KR20170089742A - LDO regulator including dual loop circuit, and application processor and user device including the same - Google Patents

LDO regulator including dual loop circuit, and application processor and user device including the same Download PDF

Info

Publication number
KR20170089742A
KR20170089742A KR1020160092726A KR20160092726A KR20170089742A KR 20170089742 A KR20170089742 A KR 20170089742A KR 1020160092726 A KR1020160092726 A KR 1020160092726A KR 20160092726 A KR20160092726 A KR 20160092726A KR 20170089742 A KR20170089742 A KR 20170089742A
Authority
KR
South Korea
Prior art keywords
course
current
fine
code
voltage
Prior art date
Application number
KR1020160092726A
Other languages
Korean (ko)
Other versions
KR102528967B1 (en
Inventor
조규형
이용진
김대용
김상호
Original Assignee
삼성전자주식회사
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사, 한국과학기술원 filed Critical 삼성전자주식회사
Priority to US15/216,147 priority Critical patent/US10126766B2/en
Priority to CN201611197900.5A priority patent/CN106997219B/en
Publication of KR20170089742A publication Critical patent/KR20170089742A/en
Priority to US16/170,124 priority patent/US10678280B2/en
Application granted granted Critical
Publication of KR102528967B1 publication Critical patent/KR102528967B1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/26Current mirrors
    • G05F3/262Current mirrors using field-effect transistors only

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nonlinear Science (AREA)
  • Continuous-Control Power Sources That Use Transistors (AREA)

Abstract

According to an embodiment of the present invention, an LDO regulator comprises: a course loop block, a fine loop block, and a digital control block. The course loop block generates a course code by receiving input voltage from an output terminal; and controls course current to be provided to the output terminal depending on the course code. The fine loop block generates a fine code by receiving the input voltage from the output terminal; and controls fine current to be provided to the output terminal depending on the fine code. The digital control block receives the course code from the course loop block; and generates a control signal for controlling the fine loop block. The LDO regulator according to an embodiment of the present invention controls output voltage (Vout) within a large voltage range by using the course loop circuit; and finely controls the output voltage (Vout) by using the fine loop circuit. The LDO regulator according to an embodiment of the present invention rapidly and accurately controls the output voltage (Vout).

Description

듀얼 루프 회로를 포함하는 LDO 레귤레이터 및 그것을 포함하는 응용 프로세서와 사용자 장치 {LDO regulator including dual loop circuit, and application processor and user device including the same}[0001] The present invention relates to an LDO regulator including a dual-loop circuit and an application processor including the LDO regulator and a user equipment (including an LDO regulator including a dual loop circuit,

본 발명은 전압 레귤레이터에 관한 것으로, 더욱 상세하게는 코스 루프 회로와 파인 루프 회로를 포함하는 LDO 레귤레이터에 관한 것이다.The present invention relates to a voltage regulator, and more particularly, to an LDO regulator including a coarse loop circuit and a fine loop circuit.

전압 레귤레이터(voltage regulator)는 회로에 일정한 전압(Voltage)을 제공하기 위해 사용된다. 전압 레귤레이터는 전압을 조정하는 방식에 따라, 크게 선형 레귤레이터(linear regulator)와 스위칭 레귤레이터(switching regulator)로 나눌 수 있다. 스위칭 레귤레이터는 효율은 좋지만, 잡음 특성이 떨어지는 단점이 있다. 반면에, 선형 레귤레이터는 효율은 떨어지지만 잡음 특성이 좋은 장점이 있다. 선형 레귤레이터는 잡음 특성이 좋기 때문에, 정밀하고 안정된 전압을 공급할 수 있다.A voltage regulator is used to provide a constant voltage to the circuit. Voltage regulators can be roughly divided into linear regulators and switching regulators, depending on how the voltage is regulated. The switching regulator has a drawback in that the efficiency is good, but the noise characteristic is poor. On the other hand, linear regulators have the advantage of lowering the efficiency but having better noise characteristics. Since the linear regulator has good noise characteristics, it can supply precise and stable voltage.

LDO 레귤레이터(low drop-out regulator)는 일종의 선형 레귤레이터이다. LDO 레귤레이터는 다양한 종류의 전자 장치에 안정적으로 전원을 공급하기 위해 사용된다. 예를 들면, LDO 레귤레이터는 스마트 폰이나 테블릿 PC 등과 같은 모바일 장치의 전원 관리 집적 회로(PMIC)에 사용될 수 있다. The LDO regulator (low drop-out regulator) is a kind of linear regulator. LDO regulators are used to reliably power various electronic devices. For example, LDO regulators can be used in power management integrated circuits (PMICs) in mobile devices such as smart phones and tablet PCs.

한편, 모바일 장치의 전원 관리 집적 회로(PMIC)는 LDO 레귤레이터를 이용하여, 응용 프로세서(AP)나 메모리(memory) 등과 같은 반도체 회로에 다양한 전원 전압을 제공할 수 있다. 종래의 전원 관리 집적 회로(PMIC)는 여러 전원 라인을 통해 다양한 전원 전압을 제공한다. 전원 관리 집적 회로(PMIC)와 반도체 회로 사이에 여러 전원 라인이 사용되면, 기생 저항이나 기생 인덕턴스로 인해 필요한 전압을 안정적으로 제공할 수 없는 문제가 있다.On the other hand, a power management integrated circuit (PMIC) of a mobile device can provide various power supply voltages to a semiconductor circuit such as an application processor (AP) or a memory by using an LDO regulator. Conventional power management integrated circuits (PMICs) provide various power supply voltages through various power supply lines. When multiple power lines are used between a power management integrated circuit (PMIC) and a semiconductor circuit, there is a problem that the required voltage can not be stably provided due to parasitic resistance or parasitic inductance.

본 발명은 상술한 문제점을 해결하기 위한 것으로, 본 발명의 목적은 반도체 회로에 안정적으로 전압을 공급할 수 있는 LDO 레귤레이터, 및 그것을 포함하는 응용 프로세서와 사용자 장치를 제공하는 데 있다. It is an object of the present invention to provide an LDO regulator capable of stably supplying a voltage to a semiconductor circuit, and an application processor and a user apparatus including the LDO regulator.

본 발명의 다른 목적은 출력 전압을 빠르고 세밀하게 조절할 수 있는 LDO 레귤레이터, 및 그것을 포함하는 응용 프로세서와 사용자 장치를 제공하는 데 있다.It is another object of the present invention to provide an LDO regulator capable of quickly and finely adjusting an output voltage, and an application processor and a user apparatus including the LDO regulator.

본 발명의 실시 예에 따른 LDO 레귤레이터는 코스 루프 블록, 파인 루프 블록, 그리고 디지털 컨트롤 블록을 포함한다. 코스 루프 블록은 출력 단자로부터 입력 전압을 제공받고 코스 코드를 생성하는, 상기 코스 코드에 따라 상기 출력 단자로 제공하는 코스 전류를 조절한다. 파인 루프 블록은 상기 출력 단자로부터 입력 전압을 제공받고 파인 코드를 생성하고, 상기 파인 코드에 따라 상기 출력 단자로 제공하는 파인 전류를 조절한다. 디지털 컨트롤 블록은 상기 코스 루프 블록으로부터 상기 코스 코드를 제공 받고, 상기 파인 루프 블록을 제어하기 위한 제어 신호를 생성한다. An LDO regulator according to an embodiment of the present invention includes a coarse block, a fine loop block, and a digital control block. The course loop block adjusts the course current provided to the output terminal in accordance with the course code, which is supplied with an input voltage from an output terminal and generates a course code. The fine loop block receives an input voltage from the output terminal, generates a fine code, and adjusts the fine current provided to the output terminal according to the fine code. The digital control block receives the course code from the cosine loop block and generates a control signal for controlling the fine loop block.

실시 예로서, 상기 코스 루프 블록은, 상기 코스 코드를 입력받고 코스 기준 전압을 변경하는 기준 전압 변환기, 상기 입력 전압과 상기 코스 기준 전압을 입력받고, 상기 코스 코드를 생성하는 아날로그 디지털 컨버터(ADC), 및 상기 ADC로부터 상기 코스 코드를 입력받고, 상기 코스 전류를 제공하는 코스 전류 구동기를 포함한다. In one embodiment, the course loop block includes a reference voltage converter for receiving the course code and changing a course reference voltage, an analog digital converter (ADC) for receiving the input voltage and the course reference voltage and generating the course code, And a course current driver for receiving the course code from the ADC and providing the course current.

실시 예로서, 상기 ADC는 전류 미러 플래시 아날로그 디지털 컨버터(CMF ADC)일 수 있다. 상기 CMF ADC는, 상기 코스 기준 전압을 입력받고 제 1 전류 통로를 형성하는, 상기 입력 전압을 입력받고 제 2 전류 통로를 형성하는, 그리고 상기 제 1 및 제 2 전류 통로의 전류의 합은 전류 소스에 의해 일정하게 유지되는 비교 회로, 상기 제 1 전류 통로를 전류 미러링(current mirroring) 함으로 제 3 전류 통로를 형성하는 제 1 전류 미러 회로, 및 상기 제 2 전류 통로를 전류 미러링 함으로, 제 4 내지 제 N(N는 5 이상의 자연수) 전류 통로를 형성하는 제 2 전류 미러 회로를 포함할 수 있다. As an example, the ADC may be a current mirror flash analog-to-digital converter (CMF ADC). Wherein the CMF ADC receives the input voltage and forms a second current path, the sum of the currents in the first and second current paths being a current source A first current mirror circuit for forming a third current path by current mirroring the first current path, and a second current mirror circuit for current mirroring the second current path, And a second current mirror circuit that forms N (N is a natural number of 5 or more) current path.

실시 예로서, 상기 파인 루프 블록은, 상기 입력 전압과 기준 전압을 비교하고, 비교 결과로서 선택 신호를 출력하는 비교기, 상기 디지털 컨트롤 블록의 제어 신호에 응답하여 동작하고, 상기 비교기의 선택 신호에 따라 왼쪽 또는 오른쪽으로 쉬프트 동작을 수행함으로, 파인 코드를 출력하는 쉬프트 레지스터, 및 상기 파인 코드를 입력받고, 상기 파인 전류를 제공하는 파인 전류 구동기를 포함한다. As an embodiment, the fine loop block may include a comparator that compares the input voltage with a reference voltage and outputs a selection signal as a comparison result, and a comparator that operates in response to a control signal of the digital control block, A shift register for outputting a fine code by performing a shift operation to the left or right, and a fine current driver for receiving the fine code and providing the fine current.

실시 예로서, 상기 디지털 컨트롤 블록은, 상기 코스 코드를 입력받고 상기 쉬프트 레지스터를 동작하기 위한 인에이블 신호와 상기 쉬프트 레지스터를 리셋하기 위한 리셋 신호를 출력하는 파인 루프 컨트롤러, 및 상기 쉬프트 레지스터를 제어함으로 초기 파인 전류를 조절하기 위한 초기 신호를 출력하는 초기 파인 전류 선택기를 포함한다. In one embodiment, the digital control block includes a fine loop controller for receiving the course code and outputting an enable signal for operating the shift register and a reset signal for resetting the shift register, and a shift register And an initial fine current selector for outputting an initial signal for adjusting the initial fine current.

본 발명의 실시 예에 따른 응용 프로세서는 코스 코드에 따라 코스 전류를 조절하고, 상기 코스 코드를 이용하여 파인 코드를 제어하고, 상기 파인 코드에 따라 파인 전류를 조절하는 LDO 레귤레이터, 및 상기 LDO 레귤레이터로부터 상기 코스 전류와 상기 파인 전류를 공급받는 로드 회로를 포함한다. An application processor according to an embodiment of the present invention includes an LDO regulator for controlling a course current according to a course code, controlling a fine code using the course code, and controlling a fine current according to the fine code, And a load circuit supplied with the course current and the fine current.

실시 예로서, 상기 LDO 레귤레이터는, 출력 단자로부터 입력 전압을 제공받고 상기 코스 코드를 생성하는, 상기 코스 코드에 따라 상기 출력 단자로 제공하는 코스 전류를 조절하는 코스 루프 회로, 상기 출력 단자로부터 입력 전압을 제공받고 상기 파인 코드를 생성하는, 상기 파인 코드에 따라 상기 출력 단자로 제공하는 파인 전류를 조절하는 파인 루프 회로, 및 상기 코스 루프 회로로부터 상기 코스 코드를 제공 받고, 상기 파인 루프 회로를 제어하기 위한 제어 신호를 생성하는 디지털 컨트롤러를 포함한다. As an embodiment, the LDO regulator includes: a course loop circuit that adjusts a course current provided to the output terminal in accordance with the course code, the input circuit receiving an input voltage from the output terminal and generating the course code; A fine loop circuit for adjusting the fine current provided to the output terminal in accordance with the fine code and for receiving the course code from the course loop circuit and for controlling the fine loop circuit, And a digital controller for generating a control signal for the control signal.

본 발명의 실시 예에 따른 사용자 장치는 전원 라인을 통해 전원 전압을 제공하는 전원 관리 집적 회로, 및 상기 전원 라인을 통해 전원 전압을 제공받고 내부 전원을 생성하는 LDO 레귤레이터를 포함하는 응용 프로세서를 포함한다. 상기 LDO 레귤레이터는, 출력 단자로부터 입력 전압을 제공받고 코스 코드를 생성하는, 상기 코스 코드에 따라 상기 출력 단자로 제공하는 코스 전류를 조절하는 코스 루프 회로, 상기 출력 단자로부터 입력 전압을 제공받고 상기 파인 코드를 생성하는, 상기 파인 코드에 따라 상기 출력 단자로 제공하는 파인 전류를 조절하는 파인 루프 회로, 및 상기 코스 루프 회로로부터 상기 코스 코드를 제공 받고, 상기 파인 루프 회로를 제어하기 위한 제어 신호를 생성한다. A user equipment according to an embodiment of the present invention includes an application processor including a power management integrated circuit that provides a power source voltage through a power source line and an LDO regulator that receives a power source voltage through the power source line and generates an internal power source . The LDO regulator includes: a coarse loop circuit that receives an input voltage from an output terminal and generates a course code; a course loop circuit that adjusts a course current provided to the output terminal according to the course code; A fine loop circuit for generating a code for adjusting the fine current to be provided to the output terminal in accordance with the fine code and a control circuit for receiving the course code from the course loop circuit and generating a control signal for controlling the fine loop circuit do.

본 발명의 실시 예에 따른 LDO 레귤레이터는 코스 루프 회로를 이용하여 큰 전압 범위로 출력 전압(Vout)을 조절하고, 파인 루프 회로를 이용하여 작은 전압 범위로 세밀하게 출력 전압(Vout)를 조절할 수 있다. 본 발명의 실시 예에 따른 LDO 레귤레이터에 의하면, 빠르고 정확하게 출력 전압(Vout)을 조절할 수 있다.The LDO regulator according to the embodiment of the present invention can adjust the output voltage Vout in a large voltage range using a coarse loop circuit and finely adjust the output voltage Vout in a small voltage range using a fine loop circuit . According to the LDO regulator according to the embodiment of the present invention, the output voltage Vout can be adjusted quickly and accurately.

도 1은 일반적인 사용자 장치를 보여주는 블록도이다.
도 2는 본 발명의 실시 예에 따른 사용자 장치를 보여주는 블록도이다.
도 3은 도 2에 도시된 제 1 LDO 레귤레이터를 예시적으로 보여주는 블록도이다.
도 4는 도 2에 도시된 제 1 LDO 레귤레이터의 다른 실시 예를 보여주는 블록도이다.
도 5는 도 4에 도시된 아날로그 디지털 컨버터(ADC)를 예시적으로 보여주는 회로도이다.
도 6은 도 4에 도시된 아날로그 디지털 컨버터(ADC)의 다른 실시 예를 보여주는 회로도이다.
도 7은 도 4에 도시된 아날로그 디지털 컨버터(ADC)의 또 다른 실시 예를 보여주는 회로도이다.
도 8은 도 7에 도시된 CMF ADC를 예시적으로 설명하기 위한 도표이다.
도 9는 도 4에 도시된 쉬프트 레지스터의 동작 방법을 예시적으로 설명하기 위한 도표이다.
도 10은 도 4에 도시된 디지털 컨트롤러를 예시적으로 보여주는 블록도이다.
도 11은 도 10에 도시된 제 5 컨트롤 유닛을 예시적으로 보여주는 블록도이다.
도 12는 도 11에 도시된 인에이블 파인 루프 컨트롤러의 동작을 설명하기 위한 타이밍도이다.
도 13은 11에 도시된 초기 파인 전류 선택기의 동작을 설명하기 위한 타이밍도이다.
도 14는 도 2에 도시된 제 1 LDO 레귤레이터의 동작 방법을 설명하기 위한 블록도와 타이밍도이다.
도 15는 본 발명의 실시 예에 따른 LDO 레귤레이터의 동작 방법을 예시적으로 설명하기 위한 순서도이다.
1 is a block diagram illustrating a typical user device.
2 is a block diagram illustrating a user device in accordance with an embodiment of the present invention.
3 is a block diagram illustrating an exemplary first LDO regulator shown in FIG.
4 is a block diagram showing another embodiment of the first LDO regulator shown in FIG.
FIG. 5 is a circuit diagram illustrating an exemplary analog-to-digital converter (ADC) shown in FIG.
FIG. 6 is a circuit diagram showing another embodiment of the analog-to-digital converter (ADC) shown in FIG.
FIG. 7 is a circuit diagram showing another embodiment of the analog-to-digital converter (ADC) shown in FIG.
FIG. 8 is a diagram for illustrating the CMF ADC shown in FIG. 7 by way of example.
FIG. 9 is a diagram for explaining an operation method of the shift register shown in FIG. 4 as an example.
FIG. 10 is a block diagram illustrating an exemplary digital controller shown in FIG.
11 is a block diagram exemplarily showing the fifth control unit shown in FIG.
12 is a timing chart for explaining the operation of the loop controller which is the enable waveform shown in Fig.
13 is a timing chart for explaining the operation of the initial fine current selector shown in FIG.
FIG. 14 is a block diagram and timing diagram for explaining an operation method of the first LDO regulator shown in FIG. 2. FIG.
15 is a flowchart illustrating an exemplary operation of the LDO regulator according to the embodiment of the present invention.

아래에서는 도면들을 이용하여 본 발명의 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있을 정도로 본 발명의 내용을 명확하고 상세하게 기재할 것이다.BRIEF DESCRIPTION OF THE DRAWINGS The above and other objects, features and advantages of the present invention will be more apparent from the following detailed description taken in conjunction with the accompanying drawings, in which: FIG.

도 1은 일반적인 사용자 장치를 보여주는 블록도이다. 도 1을 참조하면, 사용자 장치(10)는 전원 관리 집적 회로(PMIC, 11)와 응용 프로세서(12)를 포함한다. 사용자 장치(10)에는 스마트 폰, 태블릿 PC 등과 같은 고급(high-end) 모바일 장치가 포함된다. 고급 모바일 장치의 성능은 응용 프로세서(12)에 의해 좌우된다고 해도 과언은 아니다. 이에 따라 모바일 장치에 사용되는 응용 프로세서(12)는 빠르게 발전하고 있다. 적은 면적에 더 좋은 성능을 내기 위해서, 응용 프로세서(12)의 공정은 미세해지고 설계는 복잡해지고 있다. 1 is a block diagram illustrating a typical user device. Referring to FIG. 1, a user device 10 includes a power management integrated circuit (PMIC) 11 and an application processor 12. User device 10 includes high-end mobile devices such as smart phones, tablet PCs, and the like. The performance of the advanced mobile device may depend on the application processor 12. Accordingly, the application processor 12 used in the mobile device is rapidly developing. In order to achieve better performance in a smaller area, the process of the application processor 12 becomes finer and the design becomes complicated.

응용 프로세서(12)는 다양한 내부 회로를 구동하기 위한 여러 레벨의 전원 전압을 필요로 한다. 이러한 전원 전압은 전원 관리 집적 회로(PMIC, 11)에 의해 공급받을 수 있다. 도 1의 예에서 보는 바와 같이, 전원 관리 집적 회로(11)는 응용 프로세서(12)로 여러 전원 라인을 통해 각각 0.8V, 0.9V, 1.1V, 1.8V와 같이 다양한 전원 전압을 제공할 수 있다. The application processor 12 requires several levels of power supply voltage to drive various internal circuits. These power supply voltages can be supplied by the power management integrated circuit (PMIC) 11. 1, the power management integrated circuit 11 may provide various power supply voltages such as 0.8V, 0.9V, 1.1V and 1.8V to the application processor 12 through various power supply lines .

도 1을 참조하면, 응용 프로세서(12)는 전원 라인을 통해 전원 관리 집적 회로(11)와 연결된다. 전원 라인에는 전류(I)가 흐르고, 기생 저항(Rp1~Rp4)과 기생 인덕턴스(Lp1~Lp4) 성분이 존재할 수 있다. 기생 저항(Rp1~Rp4)에 의해 전원 전압의 DC 값이 변할 수 있다. 예를 들어, 전원 관리 집적 회로(11)가 0.8V의 전원 전압을 응용 프로세서(12)로 제공한다고 가정하자. 전원 라인에 전류(I)가 흐르면, IxRp1에 해당하는 전압 강하가 발생할 수 있다. 그리고 전원 라인에 흐르는 전류(I)가 급격하게 변하는 경우에, 기생 인덕턴스(Lp1)로 인해 전원 전압의 회복(recovery)이 느려질 수 있다.Referring to FIG. 1, the application processor 12 is connected to the power management integrated circuit 11 through a power supply line. The current I flows through the power supply line and the parasitic resistances Rp1 to Rp4 and the parasitic inductances Lp1 to Lp4 may exist. The DC value of the power supply voltage can be changed by the parasitic resistances Rp1 to Rp4. For example, assume that the power management integrated circuit 11 provides a supply voltage of 0.8V to the application processor 12. When the current (I) flows through the power supply line, a voltage drop corresponding to IxRp1 may occur. When the current I flowing in the power supply line changes suddenly, the recovery of the power supply voltage may be slowed due to the parasitic inductance Lp1.

도 1에 도시된 사용자 장치(10)는 전원 라인에 존재하는 기생 성분의 영향을 줄이기 위해, 각각의 전원 라인에 커패시터(Ce1~Ce4)를 연결한다. 전원 라인에 연결된 커패시터(Ce1~Ce4)는 전류(I)가 급격히 변화할 때, 전원 전압의 회복(recovery) 속도를 빠르게 할 수 있다. 도 1에 도시된 사용자 장치(10)는 간단하게 커패시터를 전원 라인에 연결함으로, 전원 라인의 기생 성분에 의한 영향을 효과적으로 줄일 수 있다.The user device 10 shown in Fig. 1 connects capacitors Ce1 to Ce4 to respective power supply lines in order to reduce the influence of parasitic components present in the power supply lines. The capacitors Ce1 to Ce4 connected to the power supply line can speed up the recovery speed of the power supply voltage when the current I is abruptly changed. The user device 10 shown in FIG. 1 simply connects the capacitor to the power supply line, thereby effectively reducing the influence of the parasitic component of the power supply line.

도 2는 본 발명의 실시 예에 따른 사용자 장치를 보여주는 블록도이다. 도 2를 참조하면, 사용자 장치(100)는 전원 관리 집적 회로(PMIC, 110)와 응용 프로세서(120)를 포함한다. 여기에서, 응용 프로세서(120)는 모바일 장치에 사용될 수 있다. 전원 관리 집적 회로(110)는 응용 프로세서(120)로 전원 라인을 통해 전원 전압을 제공할 수 있다. 2 is a block diagram illustrating a user device in accordance with an embodiment of the present invention. Referring to FIG. 2, the user device 100 includes a power management integrated circuit (PMIC) 110 and an application processor 120. Here, the application processor 120 may be used in a mobile device. The power management integrated circuit 110 may provide the power supply voltage to the application processor 120 through the power supply line.

도 2에서는, 예시적으로, 전원 라인을 통해 1.8V의 전원 전압이 제공된다. 응용 프로세서(120)는 전원 관리 집적 회로(110)로부터 1.8V의 전원 전압을 제공받고, 내부적으로 0.8V, 0.9V, 1.1V의 전원 전압을 생성할 수 있다. 이를 위해 응용 프로세서(120)는 복수의 LDO 레귤레이터(low drop-out regulator)를 포함한다. 복수의 LDO 레귤레이터는 응용 프로세서(120) 내에 집적화 될 수 있다. 응용 프로세서(120)는 집적화된 LDO 레귤레이터를 통해 복수의 전원 전압을 생성할 수 있다.In Fig. 2, by way of example, a power supply voltage of 1.8 V is provided through a power supply line. The application processor 120 is supplied with a power supply voltage of 1.8 V from the power management integrated circuit 110 and internally generates a power supply voltage of 0.8 V, 0.9 V, and 1.1 V. [ To this end, the application processor 120 includes a plurality of LDO regulators (low drop-out regulators). A plurality of LDO regulators may be integrated within the application processor 120. The application processor 120 may generate a plurality of power supply voltages through the integrated LDO regulator.

계속해서 도 2를 참조하면, 응용 프로세서(120)는 제 1 내지 제 4 LDO 레귤레이터(121~124)를 포함한다. 제 1 내지 제 4 LDO 레귤레이터(121~124)는 동일한 내부 구성 및 동작 원리를 가질 수 있다. 제 1 LDO 레귤레이터(121)는 1.8V의 외부 전압을 입력받고, 0.9V의 내부 전압을 생성할 수 있다. 제 2 LDO 레귤레이터(122)는 0.8V의 내부 전압을 생성할 수 있다. 제 1 및 제 2 LDO 레귤레이터(121, 122)의 내부 전압은 중앙처리장치(CPU, 125)로 제공될 수 있다. 제 3 LDO 레귤레이터(123)은 1.1V의 내부 전압을 생성하고, 생성한 내부 전압을 디스플레이 컨트롤러(126)로 제공할 수 있다. 제 4 LDO 레귤레이터(124)는 0.8V의 내부 전압을 생성하고, 생성한 내부 전압을 메모리 컨트롤러(127)로 제공할 수 있다. Referring to FIG. 2, the application processor 120 includes first to fourth LDO regulators 121 to 124. The first to fourth LDO regulators 121 to 124 may have the same internal configuration and operation principle. The first LDO regulator 121 receives an external voltage of 1.8V and can generate an internal voltage of 0.9V. And the second LDO regulator 122 can generate an internal voltage of 0.8V. The internal voltages of the first and second LDO regulators 121 and 122 may be provided to a central processing unit (CPU) 125. The third LDO regulator 123 generates an internal voltage of 1.1 V and provides the generated internal voltage to the display controller 126. The fourth LDO regulator 124 generates an internal voltage of 0.8 V and provides the generated internal voltage to the memory controller 127.

도 2에 도시된 사용자 장치(100)는 전원 라인의 수 또는 전원 라인에 연결된 커패시터의 수를 줄일 수 있다. 도 2에 도시된 사용자 장치(100)에 의하면, 인쇄기판회로(PCB)의 라우팅 효과(routing effect)가 줄어든다. 또한, 사용자 장치(100)는 면적과 비용을 줄임과 동시에, 기생 성분에 의한 영향도 효과적으로 줄일 수 있다. The user device 100 shown in FIG. 2 may reduce the number of power lines or the number of capacitors connected to the power line. According to the user apparatus 100 shown in Fig. 2, the routing effect of the printed circuit board (PCB) is reduced. In addition, the user device 100 can reduce the area and cost, as well as the effect of parasitic components effectively.

도 3은 도 2에 도시된 LDO 레귤레이터를 예시적으로 보여주는 블록도이다. 도 3에 도시된 LDO 레귤레이터(121a)는 디지털 LDO 레귤레이터이고, 도 2에 도시된 제 1 내지 제 4 LDO 레귤레이터(121~124)와 동일한 구성 및 동작 원리를 가질 수 있다.3 is a block diagram illustrating an exemplary LDO regulator shown in FIG. The LDO regulator 121a shown in FIG. 3 is a digital LDO regulator and may have the same configuration and operation principle as the first to fourth LDO regulators 121 to 124 shown in FIG.

도 3을 참조하면, LDO 레귤레이터(121a)는 전압 분배기(201), 코스 루프 블록(coarse loop block, 210), 파인 루프 블록(fine loop block, 220), 그리고 디지털 컨트롤 블록(230)을 포함한다. LDO 레귤레이터(121a)는 출력 전압(Vout)을 로드 회로(load, 202)로 제공할 수 있다. 전압 분배기(201)는 출력 전압(Vout)을 입력받고, 분배된 입력 전압(Vin)을 코스 루프 블록(210)과 파인 루프 블록(220)으로 제공할 수 있다.3, the LDO regulator 121a includes a voltage divider 201, a coarse loop block 210, a fine loop block 220, and a digital control block 230 . The LDO regulator 121a can provide the output voltage Vout to the load circuit 202. [ The voltage divider 201 receives the output voltage Vout and can provide the divided input voltage Vin to the cosine loop block 210 and the fine loop block 220. [

코스 루프 블록(210)은 큰 전압 범위(large voltage range)로 출력 전압(Vout)을 조절할 수 있다. 코스 루프 블록(210)은 입력 전압(Vin)을 제공받고, 코스 코드(coarse code, C_LPT)를 출력할 수 있다. 코스 루프 블록(210)은 코스 코드(C_LPT)를 디지털 컨트롤 블록(230)으로 제공한다. 코스 루프 블록(210)은 코스 코드(C_LPT)에 따라, 출력 단자로 제공하는 코스 전류(I_LPT)를 조절할 수 있다. The cosine loop block 210 may adjust the output voltage Vout to a large voltage range. The cosine loop block 210 receives the input voltage Vin and can output a coarse code (C_LPT). The course loop block 210 provides the course code C_LPT to the digital control block 230. The course loop block 210 can adjust the course current I_LPT provided to the output terminal in accordance with the course code C_LPT.

코스 루프 블록(210)은 큰 파워 트랜지스터(LPT; large power transistor)를 이용하여 코스 전류(I_LPT)를 조절할 수 있다. 여기에서, 큰 파워 트랜지스터(LPT)는 큰 크기를 갖는 트랜지스터를 의미한다. 큰 파워 트랜지스터(LPT)는 전류 공급량이 많고, 출력 전압(Vout)을 큰 전압 범위로 조절할 수 있다.The coarse loop block 210 can adjust the course current I_LPT using a large power transistor (LPT). Here, the large power transistor (LPT) means a transistor having a large size. The large power transistor (LPT) has a large current supply amount and can control the output voltage (Vout) to a large voltage range.

파인 루프 블록(220)은 작은 전압 범위(small voltage range)로 출력 전압(Vout)을 세밀하게 조절할 수 있다. 파인 루프 블록(220)은 입력 전압(Vin)을 제공받고, 파인 루프 제어 신호(F_CTRL)에 응답하여 내부적으로 파인 코드(fine code, C_SPT)를 생성할 수 있다. 파인 루프 제어 신호(F_CTRL)는 디지털 컨트롤 블록(230)으로부터 제공된다. 파인 루프 블록(220)은 코스 전류(I_LPT)가 제공된 다음에, 출력 단자에 파인 전류(fine current, I_SPT)를 공급할 수 있다. The fine loop block 220 can finely adjust the output voltage Vout with a small voltage range. The fine loop block 220 is provided with an input voltage Vin and can internally generate a fine code C_SPT in response to the fine loop control signal F_CTRL. The fine loop control signal F_CTRL is provided from the digital control block 230. The fine loop block 220 may provide a fine current (I_SPT) to the output terminal after the course current I_LPT is provided.

파인 루프 블록(220)은 작은 파워 트랜지스터(SPT; small power transistor)를 이용하여 파인 전류(I_SPT)를 조절할 수 있다. 여기에서, 작은 파워 트랜지스터(SPT)는 작은 크기를 갖는 트랜지스터를 의미한다. 작은 파워 트랜지스터(SPT)는 전류 공급량이 적고, 출력 전압(Vout)을 작은 범위로 세밀하게 조절할 수 있다.The fine loop block 220 may adjust the fine current I_SPT using a small power transistor (SPT). Here, the small power transistor (SPT) means a transistor having a small size. The small power transistor (SPT) has a small current supply and can finely adjust the output voltage (Vout) in a small range.

디지털 컨트롤 블록(230)은 파인 루프 블록(220)의 동작을 제어할 수 있다. 디지털 컨트롤 블록(230)은 코스 루프 블록(210)으로부터 코스 코드(C_LPT)를 입력받고, 파인 루프 블록(220)으로 파인 루프 제어 신호(F_CTRL)를 제공할 수 있다. 디지털 컨트롤 블록(230)은 코스 루프 블록(210)의 동작 다음에, 곧 바로 파인 루프 블록(220)이 동작하도록 제어할 수 있다. 디지털 컨트롤 블록(230)은 루프 동작 전환을 빠르게 제어함으로, 전환 효과(transition effect)를 줄일 수 있다.The digital control block 230 may control the operation of the fine loop block 220. The digital control block 230 receives the course code C_LPT from the course loop block 210 and provides the fine loop control signal F_CTRL to the fine loop block 220. The digital control block 230 may control to cause the fine loop block 220 to operate immediately after the operation of the cosine loop block 210. [ The digital control block 230 quickly controls the loop operation switching, thereby reducing the transition effect.

도 4는 도 2에 도시된 LDO 레귤레이터의 다른 실시 예를 보여주는 블록도이다. 도 4를 참조하면, LDO 레귤레이터(121b)는 전압 분배 회로(301), 로드 구동 회로(302), 그리고 로드 커패시터(303)를 포함한다.4 is a block diagram showing another embodiment of the LDO regulator shown in FIG. Referring to Fig. 4, the LDO regulator 121b includes a voltage divider circuit 301, a load driving circuit 302, and a load capacitor 303. Fig.

전압 분배 회로(301)는 출력 단자와 접지 단자 사이에 연결되며, 출력 전압(Vout)을 분배하고, 분배 전압(Vdid)을 발생한다. 예를 들면, 출력 단자와 분배 노드 사이에 제 1 저항(예를 들면, R)이 연결되고 분배 노드와 접지 단자 사이에 제 2 저항(예를 들면, 4R)이 연결된다고 가정하자. 만약, 출력 전압(Vout)이 0.9V이면, 분배 전압(Vdid)은 0.72V이다. 로드 구동 회로(302)에는 로드 전류 IL이 흐른다. 로드 커패시터(303)는 로드 커패시턴스 CL을 갖는다.The voltage divider circuit 301 is connected between the output terminal and the ground terminal, distributes the output voltage Vout, and generates the distribution voltage Vdid. For example, assume that a first resistor (e.g., R) is connected between the output terminal and the distribution node and a second resistor (e.g., 4R) is connected between the distribution node and the ground terminal. If the output voltage Vout is 0.9V, then the divided voltage Vdid is 0.72V. Load current IL flows in the load driving circuit 302. The load capacitor 303 has a load capacitance CL.

LDO 레귤레이터(121b)는 코스 루프 회로(coarse loop circuit, 310), 파인 루프 회로(fine loop circuit, 320), 그리고 디지털 컨트롤러(330)를 더 포함한다. LDO 레귤레이터(121b)는 전원 전압(VDD)을 입력받고, 출력 전압(Vout)을 조절할 수 있다. 코스 루프 회로(310)는 큰 전압 범위(large voltage range)로 출력 전압(Vout)을 조절하고, 파인 루프 회로(320)는 작은 전압 범위(small voltage range)로 출력 전압(Vout)을 조절할 수 있다.The LDO regulator 121b further includes a coarse loop circuit 310, a fine loop circuit 320, and a digital controller 330. [ The LDO regulator 121b receives the power supply voltage VDD and can adjust the output voltage Vout. The coarse loop circuit 310 adjusts the output voltage Vout to a large voltage range and the fine loop circuit 320 adjusts the output voltage Vout to a small voltage range .

도 4를 참조하면, 코스 루프 회로(310)는 기준 전압 변환기(Vrefc changer, 311), 아날로그 디지털 컨버터(ADC, 312), 그리고 코스 전류 구동기(coarse current driver, 313)를 포함한다. 기준 전압 변환기(311)는 ADC(312)로부터 코스 코드(C_LPT)를 입력받고, 코스 기준 전압(Vrefc)을 변경할 수 있다. 기준 전압 변환기(311)는 변경한 코스 기준 전압(Vrefc)를 ADC(312)로 제공한다.4, the course loop circuit 310 includes a reference voltage converter Vrefc changer 311, an analog-to-digital converter (ADC) 312, and a coarse current driver 313. The reference voltage converter 311 receives the course code C_LPT from the ADC 312 and can change the course reference voltage Vrefc. The reference voltage converter 311 provides the changed course reference voltage Vrefc to the ADC 312. [

[표 1]은 기준 전압 변환기(311)의 동작 원리를 예시적으로 설명하기 위한 도표이다.[Table 1] is a diagram for illustrating the operation principle of the reference voltage converter 311 by way of example.

C_LPT[5:1]C_LPT [5: 1] VrefcVrefc 1111111111 648mv648mv 1111011110 684mV684mV 1110011100 720mV720mV 1100011000 756mV756mV 1000010000 792mV792 mV 0000000000 828mV828mV

[표 1]을 참조하면, 기준 전압 변환기(311)는 5-비트의 코스 코드(C_LPT[5:1])를 입력받고, 각각의 코스 코드에 대응하는 코스 기준 전압(Vrefc)으로 변경할 수 있다. 예를 들면, 코스 코드(C_LPT[5:1])가 11111인 경우에는 코스 기준 전압(Vrefc)을 648mV로 변경할 수 있다. 코스 코드(C_LPT[5:1])가 11110인 경우에는 684mV로 변경하고, 11100인 경우에는 720mV로 변경하고, 11000인 경우에는 756mV로 변경하고, 10000인 경우에는 792mV로 변경하고, 00000인 경우에는 828mV로 변경할 수 있다. 로드 전류가 증가하면 코스 기준 전압을 높이고, 로드 전류가 감소하면 코스 기준 전압을 낮추는Referring to Table 1, the reference voltage converter 311 receives a 5-bit course code C_LPT [5: 1] and can change it to a course reference voltage Vrefc corresponding to each course code . For example, when the course code C_LPT [5: 1] is 11111, the course reference voltage Vrefc can be changed to 648 mV. In the case where the course code C_LPT [5: 1] is 11110, it is changed to 684 mV. In the case of 11100, it is changed to 720 mV. When the course code C_LPT [5: 1] is changed to 1150, 756 mV, 10000 is changed to 792 mV. Can be changed to 828 mV. As the load current increases, the course voltage increases. When the load current decreases, the course voltage decreases.

기준 전압 변환기(311)는 로드 전류(IL)가 증가하면 코스 기준 전압(Vrefc)을 높일 수 있다. 반대로, 기준 전압 변환기(311)는 로드 전류(IL)가 감소하면 코스 기준 전압(Vrefc)을 낮출 수 있다. 기준 전압 변환기(311)는 코스 기준 전압(Vrefc)을 변경함으로, 코스 루프 동작 시에 출력 전압(Vout)을 보다 간단하게 조절할 수 있다. The reference voltage converter 311 can increase the course reference voltage Vrefc when the load current IL increases. Conversely, the reference voltage converter 311 can lower the course reference voltage Vrefc when the load current IL decreases. The reference voltage converter 311 changes the course reference voltage Vrefc so that the output voltage Vout can be more easily adjusted during the course loop operation.

ADC(312)는 입력 전압(Vin)과 코스 기준 전압(Vrefc)을 입력받고, 코스 코드(coarse code, C_LPT)를 생성할 수 있다. 예를 들면, ADC(312)는 제 1 내지 제 5 코스 코드(C_LPT[5:1])를 생성할 수 있다. 제 1 내지 제 5 코스 코드(C_LPT[5:1])는 기준 전압 변환기(311)와 코스 전류 구동기(313)로 제공된다.The ADC 312 receives the input voltage Vin and the course reference voltage Vrefc and can generate a coarse code C_LPT. For example, the ADC 312 may generate the first to fifth course codes C_LPT [5: 1]. The first to fifth course codes C_LPT [5: 1] are provided to the reference voltage converter 311 and the course current driver 313.

코스 전류 구동기(313)는 ADC(312)로부터 코스 코드(C_LPT)를 입력받고, 출력 단자에 코스 전류(coarse current, I_LPT)를 공급할 수 있다. 예로서, 코스 전류 구동기(313)는 제 1 내지 제 5 PMOS 트랜지스터(M_LP1~M_LP5)로 구성될 수 있다. 제 1 내지 제 5 PMOS 트랜지스터(M_LP1~MLP5)는 전원 단자와 출력 단자 사이에 연결될 수 있다. 여기에서, 전원 단자는 전원 전압(VDD)을 입력받고, 출력 단자는 출력 전압(Vout)을 제공한다. The course current driver 313 receives the course code C_LPT from the ADC 312 and supplies a coarse current I_LPT to the output terminal. For example, the course current driver 313 may include first through fifth PMOS transistors M_LP1 through M_LP5. The first to fifth PMOS transistors M_LP1 to MLP5 may be connected between a power supply terminal and an output terminal. Here, the power supply terminal receives the power supply voltage VDD, and the output terminal provides the output voltage Vout.

제 1 내지 제 5 PMOS 트랜지스터(M_LP1~M_LP5)는 제 1 내지 제 5 코스 코드(C_LPT[5:1])에 의해 제어될 수 있다. 예를 들면, 제 1 PMOS 트랜지스터(M_LP1)는 제 1 코스 코드(C_LPT[1])에 의해 제어될 수 있다. 코드 전류 구동기(313)는 ADC(312)의 코스 코드에 따라, 출력 단자로 제공하는 코스 전류(I_LPT)를 조절할 수 있다. 제 1 내지 제 5 PMOS 트랜지스터(M_LP1~M_LP5)가 모두 턴 온 될 때, 가장 큰 코스 전류(I_LPT)가 제공된다. 그리고 제 1 내지 제 5 PMOS 트랜지스터(M_LP1~M_LP5)가 턴 오프 됨에 따라, 코스 전류(I_LPT)가 줄어든다.The first through fifth PMOS transistors M_LP1 through M_LP5 may be controlled by the first through fifth course codes C_LPT [5: 1]. For example, the first PMOS transistor M_LP1 may be controlled by the first course code C_LPT [1]. The code current driver 313 can adjust the course current I_LPT provided to the output terminal in accordance with the course code of the ADC 312. [ When the first to fifth PMOS transistors M_LP1 to M_LP5 are all turned on, the largest course current I_LPT is provided. As the first to fifth PMOS transistors M_LP1 to M_LP5 are turned off, the course current I_LPT is reduced.

계속해서 도 4를 참조하면, 파인 루프 회로(320)는 비교기(321), 쉬프트 레지스터(322), 그리고 파인 전류 구동기(323)를 포함한다. 파인 루프 회로(320)는 출력 전압(Vout)을 정밀하게 조절할 수 있다. 파인 루프 회로(320)는 출력 단자로 파인 전류(I_SPT)를 제공할 수 있다.4, the fine loop circuit 320 includes a comparator 321, a shift register 322, and a fine current driver 323. The fine loop circuit 320 can precisely adjust the output voltage Vout. The fine loop circuit 320 may provide a fine current I_SPT to the output terminal.

비교기(321)는 입력 전압(Vin)과 기준 전압(Vref)을 비교하고, 비교 결과를 쉬프트 레지스터(322)로 제공한다. 비교기(321)는 (+) 입력 단자를 통해 기준 전압(Vref)을 제공받고, (-) 입력 단자를 통해 입력 전압(Vin)을 제공받을 수 있다. 비교기(321)는 클록 신호(CLK)에 동기하여 동작할 수 있다. 비교기(321)는 출력 단자를 통해 비교 결과를 쉬프트 레지스터(322)의 선택 단자(SEL)로 제공할 수 있다. 기준 전압(Vref)이 입력 전압(Vin)보다 높으면 1의 선택 신호(SEL)를 제공하고, 낮으면 0의 선택 신호(SEL)를 제공할 수 있다.The comparator 321 compares the input voltage Vin with the reference voltage Vref and provides the comparison result to the shift register 322. [ The comparator 321 receives the reference voltage Vref through the (+) input terminal and the input voltage Vin through the (-) input terminal. The comparator 321 can operate in synchronization with the clock signal CLK. The comparator 321 can provide the comparison result to the selection terminal SEL of the shift register 322 through the output terminal. A selection signal SEL of 1 is provided when the reference voltage Vref is higher than the input voltage Vin and a selection signal SEL of 0 when the reference voltage Vref is lower than the input voltage Vin.

쉬프트 레지스터(322)는 인에이블 신호(EN)에 응답하여 동작한다. 인에이블 신호(EN)는 디지털 컨트롤러(330)로부터 제공된다. 인에이블 신호(EN)는 코스 루프 회로(310)의 동작 다음에, 쉬프트 레지스터(322)로 제공될 수 있다. 쉬프트 레지스터(322)는 클록 신호(CLK)에 동기하여 동작할 수 있다. 쉬프트 레지스터(322)는 비교기(321)로부터 선택 신호(SEL)를 입력받고, 파인 코드(fine code, C_SPT)를 출력할 수 있다. 예로서, 쉬프트 레지스터(322)는 20-비트 쉬프트 레지스터라고 하면, 20-비트의 파인 코드(C_SPT[20:1])를 출력할 수 있다.  The shift register 322 operates in response to the enable signal EN. The enable signal EN is provided from the digital controller 330. The enable signal EN may be provided to the shift register 322 after operation of the course loop circuit 310. The shift register 322 can operate in synchronization with the clock signal CLK. The shift register 322 receives the selection signal SEL from the comparator 321 and can output a fine code (C_SPT). By way of example, the shift register 322 can output a 20-bit fine code (C_SPT [20: 1]), assuming a 20-bit shift register.

파인 전류 구동기(323)는 쉬프트 레지스터(322)로부터 파인 코드(C_SPT)를 입력받고, 출력 단자에 파인 전류(fine current, I_SPT)를 공급할 수 있다. 예로서, 파인 전류 구동기(323)는 제 1 내지 제 20 PMOS 트랜지스터(M_SP1~M_SP20)로 구성될 수 있다. 제 1 내지 제 20 PMOS 트랜지스터(M_SP1~M_SP20)는 전원 단자와 출력 단자 사이에 연결될 수 있다. 제 1 내지 제 20 PMOS 트랜지스터(M_SP1~M_SP20)는 제 1 내지 제 20 파인 코드(C_SPT[20:1])에 의해 제어될 수 있다. The fine current driver 323 receives the fine code C_SPT from the shift register 322 and can supply a fine current I_SPT to the output terminal. For example, the fine current driver 323 may include first through twentieth PMOS transistors M_SP1 through M_SP20. The first to twentieth PMOS transistors M_SP1 to M_SP20 may be connected between a power terminal and an output terminal. The first through twentieth PMOS transistors M_SP1 through M_SP20 may be controlled by first through twentieth fine codes C_SPT [20: 1].

예를 들면, 제 1 PMOS 트랜지스터(M_SP1)는 제 1 파인 코드(C_SPT[1])에 의해 제어될 수 있다. 파인 전류 구동기(323)는 쉬프트 레지스터(322)의 파인 코드에 따라, 출력 단자로 제공하는 파인 전류(I_SPT)를 조절할 수 있다. 제 1 내지 제 20 PMOS 트랜지스터(M_SP1~M_SP20)가 모두 턴 온 될 때, 가장 큰 파인 전류(I_SPT)가 제공된다. 그리고 제 1 내지 제 20 PMOS 트랜지스터(M_SP1~M_SP20)가 턴 오프 됨에 따라, 파인 전류(I_SPT)가 줄어든다. For example, the first PMOS transistor M_SP1 may be controlled by the first fine code C_SPT [1]. The fine current driver 323 can adjust the fine current I_SPT provided to the output terminal in accordance with the fine code of the shift register 322. When the first to twentieth PMOS transistors M_SP1 to M_SP20 are all turned on, the largest fine current I_SPT is provided. As the first to twentieth PMOS transistors M_SP1 to M_SP20 are turned off, the fine current I_SPT is reduced.

파인 전류 구동기(323)는 코스 전류 구동기(313)와 동일한 동작 원리를 가질 수 있다. 그러나 파인 전류 구동기(323)의 각 PMOS 트랜지스터의 크기는 코스 전류 구동기(313)의 PMOS 트랜지스터보다 작을 수 있다. 파인 전류 구동기(323)는 전류 공급량이 적은 트랜지스터를 많이 사용함으로, 출력 전압(Vout)을 작은 전압 범위로 세밀하게 조절할 수 있다. The fine current driver 323 may have the same operation principle as the course current driver 313. [ However, the size of each PMOS transistor of the fine current driver 323 may be smaller than the PMOS transistor of the course current driver 313. The fine current driver 323 uses a transistor having a small current supply amount, so that the output voltage Vout can be finely adjusted to a small voltage range.

계속해서 도 4를 참조하면, 디지털 컨트롤러(330)는 파인 루프 회로(320)의 동작을 제어할 수 있다. 디지털 컨트롤러(330)는 코스 코드(C_LPT)를 입력받고, 제어 신호를 출력할 수 있다. 제어 신호에는 인에이블 신호(EN), 리셋 신호(RST), 초기 신호(INIT)가 포함된다. 인에이블 신호(EN)는 쉬프트 레지스터(322)를 동작하기 위한 신호이다. 리셋 신호(RST)는 쉬프트 레지시터(322)의 파인 코드(C_SPT)를 리셋하기 위한 신호이다. 초기 신호(INIT)는 초기 파인 전류를 정하기 위한 신호이다.4, the digital controller 330 can control the operation of the fine loop circuit 320. [ The digital controller 330 receives the course code C_LPT and can output a control signal. The control signal includes an enable signal EN, a reset signal RST, and an initial signal INIT. The enable signal EN is a signal for operating the shift register 322. The reset signal RST is a signal for resetting the fine code C_SPT of the shift register 322. The initial signal INIT is a signal for determining the initial fine current.

디지털 컨트롤러(330)는 간단한 카운터를 이용하여, 코스 루프 동작 다음에, 곧 바로 파인 루프 동작을 시작하게 할 수 있다. 디지털 컨트롤러(330)는 루프 동작 전환을 빠르게 제어함으로, 전환 효과(transition effect)를 줄일 수 있다. 디지털 컨트롤러(330)의 내부 구성 및 동작 원리는 후술하기로 한다. The digital controller 330 may use a simple counter to cause a fine loop operation to begin immediately following the course loop operation. The digital controller 330 can quickly control the switching of the loop operation, thereby reducing the transition effect. The internal configuration and operation principle of the digital controller 330 will be described later.

도 5는 도 4에 도시된 아날로그 디지털 컨버터(ADC)를 예시적으로 보여주는 회로도이다. 도 5에 도시된 ADC(312a)는 플래시 ADC(flash ADC)로서, 전압 분배 회로(410)와 비교 회로(420)를 포함한다. 도 5의 예에서, 플래시 ADC(312)는 다섯 자리의 이진 코드를 생성할 수 있다.FIG. 5 is a circuit diagram illustrating an exemplary analog-to-digital converter (ADC) shown in FIG. The ADC 312a shown in FIG. 5 is a flash ADC (flash ADC), which includes a voltage divider circuit 410 and a comparison circuit 420. FIG. In the example of FIG. 5, the flash ADC 312 may generate a five digit binary code.

전압 분배 회로(410)는 제 1 내지 제 6 저항(R1~R6)으로 구성될 수 있다. 제 1 내지 제 6 저항(R1~R6)은 모두 같은 저항값을 같거나 다른 저항값을 가질 수 있다. 전압 분배 회로(410)는 코스 기준 전압(Vrefc)을 입력받고, 다섯 개의 분배 전압(Vd1~Vd5)을 생성할 수 있다. 제 1 내지 제 5 분배 전압(Vd1~Vd5)은 비교 회로(420)로 제공된다. The voltage divider circuit 410 may include first to sixth resistors R1 to R6. The first to sixth resistors R1 to R6 may all have the same resistance value or different resistance values. The voltage distribution circuit 410 receives the course reference voltage Vrefc and can generate five distribution voltages Vd1 to Vd5. The first to fifth distribution voltages Vd1 to Vd5 are provided to the comparison circuit 420. [

비교 회로(420)는 제 1 내지 제 5 비교기(421~425)를 포함한다. 제 1 내지 제 5 비교기(421~425)는 입력 전압(Vin)을 공통으로 입력 받는다. 여기에서, 입력 전압(Vin)은 도 4에 도시된 전압 분배 회로(301)의 분배 전압(Vdid)과 같다. 입력 전압(Vin)은 제 1 내지 제 5 비교기(421~425)의 (+) 입력 단자로 제공될 수 있다. 제 1 비교기(421)는 (+) 입력 단자를 통해 입력 전압(Vin)을 입력받고, (-) 입력 단자를 통해 제 1 분배 전압(Vd1)을 입력 받을 수 있다. 제 1 비교기(421)는 입력 전압(Vin)과 제 1 분배 전압(Vd1)을 비교하고, 비교 결과에 따라 1 또는 0의 제 1 코스 코드(C_LPT[1])를 생성할 수 있다. The comparison circuit 420 includes first to fifth comparators 421 to 425. The first to fifth comparators 421 to 425 receive the input voltage Vin in common. Here, the input voltage Vin is equal to the divided voltage Vdid of the voltage divider circuit 301 shown in Fig. The input voltage Vin may be provided to the (+) input terminals of the first to fifth comparators 421 to 425. The first comparator 421 receives the input voltage Vin through the positive input terminal and receives the first divided voltage Vd1 through the negative input terminal. The first comparator 421 can compare the input voltage Vin with the first divided voltage Vd1 and generate the first course code C_LPT [1] of 1 or 0 according to the comparison result.

예를 들면, 입력 전압(Vin)이 제 1 분배 전압(Vd1)보다 높으면 코스 코드 1을 생성하고, 낮으면 코스 코드 0을 생성할 수 있다. 이와 마찬가지로, 제 2 내지 제 5 비교기(422~425)는 제 2 내지 제 5 코스 코드(C_LPT[5:2])를 생성할 수 있다. 비교 회로(420)는 코스 코드(C_LPT[5:1])를 코스 전류 구동기(도 4 참조, 313)로 제공한다.For example, if the input voltage Vin is higher than the first distribution voltage Vd1, the course code 1 is generated. If the input voltage Vin is lower than the first distribution voltage Vd1, the course code 0 can be generated. Likewise, the second to fifth comparators 422 to 425 may generate the second to fifth course codes C_LPT [5: 2]. The comparison circuit 420 provides the course code C_LPT [5: 1] to the course current driver (see FIG. 4) 313.

도 6은 도 4에 도시된 아날로그 디지털 컨버터(ADC)의 다른 실시 예를 보여주는 회로도이다. 도 6에 도시된 디지털 ADC(312b)는 비교기(COM, 510)와 코드 발생기(520)를 포함한다. FIG. 6 is a circuit diagram showing another embodiment of the analog-to-digital converter (ADC) shown in FIG. The digital ADC 312b shown in FIG. 6 includes a comparator (COM) 510 and a code generator 520.

비교기(510)는 코스 기준 전압(Vrefc)과 입력 전압(Vin)을 비교한다. 비교기(510)는 (+) 입력 단자를 통해 입력 전압(Vin)을 제공받고, (-) 입력 단자를 통해 코스 기준 전압(Vrefc)을 제공받을 수 있다. 비교기(510)는 입력 전압(Vin)과 코스 기준 전압(Vrefc)을 비교하고, 오차 전압(error voltage, Verr)을 코드 발생기(520)로 제공할 수 있다. The comparator 510 compares the course reference voltage Vrefc with the input voltage Vin. The comparator 510 may be provided with the input voltage Vin through the (+) input terminal and the course reference voltage Vrefc through the (-) input terminal. The comparator 510 may compare the input voltage Vin with the course reference voltage Vrefc and provide an error voltage Verr to the code generator 520. [

코드 발생기(520)는 오차 전압(Verr)에 따라 코스 코드(coarse code)를 생성할 수 있다. 예를 들어, 오차 전압(Verr)이 +b 이상이면 코스 코드(C_LPT[5:1])는 11111이 된다. 오차 전압(Verr)이 +a~+b이면 코스 코드(C_LPT[5:1])는 11110이 된다. 오차 전압(Verr)이 0~+a이면 코스 코드(C_LPT[5:1])는 11100이 된다. 오차 전압(Verr)이 -a~0이면 코스 코드(C_LPT[5:1])는 11000이 된다. 오차 전압(Verr)이 -b~-a이면 코스 코드(C_LPT[5:1])는 10000이 된다. 마지막으로, 오차 전압(Verr)이 -b보다 작으면 코스 코드(C_LPT[5:1])는 00000이 된다. 코드 발생기(520)는 코스 코드(C_LPT[5:1])를 코스 전류 구동기(도 4 참조, 313)로 제공한다.The code generator 520 may generate a coarse code according to the error voltage Verr. For example, if the error voltage Verr is + b or more, the course code (C_LPT [5: 1]) becomes 11111. If the error voltage Verr is + a to + b, the course code (C_LPT [5: 1]) becomes 11110. If the error voltage Verr is 0 to + a, the course code (C_LPT [5: 1]) becomes 11100. If the error voltage Verr is -a to 0, the course code (C_LPT [5: 1]) becomes 11000. If the error voltage Verr is -b to -a, the course code C_LPT [5: 1] is 10000. Finally, if the error voltage Verr is smaller than -b, the course code C_LPT [5: 1] becomes 00000. The code generator 520 provides the course code C_LPT [5: 1] to the course current driver (see FIG. 4, 313).

도 7은 도 4에 도시된 아날로그 디지털 컨버터(ADC)의 또 다른 실시 예를 보여주는 회로도이다. 도 7에 도시된 ADC(312c)는 전류 미러 플래시 ADC(CMF ADC; current mirror flash ADC)로서, 비교 회로(610), 제 1 전류 미러 회로(620), 그리고 제 2 전류 미러 회로(630)를 포함한다. FIG. 7 is a circuit diagram showing another embodiment of the analog-to-digital converter (ADC) shown in FIG. The ADC 312c shown in FIG. 7 includes a comparison circuit 610, a first current mirror circuit 620, and a second current mirror circuit 630 as a current mirror flash ADC (CMF ADC) .

비교 회로(610)는 제 1 및 제 2 PMOS 트랜지스터(PM1, PM2), 제 1 및 제 2 NMOS 트랜지스터(NM1, NM2), 그리고 전류 소스(current source, 611)를 포함한다. 여기에서, 제 1 및 제 2 PMOS 트랜지스터(PM1, PM2)의 크기는 1이라고 가정한다. 도 7에서는 x1으로 표시되어 있다.The comparison circuit 610 includes first and second PMOS transistors PM1 and PM2, first and second NMOS transistors NM1 and NM2 and a current source 611. [ Here, it is assumed that the sizes of the first and second PMOS transistors PM1 and PM2 are one. In Fig. 7, x1 is indicated.

제 1 PMOS 트랜지스터(PM1)는 전원 단자와 제 1 노드(ND1) 사이에 연결되어 있다. 제 1 PMOS 트랜지스터(PM1)의 게이트는 제 1 노드(ND1)에 연결되어 있다. 제 1 PMOS 트랜지스터(PM1)는 다이오드 연결 구조를 갖는다. 제 2 PMOS 트랜지스터(PM2)는 전원 단자와 제 2 노드(ND2) 사이에 연결되어 있다. 제 2 PMOS 트랜지스터(PM2)의 게이트는 제 2 노드(ND2)에 연결되어 있다. 제 2 PMOS 트랜지스터(PM2)는 다이오드 연결 구조를 갖는다. The first PMOS transistor PM1 is connected between the power supply terminal and the first node ND1. The gate of the first PMOS transistor PM1 is connected to the first node ND1. The first PMOS transistor PM1 has a diode connection structure. The second PMOS transistor PM2 is connected between the power supply terminal and the second node ND2. And the gate of the second PMOS transistor PM2 is connected to the second node ND2. The second PMOS transistor PM2 has a diode connection structure.

제 1 NMOS 트랜지스터(NM1)는 제 1 및 제 3 노드(ND1, ND3) 사이에 연결되어 있다. 제 1 NMOS 트랜지스터(NM1)는 게이트를 통해 코스 기준 전압(Vrefc)를 입력 받는다. 제 2 NMOS 트랜지스터(NM2)는 제 2 및 제 3 노드(ND2, ND3) 사이에 연결되어 있다. 제 2 NMOS 트랜지스터(NM2)는 게이트를 통해 입력 전압(Vin)을 입력 받는다. The first NMOS transistor NM1 is connected between the first node ND1 and the third node ND3. The first NMOS transistor NM1 receives the course reference voltage Vrefc through the gate thereof. The second NMOS transistor NM2 is connected between the second and third nodes ND2 and ND3. The second NMOS transistor NM2 receives the input voltage Vin through the gate thereof.

전류 소스(611)는 제 3 노드(ND3)와 접지 단자 사이에 연결된다. 전류 소스(611)를 통해 흐르는 전류는 고정된다. 예를 들면, 전류 소스(611)는 2xIb로 고정될 수 있다. 전류 소스(611)는 NMOS 트랜지스터(도시되지 않음)로 구성될 수 있다. The current source 611 is connected between the third node ND3 and the ground terminal. The current flowing through the current source 611 is fixed. For example, the current source 611 may be fixed at 2xIb. The current source 611 may be composed of an NMOS transistor (not shown).

비교 회로(610)는 제 1 및 제 2 전류 통로(current path)를 형성한다. 제 1 전류 통로(I1)는 제 1 PMOS 트랜지스터(PM1)와 제 1 NMOS 트랜지스터(NM1)를 통과한다. 제 2 전류 통로(I2)는 제 2 PMOS 트랜지스터(PM2)와 제 2 NMOS 트랜지스터(NM2)를 통과한다. 비교 회로(610)는 코스 기준 전압(Vrefc)과 입력 전압(Vin)을 비교한다. 코스 기준 전압(Vrefc)과 입력 전압(Vin)에 따라, 제 1 전류 통로(I1)와 제 2 전류 통로(I2)에 흐르는 전류량이 변할 수 있다. The comparison circuit 610 forms first and second current paths. The first current path I1 passes through the first PMOS transistor PM1 and the first NMOS transistor NM1. The second current path I2 passes through the second PMOS transistor PM2 and the second NMOS transistor NM2. The comparison circuit 610 compares the course reference voltage Vrefc with the input voltage Vin. The amount of current flowing in the first current path I1 and the second current path I2 may vary depending on the course reference voltage Vrefc and the input voltage Vin.

제 1 및 제 2 전류 통로(I1, I2)에 흐르는 전류의 합은 전류 소스(611)에 의해 2xIb로 고정될 수 있다. 입력 전압(Vin)이 코스 기준 전압(Vrefc)보다 높은 경우에는, 제 2 전류 통로(I2)에 흐르는 전류는 Ierr만큼 증가하고, 제 1 전류 통로(I1)에 흐르는 전류는 상대적으로 Ierr만큼 감소한다. 반대로, 입력 전압(Vin)이 코스 기준 전압(Vrefc)보다 낮은 경우에는, 제 2 전류 통로(I2)에 흐르는 전류는 감소하고, 제 1 전류 통로(I1)에 흐르는 전류는 상대적으로 증가할 수 있다. The sum of the currents flowing in the first and second current paths I1 and I2 can be fixed to 2xIb by the current source 611. [ When the input voltage Vin is higher than the course reference voltage Vrefc, the current flowing through the second current path I2 is increased by Ierr and the current flowing through the first current path I1 is decreased by Ierr . Conversely, when the input voltage Vin is lower than the course reference voltage Vrefc, the current flowing in the second current path I2 decreases and the current flowing in the first current path I1 can increase relatively .

제 1 전류 미러 회로(620)는 제 3 PMOS 트랜지스터(PM3)와 제 3 NMOS 트랜지스터(NM3)를 포함한다. 제 3 PMOS 트랜지스터(PM3)는 전원 단자와 제 4 노드(ND4) 사이에 연결되어 있다. 제 3 PMOS 트랜지스터(PM3)의 게이트는 제 1 노드(ND1)에 연결되어 있다. 즉, 제 3 PMOS 트랜지스터(PM3)의 게이트는 제 1 PMOS 트랜지스터(PM1)의 게이트에 공통으로 연결되어 있다. 그리고 제 3 PMOS 트랜지스터(PM3)의 크기는 제 1 PMOS 트랜지스터(PM1)의 크기와 같다. 즉, 제 3 PMOS 트랜지스터(PM3)의 크기는 x1이다. The first current mirror circuit 620 includes a third PMOS transistor PM3 and a third NMOS transistor NM3. The third PMOS transistor PM3 is connected between the power supply terminal and the fourth node ND4. The gate of the third PMOS transistor PM3 is connected to the first node ND1. That is, the gate of the third PMOS transistor PM3 is commonly connected to the gate of the first PMOS transistor PM1. The size of the third PMOS transistor PM3 is equal to the size of the first PMOS transistor PM1. That is, the size of the third PMOS transistor PM3 is x1.

제 1 전류 미러 회로(620)는 제 3 전류 통로(I3)를 형성한다. 제 3 전류 통로(I3)는 제 3 PMOS 트랜지스터(PM3)와 제 3 NMOS 트랜지스터(NM3)를 통과한다. 전류 미러링(current mirroring)에 의해, 제 3 전류 통로(I3)에 흐르는 전류량은 제 1 전류 통로(I1)에 흐르는 전류량과 같게 된다. 제 3 전류 통로(I3)에 흐르는 전류량이 증가하면 제 4 노드(ND4)의 전압 레벨은 상승한다. 반대로, 제 3 전류 통로(I3)에 흐르는 전류량이 감소하면 제 4 노드(ND4)의 전압 레벨은 감소한다. The first current mirror circuit 620 forms the third current path I3. The third current path I3 passes through the third PMOS transistor PM3 and the third NMOS transistor NM3. By the current mirroring, the amount of current flowing in the third current path I3 becomes equal to the amount of current flowing in the first current path I1. When the amount of current flowing in the third current path I3 increases, the voltage level of the fourth node ND4 rises. Conversely, when the amount of current flowing in the third current path I3 decreases, the voltage level of the fourth node ND4 decreases.

입력 전압(Vin)이 증가하면, 제 2 전류 통로(I2)의 전류량은 증가한다. 이때 제 1 및 제 3 전류 통로(I1, I3)의 전류량은 상대적으로 감소하고, 제 4 노드(ND4)의 전압 레벨은 감소한다. 즉, 코스 기준 전압(Vrefc)이 고정된 상태에서 입력 전압(Vin)이 증가하면 제 4 노드(ND4)의 전압 레벨은 감소한다. 반대로, 입력 전압(Vin)이 감소하면 제 4 노드(ND4)의 전압 레벨은 증가한다.As the input voltage Vin increases, the amount of current in the second current path I2 increases. At this time, the amount of current in the first and third current paths I1 and I3 decreases relatively and the voltage level of the fourth node ND4 decreases. That is, when the input voltage Vin increases with the course reference voltage Vrefc being fixed, the voltage level of the fourth node ND4 decreases. Conversely, when the input voltage Vin decreases, the voltage level of the fourth node ND4 increases.

제 2 전류 미러 회로(630)는 제 4 내지 제 8 PMOS 트랜지스터(PM4~PM8)와 제 4 내지 제 8 NMOS 트랜지스터(NM4~NM8)를 포함한다. 제 4 PMOS 트랜지스터(PM4)는 전원 단자와 제 1 출력 노드(OD1) 사이에 연결된다. 제 4 PMOS 트랜지스터(PM4)의 게이트는 제 2 노드(ND2)에 연결된다. 제 4 PMOS 트랜지스터(PM4)의 크기는 제 2 PMOS 트랜지스터(PM2)의 크기와 다를 수 있다. 예를 들면, 제 2 PMOS 트랜지스터(PM2)의 크기가 1이라고 가정하면, 제 4 PMOS 트랜지스터(PM4)는 제 2 PMOS 트랜지스터(PM4)의 6배의 크기를 가질 수 있다. 도 7에서는 x6으로 표시되어 있다. 이하에서는 '제 4 PMOS 트랜지스터는 x6의 크기를 갖는다'라고 표현하기로 한다. The second current mirror circuit 630 includes the fourth to eighth PMOS transistors PM4 to PM8 and the fourth to eighth NMOS transistors NM4 to NM8. The fourth PMOS transistor PM4 is connected between the power supply terminal and the first output node OD1. The gate of the fourth PMOS transistor PM4 is connected to the second node ND2. The size of the fourth PMOS transistor PM4 may be different from that of the second PMOS transistor PM2. For example, assuming that the size of the second PMOS transistor PM2 is 1, the fourth PMOS transistor PM4 may have a size six times larger than that of the second PMOS transistor PM4. In FIG. 7, it is indicated by x6. Hereinafter, the fourth PMOS transistor has a size of x6.

제 4 NMOS 트랜지스터(NM4)는 제 1 출력 노드(OD1)와 접지 단자 사이에 연결된다. 제 4 NMOS 트랜지스터(NM4)의 게이트는 제 4 노드(ND4)에 연결된다. 제 3 NMOS 트랜지스터(NM3)의 크기가 1이라고 가정하면, 제 4 NMOS 트랜지스터(NM4)는 x14의 크기를 갖는다. 제 4 PMOS 트랜지스터(PM4)와 제 4 NMOS 트랜지스터(NM4)는 제 4 전류 통로(I4)를 형성한다. 제 1 출력 노드(OD1)는 제 1 코스 코드(C_LPT[1])를 출력한다. The fourth NMOS transistor NM4 is connected between the first output node OD1 and the ground terminal. The gate of the fourth NMOS transistor NM4 is connected to the fourth node ND4. Assuming that the size of the third NMOS transistor NM3 is 1, the fourth NMOS transistor NM4 has a size of x14. The fourth PMOS transistor PM4 and the fourth NMOS transistor NM4 form a fourth current path I4. The first output node OD1 outputs the first course code C_LPT [1].

이와 마찬가지로, 제 5 PMOS 트랜지스터(PM5)와 제 5 NMOS 트랜지스터(NM5)는 제 5 전류 통로(I5)를 형성한다. 제 5 PMOS 트랜지스터(PM5)는 x8의 크기를 갖고, 제 5 NMOS 트랜지스터(NM5)는 x12의 크기를 갖는다. 제 2 출력 노드(OD2)는 제 2 코스 코드(C_LPT[2])를 출력한다. Likewise, the fifth PMOS transistor PM5 and the fifth NMOS transistor NM5 form a fifth current path I5. The fifth PMOS transistor PM5 has a size of x8, and the fifth NMOS transistor NM5 has a size of x12. And the second output node OD2 outputs the second course code C_LPT [2].

제 6 PMOS 트랜지스터(PM6)와 제 6 NMOS 트랜지스터(NM6)는 제 6 전류 통로(I6)를 형성한다. 제 6 PMOS 트랜지스터(PM6)는 x10의 크기를 갖고, 제 6 NMOS 트랜지스터(NM6)는 x10의 크기를 갖는다. 제 3 출력 노드(OD3)는 제 3 코스 코드(C_LPT[3])를 출력한다. 제 7 PMOS 트랜지스터(PM7)와 제 7 NMOS 트랜지스터(NM7)는 제 7 전류 통로(I7)를 형성한다. 제 7 PMOS 트랜지스터(PM7)는 x12의 크기를 갖고, 제 7 NMOS 트랜지스터(NM7)는 x8의 크기를 갖는다. 제 4 출력 노드(OD4)는 제 4 코스 코드(C_LPT[4])를 출력한다. 제 8 PMOS 트랜지스터(PM8)와 제 8 NMOS 트랜지스터(NM8)는 제 8 전류 통로(I8)를 형성한다. 제 8 PMOS 트랜지스터(PM8)는 x14의 크기를 갖고, 제 8 NMOS 트랜지스터(NM8)는 x6의 크기를 갖는다. 제 5 출력 노드(OD5)는 제 5 코스 코드(C_LPT[5])를 출력한다.The sixth PMOS transistor PM6 and the sixth NMOS transistor NM6 form a sixth current path I6. The sixth PMOS transistor PM6 has a size of x10, and the sixth NMOS transistor NM6 has a size of x10. And the third output node OD3 outputs the third course code C_LPT [3]. The seventh PMOS transistor PM7 and the seventh NMOS transistor NM7 form a seventh current path I7. The seventh PMOS transistor PM7 has a size of x12, and the seventh NMOS transistor NM7 has a size of x8. And the fourth output node OD4 outputs the fourth course code C_LPT [4]. The eighth PMOS transistor PM8 and the eighth NMOS transistor NM8 form an eighth current path I8. The eighth PMOS transistor PM8 has a magnitude of x14, and the eighth NMOS transistor NM8 has a magnitude of x6. The fifth output node OD5 outputs the fifth course code C_LPT [5].

제 4 전류 통로(I4)는 가장 작은 크기(x6)의 제 4 PMOS 트랜지스터(PM4)와 가장 큰 크기(x14)의 제 4 NMOS 트랜지스터(NM4)로 구성된다. 제 4 전류 통로(I4)는 로우 레벨로 가장 빠르게 바뀔 수 있다. 예를 들어, 입력 전압(Vin)이 낮아지면, 제 2 및 제 4 노드(ND2, ND4)의 전압 레벨은 높아진다. 제 4 노드(ND4)가 높아지면, 제 1 출력 노드(OD1)는 제 4 NMOS 트랜지스터(NM4)를 통해 가장 빠르게 방전된다. 이때 제 1 코스 코드(C_LPT[1])는 가장 먼저 0을 출력한다. The fourth current path I4 is constituted by the fourth PMOS transistor PM4 having the smallest magnitude x6 and the fourth NMOS transistor NM4 having the largest magnitude x14. The fourth current path I4 can be switched to the low level most quickly. For example, when the input voltage Vin is lowered, the voltage levels of the second and fourth nodes ND2 and ND4 become high. When the fourth node ND4 rises, the first output node OD1 is discharged most rapidly through the fourth NMOS transistor NM4. At this time, the first course code C_LPT [1] outputs 0 first.

반대로, 제 8 전류 통로(I8)는 가장 큰 크기(x14)의 제 8 PMOS 트랜지스터(PM8)와 가장 작은 크기(x6)의 제 8 NMOS 트랜지스터(NM8)로 구성된다. 제 8 전류 통로(I8)는 하이 레벨로 가장 빠르게 바뀔 수 있다. 예를 들어, 입력 전압(Vin)이 높아지면, 제 2 및 제 4 노드(ND2, ND4)의 전압 레벨은 낮아진다. 제 2 노드(ND2)가 낮아지면, 제 5 출력 노드(OD5)는 제 8 PMOS 트랜지스터(PM8)를 통해 가장 빠르게 충전된다. 이때 제 5 코스 코드(C_LPT[5])는 가장 먼저 1을 출력한다.Conversely, the eighth current path I8 is composed of the eighth PMOS transistor PM8 of the largest magnitude x14 and the eighth NMOS transistor NM8 of the smallest magnitude x6. The eighth current path I8 can be switched to the highest level as fast as possible. For example, when the input voltage Vin becomes high, the voltage levels of the second and fourth nodes ND2 and ND4 become low. When the second node ND2 is lowered, the fifth output node OD5 is charged fastest through the eighth PMOS transistor PM8. At this time, the fifth course code C_LPT [5] outputs 1 first.

도 8은 도 7에 도시된 CMF ADC를 예시적으로 설명하기 위한 도표이다. 도 7 및 도 8을 참조하면, CMF ADC(312)는 입력 전압(Vin)과 코스 기준 전압(Vrefc)의 차이를 이용하여 오차 전압(Verr)을 구한다. 오차 전압(Verr)은 다음과 같은 수학식을 통해 구할 수 있다.FIG. 8 is a diagram for illustrating the CMF ADC shown in FIG. 7 by way of example. Referring to FIGS. 7 and 8, the CMF ADC 312 obtains the error voltage Verr using the difference between the input voltage Vin and the course reference voltage Vrefc. The error voltage (Verr) can be obtained by the following equation.

Figure pat00001
Figure pat00001

입력 전압(Vin)이 코스 기준 전압(Vrefc)보다 매우 높으면(예를 들면, 72mV 이상), 도 7의 제 2 및 제 4 노드(ND2, ND4)는 그것에 비례하여 매우 낮은 전압 레벨을 갖는다. 이때, 제 4 내지 제 8 PMOS 트랜지스터(PM4~PM8)은 모두 턴 온 되고, 제 4 내지 제 8 NMOS 트랜지스터(NM4~NM8)은 모두 턴 오프 될 수 있다. 이러한 동작 원리로 인해, 오차 전압(Verr)이 72mV 이상이면 C_LPT[5:1]은 11111이 된다. When the input voltage Vin is much higher than the course reference voltage Vrefc (for example, 72 mV or more), the second and fourth nodes ND2 and ND4 of FIG. 7 have a very low voltage level in proportion thereto. At this time, the fourth to eighth PMOS transistors PM4 to PM8 are all turned on, and the fourth to eighth NMOS transistors NM4 to NM8 are all turned off. Due to this operating principle, C_LPT [5: 1] becomes 11111 when the error voltage Verr is 72 mV or more.

입력 전압(Vin)이 낮아지면, 제 2 및 제 4 노드(ND2, ND4)의 전압 레벨은 높아진다. 제 4 노드(ND4)가 높아지면, 제 1 출력 노드(OD1)가 제 4 NMOS 트랜지스터(NM4)를 통해 가장 빠르게 방전된다. 즉, Verr이 36mV~72mV이면 C_LPT[5:1]은 11110이 된다. 이와 같은 방식으로, Verr이 0~36mV이상이면 C_LPT[5:1]은 11100이 된다. Verr이 -36mV~0이면 C_LPT[5:1]은 11000이 된다. Verr이 -72mV~-36mV이면 C_LPT[5:1]은 10000이 된다. When the input voltage Vin becomes low, the voltage levels of the second and fourth nodes ND2 and ND4 become high. When the fourth node ND4 rises, the first output node OD1 is discharged most rapidly through the fourth NMOS transistor NM4. That is, when Verr is 36 mV to 72 mV, C_LPT [5: 1] becomes 11110. In this way, when Verr is 0 to 36 mV or more, C_LPT [5: 1] becomes 11100. When Verr is from -36mV to 0, C_LPT [5: 1] becomes 11000. When Verr is from -72 mV to -36 mV, C_LPT [5: 1] becomes 10000.

입력 전압(Vin)이 코스 기준 전압(Vrefc)보다 72mV 이상으로 낮아지면, 도 7의 제 2 및 제 4 노드(ND2, ND4)는 가장 높은 전압 레벨을 갖는다. 이때, 제 4 내지 제 8 PMOS 트랜지스터(PM4~PM8)은 모두 턴 오프 되고, 제 4 내지 제 8 NMOS 트랜지스터(NM4~NM8)은 모두 턴 온 될 수 있다. 즉, Verr이 -72mV보다 작으면 C_LPT[5:1]은 00000이 된다.When the input voltage Vin is lower than the course reference voltage Vrefc by 72 mV or more, the second and fourth nodes ND2 and ND4 in Fig. 7 have the highest voltage level. At this time, the fourth to eighth PMOS transistors PM4 to PM8 are all turned off, and the fourth to eighth NMOS transistors NM4 to NM8 are all turned on. That is, when Verr is smaller than -72 mV, C_LPT [5: 1] becomes 00000.

도 7에 도시된 CMF ADC(312)는 NMOS 트랜지스터와 PMOS 트랜지스터의 크기 차이를 이용하여 코스 코드(C_LPT)를 생성할 수 있다. 도 7에 도시된 CMF ADC(312)에 의하면, 간단한 전류 미러 회로를 이용하기 때문에 전력 소모를 줄일 수 있다. 또한, CMF ADC(312)는 PMOS 트랜지스터와 NMOS 트랜지스터로 구현되기 때문에, 면적도 줄일 수 있다.The CMF ADC 312 shown in FIG. 7 can generate a course code (C_LPT) by using a size difference between the NMOS transistor and the PMOS transistor. According to the CMF ADC 312 shown in Fig. 7, power consumption can be reduced because a simple current mirror circuit is used. Since the CMF ADC 312 is implemented by a PMOS transistor and an NMOS transistor, the area can be reduced.

도 9는 도 4에 도시된 쉬프트 레지스터의 동작 방법을 예시적으로 설명하기 위한 도표이다. 도 9를 참조하면, 쉬프트 레지스터(322)는 20-비트의 파인 코드(C_SPT[20:1])를 출력한다. 쉬프트 레지스터(322)는 클록 신호(CLK)에 동기하여 한 비트씩 왼쪽으로 이동하거나(shift left), 오른쪽으로 이동한다(shift right). 쉬프트 레지스터(322)는 선택 신호(SEL)에 따라 왼쪽으로 이동하거나 오른쪽으로 이동할 수 있다. FIG. 9 is a diagram for explaining an operation method of the shift register shown in FIG. 4 as an example. Referring to Fig. 9, the shift register 322 outputs a 20-bit fine code (C_SPT [20: 1]). The shift register 322 shifts left or shift right by one bit in synchronization with the clock signal CLK. The shift register 322 can move left or right depending on the selection signal SEL.

예를 들어, 선택 신호가 0인 경우(SEL=0)에, 쉬프트 레지스터(322)는 왼쪽으로 한 비트씩 이동시킨다. 그리고 C_SPT[20]은 1로 된다. 예를 들어, t에서 쉬프트 레지스터(322)가 파인 코드(C_SPT[20:1]=000...001)를 출력한다고 가정하면, t+1에서 쉬프트 레지스터(322)는 파인 코드(C_SPT[20:1]=000...011)를 출력할 수 있다. 선택 신호가 1인 경우(SEL=1)에, 쉬프트 레지스터(322)는 오른쪽으로 한 비트씩 이동시킨다. 그리고 C_SPT[1]은 0으로 된다. 예를 들어, t에서 쉬프트 레지스터(322)가 파인 코드(C_SPT[20:1]=011..111)를 출력한다고 가정하면, t+1에서 쉬프트 레지스터(322)는 파인 코드(C_SPT[20:1]=001...111)를 출력할 수 있다. 쉬프트 레지스터(322)는 파인 코드(C_SPT[20:1])를 파인 전류 구동기(323)로 제공한다.For example, when the selection signal is 0 (SEL = 0), the shift register 322 moves one bit to the left. And C_SPT [20] becomes one. For example, assuming that the shift register 322 outputs a fine code (C_SPT [20: 1] = 000 ... 001) at t, the shift register 322 at t + : 1] = 000 ... 011). When the selection signal is 1 (SEL = 1), the shift register 322 moves one bit to the right. And C_SPT [1] becomes zero. For example, assuming that the shift register 322 outputs a fine code (C_SPT [20: 1] = 011..111) at t, the shift register 322 shifts the fine code C_SPT [20: 1] = 001 ... 111). The shift register 322 provides a fine code (C_SPT [20: 1]) to the fine current driver 323.

도 10은 도 4에 도시된 디지털 컨트롤러를 예시적으로 보여주는 블록도이다. 도 10에 도시된 디지털 컨트롤러(330)는 코스 코드(C_LPT[5:1])를 입력받고, 제어 신호(EN, RST, INIT[3:1])를 생성한다. 도 10을 참조하면, 디지털 컨트롤러(330)는 제 1 내지 제 5 컨트롤 유닛(331~335)과 논리 게이트(336)를 포함한다. FIG. 10 is a block diagram illustrating an exemplary digital controller shown in FIG. The digital controller 330 shown in Fig. 10 receives the course code C_LPT [5: 1] and generates the control signals EN, RST, and INIT [3: 1]. Referring to FIG. 10, the digital controller 330 includes first to fifth control units 331 to 335 and a logic gate 336.

제 1 컨트롤 유닛(331)은 제 1 코스 코드(C_LPT[1])를 입력받고, 제 1 제어 신호(EN[1], RST[1], INIT1[3:1])를 생성한다. 이와 마찬가지로, 제 5 컨트롤 유닛(335)은 제 5 코스 코드(C_LPT[5])를 입력받고, 제 5 제어 신호(EN[5], RST[5], INIT5[3:1])를 생성한다. 논리 게이트(336)는 제 1 내지 제 5 제어 신호를 입력받고, 논리 연산을 수행한다. The first control unit 331 receives the first course code C_LPT [1] and generates the first control signals EN [1], RST [1], and INIT1 [3: 1]. Likewise, the fifth control unit 335 receives the fifth course code C_LPT [5] and generates the fifth control signals EN [5], RST [5], and INIT5 [3: 1] . The logic gate 336 receives the first to fifth control signals and performs a logical operation.

예를 들면, 논리 게이트(336)는 제 1 내지 제 5 인에이블 신호(EN[5:1])를 입력받고, OR 연산을 수행하고, 인에이블 신호(EN)를 출력할 수 있다. 논리 게이트(336)는 제 1 내지 제 5 리셋 신호(RST[5:1])를 입력받고, OR 연산 결과로서 리셋 신호(RST)를 출력할 수 있다. 또한, 논리 게이트(336)는 제 1 내지 제 5 초기 신호(INIT1[3:1]~INIT5[3:1])를 입력받고, OR 연산 결과로서 초기 신호(INIT[3:1])를 출력할 수 있다. For example, the logic gate 336 receives the first to fifth enable signals EN [5: 1], performs an OR operation, and outputs an enable signal EN. The logic gate 336 receives the first to fifth reset signals RST [5: 1] and can output the reset signal RST as a result of the OR operation. The logic gate 336 receives the first to fifth initial signals INIT1 [3: 1] to INIT5 [3: 1] and outputs the initial signal INIT [3: 1] can do.

디지털 컨트롤러(330)는 코스 루프 동작에서 파인 루프 동작으로 변경할 때, 초기 신호(INIT[3:1])를 이용하여 파인 루프 회로(320)의 초기 파인 전류(initial fine current)를 정할 수 있다. 디지털 컨트롤러(330)는 파인 루프 회로(320)의 초기 파인 전류를 정함으로, 루프 변화로 인한 전환 효과(transition effect)를 줄일 수 있다.The digital controller 330 can determine the initial fine current of the fine loop circuit 320 using the initial signal INIT [3: 1] when changing from the course loop operation to the fine loop operation. The digital controller 330 determines the initial fine current of the fine loop circuit 320, thereby reducing the transition effect due to the loop change.

도 11은 도 10에 도시된 제 5 컨트롤 유닛을 예시적으로 보여주는 블록도이다. 도 11을 참조하면, 제 5 컨트롤 유닛(335)은 제 5 코스 코드(C_LPT[5])를 입력받고 제 5 제어 신호(EN[5], RST[5], INIT5[3:1])를 생성한다. 제 5 컨트롤 유닛(335)은 인에이블 파인 루프 컨트롤러(EFLC; enable fine loop controller, 341)와 초기 파인 전류 선택기(IFCS; initial fine loop selector, 344)를 포함한다.11 is a block diagram exemplarily showing the fifth control unit shown in FIG. 11, the fifth control unit 335 receives the fifth course code C_LPT [5] and outputs the fifth control signals EN [5], RST [5], INIT5 [3: 1] . The fifth control unit 335 includes an enable fine loop controller (EFLC) 341 and an initial fine loop selector 344.

인에이블 파인 루프 컨트롤러(341)는 4-비트 카운터(342)와 상승 엣지 검출기(rising edge detector, 343)를 포함한다. 4-비트 카운터(342)는 제 1 출력값(Q[1])을 상승 엣지 검출기(343)로 제공하고, 제 3 출력값(Q[3])를 초기 파인 전류 선택기(344)로 제공한다. 4-비트 카운터(342)의 제 4 출력값(Q[4])은 제 5 인에이블 신호(EN[5])로 사용된다. 상승 엣지 검출기(343)는 제 1 출력값(Q[1])의 상승 엣지를 검출하고, 검출 결과로서 제 5 리셋 신호(RST[5])를 출력한다. 인에이블 파인 루프 컨트롤러(341)는 제 5 코스 코드(C_LPT[5])를 입력받고, 제 5 인에이블 신호(EN[5])와 제 5 리셋 신호(RST[5])를 출력한다.The enable fine loop controller 341 includes a 4-bit counter 342 and a rising edge detector 343. The 4-bit counter 342 provides the first output value Q [1] to the rising edge detector 343 and provides the third output value Q [3] to the initial fine current selector 344. The fourth output value Q [4] of the 4-bit counter 342 is used as the fifth enable signal EN [5]. The rising edge detector 343 detects the rising edge of the first output value Q [1] and outputs the fifth reset signal RST [5] as a detection result. The enable fine loop controller 341 receives the fifth course code C_LPT [5] and outputs the fifth enable signal EN [5] and the fifth reset signal RST [5].

도 12는 도 11에 도시된 인에이블 파인 루프 컨트롤러의 동작을 설명하기 위한 타이밍도이다. 도 11 및 도 12를 참조하면, 4-비트 카운터(342)는 제 5 코스 코드(C_LPT[5])에 동기하여 4-비트 출력값(Q[4:1])을 생성한다. 12 is a timing chart for explaining the operation of the loop controller which is the enable waveform shown in Fig. 11 and 12, the 4-bit counter 342 generates the 4-bit output value Q [4: 1] in synchronization with the fifth course code C_LPT [5].

4-비트 카운터(342)는 제 5 코스 코드(C_LPT[5])의 제 1 주기 동안에는 0000을 생성하고, 제 2 주기 동안에는 0001을 생성하고, 제 3 주기 동안에는 0010을 생성한다. 이와 같은 방식으로, 4-비트 카운터(342)는 제 7 주기 동안에는 0110을 생성하고, 제 8 주기 동안에는 0111을 생성한다. 제 5 인에이블 신호(EN[5])는 4-비트 카운터(342)의 제 4 출력값(Q[4])을 통해 얻을 수 있다. 제 5 리셋 신호(RST[5])는 4-비트 카운터(342)의 제 1 출력값(Q[1])의 상승 엣지를 검출함으로 얻을 수 있다. Bit counter 342 generates 0000 during the first period of the fifth course code C_LPT [5], 0001 during the second period, and 0010 during the third period. In this manner, the 4-bit counter 342 generates 0110 during the seventh period and 0111 during the eighth period. The fifth enable signal EN [5] may be obtained through the fourth output value Q [4] of the 4-bit counter 342. [ The fifth reset signal RST [5] can be obtained by detecting the rising edge of the first output value Q [1] of the 4-bit counter 342. [

다시 도 11을 참조하면, 초기 파인 전류 선택기(344)는 3-비트 카운터(345)와 로직 회로(346)를 포함한다. 3-비트 카운터(345)는 인에이블 단자(En)를 통해 4-비트 카운터(342)의 제 3 출력값(Q[3])을 입력 받는다. 3-비트 카운터(345)는 제 3 출력값(Q[3])에 응답하여 동작하고, 클록 신호(CLK)에 동기하여 3-비트 출력값(C[3:1])을 생성한다. 3-비트 카운터(345)는 3-비트 출력값(C[3:1])을 로직 회로(346)로 제공한다. 로직 회로(346)는 3-비트 출력값(C[3:1])을 입력받고, 제 5 초기 신호(INIT5[3:1])를 출력한다.Referring again to FIG. 11, the initial fine current selector 344 includes a 3-bit counter 345 and a logic circuit 346. Bit counter 345 receives the third output value Q [3] of the 4-bit counter 342 via the enable terminal En. Bit counter 345 operates in response to the third output value Q [3] and generates a 3-bit output value C [3: 1] in synchronization with the clock signal CLK. The 3-bit counter 345 provides the 3-bit output value C [3: 1] to the logic circuit 346. The logic circuit 346 receives the 3-bit output value C [3: 1] and outputs the fifth initial signal INIT5 [3: 1].

도 13은 도 11에 도시된 초기 파인 전류 선택기의 동작을 예시적으로 설명하기 위한 타이밍도이다. 도 13은 도 12의 제 5 주기(제 4 및 제 5 상승 엣지 구간)를 확대하여 보여주는 타이밍도이다.FIG. 13 is a timing diagram for illustratively illustrating the operation of the initial fine current selector shown in FIG. 11; FIG. 13 is a timing chart showing an enlarged view of the fifth period (the fourth and fifth rising edge sections) in Fig.

도 11 및 도 13을 참조하면, 3-비트 카운터(345)는 클록 신호(CLK)에 동기하여 3-비트 출력값(C[3:1])을 생성한다. 3-비트 카운터(345)는 클록 신호(CLK)의 제 1 주기 동안에는 000을 생성하고 있다. 3-비트 카운터(345)는 클록 신호(CLK)의 제 1 상승 엣지에 동기하여 001을 생성할 수 있다. 3-비트 카운터(345)는 제 2 상승 엣지에 동기하여, 제 3 주기 동안에는 010을 생성할 수 있다. 이와 마찬가지로, 3-비트 카운터(345)는 제 6 주기 동안에는 101을 생성하고, 제 7 주기 동안에는 110을 생성할 수 있다. 3-비트 카운터(345)는 제 7 상승 엣지에 동기하여 111을 생성할 수 있다.11 and 13, the 3-bit counter 345 generates a 3-bit output value C [3: 1] in synchronization with the clock signal CLK. Bit counter 345 is generating 000 during the first period of the clock signal CLK. Bit counter 345 can generate 001 in synchronization with the first rising edge of the clock signal CLK. Bit counter 345 may generate 010 in synchronization with the second rising edge and during the third period. Likewise, the 3-bit counter 345 may generate 101 during the sixth period and 110 during the seventh period. Bit counter 345 can generate 111 in synchronization with the seventh rising edge.

로직 회로(346)는 3-비트 카운터(345)의 출력값(C[3:1])을 입력받고, 클록 신호(CLK)의 제 1 내지 제 7 주기 동안에 000을 생성할 수 있다. 로직 회로(346)는 클록 신호(CLK)의 제 7 상승 엣지에 동기하여 111을 생성할 수 있다. 로직 회로(346)는 초기 신호(INIT[3:1])를 파인 루프 회로(320)의 쉬프트 레지스터(322)로 제공할 수 있다. The logic circuit 346 receives the output value C [3: 1] of the 3-bit counter 345 and can generate 000 during the first to seventh periods of the clock signal CLK. The logic circuit 346 may generate 111 in synchronization with the seventh rising edge of the clock signal CLK. The logic circuit 346 may provide the initial signal INIT [3: 1] to the shift register 322 of the fine loop circuit 320.

초기 파인 전류 선택기(344)는 3-비트 카운터(345)를 이용하여, 제 5 코스 코드(C_LPT[5])의 로우 레벨 구간을 계산할 수 있다. 초기 파인 전류 선택기(344)는 제 5 코스 코드(C_LPT[5])의 로우 레벨 구간을 계산하고, 초기 신호(INIT[3:1])를 쉬프트 레지스터(322)로 제공한다. 초기 파인 전류 선택기(344)는 초기 신호(INIT[3:1])를 초기 파인 전류(initial fine current)를 정할 수 있다.The initial fine current selector 344 may calculate the low level interval of the fifth course code C_LPT [5] using the 3-bit counter 345. [ The initial fine current selector 344 calculates the low level interval of the fifth course code C_LPT [5] and provides the initial signal INIT [3: 1] to the shift register 322. The initial fine current selector 344 may set the initial fine current to the initial signal INIT [3: 1].

디지털 컨트롤러(330)는 간단한 카운터를 사용하기 때문에 설계를 간편하게 할 수 있다. 디지털 컨트롤러(330)는 루프 동작 변경 시에 초기 파인 전류를 설정할 수 있기 때문에 섬세하게 파인 전류를 조절할 수 있다. 또한, 디지털 컨트롤러(330)는 루프 변경으로 인한 변환 효과(transition effect)를 줄일 수 있다.The digital controller 330 uses a simple counter so that the design can be simplified. The digital controller 330 can adjust the fine fine current because it can set the initial fine current at the time of the loop operation change. In addition, the digital controller 330 can reduce the transition effect due to the loop change.

도 14는 도 2에 도시된 LDO 레귤레이터의 동작 방법을 설명하기 위한 블록도와 타이밍도이다. 도 14에 도시된 LDO 레귤레이터(121d)는 전압 분배 회로(301), 로드 구동 회로(302), 그리고 로드 커패시터(303), 코스 루프 회로(310), 파인 루프 회로(320), 그리고 디지털 컨트롤러(330)를 포함한다. FIG. 14 is a block diagram and timing diagram for explaining an operation method of the LDO regulator shown in FIG. 2. FIG. The LDO regulator 121d shown in Fig. 14 includes a voltage divider circuit 301, a load driving circuit 302, a load capacitor 303, a coarse loop circuit 310, a fine loop circuit 320, 330).

코스 루프 회로(310)는 도 7에 도시된 CMF ADC(312)를 포함한다. 코스 루프 회로(310)의 코스 전류 구동기(313)는 제 1 내지 제 5 PMOS 트랜지스터(M_LP1~M_LP5)를 포함한다. 각각의 PMOS 트랜지스터는 40mA의 전류를 공급할 수 있다. 파인 루프 회로(320)의 파인 전류 구동기(323)는 제 1 내지 제 20 PMOS 트랜지스터(M_SP1~M_SP20)를 포함한다. 각각의 PMOS 트랜지스터는 2mA의 전류를 공급할 수 있다. The course loop circuit 310 includes the CMF ADC 312 shown in FIG. The course current driver 313 of the course loop circuit 310 includes first through fifth PMOS transistors M_LP1 through M_LP5. Each PMOS transistor can supply 40mA of current. The fine current driver 323 of the fine loop circuit 320 includes first to twentieth PMOS transistors M_SP1 to M_SP20. Each PMOS transistor can supply 2mA of current.

LDO 레귤레이터(121d)는 전원 전압(VDD)을 입력받고, 출력 전압(Vout)을 조절할 수 있다. LDO 레귤레이터(121)는 로드 전류(IL; load current)의 변화에 관계없이 출력 전압(Vout)을 안정적으로 제공할 수 있다. 즉, 로드 전류(IL)가 20mA에서 200mA로 변하더라도, 출력 전압(Vout)은 0.9V를 안정적으로 유지할 수 있다.The LDO regulator 121d receives the power supply voltage VDD and can adjust the output voltage Vout. The LDO regulator 121 can stably provide the output voltage Vout irrespective of changes in the load current IL. That is, even if the load current IL changes from 20 mA to 200 mA, the output voltage Vout can be stably maintained at 0.9 V. [

T1 구간에서, 로드 전류(IL)는 20mA이고, LDO 레귤레이터(121d)는 0.9V의 출력 전압(Vout)을 유지하고 있다. 코스 루프 회로(310)의 제 1 내지 제 5 코스 코드(C_LPT[5:1])는 모두 하이 레벨 상태이고, 코스 전류 구동기(313)의 제 1 내지 제 5 PMOS 트랜지스터(M_LP1~M_LP5)는 모두 턴 오프 상태에 있다. 디지털 컨트롤러(330)로부터 제공되는 초기 신호(INIT[3:1])는 이전 값(previous value)을 갖고, 인에이블 신호(EN)는 하이 레벨을 상태에 있다. 파인 루프 회로(320)는 인에이블 신호(EN)에 응답하여 동작하고, 파인 전류 구동기(323)의 제 1 내지 제 20 PMOS 트랜지스터(M_SP1~M_SP20) 중에서 9~10개의 PMOS 트랜지스터가 턴 온 상태에 있다. 파인 루프 회로(320)는 20mA의 파인 전류(I_SPT)를 공급하고 있다. In the T1 period, the load current IL is 20 mA and the LDO regulator 121d maintains the output voltage Vout of 0.9V. All of the first to fifth course codes C_LPT [5: 1] of the course loop circuit 310 are in the high level state and the first to fifth PMOS transistors M_LP1 to M_LP5 of the course current driver 313 are all Off state. The initial signal INIT [3: 1] provided from the digital controller 330 has a previous value, and the enable signal EN is at a high level. The fine loop circuit 320 operates in response to the enable signal EN and nine to ten PMOS transistors among the first to twentieth PMOS transistors M_SP1 to M_SP20 of the fine current driver 323 are turned on have. The fine loop circuit 320 supplies a fine current I_SPT of 20 mA.

T2 구간에서, 로드 전류(IL)가 200mA로 높아진다. LDO 레귤레이터(121d)의 출력 전압(Vout)은 0.9V보다 낮아진다. 파인 루프 회로(320)는 턴 오프하고, 코스 루프 회로(310)는 턴 온 한다. 출력 전압(Vout)이 낮아지면, 코스 루프 회로(310) 및 파인 루프 회로(320)로 제공되는 입력 전압(Vin)이 낮아진다. 입력 전압(Vin)이 낮아지면, 도 7 및 도 8에서 설명한 바와 같이 CMF ADC(312)의 제 1 내지 제 5 코스 코드(C_LPT[5:1])가 변경된다. In the T2 period, the load current IL becomes as high as 200 mA. The output voltage Vout of the LDO regulator 121d becomes lower than 0.9V. The fine loop circuit 320 is turned off, and the coslop circuit 310 is turned on. When the output voltage Vout is lowered, the input voltage Vin provided to the cos Loop circuit 310 and the fine loop circuit 320 is lowered. When the input voltage Vin is lowered, the first to fifth course codes C_LPT [5: 1] of the CMF ADC 312 are changed as described in FIGS. 7 and 8.

먼저, 제 1 코스 코드(C_LPT[1])가 0으로 된다. 출력 전압(Vout)이 계속 낮아짐에 따라, 제 2 내지 제 4 코스 코드(C_LPT[4:2])도 차례대로 0으로 된다. 제 1 코스 코드(C_LPT[1])가 0으로 되면, 제 1 PMOS 트랜지스터(M_LP1)는 턴 온 되고 40mA의 코스 전류(I_LPT)가 공급된다. 다음에 제 2 코스 코드(C_LPT[2])가 0으로 되면, 제 2 PMOS 트랜지스터(M_LP2)는 턴 온 된다. 이때 40mA의 코스 전류(I_LPT)가 추가로 공급된다. 이와 같은 방식으로, 제 3 및 제 4 코스 코드(C_LPT[3], C_LPT[4])가 0으로 되면, 제 3 및 제 4 PMOS 트랜지스터(M_LP3, M_LP4)가 차례로 턴 온 된다. 코스 전류(I_LPT)는 계속해서 추가적으로 증가한다. First, the first course code C_LPT [1] becomes zero. As the output voltage Vout continues to decrease, the second to fourth course codes C_LPT [4: 2] also become 0 in order. When the first course code C_LPT [1] becomes 0, the first PMOS transistor M_LP1 is turned on and a course current I_LPT of 40 mA is supplied. Next, when the second course code C_LPT [2] becomes 0, the second PMOS transistor M_LP2 is turned on. At this time, a course current (I_LPT) of 40 mA is further supplied. In this way, when the third and fourth course codes C_LPT [3] and C_LPT [4] are 0, the third and fourth PMOS transistors M_LP3 and M_LP4 are sequentially turned on. The course current I_LPT continues to increase additionally.

한편, 제 1 코스 코드(C_LPT[1])에 응답하여, 디지털 컨트롤러(330)로부터 제공되는 초기 신호(INIT[3:1])는 000으로 되고 인에이블 신호(EN)는 로우 레벨로 천이한다. 인에이블 신호(EN)가 로우 레벨로 천이되면, 파인 루프 회로(320)는 턴 오프 된다.On the other hand, in response to the first course code C_LPT [1], the initial signal INIT [3: 1] provided from the digital controller 330 is 000 and the enable signal EN transits to the low level . When the enable signal EN transitions to the low level, the fine loop circuit 320 is turned off.

T3 구간에서, 코스 루프 회로(310)의 제 1 내지 제 4 코스 코드(C_LPT[4:1])는 로우 레벨 상태를 유지하고, 제 5 코스 코드(C_LPT[5])는 토글(toggle)한다. 제 5 코스 코드(C_LPT[5])가 토글 함에 따라, 코스 전류(I_LPT)는 160mA와 200mA 사이에서 변한다. 코스 전류(I_LPT)가 변함에 따라, 출력 전압(Vout)은 큰 전압 범위(large voltage range)로 변한다. 한편, T3 구간에서, 디지털 컨트롤러(330)는 파인 루프 회로(320)를 동작하기 위한 제어 신호를 생성한다. The first to fourth course codes C_LPT [4: 1] of the course loop circuit 310 maintain the low level state and the fifth course code C_LPT [5] is toggled . As the fifth course code C_LPT [5] is toggled, the course current I_LPT varies between 160 mA and 200 mA. As the course current I_LPT changes, the output voltage Vout changes to a large voltage range. On the other hand, in the period T3, the digital controller 330 generates a control signal for operating the fine loop circuit 320.

예를 들면, 디지털 컨트롤러(330)는 파인 루프 회로(320)의 쉬프트 레지스터(322)로 제공될 리셋 신호(RST)를 생성할 수 있다. 리셋 신호(RST)는 쉬프트 레지스터(322)의 파인 코드(C_SPT[20:1])를 모두 1로 설정하는 신호이다. 쉬프트 레지스터(322)에 리셋 신호(RST)가 입력되면, 파인 전류(I_SPT)는 0mA로 될 것이다. For example, the digital controller 330 may generate a reset signal RST to be provided to the shift register 322 of the fine loop circuit 320. The reset signal RST is a signal for setting all the fine codes C_SPT [20: 1] of the shift register 322 to 1. When the reset signal RST is input to the shift register 322, the fine current I_SPT will be 0 mA.

T4 구간에서, 제 5 코스 코드(C_LPT[5])는 계속 토글(toggle)하고, 디지털 컨트롤러(330)는 파인 루프 회로(320)를 동작하기 위한 제어 신호를 생성한다. 예를 들면, 디지털 컨트롤러(330)는 파인 루프 회로(320)의 쉬프트 레지스터(322)로 제공될 초기 신호(INIT[3:1])를 생성할 수 있다. 초기 신호(INIT[3:1]는 쉬프트 레지스터(322)의 파인 코드(C_SPT[20:1]) 중에서 일부를 0으로 설정하는 신호이다. 예를 들면, 제 1 내지 제 10 파인 코드(C_SPT[10:1])를 0으로 설정하는 초기 신호(INIT[3:1]=111)가 입력되면, 파인 전류(I_SPT)는 20mA로 될 것이다.The fifth course code C_LPT [5] continues to be toggled, and the digital controller 330 generates a control signal for operating the fine loop circuit 320 in the T4 section. For example, the digital controller 330 may generate an initial signal INIT [3: 1] to be provided to the shift register 322 of the fine loop circuit 320. The initial signal INIT [3: 1] is a signal for setting a part of the fine codes C_SPT [20: 1] of the shift register 322 to 0. For example, the first to tenth fine codes C_SPT [ (INIT [3: 1] = 111) is set to 0, the fine current I_SPT will be 20 mA.

T5 구간에서, 디지털 컨트롤러(330)는 제 5 코스 코드(C_LPT[5])의 출력값을 이용하여, 인에이블 신호(EN)를 생성한다. 인에이블 신호(EN)가 하이 레벨로 되면, 코스 루프 회로(310)는 동일 상태를 유지하고, 파인 루프 회로(320)가 동작하기 시작한다. 예를 들면, 코스 루프 회로(310)는 제 1 내지 제 4 코스 코드(C_LPT[4:1])가 0을 유지함으로 160mA의 코스 전류(I_LPT)를 공급할 수 있다. 파인 루프 회로(320)는 인에이블 신호(EN)에 응답하여 동작한다. 파인 루프 회로(320)는 제 1 내지 제 20 파인 코드(C_SPT[20:1])를 모두 0으로 설정함으로 40mA의 파인 전류(I_SPT)를 공급할 수 있다.In the T5 section, the digital controller 330 generates the enable signal EN using the output value of the fifth course code C_LPT [5]. When the enable signal EN becomes a high level, the coarse loop circuit 310 maintains the same state, and the fine loop circuit 320 starts to operate. For example, the course loop circuit 310 can supply the course current I_LPT of 160 mA because the first to fourth course codes C_LPT [4: 1] are held at zero. The fine loop circuit 320 operates in response to the enable signal EN. The fine loop circuit 320 can supply a fine current I_SPT of 40 mA by setting all of the first through twentieth fine codes C_SPT [20: 1] to zero.

본 발명의 실시 예에 따른 LDO 레귤레이터(121d)는 코스 루프 회로(310)를 이용하여 큰 전압 범위로 출력 전압(Vout)을 조절하고 파인 루프 회로(320)를 이용하여 섬세하게 출력 전압(Vout)를 조절할 수 있다. 본 발명의 실시 예에 따른 LDO 레귤레이터(121d)에 의하면, 빠르고 정확하게 출력 전압(Vout)을 조절할 수 있다.The LDO regulator 121d according to the embodiment of the present invention adjusts the output voltage Vout in a large voltage range using the course loop circuit 310 and delicately outputs the output voltage Vout using the fine loop circuit 320. [ Can be adjusted. According to the LDO regulator 121d according to the embodiment of the present invention, the output voltage Vout can be adjusted quickly and accurately.

도 15는 도 14에 도시된 LDO 레귤레이터의 동작 방법을 예시적으로 설명하기 위한 순서도이다. 도 14 및 도 15를 참조하면, LDO 레귤레이터(121d)는 코스 루프 회로(310), 파인 루프 회로(320), 그리고 디지털 컨트롤러(330)를 포함한다. FIG. 15 is a flowchart for illustrating an exemplary operation method of the LDO regulator shown in FIG. Referring to Figs. 14 and 15, the LDO regulator 121d includes a coarse loop circuit 310, a fine loop circuit 320, and a digital controller 330. Fig.

코스 루프 회로(310)의 코스 전류 구동기(313)는 제 1 내지 제 5 PMOS 트랜지스터(M_LP1~M_LP5)를 포함한다. 각각의 PMOS 트랜지스터는 40mA의 전류를 공급할 수 있다. 파인 루프 회로(320)의 파인 전류 구동기(323)는 제 1 내지 제 20 PMOS 트랜지스터(M_SP1~M_SP20)를 포함한다. 각각의 PMOS 트랜지스터는 2mA의 전류를 공급할 수 있다. LDO 레귤레이터(121d)는 로드 전류(IL; load current)의 변화에 관계없이 출력 전압(Vout)을 안정적으로 제공할 수 있다.The course current driver 313 of the course loop circuit 310 includes first through fifth PMOS transistors M_LP1 through M_LP5. Each PMOS transistor can supply 40mA of current. The fine current driver 323 of the fine loop circuit 320 includes first to twentieth PMOS transistors M_SP1 to M_SP20. Each PMOS transistor can supply 2mA of current. The LDO regulator 121d can stably provide the output voltage Vout regardless of the change in the load current IL.

S110 단계는 안정 상태(steady state)이다. S110 단계에서, 파인 루프 회로(320)는 20mA의 로드 전류(IL)를 제공한다. LDO 레귤레이터(121)는 0.9V의 출력 전압(Vout)을 유지하고 있다. 파인 전류 구동기(323)의 제 1 내지 제 20 PMOS 트랜지스터(M_SP1~M_SP20) 중에서 10개의 PMOS 트랜지스터가 턴 온 상태에 있다. Step S110 is a steady state. In step S110, the fine loop circuit 320 provides a load current IL of 20 mA. The LDO regulator 121 maintains the output voltage Vout of 0.9V. Ten PMOS transistors among the first through twentieth PMOS transistors M_SP1 through M_SP20 of the fine current driver 323 are in a turned-on state.

S120 단계는 로드 전류(IL)가 일시적으로 상승하는 상태(load transient state)이다. S120 단계에서, 파인 루프 회로(320)는 턴 오프 한다. 코스 루프 회로(310)는 턴 온 상태를 유지한다. 로드 전류(IL)가 200mA로 높아지면, LDO 레귤레이터(121d)의 출력 전압(Vout)은 0.9V보다 낮아진다. 출력 전압(Vout)이 낮아지면, 코스 루프 회로(310)로 제공되는 입력 전압(Vin)이 낮아진다. 입력 전압(Vin)이 낮아지면, 제 1 내지 제 5 코스 코드(C_LPT[5:1])가 차례대로 0으로 된다. 코스 전류(I_LPT)는 200mA를 향해 증가한다. The step S120 is a load transient state in which the load current IL temporarily rises. In step S120, the fine loop circuit 320 turns off. The course loop circuit 310 maintains the turn-on state. When the load current IL increases to 200 mA, the output voltage Vout of the LDO regulator 121d becomes lower than 0.9V. When the output voltage Vout is lowered, the input voltage Vin provided to the cos Loop circuit 310 is lowered. When the input voltage Vin becomes lower, the first to fifth course codes C_LPT [5: 1] become 0 in order. The course current I_LPT increases toward 200 mA.

S130 단계는 출력 전압을 조절하는 상태(load settling state)이다. S130 단계에서, 디지털 컨트롤러(330)는 파인 루프 회로(320)를 시작하기 위한 제어 신호들을 변경한다. 디지털 컨트롤러(330)는 파인 루프 회로(320)의 쉬프트 레지스터(322)로 제공될 리셋 신호(RST)를 생성할 수 있다. 쉬프트 레지스터(322)에 리셋 신호(RST)가 입력되면, 파인 전류(I_SPT)는 0mA로 될 것이다. 또한, S130 단계에서는 제 5 코스 코드(C_LPT[5])가 토글 함에 따라, 코스 전류(I_LPT)는 160mA와 200mA 사이에서 변한다. 코스 전류(I_LPT)가 변함에 따라, 출력 전압(Vout)은 큰 전압 범위(large voltage range)로 변한다.Step S130 is a load settling state. In step S 130, the digital controller 330 changes control signals for starting the fine loop circuit 320. The digital controller 330 may generate a reset signal RST to be provided to the shift register 322 of the fine loop circuit 320. [ When the reset signal RST is input to the shift register 322, the fine current I_SPT will be 0 mA. In step S130, as the fifth course code C_LPT [5] is toggled, the course current I_LPT varies between 160 mA and 200 mA. As the course current I_LPT changes, the output voltage Vout changes to a large voltage range.

S140 단계는 출력 전압을 섬세하게 조절하는 상태(load settling state)이다. S140 단계에서, 디지털 컨트롤러(330)는 제 5 코스 코드(C_LPT[5])의 출력값을 이용하여, 인에이블 신호(EN)를 생성한다. 인에이블 신호(EN)가 하이 레벨로 되면, 코스 루프 회로(310)는 동일 상태를 유지하고, 파인 루프 회로(320)가 동작하기 시작한다. 코스 루프 회로(310)는 160mA의 코스 전류(I_LPT)를 공급할 수 있다. 파인 루프 회로(320)는 인에이블 신호(EN)에 응답하여 40mA의 파인 전류(I_SPT)를 공급할 수 있다.Step S140 is a state in which the output voltage is delicately adjusted (load settling state). In step S140, the digital controller 330 generates the enable signal EN using the output value of the fifth course code C_LPT [5]. When the enable signal EN becomes a high level, the coarse loop circuit 310 maintains the same state, and the fine loop circuit 320 starts to operate. The course loop circuit 310 can supply the course current I_LPT of 160 mA. The fine loop circuit 320 may supply a fine current I_SPT of 40 mA in response to the enable signal EN.

이상에서 살펴본 바와 같이, 본 발명의 실시 예에 따른 LDO 레귤레이터는 전원 전압(VDD)을 입력받고, 출력 전압(Vout)을 조절할 수 있다. 본 발명의 실시 예에 따른 LDO 레귤레이터는 로드 전류(IL; load current)의 변화에 관계없이 출력 전압(Vout)을 안정적으로 제공할 수 있다.As described above, the LDO regulator according to the embodiment of the present invention can receive the power supply voltage VDD and adjust the output voltage Vout. The LDO regulator according to the embodiment of the present invention can stably provide the output voltage Vout regardless of the change in the load current IL.

한편, 상술 된 본 발명의 내용은 발명을 실시하기 위한 구체적인 실시 예들에 불과하다. 본 발명은 구체적이고 실제로 이용할 수 있는 수단 자체뿐 아니라, 장차 기술로 활용할 수 있는 추상적이고 개념적인 아이디어인 기술적 사상을 포함할 것이다.The above-described contents of the present invention are only specific examples for carrying out the invention. The present invention will include not only concrete and practical means themselves, but also technical ideas which are abstract and conceptual ideas that can be utilized as future technologies.

100: 사용자 장치 110: 전원 관리 집적 회로
120: 응용 프로세서 121~124: LDO 레귤레이터
125: 중앙처리장치 126: 디스플레이
127: 메모리 210: 코스 루프 블록
220: 파인 루프 블록 230: 디지털 컨트롤 블록
310: 코스 루프 회로 311: 기준 전압 변환기
312: 아날로그 디지털 컨버터 313: 코스 전류 구동기
320: 파인 루프 회로 321: 비교기
322: 쉬프트 레지스터 323: 파인 전류 구동기
330: 디지털 컨트롤러
100: user equipment 110: power management integrated circuit
120: Application processors 121 to 124: LDO regulators
125: central processing unit 126: display
127: memory 210: coarse loop block
220: Fine Loop Block 230: Digital Control Block
310: Coslop circuit 311: Reference voltage converter
312: analog-to-digital converter 313: course current driver
320: Fine loop circuit 321: Comparator
322: shift register 323: fine current driver
330: Digital controller

Claims (25)

출력 단자로부터 입력 전압을 제공받고 코스 코드를 생성하는, 상기 코스 코드에 따라 상기 출력 단자로 제공하는 코스 전류를 조절하는 코스 루프 블록;
상기 출력 단자로부터 입력 전압을 제공받고 파인 코드를 생성하는, 상기 파인 코드에 따라 상기 출력 단자로 제공하는 파인 전류를 조절하는 파인 루프 블록; 및
상기 코스 루프 블록으로부터 상기 코스 코드를 제공 받고, 상기 파인 루프 블록을 제어하기 위한 제어 신호를 생성하는 디지털 컨트롤 블록을 포함하는 LDO 레귤레이터.
A course loop block for adjusting a course current provided to the output terminal in accordance with the course code, the input signal being supplied from an output terminal and generating a course code;
A fine loop block for adjusting a fine current provided to the output terminal according to the fine code, the fine loop being provided with an input voltage from the output terminal and generating a fine code; And
And a digital control block that receives the course code from the COUR LOBS block and generates a control signal for controlling the fine loop block.
제 1 항에 있어서,
상기 출력 단자의 출력 전압을 분배하고 상기 입력 전압을 출력하는 전압 분배기를 더 포함하는 LDO 레귤레이터.
The method according to claim 1,
And a voltage divider that divides the output voltage of the output terminal and outputs the input voltage.
제 1 항에 있어서,
상기 코스 루프 블록은,
상기 코스 코드를 입력받고 코스 기준 전압을 변경하는 기준 전압 변환기;
상기 입력 전압과 상기 코스 기준 전압을 입력받고, 상기 코스 코드를 생성하는 아날로그 디지털 컨버터(ADC); 및
상기 ADC로부터 상기 코스 코드를 입력받고, 상기 코스 전류를 제공하는 코스 전류 구동기를 포함하는 LDO 레귤레이터.
The method according to claim 1,
Wherein the coarse-
A reference voltage converter for receiving the course code and changing a course reference voltage;
An analog-to-digital converter (ADC) receiving the input voltage and the course reference voltage and generating the course code; And
And a course current driver for receiving the course code from the ADC and providing the course current.
제 3 항에 있어서,
상기 기준 전압 변환기는, 로드 전류가 증가하면 코스 기준 전압을 높이고, 로드 전류가 감소하면 코스 기준 전압을 낮추는 LDO 레귤레이터.
The method of claim 3,
The reference voltage converter raises the course reference voltage when the load current increases, and reduces the course reference voltage when the load current decreases.
제 3 항에 있어서,
상기 ADC는 상기 입력 전압과 상기 코스 기준 전압을 비교하고, 오차 전압을 발생하는 비교기; 및
상기 오차 전압의 레벨에 따라 상기 코스 코드를 생성하고, 상기 코스 코드를 상기 기준 전압 발생기, 상기 코스 전류 구동기, 그리고 상기 디지털 컨트롤 블록으로 제공하는 코드 발생기를 포함하는 LDO 레귤레이터.
The method of claim 3,
A comparator for comparing the input voltage with the course reference voltage and generating an error voltage; And
And a code generator for generating the course code according to the level of the error voltage and providing the course code to the reference voltage generator, the course current driver, and the digital control block.
제 3 항에 있어서,
상기 ADC는 전류 미러 플래시 아날로그 디지털 컨버터(CMF ADC)인 LDO 레귤레이터.
The method of claim 3,
The ADC is a current mirrored flash analog-to-digital converter (CMF ADC).
제 6 항에 있어서,
상기 CMF ADC는,
상기 코스 기준 전압을 입력받고 제 1 전류 통로를 형성하는, 상기 입력 전압을 입력받고 제 2 전류 통로를 형성하는, 그리고 상기 제 1 및 제 2 전류 통로의 전류의 합은 전류 소스에 의해 일정하게 유지되는 비교 회로;
상기 제 1 전류 통로를 전류 미러링(current mirroring) 함으로 제 3 전류 통로를 형성하는 제 1 전류 미러 회로; 및
상기 제 2 전류 통로를 전류 미러링 함으로, 제 4 내지 제 N(N는 5 이상의 자연수) 전류 통로를 형성하는 제 2 전류 미러 회로를 포함하는 LDO 레귤레이터.
The method according to claim 6,
The CMF ADC includes:
The input of the input voltage and forming a second current path, wherein the sum of the currents in the first and second current paths is maintained constant by the current source / RTI >
A first current mirror circuit forming a third current path by current mirroring the first current path; And
And a second current mirror circuit that forms a fourth to an Nth (N is a natural number of 5 or more) current path by current mirroring the second current path.
제 7 항에 있어서,
상기 제 1 전류 통로는 전원 단자와 제 1 노드 사이에 연결되는 제 1 PMOS 트랜지스터와, 상기 제 1 노드와 상기 전류 소스 사이에 연결되는 제 1 NMOS 트랜지스터를 포함하고;
상기 제 2 전류 통로는 상기 전원 단자와 제 2 노드 사이에 연결되는 제 2 PMOS 트랜지스터와, 상기 제 2 노드와 상기 전류 소스 사이에 연결되는 제 2 NMOS 트랜지스터를 포함하고;
상기 제 1 PMOS 트랜지스터의 게이트는 상기 제 1 노드에 연결되고, 상기 제 2 PMOS 트랜지스터의 게이트는 상기 제 2 노드에 연결되고, 상기 제 1 NMOS 트랜지스터의 게이트는 상기 코스 기준 전압을 입력받고, 상기 제 2 NMOS 트랜지스터의 게이트는 상기 입력 전압을 입력받는 LDO 레귤레이터.
8. The method of claim 7,
The first current path includes a first PMOS transistor coupled between a power terminal and a first node, and a first NMOS transistor coupled between the first node and the current source;
The second current path includes a second PMOS transistor coupled between the power supply terminal and a second node, and a second NMOS transistor coupled between the second node and the current source;
Wherein a gate of the first PMOS transistor is connected to the first node, a gate of the second PMOS transistor is connected to the second node, a gate of the first NMOS transistor receives the course reference voltage, And a gate of the second NMOS transistor receives the input voltage.
제 8 항에 있어서,
상기 전류 소스는 제 3 노드와 접지 단자 사이에 연결되고,
상기 제 3 전류 통로는 상기 전원 단자와 제 4 노드 사이에 연결되는 제 3 PMOS 트랜지스터와, 상기 제 4 노드와 상기 접지 단자 사이에 연결되는 제 3 NMOS 트랜지스터를 포함하고;
상기 제 3 PMOS 트랜지스터의 게이트는 상기 제 1 노드에 연결되고, 상기 제 3 NMOS 트랜지스터의 게이트는 상기 제 4 노드에 연결되는 LDO 레귤레이터.
9. The method of claim 8,
The current source being connected between a third node and a ground terminal,
The third current path includes a third PMOS transistor connected between the power supply terminal and a fourth node, and a third NMOS transistor coupled between the fourth node and the ground terminal;
Wherein a gate of the third PMOS transistor is coupled to the first node and a gate of the third NMOS transistor is coupled to the fourth node.
제 9 항에 있어서,
상기 제 4 전류 통로는 상기 전원 단자와 제 1 출력 노드 사이에 연결되는 제 4 PMOS 트랜지스터와, 상기 제 1 출력 노드와 상기 접지 단자 사이에 연결되는 제 4 NMOS 트랜지스터를 포함하고;
상기 제 N 전류 통로는 상기 전원 단자와 제 N-3 출력 노드 사이에 연결되는 제 N PMOS 트랜지스터와, 상기 제 N-3 출력 노드와 상기 접지 단자 사이에 연결되는 제 N NMOS 트랜지스터를 포함하고;
상기 제 4 내지 제 N PMOS 트랜지스터의 게이트는 상기 제 2 노드에 연결되고, 상기 제 4 내지 제 N NMOS 트랜지스터의 게이트는 상기 제 4 노드에 연결되는 LDO 레귤레이터.
10. The method of claim 9,
The fourth current path includes a fourth PMOS transistor coupled between the power supply terminal and a first output node and a fourth NMOS transistor coupled between the first output node and the ground terminal;
The Nth current path includes an Nth PMOS transistor connected between the power supply terminal and the (N-3) th output node; and an Nth NMOS transistor connected between the (N-3) th output node and the ground terminal;
The gates of the fourth to Nth PMOS transistors are connected to the second node, and the gates of the fourth to Nth NMOS transistors are connected to the fourth node.
제 10 항에 있어서,
상기 제 4 내지 제 N PMOS 트랜지스터의 크기는 다르고, 상기 제 4 내지 제 N NMOS 트랜지스터의 크기는 다른 LDO 레귤레이터.
11. The method of claim 10,
The size of the fourth to N-th PMOS transistors is different, and the sizes of the fourth to N-th NMOS transistors are different.
제 3 항에 있어서,
상기 코스 전류 구동기는 전원 단자와 출력 단자 사이에 연결되는 복수의 PMOS 트랜지스터를 포함하고, 각각의 PMOS 트랜지스터의 게이트는 상기 ADC로부터 코스 코드를 입력받고 상기 코스 전류를 제공하는 LDO 레귤레이터.
The method of claim 3,
Wherein the path current driver includes a plurality of PMOS transistors connected between a power supply terminal and an output terminal, and a gate of each PMOS transistor receives a course code from the ADC and provides the path current.
제 1 항에 있어서,
상기 파인 루프 블록은,
상기 입력 전압과 기준 전압을 비교하고, 비교 결과로서 선택 신호를 출력하는 비교기;
상기 디지털 컨트롤 블록의 제어 신호에 응답하여 동작하고, 상기 비교기의 선택 신호에 따라 왼쪽 또는 오른쪽으로 쉬프트 동작을 수행함으로, 파인 코드를 출력하는 쉬프트 레지스터; 및
상기 파인 코드를 입력받고, 상기 파인 전류를 제공하는 파인 전류 구동기를 포함하는 LDO 레귤레이터.
The method according to claim 1,
The fine loop block includes:
A comparator for comparing the input voltage with a reference voltage and outputting a selection signal as a comparison result;
A shift register which operates in response to a control signal of the digital control block and shifts left or right according to a selection signal of the comparator to output a fine code; And
And a fine current driver receiving the fine code and providing the fine current.
제 13 항에 있어서,
상기 쉬프트 레지스터는 클록 신호에 동기하여 한 비트씩 왼쪽 또는 오른쪽으로 이동하는 LDO 레귤레이터.
14. The method of claim 13,
Wherein the shift register shifts left or right by one bit in synchronization with a clock signal.
제 13 항에 있어서,
상기 디지털 컨트롤 블록은,
상기 코스 코드를 입력받고 상기 쉬프트 레지스터를 동작하기 위한 인에이블 신호와 상기 쉬프트 레지스터를 리셋하기 위한 리셋 신호를 출력하는 파인 루프 컨트롤러; 및
상기 쉬프트 레지스터를 제어함으로 초기 파인 전류를 조절하기 위한 초기 신호를 출력하는 초기 파인 전류 선택기를 포함하는 LDO 레귤레이터.
14. The method of claim 13,
The digital control block includes:
A fine loop controller for receiving the course code and outputting an enable signal for operating the shift register and a reset signal for resetting the shift register; And
And an initial fine current selector for outputting an initial signal for controlling the initial fine current by controlling the shift register.
제 15 항에 있어서,
상기 인에이블 파인 루프 컨트롤러는,
상기 코스 코드를 입력받고 N-비트의 출력값을 생성하고, 상기 N-비트의 출력값 중 제 1 출력값(Q[4])을 이용하여 상기 인에이블 신호를 제공하는 N-비트 카운터; 및
상기 N-비트의 출력값 중 제 2 출력값(Q[1])을 이용하여 상기 리셋 신호를 출력하는 상승 엣지 검출기를 포함하는 LDO 레귤레이터.
16. The method of claim 15,
Wherein the enable-
An N-bit counter for receiving the course code and generating an N-bit output value and providing the enable signal using a first output value Q [4] of the N-bit output value; And
And a rising edge detector for outputting the reset signal using a second output value Q [1] of the N-bit output values.
제 16 항에 있어서,
상기 초기 파인 전류 선택기는,
상기 N-비트의 출력값 중 제 3 출력값(Q[3])에 응답하여 동작하고, 클록 신호에 응답하여 M-비트의 출력값을 생성하는 M-비트 카운터; 및
상기 M-비트 카운터의 출력값을 입력받고, 상기 초기 신호를 출력하는 로직 회로를 포함하는 LDO 레귤레이터.
17. The method of claim 16,
Wherein the initial fine current selector comprises:
An M-bit counter that operates in response to a third output value Q [3] of the N-bit output value and generates an M-bit output value in response to the clock signal; And
And a logic circuit receiving the output value of the M-bit counter and outputting the initial signal.
코스 코드에 따라 코스 전류를 조절하고, 상기 코스 코드를 이용하여 파인 코드를 제어하고, 상기 파인 코드에 따라 파인 전류를 조절하는 LDO 레귤레이터; 및
상기 LDO 레귤레이터로부터 상기 코스 전류와 상기 파인 전류를 공급받는 로드 회로를 포함하는 응용 프로세서.
An LDO regulator which adjusts the course current according to the course code, controls the fine code using the course code, and adjusts the fine current according to the fine code; And
And a load circuit for receiving the course current and the fine current from the LDO regulator.
제 18 항에 있어서,
상기 LDO 레귤레이터는,
출력 단자로부터 입력 전압을 제공받고 상기 코스 코드를 생성하는, 상기 코스 코드에 따라 상기 출력 단자로 제공하는 코스 전류를 조절하는 코스 루프 회로;
상기 출력 단자로부터 입력 전압을 제공받고 상기 파인 코드를 생성하는, 상기 파인 코드에 따라 상기 출력 단자로 제공하는 파인 전류를 조절하는 파인 루프 회로; 및
상기 코스 루프 회로로부터 상기 코스 코드를 제공 받고, 상기 파인 루프 회로를 제어하기 위한 제어 신호를 생성하는 디지털 컨트롤러를 포함하는 응용 프로세서.
19. The method of claim 18,
The LDO regulator includes:
A course loop circuit for adjusting a course current provided to the output terminal in accordance with the course code, the input circuit receiving an input voltage from an output terminal and generating the course code;
A fine loop circuit for adjusting a fine current provided to the output terminal according to the fine code, the fine loop circuit being provided with an input voltage from the output terminal and generating the fine code; And
And a digital controller that receives the course code from the course loop circuit and generates a control signal for controlling the fine loop circuit.
제 19 항에 있어서,
상기 코스 루프 회로는,
상기 코스 코드를 입력받고 코스 기준 전압을 변경하는 기준 전압 변환기;
상기 입력 전압과 상기 코스 기준 전압을 입력받고, 상기 코스 코드를 생성하는 아날로그 디지털 컨버터(ADC); 및
상기 ADC로부터 상기 코스 코드를 입력받고, 상기 코스 전류를 제공하는 코스 전류 구동기를 포함하는 응용 프로세서.
20. The method of claim 19,
Wherein the course loop circuit comprises:
A reference voltage converter for receiving the course code and changing a course reference voltage;
An analog-to-digital converter (ADC) receiving the input voltage and the course reference voltage and generating the course code; And
And a course current driver for receiving the course code from the ADC and providing the course current.
제 20 항에 있어서,
상기 ADC는,
상기 코스 기준 전압을 입력받고 제 1 전류 통로를 형성하는, 상기 입력 전압을 입력받고 제 2 전류 통로를 형성하는, 그리고 상기 제 1 및 제 2 전류 통로의 전류의 합은 전류 소스에 의해 일정하게 유지되는 비교 회로;
상기 제 1 전류 통로를 전류 미러링(current mirroring) 함으로 제 3 전류 통로를 형성하는 제 1 전류 미러 회로; 및
상기 제 2 전류 통로를 전류 미러링 함으로, 제 4 내지 제 N(N는 5 이상의 자연수) 전류 통로를 형성하는 제 2 전류 미러 회로를 포함하는 응용 프로세서.
21. The method of claim 20,
The ADC includes:
The input of the input voltage and forming a second current path, wherein the sum of the currents in the first and second current paths is maintained constant by the current source / RTI >
A first current mirror circuit forming a third current path by current mirroring the first current path; And
And a second current mirror circuit that forms a fourth to an Nth (N is a natural number greater than or equal to 5) current path by current mirroring the second current path.
제 21 항에 있어서,
상기 제 4 내지 제 N(N는 5 이상의 자연수) 전류 통로는 크기가 다른 PMOS 트랜지스터와 크기가 다른 NMOS 트랜지스터로 구성되는 응용 프로세서.
22. The method of claim 21,
Wherein the fourth through Nth (N is a natural number of 5 or more) current paths are constituted by PMOS transistors of different sizes and NMOS transistors of different sizes.
제 19 항에 있어서,
상기 파인 루프 회로는,
상기 입력 전압과 기준 전압을 비교하고, 비교 결과로서 선택 신호를 출력하는 비교기;
상기 디지털 컨트롤러의 제어 신호에 응답하여 동작하고, 상기 비교기의 선택 신호에 따라 왼쪽 또는 오른쪽으로 쉬프트 동작을 수행함으로, 파인 코드를 출력하는 쉬프트 레지스터; 및
상기 파인 코드를 입력받고, 상기 파인 전류를 제공하는 파인 전류 구동기를 포함하는 응용 프로세서.
20. The method of claim 19,
The fine loop circuit comprises:
A comparator for comparing the input voltage with a reference voltage and outputting a selection signal as a comparison result;
A shift register which operates in response to a control signal of the digital controller and shifts left or right according to a selection signal of the comparator to output a fine code; And
And a fine current driver receiving the fine code and providing the fine current.
제 23 항에 있어서,
상기 디지털 컨트롤러는,
상기 코스 코드를 입력받고 상기 쉬프트 레지스터를 동작하기 위한 인에이블 신호와 상기 쉬프트 레지스터를 리셋하기 위한 리셋 신호를 출력하는 파인 루프 컨트롤러; 및
상기 쉬프트 레지스터를 제어함으로 초기 파인 전류를 조절하기 위한 초기 신호를 출력하는 초기 파인 전류 선택기를 포함하는 응용 프로세서.
24. The method of claim 23,
The digital controller includes:
A fine loop controller for receiving the course code and outputting an enable signal for operating the shift register and a reset signal for resetting the shift register; And
And an initial fine current selector for outputting an initial signal for controlling an initial fine current by controlling the shift register.
전원 라인을 통해 전원 전압을 제공하는 전원 관리 집적 회로; 및
상기 전원 라인을 통해 전원 전압을 제공받고 내부 전원을 생성하는 LDO 레귤레이터를 포함하는 응용 프로세서를 포함하되,
상기 LDO 레귤레이터는, 출력 단자로부터 입력 전압을 제공받고 코스 코드를 생성하는, 상기 코스 코드에 따라 상기 출력 단자로 제공하는 코스 전류를 조절하는 코스 루프 회로;
상기 출력 단자로부터 입력 전압을 제공받고 상기 파인 코드를 생성하는, 상기 파인 코드에 따라 상기 출력 단자로 제공하는 파인 전류를 조절하는 파인 루프 회로; 및
상기 코스 루프 회로로부터 상기 코스 코드를 제공 받고, 상기 파인 루프 회로를 제어하기 위한 제어 신호를 생성하는 사용자 장치.
A power management integrated circuit that provides a power supply voltage through a power supply line; And
And an application processor including an LDO regulator provided with a power supply voltage through the power supply line and generating an internal power supply,
The LDO regulator includes: a coarse loop circuit that adjusts a course current to be provided to the output terminal in accordance with the course code, the input being supplied with an input voltage from an output terminal and generating a course code;
A fine loop circuit for adjusting a fine current provided to the output terminal according to the fine code, the fine loop circuit being provided with an input voltage from the output terminal and generating the fine code; And
Wherein the course code is received from the course loop circuit and generates a control signal for controlling the fine loop circuit.
KR1020160092726A 2016-01-26 2016-07-21 LDO regulator including dual loop circuit, and application processor and user device including the same KR102528967B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/216,147 US10126766B2 (en) 2016-01-26 2016-07-21 Low dropout voltage (LDO) regulator including a dual loop circuit and an application processor and a user device including the same
CN201611197900.5A CN106997219B (en) 2016-01-26 2016-12-22 Low dropout (L DO) regulator including a two-loop circuit
US16/170,124 US10678280B2 (en) 2016-01-26 2018-10-25 Low dropout voltage (LDO) regulator including a dual loop circuit and an application processor and a user device including the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160009478 2016-01-26
KR20160009478 2016-01-26

Publications (2)

Publication Number Publication Date
KR20170089742A true KR20170089742A (en) 2017-08-04
KR102528967B1 KR102528967B1 (en) 2023-05-09

Family

ID=59654500

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160092726A KR102528967B1 (en) 2016-01-26 2016-07-21 LDO regulator including dual loop circuit, and application processor and user device including the same

Country Status (1)

Country Link
KR (1) KR102528967B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190133949A (en) * 2018-05-24 2019-12-04 울산과학기술원 Digital-analog hybrid low dropout regulator
KR20190140381A (en) * 2018-06-11 2019-12-19 에스케이하이닉스 주식회사 Digital low drop-out regulator and operation method thereof
US11340644B2 (en) 2020-09-29 2022-05-24 Samsung Electronics Co., Ltd. Electronic device including low-dropout regulators
KR20230101024A (en) 2021-12-29 2023-07-06 한국과학기술원 A Digital-Like Analog Low Dropout Regulator
US11747846B2 (en) 2021-03-29 2023-09-05 Korea University Research And Business Foundation Digital LDO regulator for performing asynchronous binary search using binary-weighted PMOS array and operation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101046653B1 (en) * 2010-05-14 2011-07-05 전자부품연구원 Power stabilized circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101046653B1 (en) * 2010-05-14 2011-07-05 전자부품연구원 Power stabilized circuit

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190133949A (en) * 2018-05-24 2019-12-04 울산과학기술원 Digital-analog hybrid low dropout regulator
KR20190140381A (en) * 2018-06-11 2019-12-19 에스케이하이닉스 주식회사 Digital low drop-out regulator and operation method thereof
US11340644B2 (en) 2020-09-29 2022-05-24 Samsung Electronics Co., Ltd. Electronic device including low-dropout regulators
US11747846B2 (en) 2021-03-29 2023-09-05 Korea University Research And Business Foundation Digital LDO regulator for performing asynchronous binary search using binary-weighted PMOS array and operation method thereof
KR20230101024A (en) 2021-12-29 2023-07-06 한국과학기술원 A Digital-Like Analog Low Dropout Regulator

Also Published As

Publication number Publication date
KR102528967B1 (en) 2023-05-09

Similar Documents

Publication Publication Date Title
CN106997219B (en) Low dropout (L DO) regulator including a two-loop circuit
KR102528967B1 (en) LDO regulator including dual loop circuit, and application processor and user device including the same
US10175655B2 (en) Time-to-digital converter
CN110045774B (en) Digital LDO circuit with fast transient response
KR101621367B1 (en) Dual mode low-drop out regulator in digital control and method for controlling using the same
US10216209B1 (en) Digital low drop-out regulator and operation method thereof
US20160282889A1 (en) Linear and non-linear control for digitally-controlled low-dropout circuitry
JP6657478B2 (en) Device and method for stabilizing supply voltage
US20140344589A1 (en) Multi-mode voltage regulation with feedback
US9257994B2 (en) Apparatus and system for digitally controlled oscillator
WO2017052901A1 (en) Digital controller including embedded dual-loop feedback
TWI571029B (en) Compensation circuit and energy storage device thereof
US20180123450A1 (en) Switching regulator and controller thereof
CN110703838B (en) Voltage stabilizer with adjustable output voltage
KR20180090707A (en) Digital low drop-out regulator
US10790832B2 (en) Apparatus to improve lock time of a frequency locked loop
US7629833B2 (en) Power supply apparatus of semiconductor integrated circuit
KR20150019000A (en) Reference current generating circuit and method for driving the same
CN109643953B (en) Digital auxiliary control loop for voltage converter
US10126773B2 (en) Circuit and method for providing a secondary reference voltage from an initial reference voltage
KR20190062019A (en) Capacitor-less voltage regulator and semiconductor device including the same
US10345845B1 (en) Fast settling bias circuit
US20150160667A1 (en) Power converter and method of use
TW201310189A (en) Dynamic bias circuit and associated method
JP2012078969A (en) Regulator circuit

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right