KR20170087692A - 종양 환자의 항암제 내성 진단용 바이오마커 및 이를 이용한 항암제 내성 진단용 킷트 - Google Patents

종양 환자의 항암제 내성 진단용 바이오마커 및 이를 이용한 항암제 내성 진단용 킷트 Download PDF

Info

Publication number
KR20170087692A
KR20170087692A KR1020160007575A KR20160007575A KR20170087692A KR 20170087692 A KR20170087692 A KR 20170087692A KR 1020160007575 A KR1020160007575 A KR 1020160007575A KR 20160007575 A KR20160007575 A KR 20160007575A KR 20170087692 A KR20170087692 A KR 20170087692A
Authority
KR
South Korea
Prior art keywords
taxol
genes
setdb1
doxorubicin
sisetdb1
Prior art date
Application number
KR1020160007575A
Other languages
English (en)
Inventor
김근철
나한흠
강윤성
김인수
Original Assignee
강원대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 강원대학교산학협력단 filed Critical 강원대학교산학협력단
Priority to KR1020160007575A priority Critical patent/KR20170087692A/ko
Publication of KR20170087692A publication Critical patent/KR20170087692A/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/106Pharmacogenomics, i.e. genetic variability in individual responses to drugs and drug metabolism
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/52Predicting or monitoring the response to treatment, e.g. for selection of therapy based on assay results in personalised medicine; Prognosis

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Analytical Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Oncology (AREA)
  • Hospice & Palliative Care (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

본 발명은 종양 환자에 대해 선별적인 항암화학요법을 시행하기 위한 항암제 내성 진단용 바이오마커 및 이를 이용한 항암제 내성 진단용 킷트에 관한 것이다. 다양한 유전자 발현 변화를 조사하기 위해 총 24,331종의 유전자들을 대상으로 독소루비신, 탁솔, siSETDB1에 의해 발현이 증가한 유전자를 분석하였다. 독소루비신, 탁솔, siSETDB1에 의해서 공통으로 상향조절된 유전자를 분석한 결과, 222종의 유전자가 독소루비신과 탁솔 처리군에서 공통적으로 발현이 증가하였으며, 탁솔과 siSETDB1은 15종의 유전자가 공통, 독소루비신과 siSETDB1은 24종의 유전자가 공통이었다. 특히, 독소루비신, 탁솔 및 siSETDB1 간에 공통적으로 발현이 증가한 유전자는 모두 9종이며, 이 중에는 FosB, Jun 등과 같은 발암 AP-1 구성요소들이 포함되어 있었다.

Description

종양 환자의 항암제 내성 진단용 바이오마커 및 이를 이용한 항암제 내성 진단용 킷트 {Biomarkers to diagnose anti-cancer medicine resistance of cancer patient and diagnostic kit therof}
본 발명은 종양 환자에 대해 선별적인 항암화학요법을 시행하기 위한 항암제 내성 진단용 바이오마커 및 이를 이용한 항암제 내성 진단용 킷트에 관한 것이다.
암(cancer)은 난치병이라는 인식이 오랫동안 지배하여 왔으나, 의학, 생명과학 기술의 발달로 이제는 치료 가능한 질병이라는 긍정적 방향으로 바뀌어가고 있다.
암을 치료하는 방법으로는 외과적 수술, 방사선 치료 등이 있으며, 여러 종류의 항암제를 이용한 치료 요법 또한 암치료의 중요한 수단 중 하나이다. 항암제 치료는 빠른 증식, 무한정한 복제 등과 같은 암세포들의 독특한 특징들을 표적으로 하고 있으며, 암의 크기를 줄이고 재발 및 전이를 막는 효과 등에서 탁월한 효능이 있다고 보고되었다.
그러나 항암제에 의한 부작용, 내성 등의 현상도 발생하고 있기 때문에 항암치료는 긍정적, 부정적 요소가 모두 존재한다. 실제로 국내 암 환자들 중 약 60-70%는 항암제 내성으로 치료를 중단하는 것이 현실이다.
항암제 내성이란 암세포가 항암제에 대응하여 유전자 변화를 일으킴으로써 항암치료의 효과를 약화시키는 현상을 말한다. 항암제가 새롭게 개발될수록 암세포의 새로운 내성 기작이 생겨나기 때문에 항암제의 내성을 조절하고자 하는 연구는 끊임없이 진행되고 있다. 항암제의 내성 획득 과정은 크게 두 가지로 나눌 수 있다. 첫째는 항암제가 암세포까지 적절하게 도달하지 못하게 되는 경우로, 즉 항암제의 흡수가 저하되거나, 항암제의 대사 혹은 배출이 증가하여 항암제의 혈중 농도가 저하되는 것이다. 궁극적으로는 암세포로 항암제의 전달이 감소되면서 내성이 유발되는 현상을 말한다. 이에 대비하기 위해 종양 주위 혈관이나 종양조직 간의 압력 차이, 간질 조직, 종양의 입체적 형태 등과 같은 종양 주변 환경에 의하여 유도되는 약제 내성에 대한 연구가 활발하게 진행되고 있다. 둘째는 암세포 자체의 유전자 변이를 통하여 항암제에 대한 내성을 획득하는 경우이다. 이러한 암세포 자체의 내성 발현 기전은 주로 항암제가 세포 내로 흡수되는 것이 방해되고 능동적 배출과 관련된 단백질의 발현, 항암제의 대사, 암세포 DNA 재생, 세포자기사멸(apoptosis) 관련 유전자들의 발현으로 인하여 저항성이 생기는 경우를 말한다.
관련 연구중 P-gp (P-glycoprotein)는 소화기 계통의 암, 혈액암, 신장, 피부 등의 많은 암 조직에서 높은 발현을 나타내며, 이 단백질은 막 전이 단백질이며, 포스파티딜콜린 수송과 관련되어 있다. mdr 1 유전자로부터 발현되며, 항암제 내성과 관련성이 있다고 알려져 있다.
ATP-의존성 배출 펌프를 지칭하는 ABC transporter도 항암제 내성 관련 유전자라고 보고되었다.
특정 암을 선별적으로 치료하고 정상 세포에는 피해를 주지 않는 RTK (Receptor tyrosine kinase) 계열 항암제들은 암 전이와 관련된 CD61 단백질의 양적인 증가를 불러일으키며, 항암제에 대한 내성을 강화하고 암세포의 성장을 촉진한다고 알려졌다.
사이클로필린 A (cyclophilin A) 단백질도 암 조직 성장에 중요역할을 할 뿐 아니라 항암제 내성 발생에도 관여한다고 알려져 있으며, 사이클로필린 A 단백질을 억제하면 시스플라틴 (cisplatin) 항암제 및 방사선 치료에 대한 내성을 줄일 수 있다고 알려졌다.
항암제 내성저항성이 있는 세포에서 세포 성장과 관련된 미드카인 (Midkine) 유전자의 발현이 비정상적으로 증가하였다는 최근의 보고를 보면 이 유전자가 내성과 관련이 있을 것으로 추정할 수 있다.
그러므로 암세포에서 항암제 내성을 일으키는 원인에 대한 연구는 항암제의 치료 효과를 높이기 위해 매우 중요하며, 암세포의 유전자 중 항암제 내성과 관련된 주요 유전자들을 찾아내어 이를 표적으로 새로운 항암제의 기능을 개발하는 연구가 필요하다. 그럼에도 불구하고 항암제 내성 등을 조절하는 유전자 발현체계에 대한 연구는 아직 이렇다할 성과를 내지 못하고 있으며, 특히 중요한 유전자들의 발현을 조절하는 전사 제어 기작에 대한 연구는 많이 부족한 실정이다.
본 발명자들은 SETDB1 HMTase 관련연구를 수행하는 과정에서 DZNep, 탁솔 (taxol), 독소루비신 (doxorubicin)에 의해서도 SETDB1의 발현이 감소하는 현상을 확인하여 왔으며, 다양한 분자생물학적 연구결과물을 통하여 여러 항암제들에 의한 항암조절 과정에서 SETDB1 발현감소가 공통적인 특징이라고 판단하게 되었으며, H3K9me3 조절자인 SETDB1 HMTase 가 감소하는 현상이 항암과정을 어떻게 조절하는지에 대하여 의문을 제기하게 되었다.
SETDB1은 HMTase (Histone Methyltransferase)로, 단백질 구조는 1291개의 아미노산으로 구성되어 있으며, C-말단 부위에 히스톤 메틸기 전이효소 활성에 관여하는 SET 도메인을 포함하며, 단백질 결합에 관여하는 튜더 도메인 (tudor domain), 메틸 CpG DNA 결합 도메인 등을 포함한다 (Harte et al., 1999).
SETDB1의 기능적인 연구로는 H3K9me3와 관련하여 여러 단백질과 상호작용하고 후생적 유전자 침묵 (epigenetic gene silencing)을 조절하여 염색질 구조 안정화에 기여한다는 논문들이 보고되고 있다 (Cho et al., 2014; Liu et al., 2014; Maksakova et al., 2011). 특히 SETDB1은 KAP-1과 상호작용하여 유전자 침묵을 일으킨다고 알려져 있다 (Schultz et al., 2002). 또한, HP1a (heterochromatin protein 1a)와 CAF1 (chromatin assembly factor 1) 단백질과 결합하여 이질염색질 (heterochromatin)을 조절한다고 보고되었으며 (Schultz et al., 2002), 신규 DNA 메틸화 (de novo DNA methylation)와 관련이 있다 (Rowe et al., 2013).
SETDB1은 여러 암세포에서도 많은 연구가 진행되고 있다. 특히 암세포에서 SETDB1 유전자가 증폭되어 과발현되는 형태로 존재하고 있으며 (Rodriguez-Paredes et al., 2014), 또한 폐암 (Rodriguez-Paredes et al., 2014), 흑색종 (melanoma) (Ceol et al., 2011), 유방암, 백혈병 등 질병에 관련되어 있는 단백질이라고 알려져 있다 (Sun et al., 2014). 이외에도 관련된 질병으로 헌팅턴병 (Ryu et al., 2006), 신장 질병, 정신분열증 등이 있다 (Chase et al., 2013). 즉, SETDB1이 관여하는 질병들은 주로 유전적인 질병들이 대다수를 차지하고 있다.
SETDB1은 여러 암세포에서 과발현되고 여러 질병과 관련이 있어 항암효과에 대해 제시되고 있다. 3-deazaneplanocin A (DZNep)은 H3K27me3 HMTase인 EZH2를 번역 후 수준에서 조절하며, 뿐만 아니라 H3K9 HMTase인 SETDB1은 전사 수준에서 유전자 발현을 조절한다고 보고되었다 (Lee and Kim, 2013a). 또한 파클리탁셀 (Paclitaxel,PTX; Taxol이라고도 함)에 의해 표적 유전자의 프로모터 영역에 p53의 의존적으로 SETDB1의 단백질 발현이 억제되는 것으로 보고되어 있다 (Noh et al., 2014).
항암화학요법은 일반적으로 인체에 독성 부작용을 일으키고 비용도 고가이다. 그러므로, 항암화학요법을 수행할 때 특정 항암제에 대한 내성이 있는지 여부를 미리 진단할 수 있다면 인체에 미칠 독성 부작용을 피할 수 있을 것이다.
따라서, 본 발명은 종양 환자가 항암치료와 관련이 깊은 SETDB1 단백질에 대한 siRNA 및/또는 항암제를 처리하여 그 발현이 공통적으로 증가하는 단백질들을 동정함으로써, 항암제 내성을 나타내는지 여부를 항암화학치료에 앞서 미리 진단할 수 있는 바이오마커를 제공하는 것을 목표로 한다.
또한, 본 발명은 상기 바이오마커를 이용한 진단 킷트를 제공하는 것을 목표로 한다.
이를 위하여 본 발명자들은 3종의 siRNA SETDB1 (siSETDB1)를 주문 제작하였으며, A549 세포에 트랜스펙션을 수행하였다. 6 웰 플레이트에 A549 세포를 분주한 후, 리포펙타민 2000과 siRNA 스크램블, #1, #2, #3의 안티센스 및 센스 siSETDB1 100 pmol을 혼합한 후, 세포에 트랜스펙션하여 웨스턴 블롯과 RT-PCR을 수행하였다. 웨스턴 블롯 결과 대조군과 siRNA 스크램블에 비해 siSETDB1 #1, #2에 의한 SETDB1 발현 감소를 확인할 수 있었다.
다양한 유전자 발현 변화를 조사하기 위해 siSETDB1을 트랜스펙션한 후 RNA를 추출하여 RNA 서열 스크리닝을 수행하였다. 또한 SETDB1 발현에 영향을 미쳤던 항암제 독소루비신 및/또는 탁솔을 처리한 세포들로부터 RNA를 추출하여 SETDB1의 감소를 확인한 후 RNA 서열 스크리닝도 함께 수행하였다.
총 24,331종의 유전자들을 대상으로 독소루비신, 탁솔, siSETDB1에 의해 발현이 증가한 유전자를 분석하였다. 독소루비신에 의해 3903종의 유전자가 2배 이상 상향조절되었으며, 1576종의 유전자가 5배 이상 증가함을 확인하였다. 탁솔에 의해 2016종의 유전자가 2배 이상, 428종의 유전자가 5배 이상 증가함을 확인하였다. 또한, siSETDB1에 의해 562종의 유전자가 2배 이상 증가하였으며, 58종의 유전자는 5배 이상 증가하였음을 확인하였다.
5배 이상 증가한 유전자들의 온톨로지 분석을 수행한 결과, 독소루비신 처리로 발현이 증가한 유전자들은 종양 관련 경로, p53 신호전달 경로, ECM-수용체 관련 경로 등과 관련된 유전자군들이 변화되었음을 알 수 있었다. 탁솔의 경우 사이토카인 수용체 관련 경로, 국소 접착 (focal adhesion), 엔도사이토시스 등의 경로가 작동되었음을 알 수 있었다. siSETDB1에 의해 발현이 증가한 유전자군은 주로 MAP 카이네이즈 경로와 관련된 유전자군임을 알 수 있었다.
이러한 독소루비신, 탁솔, siSETDB1에 의해서 공통으로 상향조절된 유전자를 분석한 결과, 222종의 유전자가 독소루비신과 탁솔 처리군에서 공통적으로 발현이 증가하였으며, 탁솔과 siSETDB1은 15종의 유전자가 공통, 독소루비신과 siSETDB1은 24종의 유전자가 공통이었다.
특히, 독소루비신, 탁솔 및 siSETDB1 간에 공통적으로 발현이 증가한 유전자는 모두 9종이며, 이 중에는 FosB, Jun 등과 같은 발암 AP-1 구성요소들이 포함되어 있었다.
본 발명은 FOSB, EGR2, JUN, DACT3, ABCD2, ATP1B2, AVPR1A, GFOD1 및 ZFPM2 중 선택된 1종 이상의 단백질을 포함하는, 종양 환자의 항암제 내성 진단용 바이오마커 조성물에 관한 것이다.
또한, 본 발명은 상기 항암제가 독소루비신임을 특징으로 하는, 종양 환자의 항암제 내성 진단용 바이오마커 조성물에 관한 것이다.
또한, 본 발명은 상기 항암제가 탁솔임을 특징으로 하는, 종양 환자의 항암제 내성 진단용 바이오마커 조성물에 관한 것이다.
또한, 본 발명은 FOSB, EGR2, JUN, DACT3, ABCD2, ATP1B2, AVPR1A, GFOD1 및 ZFPM2 중 선택된 1종 이상의 단백질 또는 그 면역원성 단편에 특이적으로 결합하는 항체를 포함하는, 종양 환자의 항암제 내성 진단용 킷트에 관한 것이다.
또한, 본 발명은 상기 항암제가 독소루비신임을 특징으로 하는, 종양 환자의 항암제 내성 진단용 킷트에 관한 것이다.
또한, 본 발명은 상기 항암제가 탁솔임을 특징으로 하는, 종양 환자의 항암제 내성 진단용 킷트에 관한 것이다.
또한, 본 발명은 상기 킷트가 기질과의 반응에 의하여 발색하는 표지체가 접합된 이차항체 접합체; 상기 표지체와 발색 반응하는 발색기질 용액; 세척액; 및 효소반응 정지액을 추가로 포함하는 것을 특징으로 하는, 종양 환자의 항암제 내성 진단용 킷트에 관한 것이다.
본 발명자들은 대표적인 항암제인 독소루비신과 탁솔 및 siSETDB1을 처리하였을 때 발현이 증가하는 단백질 9종을 동정하였으며, 이 단백질들은 항암제 내성 진단용 바이오마커로 유용할 것으로 보인다.
도 1은 독소루비신과 탁솔 처리로 SETDB1 발현이 조절되는 양상을 관찰한 결과이다. (A) A549 세포와 (B) Hela 세포에서 항암제인 독소루비신 (Doxo) (2 μM)과 탁솔 (Taxol) (500 nM)을 각각 48시간 처리한 후 웨스턴 블롯으로 SETDB1 단백질 감소 변화를 확인하였다. 대조군; 무처리, Doxo; 독소루비신 (2 μM), Taxol; 탁솔 (Taxol) (500 nM).
도 2는 A549 세포에서 사이클로헥시미드 (cycloheximide) (50 ㎍/㎖) 12시간 처리 후, (A) Doxo (2 μM)와 (B) Taxol (500 nM)을 각각 48시간 처리하고 웨스턴 블롯으로 SETDB1 단백질 감소를 확인한 것이다. 대조군; 무처리, CHX; 사이클로헥시미드 (50 ㎍/㎖), Doxo; 독소루비신 (2 μM), Taxol; 탁솔 (500 nM)
도 3은 여러 항암제와 siRNA에 의해 SETDB1 발현이 감소하는 것을 나타내는 사진이다. (A, B) A549 세포에 Doxo (2 μM)와 Taxol (500 nM)을 각각 48시간 처리한 후 (A) 웨스턴 블롯과 (B) RT-PCR로 SETDB1 발현 감소를 확인하였다. (C, D) A549 세포에 SETDB1 표적 siRNA #1, #2, #3을 트랜스펙션한 후, 48시간 뒤 (C) 웨스턴 블롯과 (D) RT-PCR로 SETDB1 발현 감소를 확인하였다. Control; 무처리 대조군, S; siRNA scramble, Doxo; Doxorubicin (2 μM), Taxol; paclitaxel (Taxol) (500 nM).
도 4는 SETDB1 발현 감소로 인하여 변화된 유전자군을 분석한 결과이다.(A) RNA 서열 분석을 통하여 SETDB1 유전자 발현이 감소한 것을 확인하였다. (B) 총 24331종의 유전자 중 Doxo에 의해 1576종 유전자가 증가하였고, Taxol에 의해 428종 유전자가 증가하였으며, siSETDB1에 의해 58종의 유전자가 증가하였다. (C) Doxo와 Taxol에 의해 공통으로 222종의 유전자, Taxol과 siSETDB1에 의해 공통으로 15종의 유전자, Doxo와 Taxol에 의해 공통으로 24종의 유전자가 증가하였으며, 3가지에 의한 공통된 유전자는 9종 (FOSB, JUN, EGR2 등)이 증가하는 것을 확인하였다.
도 5는 Doxo, Taxol 및 siSETDB1 중 2종 이상의 처리로 발현이 증가한 유전자를 정리한 표이다.
아래에서는 구체적인 실시예를 들어 본 발명의 구성을 좀 더 상세히 설명한다. 그러나, 본 발명의 범위가 실시예의 기재에만 한정되는 것이 아님은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 자명하다.
1. 세포배양, 항체
Hela (Human cervical cancer) 세포는 DMEM (Dulbeco's Modified Eagle's Medium), IMR90 (human embryo fibroblasts) 세포와 293 (Human Embryonic Kidney) 세포는 EMEM (Eagle's minimum essential medium), A549 (adenocarcinomic human alveolar basal epithelial) 세포는 RPMI (Rosewell Park Memorial Institute) 배지에서 각각 배양하였으며, 10% 우태혈청 (Fetal bovine serum, FBS)과 1X 페니실린/스트렙토마이신을 포함한 배지를 사용하였고 5% CO₂배양기에서 배양하였다. 항체로는 토끼 항-SETDB1 [ab 12317], 마우스 항-액틴 [a544], 토끼 항-EZH2 [ab3748], 마우스 항-SUV39H1 [#05-617], 마우스 항-p53 [sc-126], 마우스 항-FLAG [F3165], 항-토끼 [sc2004], 항-마우스 [sc2005] 항체를 사용하였다.
2. 약물 처리
A549 세포와 Hela 세포에 항암제 독소루비신 (doxorubicin; Doxo) (2 μM), 파클리탁셀 (paclitaxel; 탁솔 (Taxol)이라고도 명명함) (500 nM)을 48시간 처리하여 세포를 모았다. A549 세포에 단백질 합성 억제제인 사이클로헥시미드 (cycloheximide) (50 ㎍/㎖)을 12시간 처리하고, 항암제 독소루비신 (2 μM), 탁솔 (500 nM)을 48시간 처리하여 세포를 모았다.
3. siRNA 제조 및 일시적 트랜스펙션
6 웰 플레이트에 세포를 50%로 분주한 후 24시간 뒤, 5 ㎕의 리포펙타민 (lipofectamine) 2000 [Invitrogen]과 siRNA (Scramble), siRNA SETDB1 센스, 안티센스 혼합물 (100 mol) [Bioneer]을 혼합하여 2시간 동안 FBS가 들어있지 않은 배지 (무혈청 배지)에 있던 세포에 분주하였다. 5시간 후, FBS가 들어있는 배지로 갈아주었고 48시간 더 배양하였다. 이후, 세포를 모아 실험에 사용하였다.
siRNA SETDB1 #1 Sense 서열번호 #1 5’-GAGACUAGAAGAGUGUCUA-3’
siRNA SETDB1 #1 Antisense 서열번호 #2 5’-UAGACACUCUUCUAGUCUC-3’
siRNA SETDB1 #2 Sense 서열번호 #3 5’-GAUCUAUCGAGGCUCUCUACA-3’
siRNA SETDB1 #2 Antisense 서열번호 #4 5’-UGUAGAGCCUCGAUAGAUC-3’
siRNA SETDB1 #3 Sense 서열번호 #5 5’-CGUGACUUCAUAGAGGAGU-3’
siRNA SETDB1 #3 Antisense 서열번호 #6 5’-ACUCCUCUAUGAAGUCACG-3’
4. 웨스턴 블롯 분석
모은 세포에 RIPA (Radioimmunoprecipitation assay) 완충액을 가하여 세포를 용균하고 12500 rpm으로 30분간 원심분리하여 단백질 상층액을 얻어 시료로 사용하였다. 단백질은 BCA 단백질 분석 킷트 [PIERCE] 또는 브래드포드 분석 킷트 [BioSolution]를 사용하여 소 혈청 알부민 (bovine serum albumin; BSA)을 기준으로 해서 분광광도계 (bradford 595 nm, BCA assay 562 nm)로 농도를 측정하였다. 단백질은 5X SDS 로딩 완충액 (Tris-HCl pH 6.8 250 mM, 글리세롤 50%, SDS 10%, DTT 0.5 M, BPB 0.5%; BioSoltion; [Cat. #BS002])과 혼합하여 8% 폴리아크릴아마이드 젤에서 SDS-PAGE (170 V, 400 mA)로 분리하였다. 이후, 전기이동 (60 V, 400 mA)으로 단백질을 PVDF (Polyvinylidene difluoride) 막으로 옮겼다. 단백질이 있는 막에 5% 탈지유로 블로킹하고, 1X TBST 완충액 (20 mM Tris, 150 mM NaCl, pH 8.0, 0.1% Tween 20)으로 세척한 다음 항체 (예, SETDB1 (ab 12317))를 붙였다. 그 후, ECL 용액 (Animal Genetics, Inc.)으로 감광시킨 후 암실에서 X-선 필름에 노출한 후 인화하였다.
5. 역전사 (Reverse Transcription) PCR
모은 세포에 트리졸 (Trizol) [TRI Reagent solution; Ambion] 1 ㎖를 넣고, 침전물을 풀어주었다. 상온으로 5분 유지한 후 클로로포름 [Daejung; Cat. 2548-4100] 200 ㎕를 넣고 손으로 흔들어주었다. 상온으로 15분 유지한 후 12000 rpm으로 4℃에서 15분 동안 원심분리하였다. 그 후 상층액을 새로운 튜브에 옮기고 이소프로필 알콜 [DUKSAN; DSPGR Reagent] 600 ㎕를 넣고 inverting을 해주었다. 상온에서 10분 유지한 후 12000 rpm 4℃에서 10분 동안 원심분리하였다. 상층액을 버리고 침전물을 건드리지 않은 상태에서 75% 에탄올 [RP090-1]을 넣고 12000 rpm 4℃에서 10분 동안 원심분리하였다. 자연건조 후, DEPC (diethyl pyrocarbonate) (증류수)로 침전물 (RNA)을 풀어주고 정량하였다. 그 다음, cDNA를 합성하기 위해 새로운 튜브에 RNA, 무작위 6mer (Random hexamer) [Enzynomics; Cat.N101] (20 ㎕), DEPC를 넣고 65℃로 5분 동안 가열하였다. 그 후, RTase [M-MLV Revers Transcriptase; Enzynomics; Cat. RT0015] (10U), 10X M-MLV 역전사 완충액, dNTP [Enzynomics; Cat.N001] (2 mM), DEPC를 넣고 42℃로 1시간 30분간, 72℃로 10분간 가열하였다. 그 후 PCR을 수행하였다. PCR은 cDNA, 프라이머 (표 2), 소 혈청 알부민 (1 mg/ml), dNTP [Enzynomics; Cat.N001] (2 mM), nTaq DNA 폴리머레이즈 [Enzynomics; Cat. P050], 10X nTaq 완충액 [Enzynomics; Cat. B101], 증류수를 넣고 95℃로 45초, 60℃ 또는 64℃로 45초, 72℃로 45초 조건으로 수행하였다.
서열번호 #7 SETDB1 Sense (GCCTGCCATCAACTAACTATCC)
서열번호 #8 SETDB1 Antisense (CCTGGTCCTTCAAGTCTACACC)
서열번호 #9 Actin Sense (GTGGGGCGCCCCAGGCACCAGGGC)
서열번호 #10 Actin Antisense (CTCCTTAATGTCACGCACGATTTC)
서열번호 #11 IFI6, Sense (TGTCGGTGTCAGAGCTGAAG)
서열번호 #12 IFI6, Antisense(GCCCTTGTTATTCCTCACCA)
서열번호 #13 TXNIP, Sense (ACGCTTCTTCTGGAAGACCA)
서열번호 #14 TXNIP, Antisense (AGGGGTATTGACATCCACCA)
서열번호 #15 ISG15 Sense (AAGGCGGTATCGCTTTTCTT)
서열번호 #16 ISG15 Antisense (ATCGCAGACCAGCTCATCA)
서열번호 #17 FOSB Sense (CCGGGGATAGCCTCTCTTAC)
서열번호 #18 FOSB Antisense (CCCTTCGGATTCTCCTTTTC)
서열번호 #19 JUN Sense (CCCAAGAACGTGACAGATGA)
서열번호 #20 JUN Antisense (CACTGTCTGAGGCTCCTCCT)
서열번호 #21 EGR2 Sense (ATTCTGAGGCCTCGCAAGTA)
서열번호 #22 EGR2 Antisense (TGCTTTTCCGCTCTTTCTGT)
6. RNA 서열분석
IMR90 세포의 DBPR25, A549 세포의 siRNA, 독소루비신, 탁솔 처리한 RNA 시료를 BML에 의뢰하여 분석하였다.
결과 1: SETDB1 은 여러 항암제들의 공통의 표적 단백질이다.
탁솔, DZNep 등과 같은 항암제를 처리하였을 때 SETDB1 HMTase 발현이 조절된다고 보고되었다 (Lee and Kim, 2013; Noh et al., 2014). 또 다른 항암제인 독소루비신 (Doxorubicin; Doxo) 등을 처리하였을 때 SETDB1 발현이 어떻게 조절되는지를 조사하고자 실험을 진행하였다.
암세포인 A549 세포와 Hela 세포에 항암제 독소루비신 (2 μM), 탁솔 (500 nM)을 48시간 동안 처리하고 웨스턴 블롯으로 SETDB1 발현 변화를 관찰하였다.
그 결과, A549 세포에서 독소루비신을 처리하였을 때, 대조군과 비교하여 SETDB1의 발현이 감소함을 확인하였고, 또한 이전에 보고된 바와 같이 탁솔에서도 SETDB1의 발현이 감소함을 확인할 수 있었다 (도 1). 즉, 독소루비신과 탁솔에 의해 SETDB1의 발현이 감소하였으며, 실험 결과로는 탁솔보다 독소루비신이 SETDB1을 더 많이 감소시키는 것으로 나타났다. 한편, 또 다른 히스톤 메틸 트랜스퍼레이즈로 알려진 EZH2 (H3K27me3)와 SUV39H1 (H3K9me3)에 독소루비신과 탁솔을 처리하여 관찰한 결과, EZH2와 SUV39H1의 단백질 발현 변화는 일어나지 않았다.
한편, 항암제 처리에 의해 종양 억제자 (tumor suppressor)로 알려진 p53 단백질 발현이 증가한다고 알려져 있다 (Vici et al., 2014; Zhou et al., 2014). 항암제인 독소루비신과 탁솔을 처리한 결과, p53 단백질 발현이 증가하는 것을 확인하였다. 액틴은 로딩 대조군으로 사용하였다 (도 1). A549 세포에서보다 Hela 세포에 독소루비신과 탁솔을 처리하였을 때 더 두드러진 p53 단백질 발현 증가를 나타내었다. Hela 세포에 독소루비신과 탁솔을 처리하면 SETDB1 발현이 감소하였고 A549 세포와 마찬가지로 EZH2와 SUV39H1의 발현 감소 경향은 보이지 않았으며 p53은 증가한 것으로 보인다 (도 1).
이러한 결과들은 여러 암세포에 항암제를 처리하였을 때 SETDB1 발현 조절에 대한 기작이 존재함을 의미하는 것이다.
결과 2: SETDB1 HMTase 중 상대적으로 불안정성을 보이는 단백질이다.
SETDB1이 항암제인 독소루비신과 탁솔에 의해서 감소하는 것을 확인하였다. 그렇다면 이러한 항암제에 의해서 감소되는 SETDB1은 어떠한 특징이 있는지 조사하기 위해 단백질 억제제로 사이클로헥시미드 (cycloheximide; CHX)를 사용하였다. CHX로 단백질 합성을 저해하였을 때 항암제 처리에 의한 SETDB1 발현 변화가 어떻게 조절되는지를 살펴보았다.
A549 세포에 사이클로헥시미드 (CHX) (50 ㎍/㎖)를 12시간 처리하고, 각각 독소루비신 (2 μM)과 탁솔 (500 nM)을 48시간 처리하였다. 세포를 모아 웨스턴 블롯으로 SETDB1 발현변화를 관찰하였다.
그 결과, 대조군과 비교해 보았을 때 CHX 단독 처리에 의해 SETDB1 발현이 미세하게 감소하는 것을 관찰하였다. 독소루비신에 의해 감소한 SETDB1은 독소루비신과 CHX 혼합 처리에 의해 훨씬 더 감소하는 것을 볼 수 있었다. 또한, 탁솔과 CHX 혼합 처리에서도 같은 양상이 보인다. 다른 HMTase인 EZH2와 SUV39H1의 발현 변화는 없었다. CHX 처리에 의해 p53의 발현은 감소한 것으로 보이며, 독소루비신에 의해 p53의 발현이 증가한 것으로 보인다. 독소루비신과 CHX을 혼합 처리하면, p53은 독소루비신 단독처리에 비해 감소한 것을 확인하였다 (도 2).
이러한 결과가 의미하는 것은 SETDB1 단백질 합성이 저해되었을 때 상대적으로 불안정한 단백질이라고 볼 수 있다. 즉, 다른 단백질에 비해 반감기가 짧은 것으로 보이고, 이 짧은 반감기로 인해 조절자로서의 기능을 할 것이라고 추정된다. SETDB1은 항암제 또는 여러 가지 신호에 인하여 쉽게 변하는 가변적인 단백질이며 다른 역할을 하는데 중요한 매개체가 될 수도 있는 단백질이라 할 수 있다.
결과 3: A549 세포에서 항암제와 siRNA 로 인한 SETDB1 감소
한편, A549 세포에 항암제인 독소루비신, 탁솔 처리로 인한 SETDB1의 발현 감소를 웨스턴 블롯으로 확인하였다 (도 3). 반복 실험으로 SETDB1의 발현이 감소하는 것을 다시 확인하였고, RT-PCR로 RNA 수준에서 SETDB1이 감소하는 것을 알 수 있었다. 또한, 단백질 억제제인 CHX를 처리하였을 때 SETDB1 발현이 감소하였다. 그러므로, SETDB1은 여러 가지 신호에 의하여 쉽게 변하는 가변적인 단백질이며, 다른 역할을 하는데 중요한 매개체가 될 수 있다고 추정된다. 그렇다면, SETDB1의 발현을 감소시키는 두 번째 방법으로 siRNA를 제작하고, siRNA SETDB1 (siSETDB1)에 의해 SETDB1의 발현이 감소하는 것을 확인하고자 하였다.
siRNA SETDB1 #1, #2, #3을 제작하여 (표 1 참조) A549 세포에 트랜스펙션하였다. 6 웰 플레이트에 A549 세포를 50%로 분주하고, 24시간 후 트랜스펙션을 수행하였다. 5 ㎕의 l리포펙타민2000 [Invitrogen]과 siRNA 스크램블, #1, #2, #3의 센스, 안티센스 siSETDB1 100 pmol을 혼합한 후, 2시간 동안 FBS가 없는 RPMI 배지 (무혈청 배지)에 있던 세포에 분주하였다. 5시간 후, FBS가 들어있는 RPMI 배지로 갈아주었고 48시간 더 배양하였다. 이 후, 세포를 모아 웨스턴 블롯과 RT-PCR을 수행하였다.
웨스턴 블롯 결과 대조군과 siRNA 스크램블(도 3의 "S")에 비해 siSETDB1 #1, #2, #3에 의해 SETDB1 발현이 감소하였다. siSETDB1 #1은 #2, #3보다 효율이 더 좋은 것으로 나타났다. 또한, RT-PCR을 수행하여 RNA 수준에서도 SETDB1이 감소하는 것을 확인하였다. 마찬가지로 siSETDB1 #1은 #2, #3보다 더 효율이 좋았다 (도 3). 이러한 효율로 항암제인 독소루비신, 탁솔과 siSETDB1이 SETDB1 발현을 감소시킨 것을 확인하였다. 이를 통해 SETDB1 녹아웃으로 인한 하류 (downstream)의 공통된 표적 유전자를 찾고자 하였다.
결과 4: Doxo , Taxol , siSETDB1 에 의해 변화된 유전자군
Doxo, Taxol, siSETDB1로 SETDB1의 감소를 확인한 RNA를 추출하여 RNA 서열을 분석하였다. 그 결과, 대조군에 비해 세 가지 군에서 모두 SETDB1이 감소하는 것을 확인하였다 (도 4). 총 24331종의 유전자를 발현 분석하여 Doxo, Taxol, siSETDB1에 의해 발현이 증가한 유전자를 동정하였다. Doxo에 의해 3903종의 유전자가 2배 이상 상향조절되었으며, 1576종의 유전자 (SNORD76, PPP2R2B, HCAR2 등)가 5배 이상 상향조절되었다. Taxol에 의해 2016종의 유전자가 2배 이상 상향조절되었으며, 428종의 유전자 (SNORD91B, SNORD16, MIR222 등)가 5배 이상 상향조절되었다. 또한, siSETDB1에 의해 562종의 유전자가 2배 이상 상향조절되었으며, 5배 이상 상향조절된 58종의 유전자 (SNORD80, MIR614, MIR5047 등)를 동정하였다.
이러한 Doxo, Taxol, siSETDB1에 의해서 공통으로 상향조절된 유전자를 분석하였다. 그 결과 Doxo와 Taxol은 222종의 유전자가 공통이며, Taxol과 siSETDB1은 15종의 유전자가 공통이며, Doxo와 siSETDB1의 24종의 유전자가 공통이었다. Doxo, Taxol, siSETDB1 세 가지의 공통도ZFPM2, GFOD1, ABCD2, ATP1B2, AVPR1A, EGR2, DACT3)으로 분석되었다 (도 4). 이러한 결과는 SETDB1 녹아웃 시스템에서 SETDB1에 의해서 조절되었던 유전자일 것이다.
3가지 실험군의 공통인 9개의 유전자중 FOSB, JUN, EGR2 3가지 유전자를 대상으로 RT-PCR을 수행하였다. 이러한 유전자들은 대조군에 비해 RNA 수준에서 Doxo, Taxol, siSETDB1에 의해서 증가한 것을 확인하였다.
이후, 유전자들에 대한 온톨로지 분석 결과, p53 신호전달경로 (CDKN1A, TP53I3, CD82, RRM2, SERPINE1, SFN), 컴플리먼트와 응고 캐스캐이드 (Complement and coagulation cascades) (FGG, FGA, C3, FGB, SERPINE1, TFPI), ABC transporters (TAP1, ABCA1, ABCA13, ABCA12), 근위축성 측색 경화증 (Amyotrophic lateral sclerosis; ALS) (GPX1, NEFH, CASP1, NEFL)과 관련된 유전자들을 동정하였다.
위 결과를 요약해 보면, (A) RNA 서열 분석을 통하여 SETDB1 유전자 발현이 감소한 것을 확인하였다. (B) 총 24331종의 유전자 중 Doxo에 의해 1576종 유전자 발현이 증가하였고, Taxol에 의해 428종 유전자 발현이 증가하였으며, siSETDB1에 의해 58종의 유전자 발현이 증가하였다. (C) Doxo 와 Taxol에 의해 공통으로 증가한 유전자가 222종, Taxol과 siSETDB1에 의해 공통으로 증가한 유전자가 15종, Doxo와 Taxol에 의해 공통으로 증가한 유전자가 24종이며, Doxo 와 Taxol 및 siSETDB1 세 가지에 의해 공통으로 증가한 유전자는 9종 (FOSB, JUN, EGR2 등)임을 확인하였다. (D) RT-PCR로 증가한 유전자들이 3가지 실험군에서 증가하는 것을 확인하였다. (E) 증가한 유전자들의 온톨로지 분석과 각 해당하는 유전자를 표로 나타내었다.
유전자 간의 비교로 Doxo와 Taxol은 222종의 유전자가 공통이며, Taxol과 siSETDB1은 15종의 유전자가 공통이다. Doxo와 siSETDB1은 24종의 유전자가 공통이다. 3가지의 공통 유전자는 9종으로 분석되었다.
SETDB1은 H3K9 메틸화를 조절하는 HMTase로서 본 발명에 따르면 항암과정에서 중요한 조절단백질로 예측된다. 일련의 실험 결과로써 항암제 탁솔뿐만 아니라 독소루비신에 의해서 SETDB1의 발현변화가 조절되는 것이 관찰되었다. SETDB1이 여러 항암제의 표적이 되는 이유는 다른 HMTase인 EZH2, SUV39H1에 비해 반감기가 짧기 때문으로 보인다.
Doxo와 Taxol 처리로 발현이 감소하는 공통 유전자는 항암제 처리에 의해 공통으로 작용하는 유전자이며 이들 중 SETDB1이 감소하는 것을 알 수 있었다. Taxol과 siSETDB1 처리 실험으로 Taxol에 의해서 감소한 유전자 중 SETDB1의 감소로 인해 증가한 유전자를 직접적으로 동정할 수 있었으며, 마찬가지로 Doxo와 siSETDB1 처리 실험에서 Doxo에 의해 감소한 유전자 중 SETDB1에 영향을 받는 유전자를 동정할 수 있었다. 또한, Doxo, Taxol, siSETDB1 처리에 영향을 받는 공통의 유전자는 모두 SETDB1에 의해서 발현이 조절되는 것을 알 수 있었다. 따라서, 3가지의 공통 유전자는 SETDB1의 표적 유전자로서 여러 조절기능을 가진 것으로 사료된다.
<110> University-Industry Cooperation Foundation, Kangwon National University <120> Biomarkers to diagnose anti-cancer medicine resistance of cancer patient and diagnostic kit therof <130> KWU-KKC-SETDB1-160113 <160> 22 <170> KoPatentIn 3.0 <210> 1 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> SETDB1 siRNA <400> 1 gagacuagaa gagugucua 19 <210> 2 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> SETDB1 siRNA <400> 2 uagacacucu ucuagucuc 19 <210> 3 <211> 21 <212> RNA <213> Artificial Sequence <220> <223> SETDB1 siRNA <400> 3 gaucuaucga ggcucucuac a 21 <210> 4 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> SETDB1 siRNA <400> 4 uguagagccu cgauagauc 19 <210> 5 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> SETDB1 siRNA <400> 5 cgugacuuca uagaggagu 19 <210> 6 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> SETDB1 siRNA <400> 6 acuccucuau gaagucacg 19 <210> 7 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> SETDB1 primer <400> 7 gcctgccatc aactaactat cc 22 <210> 8 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> SETDB1 primer <400> 8 cctggtcctt caagtctaca cc 22 <210> 9 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> actin primer <400> 9 gtggggcgcc ccaggcacca gggc 24 <210> 10 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> actin primer <400> 10 ctccttaatg tcacgcacga tttc 24 <210> 11 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> IFI6 primer <400> 11 tgtcggtgtc agagctgaag 20 <210> 12 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> IFI6 primer <400> 12 gcccttgtta ttcctcacca 20 <210> 13 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> TXNIP primer <400> 13 acgcttcttc tggaagacca 20 <210> 14 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> TXNIP primer <400> 14 aggggtattg acatccacca 20 <210> 15 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> ISG15 primer <400> 15 aaggcggtat cgcttttctt 20 <210> 16 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> ISG15 primer <400> 16 atcgcagacc agctcatca 19 <210> 17 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> FOSB primer <400> 17 ccggggatag cctctcttac 20 <210> 18 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> FOSB primer <400> 18 cccttcggat tctccttttc 20 <210> 19 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JUN primer <400> 19 cccaagaacg tgacagatga 20 <210> 20 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JUN primer <400> 20 cactgtctga ggctcctcct 20 <210> 21 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> EGR2 primer <400> 21 attctgaggc ctcgcaagta 20 <210> 22 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> EGR2 primer <400> 22 tgcttttccg ctctttctgt 20

Claims (8)

  1. FOSB, EGR2, JUN, DACT3, ABCD2, ATP1B2, AVPR1A, GFOD1 및 ZFPM2 중 선택된 1종 이상의 단백질을 포함하는, 종양 환자의 항암제 내성 진단용 바이오마커 조성물.
  2. 청구항 1에 있어서,
    상기 항암제는 독소루비신임을 특징으로 하는, 종양 환자의 항암제 내성 진단용 바이오마커 조성물.
  3. 청구항 1에 있어서,
    상기 항암제는 탁솔임을 특징으로 하는, 종양 환자의 항암제 내성 진단용 바이오마커 조성물.
  4. FOSB, EGR2, JUN, DACT3, ABCD2, ATP1B2, AVPR1A, GFOD1 및 ZFPM2 중 선택된 1종 이상의 단백질 또는 그 면역원성 단편에 특이적으로 결합하는 항체를 포함하는, 종양 환자의 항암제 내성 진단용 킷트.
  5. 청구항 4에 있어서,
    상기 항암제는 독소루비신임을 특징으로 하는, 종양 환자의 항암제 내성 진단용 킷트.
  6. 청구항 4에 있어서,
    상기 항암제는 탁솔임을 특징으로 하는, 종양 환자의 항암제 내성 진단용 킷트.
  7. 청구항 4에 있어서,
    상기 킷트는 기질과의 반응에 의하여 발생하는 표지체가 접합된 이차항체 접합체; 상기 표지체와 발색 반응하는 발색기질 용액; 세척액; 및 효소반응 정지액을 추가로 포함하는 것을 특징으로 하는, 종양 환자의 항암제 내성 진단용 킷트.
  8. 항암제에 대한 내성을 억제하는 방법으로서,
    항암제를 투여한 암세포 조직에 서열번호 1~6의 SETDB1의 siRNA 중 1종 이상을 트랜스펙션하여 항암제 내성을 억제하는 방법.
KR1020160007575A 2016-01-21 2016-01-21 종양 환자의 항암제 내성 진단용 바이오마커 및 이를 이용한 항암제 내성 진단용 킷트 KR20170087692A (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160007575A KR20170087692A (ko) 2016-01-21 2016-01-21 종양 환자의 항암제 내성 진단용 바이오마커 및 이를 이용한 항암제 내성 진단용 킷트

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160007575A KR20170087692A (ko) 2016-01-21 2016-01-21 종양 환자의 항암제 내성 진단용 바이오마커 및 이를 이용한 항암제 내성 진단용 킷트

Publications (1)

Publication Number Publication Date
KR20170087692A true KR20170087692A (ko) 2017-07-31

Family

ID=59419010

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160007575A KR20170087692A (ko) 2016-01-21 2016-01-21 종양 환자의 항암제 내성 진단용 바이오마커 및 이를 이용한 항암제 내성 진단용 킷트

Country Status (1)

Country Link
KR (1) KR20170087692A (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101875462B1 (ko) * 2016-12-29 2018-07-06 강원대학교산학협력단 FosB 유전자 프로모터를 이용한 종양 환자의 항암제 내성 진단용 바이오마커 및 이를 이용한 항암제 내성 진단용 킷트
CN108546757A (zh) * 2018-03-05 2018-09-18 上海长海医院 Zfpm2-as1在制备胃癌诊断试剂或试剂盒中的应用
WO2024054073A1 (ko) * 2022-09-07 2024-03-14 재단법인 아산사회복지재단 선행화학요법 내성의 고형암 환자 진단용 바이오마커 및 이를 이용한 선행화학요법 내성 진단을 위한 정보제공방법

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101875462B1 (ko) * 2016-12-29 2018-07-06 강원대학교산학협력단 FosB 유전자 프로모터를 이용한 종양 환자의 항암제 내성 진단용 바이오마커 및 이를 이용한 항암제 내성 진단용 킷트
CN108546757A (zh) * 2018-03-05 2018-09-18 上海长海医院 Zfpm2-as1在制备胃癌诊断试剂或试剂盒中的应用
CN108546757B (zh) * 2018-03-05 2021-09-07 上海长海医院 Zfpm2-as1在制备胃癌诊断试剂或试剂盒中的应用
WO2024054073A1 (ko) * 2022-09-07 2024-03-14 재단법인 아산사회복지재단 선행화학요법 내성의 고형암 환자 진단용 바이오마커 및 이를 이용한 선행화학요법 내성 진단을 위한 정보제공방법

Similar Documents

Publication Publication Date Title
Reddy et al. Nucleotide biosynthetic enzyme GMP synthase is a TRIM21-controlled relay of p53 stabilization
Lee et al. Oncogenic metabolism acts as a prerequisite step for induction of cancer metastasis and cancer stem cell phenotype
Chen et al. The role of cytochrome c oxidase subunit Va in non-small cell lung carcinoma cells: association with migration, invasion and prediction of distant metastasis
Horiuchi et al. Taking on challenging targets: making MYC druggable
Liu et al. miR-101 regulates expression of EZH2 and contributes to progression of and cisplatin resistance in epithelial ovarian cancer
Zhu et al. PTEN regulates renal extracellular matrix deposit via increased CTGF in diabetes mellitus
WO2011103016A2 (en) Compositions and methods for inhibiting ezh2
Snider et al. The β1 integrin activates JNK independent of CagA, and JNK activation is required for Helicobacter pylori CagA+-induced motility of gastric cancer cells
Basso et al. Inflammation and pancreatic cancer: molecular and functional interactions between S100A8, S100A9, NT-S100A8 and TGFβ1
Fukuda et al. Alu complementary DNA is enriched in atrophic macular degeneration and triggers retinal pigmented epithelium toxicity via cytosolic innate immunity
Liu et al. Cacalol, a natural sesquiterpene, induces apoptosis in breast cancer cells by modulating Akt-SREBP-FAS signaling pathway
Liu et al. Oxidative stress-elicited YY1 potentiates antioxidative response via enhancement of NRF2-driven transcriptional activity: A potential neuronal defensive mechanism against ischemia/reperfusion cerebral injury
Körbel et al. Treatment of SEC62 over-expressing tumors by Thapsigargin and Trifluoperazine
Li et al. FBXW7 mediates high glucose‑induced SREBP‑1 expression in renal tubular cells of diabetic nephropathy under PI3K/Akt pathway regulation
KR20170087692A (ko) 종양 환자의 항암제 내성 진단용 바이오마커 및 이를 이용한 항암제 내성 진단용 킷트
Yan et al. The antimicrobial peptide YD attenuates inflammation via miR-155 targeting CASP12 during liver fibrosis
Zhang et al. Remote Ischemic Preconditioning Protects Cisplatin‐Induced Acute Kidney Injury through the PTEN/AKT Signaling Pathway
Zhang et al. JQ1, a selective inhibitor of BRD4, suppresses retinoblastoma cell growth by inducing cell cycle arrest and apoptosis
Svobodová et al. 2, 3, 7, 8-Tetrachlorodibenzo-p-dioxin (TCDD) disrupts control of cell proliferation and apoptosis in a human model of adult liver progenitors
Cao et al. Regulatory effects of Prohibitin 1 on proliferation and apoptosis of pulmonary arterial smooth muscle cells in monocrotaline-induced PAH rats
Zeng et al. Dickkopf 3: a novel target gene of miR-25-3p in promoting fibrosis-related gene expression in myocardial fibrosis
CN106420712B (zh) 茴香霉素在制备预防/治疗卵巢癌药物中的应用
Zhao et al. Dual knockdown of N-ras and epiregulin synergistically suppressed the growth of human hepatoma cells
WO2019091397A1 (zh) 叠氮根皮苷素在制备治疗非酒精性脂肪肝药物中的用途
Liu et al. miR-124-3p delivered using exosomes attenuates the keratinocyte response to IL-17A stimulation in psoriasis

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E601 Decision to refuse application