KR20170041738A - Carbon nanotube-macromolecule composite layered transparent flexible electrode and preparation method therefor - Google Patents

Carbon nanotube-macromolecule composite layered transparent flexible electrode and preparation method therefor Download PDF

Info

Publication number
KR20170041738A
KR20170041738A KR1020177003539A KR20177003539A KR20170041738A KR 20170041738 A KR20170041738 A KR 20170041738A KR 1020177003539 A KR1020177003539 A KR 1020177003539A KR 20177003539 A KR20177003539 A KR 20177003539A KR 20170041738 A KR20170041738 A KR 20170041738A
Authority
KR
South Korea
Prior art keywords
carbon nanotube
polymer
flexible electrode
transparent flexible
electrode
Prior art date
Application number
KR1020177003539A
Other languages
Korean (ko)
Other versions
KR101956145B1 (en
Inventor
하이옌 하오
리페이 차이
레이 다이
Original Assignee
광동 어글레이어 압토일렉트라닉 머티어리얼즈 컴퍼니 리미티드
베이징 어글레이어 테크놀러지 디벨롭먼트 컴퍼니 리미티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 광동 어글레이어 압토일렉트라닉 머티어리얼즈 컴퍼니 리미티드, 베이징 어글레이어 테크놀러지 디벨롭먼트 컴퍼니 리미티드 filed Critical 광동 어글레이어 압토일렉트라닉 머티어리얼즈 컴퍼니 리미티드
Publication of KR20170041738A publication Critical patent/KR20170041738A/en
Application granted granted Critical
Publication of KR101956145B1 publication Critical patent/KR101956145B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L51/0021
    • H01L51/5203
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

탄소나노튜브-폴리머 층상 복합 투명 플렉서블 전극에 있어서, 상기 전극은 PET 표면을 내부에서 외부를 향해 순서대로 탄소나노튜브층과 전도성 폴리머층이 분포한다. 탄소나노튜브를 전도성 매질로 삼아 분산도가 높고 점도 제어가 가능한 탄소나노튜브 복합 전도성 잉크로 스핀 코팅 또는 잉크젯 프린팅 공정을 거쳐 PET 표면에 균일한 망 구조의 탄소나노튜브 박막을 제조한 후, 그 표면에 한 층의 PEDOT:PSS 전도성 폴리머를 스핀 코팅 또는 잉크젯 프린팅하여, 표면 거칠기가 낮고 전도성이 우수한 탄소나노튜브-폴리머 층상 복합 투명 전극을 형성하였다. 상기 층상의 탄소나노튜브-폴리머 복합 투명 플렉서블 전극의 시트 저항은 20 내지 30Ω/□, 광투과율은 80% 이상에 달할 수 있다. 상기 층상 복합 전극 박막은 터치스크린, 태양전지 및 OLED 등 디스플레이에 필요한 플렉서블 투명 전극 부문에서 우수한 활용 전망을 가지고 있다.In the carbon nanotube-polymer layered composite transparent flexible electrode, the electrode has a carbon nanotube layer and a conductive polymer layer distributed in order from the inside to the outside of the PET surface. A carbon nanotube thin film having uniform network structure is prepared on a PET surface by spin coating or ink jet printing with a carbon nanotube composite conductive ink having high dispersion and viscosity control using carbon nanotubes as a conductive medium, , A transparent PEDOT: PSS conductive polymer was spin-coated or ink-jetted to form a transparent carbon nanotube-polymer layered transparent electrode having low surface roughness and excellent conductivity. The layered carbon nanotube-polymer composite transparent flexible electrode may have a sheet resistance of 20 to 30? / ?, and a light transmittance of 80% or more. The layered composite electrode thin film has excellent application prospects in the field of flexible transparent electrodes required for displays such as touch screens, solar cells, and OLEDs.

Figure pct00003
Figure pct00003

Description

탄소나노튜브-폴리머 층상 복합 투명 플렉서블 전극 및 그 제조방법 {CARBON NANOTUBE-MACROMOLECULE COMPOSITE LAYERED TRANSPARENT FLEXIBLE ELECTRODE AND PREPARATION METHOD THEREFOR}TECHNICAL FIELD [0001] The present invention relates to a carbon nanotube-polymer layered transparent flexible electrode and a method of manufacturing the same. BACKGROUND ART [0002]

본 발명은 탄소나노튜브를 전도성 매질로 삼아 스핀 코팅 또는 잉크젯 프린팅 공정을 거쳐 PET 표면에 균일한 망 구조의 탄소나노튜브 박막을 제조한 후, 그 표면에 한 층의 PEDOT:PSS 전도성 폴리머를 스핀 코팅 또는 잉크젯 프린팅하여, 표면 거칠기가 낮고 전도성이 우수한 탄소나노튜브-폴리머 층상 복합 투명 전극을 형성하였다. The present invention relates to a method for producing a carbon nanotube thin film having uniform network structure on a PET surface by spin coating or inkjet printing using carbon nanotubes as a conductive medium and then coating one layer of PEDOT: Or ink-jet printing, thereby forming a carbon nanotube-polymer layered composite transparent electrode having a low surface roughness and excellent conductivity.

탄소나노튜브는 전형적인 층상 중공 구조 특징을 가진 탄소 재료로서, 탄소나노튜브의 튜브 몸체가 육각형 흑연탄소 고리 구조 단위로 구성되는 특수 구조(방사상 사이즈는 나노미터 레벨, 축방향 사이즈는 마이크로미터 레벨)를 가진 일차원 양자 재료이다. 그 튜브 벽은 주로 수개 층에서 수십개 층의 동일축 원형 튜브로 구성된다. 층과 층 사이 간격은 고정적으로 유지되며 이는 약 0.34nm, 직경은 일반적으로 2 내지 20nm이다. 탄소나노튜브의 탄소 원자의 P 전자는 큰 범위의 비편재화 π 사슬을 형성하기 때문에 공액 효과가 현저하다. 탄소나노튜브의 구조는 흑연의 편층 구조와 동일하기 때문에 전기적 특성이 우수하다. 탄소나노튜브는 전자과학 영역에서 전극 소재로서 비교적 큰 주목을 받고 있다. 이는 투명 전극 재료로서 탁월한 광전기적 성능을 가지고 있고, 초정렬의 탄소나노튜브는 그 우수한 기계적 성능을 기반으로 스피닝과 필름 드로잉(film drawing)이 가능할 뿐만 아니라, 탄소나노튜브의 환경부식 내성이 비교적 강해 환경 영향으로 인한 성능 저하가 적다.Carbon nanotubes are carbon materials having typical layered hollow structure characteristics, and have a special structure in which the tube body of carbon nanotubes is composed of hexagonal graphite carbon ring structural units (radial size is nanometer level, axial size is micrometer level) Lt; / RTI > The tube wall consists mainly of several hundred layers of coaxial round tubes. The spacing between layers and layers remains fixed, which is about 0.34 nm, and the diameter is generally between 2 and 20 nm. The conjugated effect is significant because the P electron of the carbon atom of the carbon nanotube forms a large range of delocalized π chains. The structure of the carbon nanotubes is the same as that of the graphite, so that the electrical characteristics are excellent. Carbon nanotubes have attracted considerable attention as electrode materials in the field of electronic science. This has excellent photoelectric performance as a transparent electrode material, and super-aligned carbon nanotubes are capable of spinning and film drawing based on their excellent mechanical properties, and are also relatively resistant to environmental corrosion of carbon nanotubes There is little performance degradation due to environmental impact.

그러나 탄소나노튜브 간의 아주 강한 반데르발스힘(~500eV/μm)과 큰 종횡비(>1000)로 인해 통상적으로 큰 관다발이 형성되어 분산되기 쉬운데, 이는 우수한 광전기적 성능의 발휘와 실제 응용 및 개발에 상당한 제약을 준다. 비록 탄소나노튜브의 초정렬 박막에 있어서 필름 드로잉 공정을 통해 제조한 투명 전극이 터치스크린에 큰 면적으로 활용되기는 하나(CN1016254665A), 시트 저항이 비교적 크고(1000Ω/□보다 큼) 투과율이 80%이다. 전기저항 기준이 더욱 높은 투명 전극 박막의 전자부품과 비교하면, 이러한 유형의 탄소나노튜브 박막은 출력이 아주 크며 전극 자체의 열 효과로 인해 부품 성능이 영향 받을 수 있다.However, due to the strong Van der Waals force (~ 500 eV / μm) and the large aspect ratio (> 1000) between carbon nanotubes, large tube bundles are usually formed and dispersed. This results in excellent photoelectric performance and practical application and development It gives significant restrictions. Though the transparent electrode manufactured through the film drawing process in the ultra-aligned thin film of carbon nanotubes is utilized as a large area on the touch screen (CN1016254665A), the sheet resistance is relatively large (more than 1000? / □) and the transmittance is 80% . This type of carbon nanotube thin film has a very high output and can be affected by the thermal effect of the electrode itself, as compared with electronic parts of a transparent electrode thin film having a higher electric resistance standard.

본 발명의 목적은 탄소나노튜브 용액의 혼합 공정을 투명 전극 재료에 응용하여, 분산도가 높고 점도 제어가 가능한 탄소나노튜브 복합 전도성 잉크를 제안하고, 초음파 분산, 기계적 교반, 세포 분쇄 등 공정 복합 기술을 통해 탄소나노튜브와 유기 캐리어(organic carrier)의 균일한 분산을 구현하고, 제조한 잉크 안정성과 점도는 제어 가능하도록 하는 데에 있으며; 또한 상기 전도성 잉크는 스핀 또는 잉크젯 프린팅 공정을 통해 PET 표면에 균일한 망 구조의 탄소나노튜브 박막을 제조한 후, 그 표면에 한 층의 PEDOT:PSS 도전성 폴리머를 스핀 코팅 또는 잉크젯 프린팅하여, 표면 거칠기가 낮고 전도성이 우수한 탄소나노튜브-폴리머 층상 복합 투명 전극을 형성하는 데에 있다. 상기 층상의 탄소나노튜브-폴리머 복합 투명 플렉서블 전극의 시트 저항은 20 내지 30Ω/□, 광투과율은 80% 이상에 달할 수 있다. 상기 층상 복합 전극 박막은 터치스크린, 태양전지 및 OLED 등 디스플레이에 필요한 플렉서블 투명 전극 부문에서 우수한 활용 전망을 가지고 있다.An object of the present invention is to provide a carbon nanotube composite conductive ink which has a high degree of dispersion and can control viscosity by applying a carbon nanotube solution mixing process to a transparent electrode material and has a process composite technique such as ultrasonic dispersion, To realize a uniform dispersion of carbon nanotubes and organic carriers through the use of an organic solvent, and to control the stability and viscosity of the resulting ink. Also, the conductive ink may be prepared by spinning or inkjet printing to produce a uniformly networked carbon nanotube thin film on the PET surface, and then spin coating or inkjet printing one layer of the PEDOT: PSS conductive polymer on the surface thereof, Polymer composite transparent electrode having a low electrical conductivity and a low electrical conductivity. The layered carbon nanotube-polymer composite transparent flexible electrode may have a sheet resistance of 20 to 30? / ?, and a light transmittance of 80% or more. The layered composite electrode thin film has excellent application prospects in the field of flexible transparent electrodes required for displays such as touch screens, solar cells, and OLEDs.

탄소나노튜브-폴리머 층상 복합 투명 플렉서블 전극에 있어서, PET 표면을 베이스로 내부에서 외부를 향해 순서대로 탄소나노튜브층과 전도성 폴리머층이 분포하고, 상기 전도성 폴리머층은 혼합된 PEDOT:PSS 폴리머 재료로 구성되는 것을 특징으로 한다.In a carbon nanotube-polymer layered composite transparent flexible electrode, a carbon nanotube layer and a conductive polymer layer are distributed in order from the inside to the outside with a PET surface as a base, and the conductive polymer layer is formed of a mixed PEDOT: PSS polymer material .

상기 탄소나노튜브층은 단일벽 탄소나노튜브, 다중벽 탄소나노튜브, 이중벽 탄소나노튜브 및 개질 탄소나노튜브이다. The carbon nanotube layer is a single-walled carbon nanotube, a multi-walled carbon nanotube, a double-walled carbon nanotube, and a modified carbon nanotube.

탄소나노튜브-폴리머 층상 복합 투명 플렉서블 전극의 제조방법은 다음 단계를 포함하는데, 즉, 탄소나노튜브 전도성 잉크를 제조하고, 상기 전도성 잉크는 탄소나노튜브 분말체 0.03 내지 1%, 캐리어1 0.2 내지 0.5%, 캐리어2 0.2 내지 0.5%, 용매 98 내지 99%로 구성되고, 여기에서 상기 캐리어1은 알킬화 4차 수산화 암모늄이고, 상기 캐리어2는 수용성 음이온형 산성 물질이고, 상기 용매는 물인 단계(1); 전도성 잉크는 스핀 또는 잉크젯 프린팅 공정을 이용해 PET 표면에 균일한 망 구조의 탄소나노튜브 박막을 제조하여 건조시키는 단계(2); 에탄올 또는 질산에 침지시키고, 탈이온수로 세정한 후 건조하여 탄소나노튜브층을 형성하는 단계(3); PEDOT:PSS 수용액은 스핀 또는 잉크젯 프린팅 공정을 이용해 탄소나노튜브층 표면에 덧붙여 전도성 폴리머층을 형성하고, 건조하여 층상 복합 투명성 플렉서블 전극을 얻는 단계(4)를 포함한다. A method of manufacturing a carbon nanotube-polymer layered composite transparent flexible electrode includes the following steps: preparing a carbon nanotube conductive ink, wherein the conductive ink contains carbon nanotube powder 0.03 to 1%, carrier 1 0.2 to 0.5 (1), wherein the carrier is an alkylated quaternary ammonium hydroxide, the carrier is a water-soluble anionic acidic material, the solvent is water, ; (2) a step of preparing and drying a carbon nanotube thin film having a uniform net structure on the PET surface by using a spin or inkjet printing process; Ethanol or nitric acid, washing with deionized water and drying to form a carbon nanotube layer (3); The PEDOT: PSS aqueous solution includes a step (4) of forming a conductive polymer layer in addition to the surface of the carbon nanotube layer by using a spin or inkjet printing process and drying to obtain a layered composite transparent flexible electrode.

상기 알킬화 4차 수산화 암모늄은 헥사데실트리메틸암모늄 하이드록사이드(hexadecyl trimethyl ammonium hydroxide), 도데실트리메틸암모늄 하이드록사이드(dodecyl trimethyl ammonium hydroxide), 테트라데실트리메틸암모늄 하이드록사이드(tetradecyl trimethyl ammonium hydroxide), 벤질 트리메틸암모늄 하이드록사이드(benzyl trimethyl ammonium hydroxide) 중 하나 이상의 조합이다.The alkylated quaternary ammonium hydroxide may be selected from the group consisting of hexadecyl trimethyl ammonium hydroxide, dodecyl trimethyl ammonium hydroxide, tetradecyl trimethyl ammonium hydroxide, And a combination of at least one of benzyl trimethyl ammonium hydroxide.

상기 수용성 음이온형 산성 물질은 벤조산부틸(P-T) 도데실벤젠설폰산(dodecylbenzene sulfonic acid), 프탈산(phthalic acid), PTBBA(p-tert-butylbenzoic acid), 4-하이드록시벤조산(4-hydroxybenzoic acid), β-신남산(β-cinnamic acid), 페닐아세트산(phenylacetic acid), 살리실산(salicylic acid) 중 하나 이상의 조합이다.The water-soluble anion-like acidic substance is selected from the group consisting of PT dodecylbenzene sulfonic acid, phthalic acid, p-tert-butylbenzoic acid, 4-hydroxybenzoic acid, , beta-cinnamic acid, phenylacetic acid, salicylic acid, and the like.

상기 PEDOT:PSS가 PEDOT:PSS 수용액에서 차지하는 고형 함량은 1.0 내지 1.7%이다.The solid content of the PEDOT: PSS in the PEDOT: PSS aqueous solution is 1.0 to 1.7%.

상기 단계(2)는 스핀 공정을 채택하며, 그 회전 속도 및 시간은 500rpm/30s이고, 건조 공정은 50℃/5min이고, 표면 건조 후 120℃/10min이고, 상기 단계(3)에서의 건조는 상온에서 진행하고 상기 단계(4)는 스핀 공정을 채택하고, 그 회전 속도 및 시간은 1500rpm/30s이고, 건조 공정은 120℃/10min이다.The step (2) adopts a spinning process, the rotation speed and time are 500 rpm / 30 s, the drying process is 50 ° C./5 min, the surface is 120 ° C./10 min after drying, And the step (4) adopts a spinning process. The spinning speed and time are 1500 rpm / 30 s, and the drying process is 120 ° C./10 min.

상기 탄소나노튜브 전도성 잉크의 제조방법에 있어서, In the method for producing the carbon nanotube conductive ink,

1) 일부 용매를 취하여 캐리어1, 캐리어2를 수용액으로 제조하고,1) A part of the solvent was taken to prepare Carrier 1 and Carrier 2 as an aqueous solution,

2) 순수 탄소나노튜브 분말체 재료를 캐리어1의 수용액 내에 분산시키고,2) The pure carbon nanotube powder material was dispersed in an aqueous solution of Carrier 1,

3) 다시 나머지 용매를 첨가하고, 3) The remaining solvent was added again,

4) 교반하면서 캐리어2의 수용액을 점적 첨가한다.4) Add an aqueous solution of Carrier 2 by drop while stirring.

상기 단계(2) 및 (3)은 초음파 분산을 채택하고, 상기 단계(4)는 전자 교반을 채택한다. The steps (2) and (3) adopt ultrasonic dispersion, and the step (4) adopts electromagnetic stirring.

상기 순수 탄소나노튜브 분말체의 제조방법에 있어서, 즉, 탄소나노튜브를 메탄올에서 초음파 분산을 통해 현탁액으로 만들고, 다시 탄소나노튜브 현탁액을 UV광 세정기에 넣어 빛을 조사하고, 원심분리하여 탄소나노튜브 분말체를 수득하고; 상기 분말체를 진한 HNO3와 과황산암모늄의 혼합 수용액에 첨가하여 전자교반을 진행하고, 120℃에서 환류 반응을 5시간 진행하고, 원심분리하고, 탈이온수로 중성이 될 때까지 반복 원심분리 및 세정을 진행하고, 건조하여 순수 탄소나노튜브 분말체를 수득한다.In the method for producing the pure carbon nanotube powder, the carbon nanotube is made into a suspension through ultrasonic dispersion in methanol, the carbon nanotube suspension is put into a UV light scrubber, and the light is irradiated. Obtaining a tube powder body; The powder was added to a mixed aqueous solution of concentrated HNO 3 and ammonium persulfate, and the resulting mixture was stirred at a temperature of 120 ° C for 5 hours, centrifuged at 120 ° C, repeatedly centrifuged until it became neutral with deionized water, Washed, and dried to obtain a pure carbon nanotube powder.

상기 순수 탄소나노튜브 분말체의 제조방법에 있어서, 즉, 탄소나노튜브를 유기 용매에서 현탁액으로 분산시키고, 정치 및 팽윤시키고, 원심분리 및 세정하고; 다시 진한 질산에 첨가하고, 120℃에서 4시간 동안 반응시키고, 중성이 될 때까지 원심분리 및 세정을 진행하고, 건조하여 순수 탄소나노튜브 분말체를 수득한다.In the method for producing the pure carbon nanotube powder, that is, the carbon nanotubes are dispersed in a suspension in an organic solvent, allowed to stand and swell, centrifuged and washed; The reaction solution was added to concentrated nitric acid again and reacted at 120 ° C for 4 hours. The reaction mixture was centrifuged and washed until neutral, and dried to obtain pure carbon nanotube powder.

본 발명에 있어서 탄소나노튜브-폴리머 층상 복합 투명 플렉서블 전극의 제조방법에 있어서,In the method of manufacturing a carbon nanotube-polymer layered transparent flexible electrode in the present invention,

1) 상기 복합 전도성 잉크의 제조방법에 있어서,1) In the method for producing the composite conductive ink,

고분산 탄소나노튜브 복합 전도성 잉크는 아래 성분 및 그 중량백분율 함량으로 구성되는데,The highly dispersed carbon nanotube composite conductive ink is composed of the following components and their weight percentage contents,

1. 순수 탄소나노튜브 분말체 0.03 내지 1%1. Pure carbon nanotube powder 0.03 to 1%

2. 캐리어1 0.2 내지 0.5%2. Carrier 1 0.2 to 0.5%

3. 캐리어2 0.2 내지 0.5%3. Carrier 2 0.2 to 0.5%

4. 용매 98 내지 99%4. Solvent 98 to 99%

탄소나노튜브 분말체는 단일벽 탄소나노튜브, 다중벽 탄소나노튜브, 이중벽 탄소나노튜브 및 개질 탄소나노튜브일 수 있다.The carbon nanotube powder may be a single-walled carbon nanotube, a multi-walled carbon nanotube, a double-walled carbon nanotube, or a modified carbon nanotube.

캐리어1은 헥사데실트리메틸암모늄 하이드록사이드, 도데실트리메틸암모늄 하이드록사이드, 테트라데실트리메틸암모늄 하이드록사이드, 벤질 트리메틸암모늄 하이드록사이드 등 유기 알칼리 수용액과 같은 알킬화 4차 수산화 암모늄이다.Carrier 1 is an alkylated quaternary ammonium hydroxide such as an aqueous solution of an organic alkali such as hexadecyltrimethylammonium hydroxide, dodecyltrimethylammonium hydroxide, tetradecyltrimethylammonium hydroxide, benzyltrimethylammonium hydroxide, and the like.

캐리어2는 벤조산부틸(P-T) 도데실벤젠설폰산, 프탈산, PTBBA, 4-하이드록시벤조산, β-신남산, 페닐아세트산, 살리실산 등의 수용액과 같은 수용성 음이온 계면활성제이다. Carrier 2 is a water-soluble anionic surfactant such as an aqueous solution of butyl (P-T) dodecylbenzenesulfonic acid, phthalic acid, PTBBA, 4-hydroxybenzoic acid, beta-cinnamic acid, phenylacetic acid and salicylic acid.

캐리어1과 캐리어2를 일정 농도로 혼합할 때, 점도 조절이 가능한 점탄 상태의 용액계를 형성할 수 있다. 본 발명은 그 점도 조절이 가능한 특성을 이용해 고농도의 탄소나노튜브를 분산시키는데, 점탄 상태의 분산체는 막을 형성하기 쉽다. 캐리어1과 캐리어2를 혼합한 후 형성되는 분산계의 점도가 10 내지 20Pa.s일 때, 탄소나노튜브를 효과적으로 분산시킬 수 있다. 막 형성 후의 캐리어는 에탄올에서 탈착되기 쉽고, 물로 더 세정한 후에는 막층 표면 잔여물이 아주 적어진다.When the carrier 1 and the carrier 2 are mixed at a constant concentration, a viscous solution system capable of adjusting the viscosity can be formed. The present invention disperses carbon nanotubes having a high concentration by using a property of which viscosity can be controlled, and the viscous dispersant easily forms a film. When the viscosity of the dispersion system formed after mixing the carrier 1 and the carrier 2 is 10 to 20 Pa.s, the carbon nanotubes can be effectively dispersed. After the film formation, the carrier is likely to be desorbed from ethanol, and the surface layer residue is much less after washing with water.

탄소나노튜브 박막 표면에 한 층의 PEDOT:PSS 전도성 폴리머를 스핀 또는 잉크젯 프린팅하여 표면 조도가 낮고 전도성이 우수한 탄소나노튜브-폴리머 층상 복합 플렉서블 전극을 형성한다. PEDOT:PSS 양자의 함량비는 수요를 기반으로 조절할 수 있다(이미 시판되는 제품이 있음). 상기 층상의 탄소나노튜브-폴리머 복합 투명 플렉시블 전극의 시트 저항은 20 내지 30Ω/□, 광투과율은 80% 이상에 달할 수 있다. 상기 층상 복합 전극 박막은 터치스크린, 태양전지 및 OLED 등 디스플레이에 필요한 플렉서블 투명 전극 부문에서 우수한 활용 전망을 가지고 있다.A single layer of PEDOT: PSS conductive polymer is spin-printed or ink-jetted on the surface of the carbon nanotube thin film to form a carbon nanotube-polymer layered composite flexible electrode having low surface roughness and excellent conductivity. The content ratio of PEDOT: PSS can be adjusted based on demand (some products are already on the market). The layered carbon nanotube-polymer composite transparent flexible electrode may have a sheet resistance of 20 to 30? / ?, and a light transmittance of 80% or more. The layered composite electrode thin film has excellent application prospects in the field of flexible transparent electrodes required for displays such as touch screens, solar cells, and OLEDs.

도 1은 단일벽 탄소나노튜브 형상이고,
여기에서 A, B는 다른 정제 공정의 SEM 이미지이고,
도 2는 순수 단일벽 탄소나노튜브 박막(SWCNT)의 SEM 이미지이고,
여기에서 A, B, C는 다른 확대배율 이미지이고,
도 3은 순수 단일벽 탄소나노튜브 박막(SWCNT)의 AFM 표면 형상도이고, 및
도 4는 탄소나노튜브-폴리머 층상 복합 투명 플렉서블 전극 표면 형상도 AFM 이미지이다.
1 shows a single-wall carbon nanotube form,
Where A and B are SEM images of different purification processes,
2 is an SEM image of a pure single-walled carbon nanotube thin film (SWCNT)
Where A, B, and C are different magnification images,
3 is an AFM surface topology diagram of a pure single-walled carbon nanotube thin film (SWCNT), and
4 is an AFM image of the carbon nanotube-polymer layered composite transparent flexible electrode surface topography.

이하에서는, 본 발명의 예시적인 실시형태들을 도면을 통해 보다 상세히 설명한다.Hereinafter, exemplary embodiments of the present invention will be described in more detail with reference to the drawings.

실시예1:Example 1:

1) 단일벽 탄소나노튜브의 정제: 0.05g의 단일벽 탄소나노튜브(SWCNT)를 20ml 메탄올에서 20분간 분산시킨 후 SWCNT 현탁액을 형성한다. 상기 SWCNT 현탁액을 UV 광세정기에 넣고 40분간 처리하여 SWCNT 분말체를 수득하고; 20ml의 탈이온수를 취하여 1구 플라스크에 넣고, 다시 10ml의 진한 HNO3(68wt%)를 첨가하고, 5wt% 과황산암모늄(APS) 수용액을 첨가하고, 균일하게 혼합한 후 정제한 SWCNT 분말체를 첨가하고, 전자교반하여 120℃에서 5시간 환류 반응을 진행한다. 탈이온수로 반복 원심분리 및 세정(7000rpm, 10분)을 3회 진행하여 정제한 단일벽 탄소나노튜브를 수득하며, 이는 도 1A에서 도시하는 바와 같다.1) Purification of single-walled carbon nanotubes: 0.05 g of single walled carbon nanotubes (SWCNT) are dispersed in 20 ml of methanol for 20 minutes to form a SWCNT suspension. The SWCNT suspension was placed in an UV light waveguide for 40 minutes to obtain SWCNT powder; 20 ml of deionized water was put into a one-necked flask, 10 ml of concentrated HNO3 (68 wt%) was added, and 5 wt% ammonium persulfate (APS) aqueous solution was added. After uniform mixing, the purified SWCNT powder was added And the mixture was stirred with electromagnetic stirring to conduct a reflux reaction at 120 ° C for 5 hours. Repeated centrifugation and washing (7000 rpm, 10 minutes) with deionized water were carried out three times to obtain purified single walled carbon nanotubes, as shown in FIG. 1A.

2) 정제한 단일벽 탄소나노튜브를 0.05M의 3ml 헥사데실트리메틸암모늄 하이드록사이드(CTAOH)에 분산시키고, 다시 16ml의 물을 첨가하고, 15분간 초음파 분산을 진행한다. 상기 혼합계는 전자교반 조건하에서 0.45M 벤조산부틸 0.15 내지 0.2ml를 조금씩 점적 추가하여, 고분산의 점도 조절이 가능한 탄소나노튜브 분산계를 형성하고, 그 점도는 10 내지 20Pa.S 내에서 조절 가능하다.2) The purified single-walled carbon nanotubes were dispersed in 3 ml of 0.05 M hexadecyltrimethylammonium hydroxide (CTAOH), 16 ml of water was further added, and ultrasonic dispersion was carried out for 15 minutes. The mixed system is prepared by gradually adding 0.15 to 0.2 ml of 0.45 M butyl benzoate under electromagnetic stirring conditions to form a carbon nanotube dispersion system capable of controlling viscosity with high dispersion and its viscosity is adjustable within 10 to 20 Pa S .

3) 고분산의 탄소나노튜브 잉크는 스핀 공정을 이용해 PET 박막에 균일한 탄소나노튜브 박막을 제조한다. 공정 파라미터는 회전속도 및 시간이 500rpm/30s, 건조 공정은 50℃/5min, 표면 건조 후 120℃/10min이다.3) Highly dispersed carbon nanotube ink produces a homogeneous carbon nanotube thin film on PET thin film by spinning process. The process parameters are rotational speed and time of 500rpm / 30s, drying process is 50 ℃ / 5min, surface drying is 120 ℃ / 10min.

4) 형성한 탄소나노튜브 박막은 에탄올에서 상온 하에서 30분간 침지시키고, 탈이온수로 깨끗하게 세정하여 건조시킨다. PET 표면에 투과율이 87%인 탄소나노튜브 박막을 형성하며, 시트 저항 전기 저항은 500이다. 그 표면 형상은 도 2 및 3에서 도시하는 바와 같다.4) The formed carbon nanotube thin film is immersed in ethanol at room temperature for 30 minutes, cleaned with deionized water and dried. A carbon nanotube thin film having a transmittance of 87% is formed on the PET surface, and the sheet resistance electric resistance is 500. The surface shape thereof is as shown in Figs.

5) 탄소나노튜브 표면에 PEDOT:PSS 수용액(시판 제품, 고형 함량 1.0 내지 1.7%)을 스핀하고, 그 공정 파라미터는 1500rpm/30s, 건조 공정은 120℃/10min이다. 층상 탄소나노튜브 폴리머 복합 투명 전극의 표면 형상은 도 4에서 도시하는 바와 같다.5) A PEDOT: PSS aqueous solution (commercial product, solid content 1.0 to 1.7%) was spun onto the surface of the carbon nanotube, and its process parameters were 1500 rpm / 30s and the drying process was 120 ° C / 10 min. The surface shape of the layered carbon nanotube polymer composite transparent electrode is as shown in Fig.

6) 형성한 탄소나노튜브/PEDOT:PSS 층상 복합 전극의 광투과율은 80%보다 크고 시트 저항은 200Ω/□이다.6) The light transmittance of the carbon nanotube / PEDOT: PSS layered composite electrode formed is greater than 80% and the sheet resistance is 200? / ?.

실시예 2:Example 2:

1) 0.05g SWCNT를 취하여 40ml 벤조산에틸 용매에 첨가하고, 40분간 초음파 분산을 진행하고, 2일간 정치 및 팽윤시킨 후 원심분리하고, 다시 에탄올, 탈이온수 순서대로 원심분리 및 세정한다. 팽윤한 후의 SWCNT를 30ml 진한 질산에 첨가하고, 120℃에서 4시간 반응시킨 후 꺼내어 상청액이 기본적으로 떠오를 때까지 원심분리 및 세정을 여러 차례 진행하여 원심분리액을 중성에 가깝도록 만든다. 원심분리하여 수득한 단일벽 탄소나노튜브의 분말체는 도 1B에서 도시하는 바와 같다.1) 0.05 g of SWCNT was added to 40 ml of ethyl benzoate solvent, and ultrasonically dispersed for 40 minutes, allowed to stand for 2 days, centrifuged, and centrifuged and washed again in the order of ethanol and deionized water. Add SWCNT after swelling to 30 ml of concentrated nitric acid, react at 120 ° C for 4 hours, remove the supernatant, and centrifuge and wash several times until the supernatant basically floats to make the centrifugation solution close to neutral. The single-walled carbon nanotube powder obtained by centrifugation is as shown in Fig. 1B.

2) 정제한 단일벽 탄소나노튜브를 0.05M의 3ml 도데실트리메틸암모늄 하이드록사이드에 분산시키고, 다시 18ml의 물을 첨가하고, 15분간 초음파 분산을 진행한다. 상기 혼합계는 전자교반 조건하에서 0.3M 프탈산 0.1 내지 0.2ml를 조금씩 점적 추가한다. 고분산의 점도 조절이 가능한 탄소나노튜브 분산계를 형성한다. 그 점도는 10 내지 20Pa.S 내에서 조절 가능하다.2) The purified single-walled carbon nanotubes are dispersed in 3 ml of dodecyltrimethylammonium hydroxide of 0.05 M, 18 ml of water is further added, and ultrasonic dispersion is carried out for 15 minutes. The mixed system is added dropwise with 0.1 to 0.2 ml of 0.3 M phthalic acid under electromagnetic stirring conditions. Thereby forming a highly dispersible carbon nanotube dispersion system capable of controlling viscosity. The viscosity is adjustable within 10 to 20 Pa.

3) 고분산의 탄소나노튜브 잉크는 스핀 공정을 이용해 PET 박막에 균일한 탄소나노튜브 박막을 제조한다. 공정 파라미터는 회전속도 및 시간이 500rpm/30s, 건조 공정은 50℃/5min, 표면 건조 후 120℃/10min이다.3) Highly dispersed carbon nanotube ink produces a homogeneous carbon nanotube thin film on PET thin film by spinning process. The process parameters are rotational speed and time of 500rpm / 30s, drying process is 50 ℃ / 5min, surface drying is 120 ℃ / 10min.

4) 형성한 탄소나노튜브 박막은 진한 질산에서 상온 하에서 2분간 침지시키고, 탈이온수로 깨끗하게 세정하여 건조시킨다. PET 표면에 투과율이 87%인 탄소나노튜브 박막을 형성하며, 시트 저항 전기 저항은 150 내지 200Ω/□이다. 그 표면 형상은 도 2 및 3에서 도시하는 바와 같다.4) The formed carbon nanotube thin film is immersed in concentrated nitric acid at room temperature for 2 minutes, cleaned with deionized water and dried. A carbon nanotube thin film having a transmittance of 87% is formed on the PET surface, and the sheet resistance electrical resistance is 150-200 Ω / □. The surface shape thereof is as shown in Figs.

5) 탄소나노튜브 표면에 PEDOT:PSS 수용액(시판 제품, 고형 함량 1.0 내지 1.7%)을 스핀하고, 그 공정 파라미터는 1500rpm/30s, 건조 공정은 120℃/10min이다. 층상 탄소나노튜브 폴리머 복합 투명 전극의 표면 형상은 도 4에서 도시하는 바와 같다.5) A PEDOT: PSS aqueous solution (commercial product, solid content 1.0 to 1.7%) was spun onto the surface of the carbon nanotube, and its process parameters were 1500 rpm / 30s and the drying process was 120 ° C / 10 min. The surface shape of the layered carbon nanotube polymer composite transparent electrode is as shown in Fig.

6) 형성한 탄소나노튜브/PEDOT:PSS 층상 복합 전극의 광투과율은 80%보다 크고 시트 저항은 15 내지 40Ω/□이다.6) The formed carbon nanotube / PEDOT: PSS layered composite electrode has a light transmittance of more than 80% and a sheet resistance of 15 to 40? / ?.

실시예 3:Example 3:

1) 0.05g SWCNT를 취하여 40ml DMF에 첨가하고, 40분간 초음파 분산을 진행하고, 48시간 정치 및 팽윤시킨 후 원심분리하고, 다시 에탄올, 탈이온수 순서대로 원심분리 및 세정한다. 팽윤한 후의 SWCNT를 30ml 진한 질산에 첨가하고, 120℃에서 4시간 반응시킨 후 꺼내어 상청액이 기본적으로 떠오를 때까지 원심분리 및 세정을 여러 차례 진행하여 원심분리액을 중성에 가깝도록 만든다. 원심분리하여 수득한 단일벽 탄소나노튜브의 분말체는 도 1A에서 도시하는 바와 같다.1) 0.05 g of SWCNT was added to 40 ml of DMF, followed by 40 minutes of ultrasonic dispersion, centrifugation for 48 hours, centrifugation, and centrifugation and washing in the order of ethanol and deionized water. Add SWCNT after swelling to 30 ml of concentrated nitric acid, react at 120 ° C for 4 hours, remove the supernatant, and centrifuge and wash several times until the supernatant basically floats to make the centrifugation solution close to neutral. The single-walled carbon nanotube powder obtained by centrifugation is as shown in Fig. 1A.

2) 정제한 단일벽 탄소나노튜브를 0.05M의 3ml 벤질 트리메틸암모늄 하이드록사이드에 분산시키고, 다시 13ml의 물을 첨가하고, 15분간 초음파 분산을 진행한다. 상기 혼합계는 전자교반 조건하에서 0.3M 프탈산 0.15 내지 0.2ml를 조금씩 점적 추가하고, 고분산의 점도 조절이 가능한 탄소나노튜브 분산계를 형성하고, 그 점도는 10 내지 20Pa.S 내에서 조절 가능하다.2) The purified single-walled carbon nanotubes were dispersed in 3 ml of benzyltrimethylammonium hydroxide of 0.05 M, 13 ml of water was further added, and ultrasonic dispersion was performed for 15 minutes. The mixed system is prepared by gradually adding 0.15 to 0.2 ml of 0.3 M phthalic acid under electromagnetic stirring conditions to form a carbon nanotube dispersion system capable of adjusting the viscosity of the dispersion to a high degree, and the viscosity thereof is adjustable within 10 to 20 Pa.

3) 고분산의 탄소나노튜브 잉크는 스핀 공정을 이용해 PET 박막에 균일한 탄소나노튜브 박막을 제조한다. 공정 파라미터는 회전속도 및 시간이 500rpm/30s, 건조 공정은 50℃/5min, 표면 건조 후 120℃/10min이다.3) Highly dispersed carbon nanotube ink produces a homogeneous carbon nanotube thin film on PET thin film by spinning process. The process parameters are rotational speed and time of 500rpm / 30s, drying process is 50 ℃ / 5min, surface drying is 120 ℃ / 10min.

4) 형성한 탄소나노튜브 박막은 진한 질산에서 상온 하에서 2분간 침지시키고, 탈이온수로 깨끗하게 세정하여 건조시킨다. PET 표면에 투과율이 87%인 탄소나노튜브 박막을 형성하며, 시트 저항 전기 저항은 150 내지 200Ω/□이다. 그 표면 형상은 도 2 및 3에서 도시하는 바와 같다.4) The formed carbon nanotube thin film is immersed in concentrated nitric acid at room temperature for 2 minutes, cleaned with deionized water and dried. A carbon nanotube thin film having a transmittance of 87% is formed on the PET surface, and the sheet resistance electrical resistance is 150-200 Ω / □. The surface shape thereof is as shown in Figs.

5) 탄소나노튜브 표면에 PEDOT:PSS 수용액(시판 제품, 고형 함량 1.0 내지 1.7%)을 스핀하고, 그 공정 파라미터는 1500rpm/30s, 건조 공정은 120℃/10min이다. 층상 탄소나노튜브 폴리머 복합 투명 전극의 표면 형상은 도 4에서 도시하는 바와 같다.5) A PEDOT: PSS aqueous solution (commercial product, solid content 1.0 to 1.7%) was spun onto the surface of the carbon nanotube, and its process parameters were 1500 rpm / 30s and the drying process was 120 ° C / 10 min. The surface shape of the layered carbon nanotube polymer composite transparent electrode is as shown in Fig.

6) 형성한 탄소나노튜브/PEDOT:PSS 층상 복합 전극의 광투과율은 80%보다 크고 시트 저항은 20 내지 45Ω/□이다.6) The formed carbon nanotube / PEDOT: PSS layered composite electrode has a light transmittance of more than 80% and a sheet resistance of 20 to 45? / ?.

본 발명은 탄소나노튜브 전도성 매질 중심으로 분산도가 높고 점도 조절성이 우수한 탄소나노튜브 복합 전도성 잉크를 채택하고, 스핀 또는 잉크젯 공정을 거쳐 PET 표면에 균일한 망 구조의 탄소나노튜브 박막을 제조한 후, 그 표면에 한 층의 PEDOT:PSS 전도성 폴리머를 스핀 또는 잉크젯 프린팅하여 표면 조도가 낮고 전도성이 우수한 층상 탄소나노튜브 폴리머 복합 투명 전극을 형성한다. 상기 층상의 탄소나노튜브 폴리머 복합 투명 플렉서블 전극의 시트 저항은 20 내지 30Ω/□, 광투과율은 80% 이상에 달할 수 있다. 상기 층상 복합 전극 박막은 터치스크린, 태양전지 및 OLED 등 디스플레이에 필요한 플렉서블 투명 전극 부문에서 우수한 활용 전망을 가지고 있다.The present invention relates to a carbon nanotube composite conductive ink having a high dispersion degree and excellent viscosity control ability centered on a carbon nanotube conductive medium and a uniform network structure carbon nanotube thin film on a PET surface through a spin or inkjet process Then, a layer of PEDOT: PSS conductive polymer is spin-printed or ink-jetted on the surface thereof to form a layered carbon nanotube polymer composite transparent electrode having low surface roughness and excellent conductivity. The layered carbon nanotube polymer composite transparent flexible electrode may have a sheet resistance of 20 to 30? / ?, and a light transmittance of 80% or more. The layered composite electrode thin film has excellent application prospects in the field of flexible transparent electrodes required for displays such as touch screens, solar cells, and OLEDs.

본 발명의 복합 전도성 잉크는 그 공정의 조작성이 우수하며, 잉크젯 프린팅 기술, 스핀 기술 및 부수적인 포토 에칭 기술을 채택할 수 있기 때문에 유리, 투명 크리스탈, 투명 세라믹, 폴리머 박막 등 표면에 탄소나노튜브 전도성 막층을 제조할 수 있으며, 그 막층 표면 형상은 도 4에서 도시하는 바와 같다.Since the composite conductive ink of the present invention is excellent in operability of the process and can adopt inkjet printing technology, spinning technique and incidental photoetching technique, it is possible to use carbon nanotube conductive material such as glass, transparent crystal, transparent ceramic, A film layer can be produced, and the film layer surface shape is as shown in Fig.

탄소나노튜브 분산액에서 탄소나노튜브의 분산성이 우수하고 단일 다발 망상 분산을 형성하였다. 탄소나노튜브에 있어서 PET 박막 표면에 필름 코팅을 진행한 후 에탄올 또는 HNO3로 침지시켜 형성한 탄소나노튜브 박막은 비교적 균일한 망상 연결성을 나타난다.The dispersion of carbon nanotubes in carbon nanotube dispersion was excellent and single bundle network dispersion was formed. The carbon nanotube thin films formed by film coating on the surface of PET thin films and immersed in ethanol or HNO 3 show comparatively uniform network connectivity.

탄소나노튜브 전도성 박막 막층 성능 검출결과는 표 1과 같다.Table 1 shows the performance results of the carbon nanotube conductive thin film layer.

Figure pct00001
Figure pct00001

본 발명의 잉크가 형성하는 탄소나노미터 투명 전도성 막층은 우수한 전기적 성능과 가시광 범위 내 광투과율 및 유연성을 가진다. 상기 층상의 탄소나노튜브 폴리머 복합 투명 플렉서블 전극의 시트 저항은 20 내지 30Ω/□, 광투과율은 80% 이상에 달할 수 있다. 국내외 탄소나노미터 전도성 폴리머 전극 재료의 성능과 비교할 때, 본 발명에서 제조한 탄소나노미터 플렉서블 전극 성능은 선도적인 수준에 있다. 이는 표 2에서 설명하는 바와 같다.The carbon nanometer transparent conductive film layer formed by the ink of the present invention has excellent electrical performance, light transmittance in a visible light range, and flexibility. The layered carbon nanotube polymer composite transparent flexible electrode may have a sheet resistance of 20 to 30? / ?, and a light transmittance of 80% or more. Compared with the performance of the carbon nanometer conductive polymer electrode materials of domestic and overseas, the performance of the carbon nanometer flexible electrode manufactured in the present invention is at a leading level. This is illustrated in Table 2.

Figure pct00002
Figure pct00002

본 발명에서 연구 및 제조한 탄소나노튜브 플렉서블 전극 잉크 및 그 제조한 투명 플렉서블 전도성 박막은 터치스크린, 태양전지 및 OLED 등 디스플레이에 필요한 플렉서블 투명 전극 부문에서 우수한 활용 전망을 가지고 있다.The carbon nanotube flexible electrode ink studied and fabricated in the present invention and the transparent flexible conductive thin film prepared therefrom have excellent application prospects in the field of flexible transparent electrodes required for displays such as touch screens, solar cells, and OLEDs.

Claims (10)

PET 표면을 내부에서 외부를 향해 순서대로 탄소나노튜브층과 전도성 폴리머층이 분포하고, 상기 전도성 폴리머층은 혼합된 PEDOT:PSS 폴리머 재료로 구성되는 것을 특징으로 하는 탄소나노튜브-폴리머 층상 복합 투명 플렉서블 전극.Wherein the carbon nanotube layer and the conductive polymer layer are distributed in order from the inside to the outside of the PET surface, and the conductive polymer layer is composed of a mixed PEDOT: PSS polymer material. electrode. 제 1항에 있어서,
상기 탄소나노튜브층은 단일벽 탄소나노튜브, 다중벽 탄소나노튜브, 이중벽 탄소나노튜브 및 개질 탄소나노튜브인 것을 특징으로 하는 탄소나노튜브-폴리머 층상 복합 투명 플렉서블 전극.
The method according to claim 1,
Wherein the carbon nanotube layer is a single-walled carbon nanotube, a multi-walled carbon nanotube, a double-walled carbon nanotube, or a modified carbon nanotube.
제 1항 내지 제 2항 중 어느 한 항에 있어서,
탄소나노튜브 전도성 잉크를 제조하고, 상기 전도성 잉크는 탄소나노튜브 분말체 0.03 내지 1%, 캐리어1 0.2 내지 0.5%, 캐리어2 0.2 내지 0.5%, 용매 98 내지 99%로 구성되고, 여기에서 상기 캐리어1은 알킬화 4차 수산화 암모늄이고, 상기 캐리어2는 수용성 음이온형 산성 물질이고, 상기 용매는 물인 단계(1); 전도성 잉크는 스핀 또는 잉크젯 프린팅 공정을 이용해 PET 표면에 균일한 망 구조의 탄소나노튜브 박막을 제조하여 건조시키는 단계(2); 에탄올 또는 질산에 침지시키고, 탈이온수로 세정한 후 건조하여 탄소나노튜브층을 형성하는 단계(3); PEDOT:PSS 수용액은 스핀 또는 잉크젯 프린팅 공정을 이용해 탄소나노튜브층 표면에 덧붙여 전도성 폴리머층을 형성하고, 건조하여 층상 복합 투명성 플렉서블 전극을 얻는 단계(4)를 포함하는 것을 특징으로 하는 탄소나노튜브-폴리머 층상 복합 투명 플렉서블 전극의 제조방법.
3. The method according to any one of claims 1 to 2,
Wherein the conductive ink comprises 0.03 to 1% of carbon nanotube powder, 0.2 to 0.5% of Carrier 1, 0.2 to 0.5% of Carrier 2, and 98 to 99% of solvent, wherein the carrier 1 is an alkylated quaternary ammonium hydroxide, the carrier 2 is a water soluble anionic acidic material, and the solvent is water; (2) a step of preparing and drying a carbon nanotube thin film having a uniform network structure on the PET surface by using a spin or inkjet printing process; Ethanol or nitric acid, washing with deionized water and drying to form a carbon nanotube layer (3); (4) a step (4) of obtaining a layered composite transparent flexible electrode by forming a conductive polymer layer in addition to the surface of the carbon nanotube layer by using a spin or inkjet printing process and drying the PEDOT: PSS aqueous solution, A method for producing a polymer layered composite transparent flexible electrode.
제 3항에 있어서,
상기 알킬화 4차 수산화 암모늄은 헥사데실트리메틸암모늄 하이드록사이드(hexadecyl trimethyl ammonium hydroxide), 도데실트리메틸암모늄 하이드록사이드(dodecyl trimethyl ammonium hydroxide), 테트라데실트리메틸암모늄 하이드록사이드(tetradecyl trimethyl ammonium hydroxide), 벤질 트리메틸암모늄 하이드록사이드(benzyl trimethyl ammonium hydroxide) 중 하나 이상의 조합이고, 상기 수용성 음이온형 산성 물질은 벤조산부틸(P-T) 도데실벤젠설폰산(dodecylbenzene sulfonic acid), 프탈산(phthalic acid), PTBBA(p-tert-butylbenzoic acid), 4-하이드록시벤조산(4-hydroxybenzoic acid), β-신남산(β-cinnamic acid), 페닐아세트산(phenylacetic acid), 살리실산(salicylic acid) 중 하나 이상의 조합인 것을 특징으로 하는 탄소나노튜브-폴리머 층상 복합 투명 플렉서블 전극의 제조방법.
The method of claim 3,
The alkylated quaternary ammonium hydroxide may be selected from the group consisting of hexadecyl trimethyl ammonium hydroxide, dodecyl trimethyl ammonium hydroxide, tetradecyl trimethyl ammonium hydroxide, Benzyl trimethyl ammonium hydroxide, and the water-soluble anionic acid material is selected from the group consisting of PT dodecylbenzene sulfonic acid, phthalic acid, PTBBA (p- is a combination of at least one of tert-butylbenzoic acid, 4-hydroxybenzoic acid, beta-cinnamic acid, phenylacetic acid and salicylic acid. A method of manufacturing a carbon nanotube-polymer layered composite transparent flexible electrode.
제 3항에 있어서,
상기 PEDOT:PSS가 PEDOT:PSS 수용액에서 차지하는 고형 함량은 1.0 내지 1.7%인 것을 특징으로 하는 탄소나노튜브-폴리머 층상 복합 투명 플렉서블 전극의 제조방법.
The method of claim 3,
Wherein the solid content of the PEDOT: PSS in the PEDOT: PSS aqueous solution is 1.0 to 1.7%.
제 3항에 있어서,
상기 단계(2)는 스핀 공정을 채택하며, 그 회전 속도 및 시간은 500rpm/30s이고, 건조 공정은 50℃/5min이고, 표면 건조 후 120℃/10min이고, 상기 단계(3)에서의 건조는 상온에서 진행하고 상기 단계(4)는 스핀 공정을 채택하고, 그 회전 속도 및 시간은 1500rpm/30s이고, 건조 공정은 120℃/10min인 것을 특징으로 하는 탄소나노튜브-폴리머 층상 복합 투명 플렉서블 전극의 제조방법.
The method of claim 3,
The step (2) adopts a spinning process, the rotation speed and time are 500 rpm / 30 s, the drying process is 50 ° C./5 min, the surface is 120 ° C./10 min after drying, Polymer layered composite transparent flexible electrode according to claim 1, wherein the carbon nanotube-polymer composite transparent flexible electrode is a carbon nanotube-polymer layered composite transparent electrode, wherein the carbon nanotube-polymer composite transparent flexible electrode has a spin speed of 1500 rpm / 30s and a drying process of 120 DEG C / Gt;
제 3항에 있어서,
상기 탄소나노튜브 전도성 잉크의 제조방법은
1) 일부 용매를 취하여 캐리어1, 캐리어2를 수용액으로 제조하고,
2) 순수 탄소나노튜브 분말체 재료를 캐리어1의 수용액 내에 분산시키고,
3) 다시 나머지 용매를 첨가하고,
4) 교반하면서 캐리어2의 수용액을 점적 첨가하는 것을 특징으로 하는 탄소나노튜브-폴리머 층상 복합 투명 플렉서블 전극의 제조방법.
The method of claim 3,
The method for producing the carbon nanotube conductive ink
1) A part of the solvent was taken to prepare Carrier 1 and Carrier 2 as an aqueous solution,
2) The pure carbon nanotube powder material was dispersed in an aqueous solution of Carrier 1,
3) The remaining solvent was added again,
4) A method for producing a composite carbon nanotube-polymer layered transparent flexible electrode, wherein an aqueous solution of Carrier 2 is added dropwise while stirring.
제 3항에 있어서,
상기 단계(2) 및 (3)은 초음파 분산을 채택하고, 상기 단계(4)는 전자 교반을 채택하는 것을 특징으로 하는 탄소나노튜브-폴리머 층상 복합 투명 플렉서블 전극의 제조방법.
The method of claim 3,
Wherein the step (2) and the step (3) employ ultrasonic dispersion, and the step (4) employs electromagnetic stirring.
제 3항에 있어서,
상기 순수 탄소나노튜브 분말체의 제조방법은, 즉, 탄소나노튜브를 메탄올에서 초음파 분산을 통해 현탁액으로 만들고, 다시 SWCNT 현탁액을 UV광 세정기에 넣어 빛을 조사하고, 원심분리하여 SWCNT 분말체를 수득하고; 상기 분말체를 진한 HNO3와 과황산암모늄의 혼합 수용액에 첨가하여 전자교반을 진행하고, 120℃에서 환류 반응을 5시간 진행하고, 원심분리하고, 탈이온수로 중성이 될 때까지 반복 원심분리 및 세정을 진행하고, 건조하여 순수 탄소나노튜브 분말체를 수득하는 것을 특징으로 하는 탄소나노튜브-폴리머 층상 복합 투명 플렉서블 전극의 제조방법.
The method of claim 3,
The pure carbon nanotube powder is prepared by making a suspension of the carbon nanotube in methanol through ultrasonic dispersion and then irradiating the SWCNT suspension with a UV light cleaner and irradiating with light to obtain a SWCNT powder and; The powder was added to a mixed aqueous solution of concentrated HNO 3 and ammonium persulfate, and the resulting mixture was stirred at a temperature of 120 ° C for 5 hours, centrifuged at 120 ° C, repeatedly centrifuged until it became neutral with deionized water, And then washing is carried out, followed by drying to obtain a pure carbon nanotube powder. The method for producing a transparent carbon nanotube-polymer layered transparent flexible electrode according to claim 1,
제 3항에 있어서,
상기 순수 탄소나노튜브 분말체의 제조방법에 있어서, 탄소나노튜브를 유기 용매에서 현탁액으로 분산시키고, 정치 및 팽윤시키고, 원심분리 및 세정하고; 다시 진한 질산에 첨가하고, 120℃에서 4시간 동안 반응시키고, 중성이 될 때까지 원심분리 및 세정을 진행하고, 건조하여 순수 탄소나노튜브 분말체를 수득하는 것을 특징으로 하는 탄소나노튜브-폴리머 층상 복합 투명 플렉서블 전극의 제조방법.
The method of claim 3,
In the method for producing a pure carbon nanotube powder, carbon nanotubes are dispersed in a suspension in an organic solvent, allowed to stand and swell, centrifuged and washed; The reaction mixture was then added to concentrated nitric acid and reacted at 120 ° C for 4 hours. The mixture was centrifuged and washed until neutral, and dried to obtain a pure carbon nanotube powder. A method of manufacturing a composite transparent flexible electrode.
KR1020177003539A 2014-08-01 2015-07-30 Carbon nanotube-macromolecule composite layered transparent flexible electrode and preparation method therefor KR101956145B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201410376558.X 2014-08-01
CN201410376558.XA CN105321592B (en) 2014-08-01 2014-08-01 CNT (carbon nanotube)-polymer laminated composite flexible transparent electrode and preparation method thereof
PCT/CN2015/085531 WO2016015658A1 (en) 2014-08-01 2015-07-30 Carbon nanotube-macromolecule composite layered transparent flexible electrode and preparation method therefor

Publications (2)

Publication Number Publication Date
KR20170041738A true KR20170041738A (en) 2017-04-17
KR101956145B1 KR101956145B1 (en) 2019-03-08

Family

ID=55216780

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020177003539A KR101956145B1 (en) 2014-08-01 2015-07-30 Carbon nanotube-macromolecule composite layered transparent flexible electrode and preparation method therefor

Country Status (5)

Country Link
KR (1) KR101956145B1 (en)
CN (1) CN105321592B (en)
HK (1) HK1215615A1 (en)
TW (1) TWI578336B (en)
WO (1) WO2016015658A1 (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105914240A (en) * 2016-06-16 2016-08-31 中国华能集团公司 Solar cell using carbon nanotube transparent electrode
CN107623074A (en) * 2017-09-18 2018-01-23 深圳市华星光电半导体显示技术有限公司 A kind of OLED and the method for preparing the liquid material to be sprayed for the device
CN107946470B (en) * 2017-11-28 2021-01-12 上海迈电科技有限公司 Heterojunction solar cell and preparation method thereof
CN108110146A (en) * 2017-12-18 2018-06-01 青岛海信电器股份有限公司 Flexible el device and preparation method thereof, flexible display apparatus
CN110034007B (en) * 2018-01-12 2021-07-09 东北师范大学 Method for realizing ultrahigh-precision patterning of transparent stretchable electrode
CN108565045A (en) * 2018-04-27 2018-09-21 戚明海 A kind of hard carbon nanotube conductive thin film and preparation method thereof
CN110911030B (en) * 2018-09-18 2021-06-04 天津工业大学 Carbon nano tube/poly 3, 4-ethylene dioxythiophene transparent conductive film with sandwich structure and preparation method thereof
CN109449245A (en) * 2018-10-22 2019-03-08 福州大学 A kind of metal oxide optotransistor and preparation method thereof
CN109742244A (en) * 2018-12-13 2019-05-10 东莞理工学院 A kind of preparation method of perovskite solar battery carbon back electrode
CN112011079A (en) * 2019-06-01 2020-12-01 碳星科技(天津)有限公司 Flexible transparent electrode of reinforced concrete structure and preparation method thereof
CN110205807A (en) * 2019-06-12 2019-09-06 汉能移动能源控股集团有限公司 Flexible electrode material and preparation method thereof
CN112509728A (en) * 2019-09-16 2021-03-16 天津工业大学 Tetrachloroauric acid trihydrate doped carbon nanotube flexible transparent conductive film and preparation method thereof
CN112509729B (en) * 2019-09-16 2023-01-24 天津工业大学 Flexible transparent conductive film and preparation method thereof
CN110952225B (en) * 2019-12-03 2021-09-21 大连理工大学 Flexible integrated piezoelectric sensing material and preparation method thereof
CN112326074B (en) * 2020-06-17 2022-06-21 中国科学院深圳先进技术研究院 Touch sensor, preparation method and intelligent device comprising touch sensor
CN112133834A (en) * 2020-11-03 2020-12-25 上海大学 Ultraviolet-stable solar cell based on composite dimension flexible transparent electrode
CN113809225B (en) * 2021-09-17 2022-11-22 陕西科技大学 SnS/C-PEDOT PSS flexible thermoelectric film and preparation method thereof
CN114235931B (en) * 2021-12-17 2024-01-19 湘潭大学 Method for improving performance of flexible photoelectric detector
CN114883513B (en) * 2022-03-30 2024-02-23 南京邮电大学 Fabric electrode, and rapid preparation method and application thereof
CN114773754B (en) * 2022-05-09 2023-09-26 南京邮电大学 Polyvinyl alcohol-fluorenyl nano-sheet composite film and preparation method thereof
CN115207261B (en) * 2022-07-20 2024-02-27 南京邮电大学 Flexible fabric top emission polymer light-emitting diode and preparation method and application thereof
CN115910432A (en) * 2022-11-26 2023-04-04 宁波碳源新材料科技有限公司 Non-covalent modified carbon nano tube flexible transparent conductive film and preparation method thereof
CN116178930B (en) * 2023-01-17 2024-04-19 昆明理工大学 Method for preparing carbon nanotube-based flexible temperature-sensitive material through 3D printing
CN116130608B (en) * 2023-04-04 2023-06-30 山东科技大学 Method for preparing titanium oxide film flexible electrode by self-assembly technology
CN116567945B (en) * 2023-05-18 2024-03-22 南京林业大学 Conductive flexible transparent wood film, electronic device and preparation method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2682486B2 (en) * 1995-01-18 1997-11-26 日本電気株式会社 Method for purifying carbon nanotubes
JP2009211978A (en) * 2008-03-05 2009-09-17 Sony Corp Transparent conductive film, and optical device using the same
CN103101899A (en) * 2011-11-15 2013-05-15 北京化工大学 Preparation method of nano-material thin-film based on complex micelle system

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005110624A2 (en) * 2003-12-31 2005-11-24 Eikos Inc. Methods for modifying carbon nanotube structures to enhance coating optical and electronic properties of transparent conductive coatings
US7455793B2 (en) * 2004-03-31 2008-11-25 E.I. Du Pont De Nemours And Company Non-aqueous dispersions comprising electrically doped conductive polymers and colloid-forming polymeric acids
US7569158B2 (en) * 2004-10-13 2009-08-04 Air Products And Chemicals, Inc. Aqueous dispersions of polythienothiophenes with fluorinated ion exchange polymers as dopants
KR100790216B1 (en) * 2006-10-17 2008-01-02 삼성전자주식회사 A transparent cnt electrode using conductive dispersant and preparation method thereof
WO2009064133A2 (en) * 2007-11-14 2009-05-22 Cheil Industries Inc. Conductivity enhanced transparent conductive film and fabrication method thereof
KR20110055464A (en) * 2009-11-18 2011-05-25 전주대학교 산학협력단 Composition comprising carbon nanotube and fabrication method thereof
JP5554552B2 (en) * 2009-12-09 2014-07-23 アルプス電気株式会社 Transparent conductive film and method for producing the same
US9401490B2 (en) * 2010-10-29 2016-07-26 Lintec Corporation Transparent conductive film, electronic device, and method for manufacturing electronic device
JP5621568B2 (en) * 2010-12-10 2014-11-12 ソニー株式会社 Transparent conductive film manufacturing method, transparent conductive film, conductive fiber manufacturing method, conductive fiber, and electronic device
CN102157358B (en) * 2010-12-30 2012-08-29 北京理工大学 Method for synthesizing carbon nano tube and zinc oxide heterostructure by hydrothermal method
TWI466140B (en) * 2011-11-23 2014-12-21 Ind Tech Res Inst Transparent conductive films and methods for manufacturing the same
KR20130070729A (en) * 2011-12-20 2013-06-28 제일모직주식회사 Transparent conductive films including metal nanowires and carbon nanotubes
CN103000816B (en) * 2012-09-07 2017-12-26 天津工业大学 A kind of organic luminescent device based on flexible carbon nano tube film
JP6192732B2 (en) * 2012-10-29 2017-09-06 スリーエム イノベイティブ プロパティズ カンパニー Conductive ink and conductive polymer coating
CN103928637B (en) * 2013-01-14 2016-05-04 北京阿格蕾雅科技发展有限公司 The preparation method of carbon nano tube transparent combination electrode
CN103280255B (en) * 2013-05-29 2016-06-15 苏州汉纳材料科技有限公司 The Patterned Carbon Nanotube transparent conductive film of no color differnece and its preparation method
TWM478896U (en) * 2013-10-02 2014-05-21 Plasmag Technology Inc Transparent conductive film structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2682486B2 (en) * 1995-01-18 1997-11-26 日本電気株式会社 Method for purifying carbon nanotubes
JP2009211978A (en) * 2008-03-05 2009-09-17 Sony Corp Transparent conductive film, and optical device using the same
CN103101899A (en) * 2011-11-15 2013-05-15 北京化工大学 Preparation method of nano-material thin-film based on complex micelle system

Also Published As

Publication number Publication date
TW201606805A (en) 2016-02-16
KR101956145B1 (en) 2019-03-08
WO2016015658A1 (en) 2016-02-04
CN105321592A (en) 2016-02-10
CN105321592B (en) 2017-03-22
TWI578336B (en) 2017-04-11
HK1215615A1 (en) 2016-09-02

Similar Documents

Publication Publication Date Title
KR101956145B1 (en) Carbon nanotube-macromolecule composite layered transparent flexible electrode and preparation method therefor
CN106928773B (en) Graphene composite conductive ink for ink-jet printing and preparation method thereof
Wang et al. Novel biodegradable and ultra-flexible transparent conductive film for green light OLED devices
WO2014146534A1 (en) Transparent conductive ink composited by carbon nano tubes and polymers, and method for preparing same
KR101812552B1 (en) Method for uniform dispersion of single-wall carbon nanotubes
JP5554552B2 (en) Transparent conductive film and method for producing the same
JP2007534588A (en) Temporary viscosity and stability modifier for carbon nanotube compositions
CN104861785B (en) High dispersive CNT composite conducting ink
TW201228065A (en) Selectively etching of a carbon nano tubes (cnt) polymer matrix on a plastic substructure
WO2020239143A1 (en) Graphene conductive ink and preparation method therefor
CN105788754A (en) Carbon nanotube transparent conductive film and preparation method thereof
CN111073395A (en) Transparent electrothermal ink, preparation method thereof and electrothermal film
Wang et al. Mono-dispersed ultra-long single-walled carbon nanotubes as enabling components in transparent and electrically conductive thin films
KR101355029B1 (en) Ink conductivite ink and antistatic film using them
KR20170041739A (en) Highly dispersed and viscosity controllable transparent electrode ink with carbon nanotubes
Liu et al. Modified carbon nanotubes/polyvinyl alcohol composite electrothermal films
CN108017049B (en) Carbon nanotube dispersing agent based on carbazolyl conjugated polymer and dispersing method
KR20110061259A (en) Manufacturing method of carbon nanotube suspension and nanocomposite dispersed carbon nanotube suspension
TWI529210B (en) Preparation of graphene conductive organic solution and its large area graphene soft conductive film method
US11935668B2 (en) Conductive material, and conductive film and solar cell using same
CN105566850A (en) Preparation method of carbon nano/liquid resin masterbatch
Ma et al. Facile Fabrication of Conductive Paper-based Materials from Tunicate Cellulose Nanocrystals and Polydopamine-decorated Graphene Oxide
Sreekanth et al. Advances nanocomposites applications: in biodegradable current for solar status cell and
JP2023018187A (en) Coating composition, method for producing coating film, and transparent conductive film
KR101176955B1 (en) A carbon nano tube transparent conductive thin film with low face resistance and the fabrication method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant