예 3에서 합성된 유기 반도체 화합물에 대한 열적 안정성을 측정하기 위해 DSC를 이용하여 측정한 결과를 도시한 것으로 유리전이온도값이 측정되지 않았으며, 이것으로 본 발명에 따른 유기 반도체 화합물을 비정질의 특성을 가지는 것을 알 수 있었다. 도 8 에서는 실시예 3에서 합성된 유기 반도체 화합물의 분해온도를 TGA를 이용하여 측정한 결과를 도시한 것으로, 실시예3(PDTPT-BDTEX)의 5 % 분해가 일어나는 온도는 282 ℃ 로 측정되었다. 이와 같이 높은 온도에서도 분해가 일어나지 않아 본 발명에 따른 유기 반도체 화합물은 열적으로 안정한 화합물인 것을 알 수 있었다.5 to 7 show the results of measurement using DSC to measure the thermal stability of the organic semiconductor compound synthesized in Examples 1 to 3. The glass transition temperature was not measured, It was found that the organic semiconductor compound according to the present invention had amorphous characteristics. FIG. 8 shows the results of measurement of the decomposition temperature of the organic semiconductor compound synthesized in Example 3 using TGA, and the temperature at which 5% decomposition of Example 3 (PDTPT-BDTEX) occurred was measured at 282.degree. Since decomposition does not occur even at such a high temperature, it is found that the organic semiconductor compound according to the present invention is a thermally stable compound.

유기태양전지의 특성은 크게 4가지 특성으로 나타낼 수 있는데, 단락전류(Short circuit current; Jsc), 개방전압(Open circuit voltage; Voc), 충진율(Fill factor; FF), 전력 변환 효율(Power conversion efficiency: PCE)이다. 이들 간의 상관관계는 아래의 식 1로 표현할 수 있다.The characteristics of organic solar cells can be represented by four characteristics. Short circuit current (Jsc), open circuit voltage (Voc), fill factor (FF), power conversion efficiency : PCE). The correlation between them can be expressed by the following equation (1).

[식1][Formula 1]

Figure pat00020
Figure pat00020

상기 식1에서, 상기 P in 은 유기태양전지에 입사되는 광세기이고, P out 은 광조사하에서 낼 수 있는 최대 전력이고, J sc 는 단락전류이며, V oc 는 개방전압값이며, FF 는 충진율이다. In the formula 1, wherein P in is the maximum power that a light intensity that is incident on the organic solar cell, P out can be under the light irradiation, J sc is the short circuit current, V oc is the open-circuit voltage value, FF is a fill factor to be.

식 1에 의하면 고효율을 구현하기 위해서는 소자에 높은 단락전류와 개방전압이 필요하다. 또한 높은 충진율을 가져야만 고효율의 소자구현이 가능하다. 높은 단락전류를 구현하기 위해서는 재료적으로 높은 전하이동도를 가져야 하며 높은 개방전압은 분자 내 전자 공여체의 HOMO 값과 LUMO 값에 연관이 있다. 따라서 위와 같은 여러 가지 조건이 충족되었을 때 비로소 고효율의 유기태양전지가 가능해 진다.Equation 1 requires a high short-circuit current and open-circuit voltage to achieve high efficiency. In addition, high-efficiency devices can be realized by having a high packing rate. In order to realize a high short-circuit current, the material should have a high charge mobility. The high open-circuit voltage is related to the HOMO value and the LUMO value of the intramolecular electron donor. Therefore, when the above-mentioned various conditions are satisfied, high-efficiency organic solar cells become possible.

본 발명에 따른 유기태양전지의 광전 파라미터를 측정한 결과, 상기 실시예 3에서 합성된 유기 반도체 화합물을 이용한 유기태양전지의 경우, Voc 는 0.84(V), Jsc는 12.3(mA/㎠), FF는 37.3(%) 및 에너지 전환효율(power conversion efficiency, PCE)는 3.90(%)로 확인되었다(도 9 참조).As a result of measuring the photoelectric parameters of the organic solar cell according to the present invention, the organic solar cell using the organic semiconductor compound synthesized in Example 3 had Voc of 0.84 (V), Jsc of 12.3 (mA / cm 2) (37.3%) and a power conversion efficiency (PCE) of 3.90% (see FIG. 9).

요컨대, 본 발명에 따른 유기 반도체 화합물은 밴드갭이 넓어 장파장의 빛까지 흡수할 수 있어, 보다 많은 전류를 생산함으로써, 높은 단락전류 값을 가지며, 낮은 HOMO값으로 인해, 높은 개방전압의 형성이 가능하므로, 효율이 우수한 유기태양전지를 제공할 수 있다.In short, the organic semiconductor compound according to the present invention has a wide bandgap and can absorb light of a long wavelength, thereby producing more current, thereby having a high short-circuit current value and a low open-circuit voltage due to a low HOMO value Thus, an organic solar cell having excellent efficiency can be provided.

Claims (9)

하기 화학식 1로 표시되는 유기 반도체 화합물;
[화학식 1]
Figure pat00021

[상기 화학식 1에 있어서,
L1 내지 L3는 각각 독립적으로 (C3~C30)헤테로아릴렌이고;
Z1 및 Z2는 각각 독립적으로 S 또는 Se이고;
R1 및 R2는 각각 독립적으로 수소 또는 (C1-C30)알킬이고;
n은 1 내지 1000의 정수이며;
상기 L1 내지 L3 의 헤테로아릴렌과 R1 및 R2 의 알킬은 각각 독립적으로 (C1-C30)알킬, (C2-C30)알케닐, (C2-C30)알키닐, (C1-C30)알콕시, (C3-C30)시클로알킬, (C3-C30)헤테로시클로알킬, (C6~C30)아릴, (C1-C30)알킬이 치환된 (C6-C30)아릴, (C3~C30)헤테로아릴, (C1-C30)알킬이 치환된 (C3-C30)헤테로아릴, 아미노, 하이드록시 및 할로겐으로부터 선택되는 하나 이상의 치환기로 더 치환될 수 있고, 상기 헤테로아릴렌, 헤테로시클로알킬 및 헤테로아릴은 B, N, O, S, Se, P(=O), Si 및 P로부터 선택된 하나 이상의 헤테로원자를 포함한다.]
An organic semiconductor compound represented by the following formula (1);
[Chemical Formula 1]
Figure pat00021

[In the formula 1,
L 1 to L 3 are each independently (C 3 to C 30) heteroarylene;
Z 1 and Z 2 are each independently S or Se;
R 1 and R 2 are each independently hydrogen or (C 1 -C 30) alkyl;
n is an integer from 1 to 1000;
The L heteroarylene and alkyl of R 1 and R 2 ranging from 1 to L 3 are each independently (C1-C30) alkyl, (C2-C30) alkenyl, (C2-C30) alkynyl, (C1-C30) (C3-C30) cycloalkyl, (C3-C30) heterocycloalkyl, (C6-C30) aryl, (C6-C30) aryl substituted with (C1- (C3-C30) heteroaryl substituted with a (C1-C30) alkyl, amino, hydroxy and halogen, said heteroarylene, heterocycloalkyl and heteroaryl being optionally substituted with one or more substituents selected from B, And at least one heteroatom selected from N, O, S, Se, P (= O), Si and P.
제 1항에 있어서,
상기 L1 내지 L3는 하기 구조에서 선택되는 것인 유기 반도체 화합물;
Figure pat00022

[상기 구조에 있어서,
Z11 내지 Z14는 각각 독립적으로 S 또는 Se이고;
R11 내지 R18은 각각 독립적으로 수소, (C1-C20)알킬, (C1-C30)알콕시, (C6~C20)아릴, (C1-C20)알킬이 치환된 (C6-C20)아릴, (C3~C20)헤테로아릴 및 (C1-C20)알킬이 치환된 (C3-C20)헤테로아릴에서 선택된다.]
The method according to claim 1,
Wherein L 1 to L 3 are selected from the following structures;
Figure pat00022

[In the above structure,
Z 11 to Z 14 are each independently S or Se;
R 11 to R 18 are each independently selected from the group consisting of hydrogen, (C 1 -C 20) alkyl, (C 1 -C 30) alkoxy, (C 6 -C 20) aryl, (C 6 -C 20) (C3-C20) heteroaryl and (C3-C20) heteroaryl substituted with (C1-C20) alkyl.
제 1항에 있어서,
하기 화학식 2로 표시되는 유기 반도체 화합물;
[화학식 2]
Figure pat00023

[상기 화학식 2에 있어서,
Z1, Z2 및 Z11 내지 Z14는 각각 독립적으로 S 또는 Se이고;
n은 1 내지 1000의 정수이며;
R11 내지 R18은 각각 독립적으로 수소, (C1-C20)알킬, (C1-C30)알콕시, (C6~C20)아릴, (C1-C20)알킬이 치환된 (C6-C20)아릴, (C3~C20)헤테로아릴 및 (C1-C20)알킬이 치환된 (C3-C20)헤테로아릴에서 선택된다.]
The method according to claim 1,
An organic semiconductor compound represented by the following formula (2);
(2)
Figure pat00023

[In the formula (2)
Z 1 , Z 2 and Z 11 to Z 14 are each independently S or Se;
n is an integer from 1 to 1000;
R 11 to R 18 are each independently selected from the group consisting of hydrogen, (C 1 -C 20) alkyl, (C 1 -C 30) alkoxy, (C 6 -C 20) aryl, (C 6 -C 20) (C3-C20) heteroaryl and (C3-C20) heteroaryl substituted with (C1-C20) alkyl.
제 3항에 있어서,
상기 R11 내지 R15 및 R18 은 각각 독립적으로 수소 또는
Figure pat00024
이며, 상기 R41 및 R42 는 각각 독립적으로 (C1-C7)알킬이며, m은 1 내지 5의 정수인 유기 반도체 화합물.
The method of claim 3,
Each of R 11 to R 15 and R 18 is independently hydrogen or
Figure pat00024
, R 41 and R 42 are each independently (C 1 -C 7) alkyl, and m is an integer of 1 to 5.
제 1항에 있어서,
하기 화합물에서 선택되는 것을 특징으로 하는 유기 반도체 화합물:
Figure pat00025

[상기 n은 1 내지 1000의 정수이다.]
The method according to claim 1,
An organic semiconducting compound characterized in that it is selected from the following compounds:
Figure pat00025

[Wherein n is an integer of 1 to 1000]
하기 화학식 4로 표시되는 화합물과 하기 화학식 5로 표시되는 화합물을 반응하여 하기 화학식 2로 표시되는 유기 반도체 화합물을 제조하는 단계;를 포함하는 유기 반도체 화합물의 제조방법.
[화학식 2]
Figure pat00026

[화학식 4]
Figure pat00027

[화학식 5]
Figure pat00028

[상기 화학식 2, 화학식 4 및 화학식 5에 있어서,
Z1, Z2 및 Z11 내지 Z14는 각각 독립적으로 S 또는 Se이고;
n은 1 내지 1000의 정수이며;
R11 내지 R18은 각각 독립적으로 수소, (C1-C20)알킬, (C1-C30)알콕시, (C6~C20)아릴, (C1-C20)알킬이 치환된 (C6-C20)아릴, (C3~C20)헤테로아릴 또는 (C1-C20)알킬이 치환된 (C3-C20)헤테로아릴이며;
T1 및 T2는 각각 독립적으로 -Sn(R31)(R32)(R33)이고, 상기 R31 내지 R33 은 각각 독립적으로 (C1-C7)알킬이며;
X1 및 X2는 각각 독립적으로 할로겐이다.]
Reacting a compound represented by the following formula (4) with a compound represented by the following formula (5) to produce an organic semiconductor compound represented by the following formula (2).
(2)
Figure pat00026

[Chemical Formula 4]
Figure pat00027

[Chemical Formula 5]
Figure pat00028

[In the formulas (2), (4) and (5)
Z 1 , Z 2 and Z 11 to Z 14 are each independently S or Se;
n is an integer from 1 to 1000;
R 11 to R 18 are each independently selected from the group consisting of hydrogen, (C 1 -C 20) alkyl, (C 1 -C 30) alkoxy, (C 6 -C 20) aryl, (C 6 -C 20) (C3-C20) heteroaryl or (C3-C20) heteroaryl substituted with (C1-C20) alkyl;
T 1 and T 2 are each independently -Sn (R 31 ) (R 32 ) (R 33 ), and R 31 to R 33 are each independently (C 1 -C 7) alkyl;
X 1 and X 2 are each independently halogen.]
제 6항에 있어서,
상기 R11 내지 R15 및 R18 은 각각 독립적으로 수소 또는
Figure pat00029
이며, 상기 R41 및 R42 는 각각 독립적으로 (C1-C7)알킬이며, m은 1 내지 5의 정수인 유기 반도체 화합물의 제조방법.
The method according to claim 6,
Each of R 11 to R 15 and R 18 is independently hydrogen or
Figure pat00029
, R 41 and R 42 are each independently (C 1 -C 7) alkyl, and m is an integer of 1 to 5.
제 1항 내지 제 5항에서 선택되는 어느 한 항에 따른 유기 반도체 화합물을 포함하는 유기태양전지.An organic solar cell comprising an organic semiconductor compound according to any one of claims 1 to 5. 제 8항에 있어서,
상기 유기 반도체 화합물을 유기태양전지의 활성층에 포함하는 유기태양전지.
9. The method of claim 8,
Wherein the organic semiconductor compound is contained in an active layer of an organic solar cell.
KR1020170020890A 2016-03-14 2017-02-16 Organic semiconductor compounds Containing Posphine oxide and Solar Cell Device Using This Material KR101905088B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160030148 2016-03-14
KR20160030148 2016-03-14

Publications (2)

Publication Number Publication Date
KR20170106908A true KR20170106908A (en) 2017-09-22
KR101905088B1 KR101905088B1 (en) 2018-10-08

Family

ID=60034986

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170020890A KR101905088B1 (en) 2016-03-14 2017-02-16 Organic semiconductor compounds Containing Posphine oxide and Solar Cell Device Using This Material

Country Status (1)

Country Link
KR (1) KR101905088B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011049204A (en) * 2009-08-25 2011-03-10 Konica Minolta Holdings Inc Organic photoelectric conversion element, and photovoltaic cell and optical sensor array using the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011049204A (en) * 2009-08-25 2011-03-10 Konica Minolta Holdings Inc Organic photoelectric conversion element, and photovoltaic cell and optical sensor array using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Adv. Funct. Mater. 2015, Vol.25, pp.3991?3997, 1부. *

Also Published As

Publication number Publication date
KR101905088B1 (en) 2018-10-08

Similar Documents

Publication Publication Date Title
Sun et al. X-shaped oligothiophenes as a new class of electron donors for bulk-heterojunction solar cells
Ashraf et al. Fused ring thiophene-based poly (heteroarylene ethynylene) s for organic solar cells
Hou et al. Synthesis and photovoltaic properties of the copolymers of 2-methoxy-5-(2′-ethylhexyloxy)-1, 4-phenylene vinylene and 2, 5-thienylene-vinylene
JP5900084B2 (en) Electron donating organic material, photovoltaic device material using the same, and photovoltaic device
Arrechea et al. New acceptor–π-porphyrin–π-acceptor systems for solution-processed small molecule organic solar cells
KR102291239B1 (en) N-type organic semiconducting compounds, manufacturing method thereof, and organic photovoltaics containing the same
Hwang et al. Synthesis, characterization, and photovoltaic applications of dithienogermole-dithienylbenzothiadiazole and-dithienylthiazolothiazole copolymers
So et al. Novel symmetric squaraine chromophore containing triphenylamine for solution processed small molecule bulk heterojunction solar cells
Wang et al. Tuning the photovoltaic performance of BT-TPA chromophore based solution-processed solar cells through molecular design incorporating of bithiophene unit and fluorine-substitution
Cheng et al. Alternating copolymers incorporating cyclopenta [2, 1‐b: 3, 4‐b′] dithiophene unit and organic dyes for photovoltaic applications
Zhang et al. 1, 3-bis (thieno [3, 4-b] thiophen-6-yl)-4 H-thieno [3, 4-c] pyrrole-4, 6 (5 H)-dione-Based small-molecule donor for efficient solution-processed solar cells
Mori et al. Alkoxy-substituted anthra [1, 2-c: 5, 6-c′] bis ([1, 2, 5] thiadiazole)(ATz): a new electron-acceptor unit in the semiconducting polymers for organic electronics
KR101758061B1 (en) organic semiconductor compound, process for producing the organic semiconductor compound and organic solar cells using the Same
KR102446165B1 (en) Compound containing aryloxy akyl group and organic electronic device using them
Kim et al. Synthesis and characterization of conjugated polymers containing low-bandgap arylenevinylene units
KR101553806B1 (en) Organic semiconductor compounds Containing Posphine oxide and Solar Cell Device Using This Material
KR101495152B1 (en) organic semiconductor compound, manufacturing method thereof, and organic electronic device that contains it
Zhang et al. The effect of molecular geometry on the photovoltaic property of diketopyrrolopyrrole based non-fullerene acceptors
Wang et al. Alternating dithienobenzoxadiazole-based conjugated polymers for field-effect transistors and polymer solar cells
Song et al. Pyrrolo [3, 2-b] pyrrole based small molecules as donor materials for OPVs
KR101535066B1 (en) Double junction organic photovoltaic device fabricated using organic semiconductor compound, and organic electronic device that contains it
JP2015108072A (en) Composition including n-type semiconductor compound and p-type semiconductor compound
KR101905088B1 (en) Organic semiconductor compounds Containing Posphine oxide and Solar Cell Device Using This Material
Hou et al. Thieno [2, 3-f] benzofuran based donor-acceptor polymer for fullerene-free solar cells
KR101303083B1 (en) Novel fullerene derivatives and photovoltaic device using the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right