KR20170092461A - Method for the mass production of 3-fucosyllactose - Google Patents

Method for the mass production of 3-fucosyllactose Download PDF

Info

Publication number
KR20170092461A
KR20170092461A KR1020170013030A KR20170013030A KR20170092461A KR 20170092461 A KR20170092461 A KR 20170092461A KR 1020170013030 A KR1020170013030 A KR 1020170013030A KR 20170013030 A KR20170013030 A KR 20170013030A KR 20170092461 A KR20170092461 A KR 20170092461A
Authority
KR
South Korea
Prior art keywords
fucosyllactose
gene
coli
leu
escherichia coli
Prior art date
Application number
KR1020170013030A
Other languages
Korean (ko)
Other versions
KR101794972B1 (en
Inventor
서진호
정상민
진영욱
Original Assignee
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교산학협력단 filed Critical 서울대학교산학협력단
Priority to KR1020170013030A priority Critical patent/KR101794972B1/en
Publication of KR20170092461A publication Critical patent/KR20170092461A/en
Application granted granted Critical
Publication of KR101794972B1 publication Critical patent/KR101794972B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • C12N15/72Expression systems using regulatory sequences derived from the lac-operon
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • C12N9/1051Hexosyltransferases (2.4.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1241Nucleotidyltransferases (2.7.7)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/12Disaccharides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2511/00Cells for large scale production

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

The present invention relates to a method of mass-producing alpha-1,3-fucosyllactose using recombinant E. coli. When using the recombinant E. coli of the present invention, restriction of a conventional technique where industrial mass production is impossible due to low production yield is overcome, thereby being able to mass-produce 3-fucosyllactose with a very high production yield.

Description

α-1,3-푸코실락토오즈의 대량 생산 방법 {Method for the mass production of 3-fucosyllactose}[Method for the mass production of 3-fucosyllactose}

본 발명은 α-1,3-푸코실락토오즈의 대량 생산 방법에 관한 것으로, 더욱 상세하게는 재조합 대장균을 이용한 α-1,3-푸코실락토오즈의 대량 생산 방법에 관한 것이다. The present invention relates to a method for mass-producing α-1,3-fucosyl lactose, and more particularly, to a method for mass-producing α-1,3-fucosyl lactose using recombinant E. coli.

인간의 모유에는 200여 종 이상의 각기 다른 구조를 가지는 올리고당 (Human Milk Oligosaccharide, HMO)이 다른 포유류에 비해 상당히 높은 농도 (5~15 g/L)로 존재한다. Human milk oligosaccharides (HMO), which have more than 200 different structures, are present in human milk at significantly higher concentrations (5 to 15 g/L) than other mammals.

HMO는 프리바이오틱(prebiotic) 효과, 병원균 장내부탁 억제 효과 그리고 면역조절시스템 조절효과 등 영유아에게 필수적인 기능성을 발휘하는 것으로 알려져 있어 최근 각광을 받고 있다. HMO has been in the spotlight recently because it is known to exhibit essential functions for infants and toddlers, such as prebiotic effect, inhibitory effect on intestinal obstruction of pathogens, and immune regulation system regulation effect.

HMO 중에 가장 많은 양으로 존재하는 2-푸코실락토오즈는 앞서 언급한 다양한 생물학적 활성에 관여하는 주요 HMO인 것으로 보고되어 있는데, 이의 이성질체인 3-푸코실락토오즈 또한 위와 같은 기능성을 지닐 것으로 기대되고 있다. 2-Fucosyllactose, which is present in the largest amount among HMOs, is reported to be the main HMO involved in various biological activities mentioned above, and its isomer, 3-Fucosyllactose, is also expected to have the above functionality. have.

HMO 중 2-푸코실락토오즈는 약 33% 정도 존재하는 반면, 3-푸코실락토오즈는 3~4% 정도로 소량 존재하는 것으로 알려져 있는데, 3-푸코실락토오즈의 생산방법은 직접 모유로부터 추출하는 방법과 화학적 또는 효소적 방법으로 추출하는 방법이 있다. It is known that about 33% of 2-fucosylactose exists in HMO, while 3-fucosylactose is present in a small amount of 3-4%.The production method of 3-fucosyllactose is directly extracted from breast milk. There are two methods: a method of extracting by chemical or enzymatic method.

직접 추출하는 방법은 모유 수급의 한계와 낮은 생산성이 문제이다. 화학적 합성법은 고가의 기질, 낮은 이성체선택성과 생산수율, 그리고 독성시약의 사용 등의 문제가 있다. 또한, 효소적 합성법은 전구체가 되는 GDP-L-푸코오즈가 매우 고가라는 점과 푸코즈전이효소의 정제비용이 많이 든다는 문제점이 있다. The direct extraction method is problematic due to the limitation of breast milk supply and low productivity. Chemical synthesis has problems such as expensive substrates, low isomer selectivity and production yield, and the use of toxic reagents. In addition, the enzymatic synthesis method has a problem that the GDP-L-fucose as a precursor is very expensive and the purification cost of the fucose transfer enzyme is high.

상기와 같은 문제점으로 인해 3-푸코실락토오즈는 대량생산이 어렵고 대량 생산을 위한 기술이 거의 없는 실정이다. 하지만, 유아용 이유식에 첨가됨으로써 많은 기능성 향상을 기대할 수 있기 때문에, 산업적 생산을 위한 더욱 많은 연구가 필요하다 할 수 있다. Due to the above problems, mass production of 3-fucosyl lactose is difficult and there is little technology for mass production. However, since a lot of functional improvement can be expected by being added to baby food for infants, more research for industrial production is needed.

대한민국 특허등록번호 제10-1544184호 (등록일자 2015. 08. 06)에는, 2-푸코실락토오즈를 생산하기 위한 변이 미생물 및 이를 이용한 2-푸코실락토오즈의 제조방법에 관한 것으로, lacZ가 변형 또는 제거된 오페론 도입 및 FucT2 또는 이의 변이체를 코딩하는 유전자, G6PDH(glucose-6-phosphate dehydrogenase) 및 GSK (guanosine-inosine kinase)를 코딩하는 유전자로 이루어진 군에서 선택된 하나 이상의 유전자가 도입 또는 증폭되어 있는 변이 미생물 및 이를 이용한 2-푸코실락토오즈의 제조방법이 기재되어 있다.Republic of Korea Patent Registration No. 10-1544184 (registration date 2015. 08. 06) relates to a mutant microorganism for producing 2-fucosyl lactose and a method for producing 2-fucosyl lactose using the same, lacZ At least one gene selected from the group consisting of a gene encoding a modified or removed operon and a gene encoding FucT2 or a variant thereof, G6PDH (glucose-6-phosphate dehydrogenase) and GSK (guanosine-inosine kinase) is introduced or amplified. A mutant microorganism and a method for producing 2-fucosyl lactose using the same are described.

본 발명에서는 재조합 대장균을 이용하여, α-1,3-푸코실락토오즈를 대량으로 생산할 수 있는 방법을 개발하여 제공하고자 한다. In the present invention, by using recombinant E. coli, it is intended to develop and provide a method for mass-producing α-1,3-fucosylactose.

본 발명은, α-1,3-푸코실락토오즈 생산용 재조합 대장균에 있어서, 상기 재조합 대장균은, 헬리코박터 파이로리 (Helicobacter pylori) ATCC 26695에서 유래한 것으로, 서열번호 5의 아미노산 서열을 갖는 α-1,3-푸코오즈전이효소를 암호화하는 핵산서열이 도입되거나, 헬리코박터 파이로리 (Helicobacter pylori) ATCC 43504 에서 유래한 것으로, 서열번호 6의 아미노산 서열을 갖는 α-1,3-푸코오즈전이효소를 암호화하는 핵산서열이 도입되어 있는 것을 특징으로 하는 α-1,3-푸코실락토오즈 생산용 재조합 대장균을 제공한다. The present invention, in the recombinant E. coli for the production of α-1,3-fucosylactose, the recombinant E. coli is derived from Helicobacter pylori ATCC 26695, α-1 having the amino acid sequence of SEQ ID NO: 5 ,3-fucose transferase-encoding nucleic acid sequence was introduced, or Helicobacter pylori Derived from ATCC 43504, for the production of α-1,3-fucosylactose, characterized in that the nucleic acid sequence encoding α-1,3-fucose transferase having the amino acid sequence of SEQ ID NO:6 is introduced Recombinant E. coli is provided.

α-1,3-푸코실락토오즈를 생산하기 위해서는, GDP-L-푸코오스(GDP-L-fucose)와 락토오즈(lactose)를 기질로 하여 α-1,3-푸코실락토오즈 생산 반응을 수행하는 α-1,3-푸코오즈전이효소(α-1,3-fucosyltransferase)가 필요하다 (도 1 참조 요망). 이 효소는 다양한 미생물에 존재하는데, 본 발명에서는 α-1,3-푸코실락토오즈의 생산 수율이 우수한 α-1,3-푸코오즈전이효소 2종 (FucB, PylT)을 발굴한 것이다. In order to produce α-1,3-fucosyl lactose, α-1,3-fucosyl lactose production reaction using GDP-L-fucose and lactose as substrates To perform α-1,3-fucosyltransferase (α-1,3-fucosyltransferase) is required (see Fig. 1). These enzymes exist in various microorganisms, and in the present invention, two types of α-1,3-fucose transferases (FucB and PylT) with excellent production yield of α-1,3-fucosylactose were discovered.

하기 본 발명의 실험에 의할 경우, 헬리코박터 파이로리 (Helicobacter pylori) ATCC 26695 유래 α-1,3-푸코오즈전이효소를 암호화하는 서열번호 1의 유전자 fucB를 본 발명에 도입할 경우, 유가식 배양에서 0.42 g 3-FL/g lactose의 α-1,3-푸코실락토오즈 생산수율을 확인할 수 있었고, 헬리코박터 파이로리 (Helicobacter pylori) ATCC 43504 유래 α-1,3-푸코오즈전이효소를 암호화하는 서열번호 2의 유전자 pylT를 본 발명에 도입할 경우, 유가식 배양에서 0.57 3-FL/g lactose의 α-1,3-푸코실락토오즈 생산수율을 확인할 수 있었다. 이에 반하여, 박테로이데스 프라질리스 (Bacteroides fragilis) ATCC 25285 유래의 α-1,3-푸코오즈전이효소들은 α-1,3-푸코실락토오즈 생산수율이 각각 0.007 3-FL/g lactose, 0.009 3-FL/g lactose에 불과하였다. According to the experiment of the present invention below, when introducing the gene fucB of SEQ ID NO: 1 encoding α-1,3-fucose transferase derived from Helicobacter pylori ATCC 26695 into the present invention, in fed-batch culture 0.42 g 3-FL / g lactose of α-1,3- Foucault chamber could determine the lactose yield, Helicobacter pylori (Helicobacter pylori) When the gene pylT of SEQ ID NO: 2 encoding α-1,3-fucosetransferase derived from ATCC 43504 is introduced into the present invention, 0.57 3-FL/g lactose α-1,3- fucosyl in fed-batch culture The lactose production yield could be confirmed. On the contrary, Bacteroides fragilis ) The α-1,3-fucosetransferases derived from ATCC 25285 showed only 0.007 3-FL/g lactose and 0.009 3-FL/g lactose, respectively.

한편, 본 발명의 α-1,3-푸코실락토오즈 생산용 재조합 대장균에 있어서, 상기 서열번호 5의 아미노산 서열을 갖는 α-1,3-푸코오즈전이효소를 암호화하는 핵산서열은 바람직하게 서열번호 1에 기재된 핵산서열 (fucB 유전자)일 수 있다. 또한, 서열번호 6의 아미노산 서열을 갖는 α-1,3-푸코오즈전이효소를 암호화하는 핵산서열은 바람직하게 서열번호 2에 기재된 핵산서열 (pylT 유전자)일 수 있다. On the other hand, in the recombinant E. coli for the production of α-1,3-fucosylactose of the present invention, the nucleic acid sequence encoding α-1,3-fucose transferase having the amino acid sequence of SEQ ID NO: 5 is preferably sequence Nucleic acid sequence described in number 1 ( fucB Gene). In addition, the nucleic acid sequence encoding α-1,3-fucose transferase having the amino acid sequence of SEQ ID NO: 6 may preferably be the nucleic acid sequence ( pylT gene) of SEQ ID NO: 2.

한편, 본 발명의 α-1,3-푸코실락토오즈 생산용 재조합 대장균에 있어서, 상기 대장균은 바람직하게 대장균 (E. coli) BL 21 star(DE3)균주인 것이 좋다. 기존에 사용된 대장균 (E. coli) K12는 F'플라즈미드를 가지고 있기 때문에 과량의 바이오필름을 생성하고, 높은 세포밀도에서 자라면, 생산물 형성 비율을 증가시키기 위해 세포성장이 억제되는 문제가 발생한다. 또한, 높은 수준의 아세테이트를 축적하는 문제도 있어, 전체적으로 유가식 배양 자체가 힘든 문제가 있다. On the other hand, in the recombinant E. coli for the production of α-1,3-fucosylactose of the present invention, the E. coli is preferably E. coli BL 21 star (DE3) strain. Existing E. coli (E. coli) K12 has an F'plasmid, so when it grows at a high cell density, it creates an excessive amount of biofilm, and when it grows at a high cell density, there is a problem that cell growth is inhibited to increase the rate of product formation. . In addition, there is a problem of accumulating a high level of acetate, and as a whole, fed-batch culture itself is difficult.

하지만, 본 발명의 대장균 (E. coli) BL21 star(DE3)는 F'플라스미드를 가지지 않고, 활발한 당대사로 인해 세포성장도 빠르다. 또한, 아세테이트 축적량이 상대적으로 적고, 글루코스 이용률이 우수한 특징이 있다. 이와 같은 이유로 인해 대장균 (E. coli) BL21 star(DE3)는 본 발명의 α-1,3-푸코실락토오즈 생산에 적합한 균주이고, 유가식 배양을 통해 대량의 α-1,3-푸코실락토오즈를 생산할 수 있는 것이다. However, E. coli (E. coli) BL21 star (DE3) of the present invention does not have an F'plasmid, and cell growth is also fast due to active sugar metabolism. In addition, there are characteristics that the amount of acetate accumulation is relatively small, and the glucose utilization rate is excellent. For this reason, E. coli BL21 star (DE3) is a strain suitable for the production of α-1,3-fucosyl lactose of the present invention, and a large amount of α-1,3-fucosyl through fed-batch culture It can produce lactose.

한편, 본 발명의 α-1,3-푸코실락토오즈 생산용 재조합 대장균에 있어서, 상기 재조합 대장균은, 바람직하게 '야생형 lac 오페론' 대신, '야생형 베타 갈락토시다아제보다 활성이 낮춰진 베타갈락토시다아제를 코딩하는 lacZ 유전자, 야생형 lacY 유전자 및 야생형 lacA 유전자로 구성된 lac 오페론' 또는, '야생형 lacZ 유전자가 완전히 제거되고, 야생형 lacY 유전자 및 야생형 lacA 유전자만으로 구성된 lac 오페론'을 보유하고 있는 것이 좋다.On the other hand, in the recombinant Escherichia coli for the production of α-1,3-fucosylactose of the present invention, the recombinant Escherichia coli, preferably, instead of the'wild type lac operon','betagal whose activity is lowered than that of the wild type beta galactosidase. LacZ encoding lactosidase Gene, wild-type lacY gene and wild-type lacA gene lac operon, or wild-type lacZ gene is completely removed, wild-type lacY gene and wild-type lacA It is good to have a'lac operon' consisting of only genes.

상기 본 발명의 대장균 (E. coli) BL21 star(DE3) 균주는 상기에서 살펴본 여러 장점 때문에, α-1,3-푸코실락토오즈의 생산을 위한 최적 균주라 할 수 있으나, 락토오즈의 대사가 강하기 때문에, 고수율로 α-1,3-푸코실락토오즈의 생산을 위해서는 lacZ의 파쇄가 필수적으로 필요하다. The E. coli (E. coli) BL21 star (DE3) strain of the present invention can be said to be an optimal strain for the production of α-1,3-fucosyl lactose, because of the various advantages discussed above, but the metabolism of lactose is Because it is strong, lacZ is indispensable for the production of α-1,3-fucosylactose in high yield.

이에 본 발명에서는 변형된 lacZ 및 야생형 lacYA를 보유한 ΔL M15 균주 및 lacZ 결실 및 야생형 lacYA를 보유한 ΔL YA 균주를 구축하였는데, 이들 균주는 락토오즈의 대사를 억제하고, 락토오즈의 대장균 내로 유입이 원활하도록 개발된 균주이다. This were the present invention, the build ΔL YA strains have a modified lacZ and ΔL M15 strain and lacZ deletion have a wild-type lacYA and wild type lacYA, these strains inhibited the metabolism of lactose, and that flows smoothly into the E. coli lactose It is a developed strain.

한편, 본 발명의 α-1,3-푸코실락토오즈 생산용 재조합 대장균에 있어서, 상기 재조합 대장균은, 바람직하게 GDP-D-만노오스-4,6-데하이드라타아제 (Gmd), GDP-L-푸코오스 신타아제 (WcaG), 포스포만노뮤타아제 (ManB), 그리고 만노오스-1-포스페이트 구아닐트랜스퍼라아제 (ManC)를 암화화하는 유전자가 도입되어 있는 것이 좋다. On the other hand, in the recombinant E. coli for the production of α-1,3-fucosylactose of the present invention, the recombinant E. coli is preferably GDP-D-mannose-4,6-dehydratase (Gmd), GDP- L-fucose synthase (WcaG), phosphomannomutase (ManB), and genes for cancerizing mannose-1-phosphate guanyltransferase (ManC) are preferably introduced.

이들 유전자가 균주 내로 도입됨으로써, 글리세롤로부터 GDP-L-푸코오스를 생산하는 생합성 경로가 강화되어, 궁극적으로 α-1,3-푸코실락토오즈의 생산량을 늘릴 수 있다. By introducing these genes into the strain, the biosynthetic pathway for producing GDP-L-fucose from glycerol is strengthened, and ultimately, the production amount of α-1,3-fucosylactose can be increased.

한편, 본 발명의 α-1,3-푸코실락토오즈 생산용 재조합 대장균에 있어서, 상기 재조합 대장균은 wcaJ 유전자가 제거된 것이 좋다. 이 유전자가 제거됨으로써, α-1,3-푸코실락토오즈의 전구체로 사용이 되어지는 GDP-L-푸코오스가 콜라닌산 (colanic acid)으로 전환되는 것을 막아 최종적인 생산 수율을 높이는 효과가 발휘된다.On the other hand, in the recombinant E. coli for the production of α-1,3-fucosylactose of the present invention, the recombinant E. coli is wcaJ It is good that the gene has been removed. By removing this gene, it prevents the conversion of GDP-L-fucose, which is used as a precursor of α-1,3-fucosylactose, to colanic acid, thereby enhancing the final production yield. do.

한편, 본 발명은 글리세롤 및 락토오즈가 함유된 배지에 상기 본 발명의 α-1,3-푸코실락토오즈의 생산용 재조합 대장균을 배양하는 것을 특징으로 하는 α-1,3-푸코실락토오즈의 생산방법을 제공한다. 이때, 상기 α-1,3-푸코실락토오즈의 생산방법은, 바람직하게 글리세롤을 추가로 공급하는 유가식 배양인 것인 것이 좋다. On the other hand, the present invention α-1,3-fucosyl lactose, characterized in that culturing the recombinant E. coli for the production of the α-1,3-fucosyl lactose of the present invention in a medium containing glycerol and lactose Provides the production method of At this time, the production method of α-1,3-fucosyllactose is preferably fed-batch culture in which glycerol is additionally supplied.

또한, 본 발명의 상기 유가식 배양은, 바람직하게 37℃의 배양온도로 배양을 시작하다가, 헬리코박터 파이로리 (Helicobacter pylori) ATCC 26695에서 유래한 것으로 α-1,3-푸코오즈전이효소를 암호화하는 서열번호 1의 유전자 fucB를 발현시키거나, 헬리코박터 파이로리 (Helicobacter pylori) ATCC 43504 에서 유래한 것으로 α-1,3-푸코오즈전이효소를 암호화하는 서열번호 2의 유전자 pylT를 발현시킨 후, 배양온도를 25℃ 낮추는 것이 좋다. In addition, the fed-batch culture of the present invention is derived from Helicobacter pylori ATCC 26695, preferably starting at a culture temperature of 37° C., and a sequence encoding α-1,3-fucose transferase Expressing the gene fucB of number 1 , or Helicobacter pylori After expressing the gene pylT of SEQ ID NO: 2, which is derived from ATCC 43504, encoding α-1,3-fucose transferase, it is recommended to lower the culture temperature by 25°C.

또한, 바람직하게 배양온도를 25℃로 낮춘 후, 락토오즈를 배양배지 중에 주입하는 것이 좋다. In addition, preferably, after lowering the culture temperature to 25°C, lactose is preferably injected into the culture medium.

본 발명의 재조합 대장균을 이용할 경우, 생산수율이 낮아 산업적 측면 대량 생산이 불가능하였던 종래기술의 제약을 극복하여, 매우 높은 생산수율로 α-1,3-푸코실락토오즈를 대량 생산할 수 있다. In the case of using the recombinant E. coli of the present invention, it is possible to mass-produce α-1,3-fucosyl lactose with a very high production yield by overcoming the limitations of the prior art, which was not possible to mass-produce industrially due to a low production yield.

도 1은 글리세롤 및 락토오즈로부터 α-1,3-푸코실락토오즈를 생합성하는 경로를 보여주는 모식도이다.
도 2는 'BL21 (DE3) star ΔL M15 pmBCGW + pFucB 균주', 'BL21 (DE3) star ΔL M15 pmBCGW + pPylT 균주', 'BL21 (DE3) star ΔL M15 pmBCGW + pFra1 균주' 및 'BL21 (DE3) star ΔL M15 pmBCGW + pFra2 균주'를 이용한 3-푸코실락토오즈의 회분식 배양 결과이다.
도 3은 'BL21 (DE3) star ΔL YA pmBCGW + pFucB 균주', 'BL21 (DE3) star ΔL YA pmBCGW + pPylT 균주', 'BL21 (DE3) star ΔL YA pmBCGW + pFra1 균주' 및 'BL21 (DE3) star ΔL YA pmBCGW + pFra2 균주'를 이용한 유가식 배양 결과이다.
도 4는 'BL21 (DE3) star 균주'의 wcaJ 유전자 파쇄 결과이다.
도 5는 'BL21 (DE3) star ΔL YA ΔwcaJ pmBCGW + pPylT 균주'의 유가식 배양 결과이다.
1 is a schematic diagram showing a pathway for biosynthesizing α-1,3-fucosyl lactose from glycerol and lactose.
Figure 2 shows'BL21 (DE3) star Δ L M15 pmBCGW + pFucB strain','BL21 (DE3) star Δ L M15 pmBCGW + pPylT strain','BL21 (DE3) star Δ L M15 pmBCGW + pFra1 strain'and'BL21. (DE3) Star Δ L M15 pmBCGW + pFra2 strain '3-Fucosyllactose using a batch culture results.
Figure 3 'BL21 (DE3) star Δ L YA pmBCGW + pFucB strain','BL21 (DE3) star Δ L YA pmBCGW + pPylT strain','BL21 (DE3) star Δ L YA pmBCGW + pFra1 strain'and'BL21 (DE3) Star Δ L YA pmBCGW + pFra2 strain'fed-batch culture results.
4 is a result of disruption of the wcaJ gene of'BL21 (DE3) star strain'.
5 is a fed- batch culture result of'BL21 (DE3) star Δ L YA ΔwcaJ pmBCGW + pPylT strain'.

이하, 본 발명의 내용을 하기 실시예 및 실험예를 통해 더욱 상세히 설명하고자 한다. 다만, 본 발명의 권리범위가 하기 실시예에만 한정되는 것은 아니고, 그와 등가의 기술적 사상의 변형까지를 포함한다. Hereinafter, the content of the present invention will be described in more detail through the following examples and experimental examples. However, the scope of the present invention is not limited to the following examples, and includes modifications of the technical idea equivalent thereto.

[제조예 1: 재조합 균주 및 플라스미드 제작][Production Example 1: Preparation of recombinant strain and plasmid]

본 발명자가 이미 구축한 GDP-푸코오즈 생산 균주 (E. coli BL21 (DE3) star ΔL M15 pmBCGW)에, 추가적으로 α-1,3-푸코오즈전이효소를 도입하여 새로운 3-푸코실락토오즈 생산 균주를 구축하고자 하였다. Production of new 3-fucosilactose by introducing α-1,3-fucose transferase to the GDP-fucose-producing strain ( E. coli BL21 (DE3) star Δ L M15 pmBCGW) already constructed by the present inventors It was attempted to build a strain.

한편, pmBCGW 벡터는 글리세롤 또는 글루코오즈를 푸코실락토오즈의 전구체로 사용되는 GDP-L-푸코오즈로 전환시키기 위하여 상기 대장균에 삽입된 것이다 (Lee, W. H., et al., 2009, Bioresour Technol, 100(24):6143). 이 벡터는 pETDuet-1에 Gmd (GDP-D-mannose-4, 6-dehydratase), WcaG (GDP-L-fucose synthase), ManB (phosphomannomutase), 그리고 ManC (mannose-1-phosphate guanyltransferase)의 네 가지 단백질을 발현시킬 수 있으며, 모든 유전자는 대장균에서 유래하였다.Meanwhile, the pmBCGW vector is inserted into the E. coli to convert glycerol or glucose into GDP-L-fucose used as a precursor of fucosylactose (Lee, WH, et al., 2009, Bioresour Technol, 100 (24):6143). This vector has four types of pETDuet-1: Gmd (GDP-D-mannose-4, 6-dehydratase), WcaG (GDP-L-fucose synthase), ManB (phosphomannomutase), and ManC (mannose-1-phosphate guanyltransferase). Protein can be expressed, and all genes are derived from E. coli.

한편, 실시예 2에서 사용한 호스트 균주인 E. coli BL21 (DE3) star ΔL M15는 하기의 방법으로 제작하였다. 우선 pGlacZ△M15를 제작하기 위해, 2쌍의 프라이머 'P1_M15 lac/ P2_M15 lac'와 'P3_M15 lac/P4_M15 lac'을 사용하여 E. coli K-12 (ATCC10798)의 게놈 DNA로부터 각각 2개의 DNA 단편을 증폭하였다. 증폭된 DNA 단편을 'In-Fusion HD Cloning Kit (TAKARA, Japan)'을 사용하여 각각 SmaI이 처리된 pGRG36에 삽입하였고, 그 결과 pGlacZ△M15 (변형된 lacZ 및 야생형 lacYA 보유)를 구축할 수 있었다 (Chin, Y.W., et al. (2015) Journal of Biotechnology 210: 107-115). 이 pGlacZ△M15를 E. coli BL21 (DE3) star에 삽입하여 최종적으로 E. coli BL21 (DE3) star ΔL M15를 제작할 수 있었다. Meanwhile, the host strain E. coli BL21 (DE3) star Δ L M15 used in Example 2 was prepared by the following method. First, to prepare pGlacZ△M15, two pairs of primers'P1_M15 lac/ P2_M15 lac'and'P3_M15 lac/P4_M15 lac' were used to prepare two DNA fragments from genomic DNA of E. coli K-12 (ATCC10798), respectively. Amplified. The amplified DNA fragment was inserted into pGRG36 treated with Sma I, respectively, using'In-Fusion HD Cloning Kit (TAKARA, Japan)', and as a result, pGlacZ△M15 (having modified lacZ and wild-type lacYA ) could be constructed. (Chin, YW, et al. (2015) Journal of Biotechnology 210: 107-115). Is a pGlacZ △ M15 was inserted into E. coli BL21 star (DE3) were finally produce the E. coli BL21 (DE3) star Δ L M15.

한편, 하기 실시예 3에서 사용한 호스트 균주인 E. coli BL21 (DE3) star △L YA 호스트 균주를 하기의 방법으로 제작하였다. pGlacYA를 제작하기 위해, 2쌍의 프라이머 'P1_M15 lac/P2_lacYA'와 'P3_lacYA/P4_M15 lac'를 사용하여 2개의 DNA 단편을 증폭하였다. 증폭된 DNA 단편들을 'In-Fusion HD Cloning Kit (TAKARA, Japan)'을 사용하여 각각 SmaI이 처리된 pGRG36에 삽입하였고, 그 결과, pGlacYA (lacZ 결실 및 야생형 lacYA 보유)가 구축되었다 (Chin, Y.W., et al. (2015) Journal of Biotechnology 210: 107-115). 이 pGlacYA를 E. coli BL21 (DE3) star에 삽입하여 최종적으로 E. coli BL21 (DE3) star ΔL YA를 제작할 수 있었다. On the other hand, E. coli BL21 (DE3) star ΔL YA host, which is the host strain used in Example 3 below The strain was produced by the following method. To prepare pGlacYA, two pairs of primers'P1_M15 lac/P2_lacYA'and'P3_lacYA/P4_M15lac' were used to amplify two DNA fragments. The amplified DNA fragments were inserted into pGRG36 treated with Sma I, respectively, using'In-Fusion HD Cloning Kit (TAKARA, Japan)', and as a result, pGlacYA (with lacZ deletion and wild-type lacYA ) was constructed (Chin, YW, et al. (2015) Journal of Biotechnology 210: 107-115). This pGlacYA was inserted into E. coli BL21 (DE3) star, and finally E. coli BL21 (DE3) star Δ L YA could be produced.

한편, 헬리코박터 파이로리 (Helicobacter pylori) ATCC 26695에서 α-1,3-푸코오즈전이효소 유전자 fucB (서열번호 1)를 클로닝하여 pCOLADuet-1에 도입함으로써 재조합 벡터 pFucB를 구축하였다. 또한, 헬리코박터 파이로리 (Helicobacter pylori) ATCC 43504 에서 α-1,3-푸코오즈전이효소 유전자 pylT (서열번호 2)를 클로닝하여 pCOLADuet-1에 도입함으로써 재조합 벡터 pPylT를 구축하였다. 또한, 박테로이데스 프라질리스 (Bacteroides fragilis) ATCC 25285 유래의 α-1,3-푸코오즈전이효소 유전자 fra1 (서열번호 3), fra2 (서열번호 4)를 pCOLADuet-1에 각각 도입함으로써 재조합 벡터 pFra1, pFra2를 각각 구축하였다. Meanwhile, Helicobacter pylori (Helicobacter pylori) ATCC α-1,3- Foucault Oz transferase gene from 26695 fucB (SEQ ID NO: 1) was cloned and introduced into pCOLADuet-1 to construct a recombinant vector pFucB. Further, the Helicobacter pylori (Helicobacter pylori) Α-1,3- fucosetransferase gene pylT in ATCC 43504 (SEQ ID NO: 2) was cloned and introduced into pCOLADuet-1 to construct a recombinant vector pPylT. Also, Bacteroides fragilis ) α-1,3-fucose transferase gene fra1 derived from ATCC 25285 (SEQ ID NO: 3), fra2 Recombinant vectors pFra1 and pFra2 were constructed by introducing (SEQ ID NO: 4) into pCOLADuet-1, respectively.

한편, 실시예 2의 3-푸코실락토오즈 생산을 위하여 상기에서 구축한 벡터를 GDP-푸코오즈 생산 균주 (BL21 (DE3) star ΔL M15 pmBCGW)에 도입함으로써, 최종적으로 'BL21 (DE3) star ΔL M15 pmBCGW + pFucB 균주', 'BL21 (DE3) star ΔL M15 pmBCGW + pPylT 균주', 'BL21 (DE3) star ΔL M15 pmBCGW + pFra1 균주', 'BL21 (DE3) star ΔL M15 pmBCGW + pFra2 균주'를 각각 구축하였다. On the other hand, by introducing the vector constructed above for the production of 3-Fucosilactose of Example 2 into the GDP-fucose producing strain (BL21 (DE3) star Δ L M15 pmBCGW), finally'BL21 (DE3) star Δ L M15 pmBCGW + pFucB strain','BL21 (DE3) star Δ L M15 pmBCGW + pPylT strain','BL21 (DE3) star Δ L M15 pmBCGW + pFra1 strain','BL21 (DE3) star Δ L M15 pmBCGW + Each of'pFra2 strain' was constructed.

또한, 실시예 3의 3-푸코실락토오즈 생산을 위하여 상기에서 구축한 벡터를 GDP-푸코오즈 생산 균주 (E. coli BL21 (DE3) star △L YA pmBCGW)에 도입함으로써, 최종적으로 'BL21 (DE3) star △L YA pmBCGW + pFucB 균주', 'BL21 (DE3) star △L YA pmBCGW + pPylT 균주', 'BL21 (DE3) star △L YA pmBCGW + pFra1 균주', 'BL21 (DE3) star △L YA pmBCGW + pFra2 균주'를 각각 구축하였다. In addition, by introducing the vector constructed above for the production of 3-fucosyllactose of Example 3 into a GDP-fucose-producing strain ( E. coli BL21 (DE3) star ΔL YA pmBCGW), finally'BL21 ( DE3) star △L YA pmBCGW + pFucB strain','BL21 (DE3) star △L YA pmBCGW + pPylT strain','BL21 (DE3) star △L YA pmBCGW + pFra1 strain','BL21 (DE3) star △L YA pmBCGW + pFra2 strain' was constructed, respectively.

한편, 3-푸코실락토오즈를 생산하기 위한 모든 균주, 플라스미드 및 올리고뉴클레오티드를 표 1내지 2에 기재하였다. On the other hand, all strains, plasmids, and oligonucleotides for producing 3-fucosyllactose are described in Tables 1 to 2.

균주 및 플라스미드Strains and Plasmids 균주Strain 관련된 특징Related features E. coli TOP10 E. coli TOP10 F-, mcrA (mrr - hsdRMS- mcrBC) f80lacZΔM15 ΔlacX74 recA1 araD139 Δ(ara-leu)7697 galU galK rpsL (StrR) endA1 nupG F -, mcr A (mrr - hsd RMS - mcr BC) f80lacZΔM15 ΔlacX74 recA1 araD139 Δ ( ara-leu ) 7 697 galU galK rpsL (Str R ) endA1 nupG E. coli BL21star(DE3) E. coli BL21star(DE3) F-, ompT, hsdSB(rB -mB -), gal, dcm rne131 (DE3) F -, ompT, hsdSB (r B - m B -), gal, dcm rne131 (DE3) ΔL Δ L BL21star(DE3) ΔlacZYA BL21star(DE3) ΔlacZYA ΔL M15 Δ L M15 BL21star(DE3) ΔlacZYA Tn7::lacZΔM15YA BL21star(DE3) ΔlacZYA Tn7::lacZΔM15YA ΔL YA Δ L YA BL21star(DE3) ΔlacZYA Tn7::lacYA BL21star(DE3) ΔlacZYA Tn7::lacYA 플라스미드Plasmid 관련된 특징Related features pmBCGWpmBCGW pETDuet-1 + gmd-wcaG (NdeI/XhoI) + manB-manC (NcoI+EcoRI) pETDuet-1 + gmd-wcaG ( Nde I /Xho I) + manB-manC ( Nco I +EcoR I) pCOLADuet-1pCOLADuet-1 Two T7 promoters, ColA replicon, KanR Two T7 promoters, ColA replicon, Kan R pFucBpFucB pCOLADuet-1 + fucB (NdeI/KpnI) pCOLADuet-1 + fucB (Nde I / Kpn I) pPylTpPylT pCOLADuet-1 + pylT (NdeI/KpnI) pCOLADuet-1 + pylT (Nde I / Kpn I) pFra1pFra1 pCOLADuet-1 + fra1 (NdeI/KpnI)pCOLADuet-1 + fra 1 ( Nde I/ Kpn I) pFra2pFra2 pCOLADuet-1 + fra2 (NdeI/BglII)pCOLADuet-1 + fra 2 ( Nde I/ Bgl II)

사용된 프라이머 Primer used 프라이머 이름Primer name 서열(5'->3')Sequence (5'->3') 비고Remark F_NdeI_fucBF_ Nde I_fucB GGAATTCCATATGTTCCAACCCCTATTAGACGCGGAATTC CATATG TTCCAACCCCTATTAGACGC R_KpnI-fucBR_ Kpn I-fucB GGGGTACCTTACAAACCCAATTTTTTAACCAACGG GGTACC TTACAAACCCAATTTTTTAACCAAC F_NdeI_pylTF_ Nde I_pylT GGAATTCCATATGTTCCAACCCCTATTAGACGCCGGAATTC CATATG TTCCAACCCCTATTAGACGCC R_KpnI-pylTR_ Kpn I-pylT GGGGTACCTTATTTTTTAACCCACCTCCTTATTACACGGG GGTACC TTATTTTTTAACCCACCTCCTTATTACACG F_NdeI_fra1F_ Nde I_fra1 GGAATTCCATATGGATATATTGATTCTTTTTTATAATACGATGTGG GGAATTC CATATG GATATATTGATTCTTTTTTATAATACGATGTGG R_KpnI-fra1R_ Kpn I-fra1 CGGGGTACCTCATATCCCTCCCAATTTTAGTTCGTGTATCGG GGTACC TCATATCCCTCCCAATTTTAGTTCGTGTAT F_NdeI_fra2F_ Nde I_fra2 GAAGATCTATGAAAAAAGTATTCATTCCTATAAATACCAAAATTCCTGGA AGATCT ATGAAAAAAGTATTCATTCCTATAAATACCAAAATTCCTG R_BglII-fra2R_ Bgl II-fra2 CGGGGTACCCTAATAAAACAACCTGTATATTCTATTTCTCGG GGTACC CTAATAAAACAACCTGTATATTCTATTTCT * 이탤릭체로 표시된 서열은 특정 제한효소의 인지 부위를 나타냄 * Sequences in italics indicate the recognition site of a specific restriction enzyme

[실시예 1: 회분식 배양을 통한 α-1,3-푸코실락토오즈 생산] [Example 1: Production of α-1,3-fucosylactose through batch culture]

상기 제조예 1에서 새로이 구축된 균주들을 이용하여 α-1,3-푸코실락토오즈를 생산하였다. 플라스크를 이용하여 최소 배지(13.5 g/L KH2PO4, 4.0 g/L (NH4)2HPO4, 1.7 g/L citric acid, 1.4 g/L MgSO4·7H2O, 10 ml/L 미량원소용액 (10 g/L Fe(III) citrate, 2.25 g/L ZnSO4·7H2O, 1.0 g/L CuSO4·5H2O, 0.35 g/L MnSO4·H2O, 0.23 g/L Na2B4O7·10H2O, 0.11 g/L (NH4)6Mo7O24, 2.0 g/L CaCl2·2H2O), pH6.8)에, 20 g/L의 글리세롤을 초기 탄소원으로 첨가하여 3-푸코실락토오즈를 생산하였다. 그리고, OD600가 0.6~0.8이 되었을 때 IPTG (Isopropyl β-D-1-thiogalactopyranoside) 0.1 mM 농도로 유도(induction)를 진행하였고, 이때 락토오즈를 20 g/L가 되도록 배지에 첨가해주었다. Using the newly constructed strains in Preparation Example 1, α-1,3-fucosyl lactose was produced. Using a flask, the minimum medium (13.5 g/L KH 2 PO 4 , 4.0 g/L (NH 4 ) 2 HPO 4 , 1.7 g/L citric acid, 1.4 g/L MgSO 4 7H 2 O, 10 ml/L Trace element solution (10 g/L Fe(III) citrate, 2.25 g/L ZnSO 4 7H 2 O, 1.0 g/L CuSO 4 5H 2 O, 0.35 g/L MnSO 4 H 2 O, 0.23 g/ L Na 2 B 4 O 7 10H 2 O, 0.11 g/L (NH 4 ) 6 Mo 7 O 24 , 2.0 g/L CaCl 2 2H 2 O), pH 6.8), 20 g/L of glycerol Was added as an initial carbon source to produce 3-fucosyllactose. And, when the OD 600 was 0.6 to 0.8, induction was performed at a concentration of 0.1 mM IPTG (Isopropyl β-D-1-thiogalactopyranoside), and at this time, lactose was added to the medium to be 20 g/L.

실험 결과는 도 2와 같이 나타났다. 'BL21 (DE3) star ΔL M15 pmBCGW + pFucB 균주'의 경우 0.13 g/L, 'BL21 (DE3) star ΔL M15 pmBCGW + pPylT 균주'의 경우 0.24 g/L의 3-푸코실락토오즈를 각각 생산하였다. 또한, 'BL21 (DE3) star ΔL M15 pmBCGW + pFra1 균주'와 'BL21 (DE3) star ΔL M15 pmBCGW + pFra2 균주'는 각각 0.16 g/L, 0.06 g/L의 α-1,3-푸코실락토오즈를 생산하였다. The experimental results were shown in FIG. 2. In the case of'BL21 (DE3) star Δ L M15 pmBCGW + pFucB strain', 0.13 g/L, and in the case of'BL21 (DE3) star Δ L M15 pmBCGW + pPylT strain', 0.24 g/L of 3-fucosyl lactose was respectively used. Produced. In addition,'BL21 (DE3) star Δ L M15 pmBCGW + pFra1 strain'and'BL21 (DE3) star Δ L M15 pmBCGW + pFra2 strain' are α-1,3-Fuco at 0.16 g/L and 0.06 g/L, respectively. Silactose was produced.

도 2는 'BL21 (DE3) star ΔL M15 pmBCGW + pFucB 균주', 'BL21 (DE3) star ΔL M15 pmBCGW + pPylT 균주', 'BL21 (DE3) star ΔL M15 pmBCGW + pFra1 균주' 및 'BL21 (DE3) star ΔL M15 pmBCGW + pFra2 균주'를 이용한 α-1,3-푸코실락토오즈 생산 결과이다. Figure 2 shows'BL21 (DE3) star Δ L M15 pmBCGW + pFucB strain','BL21 (DE3) star Δ L M15 pmBCGW + pPylT strain','BL21 (DE3) star Δ L M15 pmBCGW + pFra1 strain'and'BL21. (DE3) star Δ L M15 pmBCGW + pFra2 strain 'α-1,3-fucosyl lactose production results using.

[실시예 2: 유가식 배양을 통한 α-1,3-푸코실락토오즈의 대량 생산][Example 2: Mass production of α-1,3-fucosylactose through fed-batch culture]

상기 제조예 1에서 제작한, 'BL21 (DE3) star ΔL YA pmBCGW + pFucB 균주', 'BL21 (DE3) star ΔL YA pmBCGW + pPylT 균주', 'BL21 (DE3) star ΔL YA pmBCGW + pFra1 균주' 및 'BL21 (DE3) star ΔL YA pmBCGW + pFra2 균주'를 가지고, α-1,3-푸코실락토오즈의 대량 생산을 위한 유가식 배양을 실시하였다. Produced in Preparation Example 1,'BL21 (DE3) star Δ L YA pmBCGW + pFucB strain','BL21 (DE3) star Δ L YA pmBCGW + pPylT strain','BL21 (DE3) star Δ L YA pmBCGW + pFra1 Strains'and'BL21 (DE3) star Δ L YA pmBCGW + pFra2 strain' were fed-batch culture for mass production of α-1,3-fucosylactose.

2.5 L 바이오리엑터를 이용하여, 상기 실시예 1의 플라스크 배양과 같은 조성의 1 L 최소배지에서 고농도 세포 배양 및 3-푸코실락토오즈 대량 생산을 위한 유가식 배양을 실시하였다. Using a 2.5 L bioreactor, fed-batch culture was performed for high concentration cell culture and mass production of 3-fucosylactose in 1 L minimal medium having the same composition as in the flask culture of Example 1.

초기 20 g/L의 글리세롤을 이용하여 세포 건조균체량이 약 OD600=6.5가 될 때까지, 키운 후 IPTG 0.1 mM 농도로 단백질을 발현시켰다. 이때, 발효기의 온도를 37℃에서 25℃로 조절하였고, 추가적으로 락토오즈를 20 g/L 농도가 되도록 추가하였다. 또한, pH-stat을 이용하여 pH가 6.78~6.72가 되도록 유지하면서, 글리세롤을 계속적으로 공급하였다. 교반속도는 1200 rpm이었으며, 통기 속도는 2 vvm이 되도록 조절하였다. Protein was expressed at a concentration of 0.1 mM IPTG after growing until the amount of dried cells reached about OD 600 =6.5 using an initial 20 g/L glycerol. At this time, the temperature of the fermentor was adjusted from 37°C to 25°C, and additional lactose was added to a concentration of 20 g/L. In addition, glycerol was continuously supplied while maintaining the pH to be 6.78 to 6.72 using a pH-stat. The stirring speed was 1200 rpm, and the aeration speed was adjusted to be 2 vvm.

실험 결과, 'BL21 (DE3) star ΔL YA pmBCGW + pFucB 균주'의 경우 72시간 동안 16 g/L의 락토오즈를 이용하여 6.7 g/L의 α-1,3-푸코실락토오즈를 생산하였다. 그리고, 'BL21 (DE3) star ΔL YA pmBCGW + pPylT 균주'의 경우는 58시간 동안 20.2 g/L의 락토오즈를 이용하여 10.6 g/L의 α-1,3-푸코실락토오즈를 생산하였다. 또한, 'BL21 (DE3) star ΔL YA pmBCGW + pFra1 균주'의 경우 48.5시간 동안 0.1 g/L의 α-1,3-푸코실락토오즈를 생산하였다. 또한, 'BL21 (DE3) star ΔL YA pmBCGW + pFra2 균주'의 경우 50.8시간 동안 0.14 g/L의 α-1,3-푸코실락토오즈를 생산하였다. As a result of the experiment, in the case of'BL21 (DE3) star Δ L YA pmBCGW + pFucB strain', 6.7 g/L of α-1,3-fucosyl lactose was produced using 16 g/L of lactose for 72 hours. . In the case of'BL21 (DE3) star Δ L YA pmBCGW + pPylT strain', 10.6 g/L of α-1,3-fucosylactose was produced using 20.2 g/L of lactose for 58 hours. . In addition, in the case of'BL21 (DE3) star Δ L YA pmBCGW + pFra1 strain', 0.1 g/L of α-1,3-fucosylactose was produced for 48.5 hours. In addition, in the case of'BL21 (DE3) star Δ L YA pmBCGW + pFra2 strain', 0.14 g/L of α-1,3-fucosylactose was produced for 50.8 hours.

상기의 1 L 배양 결과 헬리코박터 파이로리 (Helicobacter pylori) ATCC 43504 유래의 pylT가 가장 높은 3-푸코실락토오즈의 생산을 보였으며, 박테로이데스 프라질리스 (Bacteroides fragilis) ATCC 25285 유래의 α-1,3-푸코오즈전이효소들은 α-1,3-푸코실락토오즈를 거의 생산하지 못하는 것으로 나타났다.1 L culture result of the Helicobacter pylori (Helicobacter pylori) ATCC 43504 showed the highest pylT production of 3-fucosylactose, and Bacteroides fragilis ) It has been shown that α-1,3-fucose transferases derived from ATCC 25285 hardly produce α-1,3-fucosylactose.

하기 표 3은 상기 실험의 결과를 정리한 것이고, 도 3은 'BL21 (DE3) star ΔL YA pmBCGW + pFucB 균주', 'BL21 (DE3) star ΔL YA pmBCGW + pPylT 균주', 'BL21 (DE3) star ΔL YA pmBCGW + pFra1 균주' 및 'BL21 (DE3) star ΔL YA pmBCGW + pFra2 균주'를 이용한 유가식 배양 결과이다. Table 3 below summarizes the results of the experiment, and FIG. 3 is 'BL21 (DE3) star Δ L YA pmBCGW + pFucB strain','BL21 (DE3) star Δ L YA pmBCGW + pPylT strain','BL21 (DE3) star Δ L YA pmBCGW + pFra1 strain'and'BL21 (DE3) Star Δ L YA pmBCGW + pFra2 strain'fed-batch culture results.

Maximum dry cell mass (g/L)Maximum dry cell mass (g/L) Consumed lactose conc. (g/L)Consumed lactose conc. (g/L) Maximum 3-FL conc. (g/L)Maximum 3-FL conc. (g/L) Yield (g 3-FL / g lactse)Yield (g 3-FL / g lactse) Productiviy (g/L·h)Productiviy (g/L·h) FucBFucB 47.247.2 16.116.1 6.76.7 0.420.42 0.1060.106 PylTPylT 52.152.1 20.220.2 10.610.6 0.570.57 0.2030.203 Fra1Fra1 48.548.5 14.514.5 0.10.1 0.0070.007 Fra2Fra2 50.850.8 14.814.8 0.140.14 0.0090.009

[실시예 3: [Example 3: wcaJwcaJ 유전자의 추가적 파쇄] Further disruption of the gene]

wcaJ 유전자의 추가적 파쇄를 위하여 lambda red recombinase (One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products, K.A. Datsenko, PNAS , 2000)를 이용하였다. 도 4는 'BL21 (DE3) star 균주'의 wcaJ 유전자 파쇄 결과이다 (1. 야생형 wcaJ 확인, 2. Kanamycin cassette 삽입, 3. ΔwcaJ 균주 확인). 도 4의 밴드에서 볼 수 있듯이, wcaJ 유전자가 잘 파쇄된 것을 확인할 수 있었다. For further disruption of the wcaJ gene, lambda red recombinase (One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products, KA Datsenko, PNAS , 2000) was used. 4 is a result of disruption of the wcaJ gene of the'BL21 (DE3) star strain' (1. Confirmation of wild type wcaJ , 2. Insertion of Kanamycin cassette, 3. Confirmation of ΔwcaJ strain). As can be seen from the band of Figure 4, it was confirmed that the wcaJ gene was well crushed.

[실시예 4: [Example 4: wcaJwcaJ 파쇄 균주의 확인] Confirmation of the crushed strain]

상기 제조예 1에서 구축된 기존의 균주로부터 추가적으로 wcaJ가 파쇄된 'BL21 (DE3) star ΔL YA ΔwcaJ pmBCGW + PylT 균주'를 구축하였다. 또한, 상기에 명시된 같은 방법의 발효 조건으로 유가식 배양을 실시하였다. The'BL21 (DE3) star Δ L YA ΔwcaJ pmBCGW + PylT strain' in which wcaJ was additionally crushed from the existing strain constructed in Preparation Example 1 was constructed. In addition, fed-batch culture was performed under the same fermentation conditions as specified above.

총 발효시간 59시간이었으며, 18.2 g/L의 락토오즈를 이용하여, 11.5 g/L의 3-푸코실락토오즈를 생산할 수 있었다. wcaJ 파쇄 균주는 그렇지 않은 'BL21 (DE3) star ΔL YA pmBCGW + PylT 균주'와 비교하여 적은 양의 락토오즈를 이용하였음에도 불구하고 약 8.5 %의 생산량이 증가를 보였다. 도 5는 'BL21 (DE3) star ΔL YA ΔwcaJ pmBCGW + PylT 균주'의 유가식 배양 결과이다. The total fermentation time was 59 hours, and 11.5 g/L of 3-fucosyl lactose could be produced using 18.2 g/L of lactose. The wcaJ disruption strain showed an increase in production of about 8.5% even though a small amount of lactose was used compared to the'BL21 (DE3) star Δ L YA pmBCGW + PylT strain', which was not. 5 is a fed- batch culture result of'BL21 (DE3) star Δ L YA ΔwcaJ pmBCGW + PylT strain'.

<110> SNU R&DB FOUNDATION <120> Method for the mass production of 3-fucosyllactose <130> AP-2015-0226 <160> 6 <170> KopatentIn 2.0 <210> 1 <211> 1278 <212> DNA <213> Helicobacter pylori ATCC 26695 <400> 1 atgttccaac ccctattaga cgcctttata gaaagcgctt ccattgaaaa aatggcctct 60 aaatctcccc ccccccccct aaaaatcgct gtggcgaatt ggtggggaga tgaagaaatt 120 aaagaattta aaaagagcgt tctttatttt atcctaagcc aacgctacgc aatcaccctc 180 caccaaaacc ccaatgaatt ttcagatcta gtttttagca atcctcttgg agcggctaga 240 aagattttat cttatcaaaa cactaaacga gtgttttaca ccggtgaaaa cgaatcacct 300 aatttcaacc tctttgatta cgccataggc tttgatgaat tggattttaa tgatcgttat 360 ttgagaatgc ctttgtatta tgcccatttg cactataaag ccgagcttgt taatgacacc 420 actgcgccct acaaactcaa agacaacagc ctttatgctt taaaaaaacc ctctcatcat 480 tttaaagaaa accaccctaa tttgtgcgca gtagtgaatg atgagagcga tcttttaaaa 540 agagggtttg ccagttttgt agcgagcaac gctaacgctc ctatgaggaa cgctttttat 600 gacgctctaa attccataga gccagttact gggggaggaa gtgtgagaaa cactttaggc 660 tataaggttg gaaacaaaag cgagttttta agccaataca agttcaatct ctgttttgaa 720 aactcgcaag gttatggcta tgtaaccgaa aaaatccttg atgcgtattt tagccatacc 780 attcctattt attgggggag tcccagcgtg gcgaaagatt ttaaccctaa aagttttgtg 840 aatgtgcatg atttcaacaa ctttgatgaa gcgattgatt atatcaaata cctgcacacg 900 cacccaaacg cttatttaga catgctctat gaaaaccctt taaacaccct tgatgggaaa 960 gcttactttt accaagattt gagttttaaa aaaatcctag atttttttaa aacgatttta 1020 gaaaacgata cgatttatca caaattctca acatctttca tgtgggagta cgatctgcat 1080 aagccgttag tatccattga tgatttgagg gttaattatg atgatttgag ggttaattat 1140 gaccggcttt tacaaaacgc ttcgccttta ttagaactct ctcaaaacac cacttttaaa 1200 atctatcgca aagcttatca aaaatccttg cctttgttgc gcgcggtgag aaagttggtt 1260 aaaaaattgg gtttgtaa 1278 <210> 2 <211> 1365 <212> DNA <213> Helicobacter pylori ATCC 43504 <400> 2 atgttccaac ccctattaga cgcctttata gaaagcgctt ccattgaaaa aatggcctct 60 aaatctcccc cccccctaaa aatcgctgtg gcgaattggt ggggagatga agaaattaaa 120 gaatttaaaa agagcactct gtatttcatt ttaagtcagc attacacaat cactttacac 180 cgaaaccctg ataaacctgc ggacatcgtt tttggtaacc cccttggatc agccagaaaa 240 atcttatcct atcaaaacac taaacgaata ttttacaccg gtgaaaacga atcgcctaat 300 ttcaacctct ttgattacgc cataggcttt gatgaattag actttagaga tcgttatttg 360 agaatgcctt tatattatga taggctacac cataaagccg agagcgtgaa tgacaccacc 420 gcaccctaca agattaaagg caacagcctt tatactttaa aaaaaccctc ccattgtttt 480 aaagaaaacc accctaattt gtgcgcgctc atcaataatg agagcgatcc tttgaaaaga 540 gggtttgcca gttttgtagc gagcaacgct aacgctccta tgaggaacgc tttctatgac 600 gctttaaatt ctattgagcc agttactggg ggaggagccg tgaaaaacac tttaggctat 660 aaggttggaa acaaaagcga gtttttaagc caatacaaat tcaacctgtg ttttgaaaac 720 tcacaaggct atggctatgt aaccgaaaaa atcattgacg cttactttag ccatactatt 780 cccatttatt gggggagtcc cagcgtggcg aaagatttta accctaagag ttttgtgaat 840 gtccatgatt tcaacaactt tgatgaagcg attgattacg tgagatactt gcacacgcac 900 ccaaacgctt atttagacat gctctatgaa aaccctttaa acacccttga tgggaaagct 960 tacttttacc aaaatttgag ttttaaaaaa atcctagatt tttttaaaac gattttagaa 1020 aacgacacga tttatcataa taaccctttc attttctatc gtgatttgaa tgagccgtta 1080 gtatccattg ataatttgag aatcaattat gataatttga gggttaatta tgatgatttg 1140 agggttaatt atgatgattt gagggttaat tatgatgatt tgagaatcaa ttatgatgat 1200 ttgagaatca attatgatga tttgagaatt aattatgagc gccttttgca aaacgcttca 1260 cctttattgg aattgtccca aaacacctct tttaaaatct atcgcaaaat ttatcaaaaa 1320 tccttaccct tattgcgtgt aataaggagg tgggttaaaa aataa 1365 <210> 3 <211> 891 <212> DNA <213> Bacteroides fragilis ATCC 25285 <400> 3 atggatatat tgattctttt ttataatacg atgtggggat ttccactcga gttccgaaag 60 gaagatttac ctgggggctg tgtgataacg actgatcgaa acctcattgc aaaggcggat 120 gccgtggttt tccatttgcc cgatttgcct tcggtgatgg aggatgaaat cgataagcgg 180 gaaggacagc tttgggtggg atggagtctg gaatgtgaag agaattatag ttggacgaag 240 gatcccgagt tcagagagag ttttgactta tggatggggt atcatcagga ggatgatatt 300 gtgtatcctt attatggacc ggattatggg aagatgctgg ttacggcacg gagggaaaag 360 ccttataaga agaaggcatg tatgtttatt tcgagtgata tgaaccggag tcaccgacaa 420 gagtatctta aggaattgat gcagtatacc gacatcgatt cgtatgggaa actataccgt 480 aattgtgaat tacctgttga ggatcgggga cgggatacac ttcttagtgt gatcggggat 540 tatcagtttg tgataagttt tgagaatgcg atagggaagg attatgtgac agaaaagttt 600 ttcaatcctt tgttggccgg tactgttccg gtctatctgg gagctcccaa tattcgggaa 660 tttgctccgg gagaaaattg ttttctggat atttgtactt tcgattctcc cgagggagta 720 gccgctttta tgaatcaatg ctatgatgac gaggcattgt atgaacgttt ttatgcatgg 780 aggaaacggc ctttattatt gtcgtttaca aataagttag agcaagtccg gagcaatccg 840 ttaatcaggc tttgccaaaa aatacacgaa ctaaaattgg gagggatatg a 891 <210> 4 <211> 981 <212> DNA <213> Bacteroides fragilis ATCC 25285 <400> 4 atgaaaaaag tattcattcc tataaatacc aaaattcctg ttgaaaggca gttccctaat 60 agagttccta tttggggaaa ttacgagttt attatatcta ctaaagaacc agagcaagaa 120 tacgattatg ttgtggtatt agatgacatt gaatattctc ttcgtttgat gtgctgtaag 180 caaaatatat gtttatttac aggagaacct ccatatgtta agctttatcc tcgtaaatat 240 ttaaaccaat ttgggcatgt ttatacgtgc caatccagtg tattaaaaag agataatgcc 300 tgcttatctt atcctgcatt accttggatg ctatattaca atttctataa tgacaaacaa 360 aaagaagagt tattaataga ttatgatttt ttgaaaaata gaccaacatt acagaggaaa 420 aataaaatct gcttatttac ttctaataaa aaaatatcta aggggcatat tgaacgcatt 480 aagtttgcgt tgaaattgca agaggaaatg cctgatttga ttgatatata tggttctggc 540 tttactaatg ttgattataa atatgaagtg atggtacaat ataagtatgc cattgtaata 600 gaaaactgtt catatccgta ttattggact gagaaattgg ctgatacttt cttgtcagga 660 tgctatccga tatattttgg tgatccacat attggagatt ttttttcaaa ggaagaaatg 720 gctgtgattg atattaggaa ttttgatgaa agtaagcaga ctataaaaaa aataatagat 780 aataatgttt atgagaagca atatgagaat atttgtcatg cacgagacaa aattttagat 840 aaatataata tgttttcttt aatttcgagt acactggatt caatacctgc taagttagat 900 aaggaaaaat tacttctttc tcctatgcgg cttagtgttt ttgatagaat tagaaataga 960 atatacaggt tgttttatta g 981 <210> 5 <211> 425 <212> PRT <213> Helicobacter pylori ATCC 26695 <400> 5 Met Phe Gln Pro Leu Leu Asp Ala Phe Ile Glu Ser Ala Ser Ile Glu 1 5 10 15 Lys Met Ala Ser Lys Ser Pro Pro Pro Pro Leu Lys Ile Ala Val Ala 20 25 30 Asn Trp Trp Gly Asp Glu Glu Ile Lys Glu Phe Lys Lys Ser Val Leu 35 40 45 Tyr Phe Ile Leu Ser Gln Arg Tyr Ala Ile Thr Leu His Gln Asn Pro 50 55 60 Asn Glu Phe Ser Asp Leu Val Phe Ser Asn Pro Leu Gly Ala Ala Arg 65 70 75 80 Lys Ile Leu Ser Tyr Gln Asn Thr Lys Arg Val Phe Tyr Thr Gly Glu 85 90 95 Asn Glu Ser Pro Asn Phe Asn Leu Phe Asp Tyr Ala Ile Gly Phe Asp 100 105 110 Glu Leu Asp Phe Asn Asp Arg Tyr Leu Arg Met Pro Leu Tyr Tyr Ala 115 120 125 His Leu His Tyr Lys Ala Glu Leu Val Asn Asp Thr Thr Ala Pro Tyr 130 135 140 Lys Leu Lys Asp Asn Ser Leu Tyr Ala Leu Lys Lys Pro Ser His His 145 150 155 160 Phe Lys Glu Asn His Pro Asn Leu Cys Ala Val Val Asn Asp Glu Ser 165 170 175 Asp Leu Leu Lys Arg Gly Phe Ala Ser Phe Val Ala Ser Asn Ala Asn 180 185 190 Ala Pro Met Arg Asn Ala Phe Tyr Asp Ala Leu Asn Ser Ile Glu Pro 195 200 205 Val Thr Gly Gly Gly Ser Val Arg Asn Thr Leu Gly Tyr Lys Val Gly 210 215 220 Asn Lys Ser Glu Phe Leu Ser Gln Tyr Lys Phe Asn Leu Cys Phe Glu 225 230 235 240 Asn Ser Gln Gly Tyr Gly Tyr Val Thr Glu Lys Ile Leu Asp Ala Tyr 245 250 255 Phe Ser His Thr Ile Pro Ile Tyr Trp Gly Ser Pro Ser Val Ala Lys 260 265 270 Asp Phe Asn Pro Lys Ser Phe Val Asn Val His Asp Phe Asn Asn Phe 275 280 285 Asp Glu Ala Ile Asp Tyr Ile Lys Tyr Leu His Thr His Pro Asn Ala 290 295 300 Tyr Leu Asp Met Leu Tyr Glu Asn Pro Leu Asn Thr Leu Asp Gly Lys 305 310 315 320 Ala Tyr Phe Tyr Gln Asp Leu Ser Phe Lys Lys Ile Leu Asp Phe Phe 325 330 335 Lys Thr Ile Leu Glu Asn Asp Thr Ile Tyr His Lys Phe Ser Thr Ser 340 345 350 Phe Met Trp Glu Tyr Asp Leu His Lys Pro Leu Val Ser Ile Asp Asp 355 360 365 Leu Arg Val Asn Tyr Asp Asp Leu Arg Val Asn Tyr Asp Arg Leu Leu 370 375 380 Gln Asn Ala Ser Pro Leu Leu Glu Leu Ser Gln Asn Thr Thr Phe Lys 385 390 395 400 Ile Tyr Arg Lys Ala Tyr Gln Lys Ser Leu Pro Leu Leu Arg Ala Val 405 410 415 Arg Lys Leu Val Lys Lys Leu Gly Leu 420 425 <210> 6 <211> 454 <212> PRT <213> Helicobacter pylori ATCC 43504 <400> 6 Met Phe Gln Pro Leu Leu Asp Ala Phe Ile Glu Ser Ala Ser Ile Glu 1 5 10 15 Lys Met Ala Ser Lys Ser Pro Pro Pro Leu Lys Ile Ala Val Ala Asn 20 25 30 Trp Trp Gly Asp Glu Glu Ile Lys Glu Phe Lys Lys Ser Thr Leu Tyr 35 40 45 Phe Ile Leu Ser Gln His Tyr Thr Ile Thr Leu His Arg Asn Pro Asp 50 55 60 Lys Pro Ala Asp Ile Val Phe Gly Asn Pro Leu Gly Ser Ala Arg Lys 65 70 75 80 Ile Leu Ser Tyr Gln Asn Thr Lys Arg Ile Phe Tyr Thr Gly Glu Asn 85 90 95 Glu Ser Pro Asn Phe Asn Leu Phe Asp Tyr Ala Ile Gly Phe Asp Glu 100 105 110 Leu Asp Phe Arg Asp Arg Tyr Leu Arg Met Pro Leu Tyr Tyr Asp Arg 115 120 125 Leu His His Lys Ala Glu Ser Val Asn Asp Thr Thr Ala Pro Tyr Lys 130 135 140 Ile Lys Gly Asn Ser Leu Tyr Thr Leu Lys Lys Pro Ser His Cys Phe 145 150 155 160 Lys Glu Asn His Pro Asn Leu Cys Ala Leu Ile Asn Asn Glu Ser Asp 165 170 175 Pro Leu Lys Arg Gly Phe Ala Ser Phe Val Ala Ser Asn Ala Asn Ala 180 185 190 Pro Met Arg Asn Ala Phe Tyr Asp Ala Leu Asn Ser Ile Glu Pro Val 195 200 205 Thr Gly Gly Gly Ala Val Lys Asn Thr Leu Gly Tyr Lys Val Gly Asn 210 215 220 Lys Ser Glu Phe Leu Ser Gln Tyr Lys Phe Asn Leu Cys Phe Glu Asn 225 230 235 240 Ser Gln Gly Tyr Gly Tyr Val Thr Glu Lys Ile Ile Asp Ala Tyr Phe 245 250 255 Ser His Thr Ile Pro Ile Tyr Trp Gly Ser Pro Ser Val Ala Lys Asp 260 265 270 Phe Asn Pro Lys Ser Phe Val Asn Val His Asp Phe Asn Asn Phe Asp 275 280 285 Glu Ala Ile Asp Tyr Val Arg Tyr Leu His Thr His Pro Asn Ala Tyr 290 295 300 Leu Asp Met Leu Tyr Glu Asn Pro Leu Asn Thr Leu Asp Gly Lys Ala 305 310 315 320 Tyr Phe Tyr Gln Asn Leu Ser Phe Lys Lys Ile Leu Asp Phe Phe Lys 325 330 335 Thr Ile Leu Glu Asn Asp Thr Ile Tyr His Asn Asn Pro Phe Ile Phe 340 345 350 Tyr Arg Asp Leu Asn Glu Pro Leu Val Ser Ile Asp Asn Leu Arg Ile 355 360 365 Asn Tyr Asp Asn Leu Arg Val Asn Tyr Asp Asp Leu Arg Val Asn Tyr 370 375 380 Asp Asp Leu Arg Val Asn Tyr Asp Asp Leu Arg Ile Asn Tyr Asp Asp 385 390 395 400 Leu Arg Ile Asn Tyr Asp Asp Leu Arg Ile Asn Tyr Glu Arg Leu Leu 405 410 415 Gln Asn Ala Ser Pro Leu Leu Glu Leu Ser Gln Asn Thr Ser Phe Lys 420 425 430 Ile Tyr Arg Lys Ile Tyr Gln Lys Ser Leu Pro Leu Leu Arg Val Ile 435 440 445 Arg Arg Trp Val Lys Lys 450 <110> SNU R&DB FOUNDATION <120> Method for the mass production of 3-fucosyllactose <130> AP-2015-0226 <160> 6 <170> KopatentIn 2.0 <210> 1 <211> 1278 <212> DNA <213> Helicobacter pylori ATCC 26695 <400> 1 atgttccaac ccctattaga cgcctttata gaaagcgctt ccattgaaaa aatggcctct 60 aaatctcccc ccccccccct aaaaatcgct gtggcgaatt ggtggggaga tgaagaaatt 120 aaagaattta aaaagagcgt tctttatttt atcctaagcc aacgctacgc aatcaccctc 180 caccaaaacc ccaatgaatt ttcagatcta gtttttagca atcctcttgg agcggctaga 240 aagattttat cttatcaaaa cactaaacga gtgttttaca ccggtgaaaa cgaatcacct 300 aatttcaacc tctttgatta cgccataggc tttgatgaat tggattttaa tgatcgttat 360 ttgagaatgc ctttgtatta tgcccatttg cactataaag ccgagcttgt taatgacacc 420 actgcgccct acaaactcaa agacaacagc ctttatgctt taaaaaaacc ctctcatcat 480 tttaaagaaa accaccctaa tttgtgcgca gtagtgaatg atgagagcga tcttttaaaa 540 agagggtttg ccagttttgt agcgagcaac gctaacgctc ctatgaggaa cgctttttat 600 gacgctctaa attccataga gccagttact gggggaggaa gtgtgagaaa cactttaggc 660 tataaggttg gaaacaaaag cgagttttta agccaataca agttcaatct ctgttttgaa 720 aactcgcaag gttatggcta tgtaaccgaa aaaatccttg atgcgtattt tagccatacc 780 attcctattt attgggggag tcccagcgtg gcgaaagatt ttaaccctaa aagttttgtg 840 aatgtgcatg atttcaacaa ctttgatgaa gcgattgatt atatcaaata cctgcacacg 900 cacccaaacg cttatttaga catgctctat gaaaaccctt taaacaccct tgatgggaaa 960 gcttactttt accaagattt gagttttaaa aaaatcctag atttttttaa aacgatttta 1020 gaaaacgata cgatttatca caaattctca acatctttca tgtgggagta cgatctgcat 1080 aagccgttag tatccattga tgatttgagg gttaattatg atgatttgag ggttaattat 1140 gaccggcttt tacaaaacgc ttcgccttta ttagaactct ctcaaaacac cacttttaaa 1200 atctatcgca aagcttatca aaaatccttg cctttgttgc gcgcggtgag aaagttggtt 1260 aaaaaattgg gtttgtaa 1278 <210> 2 <211> 1365 <212> DNA <213> Helicobacter pylori ATCC 43504 <400> 2 atgttccaac ccctattaga cgcctttata gaaagcgctt ccattgaaaa aatggcctct 60 aaatctcccc cccccctaaa aatcgctgtg gcgaattggt ggggagatga agaaattaaa 120 gaatttaaaa agagcactct gtatttcatt ttaagtcagc attacacaat cactttacac 180 cgaaaccctg ataaacctgc ggacatcgtt tttggtaacc cccttggatc agccagaaaa 240 atcttatcct atcaaaacac taaacgaata ttttacaccg gtgaaaacga atcgcctaat 300 ttcaacctct ttgattacgc cataggcttt gatgaattag actttagaga tcgttatttg 360 agaatgcctt tatattatga taggctacac cataaagccg agagcgtgaa tgacaccacc 420 gcaccctaca agattaaagg caacagcctt tatactttaa aaaaaccctc ccattgtttt 480 aaagaaaacc accctaattt gtgcgcgctc atcaataatg agagcgatcc tttgaaaaga 540 gggtttgcca gttttgtagc gagcaacgct aacgctccta tgaggaacgc tttctatgac 600 gctttaaatt ctattgagcc agttactggg ggaggagccg tgaaaaacac tttaggctat 660 aaggttggaa acaaaagcga gtttttaagc caatacaaat tcaacctgtg ttttgaaaac 720 tcacaaggct atggctatgt aaccgaaaaa atcattgacg cttactttag ccatactatt 780 cccatttatt gggggagtcc cagcgtggcg aaagatttta accctaagag ttttgtgaat 840 gtccatgatt tcaacaactt tgatgaagcg attgattacg tgagatactt gcacacgcac 900 ccaaacgctt atttagacat gctctatgaa aaccctttaa acacccttga tgggaaagct 960 tacttttacc aaaatttgag ttttaaaaaa atcctagatt tttttaaaac gattttagaa 1020 aacgacacga tttatcataa taaccctttc attttctatc gtgatttgaa tgagccgtta 1080 gtatccattg ataatttgag aatcaattat gataatttga gggttaatta tgatgatttg 1140 agggttaatt atgatgattt gagggttaat tatgatgatt tgagaatcaa ttatgatgat 1200 ttgagaatca attatgatga tttgagaatt aattatgagc gccttttgca aaacgcttca 1260 cctttattgg aattgtccca aaacacctct tttaaaatct atcgcaaaat ttatcaaaaa 1320 tccttaccct tattgcgtgt aataaggagg tgggttaaaa aataa 1365 <210> 3 <211> 891 <212> DNA <213> Bacteroides fragilis ATCC 25285 <400> 3 atggatatat tgattctttt ttataatacg atgtggggat ttccactcga gttccgaaag 60 gaagatttac ctgggggctg tgtgataacg actgatcgaa acctcattgc aaaggcggat 120 gccgtggttt tccatttgcc cgatttgcct tcggtgatgg aggatgaaat cgataagcgg 180 gaaggacagc tttgggtggg atggagtctg gaatgtgaag agaattatag ttggacgaag 240 gatcccgagt tcagagagag ttttgactta tggatggggt atcatcagga ggatgatatt 300 gtgtatcctt attatggacc ggattatggg aagatgctgg ttacggcacg gagggaaaag 360 ccttataaga agaaggcatg tatgtttatt tcgagtgata tgaaccggag tcaccgacaa 420 gagtatctta aggaattgat gcagtatacc gacatcgatt cgtatgggaa actataccgt 480 aattgtgaat tacctgttga ggatcgggga cgggatacac ttcttagtgt gatcggggat 540 tatcagtttg tgataagttt tgagaatgcg atagggaagg attatgtgac agaaaagttt 600 ttcaatcctt tgttggccgg tactgttccg gtctatctgg gagctcccaa tattcgggaa 660 tttgctccgg gagaaaattg ttttctggat atttgtactt tcgattctcc cgagggagta 720 gccgctttta tgaatcaatg ctatgatgac gaggcattgt atgaacgttt ttatgcatgg 780 aggaaacggc ctttattatt gtcgtttaca aataagttag agcaagtccg gagcaatccg 840 ttaatcaggc tttgccaaaa aatacacgaa ctaaaattgg gagggatatg a 891 <210> 4 <211> 981 <212> DNA <213> Bacteroides fragilis ATCC 25285 <400> 4 atgaaaaaag tattcattcc tataaatacc aaaattcctg ttgaaaggca gttccctaat 60 agagttccta tttggggaaa ttacgagttt attatatcta ctaaagaacc agagcaagaa 120 tacgattatg ttgtggtatt agatgacatt gaatattctc ttcgtttgat gtgctgtaag 180 caaaatatat gtttatttac aggagaacct ccatatgtta agctttatcc tcgtaaatat 240 ttaaaccaat ttgggcatgt ttatacgtgc caatccagtg tattaaaaag agataatgcc 300 tgcttatctt atcctgcatt accttggatg ctatattaca atttctataa tgacaaacaa 360 aaagaagagt tattaataga ttatgatttt ttgaaaaata gaccaacatt acagaggaaa 420 aataaaatct gcttatttac ttctaataaa aaaatatcta aggggcatat tgaacgcatt 480 aagtttgcgt tgaaattgca agaggaaatg cctgatttga ttgatatata tggttctggc 540 tttactaatg ttgattataa atatgaagtg atggtacaat ataagtatgc cattgtaata 600 gaaaactgtt catatccgta ttattggact gagaaattgg ctgatacttt cttgtcagga 660 tgctatccga tatattttgg tgatccacat attggagatt ttttttcaaa ggaagaaatg 720 gctgtgattg atattaggaa ttttgatgaa agtaagcaga ctataaaaaa aataatagat 780 aataatgttt atgagaagca atatgagaat atttgtcatg cacgagacaa aattttagat 840 aaatataata tgttttcttt aatttcgagt acactggatt caatacctgc taagttagat 900 aaggaaaaat tacttctttc tcctatgcgg cttagtgttt ttgatagaat tagaaataga 960 atatacaggt tgttttatta g 981 <210> 5 <211> 425 <212> PRT <213> Helicobacter pylori ATCC 26695 <400> 5 Met Phe Gln Pro Leu Leu Asp Ala Phe Ile Glu Ser Ala Ser Ile Glu 1 5 10 15 Lys Met Ala Ser Lys Ser Pro Pro Pro Pro Leu Lys Ile Ala Val Ala 20 25 30 Asn Trp Trp Gly Asp Glu Glu Ile Lys Glu Phe Lys Lys Ser Val Leu 35 40 45 Tyr Phe Ile Leu Ser Gln Arg Tyr Ala Ile Thr Leu His Gln Asn Pro 50 55 60 Asn Glu Phe Ser Asp Leu Val Phe Ser Asn Pro Leu Gly Ala Ala Arg 65 70 75 80 Lys Ile Leu Ser Tyr Gln Asn Thr Lys Arg Val Phe Tyr Thr Gly Glu 85 90 95 Asn Glu Ser Pro Asn Phe Asn Leu Phe Asp Tyr Ala Ile Gly Phe Asp 100 105 110 Glu Leu Asp Phe Asn Asp Arg Tyr Leu Arg Met Pro Leu Tyr Tyr Ala 115 120 125 His Leu His Tyr Lys Ala Glu Leu Val Asn Asp Thr Thr Ala Pro Tyr 130 135 140 Lys Leu Lys Asp Asn Ser Leu Tyr Ala Leu Lys Lys Pro Ser His His 145 150 155 160 Phe Lys Glu Asn His Pro Asn Leu Cys Ala Val Val Asn Asp Glu Ser 165 170 175 Asp Leu Leu Lys Arg Gly Phe Ala Ser Phe Val Ala Ser Asn Ala Asn 180 185 190 Ala Pro Met Arg Asn Ala Phe Tyr Asp Ala Leu Asn Ser Ile Glu Pro 195 200 205 Val Thr Gly Gly Gly Ser Val Arg Asn Thr Leu Gly Tyr Lys Val Gly 210 215 220 Asn Lys Ser Glu Phe Leu Ser Gln Tyr Lys Phe Asn Leu Cys Phe Glu 225 230 235 240 Asn Ser Gln Gly Tyr Gly Tyr Val Thr Glu Lys Ile Leu Asp Ala Tyr 245 250 255 Phe Ser His Thr Ile Pro Ile Tyr Trp Gly Ser Pro Ser Val Ala Lys 260 265 270 Asp Phe Asn Pro Lys Ser Phe Val Asn Val His Asp Phe Asn Asn Phe 275 280 285 Asp Glu Ala Ile Asp Tyr Ile Lys Tyr Leu His Thr His Pro Asn Ala 290 295 300 Tyr Leu Asp Met Leu Tyr Glu Asn Pro Leu Asn Thr Leu Asp Gly Lys 305 310 315 320 Ala Tyr Phe Tyr Gln Asp Leu Ser Phe Lys Lys Ile Leu Asp Phe Phe 325 330 335 Lys Thr Ile Leu Glu Asn Asp Thr Ile Tyr His Lys Phe Ser Thr Ser 340 345 350 Phe Met Trp Glu Tyr Asp Leu His Lys Pro Leu Val Ser Ile Asp Asp 355 360 365 Leu Arg Val Asn Tyr Asp Asp Leu Arg Val Asn Tyr Asp Arg Leu Leu 370 375 380 Gln Asn Ala Ser Pro Leu Leu Glu Leu Ser Gln Asn Thr Thr Phe Lys 385 390 395 400 Ile Tyr Arg Lys Ala Tyr Gln Lys Ser Leu Pro Leu Leu Arg Ala Val 405 410 415 Arg Lys Leu Val Lys Lys Leu Gly Leu 420 425 <210> 6 <211> 454 <212> PRT <213> Helicobacter pylori ATCC 43504 <400> 6 Met Phe Gln Pro Leu Leu Asp Ala Phe Ile Glu Ser Ala Ser Ile Glu 1 5 10 15 Lys Met Ala Ser Lys Ser Pro Pro Pro Leu Lys Ile Ala Val Ala Asn 20 25 30 Trp Trp Gly Asp Glu Glu Ile Lys Glu Phe Lys Lys Ser Thr Leu Tyr 35 40 45 Phe Ile Leu Ser Gln His Tyr Thr Ile Thr Leu His Arg Asn Pro Asp 50 55 60 Lys Pro Ala Asp Ile Val Phe Gly Asn Pro Leu Gly Ser Ala Arg Lys 65 70 75 80 Ile Leu Ser Tyr Gln Asn Thr Lys Arg Ile Phe Tyr Thr Gly Glu Asn 85 90 95 Glu Ser Pro Asn Phe Asn Leu Phe Asp Tyr Ala Ile Gly Phe Asp Glu 100 105 110 Leu Asp Phe Arg Asp Arg Tyr Leu Arg Met Pro Leu Tyr Tyr Asp Arg 115 120 125 Leu His His Lys Ala Glu Ser Val Asn Asp Thr Thr Ala Pro Tyr Lys 130 135 140 Ile Lys Gly Asn Ser Leu Tyr Thr Leu Lys Lys Pro Ser His Cys Phe 145 150 155 160 Lys Glu Asn His Pro Asn Leu Cys Ala Leu Ile Asn Asn Glu Ser Asp 165 170 175 Pro Leu Lys Arg Gly Phe Ala Ser Phe Val Ala Ser Asn Ala Asn Ala 180 185 190 Pro Met Arg Asn Ala Phe Tyr Asp Ala Leu Asn Ser Ile Glu Pro Val 195 200 205 Thr Gly Gly Gly Ala Val Lys Asn Thr Leu Gly Tyr Lys Val Gly Asn 210 215 220 Lys Ser Glu Phe Leu Ser Gln Tyr Lys Phe Asn Leu Cys Phe Glu Asn 225 230 235 240 Ser Gln Gly Tyr Gly Tyr Val Thr Glu Lys Ile Ile Asp Ala Tyr Phe 245 250 255 Ser His Thr Ile Pro Ile Tyr Trp Gly Ser Pro Ser Val Ala Lys Asp 260 265 270 Phe Asn Pro Lys Ser Phe Val Asn Val His Asp Phe Asn Asn Phe Asp 275 280 285 Glu Ala Ile Asp Tyr Val Arg Tyr Leu His Thr His Pro Asn Ala Tyr 290 295 300 Leu Asp Met Leu Tyr Glu Asn Pro Leu Asn Thr Leu Asp Gly Lys Ala 305 310 315 320 Tyr Phe Tyr Gln Asn Leu Ser Phe Lys Lys Ile Leu Asp Phe Phe Lys 325 330 335 Thr Ile Leu Glu Asn Asp Thr Ile Tyr His Asn Asn Pro Phe Ile Phe 340 345 350 Tyr Arg Asp Leu Asn Glu Pro Leu Val Ser Ile Asp Asn Leu Arg Ile 355 360 365 Asn Tyr Asp Asn Leu Arg Val Asn Tyr Asp Asp Leu Arg Val Asn Tyr 370 375 380 Asp Asp Leu Arg Val Asn Tyr Asp Asp Leu Arg Ile Asn Tyr Asp Asp 385 390 395 400 Leu Arg Ile Asn Tyr Asp Asp Leu Arg Ile Asn Tyr Glu Arg Leu Leu 405 410 415 Gln Asn Ala Ser Pro Leu Leu Glu Leu Ser Gln Asn Thr Ser Phe Lys 420 425 430 Ile Tyr Arg Lys Ile Tyr Gln Lys Ser Leu Pro Leu Leu Arg Val Ile 435 440 445 Arg Arg Trp Val Lys Lys 450

Claims (10)

α-1,3-푸코실락토오즈 생산용 재조합 대장균에 있어서,
상기 재조합 대장균은,
헬리코박터 파이로리 (Helicobacter pylori) ATCC 43504 에서 유래한 것으로, 서열번호 6의 아미노산 서열로 이루어진 α-1,3-푸코오즈전이효소를 암호화하는 핵산서열이 도입되어 있는 것을 특징으로 하는 α-1,3-푸코실락토오즈 생산용 재조합 대장균.
In the recombinant Escherichia coli for producing? -1,3-fucosyllactose,
The recombinant Escherichia coli,
A promoter derived from Helicobacter pylori ATCC 43504 is characterized in that a nucleic acid sequence encoding an alpha -1,3-fucose transferase comprising the amino acid sequence of SEQ ID NO: 6 is introduced. Recombinant E. coli for the production of fucosyllactose.
제1항에 있어서,
상기 서열번호 6의 아미노산 서열로 이루어진 α-1,3-푸코오즈전이효소를 암호화하는 핵산서열은, 서열번호 2에 기재된 핵산서열인 것을 특징으로 하는 α-1,3-푸코실락토오즈 생산용 재조합 대장균.
The method according to claim 1,
The nucleic acid sequence encoding the alpha -1,3-fucose transferase consisting of the amino acid sequence of SEQ ID NO: 6 is the nucleic acid sequence of SEQ ID NO: 2, which is used for the production of alpha-1,3-fucosyllactose Recombinant E. coli.
제1항에 있어서,
상기 대장균은,
대장균(E. coli) BL 21 star(DE3) 균주인 것을 특징으로 하는 α-1,3-푸코실락토오즈 생산용 재조합 대장균.
The method according to claim 1,
The above-
Escherichia coli (E. coli) α-1,3- Foucault room lactose Recombinant Escherichia coli for the production, characterized in that the BL 21 star (DE3) strain.
제3항에 있어서,
상기 재조합 대장균은,
'야생형 lac 오페론' 대신,
'야생형 베타갈락토시다아제보다 활성이 낮춰진 베타갈락토시다아제를 코딩하는 lacZ 유전자, 야생형 lacY 유전자 및 야생형 lacA 유전자로 구성된 lac 오페론' 또는, '야생형 lacZ 유전자가 완전히 제거되고, 야생형 lacY 유전자 및 야생형 lacA 유전자만으로 구성된 lac 오페론'을 보유하고 있는 것을 특징으로 하는 α-1,3-푸코실락토오즈 생산용 재조합 대장균.
The method of claim 3,
The recombinant Escherichia coli,
Instead of the 'wild-type lac operon'
"Wild-type beta-galactosidase than consisting of the lacZ gene, wild-type lacY gene and the wild-type lacA gene encoding the beta-galactosidase Gene activity was lower lac operon, or" wild type lacZ gene is completely removed, wild lacY gene and A lac operon consisting of only the wild-type lacA gene. The recombinant Escherichia coli for producing [alpha] -l, 3-fucosyllactose .
제1항에 있어서,
상기 재조합 대장균은,
GDP-D-만노오스-4,6-데하이드라타아제 (Gmd), GDP-L-푸코오스 신타아제 (WcaG), 포스포만노뮤타아제 (ManB), 그리고 만노오스-1-포스페이트 구아닐트랜스퍼라아제 (ManC)를 암화화하는 유전자가 도입되어 있는 것을 특징으로 하는 α-1,3-푸코실락토오즈 생산용 재조합 대장균.
The method according to claim 1,
The recombinant Escherichia coli,
GDP-D-mannose-4,6-dehydratase (Gmd), GDP-L-fucose synthase (WcaG), phosphofanomuthase (ManB), and mannose-1-phosphate guanyltransferase A recombinant Escherichia coli for producing [alpha] -1,3-fucosyllactose characterized by introducing a gene encoding an enzyme (ManC).
제1항에 있어서,
상기 재조합 대장균은,
wcaJ 유전자가 제거된 것을 특징으로 하는 α-1,3-푸코실락토오즈 생산용 재조합 대장균.
The method according to claim 1,
The recombinant Escherichia coli,
The recombinant Escherichia coli for producing? -1,3-fucosyllactose is characterized in that the wcaJ gene is removed.
글리세롤 및 락토오즈가 함유된 배지에 제1항의 재조합 대장균을 배양하는 것을 특징으로 하는 α-1,3-푸코실락토오즈의 생산방법.
A method for producing? -1,3-fucosyllactose, which comprises culturing the recombinant E. coli of claim 1 in a culture medium containing glycerol and lactose.
제7항에 있어서,
상기 α-1,3-푸코실락토오즈의 생산방법은,
글리세롤을 추가로 공급하는 유가식 배양인 것을 특징으로 하는 α-1,3-푸코실락토오즈의 생산방법.
8. The method of claim 7,
The production method of? -1,3-fucosyllactose is not particularly limited,
A method for producing? -1,3-fucosyllactose, which is a fed-batch culture in which glycerol is further fed.
제8항에 있어서,
상기 유가식 배양은,
37℃의 배양온도로 배양을 시작하다가,
헬리코박터 파이로리 (Helicobacter pylori) ATCC 43504 에서 유래한 것으로 α-1,3-푸코오즈전이효소를 암호화하는 서열번호 2의 유전자 pylT를 발현시킨 후, 배양온도를 25℃ 낮추는 것을 특징으로 하는 α-1,3-푸코실락토오즈의 생산방법.
9. The method of claim 8,
The above-
The culture was started at a culture temperature of 37 ° C,
1, which expresses the gene pylT of SEQ ID NO: 2 encoding Helicobacter pylori ATCC 43504 encoding the alpha-1,3-fucose transferase and then lowering the culture temperature by 25 DEG C, Production method of 3-fucosyllactose.
제9항에 있어서,
상기 α-1,3-푸코실락토오즈의 생산방법은,
배양온도를 25℃로 낮춘 후, 락토오즈를 배양배지 중에 주입하는 것을 특징으로 하는 α-1,3-푸코실락토오즈의 생산방법.

10. The method of claim 9,
The production method of? -1,3-fucosyllactose is not particularly limited,
A method for producing? -1,3-fucosyllactose, wherein the culture temperature is lowered to 25 占 폚, and lactose is then injected into the culture medium.

KR1020170013030A 2017-01-26 2017-01-26 Method for the mass production of 3-fucosyllactose KR101794972B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170013030A KR101794972B1 (en) 2017-01-26 2017-01-26 Method for the mass production of 3-fucosyllactose

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170013030A KR101794972B1 (en) 2017-01-26 2017-01-26 Method for the mass production of 3-fucosyllactose

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020160012803A Division KR101794971B1 (en) 2016-02-02 2016-02-02 Method for the mass production of 3-fucosyllactose

Publications (2)

Publication Number Publication Date
KR20170092461A true KR20170092461A (en) 2017-08-11
KR101794972B1 KR101794972B1 (en) 2017-11-08

Family

ID=59651457

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170013030A KR101794972B1 (en) 2017-01-26 2017-01-26 Method for the mass production of 3-fucosyllactose

Country Status (1)

Country Link
KR (1) KR101794972B1 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2944690B1 (en) * 2010-10-11 2017-12-20 Jennewein Biotechnologie GmbH Novel fucosyltransferases and their applications
KR101544184B1 (en) * 2014-12-19 2015-08-21 서울대학교산학협력단 Variant Microorganism for Producing 2-Fucosyllactose and Method of Producing 2-Fucosyllactose by Using the Same

Also Published As

Publication number Publication date
KR101794972B1 (en) 2017-11-08

Similar Documents

Publication Publication Date Title
KR101731263B1 (en) Recombinant corynebacterium glutamicum for the production of fucosyllactose and method for the production of 2&#39;-fucosyllactose therefrom
JP2024028710A (en) Fucosyltransferase and its use in the production of fucosylated oligosaccharides
TW201819636A (en) Improved process for the production of fucosylated oligosaccharides
US20210363557A1 (en) Use of glycosidases in the production of oligosaccharides
CN113166789A (en) Synthesis of fucosylated oligosaccharide LNFP-V
KR101648352B1 (en) Recombinant E. coli for the production of fucosyllactose and method for the production of fucosyllactose therefrom
WO2021148611A1 (en) Hmo production
JP2023511527A (en) HMO production
US11512318B2 (en) Method for producing 3-fucosyllactose using Corynebacterium glutamicum
JP2023511522A (en) HMO production
KR101794971B1 (en) Method for the mass production of 3-fucosyllactose
KR101794972B1 (en) Method for the mass production of 3-fucosyllactose
CN116769808A (en) Strain for specifically producing 2&#39; -fucosyllactose and application thereof
DK180952B1 (en) A dfl-producing strain
JP2024516207A (en) Microbial strains expressing invertase/sucrose hydrolase
WO2022157280A1 (en) New major facilitator superfamily (mfs) protein (fred) in production of sialylated hmos
KR102577779B1 (en) Method for increasing productivity of 2&#39;-fucosyllactose by changing medium composition and culture method
JP7331278B1 (en) A novel sialyltransferase for the in vivo synthesis of 3&#39;SL
KR102462125B1 (en) Biological production method of human milk oligosaccharide by cofactor engineering
CN117355613A (en) Method for producing HMO blend distribution with LNFP-I and 2&#39; -FL as primary compounds
EP4341418A2 (en) Methods of producing hmo blend profiles with lnfp-i and 2&#39;-fl as the predominant compounds
JP2023511525A (en) A New Major Facilitator Superfamily (MFS) Protein in HMO Production (Fred)
EA046260B1 (en) OBTAINING OGM
WO2024046994A1 (en) Fermentative production of oligosaccharides by microbial cells utilizing glycerol
EA046241B1 (en) OBTAINING OGM

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant