KR20170097655A - 서브샘플링 포맷을 위한 팔레트 모드 - Google Patents

서브샘플링 포맷을 위한 팔레트 모드 Download PDF

Info

Publication number
KR20170097655A
KR20170097655A KR1020177016528A KR20177016528A KR20170097655A KR 20170097655 A KR20170097655 A KR 20170097655A KR 1020177016528 A KR1020177016528 A KR 1020177016528A KR 20177016528 A KR20177016528 A KR 20177016528A KR 20170097655 A KR20170097655 A KR 20170097655A
Authority
KR
South Korea
Prior art keywords
pixel
current block
color values
luma
palette
Prior art date
Application number
KR1020177016528A
Other languages
English (en)
Other versions
KR102478411B1 (ko
Inventor
라잔 랙스맨 조쉬
바딤 세레긴
웨이 푸
로할스 호엘 솔레
마르타 카르체비츠
펑 저우
Original Assignee
퀄컴 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 퀄컴 인코포레이티드 filed Critical 퀄컴 인코포레이티드
Publication of KR20170097655A publication Critical patent/KR20170097655A/ko
Application granted granted Critical
Publication of KR102478411B1 publication Critical patent/KR102478411B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/186Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a colour or a chrominance component
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/124Quantisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/136Incoming video signal characteristics or properties
    • H04N19/137Motion inside a coding unit, e.g. average field, frame or block difference
    • H04N19/139Analysis of motion vectors, e.g. their magnitude, direction, variance or reliability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/182Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a pixel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/44Decoders specially adapted therefor, e.g. video decoders which are asymmetric with respect to the encoder
    • H04N19/45Decoders specially adapted therefor, e.g. video decoders which are asymmetric with respect to the encoder performing compensation of the inverse transform mismatch, e.g. Inverse Discrete Cosine Transform [IDCT] mismatch
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/587Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal sub-sampling or interpolation, e.g. decimation or subsequent interpolation of pictures in a video sequence
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/59Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving spatial sub-sampling or interpolation, e.g. alteration of picture size or resolution
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
    • H04N19/61Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding in combination with predictive coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/80Details of filtering operations specially adapted for video compression, e.g. for pixel interpolation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/90Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using coding techniques not provided for in groups H04N19/10-H04N19/85, e.g. fractals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/90Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using coding techniques not provided for in groups H04N19/10-H04N19/85, e.g. fractals
    • H04N19/93Run-length coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/90Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using coding techniques not provided for in groups H04N19/10-H04N19/85, e.g. fractals
    • H04N19/96Tree coding, e.g. quad-tree coding

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

크로마 성분들이 루마 성분들과는 상이한 해상도에 있는 경우들로 팔레트-모드 코딩 기법들을 확장하는 기법들이 설명된다. 팔레트 테이블의 엔트리들은 3 개의 컬러 값들을 포함하고, 픽셀이 루마 성분 및 크로마 성분들 양쪽을 포함하는지, 또는 루마 성분만을 포함하는지의 여부에 기초하여 3 개의 컬러 값들, 또는 3 개의 컬러 값들 중 단일의 컬러 값이 선택된다.

Description

서브샘플링 포맷을 위한 팔레트 모드{PALETTE MODE FOR SUBSAMPLING FORMAT}
본 출원은 2014년 12월 19일 출원된 미국 가출원 번호 제62/094,737호의 이익을 주장하며, 본원에서는 그 전체 내용들을 전체적으로 참조로서 포함한다.
기술 분야
본 개시는 비디오 인코딩 및 디코딩에 관한 것이다.
디지털 비디오 능력들은, 디지털 텔레비전, 디지털 다이렉트 브로드캐스트 시스템들, 무선 브로드캐스트 시스템들, 개인 휴대 정보 단말기들 (personal digital assistants; PDAs), 랩탑 또는 데스크탑 컴퓨터들, 태블릿 컴퓨터들, 이북 리더들, 디지털 카메라들, 디지털 레코딩 디바이스들, 디지털 미디어 플레이어들, 비디오 게임용 디바이스들, 비디오 게임 콘솔, 셀룰러 또는 위성 라디오 텔레폰들, 소위 "스마트폰들", 화상 원격회의 디바이스들, 비디오 스트리밍 디바이스들 등을 포함하는 광범위한 디바이스들에 통합될 수 있다. 디지털 비디오 디바이스들은 MPEG-2, MPEG-4, ITU-T H.263, ITU-T H.264/MPEG-4, Part 10, AVC (Advanced Video Coding), 현재 개발 하에 있는 HEVC (High Efficiency Video Coding) 에 의해 정의된 표준들, 및 이러한 표준들의 확장들에서 설명된 바와 같은 비디오 압축 기법들을 구현한다. 비디오 디바이스들은 이러한 비디오 압축 기술들을 구현함으로써 디지털 비디오 정보를 보다 효율적으로 송신하고, 수신하고, 인코딩하고, 디코딩하고, 및/또는 저장할 수도 있다.
비디오 압축 기술들은 비디오 시퀀스들에서 본질적인 리던던시 (redundancy) 를 감소시키거나 제거하기 위해 공간적 (인트라 픽처) 예측 및/또는 시간적(인터 픽처) 예측을 포함할 수도 있다. 블록 기반 비디오 코딩에 있어서, 비디오 슬라이스 (즉, 비디오 프레임, 또는 비디오 프레임의 부분) 는 비디오 블록들로 파티셔닝될 수도 있다. 픽처의 인트라-코딩된 (I) 슬라이스 내의 비디오 블록들은 동일한 픽처 내의 이웃하는 블록들 내의 참조 샘플들에 대한 공간 예측을 이용하여 인코딩된다. 픽처의 인터-코딩된 (P 또는 B) 슬라이스 내의 비디오 블록들은 동일한 픽처 내의 이웃하는 블록들 내의 참조 샘플들에 대한 공간적 예측, 또는 다른 참조 픽처들 내의 참조 샘플들에 대한 시간적 예측을 이용할 수도 있다. 공간적 또는 시간적 예측은 블록이 코딩되는 예측 블록으로 귀결된다. 잔차 데이터는 코딩될 오리지널 블록과 예측 블록 사이의 픽셀 차이들을 나타낸다. 인터-코딩된 블록은 예측 블록을 형성하는 참조 샘플들의 블록을 가리키는 모션 벡터, 및 코딩된 블록과 예측 블록 사이의 차이를 나타내는 잔차 데이터에 따라 인코딩된다. 인트라-코딩된 블록은 인트라 코딩 모드와 잔차 데이터에 따라 인코딩된다. 추가의 압축을 위해, 잔차 데이터는 픽셀 도메인에서 변환 도메인으로 변환되어, 잔차 변환 계수들로 귀결될 수도 있고, 그 후 이들은 양자화될 수도 있다.
본 개시는 크로마 성분들의 해상도가 루마 성분의 해상도보다 작은 팔레트-모드에 대한 예시적 기법들을 기술한다. 팔레트 테이블의 엔트리들은 루마 성분 및 2 개의 크로마 성분에 대해 각각 하나씩인 3 개의 컬러 값들을 포함한다. 블록의 픽셀이 루마 성분 및 2 개의 크로마 성분들을 가지면, 모든 3 개의 컬러 값들이 픽셀의 팔레트-모드 코딩에 이용된다. 그러나, 블록의 픽셀이 루마 성분만을 갖고 크로마 성분들을 갖지 않으면, 단일의 컬러 값 (예를 들어, 3 개의 컬러 값들 중 제 1 값) 만이 픽셀의 팔레트-모드 코딩에 이용된다.
일 예에서, 본 개시는 비디오 데이터를 디코딩하는 방법을 설명하며, 본 방법은 비디오 데이터의 현재 블록에 대해, 3 개의 컬러 값들을 갖는 엔트리들을 포함하는 단일의 팔레트 테이블을 도출하는 단계, 비디오 데이터의 현재 블록에서의 픽셀이 루마 성분 및 크로마 성분들을 포함하는지의 여부를 결정하는 단계, 현재 블록에서의 픽셀이 루마 성분 및 크로마 성분들을 포함하는지의 여부의 결정에 기초하여 단일의 팔레트 테이블로부터 취출할 컬러 값들의 수를 결정하는 단계, 및 취출할 컬러 값들의 수의 결정에 기초하여 비디오 데이터의 현재 블록에서의 픽셀을 팔레트-모드 디코딩하는 단계를 포함한다.
일 예에서, 본 개시는 비디오 데이터를 디코딩하기 위한 디바이스를 설명하며, 본 디바이스는 비디오 데이터의 현재 블록에 대하여, 3 개의 컬러 값들을 갖는 엔트리들을 포함하는 팔레트 테이블을 저장하도록 구성되는 메모리 유닛, 및 비디오 디코더를 포함하고, 비디오 디코더는, 상기 메모리 유닛에서의 저장을 위하여, 비디오 데이터의 현재 블록에 대한 팔레트 테이블을 도출하되, 현재 블록에 대한 다른 팔레트 테이블을 도출하지 않고, 비디오 데이터의 현재 블록에서의 픽셀이 루마 성분 및 크로마 성분들을 포함하는지의 여부를 결정하고, 현재 블록에서의 픽셀이 루마 성분 및 크로마 성분들을 포함하는지의 여부의 결정에 기초하여 팔레트 테이블로부터 취출할 컬러 값들의 수를 결정하고, 그리고 취출할 컬러 값들의 수의 결정에 기초하여 비디오 데이터의 현재 블록에서의 픽셀을 팔레트-모드 디코딩하도록 구성된다.
일 예에서, 본 개시는 명령들이 저장되어 있는 비일시적 컴퓨터 판독가능 저장 매체를 설명하며, 명령들은 실행될 때 비디오 데이터를 프로세싱하기 위한 디바이스의 하나 이상의 프로세서들로 하여금, 비디오 데이터의 현재 블록에 대해, 3 개의 컬러 값들을 갖는 엔트리들을 포함하는 단일의 팔레트 테이블을 도출하게 하고, 비디오 데이터의 현재 블록에서의 픽셀이 루마 성분 및 크로마 성분들을 포함하는지의 여부를 결정하게 하고; 현재 블록에서의 픽셀이 루마 성분 및 크로마 성분들을 포함하는지의 여부의 결정에 기초하여 단일의 팔레트 테이블로부터 취출할 컬러 값들의 수를 결정하게 하고, 그리고 취출할 컬러 값들의 수의 결정에 기초하여 비디오 데이터의 현재 블록에서의 픽셀을 팔레트-모드 디코딩하게 한다.
일 예에서, 본 개시는 비디오 데이터를 디코딩하기 위한 디바이스를 설명하며, 본 디바이스는 비디오 데이터의 현재 블록에 대해, 3 개의 컬러 값들을 갖는 엔트리들을 포함하는 단일의 팔레트 테이블을 도출하기 위한 수단, 비디오 데이터의 현재 블록에서의 픽셀이 루마 성분 및 크로마 성분들을 포함하는지의 여부를 결정하기 위한 수단, 현재 블록에서의 픽셀이 루마 성분 및 크로마 성분들을 포함하는지의 여부의 결정에 기초하여 단일의 팔레트 테이블로부터 취출할 컬러 값들의 수를 결정하기 위한 수단, 및 취출할 컬러 값들의 수의 결정에 기초하여 비디오 데이터의 현재 블록에서의 픽셀을 팔레트-모드 디코딩하기 위한 수단을 포함한다.
일 예에서, 본 개시는 비디오 데이터를 인코딩하는 방법을 설명하며, 본 방법은 비디오 데이터의 현재 블록에서의 픽셀이 단일의 팔레트 테이블에 기초하여 인코딩되지 않는다고 결정하는 단계, 비디오 데이터의 현재 블록에서의 픽셀이 루마 성분 및 크로마 성분들을 포함하는지의 여부를 결정하는 단계, 현재 블록에서의 픽셀이 루마 성분 및 크로마 성분들을 포함하는지의 여부의 결정에 기초하여 비트스트림에서 시그널링할 컬러 값들의 수를 결정하는 단계, 및 상기 컬러 값들의 결정된 수에 기초하여 상기 현재 블록을 재구성하기 위해 이용되는 픽셀에 대한 컬러 값들을 비트스트림에서 시그널링하는 단계를 포함한다.
일 예에서, 본 개시는 비디오 데이터를 인코딩하기 위한 디바이스를 설명하며, 본 디바이스는 비디오 데이터의 현재 블록에 대해, 팔레트 테이블을 저장하도록 구성되는 메모리 유닛, 및 비디오 인코더를 포함하고, 비디오 인코더는, 비디오 데이터의 현재 블록에서의 픽셀이 팔레트 테이블에 기초하여 인코딩되지 않는다고 결정하고, 비디오 데이터의 현재 블록에서의 픽셀이 루마 성분 및 크로마 성분들을 포함하는지의 여부를 결정하고, 현재 블록에서의 픽셀이 루마 성분 및 크로마 성분들을 포함하는지의 여부의 결정에 기초하여 비트스트림에서 시그널링할 컬러 값들의 수를 결정하고, 그리고 컬러 값들의 결정된 수에 기초하여 현재 블록을 재구성하기 위해 이용되는, 픽셀에 대한 컬러 값들을 비트스트림에서 시그널링하도록 구성된다.
하나 이상의 실시형태들의 세부사항들은 첨부된 도면과 하기의 설명으로부터 설명된다. 다른 특징들, 목적들 및 이점들은 하기의 설명 및 도면들, 및 하기의 특허청구범위로부터 명확해질 것이다.
도 1 은 본 개시에서 설명된 기법들을 이용할 수도 있는 예시적인 비디오 코딩 시스템을 예시하는 블록도이다.
도 2 는 본 개시에서 설명된 기법들을 구현할 수도 있는 예시적인 비디오 인코더를 예시하는 블록도이다.
도 3 은 본 개시에서 설명되는 기법들을 구현할 수도 있는 일 예의 비디오 디코더를 도시하는 블록도이다.
도 4 는 팔레트-기반 비디오 코딩하기 위한 팔레트 엔트리들을 결정하는 일 예를 예시하는 개념도이다.
도 5 는 팔레트 예측의 일 예를 예시한다.
도 6 은 픽셀들의 블록을 위한 팔레트에 대한 인덱스들을 결정하는 일 예를 예시하는 개념도이다.
도 7 은 이전에 코딩된 로우로부터 팔레트 인덱스들을 카피하는 일 예를 예시하는 개념도이다.
도 8 은 페이즈 정렬된 케이스를 위한 4:2:0 크로마 서브샘플링 포맷의 일 예를 예시하는 개념도이다.
도 9 는 페이즈 오정렬된 경우를 위한 4:2:0 크로마 서브샘플링 포맷의 일 예를 예시하는 개념도이다.
도 10 은 비디오 데이터를 디코딩하는 일 예를 예시하는 플로우차트이다.
도 11 은 비디오 데이터를 인코딩하는 일 예를 예시하는 플로우차트이다.
본 개시는 비디오 코딩 및 압축을 위한 기법을 설명한다. 특히, 본 개시는 비디오 데이터의 팔레트-기반 비디오 코딩을 위한 기법을 설명한다. 팔레트-기반 비디오 코딩에서, 비디오 코더 (예를 들어, 비디오 인코더 또는 비디오 디코더) 는 픽셀들의 블록들에 대해 팔레트 테이블을 도출하며, 여기에서, 팔레트 테이블에서의 각각의 엔트리는 팔레트 테이블로의 인덱스들에 의해 식별되는 컬러 값들을 포함한다. 팔레트-모드 코딩 기법들이 4 : 4 : 4 샘플링 포맷에 적용되는 경우, 블록의 각각의 픽셀에 대해 하나의 루마 컴포넌트와 2 개의 크로마 컴포넌트들인 3 개의 컬러 값들이 있다. 따라서 팔레트 테이블의 각각의 항목은 3 개의 컬러 값들을 포함한다.
그러나, 비-4 : 4 : 4 샘플링 포맷을 사용하는 팔레트-모드 코딩 기법들에 의해 코딩 효율들을 얻을 수 있다. 비-4 : 4 : 4 샘플링 포맷에서, 크로마 성분들은 4 : 2 : 2 또는 4 : 2 : 0 샘플링 포맷에서와 같이 루마 성분에 대해 서브샘플링될 수있다. 따라서, 비-4 : 4 : 4 샘플링 포맷의 경우, 비디오 데이터의 블록의 일부 픽셀들은 루마 성분과 2 개의 크로마 성분들인 모든 3 개의 컬러 값들을 포함하고, 비디오 데이터의 블록에서의 일부 픽셀들은 단지 하나의 컬러 값인 루마 성분만을 포함한다.
이 개시에서 설명된 기술은 비 4 : 4 : 4 샘플링 포맷을 위한 팔레트-모드 코딩을 사용하는 방법을 기술한다. 비-4 : 4 : 4 샘플링 포맷에 대해, 비디오 코더는팔레트 테이블을 도출하고, 팔레트 테이블에서의 각각의 엔트리는 3 개의 컬러 값들을 포함한다. 그러나, 모든 3 개의 컬러 값들 또는 3 개의 컬러 값들 중 단일의 컬러 값이 취출되는지 여부는 비디오 데이터의 블록 에서의 픽셀이 모든 3 개의 컬러 값들 또는 단일의 컬러 값을 포함하는지의 여부에 기초한다. 픽셀이 단일의 컬러만을 포함하면, 단일의 컬러 값이 취출된다. 픽셀이 모든 3 개의 컬러들을 포함하면, 모든 3 개의 컬러 값들이 취출된다.
일부 예들에서, 팔레트-기반 코딩 기법들은 하나 이상의 비디오 코딩 표준들에 사용되도록 구성될 수도 있다. 최근, 새로운 비디오 코딩 표준의 설계, 즉, HEVC (High-Efficiency Video Coding) "ITU-T H.265, Series H: Audiovisual and Multimedia Systems, Infrastructure of audiovisual services- Coding of moving video, High efficiency video coding" (The International Telecommunication Union, 2014 년 10 월) 가 ITU-T VCEG(Video Coding Experts Group) and ISO/IEC MPEG (Motion Picture Experts Group) 의 JCT-VC (Joint Collaboration Team on Video Coding) 에 의해 마무리되어 왔다. HEVC Version 1 로 지칭되는 최신 HEVC 표준은 http://www.itu.int/rec/T-REC-H.265-201304-I 로부터 입수가능하다. HEVC 에 대한 Range 확장안들 즉, HEVC-Rext 가 또한 JCT-VC 에 의해 개발중에 있다. RExt WD7 로 지칭되는 Range 확장안들의 최근 Working Draft (WD) 는 http://phenix.int-evry.fr/jct/doc_end_user/documents/17_Valencia/wg11/JCTVC-Q1005-v4.zip 로부터 입수가능하다. 최근, JCT-VC 는 HEVC-Rext 에 기초하는 SCC (screen content coding) 의 개발을 시작해 왔다. SCC (screen content coding) 을 위한 작업 드래프트는 Joshi 등의 "High Efficiency Video Coding (HEVC) Screen Content Coding: Draft 2", ITU-T SG 16 WP 3 및 ISO/IEC JTC 1/SC 29/WG 11 의 JCTVC-S1005, Joint Collaborative Team on Video Coding (JCT-VC) 에서 제공되며, http://phenix.int-evry.fr/jct/doc_end_user/current_document.php?id=9793 로부터 입수가능하다.
본 개시에 설명된 기법들은 예를 들어, HEVC 확장들 또는 다른 스크린 컨텐츠 관련 비디오 코덱을 갖는 SCC (screen content coding) 에 관련된다. 대중적인 국제 비디오 코딩 표준들은 ITU-T H.261, ISO/IEC MPEG-1 Visual, ITU-T H.262 또는 ISO/IEC MPEG-2 Visual, ITU-T H.263, ISO/IEC MPEG-4 Visual, 및 ITU-T H.264 (ISO/IEC MPEG-4 AVC 로서 또한 알려짐), HEVC (High-Efficiency Video Coding) 등을 포함한다. 위에 설명된 바와 같이, SCC 로서 지칭되는 HEVC 에 대한 스크린 컨텐츠 코딩 확장안이 개발중에 있다. 위에 또한 주지된 바와 같이, 팔레트-모드 설명을 포함하는 SCC 의 최근 WD(Working Draft) 는 JCTVC-S1005 "High Efficiency Video Coding (HEVC) Screen Content Coding: Draft 2" (ITU-T SG16 WP3 및 ISO/IEC JTC 1/SC29/WG11 의 JCT-VC (Joint Collaborative Team on Video Coding) 18차 회의: Sapporo, JP, 2014년 6월 30일-7월 9일) 에서 이용가능하다.
통상적인 비디오 코딩에서, 이미지들은 연속하는 톤 및 공간적으로 평활한 자연스러운 이미지들인 것으로 가정된다. 이들 가정들에 기초하여, 블록 기반 변환, 필터링 등과 같은 여러 툴들이 개발되었고, 이러한 툴들은 자연스러운 컨텐츠 비디오들을 위한 양호한 성능을 보여주었다. 그러나, 원격 데스크톱과 같은 애플리케이션들에서, 협업적 작업 및 무선 디스플레이 컴퓨터 생성된 스크린 컨텐츠는 압축될 지배적인 컨텐츠일 수 있다. 이 유형의 컨텐츠는 이산 톤 및 피처 샤프 라인들 및 높은 콘트라스트 오브젝트 바운더리들을 갖는 경향이 있다. 연속하는 톤 및 평활성의 추정은 더 이상 적용가능하지 않을 수도 있고, 따라서, 통상의 비디오 코딩 기법들은 컨텐츠를 압축하기 위한 방식으로는 불충분할 수도 있다.
본 개시는 스크린 생성된 컨텐츠 코딩에 특히 적합할 수도 있는 팔레트-기반 코딩을 설명한다. 예를 들어, 비디오 데이터의 특정 영역이 비교적 작은 수의 컬러들을 갖는 것으로 추정한다. 비디오 코더 (비디오 인코더 또는 비디오 디코더) 는 특정 영역 (예를 들어, 주어진 블록) 의 비디오 데이터를 표현하는 컬러 테이블로서 소위 "팔레트" 를 코딩할 수도 있다. 각각의 픽셀은 픽셀의 컬러를 표현하는 팔레트로의 엔트리 (이하에 보다 상세히 설명될 바와 같이, 예를 들어, 루마 및 크로마 또는 단지 루마만) 와 연관될 수도 있다. 예를 들어, 비디오 코더는 픽셀 값을 팔레트에서의 적절한 값에 관련시키는 인덱스를 코딩할 수도 있다. 본원에 설명된 바와 같이, 팔레트 엔트리 인덱스는 팔레트 인덱스 또는 단순 인덱스로서 지칭될 수도 있다. 따라서, 팔레트-모드에서, 팔레트는 블록 샘플들에 대한 예측자들로서 또는 최종 재구성된 블록 샘플들로서 이용될 수도 있는 컬러 값들을 표현하는 인덱스에 의해 넘버링되는 엔트리들을 포함할 수도 있다. 팔레트에서의 각각의 엔트리는 이용되고 있는 특정 컬러 포맷에 의존하여, 하나의 컬러 성분 (예를 들어, 루머 값), 2 개의 컬러 성분들 (예를 들어, 2 개의 크로마 값들), 또는 3 개의 컬러 성분들 (예를 들어, RGB, YUV 등) 을 포함할 수도 있다. 본 개시에서 설명된 바와 같이, 팔레트 (또한 팔레트 테이블로 지칭됨) 는 각각의 엔트리에 대해 3 개의 컬러 성분들을 포함하지만, 하나의 컬러 성분이 취출되든 또는 모든 3 개의 컬러 성분들이 취출되는지는 픽셀이 단지 루마 성분만을 포함하는지 또는 루마 성분 및 크로마 성분들의 조합을 포함하는지에 기초한다.
HEVC 프레임워크에 대하여, 일 예로서, 팔레트-기반 코딩 기법들은 코딩 유닛 (coding unit; CU) 모드로서 이용되도록 구성될 수도 있다. 다른 예들에서, 팔레트-기반 코딩 기법들은 HEVC 의 프레임워크에서 PU 로서 이용되도록 구성될 수도 있다. 따라서, CU 모드의 문맥에서 설명되는 다음에 개시된 프로세스들 모두는 추가로 또는 대안으로 PU 에 적용가능할 수도 있다. 그러나, 이들 HEVC-기반 예들은, 이러한 기법들이 다른 기존의 또는 아직 개발중인 시스템들/표준들의 부분으로서 또는 독립적으로 작업하도록 적용될 수도 있으므로 본원에 설명된 팔레트-기반 코딩 기법들의 제약 또는 제한인 것으로서 고려되지 않아야 한다. 이들 경우들에서, 팔레트 코딩에 대한 유닛은 정사각형 블록들, 직사각형 블록들 또는 비-직사각형 형상의 균일한 영역들일 수도 있다.
팔레트 코딩 모드를 이용하면, 비디오 인코더는 블록에 대한 팔레트를 결정하는 것, 각각의 픽셀의 값을 표현하도록 팔레트에서의 엔트리를 로케이션하는 것, 및 팔레트에 픽셀 값들을 관련시키는 픽셀들에 대한 인덱스 값들과 함께 팔레트를 인코딩하는 것에 의해 비디오 데이터의 블록을 인코딩할 수도 있다. 비디오 디코더는 블록의 픽셀들에 대한 인덱스 값들에 더하여, 블록에 대한 팔레트를 인코딩된 비트스트림으로부터 획득할 수도 있다. 비디오 디코더는 블록의 픽셀 값들을 재구성하도록 팔레트의 엔트리들에 픽셀들의 인덱스 값들을 관련시킬 수도 있다. 예를 들어, 팔레트 인덱스를 갖는 팔레트의 엔트리들은 블록의 하나 이상의 픽셀 성분들의 값들 또는 "샘플들" 을 결정하는데 이용될 수도 있다. 위의 예는 팔레트-기반 코딩의 일반 설명을 제공하도록 의도된다.
본 개시는 비디오 인코더가 비디오 디코더에 정보를 제공하는 방식을 표시하기 위해 용어 "시그널" 또는 "시그널링" 을 사용한다. 신택스 엘리먼트들 (또는 다른 유형들의 데이터) 의 시그널링은 비디오 디코더가 비디오 인코더로부터 시그널링된 정보를 즉시 수신함을 의미하는 것으로 간주되지 않아야 하지만, 그러나, 이것이 가능할 수도 있다. 일부 예들에서, 비디오 인코더는 저장 디바이스에 저장된 정보 (예를 들어, 신택스 엘리먼트들 또는 다른 비디오 데이터) 를 시그널링할 수도 있다. 비디오 디코더는 저장 디바이스로부터 나중에 정보를 취출할 수도 있다.
팔레트-모드에서, COPY_INDEX_MODE 또는 ESCAPE 모드들만이 가능한 경우 아마도 블록의 가장 첫번째 로우만을 제외하고는 블록의 모든 픽셀은 COPY_INDEX_MODE, COPY_ABOVE_MODE, 또는 ESCAPE 모드로 코딩될 수 있다. 신택스 엘리먼트 palette_run_type_flag 는 COPY_INDEX_MODE 또는 COPY_ABOVE_MODE 가 이용되는지의 여부를 표시한다. 카피 인덱스 모드 (즉, palette_run_type_flag 이 COPY_INDEX_MODE 와 같음) 에서, 팔레트 인덱스 (즉, 신택스 엘리먼트 palette_index) 가 시그널링되고 팔레트 런 값 palette_run 이 뒤따른다. 런 값은 동일한 팔레트 인덱스를 갖는 후속 픽셀들의 수를 표시한다. COPY_ABOVE_MODE 에서, 팔레트 인덱스가 현재 픽셀 바로 위에 위치된 픽셀로부터 카피되는 후속 픽셀들의 수를 표시하는 런 값만이 시그널링될 수도 있다. ESCAPE 모드는 COPY_INDEX_MODE 또는 COPY_ABOVE_MODE 내에서 카피되고, 여기에서 특정 팔레트 인덱스가 이 모드를 표시하는데 이용된다. 현재 팔레트 버전에서, 이 인덱스는 팔레트 사이즈와 같다. ESCAPE 모드에서, 픽셀 트리플릿 (YCbCr 또는 RGB) 또는 이것의 양자화된 버전이 palette_escape_ val 로서 시그널링된다.
플래그 palette_escape_val_present_flag 는 escape 픽셀들의 사용을 표시하기 위해 블록 마다 시그널링된다. 1 과 같은 이 플래그는 팔레트 코딩된 블록에서 적어도 하나의 escape 픽셀이 존재함을 표시하며, 그렇지 않으면 이 플래그는 0 과 같다.
팔레트 사이즈는 0 내지 max_palette_ size 의 범위에 있도록 제한된다. 최대 사이즈가 시그널링될 수 있다.
팔레트 모드로 코딩된 블록에 대해, 팔레트는 이전 팔레트 코딩된 블록들의 팔레트 엔트리들로부터 예측될 수 있고, 새로운 엔트리들로서 명시적으로 시그널링될 수 있거나 또는 이전에 코딩된 블록의 팔레트가 완전하게 재사용될 수 있다. 후자의 경우 팔레트 공유라고 지칭되며, 플래그 palette_share_flag 는 이전 블록의 전체 팔레트가 수정 없이 있는 그대로 재사용됨을 표시하도록 시그널링된다.
팔레트 모드에서, 블록에서의 픽셀 스캐닝은 2 개의 유형들: 수직 횡단 또는 수평 횡단 (뱀의 형상) 스캐닝로 이루어질 수 있다. 블록에 이용된 스캐닝 패턴은 블록 유닛 마다 시그널링된 플래그 palette_transpose_flag 에 따라 도출된다.
위에 설명된 코딩 모드들에서, 값들의 "런" 은 일반적으로 함께 코딩될 픽셀 값들의 스트링을 지칭할 수도 있다. 런은 일반적으로 그룹으로서 함께 프로세싱되거나 또는 코딩되는 런에 포함된 엘리먼트들의 수 (예를 들어, 런 렝스 (run length)) 에 대해 기술될 수도 있다. 일부 예들에서, 런은 동일 값으로 된 픽셀 값들을 포함할 수도 있다. 예를 들어, 인덱스 모드에서의 런은 (위에 주지된 바와 같이) 동일한 인덱스 값을 갖는 값들의 스트링을 표시할 수도 있다. 예시의 목적을 위한 일 예에서, 주어진 스캔 순서에서 2 개의 연속하는 픽셀들이 상이한 값들을 가지면, 런 렝스는 0 과 같다. 주어진 스캔 순서에서 2 개의 연속하는 픽셀들이 동일한 값을 갖지만 스캔 순서에서 제 3 픽셀이 상이한 값을 가지면 런 렝스는 1 과 같으며, 이하 같은 방식으로 이루어진다.
도 1 은 본 개시에서 설명된 기법들을 이용할 수도 있는 예시적인 비디오 코딩 시스템 (10) 을 예시하는 블록도이다. 본원에서 이용된 용어 "비디오 코더" 는 일반적으로 비디오 인코더들 및 비디오 디코더들 양쪽을 지칭한다. 본 개시에서, 용어들 "비디오 코딩" 또는 "코딩" 은 일반적으로 비디오 인코딩 또는 비디오 디코딩을 지칭할 수도 있다. 비디오 코딩 시스템 (10) 의 비디오 인코더 (20) 및 비디오 디코더 (30) 는 본 개시에서 설명된 여러 예들에 따라 팔레트-기반 비디오 코딩을 위한 기법들을 수행하도록 구성될 수도 있는 디바이스들의 예들을 나타낸다. 예를 들면, 비디오 인코더 (20) 및 비디오 디코더 (30) 는 크로마 성분들이 루마 성분에 비해 서브샘플링되는 블록의 픽셀들을 코딩하도록 구성될 수도 있다.
도 1 에 도시된 바와 같이, 비디오 코딩 시스템 (10) 은 소스 디바이스 (12) 및 목적지 디바이스 (14) 를 포함한다. 소스 디바이스 (12) 는 인코딩된 비디오 데이터를 발생시킨다. 이에 따라, 소스 디바이스 (12) 는 비디오 인코딩 디바이스 또는 비디오 인코딩 장치로서 지칭될 수도 있다. 목적지 디바이스 (14) 는 소스 디바이스 (12) 에 의해 생성되는 인코딩된 비디오 데이터를 디코딩할 수도 있다. 이에 따라, 목적지 디바이스 (14) 는 비디오 디코딩 디바이스 또는 비디오 디코딩 장치로서 지칭될 수도 있다. 소스 디바이스 (12) 및 목적지 디바이스 (14) 는 비디오 코딩 디바이스들 또는 비디오 코딩 장치들의 예들일 수도 있다.
소스 디바이스 (12) 및 목적지 디바이스 (14) 는, 데스크탑 컴퓨터들, 모바일 컴퓨팅 디바이스들, 노트북 (예를 들어, 랩탑) 컴퓨터들, 태블릿 컴퓨터들, 셋탑 박스들, 소위 "스마트" 폰들과 같은 전화 핸드셋들, 텔레비전들, 카메라들, 디스플레이 디바이스들, 디지털 미디어 플레이어들, 비디오 게임용 콘솔들, 차량 내장 (in-car) 컴퓨터들 등을 포함하는 광범위의 디바이스들 중 임의의 것을 포함할 수도 있다.
목적지 디바이스 (14) 는 채널 (16) 을 통해 소스 디바이스 (12) 로부터 인코딩된 비디오를 수신할 수도 있다. 채널 (16) 은 인코딩된 비디오 데이터를 소스 디바이스 (12) 에서 목적지 디바이스 (14) 로 이동시킬 수 있는 일 유형의 매체 또는 디바이스를 포함할 수도 있다. 일 예에서, 채널 (16) 은 소스 디바이스 (12) 가 인코딩된 비디오 데이터를 목적지 디바이스 (14) 로 실시간으로 직접적으로 송신하는 것을 가능하게 하는 하나 이상의 통신 매체를 포함할 수도 있다. 이러한 실시예에서, 소스 디바이스 (12) 는 통신 표준, 이를 테면, 무선 통신 프로토콜에 따라 인코딩된 비디오 데이터를 변조할 수도 있고, 목적지 디바이스 (14) 에 변조된 비디오 데이터를 송신할 수도 있다. 하나 이상의 통신 매체는 무선 및/또는 유선 통신 매체, 이를 테면 무선 주파수 (RF) 스펙트럼 또는 하나 이상의 물리적 송신 라인들을 포함할 수도 있다. 하나 이상의 통신 매체는 패킷 기반의 네트워크, 이를 테면 근거리 통신망 (local area network), 광역 통신망 (wide-area network), 또는 글로벌 네트워크 (예를 들어, 인터넷) 의 일부를 형성할 수도 있다. 하나 이상의 통신 매체는 라우터들, 스위치들, 기지국들, 또는 소스 디바이스 (12) 로부터 목적지 다바이스 (14) 로의 통신을 가능하게 하는 다른 설비를 포함할 수도 있다.
다른 예에서, 채널 (16) 은 소스 디바이스 (12) 에 의해 발생되어진 인코딩된 비디오 데이터를 저장하는 저장 매체에 대응할 수도 있다. 이 예에서, 목적지 디바이스 (14) 는 디스크 액세스 또는 카드 액세스를 통해 저장 매체에 액세스할 수도 있다. 저장 매체는 임의의 다양한 로컬 액세스되는 데이터 저장 매체, 이를 테면, 블루레이 디스크들, DVD들, CD-ROM들, 플래시 메모리, 또는 인코딩된 비디오 데이터를 저장하기 위한 임의의 다른 적절한 디지털 저장 매체들을 포함할 수도 있다.
다른 예에서, 채널 (16) 은 파일 서버 및 소스 디바이스 (12) 에 의해 생성된 인코딩된 비디오를 저장하는 파일 서버 또는 다른 중간 저장 디바이스를 포함할 수도 있다. 이 예에서, 목적지 디바이스 (14) 는 스트리밍 또는 다운로드를 통해 파일 서버 또는 다른 중간 저장 다비아스에 저장되어진 인코딩된 비디오 데이터에 액세스할 수도 있다. 파일 서버는 인코딩된 비디오 데이터를 저장할 수 있고 그 인코딩된 비디오 데이터를 목적지 디바이스 (14) 로 송신할 수 있는 유형의 서버일 수도 있다. 예시적인 파일 서버들은 웹 서버 (예컨대, 웹사이트용), FTP (File Transfer Protocol) 서버, NAS (network attached storage) 디바이스들, 또는 로컬 디스크 드라이브를 포함한다.
목적지 디바이스 (14) 는 인터넷을 접속과 같은 표준 데이터 접속을 통해 인코딩된 비디오 데이터에 액세스할 수도 있다. 예시적인 유형들의 데이터 접속들은 파일 서버에 저장된 인코딩된 비디오 데이터를 액세스하는데 적합한 무선 채널 (예를 들어, 와이파이 접속), 유선 접속 (예를 들어, DSL, 케이블 모뎀 등), 또는 이들의 조합을 포함할 수도 있다. 파일 서버로부터의 인코딩된 비디오 데이터의 송신은 스트리밍 송신, 다운로드 송신, 또는 이들의 조합일 수도 있다.
본 개시의 기법들은 무선 애플리케이션들 또는 설정들에 한정되지 않는다. 본 기법들은 임의의 다양한 멀티미디어 애플리케이션들, 예컨대 지상파 (over-the-air) 텔레비젼 방송들, 케이블 텔레비젼 송신들, 위성 텔레비젼 송신들, 예를 들면 인터넷을 통한 스트리밍 비디오 송신들, 데이터 저장 매체 상의 저장을 위한 비디오 데이터의 인코딩, 데이터 저장 매체 상에 저장된 비디오 데이터의 디코딩 또는 다른 애플리케이션들을 지원하여 비디오 코딩에 적용될 수도 있다. 일부 예들에서, 비디오 코딩 시스템 (10) 은, 비디오 스트리밍, 비디오 재생, 비디오 방송, 및/또는 비디오 전화와 같은 애플리케이션들을 지원하기 위해 일방향 또는 양방향 비디오 송신을 지원하도록 구성될 수도 있다.
도 1 에 예시된 비디오 코딩 시스템 (10) 은 단지 예일 뿐이고, 본 개시의 기법들은 인코딩 디바이스와 디코딩 디바이스 사이의 임의의 데이터 통신을 반드시 포함할 필요는 없는 비디오 코딩 설정들 (예를 들어, 비디오 인코딩 또는 비디오 디코딩) 에 적용될 수도 있다. 다른 예들에서, 네트워크를 통해 스트림밍된 데이터 등이 로컬 메모리로부터 취출될 수도 있다. 비디오 인코딩 디바이스는 데이터를 인코딩하여 메모리에 저장할 수도 있고/있거나, 비디오 디코딩 디바이스는 메모리로부터 데이터를 취출하여 디코딩할 수도 있다. 많은 예들에서, 인코딩 및 디코딩은 서로 통신하지 않는 디바이스들에 의해 수행되지만, 단순히 데이터를 메모리에 인코딩하고/하거나 메모리로부터 데이터를 취출하여 디코딩한다.
도 1 의 예에서, 소스 디바이스 (12) 는 비디오 소스 (18), 비디오 인코더 (20) 및 출력 인터페이스 (22) 를 포함한다. 일부 예들에서, 출력 인터페이스 (22) 는 변조기/복조기 (modulator/demodulator; modem) 및/또는 송신기를 또한 포함할 수도 있다. 비디오 소스 (18) 는 비디오 캡처 디바이스 (예를 들어, 비디오 카메라), 이전에 캡쳐된 비디오 데이터를 포함하는 비디오 아카이브, 비디오 컨텐츠 공급자로부터 비디오를 수신하는 비디오 공급 인터페이스, 및/또는 비디오 데이터를 생성하는 컴퓨터 그래픽 시스템, 또는 이러한 소스들의 조합을 포함할 수도 있다.
비디오 인코더 (20) 는 비디오 소스 (18) 로부터 비디오 데이터를 인코딩할 수도 있다. 일부 예들에서, 소스 디바이스 (12) 는 인코딩된 비디오 데이터를 출력 인터페이스 (22) 를 통해 목적지 디바이스 (14) 로 직접 송신할 수도 있다. 다른 예들에서, 인코딩된 비디오 데이터는 또한 디코딩 및/또는 재생을 위해 목적지 디바이스 (14) 에 의한 후추 액세스를 위해 저장 매체 또는 파일 서버 상에 저장될 수도 있다.
도 1 의 예에서, 목적지 디바이스 (14) 는 입력 인터페이스 (28), 비디오 디코더 (30), 및 디스플레이 디바이스 (32) 를 포함한다. 일부 예들에서, 입력 인터페이스 (28) 는 수신기 및/또는 모뎀을 포함한다. 입력 인터페이스 (28) 는 채널 (16) 을 통해 인코딩된 비디오 데이터를 수신한다. 디스플레이 디바이스 (32) 는 목적지 디바이스 (14) 와 통합될 수도 있거나 또는 목적지 디바이스(14) 외부에 있을 수도 있다. 일반적으로, 디스플레이 디바이스 (32) 는 디코딩된 비디오 데이터를 디스플레이한다. 디스플레이 디바이스 (32) 는 임의의 다양한 디스플레이 디바이스들, 예컨대, 액정 디스플레이 (LCD), 플라즈마 디스플레이, 유기 발광 다이오드 (OLED) 디스플레이, 또는 다른 유형의 디스플레이 디바이스를 포함할 수도 있다.
비디오 인코더 (20) 및 비디오 디코더 (30) 각각은 임의의 다양한 적절한 회로부, 예컨대, 하나 이상의 마이크로프로세서들, 디지털 신호 프로세서 (DSP) 들, 주문형 반도체들 (ASIC) 들, 필드 프로그램가능 게이트 어레이 (FPGA) 들, 이산 로직, 하드웨어, 또는 이들의 임의의 조합들로서 구현될 수도 있다. 기법들이 부분적으로 소프트웨어로 구현되면, 디바이스는 그 소프트웨어에 대한 명령들을 적절한 비일시적 컴퓨터 판독가능 매체에 저장할 수도 있고, 본 개시의 기법들을 수행하기 위해 하나 이상의 프로세서들을 이용하여 하드웨어에서 그 명령들을 실행할 수도 있다. (하드웨어, 스프트웨어, 하드웨어와 소프트웨어의 조합, 등을 포함하여) 앞서 언급한 것들 중 임의의 것이 하나 이상의 프로세서들로 고려될 수도 있다. 비디오 인코더 (20) 및 비디오 디코더 (30) 각각은 하나 이상의 인코더들 또는 디코더들에 포함될 수도 있고, 이들 중 어느 것이 결합된 인코더/디코더 (CODEC) 의 일부로서 각각의 디바이스에 통합될 수도 있다.
이 개시는, 다른 디바이스, 이를 테면, 비디오 디코더 (30) 로 어떤 정보를 "시그널링" 또는 "송신"하는 비디오 인코더 (20) 를 일반적으로 지칭할 수도 있다. 용어 "시그널링" 또는 "송신"은 일반적으로 압축된 비디오 데이터를 디코딩하는데 이용되는 신택스 엘리먼트 또는 다른 데이터의 통신을 지칭할 수도 있다. 이러한 통신은 실시간으로 또는 거의 실시간으로 발생할 수도 있다. 대안으로, 이러한 통신은 시간의 기간에 걸쳐 일어날 수도 있는데, 예컨대, 인코딩할 시에 인코딩된 비트스트림으로 매체에 신택스 엘리먼트들을 저장하는 경우 일어날 수도 있으며, 이는 그 다음에 이러한 매체에 저장된 후에 임의의 시간에 디코딩 디바이스에 의해 취출될 수도 있다.
일부 예들에서, 비디오 인코더 (20) 및 비디오 디코더 (30) 는 위에 언급되고 HEVC Version 1 에서 설명된 HEVC 표준과 같은 비디오 압축 표준에 따라 동작한다. 기본 HEVC 표준 (HEVC Version 1) 에 더하여, 스케일러블 비디오 코딩, 멀티뷰 비디오 코딩, 및 HEVC 를 위한 3D 코딩 확장안들을 형성하기 위해 진행중인 노력들이 있다. 이에 더하여, (예를 들어, 본 개시에 설명된 바와 같이) 팔레트-기반 코딩 모드들은 HEVC 표준의 확장안 (예를 들어, HEVC 에 대한 스크린 컨텐츠 코딩 확장안) 을 위해 제공될 수도 있다. 일부 예들에서, 팔레트-기반 코딩에 대하여 본 개시에 설명된 기법들은 비디오 코딩 표준들, 이를 테면, ITU-T-H.264/AVC 표준들, 또는 장래의 표준들에 따라 동작하도록 구성되는 인코더 또는 디코더에 적용될 수도 있다. 따라서, HEVC 코덱에서 코딩 유닛들 (coding units; CUs) 또는 예측 유닛들 (prediction units; PUs) 의 코딩을 위한 팔레트-기반 코딩 모드의 적용은 일 예의 목적으로 설명된다.
HEVC 및 다른 비디오 코딩 표준들에서, 비디오 시퀀스는 통상 일련의 픽처들을 포함한다. 픽처들은 "프레임들"로서 또한 지칭될 수도 있다. 픽처는 SL, SCb, 및 SCr 로서 표기되는 3 개의 개별적인 샘플 어레이들을 표현하는 3 개의 성분들을 포함할 수도 있다. SL 은 루마 샘플들의 2차원 어레이 (즉, 블록) 이다. SCb 는 Cb 색차 샘플들의 2 차원 어레이이다. SCr 는 Cr 색차 샘플들의 2 차원 어레이이다. 색차 샘플들은 "크로마" 샘플들로서 여기에서 또한 지칭될 수도 있다. 다른 사례들에서, 픽처는 단색일 수도 있고, 루마 샘플들의 어레이만을 포함할 수도 있다.
픽처의 인코딩된 표현을 생성하기 위해, 비디오 인코더 (20) 는 코딩 트리 유닛들 (coding tree units; CTU들) 의 세트를 생성할 수도 있다. CTU들 각각은 루마 샘플들의 코딩 트리 블록, 크로마 샘플들의 2 개의 대응하는 코딩 트리 블록들, 및 코딩 트리 블록들의 샘플들을 코딩하는데 이용되는 신택스 구조들일 수도 있다. 코딩 트리 블록은 샘플들의 NxN 블록일 수도 있다. CTU 는 또한 “트리 블록” 또는 최대 코딩 유닛 ("largest coding unit"; LCU) 으로 지칭될 수도 있다. HEVC 의 CTU들은 H.264/AVC 와 같은 다른 표준들의 매크로 블록들과 광의적으로 유사할 수도 있다. 그러나, CTU 는 특정 사이즈로 반드시 제한되는 것은 아니며, 하나 이상의 코딩 유닛들 (coding units; CU들) 을 포함할 수도 있다. 슬라이스는 래스터 스캔으로 연속적으로 순서화된 정수의 CTU들을 포함할 수도 있다.
코딩된 CTU 를 생성하기 위하여, 비디오 인코더 (20) 는 CTU 의 코딩 트리 블록들에 대해 쿼드트리 파티셔닝을 재귀적으로 수행하여, 코딩 트리 블록들을 코딩 블록들, 따라서, 일명 "코딩 트리 유닛들"로 분할할 수도 있다. 코딩 블록은 샘플들의 NxN 블록이다. CU 는 루마 샘플들의 코딩 블록, 루마 샘플 어레이, Cb 샘플 어레이 및 Cr 샘플 어레이를 갖는 픽처의 크로마 샘플들의 2 개의 대응하는 코딩 블록들, 및 코딩 블록들의 샘플들을 코딩하는데 이용되는 신택스 구조들을 포함할 수도 있다. 비디오 인코더 (20) 는 CU 의 코딩 블록을 하나 이상의 예측 블록들로 파티셔닝할 수도 있다. 예측 블록은 동일한 예측이 적용되는 샘플들의 직사각형 (즉, 정사각형 또는 비정사각형) 블록일 수도 있다. CU 의 예측 유닛 (PU) 은 루마 샘플들의 예측 블록, 픽처의 크로마 샘플들의 2 개의 대응하는 예측 블록들, 및 예측 블록 샘플들을 예측하는데 이용되는 신택스 구조들일 수도 있다. 비디오 인코더 (20) 는 예측 루마, 루마에 대한 Cb 및 Cr 블록들, CU 의 각각의 PU 의 Cb 및 Cr 예측 블록을 생성할 수도 있다.
비디오 인코더 (20) 는 PU 에 대한 예측 블록들을 생성 (예를 들어, 결정) 하기 위해 인트라 예측 또는 인터 예측을 이용할 수도 있다. 비디오 인코더 (20) 가 인트라 예측을 이용하여 PU 의 예측 블록들을 생성하면, 비디오 인코더 (20) 는 PU 와 연관된 픽처의 디코딩된 샘플들에 기초하여 PU 의 예측 블록들을 생성할 수도 있다.
비디오 인코더 (20) 가 인터 예측을 이용하여 PU 의 예측 블록들을 생성 (예를 들어, 결정) 하면, 비디오 인코더 (20) 는 PU 와 연관된 픽처 이외의 하나 이상의 픽처들의 디코딩된 샘플들에 기초하여 PU 의 예측 블록들을 생성할 수도 있다. 비디오 인코더 (20) 는 PU 의 예측 블록을 생성하기 위해 단방향 예측 또는 양방향 예측을 이용할 수도 있다. 비디오 인코더 (20) 는 PU 에 대한 예측 블록들을 생성하기 위해 단방향 예측을 이용하고, PU 는 단일의 모션 벡터 (motion vector; MV) 를 가질 수도 있다. 비디오 인코더 (20) 가 PU 에 대하여 예측 블록들을 생성하기 위해 양방향 예측을 이용하며, PU 는 2 개의 MV들을 가질 수도 있다.
비디오 인코더 (20) 가 CU 의 하나 이상의 PU들에 대한 예측 루마, Cb, 및 Cr 블록들을 생성한 후, 비디오 인코더 (20) 는 CU 에 대한 루마 잔차 블록을 생성할 수도 있다. CU 의 루마 잔차 블록에서의 각각의 샘플은 CU 의 예측 루마 블록들 중 하나에서의 루마 샘플과, CU 의 오리지널 루마 코딩 블록에서의 대응하는 샘플 사이의 차이를 나타낸다. 추가로, 비디오 인코더 (20) 는 CU 에 대한 Cb 잔차 블록을 생성할 수도 있다. CU 의 Cb 잔차 블록에서의 각각의 샘플은 CU 의 예측 Cb 블록들 중 하나에서의 Cb 샘플과, CU 의 오리지널 Cb 코딩 블록에서의 대응하는 샘플 사이의 차이를 나타낼 수도 있다. 비디오 인코더 (20) 는 또한, CU 에 대한 Cr 잔차 블록을 생성할 수도 있다. CU 의 Cr 잔차 블록에서의 각각의 샘플은 CU 의 예측 Cr 블록들 중 하나에서의 Cr 샘플과, CU 의 오리지널 Cr 코딩 블록에서의 대응하는 샘플 사이의 차이를 나타낼 수도 있다.
또한, 비디오 인코더 (20) 는 CU 의 루마, Cb 및 Cr 잔차 블록들을 하나 이상의 루마, Cb 및 Cr 변환 블록들로 분해하기 위해 쿼드트리 파티셔닝을 이용할 수도 있다. 변환 블록은 동일한 변환이 적용되는 샘플들의 직사각형 블록일 수도 있다. CU 의 변환 유닛 (transform unit; TU) 은 루마 샘플들의 변환 블록, 크로마 샘플들의 2 개의 대응하는 변환 블록들, 및 변환 블록 샘플들을 변환하는데 이용되는 신택스 구조들일 수도 있다. 따라서, CU 의 각각의 TU 는 루마 변환 블록, Cb 변환 블록, 및 Cr 변환 블록과 연관될 수도 있다. TU 와 연관된 루마 변환 블록은 CU 의 루마 잔차 블록의 서브블록일 수도 있다. Cb 변환 블록은 CU 의 Cb 잔차 블록의 서브블록일 수도 있다. Cr 변환 블록은 CU의 Cr 잔차 블록의 서브블록일 수도 있다.
비디오 인코더 (20) 는 TU 에 대한 루마 계수 블록을 생성하기 위해 TU 의 루마 변환 블록에 하나 이상의 변환들을 적용할 수도 있다. 변환 계수 블록은 변환 계수들의 2 차원 어레이일 수도 있다. 변환 계수는 스칼라 양일 수도 있다. 비디오 인코더 (20) 는 TU 에 대한 Cb 계수 블록을 생성하기 위해 TU 의 Cb 변환 블록에 하나 이상의 변환들을 적용할 수도 있다. 비디오 인코더 (20) 는 TU 에 대한 Cr 계수 블록을 생성하기 위해 TU 의 Cr 변환 블록에 하나 이상의 변환들을 적용할 수도 있다.
계수 블록 (예를 들어, 루마 계수 블록, Cb 계수 블록, 또는 Cr 계수 블록) 을 생성한 후, 비디오 인코더 (20) 는 계수 블록을 양자화할 수도 있다. 양자화는, 변환 계수들을 표현하기 위해 사용되는 데이터의 양을 가능한 감소시키기 위해 변환 계수들이 양자화되어 추가적인 압축을 제공하는 프로세스를 일반적으로 지칭한다. 비디오 인코더 (20) 가 계수 블록을 양자화한 후에, 비디오 인코더 (20) 는 양자화된 변환 계수들을 나타내는 신택스 엘리먼트들을 엔트로피 인코딩할 수도 있다. 예를 들어, 비디오 인코더 (20) 는 양자화된 변환 계수들을 나타내는 신택스 엘리먼트들에 대해 CABAC (Context-Adaptive Binary Arithmetic Coding) 을 수행할 수도 있다. 비디오 인코더 (20) 는 비트스트림으로 엔트로피 인코딩된 신택스 엘리먼트들을 출력할 수도 있다.
비디오 인코더 (20) 는 엔트로피 인코딩된 신택스 엘리먼트들을 포함하는 비트스트림을 출력할 수도 있다. 비트스트림은, 코딩된 픽처들과 연관 데이터의 표현 (representation) 을 형성하는 비트들의 시퀀스를 포함할 수도 있다. 비트스트림은 네트워크 추상화 계층 (network abstraction layer; NAL) 유닛들의 시퀀스를 포함할 수도 있다. NAL 유닛들 각각은 NAL 유닛 헤더를 포함하고, 미가공 바이트 시퀀스 페이로드 (raw byte sequence payload; RBSP) 를 캡슐화한다. NAL 유닛 헤더는 NAL 유닛 유형 코드를 나타내는 신택스 엘리먼트를 포함할 수도 있다. NAL 유닛의 NAL 유닛 헤더에 의해 지정된 NAL 유닛 유형 코드는 NAL 유닛의 유형을 나타낸다. RBSP 는 NAL 유닛 내에 캡슐화된 바이트들의 정수를 포함하는 신택스 구조일 수도 있다. 일부 사례들에서, RBSP 는 제로 비트들을 포함한다.
상이한 유형들의 NAL 유닛들은 상이한 유형들의 RBSP들을 캡슐화할 수도 있다. 예를 들어, 제 1 유형의 NAL 유닛은 픽처 파라미터 세트 (picture parameter set; PPS) 에 대한 RBSP를 캡슐화할 수도 있고 제 2 유형의 NAL 유닛은 코딩된 슬라이스에 대한 RBSP 를 캡슐화할 수도 있고, 제 3 유형의 NAL 유닛은 SEI 에 대한 RBSP 를 캡슐화할 수 있는 등이다. (파라미터 세트들 및 SEI 메시지들에 대한 RBSP들과는 반대로) 비디오 코딩 데이터에 대한 RBSP들을 캡슐화하는 NAL 유닛들은 비디오 코딩 계층 (video coding layer; VCL) NAL 유닛들로 지칭될 수도 있다.
비디오 디코더 (30) 는 비디오 인코더 (20) 에 의해 생성된 비트스트림을 수신할 수도 있다. 추가로, 비디오 디코더 (30) 는 비트스트림으로부터 신택스 엘리먼트들을 디코딩하기 위해 비트스트림을 파싱할 수도 있다. 비디오 디코더 (30) 는 비트스트림으로부터 디코딩된 신택스 엘리먼트들에 기초하여 비디오 데이터의 픽처들을 재구성할 수도 있다. 비디오 데이터를 재구성하는 프로세스는 비디오 인코더 (20) 에 의해 수행되는 프로세스에 대하여 일반적으로 상호적일 수도 있다. 예를 들어, 비디오 디코더 (30) 는 현재 CU 의 PU들에 대한 예측 블록들을 결정하기 위해 PU들의 MV들을 이용할 수도 있다. 또한, 비디오 디코더 (30) 는 CU 의 TU들과 연관되는 변환 계수 블록들을 역양자화할 수도 있다. 비디오 디코더 (30) 는 변환 계수 블록들에 대해 역 변환들을 수행하여 현재 CU 의 TU들과 연관된 변환 블록들을 재구성할 수도 있다. 비디오 디코더 (30) 는 현재 CU 의 TU들의 변환 블록의 대응하는 샘플들에, 현재 CU 의 PU들의 예측 샘플 블록들의 샘플들을 추가하는 것에 의해 현재 CU 의 코딩 블록들을 재구성할 수도 있다. 픽처의 각각의 CU 의 코딩 블록들을 재구성하는 것에 의해, 비디오 디코더 (30) 는 픽처를 재구성할 수도 있다.
일부 예들에서, 비디오 인코더 (20) 및 비디오 디코더 (30) 는 팔레트-기반 코딩을 수행하도록 구성될 수도 있다. 예를 들어, 팔레트-기반 코딩에서, 위에 설명된 인트라-예측 또는 인터-예측 코딩 기법을 수행하는 것에 더하여 또는 이것을 수행하기 보다는, 비디오 인코더 (20) 및 비디오 디코더 (30) 는 특정 영역 (예를 들어, 주어진 블록) 의 비디오 데이터를 표현하는 컬러 테이블로서 소위 "팔레트" 를 코딩할 수도 있다. 각각의 픽셀은 픽셀의 컬러를 표현하는 팔레트에서의 엔트리와 연관될 수도 있다. 예를 들어, 비디오 인코더 (20) 는 팔레트에서 적절한 엔트리에 픽셀 값을 관련시키는 인덱스를 코딩할 수도 있다.
위의 예에서, 비디오 인코더 (20) 는 블록에 대한 팔레트를 결정하는 것, 각각의 픽셀의 값을 표현하도록 팔레트에서의 엔트리를 로케이션하는 것, 및 팔레트에 픽셀 값들을 관련시키는 픽셀들에 대한 인덱스 값들과 함께 팔레트를 인코딩하는 것에 의해 비디오 데이터의 블록을 인코딩할 수도 있다. 비디오 디코더 (30) 는 블록의 픽셀들에 대한 인덱스 값들에 더하여, 블록에 대한 팔레트를 인코딩된 비트스트림으로부터 획득할 수도 있다. 비디오 디코더 (30) 는 블록의 픽셀 값들을 재구성하도록 팔레트의 엔트리들에 픽셀들의 인덱스 값들을 관련시킬 수도 있다.
일부 예들에서, 비디오 인코더 (20) 는 동일한 픽셀 값을 갖는 주어진 스캔 순서에서 연속하는 픽셀들의 수를 표시하는 하나 이상의 신텍스 엘리먼트들을 인코딩할 수도 있다. 동일 값으로 된 픽셀 값들의 스트링은 "런"으로서 본원에서 지칭될 수도 있다. 예시의 목적을 위한 일 예에서, 주어진 스캔 순서에서 2 개의 연속하는 픽셀들이 상이한 값들을 가지면, 런은 0 과 같다. 주어진 스캔 순서에서 2 개의 연속하는 픽셀들이 동일한 값을 갖지만 스캔 순서에서 제 3 픽셀이 상이한 값을 가지면 런은 1 과 같다. 비디오 디코더 (30) 는 인코딩된 비트스트림으로부터 런을 나타내는 신택스 엘리먼트들을 획득하고, 그리고 동일한 인덱스 값을 갖는 연속하는 픽셀 로케이션들의 수를 결정하기 위해 데이터를 이용할 수도 있다.
일부 예들에서, 비디오 인코더 (20) 및 비디오 디코더 (30) 는 맵의 하나 이상의 엔트리들에 대한 라인 카피를 수행할 수도 있다. 예를 들어, 비디오 인코더 (20) 는 맵에서의 특정 엔트리에 대한 픽셀 값이 특정 엔트리의 라인 위에서의 엔트리와 동일함을 표시할 수도 있다. 비디오 인코더 (20) 는 또한, 특정 엔트리의 라인 위에서의 엔트리와 동일한 스캔 순서에서 인덱스들의 수를 런으로서 나타낼 수도 있다. 이 예에서, 비디오 인코더 (20) 및/또는 비디오 디코더 (30) 는 특정된 이웃하는 라인으로부터 그리고 현재 인코딩중인 인덱스 맵의 라인에 대한 엔트리들의 특정 수로부터 인덱스 값들을 카피할 수도 있다.
본 개시의 양태들에 따르면, 비디오 인코더 (20) 및 비디오 디코더 (30) 는 도 4 내지 도 7 에 대하여 아래 설명되거나 또는 본 개시에서 달리 설명된 팔레트 코딩을 위한 기법들의 임의의 조합을 수행할 수도 있다. 즉, 도 4 내지 도 7 에 대하여 설명된 예들은 본 개시에 설명된 기법들에 의해 제한되거나 달리 요구되는 것으로 고려되어서는 안된다.
본 개시는 팔레트-모드에서 현재 블록을 코딩하는 예시적 기법들을 설명한다. 본 개시에서 용어 "현재 블록" 은 루마 성분을 갖는 루마 블록 및 개별적인 크로마 성분들을 갖는 2 개의 크로마 블록들을 일반적으로 지칭하는데 이용된다. 본 개시에 이용된 "현재 블록" 의 일 예는 위에 정의된 코딩 유닛 (CU) 이다. HEVC 표준은 CU 를 다음과 같이: 루마 샘플들의 코딩 블록, 3 개의 샘플 어레이들을 갖는 픽처의 크로마 샘플들의 2 개의 대응하는 코딩 블록들, 또는 단색 픽처 또는 3 개의 별도의 컬러 평면들을 이용하여 코딩되는 픽처의 샘플들의 코딩 블록, 및 샘플들을 코딩하는데 이용되는 신택스 구조들로서 정의한다.
위에 주지된 바와 같이, 스크린 컨텐츠 코딩 (SCC) 에 대한 현재 작업 드래프트가 존재한다. 현재 SCC 작업 드래프트, JCTVC-S1005 에서 팔레트-모드는 4:4:4 크로마 서브샘플링 포맷을 위해 정의되며, 여기에서 루마 및 크로마 블록 사이즈들은 동일하다. 코딩 효율을 증가시키기 위해, 비-4:4:4 크로마 서브샘플링 포맷들, 이를 테면, 4:2:0 또는 4:2:2 에 대한 팔레트-모드를 설계하는 것이 바람직할 수도 있으며 크로마 샘플 블록은 루마 샘플 블록보다 일반적으로 더 작다. 예를 들어, 4:2:0 크로마 서브샘플링 포맷 및 8×8 블록에 대해, 루마 샘플 블록 사이즈는 8×8 인 한편, 대응하는 크로마 샘플 블록 사이즈는 4×4 이다 (예를 들어, 수직 및 수평 크로마 양쪽이 반으로 된다). 예를 들어, 4:2:2 크로마 서브샘플링 포맷 및 8×8 블록에 대해, 루마 샘플 블록 사이즈는 8×8 인 한편, 대응하는 크로마 샘플 블록 사이즈는 4×8 이다 (예를 들어, 수평 크로마가 반으로 된다). 일 예로서, 팔레트-모드 코딩되는 현재 블록은 사이즈 8×8 의 CU 이다. 이 8×8 사이징된 CU 에 대해, 4:2:2 서브샘플링 포맷에 대해 하나의 8×8 사이징된 루마 블록 및 2 개의 4×8 크로마 블록들, 또는 4:2:0 서브샘플링에 대해 2 개의 4×4 크로마 블록들이 존재한다.
본 개시는 비-4:4:4 크로마 서브샘플링 포맷에 대해 팔레트-모드를 설계하기 위한 수개의 기법들을 설명한다. 이들 기법들은 수개의 부분들로 나누어질 수 있고, 각각의 부분은 별도로 또는 다른 것들과 임의의 조합으로 적용될 수도 있다. 각각의 부분은 현재 팔레트-모드 설계에 대하여 행해질 수 있는 수정을 표현할 수 있고, 본 개시에 언급되지 않은 팔레트-모드의 양태들이 4:4:4 팔레트-모드에서와 같은 것으로서 가정될 수 있지만 이에 제한되지 않는다.
팔레트 테이블 도출을 위하여, 4:4:4 팔레트-모드에서, 각각의 팔레트 엔트리는 컬러 트리플릿, 예를 들어, Y, Cb, 및 Cr 로 구성된다. 블록에서의 매 비-escape 픽셀마다, 팔레트 인덱스가 이 픽셀에 배정되고, 이는 팔레트 테이블에서의 엔트리를 적시한다. 대응하는 컬러 트리플릿은 재구성에 이용될 수도 있다. 그러나-4:4:4 경우에, 루마 샘플들 (루마 성분들) 의 수는 크로마 샘플들 (크로마 성분들) 의 수보다 더 클 수도 있고, 블록에서의 모든 픽셀이 3 개의 컬러 성분들을 갖는 것은 아닐 수도 있다.
일부 예들에서, 비디오 인코더 (20) 및 비디오 디코더 (30) 는 각각 팔레트 테이블을 도출할 수도 있다. 본 개시에 이용된 바와 같이, 어구 "팔레트 테이블을 도출함" 또는 그 등가표현은 비디오 인코더 (20) 또는 비디오 디코더 (30) 가 팔레트 테이블에 대한 값들을 결정하는 임의의 방식을 지칭한다. 예를 들어, 비디오 인코더 (20) 의 관점에서, 비디오 인코더 (20) 는 블록의 컬러 값들이 인코딩되고 있는 것에 기초하여 팔레트 테이블에 대한 값들을 결정할 수도 있다. 비디오 디코더 (30) 의 관점에서, 비디오 디코더 (30) 는 수신된 비트스트림에 포함된 정보에 기초하여 팔레트 테이블에 대한 값들을 결정할 수도 있다. 이들 예들 양쪽에서, 비디오 인코더 (20) 는 팔레트 테이블을 도출하는 것으로서 고려될 수도 있고, 비디오 디코더 (30) 는 팔레트 테이블을 도출하는 것으로서 고려될 수도 있다. 팔레트 테이블의 값들을 결정하는 다른 방식들이 가능하고 어구 "팔레트 테이블을 도출함" 또는 그 등가표현에 포함되는 것으로 고려된다.
이 동일한 팔레트 테이블은 루마 샘플들 및 크로마 샘플들에 대한 컬러 값들을 포함한다. 본 개시에서, 용어 컬러 값들 및 컬러 성분들은 상호교환적으로 이용된다. 팔레트 테이블에서의 각각의 엔트리는 3 개의 컬러 성분들 (예를 들어, 3 개의 컬러 값들): 루마 샘플에 대한 제 1 컬러 성분, 제 1 크로마 성분에 대한 제 2 컬러 성분, 및 제 2 크로마 성분에 대한 제 3 컬러 성분을 포함한다.
비디오 디코더 (30) 가 팔레트-모드에서 현재 블록을 디코딩할 때 (예를 들어, 팔레트 테이블에 기초하여 현재 블록을 재구성할 때), 비디오 디코더 (30) 는 이 단일의 팔레트 테이블을 이용하여 현재 블록을 재구성할 수도 있다. 예를 들어, 비디오 디코더 (30) 는 루마 블록의 루마 성분, 및 개별적인 크로마 블록들에 대한 2 개의 크로마 성분들에 대한 컬러 값들 (예를 들어, 컬러 성분들) 을 포함하는 팔레트 테이블을 사용하여, 이 현재 블록의 루마 블록 및 2 개의 크로마 블록들을 재구성하기 위해 다른 팔레트 테이블을 이용함이 없이 이 단일의 팔레트 테이블을 이용할 수도 있다.
NxN 사이징된 CU (예를 들어, NxN 사이징된 현재 블록) 에 대해, 루마 성분들을 갖는 대응하는 NxN 루마 블록이 존재한다. 따라서, CU 에서 각각의 픽셀에 대해 하나의 대응하는 루마 샘플이 존재한다. 그러나, 서브샘플링에 대해서는, CU 의 각각의 픽셀에 대해 하나의 대응하는 크로마 샘플이 존재하지 않는다. 예를 들어, 4:2:2 서브샘플링에 대해, 대응하는 크로마 블록들은 N/2xN 크로마 샘플들을 갖고, 따라서, CU 에서의 매 2 개의 픽셀들 마다, 개별적인 크로마 블록에서 하나의 대응하는 샘플이 존재한다. 4:2:0 서브샘플링에 대해, 대응하는 크로마 블록들은 N/2xN/2 크로마 샘플들을 갖고, 따라서, CU 에서의 매 4 개의 픽셀들 마다, 개별적인 크로마 블록에서 하나의 대응하는 샘플이 존재한다.
일부 예들에서, 현재 블록 (예를 들어, CU) 의 각각의 픽셀에 대해, 비디오 디코더 (30) 는 현재 블록의 픽셀이 대응하는 루마 및 크로마 성분들을 포함하는지 또는 대응하는 루마 성분을 포함하는지의 여부를 결정한다. 현재 블록의 픽셀이 루마 성분 및 크로마 성분들을 포함하는지의 여부의 결정에 기초하여, 비디오 디코더 (30) 는 팔레트 테이블로부터 취출하도록 컬러 값들의 수를 결정할 수도 있다. 예를 들어, 현재 블록의 픽셀이 루마 성분 및 크로마 성분들을 포함한다고 비디오 디코더 (30) 가 결정하면, 비디오 디코더 (30) 는 팔레트 테이블로부터 모든 3 개의 컬러 값들을 취출할 수도 있다. 그러나, 현재 블록이 루마 성분을 포함하고 크로마 성분들을 포함하지 않는다고 비디오 디코더 (30) 가 결정하면, 비디오 디코더 (30) 는 팔레트 테이블로부터 3 개의 컬러 값들 중 3 개 전부가 아닌 하나 (예를 들어, 3 개의 컬러 값들 중 제 1 컬러) 를 취출할 수도 있다.
비디오 디코더 (30) 는 취출할 컬러 값들의 수의 결정에 기초하여 현재 블록에서의 픽셀을 팔레트-모드 디코딩할 수도 있다. 예를 들어, 비디오 디코더 (30) 는 팔레트 테이블로의 하나의 엔트리를 식별하는 단일의 인덱스를 수신할 수도 있다. 비디오 디코더 (30) 가 3 개의 컬러 값들이 취출될 것임을 결정하면, 비디오 디코더 (30) 는 팔레트 테이블로의 식별된 엔트리로부터 모든 3 개의 컬러 값들을 취출하고 개별적인 크로마 블록들에서의 대응하는 샘플들 및 루마 블록에서의 대응하는 샘플에 각각의 개별적인 컬러 값을 배정할 수도 있다. 비디오 디코더 (30) 가 하나의 컬러 값이 취출될 것이라고 결정하면, 비디오 디코더 (30) 는 팔레트 테이블로의 식별된 엔트리로부터 3 개의 컬러 값들 중 하나의 컬러 값을 취출하고 루마 블록에서의 대응하는 샘플에 그 컬러 값을 배정할 수도 있다.
위의 예에 따르면, 서브샘플링 포맷들에 대해, 비디오 디코더 (30) 는 비-서브샘플링 포맷들에 비해 비디오 디코딩 프로세스에 대한 상당한 변경들을 필요로 함이 없이 현재 블록의 픽셀들을 재구성 (예를 들어, CU 에 대응하는 개별적인 루마 및 크로마 블록들의 루마 샘플들 및 크로마 샘플들을 재구성) 가능할 수도 있다. 예를 들어, 4:4:4 샘플링 포맷에 대해, 현재 블록 (예를 들어, CU) 에서의 매 픽셀 마다, 루마 블록 및 2 개의 크로마 블록들에서 대응하는 샘플이 존재한다. 이러한 4:4:4 샘플링 포맷에 대해, 비디오 인코더 (20) 는 단일의 팔레트 테이블에서 단일의 인덱스를 시그널링하고, 비디오 디코더 (30) 는 인덱스에 의해 식별된 팔레트 테이블에서의 엔트리에 기초하여 모든 3 개의 컬러 값들을 취출하고 개별적인 컬러 값들을 루마 및 크로마 샘플들 각각에 배정한다.
업샘플링 포맷에 대해, 비디오 디코더 (30) 는 비-서브샘플링 포맷과 유사하게, 단일의 팔레트 테이블을 도출하고 이 팔레트 테이블로의 신호 엔트리를 수신할 수도 있다. 그러나, 비디오 디코더 (30) 가 취출하는 컬러 값들의 수는 현재 블록의 여러 픽셀들에 대해 다를 수도 있다. 이러한 식으로, 비디오 인코더 (20) 가 4:4:4 샘플링 포맷에 대해 그리고 서브샘플링 포맷들에 대해 시그널링하는 비트스트림은 동일하지만, 비디오 디코더 (30) 는 현재 블록에서의 픽셀이 루마 성분 및 크로마 성분들을 포함하는지 또는 루마 성분을 포함하고 크로마 성분들을 포함하지 않는지의 여부의 결정에 기초하여 컬러 값들의 상이한 수를 선택적으로 취출할 수도 있다.
서브샘플링 포맷들에 대한 비트스트림이 비서브샘플링 포맷들에 비해 변경을 필요로 하지 않을 수도 있지만, escape 픽셀에 대해 팔레트 테이블에서의 엔트리에 기초하여 픽셀을 팔레트-모드 코딩할 때, 서브샘플링 포맷들을 위한 비트스트림은 비-서브샘플링 포맷들에 대한 것들과는 상이할 수도 있다. escape 픽셀은 컬러 값들이 도출된 팔레트 테이블에 있지 않은 픽셀이다. escape 픽셀에 대해, 비디오 인코더 (20) 는 루마 및 크로마 성분들에 대해 컬러 값들 (가능하다면 양자화됨) 을 명시적으로 시그널링한다.
비-서브샘플링 포맷들에 대해, escape 픽셀에서, 비디오 인코더 (20) 는 개별적인 루마 및 크로마 블록들에서의 대응하는 루마 및 크로마 샘플들 각각에 대한 컬러 값들을 시그널링하고 비디오 디코더 (30) 는 이 컬러 값들을 수신할 수도 있다. 서브샘플링 포맷들에 대해, 일부 예들에서, 비디오 인코더 (20) 는 루마 성분만이 존재하는 escape 픽셀에 대해 하나의 컬러 값만을 시그널링할 수도 있고, 루마 성분과 크로마 성분들 양쪽이 존재하는 escape 픽셀에 대해 모든 3 개의 컬러 값들을 시그널링할 수도 있다. 이들 예들에서, 비디오 디코더 (30) 는 현재 블록의 escape 픽셀이 루마 성분들 및 크로마 성분들을 포함하는지의 여부의 결정에 기초하여 비트스트림으로부터 파싱할 컬러 값들의 수를 결정할 수도 있다. 그 후, 비디오 디코더 (30) 는 비트스트림으로부터 파싱할 컬러 값들의 수의 결정에 기초하여 픽셀을 디코딩 (예를 들어, 픽셀을 재구성) 할 수도 있다.
위의 예의 기법들은 다음과 같이 요약될 수도 있다. 이들 예의 기법들은 4:2:2 및 4:2:0 팔레트 블록에 대해 디코더 관점 (즉, 비디오 디코더 (30) 의 관점) 으로부터 설명된다. 이 경우에, 각각의 팔레트 엔트리는 컬러 성분들 (즉, 3 개의 컬러 값들) 로 구성된다. 블록 (예를 들어, CU) 에서의 각각의 픽셀에 대해, 인덱스가 (예를 들어, 디코딩에 의해) 결정된다 또는 (카피 인덱스의 부분이거나 또는 런 위를 카피한다). 비트스트림 신택스는 4:4:4 경우에서의 신택스와 유사하다. 픽셀이 루마 및 크로마 성분들 양쪽으로 이루어지면, 그리고 픽셀 인덱스가 ESCAPE 픽셀을 표시하지 않으면, 대응하는 팔레트 엔트리의 모든 3 개의 컬러 성분들이 예측 또는 재구성에 이용된다. 픽셀이 루마 성분만으로 이루어지면, 그리고 픽셀 인덱스가 ESCAPE 픽셀을 표시하지 않으면, 대응하는 팔레트 엔트리의 제 1 컬러 성분이 예측 또는 재구성에 이용된다. ESCAPE 픽셀들의 경우에, 픽셀이 루마 성분으로만 이루어지면, 단일의 성분 값 (가능하다면 양자하됨) 이 비트스트림으로부터 판독된다. 이와 유사하게, ESCAPE 픽셀이 루마 뿐만 아니라 크로마 성분들로 이루어지면, 이들 성분 값들 (가능하다면, 양자화됨) 이 비트스트림으로부터 판독된다.
위의 예에서, 비디오 디코더 (30) 는 픽셀이 루마 및 크로마 성분들을 포함하는지 또는 루마 성분을 포함하고 크로마 성분을 포함하지 않는지의 여부의 결정에 기초하여 팔레트 테이블로부터 얼마나 많은 컬러 값들이 판독되는지 또는 비트스트림으로부터 얼마나 많은 컬러 값들이 파싱하는지를 결정할 수도 있다. 비디오 디코더 (30) 가 픽셀이 루마 및 크로마 성분들을 포함하는지 또는 루마 성분을 포함하고 크로마 성분들을 포함하지 않는지의 여부를 결정할 수도 있는 여러 방식들이 존재할 수도 있고 본 개시에 설명된 기법들은 어느 하나의 이러한 기법으로 제한되지 않는다. 일 예의 방식으로서, 비디오 디코더 (30) 는 페이즈 정렬에 기초하여 픽셀이 루마 및 크로마 성분들을 포함하는지 또는 루마 성분을 포함하고 크로마 성분들을 포함하지 않는지의 여부를 결정할 수도 있다.
도 8 및 도 9 에 대하여 보다 상세하게 설명될 바와 같이, 페이즈 정렬은 일반적으로 현재 블록의 루마 성분과 크로마 성분들 사이의 연관성을 지칭한다. 예를 들어, 4:2:0 서브샘플링에 대해, CU 에서의 4 개의 픽셀들의 그룹 (예를 들어, 픽셀들의 2x2 서브-블록) 에 대해, 루마 블록에서 샘플들의 2x2 서브-블록의 대응하는 그룹이 존재하고 개별적인 크로마 블록들에서 하나의 샘플만이 존재한다. 따라서, 개별적인 크로마 블록들에서의 하나의 샘플이 루마 블록의 2x2 서브-블록에서의 4 개의 픽셀들 중 어느 하나에 대응할 수도 있다 (예를 들어, 하나의 크로마 성분은 4 개의 루마 성분들에 대응한다).
예를 들어, CU 에서 2x2 서브-블록에 대해, 상부-좌측, 상부-우측, 하부-좌측, 및 하부-우측 픽셀이 존재한다. 페이즈 정렬은 크로마 블록에서의 샘플이, 루마 블록에서 동일한 서브-블록인 CU 의 2x2 서브-블록에서 상부-좌측, 상부-우측, 하부-좌측, 또는 하부-우측 픽셀에 대응하는지의 여부를 표시한다. 비디오 디코더 (30) 는 픽셀이 루마 및 크로마 성분들을 포함하는지 또는 루마 성분을 포함하고 크로마 성분들을 포함하지 않는지의 여부를 결정하기 위해 페이즈 정렬을 이용할 수도 있다. 이 페이즈 정렬은 코딩 목적만으로 이용된다. 크로마 샘플들의 실제 물리적 로케이션은 페이즈 정렬에 의해 표시되는 것과 상이할 수도 있다. 크로마 로케이션은 균일한 부분적 픽셀 포지션에 정렬될 수도 있다.
예를 들어, 크로마 블록들에서의 샘플이 CU 의 2x2 서브-블록의 상부-좌측 픽셀과 정렬된다고 가정한다. 이 예에서, 현재 블록의 루마 성분들과 현재 블록의 크로마 성분들 사이의 페이즈 정렬은 루마 블록에서의 2x2 서브-블록의 상부-좌측 샘플이 크로마 블록에서의 샘플과 연관되어 있음을 표시한다. 비디오 디코더 (30) 가 2x2 서브-블록의 상부-좌측을 팔레트-모드 디코딩할 때, 비디오 디코더 (30) 는 팔레트 테이블로부터의 모든 3 개의 컬러 값들이 취출될 것이라고 결정할 수도 있거나 또는 비트스트림으로부터의 모든 3 개의 컬러 값들이 escape 픽셀에 대해 파싱될 것이라고 결정할 수도 있다. CU 의 2x2 서브-블록의 상부-우측, 하부-우측, 및 하부-좌측 픽셀들에 대해, 비디오 디코더 (30) 는 비디오 팔레트 테이블로부터의 오직 하나의 컬러 값만이 취출될 것이라고 결정할 수도 있거나 또는 비트스트림으로부터의 오직 하나의 컬러 값만이 escape 픽셀에 대해 파싱될 것이라고 결정할 수도 있다.
위의 예가 2x2 서브-블록의 상부-좌측과의 페이즈 정렬을 설명하고 있지만 본 개시는 이에 한정되지 않고, 페이지 정렬은 2x2 서브-블록 의 상부-우측, 하부-우측, 또는 하부-좌측에 대한 것일 수도 있다. 보다 일반적으로, 4:2:0 서브샘플링에 대해, 하나의 페이즈 정렬은 짝수 x-좌표와 짝수 y-좌표를 갖는 현재 블록의 모든 픽셀이 크로마 블록들과 페이즈 정렬되는 것일 수도 있다 (예를 들어, 현재 블록의 루마 성분들과 크로마 성분들 사이의 페이즈 정렬은 루마 블록에서 짝수 x-좌표들과 짝수 y-좌표들을 갖는 샘플들이 크로마 블록들에서의 샘플들에 대응한다는 것을 표시한다). 다른 페이즈 정렬은 짝수 x-좌표와 홀수 y-좌표를 갖는 현재 블록의 모든 픽셀이 크로마 블록들과 페이즈 정렬되는 것일 수도 있다 (예를 들어, 현재 블록의 루마 성분들과 크로마 성분들 사이의 페이즈 정렬은 루마 블록에서 짝수 x-좌표들과 홀수 y-좌표들을 갖는 샘플들이 크로마 블록들에서의 샘플들에 대응한다는 것을 표시한다). 다른 페이즈 정렬은 홀수 x-좌표와 짝수 y-좌표를 갖는 현재 블록의 모든 픽셀이 크로마 블록들과 페이즈 정렬되는 것일 수도 있다 (예를 들어, 현재 블록의 루마 성분들과 크로마 성분들 사이의 페이즈 정렬은 루마 블록에서 홀수 x-좌표들과 짝수 y-좌표들을 갖는 샘플들이 크로마 블록들에서의 샘플들에 대응한다는 것을 표시한다). 다른 페이즈 정렬은 홀수 x-좌표와 홀수 y-좌표를 갖는 현재 블록의 모든 픽셀이 크로마 블록들과 페이즈 정렬되는 것일 수도 있다 (예를 들어, 루마 성분들과 크로마 성분들 사이의 페이즈 정렬은 루마 블록에서 홀수 x-좌표들과 홀수 y-좌표들을 갖는 샘플들이 크로마 블록들에서의 샘플들에 대응한다는 것을 표시한다).
4:2:2 에 대한 페이즈 정렬은 크로마 블록에서 매 하나의 샘플 마다 현재 블록에서 2 개의 픽셀들이 존재하는 것을 제외하면 유사할 수도 있다. 4:2:2 경우에 대해, 하나의 페이즈 정렬은 짝수 x-좌표를 갖는 현재 블록의 모든 픽셀이 크로마 블록들과 페이즈 정렬되는 것일 수도 있다 (예를 들어, 현재 블록의 루마 성분들과 크로마 성분들 사이의 페이즈 정렬은 루마 블록에서 짝수 x-좌표들을 갖는 샘플들이 크로마 블록들에서의 샘플들에 대응한다는 것을 표시한다). 다른 페이즈 정렬은 홀수 x-좌표를 갖는 현재 블록의 모든 픽셀이 크로마 블록들과 페이즈 정렬되는 것일 수도 있다 (예를 들어, 현재 블록의 루마 성분들과 크로마 성분들 사이의 페이즈 정렬은 루마 블록에서 홀수 x-좌표들을 갖는 샘플들이 크로마 블록들에서의 샘플들에 대응한다는 것을 표시한다). 4:2:2 서브샘플링 포맷에서의 y-좌표의 값은 수평 부분만이 하프 샘플링되고 수직 부분은 동일하기 때문에 관련되지 않을 수도 있다.
픽처에 대한 특정 페이즈 정렬은 사전설정될 수도 있다. 다른 예로서, 비디오 인코더 (20) 는 페이즈 정렬을 표시하는 정보 (예를 들어, 4 개의 가능한 페이즈 정렬들이 존재할 때 4:2:0 서브샘플링을 위해 2-비트 값 또는 2 개의 가능한 페이즈 정렬이 존재할 때 4:2:2 서브샘플링에 대해 1-비트 값) 를 시그널링할 수도 있다. 비디오 디코더 (30) 는 페이즈 정렬을 표시하는 신호 정보에 기초하여 페이즈 정렬을 결정할 수도 있다. 다른예로서, 비디오 인코더 (20) 및 비디오 디코더 (30) 는 이웃 블록들의 컨텐츠와 같은 다른 팩터들에 기초하는 페이즈 정렬, 이전 블록의 페이즈 정렬 등을 묵시적으로 결정할 수도 있어, 비디오 인코더 (20) 가 페이즈 정렬을 명시적으로 표시할 필요가 없게 되고 페이즈 정렬이 미리 설정될 필요도 없게 된다.
이러한 식으로, 비디오 디코더 (30) 는 현재 블록의 루마 성분들과 현재 블록의 크로마 성분들 사이의 페이즈 정렬을 결정할 수도 있다. 상기 현재 블록에서의 픽셀이 루마 성분 및 크로마 성분들을 포함하는지의 여부를 결정하기 위해, 비디오 디코더 (30) 는 결정된 상기 페이즈 정렬에 기초하여 상기 현재 블록에서의 픽셀이 상기 루마 성분 및 상기 크로마 성분들을 포함하는지의 여부를 결정할 수도 있다.
위의 설명은 단일의 팔레트 테이블을 이용하여 팔레트-모드 디코딩하고, 현재 블록의 루마 성분들과 현재 블록의 크로마 성분들의 페이즈 정렬에 기초하여 팔레트 테이블 엔트리로부터 모든 3 개의 컬러 값들이 취출되어야 하는지 오직 하나의 컬러 값만이 취출되어야 하는지 여부를 결정하는 일 예를 설명한다. 위의 설명은 또한, 현재 블록의 루마 성분들과 현재 블록의 크로마 성분들의 페이즈 정렬에 기초하여 escape 픽셀에 대한 비트스트림으로부터 3 개의 컬러 값들이 파싱되는지 또는 하나의 컬러 값이 파싱되는지의 여부를 결정하는 예들을 설명한다.
그러나, 본 개시에서 설명된 기법들은 이에 한정되지 않는다. 다음은 추가적인 예들을 설명하며, 위에 설명된 예들의 일부를 재반복한다. 다음 기법들은 필요에 따라 위의 기법들과 연계하여 또는 위의 기법들과 별도로 이용될 수도 있다.
일부 예들에서, 단일의 팔레트 테이블을 갖기보다는, 다수의 팔레트 테이블들이 이용될 수도 있다 (예를 들어, 모든 3 개의 컬러들을 갖는 하나의 팔레트, 루마 성분들을 위한 하나의 팔레트, 및 크로마 성분들에 대한 다른 팔레트). 팔레트 테이블 도출은 3 개 미만의 컬러 성분들을 갖는 팔레트 엔트리들을 허용하는 것에 의해 이 차이를 고려하여 변경될 수 있다, 예를 들어, 팔레트 엔트리는 컬러 트리플릿 (예를 들어, Y, U, V), 컬러 페어 (예를 들어, U, V), 또는 단일의 컬러 (예를 들어, Y), 또는 이들의 다른 컬러 조합일 수도 있다. 비디오 인코더 (20) 는 예를 들어, 0 - 트리플릿, 10 - 페어, 및 11 - 단일 엔트리 또는 다른 수단을 이용하여 팔레트 엔트리 내에 포함된 컬러 성분들의 수 또는 팔레트 엔트리 유형을 표시할 수도 있다. 이 표시에 따르면, 새로운 팔레트 엔트리가 시그널링되면, 비디오 인코더 (20) 는 대응하는 컬러 성분들만을 시그널링할 수도 있다. 예를 들어, 엔트리가 페어이면, 오직 2 개의 컬러 성분들만이 새로운 팔레트 엔트리로서 시그널링된다.
더 특수한 경우, 팔레트 엔트리들은 2 개의 유형들, 트리플릿 및 단일의 성분들의 어느 것만일 수도 있고, 비디오 인코더 (20) 는 엔트리 유형을 표시하도록 1 비트 플래그를 시그널링할 수도 있다. 일부 예시의 기법들이 이 특수 경우에 대해 설명되지만, 보다 일반적 접근방식 (트리플릿 또는 단일의 엔트리 이상을 이용함) 이 이 개시의 범위 내에 있는 것으로 고려된다.
유사한 엔트리, 이를 테면, 트리플릿, 페어 또는 단일의 성분이 팔레트 예측자 리스트에 이용될 수 있다. 대안으로서, 또는 추가적으로, 팔레트 예측자는 트리플릿으로 항상 이루어질 수도 있다. 페어 및 단일의 성분 엔트리들은 대응하는 컬러들만을 이용하는 것에 의해 트리플릿으로부터 예측될 수 있다. 예를 들어, 단일의 성분 엔트리가 트리플릿 ( A , B , C ) 으로부터 예측되면, 단일의 성분 팔레트 엔트리의 대응하는 성분 값이 A 이다. 이 예는 단일의 팔레트를 도출하기 위한 방식으로서 (예를 들어, 팔레트 예측자 리스트를 이용하여) 단일의 팔레트를 이용하는 위의 예에 또한 적용가능하다.
일부 예들에서, 별도의 팔레트들 및 팔레트 예측자 리스트들은 트리플릿들 및 단일의 성분 팔레트 엔트리들에 대하여 유지된다. 이 경우, 비디오 인코더 (20) 는 각각 트리플릿 및 단일의 성분 팔레트 엔트리들에 대해 개별적으로 팔레트 예측자 재사용 플래그들 및 새로운 팔레트 엔트리들을 시그널링할 수도 있다.
팔레트 인덱스는 블록에서의 픽셀을 예측 (또는 표현) 하는데 사용되는 팔레트 엔트리를 표시하는데 사용될 수도 있고, 팔레트 엔트리와 연관된 컬러(들) 이 비디오 디코더 (30) 스테이지에서 픽셀에 배정될 수도 있다.
팔레트 인덱싱을 위하여, 팔레트 테이블 도출에 대한 위의 설명에 대하여 추가적으로 또는 대안으로서, 팔레트 엔트리에서의 모든 컬러들이 블록에서의 특정 픽셀을 예측하는데 이용되지 않을 수도 있지만, 팔레트 엔트리들은 트리플릿만으로 이루어질 수도 있다. 본 개시에 설명된 기법에서, 비디오 인코더 (20) 및 비디오 디코더 (30) 는 블록 내의 픽셀 포지션 및 크로마 컬러 포맷 (예를 들어, 페이즈 정렬) 에 따라 특정 픽셀을 예측 (표현) 하는데 필수적인 컬러들의 수를 도출할 수도 있다. 예를 들어, 4:2:0 크로마 컬러 포맷에서, 4 개의 루마 샘플들이 하나의 대응하는 크로마 페어 (U 및 V) 를 가지며, 즉, 모든 제 2 로우 및 모든 제 2 컬럼이 3 개의 컬러 성분들을 갖는 픽셀을 가질 수도 있고 모든 다른 픽셀들은 루마 성분만을 가질 것이다. 따라서, 일 예에서, 크로마 샘플들은 로우 및 컬럼 인덱스가 짝수일 때 사전설정될 수도 있다. 루마 샘플들과 크로마 샘플들의 상이한 정렬이 또한 가능하다. 따라서, 팔레트 인덱스는 초기에 팔레트 테이블에서의 3 개의 컬러 성분들을 표시할 수도 있다. 특정 픽셀 포지션이 루마 샘플들만을 가지면, 트리플릿 중 제 1 컬러 성분만이 픽셀을 예측 (표현) 하는데 이용될 수도 있다.
동일한 방식으로, COPY_INDEX_MODE 또는 COPY_ABOVE_MODE 로 코딩된 픽셀들의 그룹에 대해, 카피할 컬러 성분들의 수는 픽셀 포지션 및 크로마 컬러 포맷에 기초하여 도출될 수도 있다. 팔레트-모드의 런 값은 (모든 루마 샘플들이 대응하는 크로마 샘플들을 갖는 것은 아닌) 모드 내에서 루마 픽셀 시리즈의 길이 또는 일반적으로 보다 완전한 컬러 성분의 길이를 표시할 수도 있다.
픽셀이 ESCAPE 픽셀이면 (즉, 컬러 값들이 명시적으로 시그널링되면), 시그널링될 컬러들의 수는 픽셀 포지션 및 크로마 컬러 포맷에 기초하여 도출될 수도 있다. 따라서, 픽셀 포지션이 크로마 샘플들을 갖지 않으면, 휘도 값만이 escape 픽셀에 대해 코딩된다.
팔레트 테이블은 루마 샘플들의 수가 크로마 샘플들의 수의 4 배 만큼임을 고려하여 도출될 수 있고, 정확도의 관점에서 더 많은 가중값이 루마 성분에 배정될 수도 있다. 그러나, 팔레트 도출의 하나의 방법만을 가질 필요가 없다면, 팔레트 테이블은, 크로마 픽셀들을 매칭하도록 루마 성분을 서브샘플링하는 것에 의해 또는 루마 샘플들의 수를 매칭하도록 크로마 성분들을 업샘플링하는 것에 의해 4:4:4 팔레트 도출을 이용하는 것에 의해 도출될 수 있다.
컬러 특정 팔레트 및 팔레트 예측자에 대해, 픽셀들이 상이한 수의 연관된 컬러 성분들을 가질 때, 별도의 팔레트 테이블들이 상이한 유형들의 팔레트 엔트리들에 대해 유지될 수도 있다. 예를 들어, 트리플릿 단독 엔트리들 및 단일의 엔트리들을 갖는 2 개의 팔레트 테이블들이 이용될 수도 있다. 특정 픽셀에 대해 이용될 팔레트 성분들의 수는 픽셀 포지션 및 크로마 컬러 포맷에 따라 도출될 수도 있고, 컬러 성분들은 팔레트 인덱스에 따라 도출된 팔레트 테이블 유형으로부터 선택될 수도 있다. 런 값은 통상적으로 루마인 더 긴 컬러 성분에 대응할 수도 있다.
예를 들어, 픽셀들의 그룹이 COPY_INDEX_MODE 로 코딩되면, 비디오 인코더 (20) 는 팔레트 인덱스 및 런 값을 시그널링하고 비디오 디코더 (30) 는 이를 수신할 수도 있다. 시그널링되는 런 값 내에서 매 루마 픽셀 마다, 비디오 디코더 (30) 는 첫번째 픽셀과 연관된 컬러 성분들의 수 (즉, 이것이 트리플릿인지 또는 단일의 엔트리인지) 를 도출할 수도 있다. 그 후, 비디오 디코더 (30) 는 대응하는 팔레트 테이블로부터 컬러(들)의 적절한 수를 선택할 수도 있다.
팔레트 예측자는 트리플릿 기반 단독일 수도 있거나 또는 팔레트 엔트리 유형들에 따라 분리되고 개별적으로 유지될 수 있다. 팔레트 예측자가 트리플릿만으로 이루어지면 그리고 팔레트 엔트리가 팔레트 예측자로부터 예측될 때 필요한 컬러들만이 카피된다.
대안으로서, 또는 추가적으로, 팔레트 테이블은 픽셀 유형들 (예를 들어, 트리플릿 또는 단일의 엔트리) 에 따라 분리될 수 있지만, 테이블은 트리플릿들을 여전히 가질 수도 있고 필요한 컬러만이 픽셀 유형에 따라 이용될 수도 있다. 이 경우, 공통 팔레트 예측자는 모든 엔트리들이 트리플릿 기반이기 때문에, 모든 이용된 엔트리들로 단순히 구성될 수 있다.
웨이브프론트 동기화를 위하여, 웨이브프론트 병렬 프로세싱 (wavefront parallel processing; WPP) 이 인에이블되면, 최종 팔레트 코딩된 블록의 팔레트 예측자 및 팔레트 사이즈는 다음 코딩 트리 유닛 (coding tree unit; CTU) 로우 동기화 목적을 위하여 CTU 로우에서 매 제 2 코딩 트리 유닛 (CTU) 의 끝에 저장된다. 팔레트 또는 팔레트 예측자가 엔트리 유형들에 따라 분리되면, 팔레트 예측자의 각각의 유형 및/또는 마지막 팔레트 코딩된 블록의 팔레트 사이즈의 각각의 유형은 WPP 동기화를 위하여 저장되는 것이 필요할 수도 있다.
다음의 설명은 이해를 추가로 돕기 위해 일부 예의 양태들을 설명한다. 이들 예들은 임의의 조합으로 함께 또는 개별적으로 적용될 수도 있다. 일 예의 기법은 각각의 팔레트 엔트리가 3 개의 컬러 값들을 포함하고 그리고 비디오 디코더 (30) 는 현재 블록에서의 픽셀이 루마 및 크로마 성분들을 포함하는지 또는 루마 성분들을 포함하고 크로마 성분들은 포함하지 않는지의 여부에 기초하여 컬러 값들의 수를 결정하는 경우를 위에 설명한 것이다. 비디오 디코더 (30) 는 또한 현재 블록에서의 픽셀이 루마 및 크로마 성분들을 포함하는지의 여부에 기초하여 escape 픽셀에 대해 비트스트림으로부터 파싱할 컬러 값들의 수를 결정할 수도 있다.
위에 설명된 바와 같이, 비디오 인코더 (20) 및 비디오 디코더 (30) 는 픽셀이 루마 및 크로마 성분들을 포함하는지 또는 루마 성분을 포함하고 크로마 성분들을 포함하지 않는지의 여부를 결정하기 위해 페이즈 정렬 정보를 이용할 수도 있다. 비디오 인코더 (20) 는 파라미터 세트 (예를 들어, 시퀀스 파라미터 세트 (sequence parameter set; SPS) 또는 픽처 파라미터 세트 (picture parameter set; PPS)), 슬라이스 헤더에서 페이즈 정렬 정보를 시그널링하고 비디오 디코더 (30) 는 그 페이즈 정렬 정보를 수신할 수도 있거나 또는 비디오 이용가능성 정보 (video usability information; VUI) 가 페이즈 정렬을 전달하는데 이용될 수 있다. 예를 들어, 트리플릿만이 팔레트 테이블에 이용되면, 상이한 페이즈 정렬들을 표시하기 위해 SPS 또는 PPS 또는 슬라이스 헤더에서 신택스 엘리먼트를 이용하도록 제안된다. 대안으로서 또는 추가적으로, VUI 는 이러한 정보를 전달하는데 이용될 수 있다.
예를 들어, 도 8 에서, 루마 픽셀 포지션들 A, C, I, 및 K 는 3 개의 컬러 성분들 (예를 들어, 루마 및 2 개의 크로마 성분들) 을 갖는 것으로 고려되며, 나머지 루마 픽셀 포지션들은 단일의 컬러 성분 (예를 들어, 루마 성분이 있고 크로마 성분은 없음) 을 갖는 것으로 고려된다. 도 9 에 예시된 바와 같이 다른 예에서, 로케이션 E, G, M, 및 O 에서의 루마 픽셀 포지션들은 3 개의 컬러 성분들 (예를 들어, 루마 및 2 개의 크로마 성분들) 을 갖는 것으로 고려되는 한편, 나머지 루마 픽셀 포지션들은 단일의 컬러 성분들 (예를 들어, 루마 성분이 있고 크로마 성분은 없음) 을 갖는 것으로 고려된다.
따라서, 신택스 엘리먼트는 이러한 상이한 경우들 (예를 들어, 페이즈 정렬을 표시할 신택스 엘리먼트) 을 표시하도록 제안된다. 예를 들어, 엘리먼트가 '00' 과 동일할 때, 루마 픽셀 포지션들 A, C, I, K 는 크로마 픽셀 값들을 도출하는데 이용된다. 엘리먼트가 '01' 과 같을 때, 루마 픽셀 포지션들 B, D, J, L 은 크로마 픽셀 값들을 도출하는데 이용된다. 엘리먼트가 '10' 과 같을 때, 루마 픽셀 포지션들 E, G, M, O 는 크로마 픽셀 값들을 도출하는데 이용된다. 엘리먼트가 '11' 과 같을 때, 루마 픽셀 포지션들 F, H, N, P 는 크로마 픽셀 값들을 도출하는데 이용된다.
위의 예에서, 하나의 루마 포지션만이 크로마 픽셀 값을 도출하는데 이용된다. 그러나, 본 개시에서 설명된 기법들은 이에 제한되지 않는다. 다른 예에서, 비디오 인코더 (20) 및 비디오 디코더 (30) 는 크로마 픽셀 값을 도출하도록 하나 보다 많은 루마 포지션을 이용할 수도 있다. 예를 들어, 도 9 에서, 비디오 인코더 (20) 또는 비디오 디코더 (30) 가 루마 포지션 A, B, E, F 에 대한 인덱스를 얻은 후, 이들 인덱스 값들은 팔레트 테이블을 이용하여 4 개의 컬러 트리플릿에 매핑될 수 있다. 따라서, 4 개의 크로마 페어들 (예를 들어, 루마 포지션 A 에 대해 2 개의 크로마 컬러 값들, 루마 포지션 B 에 대해 2 개의 크로마 컬러 값들, 루마 포지션 E 에 대해 2 개의 크로마 컬러 값들, 및 루마 포지션 F 에 대해 2 개의 크로마 컬러 값들) 이 존재한다.
일 예에서, 비디오 인코더 (20) 및 비디오 디코더 (30) 는 재구성된 크로마 픽셀 값들로서 이들 4 개의 크로마 페어들의 평균 값들을 이용할 수도 있다. 대안으로서 또는 추가적으로, 비디오 인코더 (20) 및 비디오 디코더 (30) 는 2 또는 3 개의 크로마 페어들을 선택하고 재구성된 크로마 픽셀 값들로서 이들 평균을 이용할 수도 있다. 대안으로서 또는 추가적으로, 비디오 인코더 (20) 및 비디오 디코더 (30) 는 4-탭 필터로의 이들 4 개의 크로마 페어들을 이용하고, 재구성된 크로마 픽셀 값들로서 필터링된 픽셀 값들을 이용할 수도 있다.
다른 예에서, 4:4:4 모드에서, COPY_ABOVE_MODE 에 대해, 현재 픽셀은 자신의 위의 이웃 픽셀과 동일한 컬러 트리플릿을 공유한다. 비-4:4:4 모드에서, 모든 3 개의 성분들을 갖는 픽셀 포지션에 대해, 크로마 성분들을 카피하기 위하여, 비디오 인코더 (20) 및 비디오 디코더 (30) 는 모든 3 개의 성분들을 갖는 현재 픽셀 포지션 위의 최근접한 포지션으로부터의 크로마 성분들을 카피할 수도 있다.
예를 들어, 도 8 에서, 루마 포지션 K 가 위의 카피 모드에 있다면, G 로부터 인덱스를 카피하고 팔레트 테이블을 룩업하는 것에 의해 대응하는 크로마 성분 값들을 얻는 것 대신에, 비디오 디코더 (30) 는 포지션 C 의 크로마 성분들을 카피한다.
도 2 는 이 개시의 기법들을 구현할 수도 있는 예시의 비디오 인코더 (20) 를 예시하는 블록도이다. 도 2 는 설명의 목적으로 제공된 것으로 본 개시에서 광의적으로 예시되고 설명된 기법들을 제한하는 것으로 고려되어서는 안 된다. 설명의 목적을 위해, 본 개시는 HEVC 코딩의 환경에서 비디오 인코더 (20) 를 설명한다. 그러나, 본 개시의 기법들은 다른 코딩 표준들 또는 방법들에 적용될 수도 있다.
비디오 인코더 (20) 는 본 개시에 설명된 여러 예들에 따라 팔레트-기반 비디오 코딩에 대한 기법들을 수행하도록 구성될 수도 있다. 예를 들어, 비디오 인코더 (20) 는 팔레트-모드를 이용하여 현재 블록을 코딩하도록 구성될 수도 있고, 여기에서 대응하는 크로마 블록의 사이즈는 대응하는 루마 블록의 사이즈와는 상이하다.
도 2 의 예에서, 비디오 인코더 (20) 는 예측 프로세싱 유닛 (100), 비디오 데이터 메모리 (101), 잔차 생성 유닛 (102), 변환 프로세싱 유닛 (104), 양자화 유닛 (106), 역 양자화 유닛 (108), 역변환 프로세싱 유닛 (110), 재구성 유닛 (112), 필터 유닛 (114), 디코딩된 픽처 버퍼 (116), 및 엔트로피 인코딩 유닛 (118) 을 포함한다. 예측 프로세싱 유닛 (100) 은 인터-예측 프로세싱 유닛 (120) 및 인트라-예측 프로세싱 유닛 (126) 을 포함한다. 인터-예측 프로세싱 유닛 (120) 은 모션 추정 유닛 및 모션 보상 유닛 (도시 생략) 을 포함한다. 비디오 인코더 (20) 는 또한, 본 개시에 설명된 팔레트-기반 코딩 기법들의 여러 양태들을 수행하도록 구성되는 팔레트-기반 인코딩 유닛 (122) 을 포함한다. 다른 예들에서, 비디오 인코더 (20) 는 더 많은, 더 적은 또는 상이한 기능성 컴포넌트들을 포함할 수도 있다.
비디오 데이터 메모리 (101) 는 비디오 인코더 (20) 의 컴포넌트들에 의해 인코딩될 비디오 데이터를 저장할 수도 있다. 비디오 데이터 메모리 (101) 에 저장된 비디오 데이터는 예를 들어, 비디오 소스 (18) 로부터 획득될 수도 있다. 디코딩된 픽처 버퍼 (116) 는 예를 들어, 인트라- 또는 인터-코딩 모드들에서, 비디오 인코더 (20) 에 의해 비디오 데이터를 인코딩하는데 있어 이용하기 위한 참조 비디오 데이터를 저장하는 참조 픽처 메모리일 수도 있다. 비디오 데이터 메모리 (101) 및 디코딩된 픽처 버퍼 (116) 는 여러 메모리 디바이스들, 이를 테면, SDRAM (synchronous DRAM), MRAM (magnetoresistive RAM), RRAM (resistive RAM) 을 포함하는 DRAM (Dynamic random access memory), 또는 다른 유형들의 메모리 디바이스들의 어느 것에 의해 형성될 수도 있다. 비디오 데이터 메모리 (101) 및 디코딩된 픽처 버퍼 (116) 는 동일한 메모리 디바이스 또는 별도의 메모리 디바이스들에 의해 제공될 수도 있다. 여러 예들에서, 비디오 데이터 메모리 (101) 는 비디오 인코더 (20) 의 다른 컴포넌트들과의 온-칩일 수도 있거나 또는 이들 컴포넌트들에 대하여 오프-칩일 수도 있다.
비디오 인코더 (20) 는 비디오 데이터를 수신할 수도 있다. 비디오 인코더 (20) 는 비디오 데이터의 픽처의 슬라이스에서 각각의 CTU 를 인코딩할 수도 있다. CTU들 각각은 동일하게 사이징된 루마 코딩 트리 블록들 (CTB들) 및 픽처의 대응하는 CTB들과 연관될 수도 있다. CTU 를 인코딩하는 부분으로서, 예측 프로세싱 유닛 (100) 은 CTU 의 CTB들을 점차적으로 더 작아지는 블록들로 분할하도록 쿼드트리 파티셔닝을 수행할 수도 있다. 더 작은 블록은 CU들의 코딩 블록들일 수도 있다. 예를 들어, 예측 프로세싱 유닛 (100) 은 CTU 와 연관된 CTB 를 4개의 동일하게 사이징된 서브-블록들로 파티셔닝할 수도 있으며, 서브-블록들 중 하나 이상을 4개의 동일하게 사이징된 서브-블록들로 파티셔닝할 수도 있으며, 이하 동일하게 이루어진다.
비디오 인코더 (20) 는 CU들의 인코딩된 표현들 (즉, 코딩된 CU들) 을 생성하기 위해 CTU 의 CU들을 인코딩할 수도 있다. CU 를 인코딩하는 부분으로서, 예측 프로세싱 유닛 (100) 은 CU 의 하나 이상의 PU들 중에서 CU 와 연관된 코딩 블록들을 파티셔닝할 수도 있다. 따라서, 각각의 PU 는 루마 예측 블록 및 대응하는 크로마 예측 블록들과 연관될 수도 있다. 비디오 인코더 (20) 및 비디오 디코더 (30) 는 여러 사이즈들을 갖는 PU들을 지원할 수도 있다. 위에 표시된 바와 같이, CU 의 사이즈는 CU 의 루마 코딩 블록의 사이즈를 의미할 수도 있고 PU 의 사이즈는 PU 의 루마 예측 블록의 사이즈를 의미할 수도 있다. 특정 CU 의 사이즈가 2Nx2N이라고 가정하면, 비디오 인코더 (20) 및 비디오 디코더 (30) 는 인트라 예측을 위하여 2Nx2N 또는 NxN 의 PU 사이즈들을 지원할 수도 있고, 인터 예측을 위하여 2Nx2N, 2NxN, Nx2N, NxN 또는 유사한 것의 대칭적 PU 사이즈들을 지원할 수도 있다. 비디오 인코더 (20) 및 비디오 디코더 (30) 는 인터 예측을 위하여 2NxnU, 2NxnD, nLx2N, 및 nRx2N 의 PU 사이즈들에 대한 비대칭 파티셔닝을 또한 지원할 수도 있다.
인터-예측 프로세싱 유닛 (120) 은 CU 의 각각의 PU 상에서 인터 예측을 수행하는 것에 의해 PU 에 대한 예측 데이터를 생성할 수도 있다. PU 에 대한 예측 데이터는 PU 에 대한 예측 블록들 및 PU 에 대한 모션 정보를 포함할 수도 있다. 인터-예측 유닛 (121) 은 PU 가 I 슬라이스, P 슬라이스, 또는 B 슬라이스에 있는지 여부에 따라 CU 의 PU 에 대해 상이한 동작들을 수행할 수도 있다. I 슬라이스에 있으면, 모든 PU 들은 인트라 예측된다. 따라서, PU 가 I 슬라이스에 있으면, 인터-예측 유닛 (121) 은 PU 에 대한 인터 예측을 수행하지 않는다. 따라서, I-모드에서 인코딩된 블록들에 대해, 예측 블록은 동일한 프레임 내에서 이전에-인코딩된 이웃 블록들로부터의 공간적 예측을 이용하여 형성된다.
PU 가 P 슬라이스에 있으면, 인터-예측 프로세싱 유닛 (120) 의 모션 추정 유닛은 PU 의 참조 영역에 대해 참조 픽처들의 리스트 (예를 들어, "RefPicList0") 에서 참조 픽처들을 검색할 수도 있다. PU 에 대한 참조 영역은 PU 의 샘플 블록들에 가장 가깝게 대응하는 샘플 블록들을 포함하는 참조 픽처 내의 영역일 수도 있다. 모션 추정 유닛은 PU 의 참조 영역을 포함하는 참조 픽처의 RefPicList0 에서 포지션을 표시하는 참조 인덱스를 생성할 수도 있다. 또한, 모션 추정 유닛은 참조 영역과 연관된 참조 로케이션과 PU 의 코딩 블록 사이의 공간적 변위를 표시하는 MV 를 생성할 수도 있다. 예를 들어, MV 는 현재 디코딩된 픽처에서의 좌표들로부터 참조 픽처에서의 좌표들까지의 오프셋을 제공하는 2 차원 벡터일 수도 있다. 모션 추정 유닛은 참조 인덱스 및 MV 를 PU 의 모션 정보로서 출력할 수도 있다. 인터-예측 프로세싱 유닛 (120) 의 모션 보상 유닛은 PU 의 모션 벡터에 의해 표시되는 참조 로케이션에서 실제의 또는 보간된 샘플들에 기초하여 PU 의 예측 블록들을 생성할 수도 있다.
PU 가 B 슬라이스에 있으면, 인트라-예측 프로세싱 유닛 (120) 의 모션 추정 유닛은 PU 에 대한 단방향 예측 또는 양방향 예측을 수행할 수도 있다. PU 에 대한 단방향 예측을 수행하기 위해, 모션 추정 유닛은 PU 에 대한 참조 영역에 대하여 RefPicList0 또는 제 2 참조 픽처 리스트 ("RefPicList1") 의 참조 픽처들을 검색할 수도 있다. 모션 추정 유닛은 PU 의 모션 정보로서 참조 영역을 포함하는 참조 픽처의 RefPicList0 또는 RefPicList1 에서 포지션을 표시하는 참조 인덱스, 참조 영역과 연관된 참조 로케이션과 PU 의 예측 블록 사이의 공간적 변위를 표시하는 MV, 및 참조 픽처들이 RefPicList0 또는 RefPicList1 에 있는지의 여부를 표시하는 하나 이상의 예측 방향 표시자들을 출력할 수도 있다. 인터-예측 프로세싱 유닛 (120) 의 모션 보상 유닛은 PU 의 모션 벡터에 의해 표시되는 참조 영역에서의 실제의 또는 보간된 샘플들에 기초하여 PU 의 예측 블록들을 생성할 수도 있다.
PU 의 양방향 인터 예측을 수행하기 위하여, 모션 추정 유닛은 PU 에 대한 참조 영역에 대하여 RefPicList0 에서 참조 픽처들을 검색할 수도 있고, 또한 PU 에 대한 다른 참조 영역에 대하여 RefPicList1 에서 참조 픽처들을 검색할 수도 있다. 모션 추정 유닛은 참조 영역들을 포함하는 참조 픽처들의 RefPicList0 및 RefPicList1 에서 포지션들을 표시하는 참조 픽처 인덱스들을 생성할 수도 있다. 또한, 모션 추정 유닛은 PU 의 샘플 블록과 참조 영역들과 연관된 참조 로케이션 사이의 공간적 변위들을 표시하는 MV들을 생성할 수도 있다. PU 의 모션 정보는 PU 의 MV들 및 참조 인덱스들을 포함할 수도 있다. 인터-예측 프로세싱 유닛 (120) 의 모션 보상 유닛은 PU 의 모션 벡터에 의해 표시되는 참조 영역들에서의 실제의 또는 보간된 샘플들에 기초하여 PU 의 예측 블록들을 생성할 수도 있다.
본 개시의 여러 예들에 따르면, 비디오 인코더 (20) 는 팔레트-기반 코딩을 수행하도록 구성될 수도 있다. HEVC 프레임워크에 대하여, 일 예로서, 팔레트-기반 코딩 기법들은 코딩 유닛 (coding unit; CU) 모드로서 이용되도록 구성될 수도 있다. 다른 예들에서, 팔레트-기반 코딩 기법들은 HEVC 의 프레임워크에서 PU 로서 이용되도록 구성될 수도 있다. 따라서, CU 모드의 문맥에서 설명되는 본원에 (본 개시에 전반에 걸쳐) 설명된 프로세스들 모두는 추가로 또는 대안으로 PU 에 적용가능할 수도 있다. 그러나, 이들 HEVC-기반 예들은, 이러한 기법들이 다른 기존의 또는 아직 개발중인 시스템들/표준들의 부분으로서 또는 독립적으로 작업하도록 적용될 수도 있으므로 본원에 설명된 팔레트-기반 코딩 기법들의 제약 또는 제한인 것으로서 고려되지 않아야 한다. 이들 경우들에서, 팔레트 코딩에 대한 유닛은 정사각형 블록들, 직사각형 블록들 또는 비-직사각형 형상의 균일한 영역들일 수도 있다.
팔레트-기반 인코딩 유닛 (122) 은 예를 들어, 팔레트-기반 인코딩 모드가 예를 들어, CU 또는 PU 에 대하여 선택될 때 팔레트-기반 인코딩을 수행할 수도 있다. 예를 들어, 팔레트-기반 인코딩 유닛 (122) 은 픽셀 값들을 표시하는 엔트리들을 갖는 팔레트를 생성하고, 비디오 데이터의 블록의 적어도 일부 포지션들의 픽셀 값들을 표현하도록 팔레트에서 픽셀 값들을 선택하고, 그리고 선택된 픽셀 값들에 각각 대응하는 팔레트에서의 엔트리들과, 비디오 데이터의 블록의 포지션들의 적어도 일부를 연관시키는 정보를 시그널링하도록 구성될 수도 있다. 여러 기능들이 팔레트-기반 인코딩 유닛 (122) 에 의해 수행되는 것으로서 설명되어 있지만, 이러한 기능들의 일부 또는 전부는 상이한 프로세싱 유닛들의 조합 또는 다른 프로세싱 유닛들에 의해 수행될 수도 있다.
본 개시의 양태들에 따르면, 팔레트-기반 인코딩 유닛 (122) 은 아래의 도 4 내지 7 에 대하여 설명되거나 본 개시에 달리 설명된 기법들의 임의의 조합을 수행하도록 구성될 수도 있다. 일 예로서, 팔레트-기반 인코딩 유닛 (122) 은 현재 블록에 대한 팔레트 테이블을 도출하고 비디오 데이터 메모리 (101) 에 팔레트 테이블을 저장할 수도 있다. 일부 경우들에서, 팔레트-기반 인코딩 유닛 (122) 은 팔레트 테이블에 기초하여 비디오 데이터의 현재 블록에서의 픽셀이 인코딩되지 않음 (예를 들어, 픽셀이 escape 픽셀임) 을 결정할 수도 있다. 이 예에서, 팔레트-기반 인코딩 유닛 (122) 은 현재 블록에서의 픽셀이 루마 성분 및 크로마 성분을 포함하는지의 여부를 결정할 수도 있다. 예를 들어, 팔레트-기반 인코딩 유닛 (122) 은 루마 성분들 및 크로마 성분들의 페이즈 정렬을 결정할 수도 있고 현재 블록에서의 픽셀이 루마 성분 및 크로마 성분들을 포함하는지의 여부를 결정할 수도 있다.
팔레트-기반 인코딩 유닛 (122) 은 현재 블록에서의 픽셀이 루마 성분들 및 크로마 성분들을 포함하는지의 여부의 결정에 기초하여 비트스트림에서 시그널링할 컬러 값들의 수를 결정할 수도 있고, 비디오 인코더 (20) 는 컬러 값들의 결정된 수에 기초하여 현재 블록을 재구성하기 위하여 이용되는 픽셀들의 컬러 값들을 비트스트림에서 시그널링할 수도 있다. 이 경우에, 픽셀은 이 픽셀에 대한 루마 및/또는 크로마 값들이 팔레트에 있지 않음을 의미하는 escape 픽셀이다. 루마/크로마 값들이 팔레트에 있었다면, 비디오 인코더 (20) 는 팔레트 인덱스를 시그널링할 것이다.
일 예로서, 팔레트-기반 인코딩 유닛 (122) 은, 현재 블록에서의 escape 픽셀이 루마 성분들 및 크로마 성분들을 포함한다는 결정에 기초하여 3 개의 컬러 값들이 escape 픽셀에 대하여 비트스트림에서 시그널링될 것이라고 결정할 수도 있다. 이 예에서, 비디오 인코더 (20) 는 비디오 디코더 (30) 가 현재 블록을 재구성하는데 이용하는 escape 픽셀에 대해 3 개의 컬러 값들을 시그널링한다. 다른 예로서, 팔레트-기반 인코딩 유닛 (122) 은 현재 블록에서의 escape 픽셀이 루마 성분만을 포함하고 크로마 성분들 어느 것도 포함하지 않는다는 결정에 기초하여 단일의 컬러 값만이 비트스트림에서 시그널링될 것이라고 결정할 수도 있다. 이 예에서, 비디오 인코더 (20) 는 비디오 디코더 (30) 가 escape 픽셀을 재구성하는데 이용하는 픽셀에 대해 하나의 컬러 값만을 시그널링한다.
인터-예측 프로세싱 유닛 (126) 은 PU 에 대해 인트라 예측을 수행하는 것에 의해 PU 에 대한 예측 데이터를 생성할 수도 있다. PU 에 대한 예측 데이터는 PU 에 대한 예측 블록들 및 여러 신택스 엘리먼트들을 포함할 수도 있다. 인트라-예측 프로세싱 유닛 (126) 은 I 슬라이스들, P 슬라이스들, 및 B 슬라이스들에서의 PU 들에 대해 인트라 예측을 수행할 수도 있다.
PU 에 대해 인트라 예측을 수행하기 위해, 인트라-예측 프로세싱 모듈 (126) 은 다수의 인트라 예측 모드들을 이용하여 PU 에 대한 예측 데이터의 다수의 세트들의 예측 데이터를 생성할 수도 있다. 인트라-예측 프로세싱 유닛 (126) 은 PU 에 대한 예측 블록을 생성하기 위해 이웃하는 PU들의 샘플 블록들로부터의 샘플들을 이용할 수도 있다. PU들, CU들, 및 CTU들에 대해 좌에서 우, 상에서 하로의 인코딩 순서를 가정하면, 이웃하는 PU들은 PU 의 상에, 상에서 우로, 상에서 좌로, 또는 좌로 있을 수도 있다. 인트라 예측 프로세싱 유닛 (126) 은 다양한 개수의 인트라 예측 모드들, 예를 들어 여러 방향 인트라 예측 모드들을 이용할 수도 있다. 일부 예들에서, 인트라 예측 모드들의 개수는 PU 와 연관된 영역의 사이즈에 의존할 수도 있다.
예측 프로세싱 유닛 (100) 은 PU들에 대한 인터-예측 프로세싱 유닛 (120) 에 의해 생성된 예측 데이터와 PU들에 대한 인트라-예측 프로세싱 유닛 (126) 에 의해 생성된 예측 데이터 중에서부터 CU 의 PU들에 대한 예측 데이터를 선택할 수도 있다. 일부 예들에서, 예측 프로세싱 유닛 (100) 은 예측 데이터의 세트들의 레이트/왜곡 메트릭들에 기초하여 CU 의 PU들에 대한 예측 데이터를 선택한다. 선택된 예측 데이터의 예측 블록들은 선택된 예측 블록들로서 본원에 지칭될 수도 있다.
잔차 생성 유닛 (102) 은 CU 의 루마, Cb 및 Cr 코딩 블록, 및 CU 의 PU들의 선택된 예측 루마, Cb 및 Cr 블록들에 기초하여, CU 의 루마, Cb 및 Cr 잔차 블록들을 생성할 수도 있다. 예를 들어, 잔차 생성 유닛 (102) 은 CU 의 잔차 블록들을 생성할 수도 있어, 잔차 블록들에서의 각각의 샘플이 CU 의 코딩 블록에서의 샘플과, CU 의 PU 의 대응하여 선택된 예측 블록에서의 대응하는 샘플 사이의 차이와 동일한 값을 갖게 된다.
변환 프로세싱 유닛 (104) 은 CU 와 연관된 잔차 블록들을 CU 의 TU들과 연관된 변환 블록들로 파티셔닝하기 위해 쿼드트리 파티셔닝을 수행할 수도 있다. 따라서, TU 는 루마 변환 블록 및 2 개의 크로마 변환 블록들과 연관될 수도 있다. CU 의 TU들의 루마 및 크로마 변환 블록들의 사이즈들 및 포지션들은 CU 의 TU들의 예측 블록들의 사이즈들 및 포지션들에 기초할 수도 있거나 기초하지 않을 수도 있다. "잔차 쿼드트리 (residual quad-tree; RQT)" 로서 알려진 쿼드트리 구조는 영역들 각각과 연관된 노드들을 포함할 수도 있다. CU 의 TU들은 RQT 의 리프 노드들에 대응할 수도 있다.
변환 프로세싱 유닛 (104) 은 TU 의 변환 블록들에 하나 이상의 변환들을 적용하는 것에 의해 CU 의 TU들에 대하여 변환 계수 블록들을 생성할 수도 있다. 변환 프로세싱 유닛 (104) 은 여러 변환들을 TU 와 연관되는 변환 블록에 적용할 수도 있다. 예를 들어, 변환 프로세싱 유닛 (104) 은 이산 코사인 변환 (DCT), 방향 변환, 또는 개념상으로 유사한 변환을 변환 블록에 적용할 수도 있다. 일부 예들에서, 변환 프로세싱 블록 (104) 은 변환 블록에 변환들을 적용하지 않는다. 이러한 예들에서, 변환 블록은 변환 계수 블록으로서 처리될 수도 있다.
양자화 유닛 (106) 은 계수 블록에서 변환 계수들을 양자화할 수도 있다. 양자화 프로세스는 변환 계수들의 일부 또는 전부와 연관된 비트 심도를 감소시킬 수도 있다. 예를 들어, n 비트 변환 계수는 양자화 중에 m 비트 변환 계수로 내림 (round down) 될 수도 있는데, 여기서 n 은 m 보다 크다. 양자화 유닛 (106) 은 CU 와 연관되는 양자화 파라미터 (QP) 값에 기초하여, CU 의 TU 와 연관되는 변환 계수 블록을 양자화할 수도 있다. 비디오 인코더 (20) 는 CU 와 연관되는 QP 값을 조정하는 것에 의해, CU 와 연관되는 계수 블록들에 적용되는 양자화의 정도를 조정할 수도 있다. 양자화는 정보의 손실을 도입할 수도 있고, 따라서, 양자화된 변환 계수들은 양자화 전의 오리지널 변환 계수들 보다 더 낮은 해상도를 가질 수도 있다.
역 양자화 유닛 (108) 및 역 변환 프로세싱 유닛 (110) 은 계수 블록에 각각 역 양자화 및 역 변환들을 적용하여, 계수 블록으로부터 잔차 블록을 재구성할 수도 있다. 재구성 유닛 (112) 은 재구성된 잔차 비디오 블록을 예측 프로세싱 유닛 (100) 에 의해 생성되는 하나 이상의 예측 블록들로부터의 대응하는 샘플들에 가산하여, TU 와 연관되는 재구성된 변환 블록을 생성할 수도 있다. CU 의 각각의 TU 에 대한 비디오 블록들을 이 방법으로 재구성하는 것에 의해, 비디오 인코더 (20) 는 CU 의 코딩 블록들을 재구성할 수도 있다.
필터 유닛 (114) 은 하나 이상의 디블록킹 동작들을 수행하여, CU 와 연관된 코딩 블록들에서의 블록킹 아티팩트들을 감소시킬 수도 있다. 디코딩된 픽처 버퍼 (116) 는 필터 유닛 (114) 이 재구성된 코딩 블록들에 하나 이상의 디블록킹 동작들을 수행한 후에 재구성된 코딩 블록들을 저장할 수도 있다. 인터-예측 프로세싱 유닛 (120) 은 다른 픽처들의 PU들 상에 인터 예측을 수행하기 위해 재구성된 코딩 블록들을 포함하는 참조 픽처를 이용할 수도 있다. 또한, 인트라 예측 프로세싱 유닛 (126) 은 디코딩된 픽처 버퍼 (116) 에서의 재구성된 코딩 블록들을 이용하여, CU 와 동일한 픽처에서의 다른 PU들 상에 인트라 예측을 수행할 수도 있다.
엔트로피 인코딩 모듈 (118) 은 비디오 인코더 (20) 의 다른 기능성 컴포넌트들로부터 데이터를 수신할 수도 있다. 예를 들어, 엔트로피 인코딩 유닛 (118) 은 양자화 유닛 (106) 으로부터 계수 블록들을 수신할 수도 있고, 예측 프로세싱 유닛 (100) 으로부터 신택스 엘리먼트들을 수신할 수도 있다. 엔트로피 인코딩 유닛 (118) 은 엔트로피-인코딩된 데이터를 생성하기 위해 데이터 상에 하나 이상의 엔트로피 인코딩 동작들을 수행할 수도 있다. 예를 들면, 엔트로피 인코딩 유닛 (118) 은 데이터 상에, 컨텍스트 적응 가변 길이 코딩 (CAVLC) 동작, CABAC 동작, 변수-대-변수 (V2V) 길이 코딩 동작, 신택스-기반 컨텍스트-적응 2진 산술 코딩 (SBAC) 동작, 확률 간격 파티셔닝 엔트로피 (PIPE) 코딩 동작, 또는 또 다른 유형의 엔트로피 인코딩 동작을 수행할 수도 있다. 비디오 인코더 (20) 는 엔트로피 인코딩 유닛 (118) 에 의해 생성된 엔트로피 인코딩된 데이터를 포함하는 비트스트림을 출력할 수도 있다. 예를 들어, 비트스트림은 CU 의 RQT 를 표현하는 데이터를 포함할 수도 있다.
도 3 은 본 개시의 기술들을 구현할 수도 있는 예시의 비디오 디코더 (30) 를 예시하는 블록도이다. 도 3 은 설명의 목적으로 제공된 것으로 본 개시에서 광의적으로 예시되고 설명된 기술들을 제한하는 것이 아니다. 설명의 목적을 위해, 본 개시는 HEVC 코딩의 문맥에서 비디오 디코더 (30) 를 설명한다. 그러나, 본 개시의 기법들은 다른 코딩 표준들 또는 방법들에 적용될 수도 있다.
비디오 디코더 (30) 는 본 개시에 설명된 여러 예들에 따라 팔레트-기반 비디오 코딩에 대한 기법들을 수행하도록 구성될 수도 있다. 예를 들어, 비디오 디코더 (30) 는 팔레트-모드를 이용하여 현재 블록을 코딩하도록 구성될 수도 있고, 여기에서 대응하는 크로마 블록의 사이즈는 대응하는 루마 블록의 사이즈와는 상이하다.
도 3 의 예에서, 비디오 디코더 (30) 는 엔트로피 디코딩 유닛 (150), 비디오 데이터 메모리 (151), 예측 프로세싱 유닛 (152), 역 양자화 유닛 (154), 역 변환 프로세싱 유닛 (156), 재구성 유닛 (158), 필터 유닛 (160) 및 디코딩된 픽처 버퍼 (162) 를 포함한다. 예측 프로세싱 유닛 (152) 은 모션 보상 유닛 (164) 및 인트라 예측 프로세싱 유닛 (166) 을 포함한다. 비디오 디코더 (30) 는 또한, 본 개시에 설명된 팔레트-기반 코딩 기법들의 여러 양태들을 수행하도록 구성되는 팔레트-기반 디코딩 유닛 (165) 을 포함한다. 다른 예들에서, 비디오 디코더 (30) 는 더 많은, 더 적은 또는 상이한 기능성 컴포넌트들을 포함할 수도 있다.
비디오 데이터 메모리 (151) 는 비디오 디코더 (30) 의 컴포넌트들에 의해 디코딩될 비디오 데이터, 이를 테면, 인코딩된 비디오 비트스트림을 저장할 수도 있다. 비디오 데이터 메모리 (151) 에 저장된 비디오 데이터는 예를 들어, 컴퓨터 판독가능 매체 (16) 로부터, 예를 들어, 로컬 비디오 소스, 이를 테면, 카메라로부터, 비디오 데이터의 유선 또는 무선 네트워크 통신을 통하여 또는 물리적 데이터 저장 매체에 액세스하는 것에 의해 획득될 수도 있다. 비디오 데이터 메모리 (151) 는 인코딩된 비디오 비트스트림으로부터 인코딩된 비디오 데이터를 저장하는 코딩된 픽처 버퍼 (CPB) 를 형성할 수도 있다. 디코딩된 픽처 버퍼 (162) 는 예를 들어, 인트라 또는 인터 코딩 모드들에서, 비디오 디코더 (30) 에 의해 비디오 데이터를 디코딩하는데 있어 이용하기 위한 참조 비디오 데이터를 저장하는 참조 픽처 메모리일 수도 있다. 비디오 데이터 메모리 (151) 및 디코딩된 픽처 버퍼 (162) 는 여러 메모리 디바이스들, 이를 테면, SDRAM (synchronous DRAM), MRAM (magnetoresistive RAM), RRAM (resistive RAM) 을 포함하는 DRAM (Dynamic random access memory), 또는 다른 유형들의 메모리 디바이스들의 어느 것에 의해 형성될 수도 있다. 비디오 데이터 메모리 (151) 및 디코딩된 픽처 버퍼 (162) 는 동일한 메모리 디바이스 또는 별도의 메모리 디바이스들에 의해 제공될 수도 있다. 여러 예들에서, 비디오 데이터 메모리 (151) 는 비디오 디코더 (30) 의 다른 컴포넌트들과의 온-칩일 수도 있거나 또는 이들 컴포넌트들에 대하여 오프-칩일 수도 있다.
비디오 데이터 메모리 (151) 에서의 코딩된 픽처 버퍼 (CPB) 는 비트스트림의 인코딩된 비디오 데이터 (예를 들어, NAL 유닛들) 을 수신 및 저장할 수도 있다. 엔트로피 디코딩 유닛 (150) 은 CPB 로부터 인코딩된 비디오 데이터 (예를 들어, NAL 유닛들) 를 수신할 수도 있고, 신택스 엘리먼트들을 디코딩하기 위해 NAL 유닛들을 파싱할 수도 있다. 엔트로피 디코딩 유닛 (150) 은 NAL 유닛들에서의 엔트로피 인코딩된 신택스 엘리먼트들을 엔트로피 디코딩할 수도 있다. 예측 프로세싱 유닛 (152), 역양자화 유닛 (154), 역변환 프로세싱 유닛 (156), 재구성 유닛 (158), 및 필터 유닛 (160) 은 비트스트림으로부터 추출된 신택스 엘리먼트들에 기초하여, 디코딩된 비디오 데이터를 생성할 수도 있다.
비트스트림의 NAL 유닛들은 코딩된 슬라이스 NAL 유닛들을 포함할 수도 있다. 비트스트림을 디코딩하는 부분으로서, 엔트로피 디코딩 유닛 (150) 은 코딩된 슬라이스 NAL 유닛들로부터 신택스 엘리먼트들을 추출하고 엔트로피 디코딩할 수도 있다. 코딩된 슬라이스들 각각은 슬라이스 헤더와 슬라이스 데이터를 포함할 수도 있다. 슬라이스 헤더는 슬라이스에 관한 신택스 엘리먼트들을 포함할 수도 있다. 슬라이스 헤더에서의 신택스 엘리먼트들은 그 슬라이스를 포함하는 픽처와 관련된 PPS 를 식별하는 신택스 엘리먼트를 포함할 수도 있다.
비트스트림으로부터의 신택스 엘리먼트들을 디코딩하는 것에 더하여, 비디오 디코더 (30) 는 비-파티셔닝된 CU 에 대한 재구성 동작을 수행할 수도 있다. 비-파티셔닝된 CU 에 대해 재구성 동작을 수행하기 위해, 비디오 디코더 (30) 는 CU 의 각각의 TU 에 대해 재구성 동작을 수행할 수도 있다. CU 의 각각의 TU 에 대해 재구성 동작을 수행하는 것에 의해, 비디오 디코더 (30) 는 CU 의 잔차 블록을 재구성할 수도 있다.
CU 의 TU 에 대해 재구성 동작을 수행하는 부분으로서, 역양자화 유닛 (154) 은 TU 와 연관된 계수 블록들을 역 양자화, 즉, 양자화 해제할 수도 있다. 역 양자화 유닛 (154) 은 양자화의 정도, 및 마찬가지로 역 양자화 유닛 (154) 이 적용하는 역 양자화의 정도를 결정하기 위해 TU 의 CU 와 연관된 QP 값을 이용할 수도 있다. 즉, 압축비, 즉, 오리지널 시퀀스를 표현하기 위해 이용된 비트들의 수와 압축된 것의 비는, 변환 계수들을 양자화할 때 사용된 QP 의 값을 조정하는 것에 의해 제어될 수도 있다. 압축비는 활용되는 엔트로피 코딩의 방법에 또한 의존할 수도 있다.
역양자화 유닛 (154) 이 계수 블록을 역양자화한 후, 역변환 프로세싱 유닛 (156) 은 TU 와 연관된 잔차 블록을 생성하기 위하여 계수 블록에 하나 이상의 역 변환들을 적용할 수도 있다. 예를 들어, 역변환 프로세싱 유닛 (156) 은 역 DCT, 역 정수 변환, 역 Karhunen-Loeve 변환 (KLT), 역 회전 변환, 역 방향 변환, 또는 다른 역변환을 계수 블록에 적용할 수도 있다.
PU 가 인트라 예측을 이용하여 인코딩된 경우, 인트라-예측 프로세싱 유닛 (166) 은 인트라 예측을 수행하여 PU 에 대한 예측 블록들을 생성할 수도 있다. 인트라-예측 프로세싱 유닛 (166) 은 공간적으로 이웃하는 PU들의 예측 블록들에 기초하여 PU 에 대한 예측 루마, Cb 및 Cr 블록들을 생성하도록 인트라 예측 모드를 이용할 수도 있다. 인트라-예측 프로세싱 유닛 (166) 은 비트스트림으로부터 디코딩된 하나 이상의 신택스 엘리먼트들에 기초하여 PU 에 대한 인트라 예측 모드를 결정할 수도 있다.
예측 프로세싱 유닛 (152) 은 비트스트림으로부터 추출된 신택스 엘리먼트들에 기초하여 제 1 참조 픽처 리스트 (RefPicList0) 및 제 2 참조 픽처 리스트 (RefPicList1) 를 구성할 수도 있다. 또한, PU 가 인터 예측을 이용하여 인코딩되면, 엔트로피 디코딩 유닛 (150) 은 PU 에 대한 모션 정보를 추출할 수도 있다. 모션 보상 유닛 (164) 은 PU 의 모션 정보에 기초하여 PU 에 대한 하나 이상의 참조 영역들을 결정할 수도 있다. 모션 보상 유닛 (164) 은 PU 에 대한 하나 이상의 참조 블록들에서의 샘플 블록들에 기초하여, PU 에 대한 예측 루마, Cb 및 Cr 블록들을 생성할 수도 있다.
재구성 유닛 (158) 은 CU 의 루마, Cb 및 Cr 코딩 블록들을 재구성하기 위해, CU 의 TU들과 연관된 루마, Cb 및 Cr 변환 블록들, 및 CU 의 PU들의 예측 루마, Cb 및 Cr 블록들, 즉, 필요에 따라 인트라-예측 데이터 또는 인터-예측 데이터를 이용할 수도 있다. 예를 들어, 재구성 유닛 (158) 은 CU 의 루마, Cb 및 Cr 코딩 블록들을 재구성하기 위해 루마, Cb 및 Cr 변환 블록들의 샘플들을 예측 루마, Cb 및 Cr 블록들의 대응하는 샘플들에 부가할 수도 있다.
필터 유닛 (160) 은 CU 의 루마, Cb 및 Cr 코딩 블록과 연관된 블록킹 아티팩트들을 감소시키기 위해 디블로킹 동작을 수행할 수도 있다. 비디오 디코더 (30) 는 디코딩된 픽처 버퍼 (162) 에 CU 의 루마, Cb 및 Cr 코딩 블록들을 저장할 수도 있다. 디코딩된 픽처 버퍼 (162) 는 후속 모션 보상, 인트라 예측, 및 도 1 의 디스플레이 디바이스 (32) 와 같은 디스플레이 디바이스 상에서의 프리젠테이션을 위해 참조 픽처들을 제공할 수도 있다. 예를 들어, 비디오 디코더 (30) 는 디코딩된 픽처 버퍼 (162) 에서의 루마, Cb 및 Cr 블록들에 기초하여, 다른 CU들의 PU들에 대해 인트라 예측 또는 인터 예측 동작들을 수행할 수도 있다.
본 개시의 여러 예들에 따르면, 비디오 디코더 (30) 는 팔레트-기반 코딩을 수행하도록 구성될 수도 있다. 팔레트-기반 디코딩 유닛 (165) 은 예를 들어, 팔레트-기반 디코딩 모드가 예를 들어, CU 또는 PU 에 대하여 선택될 때 팔레트-기반 디코딩을 수행할 수도 있다. 예를 들어, 팔레트-기반 디코딩 유닛 (165) 은 픽셀 값들을 표시하는 엔트리들을 갖는 팔레트를 생성하고, 팔레트에서의 엔트리들과, 비디오 데이터의 블록에서의 적어도 일부의 픽셀 로케이션들을 연관시키는 정보를 수신하고, 정보에 기초하여 팔레트에서의 픽셀 값들을 선택하고, 그리고 팔레트에서의 선택된 픽셀 값들에 기초하여 블록의 픽셀 값들을 재구성하도록 구성될 수도 있다. 여러 기능들이 팔레트-기반 디코딩 유닛 (165) 에 의해 수행되는 것으로서 설명되어 있지만, 이러한 기능들의 일부 또는 전부는 상이한 프로세싱 유닛들의 조합 또는 다른 프로세싱 유닛들에 의해 수행될 수도 있다.
팔레트-기반 디코딩 유닛 (165) 은 팔레트 코딩 모드 정보를 수신할 수도 있고, 팔레트 코딩 모드가 블록에 적용함을 팔레트 코딩 모드 정보가 표시할 때 위의 동작을 수행할 수도 있다. 팔레트 코딩 모드가 블록에 적용하지 않음을 팔레트 코딩 모드 정보가 표시할 때, 또는 다른 모드 정보가 상이한 모드의 사용을 표시할 때, 예측 프로세싱 유닛 (152) 은 비-팔레트-기반 코딩 모드, 예를 들어, 이러한 HEVC 인터-예측 또는 인트라-예측 코딩 모드를 이용하여 비디오 데이터의 블록을 디코딩한다. 비디오 데이터의 블록은 예를 들어, HEVC 코딩 프로세스에 따라 생성되는 CU 또는 PU 일 수도 있다. 팔레트-기반 코딩 모드는 복수의 상이한 팔레트-기반 코딩 모드들 중 하나를 포함할 수도 있거나 또는 단일의 팔레트-기반 코딩 모드가 존재할 수도 있다.
본 개시의 양태들에 따르면, 팔레트-기반 디코딩 유닛 (165) 은 아래의 도 4 내지 7 에 대하여 설명되거나 본 개시에 달리 설명된 기법들의 임의의 조합을 수행하도록 구성될 수도 있다. 예를 들어, 팔레트-기반 디코딩 유닛 (165) 은 비디오 데이터의 현재 블록에 대해, 3 개의 컬러 값들을 갖는 엔트리들을 포함하는 단일의 팔레트 테이블을 도출할 수도 있다. 비디오 데이터 메모리 (151) 는 컬러 값들을 갖는 엔트리들을 포함하는 팔레트 테이블을 저장할 수도 있다.
팔레트-기반 디코딩 유닛 (165) 은 비디오 데이터의 현재 블록에서의 픽셀이 루마 성분 및 크로마 성분들을 포함하는지의 여부를 결정할 수도 있다. 예를 들어, 팔레트-기반 디코딩 유닛 (165) 은 현재 블록의 루마 성분들과 현재 블록의 크로마 성분들 사이의 페이즈 정렬을 결정할 수도 있다. 팔레트-기반 디코딩 유닛 (165) 은 결정된 페이즈 정렬에 기초하여 상기 현재 블록에서의 픽셀이 루마 성분 및 크로마 성분들을 포함하는지의 여부를 결정할 수도 있다.
일부 예들에서, 팔레트-기반 디코딩 유닛 (165) 은 현재 블록에서의 픽셀이 루마 성분 및 크로마 성분들을 포함하는지의 여부의 결정에 기초하여 팔레트 테이블로부터 취출할 컬러 값들의 수를 결정할 수도 있다. 일부 예들에서, 팔레트-기반 디코딩 유닛 (165) 은 현재 블록에서의 픽셀이 루마 성분 및 크로마 성분들을 포함한다는 결정에 기초하여 3 개의 컬러 값들이 팔레트 테이블로부터 취출될 것이라고 결정한다. 팔레트-기반 디코딩 유닛 (165) 은 현재 블록에서의 픽셀이 루마 성분만을 포함하고 크로마 성분들 어느 것도 포함하지 않는다는 결정에 기초하여 3 개의 컬러 값들 중 단일의 컬러 값만이 팔레트 테이블로부터 취출될 것이라고 결정한다. 일반적으로, 비디오 디코더 (30) 는 팔레트 테이블로의 하나의 엔트리를 식별하는 단일의 인덱스를 수신할 수도 있다. 팔레트-기반 디코딩 유닛 (165) 은 현재 블록에서의 픽셀이 루마 성분 및 크로마 성분들을 포함하는지의 여부의 결정에 기초하여 팔레트 테이블로의 식별된 엔트리로부터 취출할 컬러 값들의 수를 결정할 수도 있다.
팔레트-기반 디코딩 유닛 (165) 은 취출할 컬러 값들의 수의 결정에 기초하여 비디오 데이터의 현재 블록에서의 픽셀을 팔레트-모드 디코딩할 수도 있다. 예를 들어, 팔레트-기반 디코딩 유닛 (165) 이 픽셀이 루마 성분 및 크로마 성분들을 포함한다고 결정하면, 팔레트-기반 디코딩 유닛 (165) 은 팔레트 테이블로부터 3 개의 컬러 값들을 취출하고 픽셀의 개별적인 루마 및 크로마 성분들에 3 개의 컬러 값들의 각각을 배정할 수도 있다. 팔레트-기반 디코딩 유닛 (165) 이 픽셀이 루마 성분만을 포함하고 크로마 성분들 어느 것도 포함하지 않는다는 결정하면, 팔레트-기반 디코딩 유닛 (165) 은 팔레트 테이블로부터 단일의 컬러 값 (예를 들어, 3 개의 컬러 값들의 제 1 식별된 컬러 값) 을 취출하고 상기 픽셀의 루마 성분에 단일의 컬러 값을 배정할 수도 있다.
위의 예에서, 현재 블록의 픽셀은 팔레트 테이블에서의 컬러 값 또는 값들에 기초하여 디코딩되었다. 그러나, 일부 예들에서, 현재 블록에서의 픽셀은 팔레트 테이블에 기초하여 디코딩되지 않을 수도 있다 (예를 들어, escape 픽셀). 이러한 예들에서, 팔레트-기반 디코딩 유닛 (165) 은 현재 블록에서의 escape 픽셀이 루마 성분 및 크로마 성분들을 포함하는지의 여부를 결정할 수도 있다.
팔레트-기반 디코딩 유닛 (165) 은 현재 블록에서의 escape 픽셀이 루마 성분 및 크로마 성분들을 포함하는지의 여부의 결정에 기초하여 비트스트림으로부터 파싱할 컬러 값들의 수를 결정할 수도 있다. 예를 들어, 팔레트-기반 디코딩 유닛 (165) 은 현재 블록에서의 escape 픽셀이 루마 성분 및 크로마 성분들을 포함한다는 결정에 기초하여 3 개의 컬러 값들 (가능하다면, 양자화됨) 이 비트스트림으로부터 파싱될 것이라고 결정할 수도 있다. 다른 예로서, 팔레트-기반 디코딩 유닛 (165) 은 현재 블록에서의 escape 픽셀이 루마 성분만을 포함하고 크로마 성분들 어느 것도 포함하지 않는다는 결정에 기초하여 단일의 컬러 값만이 비트스트림으로부터 파싱될 것이라고 결정할 수도 있다.
팔레트-기반 디코딩 유닛 (165) 은 비트스트림으로부터 파싱할 컬러 값들의 결정된 수에 기초하여 escape 픽셀을 디코딩할 수도 있다. escape 픽셀이 루마 성분 및 크로마 성분들을 포함하면, 팔레트-기반 디코딩 유닛 (165) 은 3 개의 컬러 값들 (가능하다면 양자화됨) 을 파싱하고 루마 성분 및 크로마 성분들에 개별적인 컬러 값들을 배정할 수도 있다. escape 픽셀이 루마 성분만을 포함하고 크로마 성분들 어느 것도 포함하지 않으면, 팔레트-기반 디코딩 유닛 (165) 은 하나의 컬러 값 (가능하다면 양자화됨) 만을 파싱하고 루마 성분에 그 컬러 값을 배정할 수도 있다.
도 4 는 비디오 데이터를 코딩하기 위한 팔레트를 결정하는 일 예를 예시하는 개념도이다. 도 4 의 예는 제 1 팔레트들 (184) 과 연관된 제 1 코딩 유닛 (CU)(180), 및 제 2 팔레트들 (192) 과 연관된 제 2 CU (188) 를 갖는 픽처 (178) 를 포함한다. 제 1 CU (180) 및 제 2 CU (188) 는 팔레트-모드 (palette mode; PAL) 를 이용하여 코딩된다. 아래 보다 자세하게 설명된 바와 같이, 제 2 팔레트들 (192) 은 제 1 팔레트들 (184) 에 기초한다. 픽처 (178) 는 또한 인트라-예측 코딩 모드로 코딩되는 블록 (196), 및 인터-예측 코딩 모드로 코딩되는 블록 (200) 을 포함한다.
스크린 컨텐츠 비디오의 특징들에 기초하여, 팔레트 코딩은 문서, JCTVC-M0323 (L. Guo 등의 "Palette Mode for Screen Content Coding", JCTVC-M0323, Incheon, KR, 2013년 4월 18일-26일) 에서 처음 제안된 SCC 효율성을 개선하도록 도입되며, 이 문서의 전체 내용은 본원에서는 참조로서 포함된다. 구체적으로, 팔레트 코딩은 룩업 테이블, 즉, 컬러 팔레트를 도입하여, SCC 에서, 하나의 CU 내의 컬러들이 통상 몇몇 피크 값들에 집중되어 있다는 점에 기초하여 반복적 픽셀 값들을 압축한다. 특정 CU 에 대한 팔레트가 주어지면, CU 내의 픽셀들은 팔레트 인덱스에 맵핑된다. 제 2 스테이지에서, 좌측 런 렝스로부터의 카피 기법이 인덱스 블록의 반복적 패턴을 효율적으로 압축하도록 제안된다. 문서, JCTVC-N0249 (Guo 등의 "Non-RCE3: Modified Palette Mode for Screen Content Coding", JCTVC-N0249, Vienna, AT, 2013년 7월 25일-8월 2일) 에서, 팔레트 인덱스 코딩 모드는 런-렝스 코딩으로 좌측에서부터의 카피 및 위에서부터의 카피 양쪽을 허용하도록 일반화되었다. 일부 사례들에서, 팔레트 코드가 스크린 컨텐츠의 시각적 품질에 부정적 영향을 주는 블러링 샤프 에지들을 방지하기 위해 어떠한 변환 프로세스도 인보크되지 않음을 주지한다.
일반적으로, 팔레트는 (인덱스, 픽셀 값) 페어들을 저장하는 데이터 구조이다. 설계된 팔레트는 예를 들어, 현재 CU 에서 픽셀 값들의 히스토그램에 의해 비디오 인코더 (20) 에서 결정될 수도 있다. 예를 들어, 히스토그램에서의 피크 값들은 팔레트 내에 부가되는 한편, 낮은 주파수 픽셀 값들은 팔레트에 포함되지 않는다.
도 4 의 기법들은 비디오 인코더 (20)(도 1 및 도 2) 및 비디오 디코더 (30)(도 1 및 도 3) 의 문맥에서 그리고 설명의 목적을 위한 HEVC 비디오 코딩 표준에 대해 설명된다. 그러나, 본 개시의 기법들이 이러한 것으로 제한되지 않고 다른 비디오 코딩 프로세스들 및/또는 표준들에서 다른 비디오 코딩 프로세서들 및/또는 디바이스들에 의해 적용될 수도 있음을 이해하여야 한다.
일반적으로, 팔레트는 현재 코딩중에 있는 CU, 예를 들어, 도 4 의 예에서 CU (180) 에 대하여 지배적이고 대표적인 픽셀 값들의 수를 의미한다. 제 1 팔레트 (184) 및 제 2 팔레트 (192) 는 다수의 팔레트들을 포함하는 것으로서 도시된다. 일부 예들에서, 본 개시의 양태들에 따르면, 비디오 코더 (이를 테면, 비디오 인코더 (20) 또는 비디오 디코더 (30)) 는 CU 의 각각의 컬러 성분에 대하여 개별적으로 팔레트들을 코딩할 수도 있다. 예를 들어, 비디오 인코더 (20) 는 CU 의 루마 (Y) 성분에 대한 팔레트, CU 의 크로마 (U) 성분에 대한 다른 팔레트, 및 CU 의 크로마 (V) 성분에 대한 또 다른 팔레트를 인코딩할 수도 있다. 이 예에서, Y 팔레트의 엔트리들은 CU 의 픽셀들의 Y 값들을 표현할 수도 있고, U 팔레트의 엔트리들은 CU 의 픽셀들의 U 값들을 표현할 수도 있고, V 팔레트의 엔트리들은 CU 의 픽셀들의 V 값들을 표현할 수도 있다.
다른 예에서, 비디오 인코더 (20) 는 CU 의 모든 컬러 성분들에 대한 단일의 팔레트를 인코딩할 수도 있다. 이 예에서, 비디오 인코더 (20) 는 Yi, Ui, 및 Vi 를 포함하는 트리플 값인 i 번째 엔트리를 갖는 팔레트를 인코딩할 수도 있다. 이 경우에, 팔레트는 픽셀들의 성분들 각각에 대한 값들을 포함한다. 따라서, 다수의 개별적인 팔레트들을 갖는 팔레트들의 세트로서 팔레트들 (184 및 192) 의 표현은 단지 일 예에 불과하고 제한하는 것으로 의도하지 않는다.
도 4 의 예에서, 제 1 팔레트들 (184) 각각은 엔트리 인덱스 값 1, 엔트리 인덱스 값 2, 및 엔트리 인덱스 값 3 을 각각 갖는 3 개의 엔트리들 (202-206) 을 포함한다. 엔트리들 (202-206) 은 픽셀 값 A, 픽셀 값 B, 및 픽셀 값 C 각각을 포함하는 픽셀 값들에 인덱스 값들을 관련시킨다. 본원에 설명된 바와 같이, 제 1 CU (180) 의 실제 픽셀 값들을 코딩하기 보다는, 비디오 코더 (이를 테면, 비디오 인코더 (20) 또는 비디오 디코더 (30)) 는 인덱스들 1-3 을 이용하여 블록의 픽셀들을 코딩하도록 팔레트-기반 코딩을 이용할 수도 있다. 즉, 제 1 CU (180) 의 각각의 픽셀 포지션에 대해, 비디오 인코더 (20) 는 픽셀에 대한 인덱스 값을 인코딩할 수도 있고, 인덱스 값은 제 1 팔레트들 (184) 중 하나 이상의 팔레트에서의 픽셀 값과 연관된다. 비디오 디코더 (30) 는 비트스트림으로부터 인덱스 값들을 획득하고, 제 1 팔레트들 (184) 중 하나 이상, 및 인덱스 값들을 이용하여 픽셀 값들을 재구성할 수도 있다. 따라서, 제 1 팔레트들 (184) 은 팔레트-기반 디코딩에 있어서 비디오 디코더 (30) 에 의한 이용을 위해 인코딩된 비디오 데이터 비트스트림에서 비디오 인코더 (20) 에 의해 송신된다.
일부 예들에서, 팔레트의 하나 이상의 엔트리들은 다른 팔레트 (예를 들어, 코딩 동안에 이전에 이용된 팔레트) 로부터 예측될 수도 있다. 예를 들어, 팔레트는 예측자 팔레트로부터 카피된 엔트리들을 포함할 수도 있다. 예측자 팔레트는 팔레트-모드를 이용하여 이전에 코딩된 블록들 또는 다른 재구성된 샘플들로부터의 팔레트 엔트리들을 포함할 수도 있다. 예측자 팔레트에서의 각각의 엔트리에 대해 2진수 플래그는 그 엔트리가 현재 팔레트에 카피되는지의 여부를 표시하도록 비트스트림에 포함될 수도 있다 (플래그 = 1 로 표시됨). 개별적인 팔레트 엔트리들에 대한 일련의 2진수 플래그들은 2진수 팔레트 예측 벡터로서 지칭될 수도 있다. 추가적으로, 현재 팔레트는 명시적으로 시그널링된 새로운 엔트리들을 포함할 수도 있다. 새로운 엔트리들의 수가 또한 시그널링될 수도 있다.
도 4 의 예에서, 비디오 인코더 (20) 및 비디오 디코더 (30) 는 제 1 팔레트들 (184) 에 기초하여 제 2 팔레트들 (192) 을 결정할 수도 있다. 예를 들어, 비디오 인코더 (20) 및/또는 비디오 디코더 (30) 는 예측 팔레트, 이 예에서, 제 1 팔레트들 (184) 이 결정되어지는 하나 이상의 블록들을 로케이션할 수도 있다. 일부 예들에서, 이를 테면, 도 4 에 예시된 예에서, 비디오 인코더 (20) 및/또는 비디오 디코더 (30) 는 제 2 CU (188) 에 대한 예측 팔레트를 결정할 때 좌측 이웃하는 CU (제 1 CU (180)) 와 같은 이전에 코딩된 CU 를 로케이션할 수도 있다.
도 4 의 예에서, 제 2 팔레트들 (192) 은 엔트리 인덱스 값 1, 엔트리 인덱스 값 2, 및 엔트리 인덱스 값 3 을 갖는 3 개의 엔트리들 (208-212) 을 포함한다. 엔트리들 (208-212) 은 픽셀 값 A, 픽셀 값 B, 및 픽셀 값 D 각각을 포함하는 픽셀 값들에 인덱스 값들을 관련시킨다. 이 예에서, 비디오 인코더 (20) 는 제 1 팔레트들 (184) 의 어느 엔트리들이 제 2 팔레트들 (192) 에 포함되는지를 표시하는 하나 이상의 신택스 엘리먼트들을 코딩할 수도 있다. 도 4 의 예에서, 하나 이상의 신택스 엘리먼트들은 벡터 (216) 로서 예시된다. 벡터 (216) 는 복수의 연관된 빈들 (또는 비트들) 을 가지며, 각각의 빈은 그 빈과 연관된 팔레트 예측자가 현재 팔레트의 엔트리를 예측하는데 이용되는지의 여부를 표시한다. 예를 들어, 벡터 (216) 는, 제 1 팔레트들 (184) 의 첫번째 2 개의 엔트리들 (202 및 204) 이 제 2 팔레트들 (192) 에 포함됨을 표시하는 한편 (벡터 216 에서 "1" 의 값), 제 1 팔레트들 (184) 의 세번째 엔트리가 제 2 팔레트들 (192) 에 포함되지 않음 (벡터 216 에서 "1" 의 값) 을 표시한다. 도 4 의 예에서, 벡터는 불 벡터 (Boolean vector) 이다.
일부 예들에서, 비디오 인코더 (20) 및 비디오 디코더 (30) 는 팔레트 예측을 수행할 때 (팔레트 예측자 테이블로서 또한 지칭될 수도 있는) 팔레트 예측자 리스트를 결정할 수도 있다. 팔레트 예측자 리스트는 현재 블록을 코딩하기 위한 팔레트의 하나 이상의 엔트리들을 예측하는데 이용되는 하나 이상의 이웃하는 블록들의 팔레트들로부터의 엔트리들을 포함할 수도 있다. 비디오 인코더 (20) 및 비디오 디코더 (30) 는 동일한 방식으로 리스트를 구성할 수도 있다. 비디오 인코더 (20) 및 비디오 디코더 (30) 는 팔레트 예측자 리스트 중 어느 엔트리들이 현재 블록을 코딩하기 위하여 팔레트에 포함될 것인지를 표시하기 위해 데이터 (이를 테면, 벡터 (216)) 를 코딩할 수도 있다.
도 5 는 팔레트 예측의 일 예를 예시한다. 예를 들어, SCC 에 대해, 하나의 슬라이스 내의 CU 블록들은 많은 지배적 컬러들을 공유할 수도 있다. 따라서, 도 4 와 관련하여 위에 주지된 바와 같이, 참조로서 (CU 디코딩 순서에서) 이전 팔레트-모드 CU 의 팔레트들을 이용하여 현재 블록들의 팔레트를 예측하는 것이 가능할 수도 있다. 구체적으로, 0-1 의 2진수 벡터는 참조 팔레트에서 픽셀 값들이 현재 팔레트에 의해 재사용되는지의 여부를 표시하도록 시그널링될 수도 있다. 예로서, 도 5 에서, 참조 팔레트는 6 개의 아이템들을 갖는 것으로 가정된다. 벡터 (1, 0, 1, 1, 1, 1) 는 v0, v2, v3, v4, 및 v5 이 현재 팔레트에서 재사용되는 한편 v1 이 재사용되지 않음을 표시하는 현재 팔레트로 시그널링될 수도 있다. 현재 팔레트가 참조 팔레트로부터 예측가능하지 않은 컬러들을 포함하면, 예측되지 않은 컬러들의 수가 코딩되고 그 다음 이들 컬러들이 직접 시그널링될 수도 있다. 예를 들어, 도 5 에서, u0 및 u1 이 직접 비트스트림에서 시그널링될 수도 있다.
도 6 은 픽셀들의 블록을 위한 팔레트에 대한 인덱스들을 결정하는 일 예를 예시하는 개념도이다. 예를 들어, 현재 HEVC 스크린 컨텐츠 코딩 테스트 모델 (Screen Content Coding Test Model 2; SCM 2) 참조 소프트웨어 에서, 정규 예측으로부터 팔레트 코딩의 2 개의 프라이머리 양태들은 팔레트-모드에서 코딩되고 있는 블록에서의 각각의 샘플 마다 팔레트의 코딩 및 팔레트 인덱스의 코딩이다. 위에 주지된 바와 같이, 팔레트 인덱스들의 코딩은 인덱스 모드 및 위에서부터의 카피 모드를 포함하는 2 개의 프라이머리 모드들을 이용하여 수행될 수도 있다. 인덱스 모드에서, 예를 들어, 팔레트 인덱스는 초기에 시그널링될 수도 있다. 인덱스가 팔레트의 사이즈와 같으면, 이는 샘플이 escape 샘플임을 표시한다. 이 경우, 각 성분 마다 샘플 값 또는 양자화된 샘플들 값이 시그널링된다. 위에서부터 카피 모드에서, 현재 픽셀을 포함한 다음 m 픽셀들이 바로 위의 자신의 이웃들로서 팔레트 인덱스들을 각각 공유함을 표시하도록 음이 아닌 런 렝스 값 m-1 만이 송신될 수도 있다.
일부 예들에서, 특정 블록에 대한 팔레트-모드는 palette_mode 플래그를 이용하여 시그널링될 수도 있다. 위에 주지된 바와 같이, 인덱스 모드는 또한, escape 샘플들, 즉, 팔레트에 속하지 않는 샘플들을 표시하는데 이용된다. 현재 설계에서, 위에서부터의 카피 모드는 팔레트 블록의 첫번째 로우에 대하여 가능하지 않다. 추가로, 위에서부터의 카피 모드는 또 다른 위에서부터의 카피 모드를 따르지 않을 수도 있다. 이들 경우들에서, 인덱스 모드가 추론된다.
현재 설계에서, 팔레트-모드는 CU 레벨에서 시그널링되지만, PU 레벨에서 이것을 시그널링하는 것이 또한 가능할 수도 있다. 플래그, palette_esc_val_present_flag 는 또한 현재 블록에서 escape 샘플들의 존재를 표시하도록 시그널링될 수도 있다. 상이한 방식으로 팔레트-모드들을 시그널링하는 것이 또한 가능하다. 예를 들어, 문서, JCTVC-P0231 (W. Pu, F. Zou, M. Karczewicz, 및 R. Joshi 의 "Non-RCE4: Refinement of the palette in RCE4 Test 2", JCTVC-P0231) 에서 현재 샘플이, escape 샘플이였는지의 여부를 표시하기 위해 명시적 플래그를 이용하는 것이 제안되었다. 현재 샘플이 비-escape이였다면, 팔레트-모드가 위에서부터의 카피 모드 또는 인덱스 모드였는지의 여부를 표시하도록 다른 플래그가 시그널링되었다.
도 6 의 예는, 팔레트들 (244) 의 엔트리들에, 인덱스 값들과 연관된 픽셀들의 개별적인 포지션들을 관련시키는 인덱스 값들 (값들 1, 2, 및 3) 의 맵 (240) 을 포함한다. 맵 (240) 이 도 6 의 예에서 각각의 픽셀 포지션 마다 인덱스 값을 포함하는 것으로서 예시되어 있지만, 다른 예들에서 모든 픽셀 포지션들이 팔레트들 (244) 의 엔트리에 픽셀 값을 관련시키는 인덱스값과 연관되는 것은 아닐 수도 있음을 이해하여야 한다. 즉, 위에 주지된 바와 같이, 일부 예들에서, 비디오 인코더 (20) 는 픽셀 값이 팔레트 (244) 에 포함되지 않으면, 맵 (240) 에서의 포지션에 대해 실제 픽셀 값 (또는 그 양자화된 버전) 의 표시를 인코딩할 수도 있다 (그리고 비디오 디코더 (30) 는 인코딩된 비트스트림으로부터 이를 획득할 수도 있다).
일부 예들에서, 비디오 인코더 (20) 및 비디오 디코더 (30) 는 어느 픽셀 포지션들이 인덱스 값들과 연관됨을 표시하는 추가적인 맵을 코딩하도록 구성될 수도 있다. 예를 들어, 맵에서의 (i, j) 엔트리가 CU 의 (i, j) 포지션에 대응한다고 가정한다. 비디오 인코더 (20) 는 엔트리가 연관된 인덱스 값을 갖는지의 여부를 표시하는 맵의 각각의 엔트리 (즉, 각각의 픽셀 포지션) 마다 하나 이상의 신택스 엘리먼트들을 인코딩할 수도 있다. 비디오 인코더 (20) 는 이러한 예에서, 또한 대응하는 픽셀 값을 팔레트에서 표시하고 비디오 디코더 (30) 가 픽셀 값을 재구성하도록 허용하기 위해 (값들 1-3 으로서 도 6 의 예에 도시된) 팔레트 인덱스를 인코딩할 수도 있다.
CU 의 하나의 포지션에서의 픽셀의 값은 CU 의 다른 포지션들에서의 하나 이상의 다른 픽셀들의 값들의 표시를 제공할 수도 있다. 예를 들어, CU 의 이웃하는 픽셀 포지션들이 동일한 픽셀 값들을 갖거나 또는 동일한 인덱스 값에 매핑될 수도 있는 비교적 높은 확률이 존재할 수도 있다 (손실성 코딩의 경우, 1 보다 큰 픽셀 값이 단일의 인덱스 값에 맵핑될 수도 있다).
따라서, 비디오 인코더 (20) 는 그룹으로서 코딩되는 주어진 스캔 순서에서 인덱스 값들 또는 연속하는 픽셀들의 수를 표시하는 하나 이상의 신택스 엘리먼트들을 인코딩할 수도 있다. 소위 값들의 "스트링" 은 런 렝스를 갖는 런으로서 지칭될 수도 있다. 예를 들어, 인덱스 모드에서의 런은 동일한 인덱스 값을 갖는 픽셀들의 스트링을 표시할 수도 있다. 다른 예에서, 위에서부터의 카피 모드에서의 런 렝스는 위의 이웃하는 픽셀들과 동일한 값을 공유하는 픽셀 값들의 스트링을 표시할 수도 있다. 비디오 디코더 (30) 는 인코딩된 비트스트림으로부터 런을 나타내는 신택스 엘리먼트들을 획득하고, 함께 코딩되는 연속하는 픽셀 로케이션들의 수를 결정하기 위해 데이터를 이용할 수도 있다.
위에 주지된 바와 같이, 런들은 좌측 카피 모드 (인덱스 모드로서 또한 지칭됨) 또는 상부 카피 (위에서부터의 카피로서 또한 지칭됨) 와 연계하여 이용될 수도 있다. 예시의 목적들의 예에서, 맵 (240) 의 로우들 (264 및 268) 을 고려하여 본다. 수평, 좌측에서 우측으로의 스캔 방향을 가정하여 보면, 로우 (264) 는 "1" 의 3 개의 인덱스 값들, "2" 의 2 개의 인덱스 값들, "3" 의 3 개의 인덱스 값들을 포함한다. 로우 (268) 는 "1" 의 5 개의 인덱스 값들 및 "3" 의 3 개의 인덱스 값들을 포함한다. 이 예에서, 비디오 인코더 (20) 는 로우 (268) 에 대해 데이터를 인코딩할 때 (예를 들어, 상부 카피 모드), 런이 뒤에 오는 로우 (264) 의 특정 엔트리들을 식별할 수도 있다. 예를 들어, 비디오 인코더 (20) 는 로우 (268) 의 제 1 포지션 (로우 (268) 의 최좌측 포지션) 이 로우 (264) 의 제 1 포지션과 동일함을 표시하는 하나 이상의 신택스 엘리먼트들을 인코딩할 수도 있다. 비디오 인코더 (20) 는 또한, 로우 (268) 에서의 스캔 방향에서의 2 개의 연속하는 엔트리들의 다음 런이 로우 (264) 의 제 1 포지션과 동일함을 표시하는 하나 이상의 신택스 엘리먼트들을 인코딩할 수도 있다.
(위에 주지된) 로우 (264) 의 제 1 포지션 및 2 개의 엔트리들의 런을 포함하는 하나 이상의 신택스 엘리먼트들을 인코딩한 후, 비디오 인코더 (20) 는 (좌측에서 우측으로의) 라인 (268) 에서의 제 4 및 제 5 포지션들에 대해, 제 4 포지션에 대해 1 의 값을 나타내는 하나 이상의 신택스 엘리먼트들 및 1 의 런 (예를 들어, 좌측 카피 모드) 을 나타내는 하나 이상의 신택스 엘리먼트들을 인코딩할 수도 있다. 따라서, 비디오 인코더 (20) 는 다른 라인을 참조함이 없이 이들 2 개의 포지션들을 인코딩할 수도 있다. 일부 예들에서, 좌측 카피 모드는 또한 "값" 모드로서 지칭될 수도 있다.
비디오 인코더 (20) 는 그 후, (예를 들어, 상위 로우 (264) 로부터 카피 및 동일한 인덱스 값을 갖는, 스캔 순서에서 연속하는 포지션들의 런을 나타내는) 상위 로우 (264) 에 대하여 로우 (268) 에서 3 의 인덱스 값을 갖는 제 1 포지션을 인코딩할 수도 있다. 따라서, 비디오 인코더 (20) 는 런, 코딩 픽셀, 또는 다른 라인 (또는 컬럼) 의 값들에 대한 한 라인의 인덱스 값들 또는 이들의 조합을 이용하여 코딩 픽셀, 또는 라인의 다른 값들에 대한 라인의 인덱스 값들 간을 선택할 수도 있다. 일부 예들에서, 비디오 인코더 (20) 는 선택을 행하기 위해 레이트/왜곡 최적화를 수행할 수도 있다.
비디오 디코더 (30) 는 위에 설명된 신택스 엘리먼트들을 수신하고 로우 (268) 를 재구성할 수도 있다. 예를 들어, 비디오 디코더 (30) 는 현재 코딩되고 있는 맵 (240) 의 포지션에 대한 연관된 인덱스 값을 카피할 이웃하는 로우에서의 특정 위치를 표시하는 데이터를 획득할 수도 있다. 비디오 디코더 (30) 는 또한, 그룹으로서, 예를 들어, 런 렝스를 갖는 런에서 프로세싱되고 있는, 스캔 순서에서 연속하는 포지션들의 수를 나타내는 데이터를 획득할 수도 있다. 수평 스캔 순서에 대하여 설명되어 있지만, 본 개시의 기법들은 다른 스캔 방향, 이를 테면, 수직 또는 대각선 (예를 들어, 블록에서 대각선으로 45도 또는 135도) 스캔 방향에 적용될 수도 있다.
도 7 은 이전에 코딩된 로우로부터 팔레트 인덱스들을 카피하는 일 예를 예시하는 개념도이다. 도 7 의 예는 이전 로우 카피 모드를 일반적으로 예시할 수도 있다. 예를 들어, 이전 로우 카피 모드는 위에서부터의 카피 모드와 유사하게 동작할 수도 있지만; 그러나, 인덱스들이 카피되는 로우가 명시적으로 시그널링될 수도 있다. 이전 로우 카피 모드는 이전에 코딩된 로우들로부터 현재 코딩중에 있는 픽셀들 바로 위의 로우를 너머서 픽셀 값들이 카피될 수 있게 한다.
예를 들어, 보다 양호한 코딩 효율을 실현하기 위해, 이전 로우 카피 모드는 임의의 이전에 코딩된 로우가 참조로서 이용되는 것을 허용한다. 이전 로우 카피 모드는 이용가능한 팔레트-모드 후보 리스트에 추가될 수도 있다. 로우 인덱스 정보는 이전 로우 카피 모드가 선택될 때 코딩될 수도 있다. 로우 인덱스는 절단된 2진수 코드워드를 이용하여 코딩될 수도 있다. 현재 로우에 더 가깝게 포지셔닝되는 로우들을 위해 보다 더 짧은 코드워드가 설계될 수도 있다. 다른 팔레트-모드들에서와 같이, 매칭 길이 (예를 들어, 함께 코딩되고 있는 포지션들의 런 렝스) 는 비트스트림으로 코딩될 수도 있다. 위에서부터의 카피 모드와의 리던던시를 감속시키기 위해, 이전 카피 모드는 현재 CU 의 제 3 로우로부터 시작하는 것이 유효할 수도 있다.
2014년 6월 20일 출원된 미국 가출원 제62/015,177호("177 가출원) 및 2014년 6월 27일 출원된 미국 가출원 제62/018,477호("477 가출원) 뿐만 아니라 문서, JCTVC-R0202 (F. Zou, M. Karczewicz, R. Joshi, and J. Sole, "Non-SCCE3: Copy from previous row mode for palette coding", JCTVC-R0202) 에서, "인덱스", "위에서부터의 카피" 및 "이전 로우 카피" 모드들을 표현하는데 이용될 수도 있는 모드 코딩/시그널링 기법들을 포함하지만 이들에 한정되지 않는, 이전 로우 카피 (또한 "이전 로우로부터의 카피"로 지칭됨) 의 수개의 양태들이 제안되었다. 일부 예들에서, 절단된 1진수 코딩이 이들 3개의 모드들에 이용될 수도 있다. 이러한 예들에서, 모드들의 일부가 이용가능하지 않을 때 최대 심볼 값이 감소될 수도 있고, 이에 따라 오버헤드 비용을 감소시킨다.
도 10 은 비디오 데이터를 디코딩하는 일 예를 예시하는 플로우차트이다. 비디오 디코더 (30) 는 비디오 데이터의 현재 블록에 대하여, 3 개의 컬러 값들을 갖는 엔트리들을 포함하는 단일의 팔레트 테이블을 도출할 수도 있다 (1000). 비디오 데이터 메모리 (151) 는 팔레트 테이블을 저장할 수도 있다.
비디오 디코더 (30) 는 비디오 데이터의 현재 블록에서의 픽셀이 루마 성분 및 크로마 성분들을 포함하는지의 여부를 결정할 수도 있다 (1002). 예를 들어, 비디오 디코더 (30) 는 현재 블록의 루마 성분들과 현재 블록의 크로마 성분들 사이의 페이즈 정렬을 결정할 수도 있다. 비디오 디코더 (30) 는 결정된 페이즈 정렬에 기초하여 상기 현재 블록에서의 픽셀이 루마 성분 및 크로마 성분들을 포함하는지의 여부를 결정할 수도 있다.
비디오 디코더 (30) 는 현재 블록에서의 픽셀이 루마 성분 및 크로마 성분들을 포함하는지의 여부의 결정에 기초하여 팔레트 테이블로부터 취출할 컬러 값들의 수를 결정할 수도 있다 (1004). 비디오 디코더 (30) 는 취출할 컬러 값들의 수의 결정에 기초하여 비디오 데이터의 현재 블록에서의 픽셀을 팔레트-모드 디코딩할 수도 있다 (1006).
예를 들어, 비디오 디코더 (30) 는 팔레트 테이블로의 하나의 엔트리를 식별하는 단일의 인덱스를 수신할 수도 있다. 이 예에서, 비디오 디코더 (30) 는 현재 블록에서의 픽셀이 루마 성분 및 크로마 성분들을 포함하는지의 여부의 결정에 기초하여 팔레트 테이블로의 식별된 엔트리로부터 취출할 컬러 값들의 수를 결정할 수도 있다.
일 예에서, 비디오 디코더 (30) 는 현재 블록에서의 픽셀이 루마 성분 및 크로마 성분들을 포함한다는 결정에 기초하여 3 개의 컬러 값들이 팔레트 테이블로부터 취출될 것이라고 결정할 수도 있다. 이 예에서, 픽셀을 팔레트-모드 디코딩하기 위해, 비디오 디코더 (30) 는 팔레트 테이블로부터 3 개의 컬러 값들을 취출하고 3 개의 컬러 값들 각각을 픽셀의 개별적인 루마 및 크로마 성분들에 배정할 수도 있다.
다른 예에서, 비디오 디코더 (30) 는 현재 블록에서의 픽셀이 루마 성분만을 포함하고 크로마 성분들 어느 것도 포함하지 않는다는 결정에 기초하여 3 개의 컬러 값들 중 단일의 컬러 값만이 팔레트 테이블로부터 취출될 것이라고 결정할 수도 있다. 이 예에서, 픽셀을 팔레트-모드 디코딩하기 위해, 비디오 디코더 (30) 는 팔레트 테이블로부터 단일의 컬러 값을 취출하고 단일의 컬러 값을 픽셀의 루마 성분에 배정할 수도 있다. 예르 들어, 단일의 컬러 값은 팔레트 테이블에 저장된 3 개의 컬러 값들 중 제 1 식별된 컬러 값일 수도 있다.
도 10 에 예시된 위의 예에서, 현재 블록의 픽셀은 제 1 픽셀로서 고려될 수도 있다. 일부 예들에서, 비디오 디코더 (30) 는 팔레트 테이블에 기초하여 현재 블록에서의 제 2 픽셀이 디코딩되지 않을 것이라고 결정할 수도 있다 (예를 들어, 제 2 픽셀은 escape 픽셀이다). 비디오 디코더 (30) 는 현재 블록에서의 제 2 픽셀이 루마 성분 및 크로마 성분들을 포함하는지의 여부를 결정할 수도 있고, 그리고 현재 블록에서의 제 2 픽셀이 루마 성분 및 크로마 성분들을 포함하는지의 여부의 결정에 기초하여 비트스트림으로부터 파싱할 컬러 값들의 수를 결정할 수도 있다. 컬러 값들은 가능하다면 양자화될 수도 있으며, 다음의 설명에서, 명시적으로 언급되어 있지 않지만, 컬러 값들은 가능하다면 양자화될 수도 있다고 가정되어야 한다. 그러나, 컬러 값들은 반드시 항상 양자화되어야 할 필요가 있는 것은 아니다.
비디오 디코더 (30) 는 비트스트림으로부터 파싱할 컬러 값들의 결정된 수에 기초하여 현재 블록에서의 제 2 픽셀을 디코딩할 수도 있다. 비디오 디코더 (30) 는 현재 블록에서의 제 2 픽셀이 루마 성분 및 크로마 성분들을 포함한다는 결정에 기초하여 3 개의 컬러 값들이 비트스트림으로부터 파싱될 것이라고 결정하고, 비디오 디코더 (30) 는 현재 블록에서의 제 2 픽셀이 루마 성분만을 포함하고 어떠한 크로마 성분들도 포함하지 않는다는 결정에 기초하여 단일의 컬러 값만이 비트스트림으로부터 파싱될 것이라고 결정한다.
도 11 은 비디오 데이터를 인코딩하는 일 예를 예시하는 플로우차트이다. 비디오 인코더 (20) 는 비디오 데이터 메모리 (101) 에 저장된 팔레트 테이블에 기초하여 비디오 데이터의 현재 블록에서의 픽셀이 인코딩되지 않는다고 결정할 수도 있다 (예를 들어, 픽셀이 escape 픽셀임). 비디오 인코더 (20) 는 비디오 데이터의 현재 블록에서의 픽셀이 루마 성분 및 크로마 성분들을 포함하는지의 여부를 결정할 수도 있고 (1102), 그리고 현재 블록에서의 픽셀이 루마 성분 및 크로마 성분들을 포함하는지의 여부의 결정에 기초하여 비트스트림에서 시그널링할 컬러 값들의 수를 결정할 수도 있다 (1104). 비디오 인코더 (20) 는 컬러 값들의 결정된 수에 기초하여 현재 블록을 재구성하기 위해 이용되는, 픽셀에 대한 컬러 값들을 비트스트림에서 시그널링할 수도 있다 (1106).
일 예로서, 비트스트림에서 시그널링할 컬러 값들의 수를 결정하기 위해, 비디오 인코더 (20) 는 현재 블록에서의 픽셀이 루마 성분 및 크로마 성분들을 포함한다는 결정에 기초하여 3 개의 컬러 값들이 비트스트림에서 시그널링될 것이라고 결정할 수도 있다. 컬러 값들을 시그널링하기 위해, 비디오 인코더 (20) 는 비디오 디코더 (30) 가 현재 블록을 재구성하는데 이용하는 픽셀의 3 개의 컬러 값들을 시그널링할 수도 있다.
다른 예로서, 비트스트림에서 시그널링할 컬러 값들의 수를 결정하기 위해, 비디오 인코더 (20) 는 현재 블록에서의 픽셀이 루마 성분만을 포함하고 크로마 성분들 어느 것도 포함하지 않는다는 결정에 기초하여 단일의 컬러 값만이 비트스트림에서 시그널링될 것이라고 결정할 수도 있다. 시그널링을 위해, 비디오 인코더 (20) 는 비디오 디코더 (30) 가 현재 블록을 재구성하는데 이용하는 픽셀의 오직 하나의 컬러 값만을 시그널링할 수도 있다.
위에 설명된 기법들은 비디오 인코더 (20) (도 1 및 도 2) 및/또는 비디오 디코더 (30)(도 1 및 도 3) 에 의해 수행될 수도 있고, 이들 양쪽은 비디오 코더로서 일반적으로 지칭될 수도 있다. 이와 마찬가지로, 비디오 코딩은 비디오 인코딩 또는 비디오 코딩으로서 필요에 따라 지칭될 수도 있다. 추가로, 비디오 인코딩 및 비디오 디코딩은 일반적으로 비디오 데이터를 "프로세싱하는 것"으로서 지칭될 수도 있다.
본원에 설명된 기법들 모두는 개별적으로 또는 조합하여 이용될 수도 있음을 이해하여야 한다. 본 개시는 특정 팩터들, 이를 테면, 블록 사이즈, 팔레트 사이즈, 슬라이스 유형 등에 의존하여 변경할 수도 있는 수개의 시그널링 방법들을 포함한다. 신택스 엘리먼트들을 시그널링 또는 추론하는데 있어 이러한 변동은 선험적으로 인코더 및 디코디로서 알려져 있을 수 있거나, 또는 VPS (video parameter set), SPS (sequence parameter set), PPS (picture parameter set), 슬라이스 헤더 또는 타일 레벨에서 또는 그 어디에서나 명시적으로 시그널링될 수도 있다.
예에 의존하여, 본원에 설명된 기법들의 소정의 작용들 또는 이벤트들은 상이한 시퀀스로 수행될 수 있으며, 부가, 병합, 또는 모두 배제될 수도 있음 (예를 들어, 반드시 모든 설명된 작용들 또는 이벤트들이 기법들의 실시를 위해 필요한 것은 아님) 을 알아야 한다. 또한, 소정의 예들에서, 작용들 및 이벤트들은, 순차적으로 수행되는 대신에, 예를 들어, 멀티 스레드 프로세싱, 인터럽트 프로세싱, 또는 멀티 프로세서들을 통해 동시에 수행될 수도 있다. 추가로, 본 개시의 특정 양태들은 명료화를 위하여 단일의 모듈 또는 유닛에 의해 수행되는 것으로 설명되어 있지만, 본 개시물의 기술들은 모들, 유닛들 또는 모듈들의 조합에 의해 수행될 수도 있음이 이해되어야 한다.
본 기법들의 여러 양태들의 특정 조합들이 위에 설명되어 있지만, 이들 조합들은 본 개시에서 설명된 기법들의 예들을 단지 예시하기 위한 것으로 제공된다. 따라서 본 개시의 기법들은 이들 예의 조합들로 제한되지 않아야 하며, 본원에 설명된 기법들의 여러 양태들의 임의의 인식가능한 조합을 수반할 수도 있다.
하나 이상의 실시형태들에서, 설명된 기능들은 하드웨어, 소프트웨어, 펌웨어, 또는 이들의 임의의 조합으로 구현될 수도 있다. 소프트웨어로 구현된다면, 그 기능들은 하나 이상의 명령들 또는 코드로서 컴퓨터 판독가능 매체 상에 저장되거나 또는 그것을 통해 송신될 수도 있고 하드웨어 기반 프로세싱 유닛에 의해 실행될 수도 있다. 컴퓨터 판독가능 매체는, 데이터 저장 매체들과 같은 유형의 매체에 대응하는 컴퓨터 판독가능 저장 매체들 또는 예를 들어 통신 프로토콜에 따라 일 장소에서 다른 장소로의 컴퓨터 프로그램의 전달을 용이하게 하는 임의의 매체를 포함하는 통신 매체들을 포함할 수도 있다. 이러한 방식으로, 컴퓨터 판독 가능한 매체들은 일반적으로 (1) 비일시적인 유형의 컴퓨터 판독가능 저장 매체들 또는 (2) 신호 또는 반송파와 같은 통신 매체에 대응할 수도 있다. 데이터 저장 매체는 이 개시물에 설명된 기법들의 구현을 위한 명령들, 코드, 및/또는 데이터 구조들을 검색하기 위해 하나 이상의 컴퓨터들 또는 하나 이상의 프로세서들에 의해 액세스될 수 있는 임의의 이용가능한 매체들일 수도 있다. 컴퓨터 프로그램 제품은 컴퓨터 판독가능 매체를 포함할 수도 있다.
비제한적인 예로서, 이러한 컴퓨터 판독가능 저장 매체는 RAM, ROM, EEPROM, CD-ROM 또는 다른 광학 디스크 스토리지, 자기 디스크 스토리지 또는 다른 자기 스토리지 디바이스들, 플래시 메모리, 또는 소망의 프로그램 코드를 명령들 또는 데이터 구조들의 형태로 저장하기 위해 사용될 수 있으며 컴퓨터에 의해 액세스될 수 있는 임의의 다른 매체를 포함할 수 있다. 또한, 임의의 접속은 컴퓨터 판독 가능한 매체라고 적절히 지칭된다. 예를 들면, 소프트웨어가 동축 케이블, 광섬유 케이블, 연선, 디지털 가입자 회선 (DSL), 또는 적외선, 무선, 및 마이크로파와 같은 무선 기술들을 이용하여 웹사이트, 서버, 또는 다른 원격 소스로부터 명령들이 송신되면, 동축 케이블, 광섬유 케이블, 연선, DSL, 또는 적외선, 무선, 및 마이크로파와 같은 무선 기술들은 매체의 정의 내에 포함된다. 그러나, 컴퓨터 판독가능 저장 매체들 및 데이터 저장 매체들은 접속들, 반송파들, 신호들, 또는 다른 일시적 매체들을 포함하지 않고, 대신에 비일시적, 유형의 저장 매체들이다. 본원에서 이용된 디스크 (disk) 와 디스크 (disc) 는, 컴팩트 디스크(CD), 레이저 디스크, 광학 디스크, 디지털 다기능 디스크 (DVD), 플로피 디스크, 및 블루레이 디스크를 포함하며, 여기서 디스크 (disk) 들은 통상 자기적으로 데이터를 재생하는 반면, 디스크 (disc) 들은 레이저들을 이용하여 광학적으로 데이터를 재생한다. 위의 조합들도 컴퓨터 판독가능 매체들의 범위 내에 포함되어야 한다.
명령들은, 하나 이상의 디지털 신호 프로세서들(DSPs), 범용 마이크로프로세서들, 주문형 집적 회로들(ASICs), 필드 프로그래머블 로직 어레이(FPGAs), 또는 다른 등가의 집적 또는 이산 로직 회로와 같은, 하나 이상의 프로세서들에 의해 실행될 수도 있다. 그에 따라, 본원에서 이용되는 바와 같은 용어 "프로세서" 는 앞서 언급한 구조들, 또는 본원에서 설명된 기법들을 구현하기에 적합한 임의의 다른 구조 중 임의의 것을 지칭한다. 또한, 몇몇 양태들에서, 본원에서 설명된 기능성은 인코딩 및 디코딩을 위해 구성된 전용 하드웨어 및/또는 소프트웨어 모듈 내에 제공되거나, 또는 통합 코덱에 통합될 수도 있다. 또한, 상기 기술들은 하나 이상의 회로들 또는 로직 소자들에서 완전히 구현될 수 있다.
본 개시의 기법들은, 무선 헤드셋, 집적 회로(IC) 또는 ICs의 세트 (예를 들어, 칩 세트) 를 포함하는 다양한 디바이스들 또는 장치들에서 구현될 수도 있다. 개시된 기법들을 수행하도록 구성된 디바이스들의 기능적 양태를 강조하기 위해 다양한 소자들, 모듈들, 또는 유닛들이 본 개시에서 설명되었지만, 반드시 상이한 하드웨어 유닛들에 의해 실현될 필요는 없다. 대신, 상술한 바와 같이, 다양한 유닛들은, 적절한 소프트웨어 및/또는 펌웨어와 연계하여, 코덱 하드웨어 유닛에 통합되거나 또는 상술한 하나 이상의 프로세서들을 포함하여 상호연동하는 하드웨어 유닛들의 집합에 의해 제공될 수도 있다.
다양한 실시형태들을 설명하였다. 이들 및 다른 실시형태들은 하기의 특허청구범위 내에 있다.

Claims (36)

  1. 비디오 데이터를 디코딩하는 방법으로서,
    상기 비디오 데이터의 현재 블록에 대해, 3 개의 컬러 값들을 갖는 엔트리들을 포함하는 단일의 팔레트 테이블을 도출하는 단계;
    상기 비디오 데이터의 현재 블록에서의 픽셀이 루마 성분 및 크로마 성분들을 포함하는지의 여부를 결정하는 단계;
    상기 현재 블록에서의 픽셀이 루마 성분 및 크로마 성분들을 포함하는지의 여부의 결정에 기초하여 상기 단일의 팔레트 테이블로부터 취출할 컬러 값들의 수를 결정하는 단계; 및
    상기 취출할 컬러 값들의 수의 결정에 기초하여 상기 비디오 데이터의 현재 블록에서의 픽셀을 팔레트-모드 디코딩하는 단계를 포함하는, 비디오 데이터를 디코딩하는 방법.
  2. 제 1 항에 있어서,
    상기 현재 블록의 루마 성분들과 상기 현재 블록의 크로마 성분들 사이의 페이즈 정렬 (phase alignment) 을 결정하는 단계를 더 포함하고,
    상기 현재 블록에서의 픽셀이 루마 성분 및 크로마 성분들을 포함하는지의 여부를 결정하는 단계는, 결정된 상기 페이즈 정렬에 기초하여 상기 현재 블록에서의 픽셀이 상기 루마 성분 및 상기 크로마 성분들을 포함하는지의 여부를 결정하는 단계를 포함하는, 비디오 데이터를 디코딩하는 방법.
  3. 제 1 항에 있어서,
    상기 컬러 값들의 수를 결정하는 단계는, 상기 현재 블록에서의 픽셀이 루마 성분 및 크로마 성분들을 포함한다는 결정에 기초하여 3 개의 컬러 값들이 상기 단일의 팔레트 테이블로부터 취출될 것이라고 결정하는 단계를 포함하고, 상기 현재 블록에서의 픽셀을 팔레트-모드 디코딩하는 단계는, 상기 단일의 팔레트 테이블로부터 3 개의 컬러 값들을 취출하고 상기 픽셀의 개별적인 루마 및 크로마 성분들에 3 개의 컬러 값들 각각을 배정하는 단계를 포함하는, 비디오 데이터를 디코딩하는 방법.
  4. 제 1 항에 있어서,
    상기 컬러 값들의 수를 결정하는 단계는, 상기 현재 블록에서의 픽셀이 루마 성분만을 포함하고 크로마 성분들 어느 것도 포함하지 않는다는 결정에 기초하여 3 개의 컬러 값들 중 단일의 컬러 값만이 상기 단일의 팔레트 테이블로부터 취출될 것이라고 결정하는 단계를 포함하고, 상기 현재 블록에서의 픽셀을 팔레트-모드 디코딩하는 단계는, 상기 단일의 팔레트 테이블로부터 단일의 컬러 값을 취출하고 상기 픽셀의 루마 성분에 단일의 컬러 값을 배정하는 단계를 포함하는, 비디오 데이터를 디코딩하는 방법.
  5. 제 4 항에 있어서,
    상기 단일의 컬러 값은 3 개의 컬러 값들 중 제 1 식별된 컬러 값을 포함하는, 비디오 데이터를 디코딩하는 방법.
  6. 제 1 항에 있어서,
    상기 픽셀은 제 1 픽셀을 포함하고,
    상기 방법은:
    상기 현재 블록에서의 제 2 픽셀이 상기 단일의 팔레트 테이블에 기초하여 디코딩되지 않아야 한다고 결정하는 단계;
    상기 현재 블록에서의 제 2 픽셀이 루마 성분 및 크로마 성분들을 포함하는지의 여부를 결정하는 단계;
    상기 현재 블록에서의 제 2 픽셀이 루마 성분 및 크로마 성분들을 포함하는지의 여부의 결정에 기초하여 비트스트림으로부터 파싱할 컬러 값들의 수를 결정하는 단계; 및
    상기 비트스트림으로부터 파싱할 컬러 값들의 결정된 수에 기초하여 상기 현재 블록에서의 제 2 픽셀을 디코딩하는 단계를 더 포함하는, 비디오 데이터를 디코딩하는 방법.
  7. 제 6 항에 있어서,
    상기 비트스트림으로부터 파싱할 컬러 값들의 수를 결정하는 단계는, 상기 현재 블록에서의 제 2 픽셀이 루마 성분 및 크로마 성분들을 포함한다는 결정에 기초하여 3 개의 컬러 값들이 상기 비트스트림으로부터 파싱될 것이라고 결정하는 단계를 포함하는, 비디오 데이터를 디코딩하는 방법.
  8. 제 6 항에 있어서,
    상기 비트스트림으로부터 파싱할 컬러 값들의 수를 결정하는 단계는, 상기 현재 블록에서의 제 2 픽셀이 루마 성분만을 포함하고 크로마 성분들 어느 것도 포함하지 않는다는 결정에 기초하여 단일의 컬러 값만이 상기 비트스트림으로부터 파싱될 것이라고 결정하는 단계를 포함하는, 비디오 데이터를 디코딩하는 방법.
  9. 제 1 항에 있어서,
    단일의 팔레트 테이블에서 하나의 엔트리를 식별하는 단일의 인덱스를 수신하는 단계를 더 포함하고,
    상기 취출할 컬러 값들의 수를 결정하는 단계는, 상기 현재 블록에서의 픽셀이 루마 성분 및 크로마 성분들을 포함하는지의 여부의 결정에 기초하여 상기 단일의 팔레트 테이블에서의 식별된 엔트리로부터 상기 취출할 컬러 값들의 수를 결정하는 단계를 포함하는, 비디오 데이터를 디코딩하는 방법.
  10. 비디오 데이터를 디코딩하는 디바이스로서,
    비디오 데이터의 현재 블록에 대하여, 3 개의 컬러 값들을 갖는 엔트리들을 포함하는 팔레트 테이블을 저장하도록 구성되는 메모리 유닛; 및
    비디오 디코더를 포함하고,
    상기 비디오 디코더는:
    상기 메모리 유닛에서의 저장을 위하여, 상기 비디오 데이터의 현재 블록에 대한 상기 팔레트 테이블을 도출하되, 상기 현재 블록에 대한 다른 팔레트 테이블은 도출하지 않고;
    상기 비디오 데이터의 상기 현재 블록에서의 픽셀이 루마 성분 및 크로마 성분들을 포함하는지의 여부를 결정하고;
    상기 현재 블록에서의 상기 픽셀이 루마 성분 및 크로마 성분들을 포함하는지의 여부의 결정에 기초하여 상기 팔레트 테이블로부터 취출할 컬러 값들의 수를 결정하고; 그리고
    상기 취출할 컬러 값들의 수의 결정에 기초하여 상기 비디오 데이터의 현재 블록에서의 픽셀을 팔레트-모드 디코딩하도록 구성되는, 비디오 데이터를 디코딩하는 디바이스.
  11. 제 10 항에 있어서,
    상기 비디오 디코더는:
    상기 현재 블록의 루마 성분들과 상기 현재 블록의 크로마 성분들 사이의 페이즈 정렬을 결정하도록 구성되고,
    상기 현재 블록에서의 픽셀이 루마 성분 및 크로마 성분들을 포함하는지의 여부를 결정하기 위해, 상기 비디오 디코더는 결정된 상기 페이즈 정렬에 기초하여 상기 현재 블록에서의 픽셀이 상기 루마 성분 및 상기 크로마 성분들을 포함하는지의 여부를 결정하도록 구성되는, 비디오 데이터를 디코딩하는 디바이스.
  12. 제 10 항에 있어서,
    상기 컬러 값들의 수를 결정하기 위해, 상기 비디오 디코더는 상기 현재 블록에서의 픽셀이 루마 성분 및 크로마 성분들을 포함한다는 결정에 기초하여 3 개의 컬러 값들이 상기 팔레트 테이블로부터 취출될 것이라고 결정하도록 구성되고, 상기 현재 블록에서의 픽셀을 팔레트-모드 디코딩하기 위해, 상기 비디오 디코더는 상기 팔레트 테이블로부터 3 개의 컬러 값들을 취출하고 상기 픽셀의 개별적인 루마 및 크로마 성분들에 3 개의 컬러 값들 각각을 배정하도록 구성되는, 비디오 데이터를 디코딩하는 디바이스.
  13. 제 10 항에 있어서,
    상기 컬러 값들의 수를 결정하기 위해, 상기 비디오 디코더는 상기 현재 블록에서의 픽셀이 루마 성분만을 포함하고 크로마 성분들 어느 것도 포함하지 않는다는 결정에 기초하여 3 개의 컬러 값들 중 단일의 컬러 값만이 상기 팔레트 테이블로부터 취출될 것이라고 결정하도록 구성되고, 상기 현재 블록에서의 픽셀을 팔레트-모드 디코딩하기 위해, 상기 비디오 디코더는 상기 팔레트 테이블로부터 단일의 컬러 값을 취출하고 상기 픽셀의 루마 성분에 단일의 컬러 값을 배정하도록 구성되는, 비디오 데이터를 디코딩하는 디바이스.
  14. 제 13 항에 있어서,
    상기 단일의 컬러 값은 3 개의 컬러 값들 중 제 1 식별된 컬러 값을 포함하는, 비디오 데이터를 디코딩하는 디바이스.
  15. 제 10 항에 있어서,
    상기 픽셀은 제 1 픽셀을 포함하고,
    상기 비디오 디코더는:
    상기 현재 블록에서의 제 2 픽셀이 상기 팔레트 테이블에 기초하여 디코딩되지 않아야 한다고 결정하고;
    상기 현재 블록에서의 제 2 픽셀이 루마 성분 및 크로마 성분들을 포함하는지의 여부를 결정하고;
    상기 현재 블록에서의 제 2 픽셀이 루마 성분 및 크로마 성분들을 포함하는지의 여부의 결정에 기초하여 비트스트림으로부터 파싱할 컬러 값들의 수를 결정하고; 그리고
    상기 비트스트림으로부터 파싱할 컬러 값들의 결정된 수에 기초하여 상기 현재 블록에서의 제 2 픽셀을 디코딩하도록 구성되는, 비디오 데이터를 디코딩하는 디바이스.
  16. 제 15 항에 있어서,
    상기 비트스트림으로부터 파싱할 컬러 값들의 수를 결정하기 위해, 상기 비디오 디코더는 상기 현재 블록에서의 제 2 픽셀이 루마 성분 및 크로마 성분들을 포함한다는 결정에 기초하여 3 개의 컬러 값들이 상기 비트스트림으로부터 파싱될 것이라고 결정하도록 구성되는, 비디오 데이터를 디코딩하는 디바이스.
  17. 제 15 항에 있어서,
    상기 비트스트림으로부터 파싱할 컬러 값들의 수를 결정하기 위해, 상기 비디오 디코더는 상기 현재 블록에서의 제 2 픽셀이 루마 성분만을 포함하고 크로마 성분들 어느 것도 포함하지 않는다는 결정에 기초하여 단일의 컬러 값만이 상기 비트스트림으로부터 파싱될 것이라고 결정하도록 구성되는, 비디오 데이터를 디코딩하는 디바이스.
  18. 제 10 항에 있어서,
    상기 비디오 디코더는:
    상기 팔레트 테이블에서 하나의 엔트리를 식별하는 단일의 인덱스를 수신하도록 구성되고,
    상기 취출할 컬러 값들의 수를 결정하기 위해, 상기 비디오 디코더는 상기 현재 블록에서의 픽셀이 루마 성분 및 크로마 성분들을 포함하는지의 여부의 결정에 기초하여 상기 팔레트 테이블에서의 식별된 엔트리로부터 취출할 컬러 값들의 수를 결정하도록 구성되는, 비디오 데이터를 디코딩하는 디바이스.
  19. 제 10 항에 있어서,
    상기 디바이스는 마이크로프로세서, 집적 회로, 무선 통신 디바이스, 또는 상기 현재 블록을 포함하는 픽처를 디스플레이하도록 구성되는 디스플레이 중 적어도 하나를 포함하는, 비디오 데이터를 디코딩하는 디바이스.
  20. 명령들이 저장되어 있는 비일시적 컴퓨터 판독가능 저장 매체로서,
    상기 명령들은 실행될 때 비디오 데이터를 디코딩하기 위한 디바이스의 하나 이상의 프로세서들로 하여금:
    상기 비디오 데이터의 현재 블록에 대해, 3 개의 컬러 값들을 갖는 엔트리들을 포함하는 단일의 팔레트 테이블을 도출하게 하고;
    상기 비디오 데이터의 상기 현재 블록에서의 픽셀이 루마 성분 및 크로마 성분들을 포함하는지의 여부를 결정하게 하고;
    상기 현재 블록에서의 상기 픽셀이 루마 성분 및 크로마 성분들을 포함하는지의 여부의 결정에 기초하여 상기 단일의 팔레트 테이블로부터 취출할 컬러 값들의 수를 결정하게 하고; 그리고
    상기 취출할 컬러 값들의 수의 결정에 기초하여 상기 비디오 데이터의 현재 블록에서의 픽셀을 팔레트-모드 디코딩하게 하는, 명령들이 저장되어 있는 비일시적 컴퓨터 판독가능 저장 매체.
  21. 제 20 항에 있어서,
    상기 하나 이상의 프로세서들로 하여금:
    상기 현재 블록의 루마 성분들과 상기 현재 블록의 크로마 성분들 사이의 페이즈 정렬을 결정하게 하는 명령들을 더 포함하고,
    상기 하나 이상의 프로세서들로 하여금, 상기 현재 블록에서의 픽셀이 루마 성분 및 크로마 성분들을 포함하는지의 여부를 결정하게 하는 명령들은, 상기 하나 이상의 프로세서들로 하여금, 결정된 상기 페이즈 정렬에 기초하여 상기 현재 블록에서의 픽셀이 상기 루마 성분 및 상기 크로마 성분들을 포함하는지의 여부를 결정하게 하는 명령들을 포함하는, 명령들이 저장되어 있는 비일시적 컴퓨터 판독가능 저장 매체.
  22. 제 20 항에 있어서,
    상기 하나 이상의 프로세서들로 하여금, 상기 컬러 값들의 수를 결정하게 하는 명령들은, 상기 하나 이상의 프로세서들로 하여금, 상기 현재 블록에서의 픽셀이 루마 성분 및 크로마 성분들을 포함한다는 결정에 기초하여 3 개의 컬러 값들이 상기 단일의 팔레트 테이블로부터 취출될 것이라고 결정하게 하는 명령들을 포함하고, 상기 하나 이상의 프로세서들로 하여금, 상기 현재 블록에서의 픽셀을 팔레트-모드 디코딩하게 하는 명령들은, 상기 하나 이상의 프로세서들로 하여금, 상기 단일의 팔레트 테이블로부터 3 개의 컬러 값들을 취출하고 상기 픽셀의 개별적인 루마 및 크로마 성분들에 3 개의 컬러 값들 각각을 배정하게 하는 명령들을 포함하는, 명령들이 저장되어 있는 비일시적 컴퓨터 판독가능 저장 매체.
  23. 제 20 항에 있어서,
    상기 하나 이상의 프로세서들로 하여금, 상기 컬러 값들의 수를 결정하게 하는 명령들은, 상기 하나 이상의 프로세서들로 하여금, 상기 현재 블록에서의 픽셀이 루마 성분만을 포함하고 크로마 성분들 어느 것도 포함하지 않는다는 결정에 기초하여 3 개의 컬러 값들 중 단일의 컬러 값만이 상기 단일의 팔레트 테이블로부터 취출될 것이라고 결정하게 하는 명령들을 포함하고, 상기 하나 이상의 프로세서들로 하여금, 상기 현재 블록에서의 픽셀을 팔레트-모드 디코딩하게 하는 명령들은, 상기 하나 이상의 프로세서들로 하여금, 상기 단일의 팔레트 테이블로부터 단일의 컬러 값을 취출하고 상기 픽셀의 루마 성분에 단일의 컬러 값을 배정하게 하는 명령들을 포함하는, 명령들이 저장되어 있는 비일시적 컴퓨터 판독가능 저장 매체.
  24. 비디오 데이터를 디코딩하는 디바이스로서,
    상기 비디오 데이터의 현재 블록에 대해, 3 개의 컬러 값들을 갖는 엔트리들을 포함하는 단일의 팔레트 테이블을 도출하기 위한 수단;
    상기 비디오 데이터의 현재 블록에서의 픽셀이 루마 성분 및 크로마 성분들을 포함하는지의 여부를 결정하기 위한 수단;
    상기 현재 블록에서의 픽셀이 루마 성분 및 크로마 성분들을 포함하는지의 여부의 결정에 기초하여 상기 단일의 팔레트 테이블로부터 취출할 컬러 값들의 수를 결정하기 위한 수단, 및
    상기 취출할 컬러 값들의 수의 결정에 기초하여 상기 비디오 데이터의 현재 블록에서의 픽셀을 팔레트-모드 디코딩하기 위한 수단을 포함하는, 비디오 데이터를 디코딩하는 디바이스.
  25. 제 24 항에 있어서,
    상기 현재 블록의 루마 성분들과 상기 현재 블록의 크로마 성분들 사이의 페이즈 정렬을 결정하기 위한 수단을 더 포함하고,
    상기 현재 블록에서의 픽셀이 루마 성분 및 크로마 성분들을 포함하는지의 여부를 결정하기 위한 수단은, 결정된 상기 페이즈 정렬에 기초하여 상기 현재 블록에서의 픽셀이 상기 루마 성분 및 상기 크로마 성분들을 포함하는지의 여부를 결정하기 위한 수단을 포함하는, 비디오 데이터를 디코딩하는 디바이스.
  26. 제 24 항에 있어서,
    상기 컬러 값들의 수를 결정하기 위한 수단은, 상기 현재 블록에서의 픽셀이 루마 성분 및 크로마 성분들을 포함한다는 결정에 기초하여 3 개의 컬러 값들이 상기 단일의 팔레트 테이블로부터 취출될 것이라고 결정하기 위한 수단을 포함하고, 상기 현재 블록에서의 픽셀을 팔레트-모드 디코딩하기 위한 수단은, 상기 단일의 팔레트 테이블로부터 3 개의 컬러 값들을 취출하기 위한 수단 및 상기 픽셀의 개별적인 루마 및 크로마 성분들에 3 개의 컬러 값들 각각을 배정하기 위한 수단을 포함하는, 비디오 데이터를 디코딩하는 디바이스.
  27. 제 24 항에 있어서,
    상기 컬러 값들의 수를 결정하기 위한 수단은, 상기 현재 블록에서의 픽셀이 루마 성분만을 포함하고 크로마 성분들 어느 것도 포함하지 않는다는 결정에 기초하여 3 개의 컬러 값들 중 단일의 컬러 값만이 상기 단일의 팔레트 테이블로부터 취출될 것이라고 결정하기 위한 수단을 포함하고, 상기 현재 블록에서의 픽셀을 팔레트-모드 디코딩하기 위한 수단은, 상기 단일의 팔레트 테이블로부터 단일의 컬러 값을 취출하기 위한 수단 및 상기 픽셀의 루마 성분에 단일의 컬러 값을 배정하기 위한 수단을 포함하는, 비디오 데이터를 디코딩하는 디바이스.
  28. 비디오 데이터를 인코딩하는 방법으로서,
    상기 비디오 데이터의 현재 블록에서의 픽셀이 단일의 팔레트 테이블에 기초하여 인코딩되지 않아야 한다고 결정하는 단계;
    상기 비디오 데이터의 현재 블록에서의 픽셀이 루마 성분 및 크로마 성분들을 포함하는지의 여부를 결정하는 단계;
    상기 현재 블록에서의 픽셀이 루마 성분 및 크로마 성분들을 포함하는지의 여부의 결정에 기초하여 비트스트림에서 시그널링할 컬러 값들의 수를 결정하는 단계; 및
    상기 컬러 값들의 결정된 수에 기초하여 상기 현재 블록을 재구성하기 위해 이용되는 픽셀에 대한 컬러 값들을 비트스트림에서 시그널링하는 단계를 포함하는, 비디오 데이터를 인코딩하는 방법.
  29. 제 28 항에 있어서,
    상기 비트스트림에서 시그널링할 컬러 값들의 수를 결정하는 단계는, 상기 현재 블록에서의 픽셀이 루마 성분 및 크로마 성분들을 포함한다는 결정에 기초하여 3 개의 컬러 값들이 상기 비트스트림에서 시그널링될 것이라고 결정하는 단계를 포함하고, 상기 컬러 값들을 시그널링하는 단계는, 상기 픽셀에 대한 3 개의 컬러 값들을 시그널링하는 단계를 포함하는, 비디오 데이터를 인코딩하는 방법.
  30. 제 28 항에 있어서,
    상기 비트스트림에서 시그널링할 컬러 값들의 수를 결정하는 단계는, 상기 현재 블록에서의 픽셀이 루마 성분만을 포함하고 크로마 성분들 어느 것도 포함하지 않는다는 결정에 기초하여 단일의 컬러 값만이 상기 비트스트림에서 시그널링될 것이라고 결정하는 단계를 포함하고, 상기 시그널링하는 단계는, 상기 픽셀에 대한 하나의 컬러 값만을 시그널링하는 단계를 포함하는, 비디오 데이터를 인코딩하는 방법.
  31. 제 28 항에 있어서,
    상기 컬러 값들을 시그널링하는 단계는, 양자화된 컬러 값들을 시그널링하는 단계를 포함하는, 비디오 데이터를 인코딩하는 방법.
  32. 비디오 데이터를 인코딩하는 디바이스로서,
    상기 비디오 데이터의 현재 블록에 대해, 팔레트 테이블을 저장하도록 구성되는 메모리 유닛; 및
    비디오 인코더를 포함하고,
    상기 비디오 인코더는:
    상기 비디오 데이터의 현재 블록에서의 픽셀이 상기 팔레트 테이블에 기초하여 인코딩되지 않아야 한다고 결정하고;
    상기 비디오 데이터의 현재 블록에서의 픽셀이 루마 성분 및 크로마 성분들을 포함하는지의 여부를 결정하고;
    상기 현재 블록에서의 픽셀이 루마 성분 및 크로마 성분들을 포함하는지의 여부의 결정에 기초하여 비트스트림에서 시그널링할 컬러 값들의 수를 결정하고; 그리고
    컬러 값들의 결정된 수에 기초하여 현재 블록을 재구성하기 위해 이용되는, 픽셀에 대한 컬러 값들을 비트스트림에서 시그널링하도록 구성되는, 비디오 데이터를 인코딩하는 디바이스.
  33. 제 32 항에 있어서,
    상기 비트스트림에서 시그널링할 컬러 값들의 수를 결정하기 위해, 상기 비디오 인코더는 상기 현재 블록에서의 픽셀이 루마 성분 및 크로마 성분들을 포함한다는 결정에 기초하여 3 개의 컬러 값들이 상기 비트스트림에서 시그널링될 것이라고 결정하도록 구성되고, 상기 컬러 값들을 시그널링하기 위해, 상기 비디오 인코더는 상기 픽셀에 대한 3 개의 컬러 값들을 시그널링하도록 구성되는, 비디오 데이터를 인코딩하는 디바이스.
  34. 제 32 항에 있어서,
    상기 비트스트림에서 시그널링할 컬러 값들의 수를 결정하기 위해, 상기 비디오 인코더는 상기 현재 블록에서의 픽셀이 루마 성분만을 포함하고 크로마 성분들 어느 것도 포함하지 않는다는 결정에 기초하여 단일의 컬러 값만이 상기 비트스트림에서 시그널링될 것이라고 결정하도록 구성되고, 시그널링하기 위해, 상기 비디오 인코더는 상기 픽셀에 대한 하나의 컬러 값만을 시그널링하도록 구성되는, 비디오 데이터를 인코딩하는 디바이스.
  35. 제 32 항에 있어서,
    컬러 값들을 시그널링하기 위해, 상기 비디오 인코더는 양자화된 컬러 값들을 시그널링하도록 구성되는, 비디오 데이터를 인코딩하는 디바이스.
  36. 제 32 항에 있어서,
    상기 디바이스는 마이크로프로세서, 집적 회로, 무선 통신 디바이스, 또는 상기 현재 블록을 포함하는 픽처를 캡처하도록 구성되는 카메라 중 적어도 하나를 포함하는, 비디오 데이터를 인코딩하는 디바이스.
KR1020177016528A 2014-12-19 2015-12-18 서브샘플링 포맷을 위한 팔레트 모드 KR102478411B1 (ko)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201462094737P 2014-12-19 2014-12-19
US62/094,737 2014-12-19
US14/973,648 US10097839B2 (en) 2014-12-19 2015-12-17 Palette mode for subsampling format
US14/973,648 2015-12-17
PCT/US2015/066763 WO2016100859A1 (en) 2014-12-19 2015-12-18 Palette mode for subsampling format

Publications (2)

Publication Number Publication Date
KR20170097655A true KR20170097655A (ko) 2017-08-28
KR102478411B1 KR102478411B1 (ko) 2022-12-15

Family

ID=55229832

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020177016528A KR102478411B1 (ko) 2014-12-19 2015-12-18 서브샘플링 포맷을 위한 팔레트 모드

Country Status (7)

Country Link
US (1) US10097839B2 (ko)
EP (1) EP3235247A1 (ko)
JP (1) JP6625644B2 (ko)
KR (1) KR102478411B1 (ko)
CN (1) CN107113436B (ko)
TW (1) TWI689197B (ko)
WO (1) WO2016100859A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021112651A1 (ko) * 2019-12-05 2021-06-10 한국전자통신연구원 팔레트 모드를 사용하는 영상 부호화/복호화를 위한 방법, 장치 및 기록 매체
KR20210070941A (ko) * 2019-12-05 2021-06-15 한국전자통신연구원 팔레트 모드를 사용하는 영상 부호화/복호화를 위한 방법, 장치 및 기록 매체
KR20220153091A (ko) * 2020-03-27 2022-11-17 베이징 다지아 인터넷 인포메이션 테크놀로지 컴퍼니 리미티드 팔레트 모드를 사용한 비디오 코딩 방법 및 장치
KR20230033014A (ko) * 2011-09-28 2023-03-07 한국전자통신연구원 제한된 오프셋 보상 및 루프 필터를 기반으로 하는 영상 부호화 및 복호화 방법 및 그 장치

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10462475B2 (en) 2014-12-19 2019-10-29 Hfi Innovation Inc. Methods of palette based prediction for non-444 color format in video and image coding
TW201637448A (zh) * 2015-01-14 2016-10-16 Vid衡器股份有限公司 非4:4:4螢幕內容視訊調色盤編碼
PE20211000A1 (es) * 2018-03-25 2021-06-01 Institute Of Image Tech Inc Metodo y dispositivo de codificacion/decodificacion de imagen
US11449256B2 (en) 2018-05-15 2022-09-20 Samsung Electronics Co., Ltd. Method for accelerating image storing and retrieving differential latency storage devices based on access rates
US10949087B2 (en) 2018-05-15 2021-03-16 Samsung Electronics Co., Ltd. Method for rapid reference object storage format for chroma subsampled images
CN113678453B (zh) 2019-04-12 2024-05-14 北京字节跳动网络技术有限公司 基于矩阵的帧内预测的上下文确定
WO2020211807A1 (en) 2019-04-16 2020-10-22 Beijing Bytedance Network Technology Co., Ltd. Matrix derivation in intra coding mode
JP2022531147A (ja) 2019-05-01 2022-07-06 北京字節跳動網絡技術有限公司 フィルタリングを用いた行列ベースイントラ予測
CN113728647B (zh) 2019-05-01 2023-09-05 北京字节跳动网络技术有限公司 基于矩阵的帧内预测的上下文编码
MX2021013468A (es) * 2019-05-03 2022-02-11 Huawei Tech Co Ltd Un codificador, un decodificador y metodos correspondientes.
CN113812155B (zh) * 2019-05-11 2023-10-27 北京字节跳动网络技术有限公司 多种帧间编解码方法之间的交互
KR20220011127A (ko) 2019-05-22 2022-01-27 베이징 바이트댄스 네트워크 테크놀로지 컴퍼니, 리미티드 업샘플링을 이용한 행렬 기반 인트라 예측
JP2022535726A (ja) 2019-05-31 2022-08-10 北京字節跳動網絡技術有限公司 行列ベースイントラ予測における制約されたアップサンプリングプロセス
CN117768652A (zh) 2019-06-05 2024-03-26 北京字节跳动网络技术有限公司 视频处理方法、装置、介质、以及存储比特流的方法
US11115658B2 (en) * 2019-06-25 2021-09-07 Qualcomm Incorporated Matrix intra prediction and cross-component linear model prediction harmonization for video coding
JP7359936B2 (ja) 2019-07-20 2023-10-11 北京字節跳動網絡技術有限公司 パレットモードの使用の指示の条件依存符号化
CN117221536A (zh) * 2019-07-23 2023-12-12 北京字节跳动网络技术有限公司 调色板模式编解码的模式确定
US11330306B2 (en) * 2019-08-07 2022-05-10 Tencent America LLC Method and apparatus for video coding
KR20220082847A (ko) 2019-10-28 2022-06-17 베이징 바이트댄스 네트워크 테크놀로지 컴퍼니, 리미티드 색상 성분에 기초한 신택스 시그널링 및 파싱
WO2021106612A1 (ja) * 2019-11-28 2021-06-03 ソニーグループ株式会社 画像処理装置および方法
US11683489B2 (en) * 2019-12-26 2023-06-20 Qualcomm Incorporated Monochrome palette mode for video coding
US11496731B2 (en) * 2020-06-08 2022-11-08 Tencent America LLC String matching with single color value

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6819793B1 (en) * 2000-06-30 2004-11-16 Intel Corporation Color distribution for texture and image compression
US7343037B1 (en) * 2004-02-04 2008-03-11 Microsoft Corporation Dynamic, locally-adaptive, lossless palettization of color and grayscale images
US20110110416A1 (en) * 2009-11-12 2011-05-12 Bally Gaming, Inc. Video Codec System and Method
US9558567B2 (en) 2013-07-12 2017-01-31 Qualcomm Incorporated Palette prediction in palette-based video coding
US9906799B2 (en) 2014-06-20 2018-02-27 Qualcomm Incorporated Copy from previous rows for palette mode coding

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
D. Flynn et al, BoG report on Range Extensions topics, JCT-VC of ITU-T and ISO/IEC, JCTVC-O0352 (2013.11.01.) 1부.* *
Liwei Guo et al, Evaluation of Palette Mode Coding on HM-12.0+RExt-4.1, JCT-VC of ITU-T and ISO/IEC, JCTVC-O218 (2013.10.24.) 1부.* *
Xun Guo et al, RCE4: Test 1. Major-color-based screen content coding, JCT-VC of ITU-T and ISO/IEC, JCTVC-P0108 (2014.01.03.) 1부.* *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230033014A (ko) * 2011-09-28 2023-03-07 한국전자통신연구원 제한된 오프셋 보상 및 루프 필터를 기반으로 하는 영상 부호화 및 복호화 방법 및 그 장치
WO2021112651A1 (ko) * 2019-12-05 2021-06-10 한국전자통신연구원 팔레트 모드를 사용하는 영상 부호화/복호화를 위한 방법, 장치 및 기록 매체
KR20210070941A (ko) * 2019-12-05 2021-06-15 한국전자통신연구원 팔레트 모드를 사용하는 영상 부호화/복호화를 위한 방법, 장치 및 기록 매체
KR20220153091A (ko) * 2020-03-27 2022-11-17 베이징 다지아 인터넷 인포메이션 테크놀로지 컴퍼니 리미티드 팔레트 모드를 사용한 비디오 코딩 방법 및 장치

Also Published As

Publication number Publication date
JP2018505590A (ja) 2018-02-22
EP3235247A1 (en) 2017-10-25
CN107113436B (zh) 2020-06-23
KR102478411B1 (ko) 2022-12-15
US10097839B2 (en) 2018-10-09
US20160182913A1 (en) 2016-06-23
TW201633784A (zh) 2016-09-16
CN107113436A (zh) 2017-08-29
JP6625644B2 (ja) 2019-12-25
TWI689197B (zh) 2020-03-21
WO2016100859A1 (en) 2016-06-23

Similar Documents

Publication Publication Date Title
KR102478411B1 (ko) 서브샘플링 포맷을 위한 팔레트 모드
US10097842B2 (en) Restriction of escape pixel signaled values in palette mode video coding
KR102600210B1 (ko) 비디오 코딩을 위한 팔레트 우회 빈들의 그룹화
KR102409816B1 (ko) 비디오 코딩을 위한 팔레트 모드 코딩
KR101977450B1 (ko) 팔레트 코딩 모드에서의 비디오 블록의 이스케이프 픽셀들의 양자화
KR102142181B1 (ko) 비디오 코딩에서의 팔레트 블록 사이즈에 대한 제한
US10097837B2 (en) Palette run hiding in palette-based video coding
US20140301475A1 (en) Determining palette indices in palette-based video coding
JP2017523667A (ja) ビデオコーディングにおけるカラーパレットモード
US20160094851A1 (en) Parsing dependency reduction for palette index coding
KR20160136338A (ko) 비디오 코딩을 위한 런 길이 코드를 이용한 팔레트 예측자 시그널링
WO2016054254A1 (en) Explicit signaling of escape sample positions in palette coding mode for video coding
US9961351B2 (en) Palette mode coding
US20160366439A1 (en) Palette copy extension
JP2017536014A (ja) パレットモードコーディングのための対角方向の複製
NZ737096B2 (en) Grouping palette bypass bins for video coding

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant